Sample records for matter pm speciation

  1. EPA’s SPECIATE 4.4 Database:Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  2. EPA’s SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  3. US EPA's SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, volatile o...

  4. EPA’s SPECIATE 4.4 Database: Bridging Data Sources and Data Users

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA)repository of volatile organic gas and particulate matter (PM) speciation profiles for air pollution sources. EPA released SPECIATE 4.4 in early 2014 and, in total, the SPECIATE 4.4 database includes 5,728 PM, VOC, total...

  5. The development of exhaust speciation profiles for commercial jet engines.

    DOT National Transportation Integrated Search

    2007-10-01

    This study reports the emissions of CO, CO2, NOx, Particulate Matter (PM) mass, : speciated PM and speciated hydrocarbons at six thrust settings: 4%, 7%, 30%, 40%, 65% : and 85%, measured from both engines on four parked 737 aircraft at the Oakland :...

  6. SPECIATE 4.2: speciation Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  7. SPECIATE 4.3: Addendum to SPECIATE 4.2--Speciation database development documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Among the many uses of speciation data, these source profiles are used to: (1) create speciated emissions inve...

  8. SPECIATE 4.0: SPECIATION DATABASE DEVELOPMENT DOCUMENTATION--FINAL REPORT

    EPA Science Inventory

    SPECIATE is the U.S. EPA's repository of total organic compounds (TOC) and particulate matter (PM) speciation profiles of air pollution sources. This report documents how EPA developed the SPECIATE 4.0 database that replaces the prior version, SPECIATE 3.2. SPECIATE 4.0 includes ...

  9. U.S. National PM2.5 Chemical Speciation Monitoring Networks – CSN and IMPROVE: Description of Networks

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the national PM2.5 Chemical Speciation Monitoring Network (CSN) in 2000 to support evaluation of long-term trends and to better quantify the impact of sources on particulate matter (PM) concentrations in the size range belo...

  10. EPAs SPECIATE 4.4 Database: Development and Uses

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of source category-specific particulate matter (PM), volatile organic gas, and other gas speciation profiles of air pollutant emissions. Abt Associates, Inc. developed SPECIATE 4.4 through a collaborat...

  11. SPECIATE Version 4.4 Database Development Documentation

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regi...

  12. SPECIATE - EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of total organic compound (TOC) and particulate matter (PM) speciation profiles for emissions from air pollution sources. The data base has recently been updated and an associated report has recently been re...

  13. The variability in iron speciation in size fractionated residual oil fly ash particulate matter (ROFA PM).

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2016-08-15

    Ambient particulate matter (PM) containing iron can catalyze Fenton reaction leading to the production of reactive oxygen species in cells. It can also catalyze atmospheric redox reaction. These reactions are governed by the physicochemical characteristics of iron in ambient PM. As a surrogate for ambient PM, we prepared residual oil fly ash PM (ROFA PM) in a practical fire tube boiler firing residual oils with varying sulfur and ash contents. The ROFA particles were resolved into fine PM or PM2.5 (aerodynamic diameter (AD)<2.5μm) and coarse PM or PM2.5+ (AD between 2.5μm and 50μm). The iron speciation in PM2.5+ was ascertained using X-ray absorption spectroscopy and leaching method while that in PM2.5 was reported earlier. The results of both studies are compared to get an insight into the variability in the iron speciation in different size fractions. The results show the predominance of ferric sulfate, with a minor spinal ferrite in both PM (i.e. ZnxNi1-xFe2O4 in PM2.5, ZnFe2O4 in PM2.5+). The iron solubility in ROFA PM depends on its speciation, mode of incorporation of iron into particle's carbonaceous matrix, the grade and composition of oils, and pH of the medium. The soluble fraction of iron in PM is critical in assessing its interaction with the biological systems and its toxic potential. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Research on chromium and arsenic speciation in atmospheric particulate matter: short review

    NASA Astrophysics Data System (ADS)

    Nocoń, Katarzyna; Rogula-Kozłowska, Wioletta; Widziewicz, Kamila

    2018-01-01

    Atmospheric particulate matter (PM) plays an important role in the distribution of elements in the environment. The PM-bound elements penetrates into the other elements of the environment, in two basic forms - those dissolved in the atmospheric precipitation and those permanently bound to PM particles. Those forms differs greatly in their mobility, thus posing a potential threat to living organisms. They can also be an immediate threat, while being inhaled. Chromium (Cr) and arsenic (As) belong to the group of elements whose certain chemical states exhibit toxic properties, that is Cr(VI) and As(III). Thus, recognition of the actual threat posed by Cr and As in the environment, including those present in PM, is possible only through the in depth speciation analysis. Research on the Cr and As speciation in PM, more than the analogous studies of their presence in other compartments of the environment, have been undertaken quite rarely. Hence the knowledge on the speciation of PM-bound As and Cr is still limited. The state of knowledge in the field of PM-bound Cr and As is presented in the paper. The issues related to the characterization and occurrence of Cr and As species in PM, the share of Cr and As species mass in different PM size fractions, and in PM of different origin is also summarized. The analytical techniques used in the speciation analysis of PM-bound Cr and As are also discussed. In the existing literature there is no data on the physical characteristics of Cr and As (bound to a different PM size fractions), and thus it still lack of data needed for a comprehensive assessment of the actual environmental and health threat posed by airborne Cr and As.

  15. SPECIATE 4.4: The Bridge Between Emissions Characterization and Modeling

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of volatile organic gas and particulate matter (PM) speciation profiles of air pollution sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for...

  16. FINE PARTICULATE MATTER (PM) AND ORGANIC SPECIATION OF FIREPLACE EMISSIONS

    EPA Science Inventory

    This paper presents a summary of fireplace particle size and organic speciation data gathered to date in an on-going project. Tests are being conducted in a residential wood combustion (RWC) laboratory on three factory-built fireplaces. RWC wood smoke particles <10?m (PM10) con...

  17. Assessment of Important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  18. The Development and Uses of EPA's SPECIATE Database

    EPA Science Inventory

    SPECIATE is the U.S. Environmental Protection Agency's (EPA) repository of volatile organic compounds (VOC) and particulate matter (PM) speciation profiles of air pollution sources. These source profiles can be used to (l) provide input to chemical mass balance (CMB) receptor mod...

  19. Assessment of important SPECIATE Profiles in EPA’s Emissions Modeling Platform and Current Data Gaps (US EPA 2017 International Emissions Inventory Conference)

    EPA Science Inventory

    The US Environmental Protection Agency (EPA)’s SPECIATE database contains speciation profiles for both particulate matter (PM) and volatile organic compounds (VOCs) that are key inputs for creating speciated emission inventories for air quality modeling. The objective of th...

  20. Chemical speciation of Fe and Ni in residual oil fly ash fine particulate matter using X-ray absorption spectroscopy.

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P

    2012-12-04

    Epidemiological studies have linked residual oil fly ash fine particulate matter with aerodynamic diameter <2.5 μm (ROFA PM(2.5)) to morbidity and mortality from cardiovascular and respiratory illnesses. Bioavailable transition metals within PM have been cited as one of the components that induce such illnesses. By combining synchrotron-based X-ray absorption spectroscopy with leaching experiment, we studied the effect of residual oil compositions and combustion conditions on the speciation of Fe and Ni in ROFA PM(2.5) and the implication of these species for human health and environment. PM(2.5) samples were obtained from two types of combustors, a fire tube boiler (FTB) and a refractory line combustor (RLC). The study reveals that only Fe(2)(SO(4))(3)·nH(2)O is present in RLC PM(2.5) while Fe(2)(SO(4))(3)·nH(2)O predominates in FTB PM(2.5) with inclusion of varying amounts of nickel ferrite. The finding that RLC PM(2.5) is more bioavailable and hence more toxic than FTB PM(2.5) is significant. The reduction of toxicity of FTB PM(2.5) is due to the immobilization of a portion of Fe and Ni in the formation of an insoluble NiFe(2)O(4). This may explain the variation of toxicity from exposure to different ROFA PM(2.5). Additionally, the speciation data are sought for developing emission inventories for source apportionment study and understanding the mechanism of PM formation.

  1. Use of X-Ray Absorption Spectroscopy (XAS) to Speciate Manganese in Airborne Particulate Matter from 5 Counties Across the US

    PubMed Central

    Datta, Saugata; Rule, Ana M; Mihalic, Jana N; Chillrud, Steve N; Bostick, Benjamin C.; Ramos-Bonilla, Juan P; Han, Inkyu; Polyak, Lisa M; Geyh, Alison S; Breysse, Patrick N

    2012-01-01

    The purpose of this study is to characterize manganese oxidation states and speciation in airborne particulate matter (PM), and describe how these potentially important determinants of PM toxicity vary by location. Ambient PM samples were collected from five counties across the US using a high volume sequential cyclone system that collects PM in dry bulk form segregated into “coarse” and “fine” size fractions. The fine fraction was analyzed for this study. Analyses included total Mn using ICP-MS, and characterization of oxidation states and speciation using X-ray Absorption Spectroscopy (XAS). XAS spectra of all samples and ten standard compounds of Mn were obtained at the National Synchrotron Light Source. XAS data was analyzed using Linear Combination Fitting (LCF). Results of the LCF analysis describe differences in composition between samples. Mn(II) acetate and Mn(II) oxide are present in all samples, while Mn(II) carbonate and Mn(IV) oxide are absent. To the best of our knowledge, this is the first paper to characterize Mn composition of ambient PM and examine differences between urban sites in the US. Differences in oxidation state and composition indicate regional variations in sources and atmospheric chemistry that may help explain differences in health effects identified in epidemiological studies. PMID:22309075

  2. Particulate matter speciation profiles for light-duty gasoline vehicles in the United States.

    PubMed

    Sonntag, Darrell B; Baldauf, Richard W; Yanca, Catherine A; Fulper, Carl R

    2014-05-01

    Representative profiles for particulate matter particles less than or equal to 2.5 microm (PM2.5) are developed from the Kansas City Light-Duty Vehicle Emissions Study for use in the US. Environmental Protection Agency (EPA) vehicle emission model, the Motor Vehicle Emission Simulator (MOVES), and for inclusion in the EPA SPECIATE database for speciation profiles. The profiles are compatible with the inputs of current photochemical air quality models, including the Community Multiscale Air Quality Aerosol Module Version 6 (AE6). The composition of light-duty gasoline PM2.5 emissions differs significantly between cold start and hot stabilized running emissions, and between older and newer vehicles, reflecting both impacts of aging/deterioration and changes in vehicle technology. Fleet-average PM2.5 profiles are estimated for cold start and hot stabilized running emission processes. Fleet-average profiles are calculated to include emissions from deteriorated high-emitting vehicles that are expected to continue to contribute disproportionately to the fleet-wide PM2.5 emissions into the future. The profiles are calculated using a weighted average of the PM2.5 composition according to the contribution of PM2.5 emissions from each class of vehicles in the on-road gasoline fleet in the Kansas City Metropolitan Statistical Area. The paper introduces methods to exclude insignificant measurements, correct for organic carbon positive artifact, and control for contamination from the testing infrastructure in developing speciation profiles. The uncertainty of the PM2.5 species fraction in each profile is quantified using sampling survey analysis methods. The primary use of the profiles is to develop PM2.5 emissions inventories for the United States, but the profiles may also be used in source apportionment, atmospheric modeling, and exposure assessment, and as a basis for light-duty gasoline emission profiles for countries with limited data. PM2.5 speciation profiles were developed from a large sample of light-duty gasoline vehicles tested in the Kansas City area. Separate PM2.5 profiles represent cold start and hot stabilized running emission processes to distinguish important differences in chemical composition. Statistical analysis was used to construct profiles that represent PM2.5 emissions from the U.S. vehicle fleet based on vehicles tested from the 2005 calendar year Kansas City metropolitan area. The profiles have been incorporated into the EPA MOVES emissions model, as well as the EPA SPECIATE database, to improve emission inventories and provide the PM2.5 chemical characterization needed by CMAQv5.0 for atmospheric chemistry modeling.

  3. SPECIATION OF GAS-PHASE AND FINE PARTICLE EMISSIONS FROM BURNING OF FOLIAR FUELS

    EPA Science Inventory

    Particle size distributions (10-1000 nm aerodynamic diameter), physical and chemical properties of fine particle matter (PM2.5) with aerodynamic diameter <2.5 micrometers, and gas-phase emissions from controlled open burning of assorted taxa were measured. Chemical speciation of ...

  4. XAFS STUDIES OF NICKEL AND SULFUR SPECIATION IN RESIDENTIAL OIL FLY-ASH PARTICULATE MATTERS (ROFA PM)

    EPA Science Inventory

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, dep...

  5. DEVELOPMENT AND EVALUATION OF A HIGH-VOLUME DICHOTOMOUS SAMPLER FOR CHEMICAL SPECIATION OF COARSE AND FINE PARTICLES

    EPA Science Inventory

    This paper describes the development and field evaluation of a compact high-volume dichotomous sampler (HVDS) that collects coarse (PM10-2.5) and fine (PM2.5) particulate matter. In its primary configuration as tested, the sampler size-fractionates PM10 into...

  6. Method to Select Metropolitan Areas of Epidemiologic Interest for Enhanced Air Quality Monitoring

    EPA Science Inventory

    The U.S. Environmental Protection Agency’s current Speciation Trends Network (STN) covers most major U.S. metropolitan areas and a wide range of particulate matter (PM) constituents and gaseous co-pollutants. However, using filter-based methods, most PM constituents are measured ...

  7. SPATIAL ASSOCIATION BETWEEN SPECIATED FINE PARTICLES AND MORTALITY

    EPA Science Inventory

    Particulate matter (PM) has been linked to a range of serious cardiovascular and respiratory health problems. Some of the recent epidemiologic studies suggest that exposures to PM may result in tens of thousands of excess deaths per year and many more cases of illness among the ...

  8. THE POTENTIAL INFLUENCES OF FACE VELOCITY ON PM ARTIFACT LOSSES FOR EXPOSURE SAMPLERS USING TEFLON FILTER COLLECTION SUBSTRATES

    EPA Science Inventory

    The influences of artifact formations and losses on Particulate Matter (PM) sampler collection surfaces are well documented, especially for nitrates (Hering and Cass, 1999), and SVOC's (McDow, 1999), and more recently for speciated carbon (Turpin and Lim, 2001). These artifact...

  9. Speciation and Trends of Organic Nitrogen in Southeastern U.S. Fine Particulate Matter (PM2.5)

    EPA Science Inventory

    Dissolved free amino acids (FAA; amino acids present in a dissolvable state) and combined AA (CAA; amino acids present in peptides, proteins, or humic complexes) in fine aerosols (PM) are investigated at a semi-urban site in the southeastern US. Detection of native (chemically un...

  10. Particulate Matter Speciation Profiles for Light-duty Gasoline Vehicles in the United States

    EPA Science Inventory

    Representative particulate matter (PM2.5) profiles for particles less than or equal to 2.5 micrometers are estimated from the Kansas City Light-Duty Vehicle Emissions Study for use in the US EPA’s vehicle emission model, the Motor Vehicle Emission Simulator (MOVES). The profiles ...

  11. Understanding the PM2.5 imbalance between a far and near-road location: Results of high temporal frequency source apportionment and parameterization of black carbon

    NASA Astrophysics Data System (ADS)

    Sofowote, U. M.; Healy, R. M.; Su, Y.; Debosz, J.; Noble, M.; Munoz, A.; Jeong, C.-H.; Wang, J. M.; Hilker, N.; Evans, G. J.; Hopke, P. K.

    2018-01-01

    The differences in PM2.5 concentrations between two relatively close stations, one situated near a major highway and the other much more distant were used to develop a protocol for determining the impact of highway traffic on particulate matter concentrations at the roadside. The roadside station was <15 m away from the edge of a major highway while the other was located ∼170 m away. The roadside station contains a suite of continuous instrumentation capable of near-real-time speciation of PM2.5. The particulate matter difference, formally termed the PM2.5 imbalance was arbitrarily defined as a case wherein |Near-road PM2.5 - Far from road PM2.5|/Near-road PM2.5 ≳50%. Of interest was the variation of multi-time factors based on ME2 analyses of the speciation data from the roadside station during these imbalance events. Of the 7 mass-contributing ME2 factors, a black carbon factor was determined to be the major cause of the PM2.5 imbalance and was especially dominant for the case when PM2.5 concentrations at the roadside station were greater than the farther-station PM2.5. The black carbon concentrations observed during these specific events were further regressed against other traffic-related and meteorological parameters with two nonlinear optimization algorithms (generalized reduced gradient and rules ensemble) in our attempts to model any potential relationships. It was observed that the traffic counts of heavy duty vehicles (predominantly diesel-powered) dominated the relationship with black carbon while contributions from light duty vehicles were negligible during these [PM2.5]Roadside > [PM2.5]Farther events at the roadside station. This work details the most critical ways that highway traffic can contribute to local ambient PM2.5 concentrations that commuters are exposed to and will be important in informing policies and strategies for particulate matter pollution reduction.

  12. Estimating particle speciation concentrations using MISR retrieved aerosol properties in southern California

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, Y.; Diner, D. J.; Garay, M. J.

    2016-12-01

    Ambient fine particle (PM2.5) has been positively associated with increased mortality and morbidity worldwide. Recent studies highlight the characteristics and differential toxicity of PM2.5 chemical components, which are important for identifying sources, developing targeted particulate matter (PM) control strategies, and protecting public health. Modelling with satellite retrieved data has been proved as the most cost-effective way to estimate ground PM2.5 levels; however, limited studies have predict PM2.5 chemical components with this method. In this study, the experimental MISR 4.4 km aerosol retrievals were used to predict ground-level particle sulfate, nitrite, organic carbon and element carbon concentrations in 16 counties of southern California. The PM2.5 chemical components concentrations were obtained from the National Chemical Speciation Network (CSN) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. A generalized additive model (GAM) was developed based on 16-years data (2000-2015) by combining the MISR aerosol retrievals, meteorological variables and geographical indicators together. Model performance was assessed by model fitted R2 and root-mean-square error (RMSE) and 10-fold cross validation. Spatial patterns of sulfate, nitrate, OC and EC concentrations were also examined with 2-D prediction surfaces. This is the first attempt to develop high-resolution spatial models to predict PM2.5 chemical component concentrations with MISR retrieved aerosol properties, which will provide valuable population exposure estimates for future studies on the characteristics and differential toxicity of PM2.5 speciation.

  13. XAFS studies of nickel and sulfur speciation in residual oil fly-ash particulate matters (ROFA PM).

    PubMed

    Pattanaik, Sidhartha; Huggins, Frank E; Huffman, Gerald P; Linak, William P; Miller, C Andrew

    2007-02-15

    XAFS spectroscopy has been employed to evaluate the effect of fuel compositions and combustion conditions on the amount, form, and distribution of sulfur and nickel in size-fractionated ROFA PM. Analysis of S K-edge XANES establish that sulfate is abundant in all PM. However, depending upon the combustion conditions, lesser amounts of thiophenic sulfur, metal sulfide, and elemental sulfur may also be observed. Least-squares fitting of Ni K-edge XANES reveals that most of the nickel in PM is present as bioavailable NiSO4.nH2O. The insoluble Ni mainly exists as a minor species, as nickel ferrite in PM2.5 (PM < 2.5 microm) and nickel sulfide, Ni(x)SY(y) in PM2.5+ (PM > 2.5 microm). The Ni K-edge XANES results are in agreement with the EXAFS data. Such detailed speciation of Ni and S in PM is needed for determining their mobility, bioavailability, and reactivity, and hence, their role in PM toxicity. This information is also important for understanding the mechanism of PM formation, developing effective remediation measures, and providing criteria for identification of potential emission sources. Transition metals complexing with sulfur is ubiquitous in nature. Therefore, this information on metal sulfur complex can be critical to a large body of environmental literature.

  14. Ecological effects of particulate matter.

    PubMed

    Grantz, D A; Garner, J H B; Johnson, D W

    2003-06-01

    Atmospheric particulate matter (PM) is a heterogeneous material. Though regulated as un-speciated mass, it exerts most effects on vegetation and ecosystems by virtue of the mass loading of its chemical constituents. As this varies temporally and spatially, prediction of regional impacts remains difficult. Deposition of PM to vegetated surfaces depends on the size distribution of the particles and, to a lesser extent, on the chemistry. However, chemical loading of an ecosystem may be determined by the size distribution as different constituents dominate different size fractions. Coating with dust may cause abrasion and radiative heating, and may reduce the photosynthetically active photon flux reaching the photosynthetic tissues. Acidic and alkaline materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more likely route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. PM deposited directly to the soil can influence nutrient cycling, especially that of nitrogen, through its effects on the rhizosphere bacteria and fungi. Alkaline cation and aluminum availability are dependent upon the pH of the soil that may be altered dramatically by deposition of various classes of PM. A regional effect of PM on ecosystems is linked to climate change. Increased PM may reduce radiation interception by plant canopies and may reduce precipitation through a variety of physical effects. At the present time, evidence does not support large regional threats due to un-speciated PM, though site-specific and constituent-specific effects can be readily identified. Interactions of PM with other pollutants and with components of climate change remain important areas of research in assessment of challenges to ecosystem stability.

  15. The UK particulate matter air pollution episode of March-April 2014: more than Saharan dust

    NASA Astrophysics Data System (ADS)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  16. Volatile and semivolatile organic compounds in laboratory ...

    EPA Pesticide Factsheets

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particulate organics were quantified by gas chromatography/mass spectrometry and by high pressure liquid chromatography. Hazardous air pollutants (HAPs) accounted for a large fraction (~60 %) of the speciated VOC emissions from peat burning, including large contributions of acetaldehyde, formaldehyde, benzene, toluene, and chloromethane. Speciated organic PM2.5 mass was dominated by the following compound classes: organic acids, levoglucosan, n-alkanes, and n-alkenes. Emission factors for PM2.5 organic acids including n-alkanoic acids, n-alkenoic acids, n-alkanedioic acids, and aromatic acids were reported for the first time for peat burning, representing the largest fraction of organic carbon (OC) mass (11-12 %) of all speciated compound classes measured in this work. Levoglucosan contributed 2-3 % of the OC mass, while methoxyphenols represented 0.2-0.3 % of the OC mass on a carbon mass basis. Retene was the most abundant particulate phase polycyclic aromatic hydrocarbon. Total HAP VOC and particulate polycyclic aromatic hydrocarbon emissions from a 2008 peat wildfire in North Carolina were estimated, suggesting that peat fires can contribute a large fraction of state-wide HAP emissions. This p

  17. Speciated Elemental and Isotopic Characterization of Atmospheric Aerosols - Recent Advances

    NASA Astrophysics Data System (ADS)

    Shafer, M.; Majestic, B.; Schauer, J.

    2007-12-01

    Detailed elemental, isotopic, and chemical speciation analysis of aerosol particulate matter (PM) can provide valuable information on PM sources, atmospheric processing, and climate forcing. Certain PM sources may best be resolved using trace metal signatures, and elemental and isotopic fingerprints can supplement and enhance molecular maker analysis of PM for source apportionment modeling. In the search for toxicologically relevant components of PM, health studies are increasingly demanding more comprehensive characterization schemes. It is also clear that total metal analysis is at best a poor surrogate for the bioavailable component, and analytical techniques that address the labile component or specific chemical species are needed. Recent sampling and analytical developments advanced by the project team have facilitated comprehensive characterization of even very small masses of atmospheric PM. Historically; this level of detail was rarely achieved due to limitations in analytical sensitivity and a lack of awareness concerning the potential for contamination. These advances have enabled the coupling of advanced chemical characterization to vital field sampling approaches that typically supply only very limited PM mass; e.g. (1) particle size-resolved sampling; (2) personal sampler collections; and (3) fine temporal scale sampling. The analytical tools that our research group is applying include: (1) sector field (high-resolution-HR) ICP-MS, (2) liquid waveguide long-path spectrophotometry (LWG-LPS), and (3) synchrotron x-ray absorption spectroscopy (sXAS). When coupled with an efficient and validated solubilization method, the HR-ICP-MS can provide quantitative elemental information on over 50 elements in microgram quantities of PM. The high mass resolution and enhanced signal-to-noise of HR-ICP-MS significantly advance data quality and quantity over that possible with traditional quadrupole ICP-MS. The LWG-LPS system enables an assessment of the soluble/labile components of PM, while simultaneously providing critical oxidation state speciation data. Importantly, the LWG- LPS can be deployed in a semi-real-time configuration to probe fine temporal scale variations in atmospheric processing or sources of PM. The sXAS is providing complementary oxidation state speciation of bulk PM. Using examples from our research; we will illustrate the capabilities and applications of these new methods.

  18. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    EPA Science Inventory

    Speciated volatile organic compounds (VOCs) and organic fine particulate matter (PM2.5) mass emission factors were determined from laboratory peat fire experiments. Peat samples originated from two wildlife reserves located near the coast of North Carolina, U.S. Gas and particula...

  19. PARTICULATE ORGANIC SOURCE MARKERS IN THE NEW YORK CITY METROPOLITAN AREA

    EPA Science Inventory

    A sampling network of four sites was established for the Speciation of Organics for Apportionment of PM2.5 (SOAP) project during 2002-2003 to investigate composition, seasonal and spatial variability, and source contributions to particulate organic matter in the New York City met...

  20. Secondary aluminum industry final emissions test report: Culp Aluminum Alloys, Steele, Alabama. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The purpose of this testing program was to obtain emissions data for uncontrolled and controlled hydrochloric acid (HCl), particulate matter (PM) and speciated hydrocarbon Hazardous Air Pollutants (HAPs) from a secondary aluminum processing plant to support a national emission standard for hazardous air pollutants (NESHAP).

  1. Gas and aerosol carbon in California: comparison of measurements and model predictions in Pasadena and Bakersfield.

    EPA Science Inventory

    Co-located measurements of fine particulate matter (PM2.5) organic carbon (OC), elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs),and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air ...

  2. Application of aerosol speciation data as an in situ dust proxy for validation of the Dust Regional Atmospheric Model (DREAM)

    NASA Astrophysics Data System (ADS)

    Shaw, Patrick

    The Dust REgional Atmospheric Model (DREAM) predicts concentrations of mineral dust aerosols in time and space, but validation is challenging with current in situ particulate matter (PM) concentration measurements. Measured levels of ambient PM often contain anthropogenic components as well as windblown mineral dust. In this study, two approaches to model validation were performed with data from preexisting air quality monitoring networks: using hourly concentrations of total PM with aerodynamic diameter less than 2.5 μm (PM 2.5); and using a daily averaged speciation-derived soil component. Validation analyses were performed for point locations within the cities of El Paso (TX), Austin (TX), Phoenix (AZ), Salt Lake City (UT) and Bakersfield (CA) for most of 2006. Hourly modeled PM 2.5 did not validate at all with hourly observations among the sites (combined R < 0.00, N = 24,302 hourly values). Aerosol chemical speciation data distinguished between mineral (soil) dust from anthropogenic ambient PM. As expected, statistically significant improvements in correlation among all stations (combined R = 0.16, N = 343 daily values) were found when the soil component alone was used to validate DREAM. The validation biases that result from anthropogenic aerosols were also reduced using the soil component. This is seen in the reduction of the root mean square error between hourly in situ versus hourly modeled (RMSE hourly = 18.6 μg m -3) and 24-h in situ speciation values versus daily averaged observed (RMSE soil = 12.0 μg m -3). However, the lack of a total reduction in RMSE indicates there is still room for improvement in the model. While the soil component is the theoretical proxy of choice for a dust transport model, the current sparse and infrequent sampling is not ideal for routine hourly air quality forecast validation.

  3. Observations and regional modeling of aerosol optical properties, speciation and size distribution over Northern Africa and western Europe

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Siour, Guillaume; Mailler, Sylvain; Couvidat, Florian; Bessagnet, Bertrand

    2016-10-01

    The aerosol speciation and size distribution is modeled during the summer 2013 and over a large area encompassing Africa, Mediterranean and western Europe. The modeled aerosol is compared to available measurements such as the AERONET aerosol optical depth (AOD) and aerosol size distribution (ASD) and the EMEP network for surface concentrations of particulate matter PM2.5, PM10 and inorganic species (nitrate, sulfate and ammonium). The main goal of this study is to quantify the model ability to realistically model the speciation and size distribution of the aerosol. Results first showed that the long-range transport pathways are well reproduced and mainly constituted by mineral dust: spatial correlation is ≈ 0.9 for AOD and Ångström exponent, when temporal correlations show that the day-to-day variability is more difficult to reproduce. Over Europe, PM2.5 and PM10 have a mean temporal correlation of ≈ 0.4 but the lowest spatial correlation ( ≈ 0.25 and 0.62, respectively), showing that the fine particles are not well localized or transported. Being short-lived species, the uncertainties on meteorology and emissions induce these lowest scores. However, time series of PM2.5 with the speciation show a good agreement between model and measurements and are useful for discriminating the aerosol composition. Using a classification from the south (Africa) to the north (northern Europe), it is shown that mineral dust relative mass contribution decreases from 50 to 10 % when nitrate increases from 0 to 20 % and all other species, sulfate, sea salt, ammonium, elemental carbon, primary organic matter, are constant. The secondary organic aerosol contribution is between 10 and 20 % with a maximum at the latitude of the Mediterranean Sea (Spanish stations). For inorganic species, it is shown that nitrate, sulfate and ammonium have a mean temporal correlation of 0.25, 0.37 and 0.17, respectively. The spatial correlation is better (0.25, 0.5 and 0.87), showing that the mean values may be biased but the spatial localization of sulfate and ammonium is well reproduced. The size distribution is compared to the AERONET product and it is shown that the model fairly reproduces the main values for the fine and coarse mode. In particular, for the fine mode, the model overestimates the aerosol mass in Africa and underestimates it in Europe.

  4. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    NASA Astrophysics Data System (ADS)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  5. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas

    NASA Astrophysics Data System (ADS)

    Karnae, Saritha; John, Kuruvilla

    2011-07-01

    Corpus Christi is a growing industrialized urban airshed in South Texas impacted by local emissions and regional transport of fine particulate matter (PM 2.5). Positive matrix factorization (PMF2) technique was used to evaluate particulate matter pollution in the urban airshed by estimating the types of sources and its corresponding mass contributions affecting the measured ambient PM 2.5 levels. Fine particulate matter concentrations by species measured during July 2003 through December 2008 at a PM 2.5 speciation site were used in this study. PMF2 identified eight source categories, of which secondary sulfates were the dominant source category accounting for 30.4% of the apportioned mass. The other sources identified included aged sea salt (18.5%), biomass burns (12.7%), crustal dust (10.1%), traffic (9.7%), fresh sea salt (8.1%), industrial sources (6%), and a co-mingled source of oil combustion & diesel emissions (4.6%). The apportioned PM mass showed distinct seasonal variability between source categories. The PM levels in Corpus Christi were affected by biomass burns in Mexico and Central America during April and May, sub-Saharan dust storms from Africa during the summer months, and a continental haze episode during August and September with significant transport from the highly industrialized areas of Texas and the neighboring states. Potential source contribution function (PSCF) analysis was performed and it identified source regions and the influence of long-range transport of fine particulate matter affecting this urban area.

  6. Emission characteristics and chemical components of size-segregated particulate matter in iron and steel industry

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Cheng, Shuiyuan; Yao, Sen; Xu, Tiebing; Zhang, Tingting; Ma, Yuetao; Wang, Hongliang; Duan, Wenjiao

    2018-06-01

    As one of the highest energy consumption and pollution industries, the iron and steel industry is regarded as a most important source of particulate matter emission. In this study, chemical components of size-segregated particulate matters (PM) emitted from different manufacturing units in iron and steel industry were sampled by a comprehensive sampling system. Results showed that the average particle mass concentration was highest in sintering process, followed by puddling, steelmaking and then rolling processes. PM samples were divided into eight size fractions for testing the chemical components, SO42- and NH4+ distributed more into fine particles while most of the Ca2+ was concentrated in coarse particles, the size distribution of mineral elements depended on the raw materials applied. Moreover, local database with PM chemical source profiles of iron and steel industry were built and applied in CMAQ modeling for simulating SO42- and NO3- concentration, results showed that the accuracy of model simulation improved with local chemical source profiles compared to the SPECIATE database. The results gained from this study are expected to be helpful to understand the components of PM in iron and steel industry and contribute to the source apportionment researches.

  7. A new paradigm for constraining PM2.5 speciation by combining multiangular and polarimetric remote sensing with chemical transport model information

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O.; Xu, F.; Ge, C.; Wang, J.; Garay, M. J.; Diner, D. J.

    2014-12-01

    Exposure to ambient particulate matter (PM) has been consistently linked to cardiovascular and respiratory health effects. Although PM is currently monitored by a network of surface stations, these are too sparsely distributed to provide the level of spatial detail needed to link different aerosol species to given health effects, and expansion to denser coverage is impractical and cost prohibitive. We present a methodology for combining Chemical Transport Model (CTM) aerosol type information and multiangular spectropolarimetric data to establish the signature of specific aerosol types in top-of-atmosphere measurements, and relate it to speciated surface PM2.5 loadings. In particular, we employ the WRF-Chem model run at the University of Nebraska, and remote sensing data from the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) to explore the feasibility of this approach. We demonstrate that the CTM does well in predicting the types of aerosols present at a given location and time, however large uncertainties currently exist in CTM estimates of the concentration of the various aerosol species (e.g., black carbon, sulfate, dust, etc.) leading to large uncertainties to model-derived speciated PM 2.5. In order to constrain CTM aerosol surface concentrations we use AirMSPI UV-VIS-NIR observations of intensity, and blue, red, and NIR observations of the Q and U Stokes parameters. We select specific scenes observed by AirMSPI and use WRF-Chem to generate an initial distribution of aerosol composition. The relevant optical properties for each aerosol species are used to calculate aerosol light scattering information. This is then used in a vector (polarized) 1-D radiative transfer model to determine at-instrument Stokes parameters for the specific AirMSPI viewing geometries. As a first step, a match is sought between the CTM-predicted radiances and the AirMSPI observations. Then, the total aerosol optical depth and fractions of various aerosol species are modified via optimization to produce a better match to the observations, and converted to PM2.5 speciated loadings using CTM aerosol vertical profiles. Finally, the results are compared to available ground-based and in situ data to validate this approach.

  8. Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City

    NASA Astrophysics Data System (ADS)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    The major sources of fine particulate matter (PM2.5) in New York City (NYC) were apportioned by applying positive matrix factorization (PMF) to two different sets of particle characteristics: mass concentrations using chemical speciation data and particle number concentrations (PNC) using number size distribution, continuously monitored gases, and PM2.5 data. Post-processing was applied to the PMF results to: (i) match with meteorological data, (ii) use wind data to detect the likely locations of the local sources, and (iii) use concentration weighted trajectory models to assess the strength of potential regional/transboundary sources. Nine sources of PM2.5 mass were apportioned and identified as: secondary ammonium sulfate, secondary ammonium nitrate, road traffic exhaust, crustal dust, fresh sea-salt, aged sea-salt, biomass burning, residual oil/domestic heating and zinc. The sources of PNC were investigated using hourly average number concentrations in six size bins, gaseous air pollutants, mass concentrations of PM2.5, particulate sulfate, OC, and EC. These data were divided into 3 periods indicative of different seasonal conditions. Five sources were resolved for each period: secondary particles, road traffic, NYC background pollution (traffic and oil heating largely in Manhattan), nucleation and O3-rich aerosol. Although traffic does not account for large amounts of PM2.5 mass, it was the main source of particles advected from heavily trafficked zones. The use of residual oil had limited impacts on PM2.5 mass but dominates PNC in cold periods.

  9. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices including diesel particulate filters (DPF), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOC). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle, Urban Dynamometer Driving Schedule, and creep+idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photo-oxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary and secondary fine particulate matter from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after three hours of oxidation at typical urban VOC : NOx ratios (3:1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the non-methane organic gas emissions that could not be speciated using traditional one-dimensional gas-chromatography. The unspeciated organics - likely comprising less volatile species, such as intermediate volatility organic compounds - appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep+idle operation was 3-4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.

  10. Detailed characterization and profiles of crankcase and diesel particulate matter exhaust emissions using speciated organics.

    PubMed

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R; Ireson, Robert G; Weaver, Christopher S; Hesterberg, Thomas W; Larson, Timothy; Davey, Mark; Liu, L J Sally

    2008-08-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as an intentional quantitative tracer for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 microg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions.

  11. Detailed Characterization and Profiles of Crankcase and Diesel Particular Matter Exhaust Emissions Using Speciated Organics

    PubMed Central

    Zielinska, Barbara; Campbell, David; Lawson, Douglas R.; Ireson, Robert G.; Weaver, Christopher S.; Hesterberg, Thomas W.; Larson, Timothy; Davey, Mark; Liu, L.-J. Sally

    2008-01-01

    A monitoring campaign was conducted in August-September 2005 to compare different experimental approaches quantifying school bus self-pollution. As part of this monitoring campaign, a detailed characterization of PM2.5 diesel engine emissions from the tailpipe and crankcase emissions from the road draft tubes was performed. To distinguish between tailpipe and crankcase vent emissions, a deuterated alkane, n-hexatriacontane-d74 (n-C36D74) was added to the engine oil to serve as intentional quantitative tracers for lubricating oil PM emissions. This paper focuses on the detailed chemical speciation of crankcase and tailpipe PM emissions from two school buses used in this study. We found that organic carbon emission rates were generally higher from the crankcase than from the tailpipe for these two school buses, while elemental carbon contributed significantly only in the tailpipe emissions. The n-C36D74 that was added to the engine oil was emitted at higher rates from the crankcase than the tailpipe. Tracers of engine oil (hopanes, and steranes) were present in much higher proportion in crankcase emissions. Particle-associated PAH emission rates were generally very low (< 1 μg/km), but more PAH species were present in crankcase than in tailpipe emissions. The speciation of samples collected in the bus cabins was consistent with most of the bus self-pollution originating from crankcase emissions. PMID:18754490

  12. Statistical evaluation of the feasibility of satellite-retrieved cloud parameters as indicators of PM2.5 levels.

    PubMed

    Yu, Chao; Di Girolamo, Larry; Chen, Liangfu; Zhang, Xueying; Liu, Yang

    2015-01-01

    The spatial and temporal characteristics of fine particulate matter (PM2.5, particulate matter <2.5 μm in aerodynamic diameter) are increasingly being studied from satellite aerosol remote sensing data. However, cloud cover severely limits the coverage of satellite-driven PM2.5 models, and little research has been conducted on the association between cloud properties and PM2.5 levels. In this study, we analyzed the relationships between ground PM2.5 concentrations and two satellite-retrieved cloud parameters using data from the Southeastern Aerosol Research and Characterization (SEARCH) Network during 2000-2010. We found that both satellite-retrieved cloud fraction (CF) and cloud optical thickness (COT) are negatively associated with PM2.5 levels. PM2.5 speciation and meteorological analysis suggested that the main reason for these negative relationships might be the decreased secondary particle generation. Stratified analyses by season, land use type, and site location showed that seasonal impacts on this relationship are significant. These associations do not vary substantially between urban and rural sites or inland and coastal sites. The statistically significant negative associations of PM2.5 mass concentrations with CF and COT suggest that satellite-retrieved cloud parameters have the potential to serve as predictors to fill the data gap left by satellite aerosol optical depth in satellite-driven PM2.5 models.

  13. Characterization of ambient fine particles in the northwestern area and Anchorage, Alaska.

    PubMed

    Kim, Eugene; Hopke, Philip K

    2008-10-01

    Ambient PM2.5 (particulate matter less than 2.5 microm in aerodynamic diameter) in the northwestern United States and Alaska is dominated by carbonaceous compounds associated with wood burning and transportation sources. PM2.5 source characterization studies analyzing recent PM2.5 speciation data have not been previously reported for these areas. In this study, ambient PM2.5 speciation samples collected at two monitoring sites located in the northwestern area, Olympic Peninsula, WA, and Portland, OR, and one monitoring site located in Anchorage, AK, were characterized through source apportionments. Gasoline vehicle, secondary sulfate, and wood smoke were the largest sources of PM2.5 collected at the Anchorage, Olympic, and Portland monitoring sites, respectively. Secondary sulfates showed an April peak at Anchorage and a November peak at Portland that are likely related to the increased photochemical reaction and long-range transport in Anchorage and meteorological stagnation in Portland. Secondary nitrate at the Olympic site showed a weak summer high peak that could be caused by seasonal tourism in the national park. Backward trajectories suggested that the elevated aged sea salt concentrations at the Portland monitoring site could be regional transport of sea salt that passed through other contaminated air sheds along the coast. Oil combustion emissions that might originate from ships and ferries were observed at the Olympic monitoring site.

  14. EPA’s SPECIATE 4.4 Database - Development and Uses

    EPA Science Inventory

    SPECIATE is the EPA's repository of TOG, PM, and Other Gases speciation profiles of air pollution sources. It includes weight fractions of both organic species and PM and provides data in consistent units. Species include metals, ions, elements, and organic and inorganic compound...

  15. Emissions inventory of PM2.5 trace elements across the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam Reff; Prakash V. Bhave; Heather Simon

    2009-08-15

    This paper presents the first National Emissions Inventory (NEI) of fine particulate matter (PM2.5) that includes the full suite of PM2.5 trace elements (atomic number >10) measured at ambient monitoring sites across the U.S. PM2.5 emissions in the NEI were organized and aggregated into a set of 84 source categories for which chemical speciation profiles are available (e.g., Unpaved Road Dust, Agricultural Soil, Wildfires). Emission estimates for ten metals classified as Hazardous Air Pollutants (HAP) were refined using data from a recent HAP NEI. All emissions were spatially gridded, and U.S. emissions maps for dozens of trace elements (e.g., Fe,more » Ti) are presented for the first time. Nationally, the trace elements emitted in the highest quantities are silicon (3.8 x 10{sup 5} ton/yr), aluminium (1.4 x 10{sup 5} ton/yr), and calcium (1.3 x 10{sup 5} ton/yr). Our chemical characterization of the PM2.5 inventory shows that most of the previously unspeciated emissions are comprised of crustal elements, potassium, sodium, chlorine, and metal-bound oxygen. Coal combustion is the largest source of S, Se, Sr, Hg and primary sulfates. This work also reveals that the largest PM2.5 sources lacking specific speciation data are off-road diesel-powered mobile equipment, road construction dust, marine vessels, gasoline-powered boats, and railroad locomotives. 28 refs., 4 figs.« less

  16. A new direct thermal desorption-GC/MS method: Organic speciation of ambient particulate matter collected in Golden, BC

    NASA Astrophysics Data System (ADS)

    Ding, Luyi C.; Ke, Fu; Wang, Daniel K. W.; Dann, Tom; Austin, Claire C.

    Particulate matter having an aerodynamic diameter less than 2.5 μm (PM2.5) is thought to be implicated in a number of medical conditions, including cancer, rheumatoid arthritis, heart attack, and aging. However, very little chemical speciation data is available for the organic fraction of ambient aerosols. A new direct thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS) method was developed for the analysis of the organic fraction of PM2.5. Samples were collected in Golden, British Columbia, over a 15-month period. n-Alkanes constituted 33-98% by mass of the organic compounds identified. PAHs accounted for 1-65% and biomarkers (hopanes and steranes) 1-8% of the organic mass. Annual mean concentrations were: n-alkanes (0.07-1.55 ng m -3), 16 PAHs (0.02-1.83 ng m -3), and biomarkers (0.02-0.18 ng m -3). Daily levels of these organics were 4.89-74.38 ng m -3, 0.27-100.24 ng m -3, 0.14-4.39 ng m -3, respectively. Ratios of organic carbon to elemental carbon (OC/EC) and trends over time were similar to those observed for PM2.5. There was no clear seasonal variation in the distribution of petroleum biomarkers, but elevated levels of other organic species were observed during the winter. Strong correlations between PAHs and EC, and between petroleum biomarkers and EC, suggest a common emission source - most likely motor vehicles and space heating.

  17. A Study of metabolic transformation of organic and inorganic components in PM2.5 and PM10, South Korea

    NASA Astrophysics Data System (ADS)

    Kim, J.; Yoon, H.; Lee, M.

    2012-12-01

    The important factors of atmospheric particle matter (PM) are size, concentration, composition and toxicity which can considerably affect the possible human health problem, especially respiratory diseases, visibility reduction and climate change. PM2.5 and PM10 are complex mixture of ammonium sulfate, ammonium nitrate, organic carbon, inorganic carbon and inorganic constituents. Recently, most researches of source attribution and assessments of the relationship between health effects and particle concentrations have not taken advantage of the development in analytical tools measuring the detailed molecular structure and microstructure of particles and of the knowledge of particle formation mechanisms in combustion system. This study will combine variety analytical techniques that can provide structural and compositional information to determine the correlation between sources of hazardous material and physicochemical properties in aerosol particle. Inorganic metal can be rapidly quantifying to filter base using ED-XRF (Energy-dispersive X-ray fluorescence). Speciation and quantification of water soluble components applied HPLC-ICP-MS and LC-MS NMR (nuclear magnetic resonance). Afterward, we investigate metabolic transformations of atmospheric particle matter also using FE-TEM (Field Emission Transmission Electron Microscopy).

  18. Assessment of primary and secondary ambient particle trends using satellite aerosol optical depth and ground speciation data in the New England region, United States

    PubMed Central

    Lee, Hyung Joo; Kang, Choong-Min; Coull, Brent A.; Bell, Michelle L.; Koutrakis, Petros

    2014-01-01

    The effectiveness of air pollution emission control policies can be evaluated by examining ambient pollutant concentration trends that are observed at a large number of ground monitoring sites over time. In this paper, we used ground monitoring measurements in conjunction with satellite aerosol optical depth (AOD) data to investigate fine particulate matter (PM2.5; particulate matter with aerodynamic diameter ≤2.5 μm) trends and their spatial patterns over a large U.S. region, New England, during 2000–2008. We examined the trends in rural and urban areas to get a better insight about the trends of regional and local source emissions. Decreases in PM2.5 concentrations (μg/m3) were more pronounced in urban areas than in rural ones. In addition, the highest and lowest PM2.5 decreases (μg/m3) were observed for winter and summer, respectively. Together, these findings suggest that primary particle concentrations decreased more relative to secondary ones. This is also supported by the analysis of the speciation data which showed that downward trends of primary pollutants including black carbon were stronger than those of secondary pollutants including sulfate. Furthermore, this study found that ambient primary pollutants decreased at the same rate as their respective source emissions. This was not the case for secondary pollutants which decreased at a slower rate than that of their precursor emissions. This indicates that concentrations of secondary pollutants depend not only on the primary emissions but also on the availability of atmospheric oxidants which might not change during the study period. This novel approach of investigating spatially varying concentration trends, in combination with ground PM2.5 species trends, can be of substantial regulatory importance. PMID:24906074

  19. Source Apportionment Using Positive Matrix Factorization on Daily Measurements of Inorganic and Organic Speciated PM2.5

    PubMed Central

    Dutton, Steven J.; Vedal, Sverre; Piedrahita, Ricardo; Milford, Jana B.; Miller, Shelly L.; Hannigan, Michael P.

    2012-01-01

    Particulate matter less than 2.5 microns in diameter (PM2.5) has been linked with a wide range of adverse health effects. Determination of the sources of PM2.5 most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM2.5 speciation measurements. In this study, PM2.5 source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM2.5 measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF. Sensitivity of the PMF2 and ME2 models to the selection of speciated PM2.5 components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM2.5 emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC mass was associated with the summertime/selective aliphatic factor and the EC/sterane factor, respectively, while nitrate and sulfate mass were both dominated by the inorganic ion factor. This apportionment was found to vary substantially by season. Several of the factors identified in this study agree well with similar assessments conducted in St. Louis, MO and Pittsburgh, PA using PMF and organic molecular markers. PMID:22768005

  20. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE PAGES

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.; ...

    2017-09-11

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  1. A Multivariate Dynamic Spatial Factor Model for Speciated Pollutants and Adverse Birth Outcomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaufeld, Kimberly Ann; Fuentes, Montse; Reich, Brian J.

    Evidence suggests that exposure to elevated concentrations of air pollution during pregnancy is associated with increased risks of birth defects and other adverse birth outcomes. While current regulations put limits on total PM2.5 concentrations, there are many speciated pollutants within this size class that likely have distinct effects on perinatal health. However, due to correlations between these speciated pollutants, it can be difficult to decipher their effects in a model for birth outcomes. To combat this difficulty, we develop a multivariate spatio-temporal Bayesian model for speciated particulate matter using dynamic spatial factors. These spatial factors can then be interpolated tomore » the pregnant women’s homes to be used to model birth defects. The birth defect model allows the impact of pollutants to vary across different weeks of the pregnancy in order to identify susceptible periods. Here, the proposed methodology is illustrated using pollutant monitoring data from the Environmental Protection Agency and birth records from the National Birth Defect Prevention Study.« less

  2. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2014-07-01

    Currently, there are a limited number of field studies that evaluate the long-term performance of the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. Intercomparison of two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21) indicating that ACSM instruments are capable of stable and reproducible operation. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the filter-adjusted continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Correlations of the ACSM NR-PM1 (non-refractory particulate matter with aerodynamic diameter less than or equal to 1 μm) plus elemental carbon (EC) with tapered element oscillating microbalance (TEOM) PM2.5 and Federal Reference Method (FRM) PM1 mass are strong with r2 > 0.7 and r2 > 0.8, respectively. Discrepancies might be attributed to evaporative losses of semi-volatile species from the filter measurements used to adjust the collocated continuous measurements. This suggests that adjusting the ambient aerosol continuous measurements with results from filter analysis introduced additional bias to the measurements. We also recommend to calibrate the ambient aerosol monitoring instruments using aerosol standards rather than gas-phase standards. The fitting approach for ACSM relative ionization for sulfate was shown to improve the comparisons between ACSM and collocated measurements in the absence of calibrated values, suggesting the importance of adding sulfate calibration into the ACSM calibration routine.

  3. Effects of Particulate Matter and Its Chemical Constituents on Elderly Hospital Admissions Due to Circulatory and Respiratory Diseases

    PubMed Central

    Ferreira, Tatiane Morais; Forti, Maria Cristina; de Freitas, Clarice Umbelino; Nascimento, Felipe Parra; Junger, Washington Leite; Gouveia, Nelson

    2016-01-01

    Various fractions of particulate matter have been associated with increased mortality and morbidity. The purpose of our study is to analyze the associations between concentrations of PM2.5, PM2.5–10, PM10 and their chemical constituents (soluble ions) with hospital admissions due to circulatory and respiratory diseases among the elderly in a medium-sized city in Brazil. A time series study was conducted using Poisson regression with generalized additive models adjusted for confounders. Statistically significant associations were identified between PM10 and PM2.5–10 and respiratory diseases. Risks of hospitalization increased by 23.5% (95% CI: 13.5; 34.3) and 12.8% (95% CI: 6.0; 20.0) per 10 μg/m3 of PM2.5-10 and PM10, respectively. PM2.5 exhibited a significant association with circulatory system diseases, with the risk of hospitalization increasing by 19.6% (95% CI: 6.4; 34.6) per 10 μg/m3. Regarding the chemical species; SO42−, NO3−, NH4+ and K+ exhibited specific patterns of risk, relative to the investigated outcomes. Overall, SO42− in PM2.5–10 and K+ in PM2.5 were associated with increased risk of hospital admissions due to both types of diseases. The results agree with evidence indicating that the risks for different health outcomes vary in relation to the fractions and chemical composition of PM10. Thus, PM10 speciation studies may contribute to the establishment of more selective pollution control policies. PMID:27669280

  4. METHODS INTERCOMPARISON OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national PM2.5 network relative to each other, to the Federal R...

  5. Defense Coastal/Estuarine Research Program (DCERP) Baseline Monitoring Plan

    DTIC Science & Technology

    2007-09-19

    climatological stress (e.g., temperature, drought) and shorter-term air pollutant stress (oxidants and metals ). Heavy metals of fine PM have been...speciation of the fine and coarse PM fractions will allow distinction between different PM sources such as wind blown soil dust, including dust...emitting 12% of the total PM2.5 mass (U.S. EPA, 2004b). Source apportionment modeling of PM2.5 mass concentrations from 24 Speciation Defense Coastal

  6. Effects of Source-Apportioned Coarse Particulate Matter (PM) ...

    EPA Pesticide Factsheets

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coal combustion and steel production. Size-fractionated PM (coarse, fine and ultrafine) were collected from an urban site (G.T. Craig (GTC)) and a rural site (Chippewa Lake monitor (CLM) located 53 km southwest of Cleveland) from July 2009 to June 2010. Following collection, resulting speciated PM data were apportioned to identify local industrial emission sources for each size fraction and location, indicating these samples were enriched with resident emission sources. This study was designed to determine whether exposure of the CMAPS coarse PM contributes to the exacerbation of allergic asthma. Non-sensitized and house dust mite (HDM)-sensitized female Balb/cJ mice (n= 8/group) were exposed via oropharyngeal (OP) aspiration to 100 g coarse fractions of one of five source apportioned groups representative of distinct time periods of 4-6 weeks (traffic, coal, steel 1, steel 2, or winter PM) and OP challenge with HDM conducted 2 hr following dosing with PM. Two days later, airway responsiveness to methacholine aerosol was assessed in anesthetized ventilated control and HDM mice. The HDM-allergic mice demonstrated increased airway reactivity in comparison to control mice. Bronchoalveolar l

  7. Sources of fine particles in the South Coast area, California

    NASA Astrophysics Data System (ADS)

    Kim, Eugene; Turkiewicz, Katarzyna; Zulawnick, Sylvia A.; Magliano, Karen L.

    2010-08-01

    PM 2.5 (particulate matter less than 2.5 μm in aerodynamic diameter) speciation data collected between 2003 and 2005 at two United State Environmental Protection Agency (US EPA) Speciation Trends Network monitoring sites in the South Coast area, California were analyzed to identify major PM 2.5 sources as a part of the State Implementation Plan development. Eight and nine major PM 2.5 sources were identified in LA and Rubidoux, respectively, through PMF2 analyses. Similar to a previous study analyzing earlier data ( Kim and Hopke, 2007a), secondary particles contributed the most to the PM 2.5 concentrations: 53% in LA and 59% in Rubidoux. The next highest contributors were diesel emissions (11%) in LA and Gasoline vehicle emissions (10%) in Rubidoux. Most of the source contributions were lower than those from the earlier study. However, the average source contributions from airborne soil, sea salt, and aged sea salt in LA and biomass smoke in Rubidoux increased. To validate the apportioned sources in this study, PMF2 results were compared with those obtained from EPA PMF ( US EPA, 2005). Both models identified the same number of major sources and the resolved source profiles and contributions were similar at the two monitoring sites. The minor differences in the results caused by the differences in the least square algorithm and non-negativity constraints between two models did not affect the source identifications.

  8. SPECIATE and using the Speciation Tool to prepare VOC and PM chemical speciation profiles for air quality modeling

    EPA Science Inventory

    This product provides training to air pollution inventory and modeling professionals to understand the US EPA's SPECIATE database base and Speciation Tool and their use to develop speciated emission inventories.

  9. SPECIATE's VOC and PM Speciation Profiles and Their use to Prepare for Air quality Modeling (2017 EIC)

    EPA Pesticide Factsheets

    This training provides general concepts on chemical speciation, the SPECIATE database and browser, and how to use the Speciation Tool to create model ready speciation inputs for a photochemical air quality model.

  10. Spatial and Temporal Variation in Fine Particulate Matter Mass and Chemical Composition: The Middle East Consortium for Aerosol Research Study

    PubMed Central

    Abdeen, Ziad; Heo, Jongbae; Wu, Bo; Shpund, Jacob; Vanger, Arye; Sharf, Geula; Moise, Tamar; Brenner, Shmuel; Nassar, Khaled; Saleh, Rami; Al-Mahasneh, Qusai M.; Sarnat, Jeremy A.; Schauer, James J.

    2014-01-01

    Ambient fine particulate matter (PM2.5) samples were collected from January to December 2007 to investigate the sources and chemical speciation in Palestine, Jordan, and Israel. The 24-h PM2.5 samples were collected on 6-day intervals at eleven urban and rural sites simultaneously. Major chemical components including metals, ions, and organic and elemental carbon were analyzed. The mass concentrations of PM2.5 across the 11 sites varied from 20.6 to 40.3 μg/m3, with an average of 28.7 μg/m3. Seasonal variation of PM2.5 concentrations was substantial, with higher average concentrations (37.3 μg/m3) in the summer (April–June) months compared to winter (October–December) months (26.0 μg/m3) due mainly to high contributions of sulfate and crustal components. PM2.5 concentrations in the spring were greatly impacted by regional dust storms. Carbonaceous mass was the most abundant component, contributing 40% to the total PM2.5 mass averaged across the eleven sites. Crustal components averaged 19.1% of the PM2.5 mass and sulfate, ammonium, and nitrate accounted for 16.2%, 6.4%, and 3.7%, respectively, of the total PM2.5 mass. The results of this study demonstrate the need to better protect the health and welfare of the residents on both sides of the Jordan River in the Middle East. PMID:25045751

  11. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    NASA Astrophysics Data System (ADS)

    Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.

    2017-03-01

    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.

  12. Effects of metals within ambient air particulate matter (PM) on human health.

    PubMed

    Chen, Lung Chi; Lippmann, Morton

    2009-01-01

    We review literature providing insights on health-related effects caused by inhalation of ambient air particulate matter (PM) containing metals, emphasizing effects associated with in vivo exposures at or near contemporary atmospheric concentrations. Inhalation of much higher concentrations, and high-level exposures via intratracheal (IT) instillation that inform mechanistic processes, are also reviewed. The most informative studies of effects at realistic exposure levels, in terms of identifying influential individual PM components or source-related mixtures, have been based on (1) human and laboratory animal exposures to concentrated ambient particles (CAPs), and (2) human population studies for which both health-related effects were observed and PM composition data were available for multipollutant regression analyses or source apportionment. Such studies have implicated residual oil fly ash (ROFA) as the most toxic source-related mixture, and Ni and V, which are characteristic tracers of ROFA, as particularly influential components in terms of acute cardiac function changes and excess short-term mortality. There is evidence that other metals within ambient air PM, such as Pb and Zn, also affect human health. Most evidence now available is based on the use of ambient air PM components concentration data, rather than actual exposures, to determine significant associations and/or effects coefficients. Therefore, considerable uncertainties about causality are associated with exposure misclassification and measurement errors. As more PM speciation data and more refined modeling techniques become available, and as more CAPs studies involving PM component analyses are performed, the roles of specific metals and other components within PM will become clearer.

  13. Modeling of the chemical composition of fine particulate matter: Development and performance assessment of EASYWRF-Chem

    NASA Astrophysics Data System (ADS)

    Mendez, M.; Lebègue, P.; Visez, N.; Fèvre-Nollet, V.; Crenn, V.; Riffault, V.; Petitprez, D.

    2016-03-01

    The European emission Adaptation SYstem for the WRF-Chem model (EASYWRF-Chem) has been developed to generate chemical information supporting the WRF-Chem requirements from any emission inventory based on the CORINAIR methodology. Using RADM2 and RACM2 mechanisms, "emission species" are converted into "model species" thanks to the SAPRC methodology for gas phase pollutant and the PM10 and PM2.5 fractions. Furthermore, by adapting US EPA PM2.5 profiles, the processing of aerosol chemical speciation profiles separates the unspeciated PM2.5 emission into five chemical families: sulfates, nitrates, elemental carbon, organic aerosol and unspeciated aerosol. The evaluation of the model has been performed by separately comparing model outcomes with (i) meteorological measurements; (ii) NO2, O3, PM10 and PM2.5 mass concentrations from the regional air quality monitoring network; (iii) hourly-resolved data from four field campaign measurements, in winter and in summer, on two sites in the French northern region. In the latter, a High Resolution - Time of Flight - Aerosol Mass Spectrometer (HR-ToF-AMS) provided non-refractory PM1 concentrations of sulfate, nitrate and ammonium ions as well as organic matter (OM), while an aethalometer provided black carbon (BC) concentrations in the PM2.5 fraction. Meteorological data (temperature, wind, relative humidity) are well simulated for all the time series data except for specific events as wind direction changes or rainfall. For particulate matter, results are presented by considering firstly the total mass concentration of PM2.5 and PM10. EASYWRF-Chem simulations overestimated the PM10 mass concentrations by + 22% and + 4% for summer and winter periods respectively, whereas for the finer PM2.5 fraction, mass concentrations were overestimated by + 20% in summer and underestimated by - 13% in winter. Simulated sulfate concentrations were underestimated and nitrate concentrations were overestimated but hourly variations were well represented. Ammonium particulate matter was well simulated for all seasons. Although simulated particulate OM concentrations in PM2.5 were underestimated, their hourly variations were well reproduced by the model. At least BC measurements revealed that EASYWRF-Chem forecast performance was higher in winter than during summer when BC concentrations were very low.

  14. Secondary organic aerosol production from diesel vehicle exhaust: impact of aftertreatment, fuel chemistry and driving cycle

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; Nguyen, N. T.; Robertson, W. H.; Na, K.; Sahay, K. N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    Environmental chamber ("smog chamber") experiments were conducted to investigate secondary organic aerosol (SOA) production from dilute emissions from two medium-duty diesel vehicles (MDDVs) and three heavy-duty diesel vehicles (HDDVs) under urban-like conditions. Some of the vehicles were equipped with emission control aftertreatment devices, including diesel particulate filters (DPFs), selective catalytic reduction (SCR) and diesel oxidation catalysts (DOCs). Experiments were also performed with different fuels (100% biodiesel and low-, medium- or high-aromatic ultralow sulfur diesel) and driving cycles (Unified Cycle,~Urban Dynamometer Driving Schedule, and creep + idle). During normal operation, vehicles with a catalyzed DPF emitted very little primary particulate matter (PM). Furthermore, photooxidation of dilute emissions from these vehicles produced essentially no SOA (below detection limit). However, significant primary PM emissions and SOA production were measured during active DPF regeneration experiments. Nevertheless, under reasonable assumptions about DPF regeneration frequency, the contribution of regeneration emissions to the total vehicle emissions is negligible, reducing PM trapping efficiency by less than 2%. Therefore, catalyzed DPFs appear to be very effective in reducing both primary PM emissions and SOA production from diesel vehicles. For both MDDVs and HDDVs without aftertreatment substantial SOA formed in the smog chamber - with the emissions from some vehicles generating twice as much SOA as primary organic aerosol after 3 h of oxidation at typical urban VOC / NOx ratios (3 : 1). Comprehensive organic gas speciation was performed on these emissions, but less than half of the measured SOA could be explained by traditional (speciated) SOA precursors. The remainder presumably originates from the large fraction (~30%) of the nonmethane organic gas emissions that could not be speciated using traditional one-dimensional gas chromatography. The unspeciated organics - likely comprising less volatile species such as intermediate volatility organic compounds - appear to be important SOA precursors; we estimate that the effective SOA yield (defined as the ratio of SOA mass to reacted precursor mass) was 9 ± 6% if both speciated SOA precursors and unspeciated organics are included in the analysis. SOA production from creep + idle operation was 3-4 times larger than SOA production from the same vehicle operated over the Urban Dynamometer Driving Schedule (UDDS). Fuel properties had little or no effect on primary PM emissions or SOA formation.

  15. PM2.5 Characterization for Time Series Studies: Organic Molecular Marker Speciation Methods and Observations from Daily Measurements in Denver

    PubMed Central

    Dutton, Steven J.; Williams, Daniel E.; Garcia, Jessica K.; Vedal, Sverre; Hannigan, Michael P.

    2009-01-01

    Particulate matter less than 2.5 microns in diameter (PM2.5) has been shown to have a wide range of adverse health effects and consequently is regulated in accordance with the US-EPA’s National Ambient Air Quality Standards. PM2.5 originates from multiple primary sources and is also formed through secondary processes in the atmosphere. It is plausible that some sources form PM2.5 that is more toxic than PM2.5 from other sources. Identifying the responsible sources could provide insight into the biological mechanisms causing the observed health effects and provide a more efficient approach to regulation. This is the goal of the Denver Aerosol Sources and Health (DASH) study, a multi-year PM2.5 source apportionment and health study. The first step in apportioning the PM2.5 to different sources is to determine the chemical make-up of the PM2.5. This paper presents the methodology used during the DASH study for organic speciation of PM2.5. Specifically, methods are covered for solvent extraction of non-polar and semi-polar organic molecular markers using gas chromatography-mass spectrometry (GC-MS). Vast reductions in detection limits were obtained through the use of a programmable temperature vaporization (PTV) inlet along with other method improvements. Results are presented for the first 1.5 years of the DASH study revealing seasonal and source-related patterns in the molecular markers and their long-term correlation structure. Preliminary analysis suggests that point sources are not a significant contributor to the organic molecular markers measured at our receptor site. Several motor vehicle emission markers help identify a gasoline/diesel split in the ambient data. Findings show both similarities and differences when compared with other cities where similar measurements and assessments have been made. PMID:20161318

  16. MAIA pathfinder: Imaging Polarimetric Assessment and Characterization of Tropospheric Particulate Matter (ImPACT-PM) field campaign

    NASA Astrophysics Data System (ADS)

    Kalashnikova, O. V.; Seidel, F. C.; Xu, F.; Garay, M. J.; Wu, L.; Bruegge, C. J.; van Harten, G.; Val, S.; Diner, D. J.; Seinfeld, J.; Bates, K. H.; Cappa, C. D.; Bradley, C. L.; Kupinski, M.; Clements, C. B.; Camacho, C.; Yorks, J. E.

    2016-12-01

    The Multi-Angle Imager for Aerosols (MAIA) instrument, which was recently selected under NASA's third Earth Venture Instrument call, will improve aerosol particle type sensitivity through the atmospheric column as well as at the surface through the use of multiangular, multispectral, and polarimetric observations. MAIA will provide new information that enables estimates of speciated (size- and particle type classifications) surface particulate matter (PM) from space over major cities around the globe, and enable improved associations between particulate air pollution and human health. As a pathfinder to MAIA, the ImPACT-PM field campaign was a joint JPL/Caltech effort to combine measurements from MISR and AirMSPI with in situ airborne measurements and a chemical transport model to validate remote sensing retrievals of different types of airborne particulate matter. We will present highlights of the successfully completed ImPACT-PM field campaign which took place in the California Central Valley on July 5-8, 2016. We had two NASA ER-2/ CIRPAS Twin Otter collocated flights coincident with Terra/MISR overpasses on Tuesday and Thursday July 5 and 7; and two ER-2/Twin Otter collocations over local fires on Friday, July 8th. The AirMSPI, AirSPEX, and CPL instruments were integrated on the ER-2, and Caltech aerosol/cloud in-situ instruments were integrated on the CIRPAS Twin Otter aircraft in addition to the normal Twin Otter payload. We also deployed the JPL/University of Arizona GroundMSPI instrument and a ground-based lidar from San José State University at the Fresno California Air Resources Board super-site. While the overall aerosol and PM levels were low at this time, we were able to see a gradient of pollution in specially processed MISR high-resolution 4.4 km resolution aerosol data on both days. We will present initial results of AirMSPI WRF-Chem-constrained retrievals in comparison with EPA Speciation Trends Network stations in Fresno and Bakersfield, and with available AMS/DMA/SP2 instrument data from the Twin Otter. The SP2 instrument measured very high levels of carbon over the fire near Gorman on July 8 that was collocated with the AirMSPI/SPEX data. This provides a case to validate AirMSPI retrievals of absorbing particles.

  17. Bioaccessibility and Speciation of Potential Toxicants in Some Geogenic Sources of Atmospheric Particulate Matter

    NASA Astrophysics Data System (ADS)

    Morman, S. A.; Wolf, R. E.; Plumlee, G.; Reynolds, R. L.

    2008-12-01

    The correlation of exposure to particulate matter (PM) and increased morbidity and mortality was established in the 1970's. Research focused on elucidating mechanisms of action (i.e. particle size, composition, and biodurability), has generally examined anthropogenic sources such as solid or liquid combustion byproducts of fossil fuels, byproducts from the smelting of metal ores, and commercial/industrial mineral dusts (asbestos, crystalline silica. metal dusts). While many studies exist on agricultural exposures to inorganic dust, far fewer have examined health issues related to particulate matter contributions from rural, non-agricultural dusts or other geogenic sources. Geogenic PM (produced by natural processes such as volcanic ash, volcanic fog (vog), dusts from dry lakes or glacial deposits, smoke and windborne ash from wildfires, and dusts containing various soil pathogens) and geoanthropogenic PM (produced from natural sources by processes that are modified or enhanced by human activities such as dusts from lakebeds dried by human removal of water, dusts produced from areas that have undergone desertification as a result of human practices etc.) are increasingly recognized as potential agents of toxicity and disease, via both environmental and occupational exposures. Surface sediment on some dry lake beds may contribute significant amounts of mineral dusts to the atmospheric load. For example, Owens Lake (a dry lake in southern California) has been a major source of PM10 (particulate matter less than 10 micrometers) dust in the United States. Dusts from dry and drying saline lakes may contain high concentrations of metals, such as arsenic, with known human health toxicity. Wildfires, consuming over nine million acres in 2007, also contribute significant amounts of particulate matter in addition to their other hazards. Designed to estimate the bioaccessibility of metals in soils, dusts and other environmental materials by measuring the reactivity of the materials in simulated body fluids (SBFs), physiologically based extraction tests (PBETs) are an inexpensive, acellular in vitro test. Bioaccessibility, defined as the fraction of a potential toxicant that becomes soluble in the SBF (e.g. gastric, intestinal, lung or lysosomal fluid), is an indication of the amounts of a potential toxicant that may be available for absorption through ingestion or inhalation. PBETs were conducted on artificially generated dust samples from playas in the Mojave Desert and soil and ash samples from recent California wildfires. Speciation, an important factor in assessing toxicity, was evaluated using high performance liquid chromatography (HPLC) separation with ICP-MS detection for arsenic and chromium.

  18. Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter from wood and dung cooking fires, brick kilns, generators, trash and crop residue burning

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth; Jayarathne, Thilina; Stockwell, Chelsea; Christian, Ted; Bhave, Prakash; Siva Praveen, Puppala; Panday, Arnico; Adhikari, Sagar; Maharjan, Rashmi; Goetz, Doug; DeCarlo, Peter; Saikawa, Eri; Yokelson, Robert

    2016-04-01

    The Nepal Ambient Monitoring and Source Testing Experiment (NAMASTE) field campaign targeted the in situ characterization of widespread and under-sampled combustion sources. In Kathmandu and the Terai, southern Nepal's flat plains, samples of fine particulate matter (PM2.5) were collected from wood and dung cooking fires (n = 22), generators (n = 2), groundwater pumps (n = 2), clamp kilns (n = 3), zig-zag kilns (n = 3), trash burning (n = 4), one heating fire, and one crop residue fire. Co-located measurements of carbon dioxide, carbon monoxide, and volatile organic compounds allowed for the application of the carbon mass balance approach to estimate emission factors for PM2.5, elemental carbon, organic carbon, and water-soluble inorganic ions. Organic matter was chemically speciated using gas chromatography - mass spectrometry for polycyclic aromatic hydrocarbons, sterols, n-alkanes, hopanes, steranes, and levoglucosan, which accounted for 2-8% of the measured organic carbon. These data were used to develop molecular-marker based profiles for use in source apportionment modeling. This study provides quantitative emission factors for particulate matter and its constituents for many important combustion sources in Nepal and South Asia.

  19. PM2.5 source apportionment with organic markers in the Southeastern Aerosol Research and Characterization (SEARCH) study.

    PubMed

    Watson, John G; Chow, Judith C; Lowenthal, Douglas H; Antony Chen, L-W; Shaw, Stephanie; Edgerton, Eric S; Blanchard, Charles L

    2015-09-01

    Positive matrix factorization (PMF) and effective variance (EV) solutions to the chemical mass balance (CMB) were applied to PM(2.5) (particulate matter with an aerodynamic diameter <2.5 μm) mass and chemically speciated measurements for samples taken from 2008 to 2010 at the Atlanta, Georgia, and Birmingham, Alabama, sites. Commonly measured PM(2.5) mass, elemental, ionic, and thermal carbon fraction concentrations were supplemented with detailed nonpolar organic speciation by thermal desorption-gas chromatography/mass spectrometry (TD-GC/MS). Source contribution estimates were calculated for motor vehicle exhaust, biomass burning, cooking, coal-fired power plants, road dust, vegetative detritus, and secondary sulfates and nitrates for Atlanta. Similar sources were found for Birmingham, with the addition of an industrial source and the separation of biomass burning into open burning and residential wood combustion. EV-CMB results based on conventional species were qualitatively similar to those estimated by PMF-CMB. Secondary ammonium sulfate was the largest contributor, accounting for 27-38% of PM(2.5), followed by biomass burning (21-24%) and motor vehicle exhaust (9-24%) at both sites, with 4-6% of PM(2.5) attributed to coal-fired power plants by EV-CMB. Including organic compounds in the EV-CMB reduced the motor vehicle exhaust and biomass burning contributions at both sites, with a 13-23% deficit for PM(2.5) mass. The PMF-CMB solution showed mixing of sources within the derived factors, both with and without the addition of speciated organics, as is often the case with complex source mixtures such as those at these urban-scale sites. The nonpolar TD-GC/MS compounds can be obtained from existing filter samples and are a useful complement to the elements, ions, and carbon fractions. However, they should be supplemented with other methods, such as TD-GC/MS on derivitized samples, to obtain a wider range of polar compounds such as sterols, sugars, and organic acids. The PMF and EV solutions to the CMB equations are complementary to, rather than replacements for, each other, as comparisons of their results reveal uncertainties that are not otherwise evident. Organic markers can be measured on currently acquired PM(2.5) filter samples by thermal methods. These markers can complement element, ion, and carbon fraction measurements from long-term speciation networks. Applying the positive matrix factorization and effective variance solutions for the chemical mass balance equations provides useful information on the accuracy of the source contribution estimates. Nonpolar compounds need to be complemented with polar compounds to better apportion cooking and secondary organic aerosol contributors.

  20. Short-term associations of fine particulate matter components and emergency hospital admissions among a privately insured population in Greater Houston

    NASA Astrophysics Data System (ADS)

    Liu, Suyang; Ganduglia, Cecilia M.; Li, Xiao; Delclos, George L.; Franzini, Luisa; Zhang, Kai

    2016-12-01

    A number of time-series studies have associated PM2.5 (particulate matter with aerodynamic diameter less than 2.5 μm) mass and components with various health outcomes. No studies have yet examined the associations between PM2.5 components and hospital admissions among a privately insured population. We estimated the short-term associations between exposure to PM2.5 mass and components and emergency hospital admissions for all-cause and cause-specific diseases in Greater Houston, Texas, during 2008-2013 using Blue Cross Blue Shield Texas claims data. A total of 90,085 emergency hospital admissions were included in this study, with an average of 34 ± 10 admissions per day. We selected 20 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network site located in Houston, and then applied Poisson regression models to assess the short-term effects of PM2.5 mass and species on emergency hospital admissions. Effects were estimated without adjustment for other airborne pollutants. PM2.5 mass was not statistically significantly associated with increased all-cause emergency hospital admissions and selected cause-specific admissions. For selected PM2.5 species, we found interquartile range increases in arsenic (0.001 μg/m3) and copper (0.017 μg/m3) were significantly (P < 0.05) associated with increased admissions for stroke, (5.98% [95% confidence interval (CI): 0.73, 11.50%]) and pneumonia (4.07% [95% CI: 0.37, 7.90%]), respectively. Seasonal analysis showed weak variation among PM2.5 mass and components, except that nickel significantly increased all-cause emergency hospital admissions (2.16% [95% CI: 0.21, 4.14%]) during the warm season. Our findings suggest that hospital admissions in the privately insured population are slightly affected by ambient fine particulate matter air pollution.

  1. PM2.5 Source Apportionment: Reconciling Receptor Models for U.S. Nonurban and Urban Long-Term Networks.

    PubMed

    Chen, L-W Antony; Watson, John G; Chow, Judith C; DuBois, Dave W; Herschberger, Lisa

    2011-11-01

    Chemical mass balance (CMB) and trajectory receptor models were applied to speciated particulate matter with aerodynamic diameter ≤2.5 μm (PM 2.5 ) measurements from Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring network across the state of Minnesota as part of the Minnesota PM 2.5 Source Apportionment Study (MPSAS). CMB equations were solved by the Unmix, positive matrix factorization (PMF), and effective variance (EV) methods, giving collective source contribution and uncertainty estimates. Geological source profiles developed from local dust materials were either incorporated into the EV-CMB model or used to verify factors derived from Unmix and PMF. Common sources include soil dust, calcium (Ca)-rich dust, diesel and gasoline vehicle exhausts, biomass burning, secondary sulfate, and secondary nitrate. Secondary sulfate and nitrate aerosols dominate PM 2.5 mass (50-69%). Mobile sources outweigh area sources at urban sites, and vice versa at rural sites due to traffic emissions. Gasoline and diesel contributions can be separated using data from the STN, despite significant uncertainties. Major differences between MPSAS and earlier studies on similar environments appear to be the type and magnitude of stationary sources, but these sources are generally minor (<7%) in this and other studies. Ensemble back-trajectory analysis shows that the lower Midwestern states are the predominant source region for secondary ammoniated sulfate in Minnesota. It also suggests substantial contributions of biomass burning and soil dust from out-of-state on occasions, although a quantitative separation of local and regional contributions was not achieved in the current study. Supplemental materials are available for this article. Go to the publisher's online edition of the Journal of the Air & Waste Management Association for a summary of input data, Unmix and PMF factor profiles, and additional maps. [Box: see text].

  2. Estimating PM2.5 speciation concentrations using prototype 4.4 km-resolution MISR aerosol properties over Southern California

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Garay, Michael J.; Diner, David J.; Kalashnikova, Olga V.; Xu, Jin; Liu, Yang

    2018-05-01

    Research efforts to better characterize the differential toxicity of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 μm) speciation are often hindered by the sparse or non-existent coverage of ground monitors. The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite is one of few satellite aerosol sensors providing information of aerosol shape, size and extinction globally for a long and continuous period that can be used to estimate PM2.5 speciation concentrations since year 2000. Currently, MISR only provides a 17.6 km product for its entire mission with global coverage every 9 days, a bit too coarse for air pollution health effects research and to capture local spatial variability of PM2.5 speciation. In this study, generalized additive models (GAMs) were developed using MISR prototype 4.4 km-resolution aerosol data with meteorological variables and geographical indicators, to predict ground-level concentrations of PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) in Southern California between 2001 and 2015 at the daily level. The GAMs are able to explain 66%, 62%, 55% and 58% of the daily variability in PM2.5 sulfate, nitrate, OC and EC concentrations during the whole study period, respectively. Predicted concentrations capture large regional patterns as well as fine gradients of the four PM2.5 species in urban areas of Los Angeles and other counties, as well as in the Central Valley. This study is the first attempt to use MISR prototype 4.4 km-resolution AOD (aerosol optical depth) components data to predict PM2.5 sulfate, nitrate, OC and EC concentrations at the sub-regional scale. In spite of its low temporal sampling frequency, our analysis suggests that the MISR 4.4 km fractional AODs provide a promising way to capture the spatial hotspots and long-term temporal trends of PM2.5 speciation, understand the effectiveness of air quality controls, and allow our estimated PM2.5 speciation data to be linked with common spatial units such as census tract or zip code in epidemiological studies. This modeling strategy needs to be validated in other regions when more MISR 4.4 km data becoming available in the future.

  3. Assessment of biomass burning emissions and their impacts on urban and regional PM2.5: a Georgia case study.

    PubMed

    Tian, Di; Hu, Yongtao; Wang, Yuhang; Boylan, James W; Zheng, Mei; Russell, Armistead G

    2009-01-15

    Biomass burning is a major and growing contributor to particulate matter with an aerodynamic diameter less than 2.5 microm (PM2.5). Such impacts (especially individual impacts from each burning source) are quantified using the Community Multiscale Air Quality (CMAQ) Model, a chemical transport model (CTM). Given the sensitivity of CTM results to uncertain emission inputs, simulations were conducted using three biomass burning inventories. Shortcomings in the burning emissions were also evaluated by comparing simulations with observations and results from a receptor model. Model performance improved significantly with the updated emissions and speciation profiles based on recent measurements for biomass burning: mean fractional bias is reduced from 22% to 4% for elemental carbon and from 18% to 12% for organic matter; mean fractional error is reduced from 59% to 50% for elemental carbon and from 55% to 49% for organic matter. Quantified impacts of biomass burning on PM2.5 during January, March, May, and July 2002 are 3.0, 5.1, 0.8, and 0.3 microg m(-3) domainwide on average, with more than 80% of such impacts being from primary emissions. Impacts of prescribed burning dominate biomass burning impacts, contributing about 55% and 80% of PM2.5 in January and March, respectively, followed by land clearing and agriculture field burning. Significant impacts of wildfires in May and residential wood combustion in fireplaces and woodstoves in January are also found.

  4. Feasibility of coupling a thermal/optical carbon analyzer to a quadrupole mass spectrometer for enhanced PM2.5 speciation.

    PubMed

    Riggio, Gustavo M; Chow, Judith C; Cropper, Paul M; Wang, Xiaoliang; Yatavelli, Reddy L N; Yang, Xufei; Watson, John G

    2018-05-01

    A thermal/optical carbon analyzer (TOA), normally used for quantification of organic carbon (OC) and elemental carbon (EC) in PM 2.5 (fine particulate matter) speciation networks, was adapted to direct thermally evolved gases to an electron impact quadrupole mass spectrometer (QMS), creating a TOA-QMS. This approach produces spectra similar to those obtained by the Aerodyne aerosol mass spectrometer (AMS), but the ratios of the mass to charge (m/z) signals differ and must be remeasured using laboratory-generated standards. Linear relationships are found between TOA-QMS signals and ammonium (NH 4 + ), nitrate (NO 3 - ), and sulfate (SO 4 2- ) standards. For ambient samples, however, positive deviations are found for SO 4 2- , compensated by negative deviations for NO 3 - , at higher concentrations. This indicates the utility of mixed-compound standards for calibration or separate calibration curves for low and high ion concentrations. The sum of the QMS signals across all m/z after removal of the NH 4 + , NO 3 - , and SO 4 2- signals was highly correlated with the carbon content of oxalic acid (C₂H₂O₄) standards. For ambient samples, the OC derived from the TOA-QMS method was the same as the OC derived from the standard IMPROVE_A TOA method. This method has the potential to reduce complexity and costs for speciation networks, especially for highly polluted urban areas such as those in Asia and Africa. Ammonium, nitrate, and sulfate can be quantified by the same thermal evolution analysis applied to organic and elemental carbon. This holds the potential to replace multiple parallel filter samples and separate laboratory analyses with a single filter and a single analysis to account for a large portion of the PM 2.5 mass concentration.

  5. PM 2.5 CHEMICAL SPECIATION SAMPLER EVALUATION FIELD PROGRAM: RESULTS FROM THE FOUR CITY STUDY

    EPA Science Inventory

    The objective of this sampler intercomparison field study is to determine the performance characteristics for the collection of the chemical components of PM2.5 by the chemical speciation monitors developed for the national network relative to each other, to the Federal Referen...

  6. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  7. Quantification of source impact to PM using three-dimensional weighted factor model analysis on multi-site data

    NASA Astrophysics Data System (ADS)

    Shi, Guoliang; Peng, Xing; Huangfu, Yanqi; Wang, Wei; Xu, Jiao; Tian, Yingze; Feng, Yinchang; Ivey, Cesunica E.; Russell, Armistead G.

    2017-07-01

    Source apportionment technologies are used to understand the impacts of important sources of particulate matter (PM) air quality, and are widely used for both scientific studies and air quality management. Generally, receptor models apportion speciated PM data from a single sampling site. With the development of large scale monitoring networks, PM speciation are observed at multiple sites in an urban area. For these situations, the models should account for three factors, or dimensions, of the PM, including the chemical species concentrations, sampling periods and sampling site information, suggesting the potential power of a three-dimensional source apportionment approach. However, the principle of three-dimensional Parallel Factor Analysis (Ordinary PARAFAC) model does not always work well in real environmental situations for multi-site receptor datasets. In this work, a new three-way receptor model, called "multi-site three way factor analysis" model is proposed to deal with the multi-site receptor datasets. Synthetic datasets were developed and introduced into the new model to test its performance. Average absolute error (AAE, between estimated and true contributions) for extracted sources were all less than 50%. Additionally, three-dimensional ambient datasets from a Chinese mega-city, Chengdu, were analyzed using this new model to assess the application. Four factors are extracted by the multi-site WFA3 model: secondary source have the highest contributions (64.73 and 56.24 μg/m3), followed by vehicular exhaust (30.13 and 33.60 μg/m3), crustal dust (26.12 and 29.99 μg/m3) and coal combustion (10.73 and 14.83 μg/m3). The model was also compared to PMF, with general agreement, though PMF suggested a lower crustal contribution.

  8. Determination of the emissions from an aircraft auxiliary power unit (APU) during the Alternative Aviation Fuel Experiment (AAFEX).

    PubMed

    Kinsey, John S; Timko, Michael T; Herndon, Scott C; Wood, Ezra C; Yu, Zhenhong; Miake-Lye, Richard C; Lobo, Prem; Whitefield, Philip; Hagen, Donald; Wey, Changlie; Anderson, Bruce E; Beyersdorf, Andreas J; Hudgins, Charles H; Thornhill, K Lee; Winstead, Edward; Howard, Robert; Bulzan, Dan I; Tacina, Kathleen B; Knighton, W Berk

    2012-04-01

    The emissions from a Garrett-AiResearch (now Honeywell) Model GTCP85-98CK auxiliary power unit (APU) were determined as part of the National Aeronautics and Space Administration's (NASA's) Alternative Aviation Fuel Experiment (AAFEX) using both JP-8 and a coal-derived Fischer Tropsch fuel (FT-2). Measurements were conducted by multiple research organizations for sulfur dioxide (SO2, total hydrocarbons (THC), carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx), speciated gas-phase emissions, particulate matter (PM) mass and number, black carbon, and speciated PM. In addition, particle size distribution (PSD), number-based geometric mean particle diameter (GMD), and smoke number were also determined from the data collected. The results of the research showed PM mass emission indices (EIs) in the range of 20 to 700 mg/kg fuel and PM number EIs ranging from 0.5 x 10(15) to 5 x 10(15) particles/kg fuel depending on engine load and fuel type. In addition, significant reductions in both the SO2 and PM EIs were observed for the use of the FT fuel. These reductions were on the order of approximately 90% for SO2 and particle mass EIs and approximately 60% for the particle number EI, with similar decreases observed for black carbon. Also, the size of the particles generated by JP-8 combustion are noticeably larger than those emitted by the APU burning the FT fuel with the geometric mean diameters ranging from 20 to 50 nm depending on engine load and fuel type. Finally, both particle-bound sulfate and organics were reduced during FT-2 combustion. The PM sulfate was reduced by nearly 100% due to lack of sulfur in the fuel, with the PM organics reduced by a factor of approximately 5 as compared with JP-8.

  9. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    USGS Publications Warehouse

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production and/or mobile sources (Mo, Cd, Pb, Cu, Zn) and (4) a transient marine source (Sr, Mg). Concentrations of Hg in PM2.5 at background levels in the single pg m-3 were shown by collection and analysis of PM2.5 on filters and by an automated speciation analyser set up at the Big Meadows air quality site. The speciation unit revealed periodic elevation of reactive gaseous mercury (RGM) that co-occurred with peaks in SO2, indicating an anthropogenic source. GC/MS total ion current chromatograms for the two sites were quite similar indicating that organic signatures were regional in extent and/or that the same compounds were present locally at each site. Calculated carbon preference index values for n-alkanes indicated that plant waxes rather than anthropogenic sources, were the dominant alkane source. Polycyclic aromatic hydrocarbons (PAHs) were detected, with a predominance of non-alkylated, and higher molecular weight PAHs in this fraction, suggestive of a combustion source (fossil fuel or forest fires). ?? 2008 The Authors. Journal compilation ?? 2008 International Association of Geoanalysts.

  10. Seasonal variability in chemical composition and source apportionment of sub-micron aerosol over a high altitude site in Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Mukherjee, Subrata; Singla, Vyoma; Pandithurai, Govindan; Safai, P. D.; Meena, G. S.; Dani, K. K.; Anil Kumar, V.

    2018-05-01

    This manuscript reports the seasonal variation of chemically speciated sub-micron aerosol particles (diameter < 1 μm). An Aerosol Chemical Speciation Monitor (ACSM) was used to measure the mass concentration of non-refractory particulate matter (NR-PM1) at a high-altitude site in the Western Ghats, India from March 2016 to February 2017. The mass concentration of NR-PM1 averaged at 7.5 ± 6.5 μgm-3, with major contributions from organics (59%) and sulfates (23%). Positive matrix factorization (PMF) was applied on the measured mass spectra of organic aerosol (OA) to derive the sources distinctive of each season (Summer, Monsoon, Post-Monsoon and Winter). The four OA factors (two primary OA and two oxygenated OA) resolved during summer, post-monsoon and winter season. However, only one oxygenated factor resolved during monsoon and contributed only 20% to the total OA. The factors associated with primary emissions dominated during the monsoon, whereas factors related to secondary formation dominated in other three seasons. During summer, an isoprene derived SOA - IEPOX-OA (isoprene-epoxydiol OA) contributed ∼17% to the total OA. Cluster and concentration weighted trajectory (CWT) analyses were performed to identify the possible source regions of NR-PM1 mass concentration observed at the receptor site. The analysis identifies Central India as the potential source region of transported aerosol during post-monsoon and winter season. Our study suggests that contributions from both local sources and regional transport are important in governing mass concentration of PM1 over Mahabaleshwar.

  11. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Li, Y. J.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2015-07-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  12. Multi-scale analysis of the occurrence of Pb, Cr and Mn in the NIST standards: Urban dust (SRM 1649a) and indoor dust (SRM 2584)

    NASA Astrophysics Data System (ADS)

    Jiang, Mingyu; Nakamatsu, Yuki; Jensen, Keld A.; Utsunomiya, Satoshi

    2014-01-01

    Adverse health effects of ambient particulate matters are closely related to the speciation of the constituting organic matters and toxic metals. To determine multi-parameters of the metal speciation in urban and indoor dusts, we have performed systematic bulk- to nano-scale (“multi-scale”) analysis on the speciation of Pb, Mn, and Cr in two National Institute of Standards and Technology (NIST) standard reference materials (SRMs): urban dust (SRM 1649a) and indoor dust (SRM 2584), utilizing X-ray absorption near-edge structure, powder X-ray diffraction analysis, electron microprobe analysis, scanning electron microscopy, and transmission electron microscopy. Major crystalline phases are quartz, gypsum, kaolinite, and muscovite in SRM 1649a, while quartz, gypsum, calcite, and possibly muscovite (or chabazite) in SRM 2584. A number of Pb sulfate nanoparticles (50-200 nm) occur in SRM 1649a, whereas micron-sized Pb carbonate is present containing various concentrations of Zn and Ti in the complex texture in SRM 2584. Relatively soluble Mn(II) sulfate is the bulk-averaged Mn speciation in SRM 1649a, although discrete Mn sulfate particles are not characterized by individual particle analysis, implying the diluted Mn distribution within other sulfate. In SRM 2584, Mn speciation includes a mixture of oxides and carbonates, and trace Mn in chromite. Chromite (FeCr2O4) is the major Cr speciation in SRM1694a, while unidentified Cr(III) phases with minor chromite and Pb chromate are present in SRM 2584, among which the Pb chromate is composed of Cr(VI). A significant number of the metal-bearing particles are distributed to the submicron-size fraction in the urban dust, SRM 1649a, suggesting that these metal nanoparticles can potentially penetrate into the deep respiratory system. This study demonstrates that multi-scale analysis combining nano and bulk analytical techniques is a powerful approach to investigate the multi-parameters of metal-bearing nanoparticles in heterogeneous PM samples.

  13. Chemical composition and source apportionment of size fractionated particulate matter in Cleveland, Ohio, USA.

    PubMed

    Kim, Yong Ho; Krantz, Q Todd; McGee, John; Kovalcik, Kasey D; Duvall, Rachelle M; Willis, Robert D; Kamal, Ali S; Landis, Matthew S; Norris, Gary A; Gilmour, M Ian

    2016-11-01

    The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ∼2, ∼7, and ∼3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrations. Seasonal variations of secondary aerosols (e.g., high NO 3 - level in winter and high SO 4 2- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coal-fired power plant) but their contributions were influenced by meteorological conditions and the emission source's operation conditions. Taken together the year-long PM collection and data analysis provides valuable insights into the characteristics and sources of PM impacting the Cleveland airshed in both the urban center and the rural upwind background locations. These data will be used to classify the PM samples for toxicology studies to determine which PM sources, species, and size fractions are of greatest health concern. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. A new comprehensive approach to characterizing carbonaceous aerosol with an application to wintertime Fresno, California PM2.5

    USGS Publications Warehouse

    Herckes, P.; Leenheer, J.A.; Collett, J.L.

    2007-01-01

    Fine particulate matter (PM2.5) samples were collected during a three week winter period in Fresno (CA). A composite sample was characterized by isolating several distinct fractions and characterizing them by infrared and nuclear magnetic resonance (NMR) spectroscopy. More than 80% of the organic matter in the aerosol samples was recovered and characterized. Only 35% of the organic matter was water soluble with another third soluble in dichloromethane and the remainder insoluble. Within the isolated water soluble material, hydrophobic acid and hydrophilic acids plus neutrals fractions contained the largest amounts of carbon. The hydrophobic acids fraction appears to contain significant amounts of lignin type structures, spectra of the hydrophilic acids plus neutrals fraction are indicative of carbohydrates and secondary organic material. The dichloromethane soluble fraction contains a variety of organic compound families typical of many previous studies of organic aerosol speciation, including alkanes, alkanols, alkanals and alkanoic acids. Finally the water and solvent insoluble fraction exhibits a strong aromaticity as one would expect from black or elemental carbon like material; however, these spectra also show a substantial amount of aliphaticity consistent with linear side chains on the aromatic structures.

  15. Advances in Satellite Remote Sensing of Particulate Air Pollution: From MISR to MAIA

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Burke, K.; Xu, F.; Garay, M. J.; Kalashnikova, O. V.; Liu, Y.; Meng, X.; Wang, J.; Martin, R.; Ostro, B.

    2017-12-01

    Airborne particulate matter (PM) is a well-known cause of cardiovascular and respiratory disease. To estimate human exposure to PM pollution, satellite instruments such as the Terra Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate resolution Imaging Spectroradiometer (MODIS) have been used in conjunction with surface monitors to map near-surface PM concentrations. The relative toxicity of different size and compositional mixtures of PM is not well understood. To address this, we are developing the Multi-Angle Imager for Aerosols (MAIA) investigation. The satellite instrument extends MISR's multiangular visible and near-infrared (VNIR) spectral coverage to 14 bands in the ultraviolet, VNIR, and shortwave IR; three of the bands are polarimetric to enhance sensitivity to aerosol size and composition. To constrain the retrievals, the observations will be combined with data from surface monitors and the WRF-Chem and GEOS-Chem chemical transport models. Existing surface PM speciation monitors will be supplemented by adding new stations to the Surface PARTiculate mAtter Network (SPARTAN). Unlike MISR, MAIA is a targeting instrument. Primary areas of interest include metropolitan areas in North and South America, Europe, the Middle East, Africa, India, and East Asia. PM retrieval algorithms are being developed using data from MISR and the high-altitude Airborne Multiangle SpectroPolarimetric Imager (AirMSPI). Epidemiologists on the MAIA science team will use the derived PM data products and birth, death, and hospital records to investigate adverse health impacts of different types of airborne particulates. MAIA's earliest possible launch date is mid-2020, making it possible for the data to be complemented by global observations from Terra as well as high temporal resolution atmospheric chemistry measurements from TEMPO (Tropospheric Emissions: Monitoring Pollution), GEMS (Geostationary Environment Monitoring Spectrometer), and Sentinel-4.

  16. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    NASA Astrophysics Data System (ADS)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e.g. gasoline and diesel engine, wood combustion) and the obtained chemical profiles were compared with the ones from the ambient PAH containing particles.

  17. Fine particulate matter components and mortality in Greater Houston: Did the risk reduce from 2000 to 2011?

    PubMed

    Liu, Suyang; Zhang, Kai

    2015-12-15

    Fine particulate matter (less than 2.5μm in aerodynamic diameter; PM2.5) pollution poses a major environmental threat in Greater Houston due to rapid economic growth and the numerous PM2.5 sources including ports, vehicles, and the largest petrochemical industry in the United States (U.S.). Our objectives were to estimate the short-term associations between the PM2.5 components and mortality during 2000-2011, and evaluate whether these associations have changed over time. A total of 333,317 deaths were included in our assessment, with an average of 76 deaths per day. We selected 17 PM2.5 components from the U.S. Environmental Protection Agency's Chemical Speciation Network, and then applied Poisson regression models to assess the associations between the PM2.5 components and mortality. Additionally, we repeated our analysis for two consecutive periods: 2000-2005 and 2006-2011. Interquartile range increases in ammonium (0.881μg/m(3)), nitrate (0.487μg/m(3)), sulfate (2.245μg/m(3)), and vanadium (0.004μg/m(3)) were associated with an increased risk in mortality of 0.69% (95% confidence interval (CI): 0.26, 1.12%), 0.38% (95% CI: 0.11, 0.66%), 0.61% (95% CI: 0.15, 1.06%), and 0.58% (95% CI: 0.12, 1.04%), respectively. Seasonal analysis suggested that the associations were strongest during the winter months. The association between PM2.5 mass and mortality decreased during 2000-2011, however, the PM2.5 components showed no notable changes in mortality risk over time. Our study indicates that the short-term associations between PM2.5 and mortality differ across the PM2.5 components and suggests that future air pollution control measures should not only focus on mass but also pollutant sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Air pollution and acute respiratory infections among children 0-4 years of age: an 18-year time-series study.

    PubMed

    Darrow, Lyndsey A; Klein, Mitchel; Flanders, W Dana; Mulholland, James A; Tolbert, Paige E; Strickland, Matthew J

    2014-11-15

    Upper and lower respiratory infections are common in early childhood and may be exacerbated by air pollution. We investigated short-term changes in ambient air pollutant concentrations, including speciated particulate matter less than 2.5 μm in diameter (PM2.5), in relation to emergency department (ED) visits for respiratory infections in young children. Daily counts of ED visits for bronchitis and bronchiolitis (n = 80,399), pneumonia (n = 63,359), and upper respiratory infection (URI) (n = 359,246) among children 0-4 years of age were collected from hospitals in the Atlanta, Georgia, area for the period 1993-2010. Daily pollutant measurements were combined across monitoring stations using population weighting. In Poisson generalized linear models, 3-day moving average concentrations of ozone, nitrogen dioxide, and the organic carbon fraction of particulate matter less than 2.5 μm in diameter (PM2.5) were associated with ED visits for pneumonia and URI. Ozone associations were strongest and were observed at low (cold-season) concentrations; a 1-interquartile range increase predicted a 4% increase (95% confidence interval: 2%, 6%) in visits for URI and an 8% increase (95% confidence interval: 4%, 13%) in visits for pneumonia. Rate ratios tended to be higher in the 1- to 4-year age group compared with infants. Results suggest that primary traffic pollutants, ozone, and the organic carbon fraction of PM2.5 exacerbate upper and lower respiratory infections in early life, and that the carbon fraction of PM2.5 is a particularly harmful component of the ambient particulate matter mixture. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    NASA Astrophysics Data System (ADS)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  20. Speciation and diurnal variation of thoracic, fine thoracic and sub-micrometer airborne particulate matter at naturally ventilated office environments

    NASA Astrophysics Data System (ADS)

    Horemans, Benjamin; Van Grieken, René

    2010-04-01

    Thoracic (PM 10), fine thoracic (PM 2.5) and sub-micrometer (PM 1) airborne particulate matter was sampled during day and night. In total, about 100 indoor and outdoor samples were collected for each fraction at ten different office environments. Energy-dispersive X-ray fluorescence spectrometry and ion chromatography were applied for the quantification of some major and minor elements and ions in the collected aerosols. During daytime, mass concentrations were in the ranges: 11-29, 8.1-24, and 6.6-18 μg m -3, with averages of 20 ± 1, 15.0 ± 0.9, and 11.0 ± 0.8 μg m -3, respectively. At night, mass concentrations were found to be significantly lower for all fractions. Indoor PM 1 concentrations exceeded the corresponding outdoor levels during office hours and were thought to be elevated by office printers. Particles with diameters between 1 and 2.5 μm and 2.5 and 10 μm were mainly associated with soil dust elements and were clearly subjected to distinct periods of settling/resuspension. Indoor NO 3- levels were found to follow specific microclimatic conditions at the office environments, while daytime levels of sub-micrometer Cl - were possibly elevated by the use of Cl-containing cleaning products. Indoor carbon black concentrations were sometimes as high as 22 μg m -3 and were strongly correlated with outdoor traffic conditions.

  1. Chemical Composition and Source Apportionment of Size ...

    EPA Pesticide Factsheets

    The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible for health effects however are not fully understood. Size-fractionated PM (coarse, fine, and ultrafine) samples were collected using a ChemVol sampler at an urban site (G.T. Craig (GTC)) and rural site (Chippewa Lake (CLM)) from July 2009 to June 2010, and then chemically analyzed. The resulting speciated PM data were apportioned by EPA positive matrix factorization to identify emission sources for each size fraction and location. For comparisons with the ChemVol results, PM samples were also collected with sequential dichotomous and passive samplers, and evaluated for source contributions to each sampling site. The ChemVol results showed that annual average concentrations of PM, elemental carbon, and inorganic elements in the coarse fraction at GTC were ~ 2, ~7, and ~3 times higher than those at CLM, respectively, while the smaller size fractions at both sites showed similar annual average concentrat ions. Seasonal variations of secondary aerosols (e.g., high N03- level in winter and high SO42- level in summer) were observed at both sites. Source apportionment results demonstrated that the PM samples at GTC and CLM were enriched with local industrial sources (e.g., steel plant and coa

  2. Organic speciation of size-segregated atmospheric particulate matter

    NASA Astrophysics Data System (ADS)

    Tremblay, Raphael

    Particle size and composition are key factors controlling the impacts of particulate matter (PM) on human health and the environment. A comprehensive method to characterize size-segregated PM organic content was developed, and evaluated during two field campaigns. Size-segregated particles were collected using a cascade impactor (Micro-Orifice Uniform Deposit Impactor) and a PM2.5 large volume sampler. A series of alkanes and polycyclic aromatic hydrocarbons (PAHs) were solvent extracted and quantified using a gas chromatograph coupled with a mass spectrometer (GC/MS). Large volume injections were performed using a programmable temperature vaporization (PTV) inlet to lower detection limits. The developed analysis method was evaluated during the 2001 and 2002 Intercomparison Exercise Program on Organic Contaminants in PM2.5 Air Particulate Matter led by the US National Institute of Standards and Technology (NIST). Ambient samples were collected in May 2002 as part of the Tampa Bay Regional Atmospheric Chemistry Experiment (BRACE) in Florida, USA and in July and August 2004 as part of the New England Air Quality Study - Intercontinental Transport and Chemical Transformation (NEAQS - ITCT) in New Hampshire, USA. Morphology of the collected particles was studied using scanning electron microscopy (SEM). Smaller particles (one micrometer or less) appeared to consist of solid cores surrounded by a liquid layer which is consistent with combustion particles and also possibly with particles formed and/or coated by secondary material like sulfate, nitrate and secondary organic aerosols. Source apportionment studies demonstrated the importance of stationary sources on the organic particulate matter observed at these two rural sites. Coal burning and biomass burning were found to be responsible for a large part of the observed PAHs during the field campaigns. Most of the measured PAHs were concentrated in particles smaller than one micrometer and linked to combustion sources. The presence of known carcinogenic PAHs in the respirable particles has strong importance for human health. Recommendations for method improvements and further studies are included.

  3. Organic and inorganic speciation of particulate matter formed during different combustion phases in an improved cookstove.

    PubMed

    Leavey, Anna; Patel, Sameer; Martinez, Raul; Mitroo, Dhruv; Fortenberry, Claire; Walker, Michael; Williams, Brent; Biswas, Pratim

    2017-10-01

    Residential solid fuel combustion in cookstoves has established health impacts including bladder and lung cancers, cataracts, low birth weight, and pneumonia. The chemical composition of particulate matter (PM) from 4 commonly-used solid fuels (coal, dung, ambient/dry applewood, and oakwood pellets), emitted from a gasifier cookstove, as well as propane, were examined. Temporal changes between the different cookstove burn-phases were also explored. Normalized concentrations of non-refractory PM 1 , total organics, chloride, ammonium, nitrate, sulfate, and 41 particle-phase polycyclic aromatic hydrocarbons (PAHs) were measured using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a Thermal desorption Aerosol Gas chromatograph (TAG), respectively. Coal demonstrated the highest fraction of organic matter in its particulate emission composition (98%), followed by dung (94%). Coal and dung also demonstrated the highest numbers and concentrations of PAHs. While dry applewood emitted ten times lower organic matter compared to ambient applewood, a higher fraction of these organics was composed of PAHs, especially the more toxic ones such as benzo(a)pyrene (9.63ng/L versus 0.04ng/L), and benzo(b)fluoranthene (31.32ng/L versus 0.19ng/L). Data from the AMS demonstrated no clear trends for any of the combustion fuels over the different combustion phases unlike the previously reported trends observed for the physical characteristics. Of the solid fuels, pellets demonstrated the lowest emissions. Emissions from propane were below the quantification limit of the instruments. This work highlights the benefits of incorporating additional metrics into the cookstove evaluation process, thus enriching the existing PM data inventory. Copyright © 2017. Published by Elsevier Inc.

  4. A comprehensive study of the characterization of particulate matter emissions from a Delmarva broiler poultry operation

    NASA Astrophysics Data System (ADS)

    Carter, Shannon E.

    Particulate matter (PM) emissions from agricultural practices, including those from animal feeding operations (AFO's) have become an increasingly important topic, and has generated considerable interest from local and state agencies, as well as, the local community over the past decade. Because of growth in population, and an increase in commercial and residential development within close proximity to these operations, which house a large number of animals in confinement, and because of a better understanding of the effects of exposure to airborne contaminants on health, this has lead to an increase in concerns and a demand for more research to be conducted on PM from AFO's. Particulate matter generated within, and emitted from, AFO's can carry with it various components including metals and microorganisms that can negatively affect health. This research was conducted in order to verify if PM from a broiler poultry operation on Delmarva has the potential to become a health concern. The first step was to determine concentrations of two size segregated fractions of PM from indoor and outdoor sampling sites over four seasonal periods, early summer (ES), late summer (LS), Fall (F), and Winter (W). Both PM10 and PM2.5 were collected because of their classification from the Environmental Protection Agency as having the ability to cause significant health effects with short-term exposure. Next, temporal and spatial characteristics were investigated to determine their effects on PM concentrations over the four seasonal periods. Following this, the chemical composition and morphology of PM10 and PM2.5 generated from the broiler poultry operation was investigated. Finally, further detailed information was obtained on arsenic speciation and oxidation state in PM to investigate toxicity. Arsenic use in the poultry industry has been occurring for a number of decades, and is most frequently administered in the organic form. However, studies have shown that these organo-arsenicals can quickly degrade into organic by-products, methylated arsenicals, and inorganic arsenic (III and V). Because oxidation state determines mobility and toxicity in humans, animals, and the environment this is a key reason to investigate it further in PM. The results from this research indicate that the concentrations of both PM size segregated fractions that were sampled are within the regulatory guidelines of EPA and OSHA. Outdoor concentrations were mainly influenced by wind speed changes over the seasonal periods, and bird weight was the main management factor influencing indoor PM concentrations. In addition, upon performing chemical analysis on the PM using inductively coupled plasma mass spectrometry (ICP-MS), the arsenic concentrations found are not above background ambient arsenic levels for outdoor samples; however, total arsenic was found to be above those background concentrations in both indoor PM10 and PM2.5 samples. Although the arsenic concentrations were found to be higher than background inside the poultry operation, they are currently within the regulated limits set by the Occupational Safety and Health Administration (OSHA) and the National Institute of Occupational Safety and Health (NIOSH). Other metal(loid)s such as copper, manganese, and zinc were also within regulatory limits in both indoor PM10 and PM2.5 samples. While the EPA has National Ambient Air Quality Standards set for PM 10 and PM2.5, these regulations are not suitable when evaluating indoor occupational concentrations from an animal feeding operation such as a broiler poultry operation. In addition, the EPA does not currently have standards set for arsenic in ambient or general air pollution. It is also questionable to use the current dust regulations set by the OSHA or NIOSH because they are generalized to two categories that are not easily translatable to the current PM10 and PM2.5 size segregations accepted under the EPA. In addition, there is an assumption made that particles within their total suspended and respirable regulatory categories are "inert" or nuisance, which infers that particles under this classification would not lead to any significant health problems. This is not the case with PM generated from a broiler poultry operation, which can carry with it a number of contaminants that have been proven to cause various health disorders from exposure. These classifications also apply to inhalable arsenic standards and are also questionable when determining whether arsenic concentrations in PM from a poultry operation are permissible. Arsenic oxidation state and speciation in PM10 and PM 2.5 was investigated using X-ray absorption spectroscopy (XAS) and X-ray fluorescence (XRF) spectroscopy. The results indicate that there is a mix of organic species present, as well as, oxidized As(V) and reduced As(III) in all samples analyzed. The main organic species found were in the form of Roxarsone, 4-hydroxy-3-aminophenylarsonic acid (HAPA), and dimethylarsinic acid (DMA(V)). This indicates that much of the organic form that was originally administered has degraded into more toxic by-products that are then becoming incorporated into airborne particulate matter.

  5. Speciation of PM10 sources of airborne nonferrous metals within the 3-km zone of lead/zinc smelters.

    PubMed

    Batonneau, Yann; Bremard, Claude; Gengembre, Leon; Laureyns, Jacky; Le Maguer, Agnes; Le Maguer, Didier; Perdrix, Esperanza; Sobanska, Sophie

    2004-10-15

    The purpose of this study was to estimate the speciation of PM10 sources of airborne Pb, Zn, and Cd metals (PM10 is an aerosol standard of aerodynamic diameter less than 10 microm.) in the atmosphere of a 3 km zone surrounding lead/zinc facilities in operation for a century. Many powdered samples were collected in stacks of working units (grilling, furnace, and refinery), outdoor storages (ores, recycled materials), surrounding waste slag (4 Mt), and polluted topsoils (3 km). PM10 samples were generated from the raw powders by using artificial resuspension and collection devices. The bulk PM10 multielemental analyses were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). The proportions in mass of Pb (50%), Zn (40%), and Cd (1%) contents and associated metals (traces) reach the proportions of corresponding raw powdered samples of ores, recycled materials, and fumesize emissions of plants without specific enrichment. In contrast, Pb (8%) and Zn (15%) contents of PM10 of slag deposit were found to be markedly higher than those of raw dust, Pb (4%), and Zn (9%), respectively. In the same way, Pb (0.18%), Zn (0.20%), and Cd (0.004%) were enriched by 1.7, 2.1, and 2.3 times, respectively, in PM10 as compared with raw top-soil corresponding values. X-ray wavelength dispersive electron-microprobe (EM-WDS) microanalysis did not indicate well-defined phases or simple stoichiometries of all the PM10 samples atthe level of the spatial resolution (1 microm3). X-ray photoelectron spectroscopy (XPS) indicated that minor elements such as Cd, Hg, and C are more concentrated on the particle surface than in the bulk of PM10 generated by the smelting processes. (XPS) provided also the average speciation of the surface of PM10; Pb is mainly represented as PbSO4, Zn as ZnS, and Cd as CdS or CdSO4, and small amounts of coke were also detected. The speciation of bulk PM10 crystallized compounds was deduced from XRD diffractograms with a raw estimation of the relative quantities. PbS and ZnS were found to be the major phases in PM10 generated by the smelting facilities with PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, Pb metal, and ZnO as minor phases. The slag waste PM10 was found to contain some amounts of PbCO3, PbSO4 x PbO, and ZnFe2O4 phases. The large heterogeneity at the level of the individual particle generates severe overlap of chemical information even at the microm scale using electron microprobe (WDS) and Raman microprobe techniques. Fortunately, scanning Raman microspectrometry combined with SIMPle-to-use Interactive Self-modeling Mixture Analysis (SIMPLISMA) performed the PM10 speciation at the level of individual particles. The speciation of major Pb, Zn, and Cd compounds of PM10 stack emissions and wind blown dust of ores and recycled materials were found to be PbSO4, PbSO4 x PbO, PbSO4 x 4PbO, PbO, metallic Pb, ZnS, ZnO, and CdS. The PM10 dust of slag waste was found to contain PbCO3, Pb(OH)2 x 2PbCO3, PbSO4 x PbO, and ZnS, while PM10-bound Pb, Zn of the top-soils contain Pb5(PO4)3Cl, ZnFe2O4 as well as Pb(II) and Zn(II) compounds adsorbed on Fe(III) oxides and in association with clays.

  6. Optimal estimation for global ground-level fine particulate matter concentrations

    NASA Astrophysics Data System (ADS)

    Donkelaar, Aaron; Martin, Randall V.; Spurr, Robert J. D.; Drury, Easan; Remer, Lorraine A.; Levy, Robert C.; Wang, Jun

    2013-06-01

    We develop an optimal estimation (OE) algorithm based on top-of-atmosphere reflectances observed by the MODIS satellite instrument to retrieve near-surface fine particulate matter (PM2.5). The GEOS-Chem chemical transport model is used to provide prior information for the Aerosol Optical Depth (AOD) retrieval and to relate total column AOD to PM2.5. We adjust the shape of the GEOS-Chem relative vertical extinction profiles by comparison with lidar retrievals from the CALIOP satellite instrument. Surface reflectance relationships used in the OE algorithm are indexed by land type. Error quantities needed for this OE algorithm are inferred by comparison with AOD observations taken by a worldwide network of sun photometers (AERONET) and extended globally based upon aerosol speciation and cross correlation for simulated values, and upon land type for observational values. Significant agreement in PM2.5 is found over North America for 2005 (slope = 0.89; r = 0.82; 1-σ error = 1 µg/m3 + 27%), with improved coverage and correlation relative to previous work for the same region and time period, although certain subregions, such as the San Joaquin Valley of California are better represented by previous estimates. Independently derived error estimates of the OE PM2.5 values at in situ locations over North America (of ±(2.5 µg/m3 + 31%) and Europe of ±(3.5 µg/m3 + 30%) are corroborated by comparison with in situ observations, although globally (error estimates of ±(3.0 µg/m3 + 35%), may be underestimated. Global population-weighted PM2.5 at 50% relative humidity is estimated as 27.8 µg/m3 at 0.1° × 0.1° resolution.

  7. One year online chemical speciation of submicron particulate matter (PM1) sampled at a French industrial and coastal site

    NASA Astrophysics Data System (ADS)

    Zhang, Shouwen; Riffault, Véronique; Dusanter, Sébastien; Augustin, Patrick; Fourmentin, Marc; Delbarre, Hervé

    2015-04-01

    The harbor of Dunkirk (Northern France) is surrounded by different industrial plants (metallurgy, petrochemistry, food processing, power plant, etc.), which emit gaseous and particulate pollutants such as Volatile Organic Compounds (VOCs), oxides of nitrogen (NOx) and sulfur (SO2), and submicron particles (PM1). These emissions are poorly characterized and their impact on neighboring urban areas has yet to be assessed. Studies are particularly needed in this type of complex environments to get a better understanding of PM1sources, especially from the industrial sector, their temporal variability, and their transformation. Several instruments, capable of real-time measurements (temporal resolution ≤ 30 min), were deployed at a site located downwind from the industrial area of Dunkirk for a one-year duration (July 2013-September 2014). An Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer monitored the main chemical species in the non-refractory submicron particles and black carbon, respectively. Concomitant measurements of trace gases and wind speed and direction were also performed. This dataset was analyzed considering four wind sectors, characteristics of marine, industrial, industrial-urban, and urban influences, and the different seasons. We will present a descriptive analysis of PM1, showing strong variations of ambient concentrations, as well as evidences of SO2 to SO4 gas-particle conversion when industrial plumes reached the monitoring site. The organic fraction measured by ACSM (37% of the total mass on average) was analyzed using a source-receptor model based on Positive Matrix Factorization (PMF) to identify chemical signatures of main emission sources and to quantify the contribution of each source to the PM1 budget given the wind sector. Four main factors were identified: hydrocarbon organic aerosol (HOA), oxygenated organic aerosol (OOA), biomass burning organic aerosol (BBOA) and cooking-like organic aerosol (COA). Overall, the total PM1 mass loading was dominated by secondary inorganic species and OOA. The seasonal variations of different identified factors will be discussed as well as the influence of ship emissions.

  8. Gas- and particle-phase primary emissions from in-use, on-road gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Nguyen, Ngoc T.; Presto, Albert A.; Gordon, Timothy D.; Lipsky, Eric M.; Karve, Mrunmayi; Gutierrez, Alváro; Robertson, William H.; Zhang, Mang; Brandow, Christopher; Chang, Oliver; Chen, Shiyan; Cicero-Fernandez, Pablo; Dinkins, Lyman; Fuentes, Mark; Huang, Shiou-Mei; Ling, Richard; Long, Jeff; Maddox, Christine; Massetti, John; McCauley, Eileen; Miguel, Antonio; Na, Kwangsam; Ong, Richard; Pang, Yanbo; Rieger, Paul; Sax, Todd; Truong, Tin; Vo, Thu; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M. Matti; Robinson, Allen L.

    2014-05-01

    Tailpipe emissions from sixty-four unique light-duty gasoline vehicles (LDGVs) spanning model years 1987-2012, two medium-duty diesel vehicles and three heavy-duty diesel vehicles with varying levels of aftertreatment were characterized at the California Air Resources Board Haagen-Smit and Heavy-Duty Engine Testing Laboratories. Each vehicle was tested on a chassis dynamometer using a constant volume sampler, commercial fuels and standard duty cycles. Measurements included regulated pollutants such as carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and particulate matter (PM). Off-line analyses were performed to speciate gas- and particle-phase emissions. The data were used to investigate trends in emissions with vehicle age and to quantify the effects of different aftertreatment technologies on diesel vehicle emissions (e.g., with and without a diesel particulate filter). On average, newer LDGVs that met the most recent emissions standards had substantially lower emissions of regulated gaseous pollutants (CO, THC and NOx) than older vehicles. For example, THC emissions from the median LDGV that met the LEV2 standard was roughly a factor of 10 lower than the median pre-LEV vehicle; there were also substantial reductions in NOx (factor of ∼100) and CO (factor of ∼10) emissions from pre-LEV to LEV2 vehicles. However, reductions in LDGV PM mass emissions were much more modest. For example, PM emission from the median LEV2 vehicle was only a factor of three lower than the median pre-LEV vehicle, mainly due to the reductions in organic carbon emissions. In addition, LEV1 and LEV2 LDGVs had similar PM emissions. Catalyzed diesel particulate filters reduced CO, THC and PM emissions from HDDVs by one to two orders of magnitude. Comprehensive organic speciation was performed to quantify priority air toxic emissions and to estimate the secondary organic aerosol (SOA) formation potential. The data suggest that the SOA production from cold-start LDGVs exhaust will likely exceed primary PM emissions from LDGVs and could potentially exceed SOA formation from on-road diesel vehicles.

  9. Hydrocarbons in particulate samples from wildfire events in central Portugal in summer 2010.

    PubMed

    Vicente, Ana; Calvo, Ana; Fernandes, Ana P; Nunes, Teresa; Monteiro, Cristina; Pio, Casimiro; Alves, Célia

    2017-03-01

    In summer 2010, twenty eight (14 PM 2.5 samples plus 14 samples PM 2.5-10 ) smoke samples were collected during wildfires that occurred in central Portugal. A portable high-volume sampler was used to perform the sampling, on quartz fibre filters of coarse (PM 2.5-10 ) and fine (PM 2.5 ) smoke samples. The carbonaceous content (elemental and organic carbon) of particulate matter was analysed by a thermal-optical technique. Subsequently, the particulate samples were solvent extracted and fractionated by vacuum flash chromatography into three different classes of organic compounds (aliphatics, polycyclic aromatic hydrocarbons (PAHs) and carbonyl compounds). The organic speciation was performed by gas chromatography-mass spectrometry (GC-MS). Emissions were dominated by the fine particles, which represented around 92% of the PM 10 . A clear predominance of carbonaceous constituents was observed, with organic to elemental carbon (OC/EC) ratios ranging between 1.69 and 245 in both size fractions. The isoprenoid ketone 6,10,14-trimethyl-2-pentadecanone, a tracer for secondary organic aerosol formation, was one of the dominant constituents in both fine and coarse particles. Retene was the most abundant compound in all samples. Good correlations were obtained between OC and both aliphatic and PAH compounds. Pyrogenic processes, thermal release of biogenic compounds and secondary processing accounted for 97% of the apportioned PM 2.5 levels. Copyright © 2016. Published by Elsevier B.V.

  10. Source apportionment studies on particulate matter in Beijing/China

    NASA Astrophysics Data System (ADS)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and measured dust storm concentration variability at Beijing in the course of time. The results show the importance of intertwine investigations of measurements and modeling, the analysis of local air pollution levels as well as the impact and analysis of advective processes in the greater region of Beijing. Comprehensive investigations on particulate matter are a prerequisite for the knowledge of the source strengths and source attribution to the overall air pollution level. Only this knowledge can help to formulate and to introduce specific reduction measures to reduce coarser as well as finer particulates.

  11. Source apportionment of speciated PM2.5 and non-parametric regressions of PM2.5 and PM(coarse) mass concentrations from Denver and Greeley, Colorado, and construction and evaluation of dichotomous filter samplers

    NASA Astrophysics Data System (ADS)

    Piedrahita, Ricardo A.

    The Denver Aerosol Sources and Health study (DASH) was a long-term study of the relationship between the variability in fine particulate mass and chemical constituents (PM2.5, particulate matter less than 2.5mum) and adverse health effects such as cardio-respiratory illnesses and mortality. Daily filter samples were chemically analyzed for multiple species. We present findings based on 2.8 years of DASH data, from 2003 to 2005. Multilinear Engine 2 (ME-2), a receptor-based source apportionment model was applied to the data to estimate source contributions to PM2.5 mass concentrations. This study relied on two different ME-2 models: (1) a 2-way model that closely reflects PMF-2; and (2) an enhanced model with meteorological data that used additional temporal and meteorological factors. The Coarse Rural Urban Sources and Health study (CRUSH) is a long-term study of the relationship between the variability in coarse particulate mass (PMcoarse, particulate matter between 2.5 and 10mum) and adverse health effects such as cardio-respiratory illnesses, pre-term births, and mortality. Hourly mass concentrations of PMcoarse and fine particulate matter (PM2.5) are measured using tapered element oscillating microbalances (TEOMs) with Filter Dynamics Measurement Systems (FDMS), at two rural and two urban sites. We present findings based on nine months of mass concentration data, including temporal trends, and non-parametric regressions (NPR) results, which were used to characterize the wind speed and wind direction relationships that might point to sources. As part of CRUSH, 1-year coarse and fine mode particulate matter filter sampling network, will allow us to characterize the chemical composition of the particulate matter collected and perform spatial comparisons. This work describes the construction and validation testing of four dichotomous filter samplers for this purpose. The use of dichotomous splitters with an approximate 2.5mum cut point, coupled with a 10mum cut diameter inlet head allows us to collect the separated size fractions that the collocated TEOMs collect continuously. Chemical analysis of the filters will include inorganic ions, organic compounds, EC, OC, and biological analyses. Side by side testing showed the cut diameters were in agreement with each other, and with a well characterized virtual impactor lent to the group by the University of Southern California. Error propagation was performed and uncertainty results were similar to the observed standard deviations.

  12. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2014-05-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter (PM) after 3 h of oxidation inside the chamber at typical atmospheric oxidant levels (and 5 times the amount of SOA as primary PM after 5 × 106 molecules cm-3 h of OH exposure). Therefore, the contribution of light-duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photooxidizing exhaust from newer (LEV2) vehicles was a factor of 3 lower than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions (a factor of 11-15) in nonmethane organic gas emissions. These data suggest that a complex and nonlinear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the timescale of these experiments, the mixture of organic vapors emitted by newer vehicles appears to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the nonmethane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. By comparing this study with a companion study of diesel trucks, we conclude that both primary PM emissions and SOA production for light-duty gasoline vehicles are much greater than for late-model (2007 and later) on-road heavy-duty diesel trucks.

  13. Development and application of a mobile laboratory for measuring emissions from diesel engines. 2. Sampling for toxics and particulate matter.

    PubMed

    Cocker, David R; Shah, Sandip D; Johnson, Kent C; Zhu, Xiaona; Miller, J Wayne; Norbeck, Joseph M

    2004-12-15

    Limited data are available on the emission rates of speciated volatile and semivolatile organic compounds, as well as the physical and chemical characteristics of fine particulate matter (PM) from mobile, in-use diesel engines operated on the road. A design for the sampling of these fractions and the first data from in-use diesel sources are presented in this paper. Emission rates for carbonyls, 1,3-butadiene, benzene, toluene, xylene, PM, and elemental and organic carbon (EC and OC) are reported for a vehicle driven while following the California Air Resources Board (ARB) four-mode heavy heavy-duty diesel truck (HHDDT) cycle and while transiting through a major transportation corridor. Results show that distance specific emission rates are substantially greater in congested traffic as compared with highway cruise conditions. Specifically, emissions of toxic compounds are 3-15 times greater, and PM is 7 times greater under these conditions. The dependence of these species on driving mode suggests that health and source apportionment studies will need to account for driving patterns in addition to emission factors. Comparison of the PM/NOx ratios obtained for the above tests provides insight into the presence and importance of "off-cycle" emissions during on-road driving. Measurements from a stationary source (operated and tested at constant engine speed) equipped with an engine similar to that in the HHDDT yielded a greater understanding of the relative dependence of emissions on load versus engine transients. These data are indicative of the type of investigations made possible by the development of this novel laboratory.

  14. Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records.

    PubMed

    Nava, S; Lucarelli, F; Amato, F; Becagli, S; Calzolai, G; Chiari, M; Giannoni, M; Traversi, R; Udisti, R

    2015-04-01

    Biomass burning (BB) is a significant source of particulate matter (PM) in many parts of the world. Whereas numerous studies demonstrate the relevance of BB emissions in central and northern Europe, the quantification of this source has been assessed only in few cities in southern European countries. In this work, the application of Positive Matrix Factorisation (PMF) allowed a clear identification and quantification of an unexpected very high biomass burning contribution in Tuscany (central Italy), in the most polluted site of the PATOS project. In this urban background site, BB accounted for 37% of the mass of PM10 (particulate matter with aerodynamic diameter<10 μm) as annual average, and more than 50% during winter, being the main cause of all the PM10 limit exceedances. Due to the chemical complexity of BB emissions, an accurate assessment of this source contribution is not always easily achievable using just a single tracer. The present work takes advantage of the combination of a long-term daily data-set, characterized by an extended chemical speciation, with a short-term high time resolution (1-hour) and size-segregated data-set, obtained by PIXE analyses of streaker samples. The hourly time pattern of the BB source, characterised by a periodic behaviour with peaks starting at about 6 p.m. and lasting all the evening-night, and its strong seasonality, with higher values in the winter period, clearly confirmed the hypothesis of a domestic heating source (also excluding important contributions from wildfires and agricultural wastes burning). Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Increases in wintertime PM2.5 sodium and chloride linked to snowfall and road salt application

    NASA Astrophysics Data System (ADS)

    Kolesar, Katheryn R.; Mattson, Claire N.; Peterson, Peter K.; May, Nathaniel W.; Prendergast, Rashad K.; Pratt, Kerri A.

    2018-03-01

    The application of salts and salty brines to roads is common practice during the winter in many urban environments. Road salts can become aerosolized, thereby injecting sodium and chloride particulate matter (PM) into the atmosphere. Here, data from the United States Environmental Protection Agency Chemical Speciation Monitoring Network were used to assess temporal trends of sodium and chloride PM2.5 (PM < 2.5 μm) at 25 locations across the United States to investigate the ubiquity of road salt aerosols. Sodium and chloride PM2.5 concentrations were an average of three times higher in the winter, as compared to the summer, for locations with greater than 25 cm of average annual snowfall. Winter urban chloride PM2.5 concentrations attributed to road salt can even sometimes rival those of coastal sea spray aerosol-influenced sites. In most snow-influenced cities, chloride and sodium PM2.5 concentrations were positively correlated with snowfall; however, this relationship is complicated by differences in state and local winter maintenance practices. This study highlights the ubiquity of road salt aerosols in the United States and their potential impact on wintertime urban air quality, particularly due to the potential for multiphase reactions to liberate chlorine from the particle-phase. Since road salt application is a common practice in wintertime urban environments across the world, it is imperative that road salt application emissions, currently not included in inventories, and its impacts be investigated through measurements and modeling.

  16. PM 2.5 ORGANIC SPECIATION INTERCOMPARISON RESULTS

    EPA Science Inventory

    This abstract describes a poster on results to a laboratory intercomparison of organic aerosol speciation analysis to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on September 10-15. T...

  17. Evaluation of the Emission, Transport, and Deposition of Mercury and Fine Particulate Matter from Coal-Based Power Plants in the Ohio River Valley Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2008-12-31

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, evaluated the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury and associated fine particulate matter. This evaluation involved two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring included the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station contains sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO2, O3, etc.). Laboratory analyses of time-integrated samples were used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Nearreal- time measurements were used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 30 months of field data were collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data provides mercury, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis includes (1) development of updated inventories of mercury emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This is accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results were compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory’s monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions provides critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less

  18. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

    NASA Technical Reports Server (NTRS)

    Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.

    2015-01-01

    We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations.Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure

  19. Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.

    2016-01-01

    We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the Chemical Speciation Network (CSN) offers greater insight on the species MERRAero predicts well and those for which there are biases relative to the EPA observations. Analysis of this speciated data indicates that the lack of nitrate emissions in MERRAero and an underestimation of carbonaceous emissions in the Western US explains much of the reanalysis bias during the winter. To further understand discrepancies between the reanalysis and observations, we use complimentary data to assess two important aspects of MERRAero that are of relevance to the diagnosis of PM2.5, in particular AOD and vertical structure.

  20. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment

    NASA Astrophysics Data System (ADS)

    Betha, Raghu; Pradani, Maharani; Lestari, Puji; Joshi, Umid Man; Reid, Jeffrey S.; Balasubramanian, Rajasekhar

    2013-03-01

    Regional smoke-induced haze in Southeast Asia, caused by uncontrolled forest and peat fires in Indonesia, is of major environmental and health concern. In this study, we estimated carcinogenic and non-carcinogenic health risk due to exposure to fine particles (PM2.5) as emitted from peat fires at Kalimantan, Indonesia. For the health risk analysis, chemical speciation (exchangeable, reducible, oxidizable, and residual fractions) of 12 trace metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Ti, V and Zn) in PM2.5 was studied. Results indicate that Al, Fe and Ti together accounted for a major fraction of total metal concentrations (~ 83%) in PM2.5 emissions in the immediate vicinity of peat fires. Chemical speciation reveals that a major proportion of most of the metals, with the exception of Cr, Mn, Fe, Ni and Cd, was present in the residual fraction. The exchangeable fraction of metals, which represents their bioavailability, could play a major role in inducing human health effects of PM2.5. This fraction contained carcinogenic metals such as Cd (39.2 ng m- 3) and Ni (249.3 ng m- 3) that exceeded their WHO guideline values by several factors. Health risk estimates suggest that exposure to PM2.5 emissions in the vicinity of peat fires poses serious health threats.

  1. Open air mineral treatment operations and ambient air quality: assessment and source apportionment.

    PubMed

    Escudero, M; Alastuey, A; Moreno, T; Querol, X; Pérez, P

    2012-11-01

    We present a methodology for evaluating and quantifying the impact of inhalable mineral dust resuspension close to a potentially important industrial point source, in this case an open air plant producing sand, flux and kaolin in the Capuchinos district of Alcañiz (Teruel, NE Spain). PM(10) levels at Capuchinos were initially high (42 μg m(-3) as the annual average with 91 exceedances of the EU daily limit value during 2007) but subsequently decreased (26 μg m(-3) with 16 exceedances in 2010) due to a reduced demand for minerals from the ceramic industry and construction sector during the first stages of the economic crisis. Back trajectory and local wind pattern analyses revealed only limited contribution from exotic PM sources such as African dust intrusions whereas there was clearly a strong link with the mineral stockpiles of the local industry. This link was reinforced by chemical and mineral speciation and source apportionment analysis which showed a dominance of mineral matter (sum of CO(3)(2-), SiO(2), Al(2)O(3), Ca, Fe, K, Mg, P, and Ti: mostly aluminosilicates) which in 2007 contributed 76% of the PM(10) mass (44 μg m(-3) on average). The contribution from Secondary Inorganic Aerosols (SIA, sum of SO(4)(2-), NO(3)(-) and NH(4)(+)) reached 8.4 μg m(-3), accounting for 14% of the PM(10) mass, similar to the amount of calcareous road dust estimated to be present (8 μg m(-3); 13%). Organic matter and elemental carbon contributed 5.3 μg m(-3) (9%) whereas marine aerosol (Na + Cl) levels were minor with an average concentration of 0.4 μg m(-3) (1% of the PM(10) mass). Finally, chemical and mineralogical analysis of stockpile samples and comparison with filter samples confirmed the local industry to be the major source of ambient PM(10) in the area.

  2. A PERSONAL PARTICLE SPECIATION SAMPLER

    EPA Science Inventory

    Dr. Susanne Hering of Aerosol Dynamics Inc and her colleagues expect to design and validate a personal monitoring sampler for particles smaller than 2.5 µm (PM2.5) that is suitable for subsequent chemical speciation work. The investigators believe the result will be a...

  3. PARTICLE SPECIATION AND EMISSION PROFILES OF SMALL 2-STROKE ENGINES

    EPA Science Inventory

    The Human Exposure and Atmospheric Sciences Division (HEASD) conducts studies designed to acquire information from emission sources for use in source apportionment studies. The objective of this work is to characterize a complete, speciated emission profile (PM and air toxics) ...

  4. Inter-comparison of Speciated Aerosol Loading over India for Global and Regional Emission Inventory using a Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    Upadhyay, Abhishek; Dey, Sagnik; Goyal, Pramila

    2017-04-01

    Air quality of a region directly affects health of entire biotic and abiotic components of ecosystem. Exposure to particulate matter smaller than 2.5 µm (PM2.5) in atmosphere has been directly related to mortality and mobility in various studies. India is one of the aerosol hotspots globally with 0.8 million premature death attributed to exposure to ambient PM2.5. Robust long-term in-situ data of speciated PM2.5 is lacking in India. The problem cannot be resolved by utilizing satellite data as inferring composition is difficult. Therefore a modelling approach is required. We examine spatial and temporal distribution of PM2.5 and its constituent species with a regional and global inventory through chemical transport model (WRF-Chem) over India. The simulation is conducted with RADM2 chemistry and GOCART aerosol module for 8 years (2007-2014). Emissions are interpolated for domain from global anthropogenic emission inventory RETRO and EDGAR for species other than BC, OC and Sulfate. Results from GOCART global inventory are compared with results from a regional inventory for species OC, BC and Sulfate. Validation of CTM simulations against observations (ground based monitoring stations and satellite observations) demonstrates the capability of the CTM to represent space-time variation of aerosols in this region. For example, the build-up of aerosols over the eastern part of the Indo-Gangetic Basin (IGB) during winter (as observed by space-borne sensors) due to the meteorological influence is well captured by the CTM. A correlation of 0.51 and 0.52 has been observed between monitored and model simulated PM2.5 at the two big cities of India, New Delhi and Mumbai respectively. Distribution of PM2.5 is high in the Indo-Gangetic Basin (IGB) and distribution of OC and BC is also more in IGB region with both emission inventories. In the IGB region OC and BC contribute 8 - 20 % and 2.5 - 5 % to total PM2.5. Global and regional emission inventories are showing similar distribution pattern for OC, BC and Sulfate. GOCART emission inventory is underestimating BC and OC emission in comparison to IITB inventory by almost 50% over the IGB region. Better spatial resolution in the regional inventory may be the reason. WRF-Chem simulated OC and BC concentration is underestimated by 25% and 50% over the IGB region with GOCART inventory compare to regional inventory. In comparison to IGB region other parts of India has lower concentration and these reasons are showing comparatively less difference in concentration in both emission scenario. Vertical distribution of extinction coefficient showing that aerosol concentration is confined to lower levels in winter but it is geting elevated in summer. Our results provide a comprehensive picture of aerosol speciation over India and can be used for further climate and health impact studies.

  5. Intercomparison of an Aerosol Chemical Speciation Monitor (ACSM) with ambient fine aerosol measurements in Downtown Atlanta, Georgia

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Canagaratna, M. R.; Croteau, P. L.; Baumann, K.; Edgerton, E. S.; Kollman, M. S.; Ng, N. L.; Verma, V.; Shaw, S. L.; Knipping, E. M.; Worsnop, D. R.; Jayne, J. T.; Weber, R. J.; Surratt, J. D.

    2013-12-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was recently developed to provide long-term real-time continuous measurements of ambient non-refractory (i.e., organic, sulfate, ammonium, nitrate, and chloride) submicron particulate matter (NR-PM1). Currently, there are a limited number of field studies that evaluate the long-term performance of the ACSM against established monitoring networks. In this study, we present seasonal intercomparisons of the ACSM with collocated fine aerosol (PM2.5) measurements at the Southeastern Aerosol Research and Characterization (SEARCH) Jefferson Street (JST) site near downtown Atlanta, GA, during 2011-2012. The collocated measurements included a second ACSM, continuous and integrated sulfate, nitrate, and ammonium measurements, as well as a semi-continuous Sunset organic carbon/elemental carbon (OC/EC) analyzer, continuous tapered element oscillating microbalance (TEOM), 24 h integrated Federal Reference Method (FRM) filters, and continuous scanning electrical mobility system-mixing condensation particle counter (SEMS-MCPC). Intercomparison of the two collocated ACSMs resulted in strong correlations (r2 > 0.8) for all chemical species, except chloride (r2 = 0.21); mass concentration for all chemical species agreed within ±27%, indicating that ACSM instruments are capable of stable and reproducible operation. Chemical constituents measured by the ACSM are also compared with those obtained from the continuous measurements from JST. Since the continuous measurement concentrations are adjusted to match the integrated filter measurements, these comparisons reflect the combined uncertainties of the ACSM, continuous, and filter measurements. In general, speciated ACSM mass concentrations correlate well (r2 > 0.7) with the continuous measurements from JST, although the correlation for nitrate is weaker (r2 = 0.55) in summer. Differences between ACSM mass concentrations and the filter-adjusted JST continuous data are 5-27%, 4-25%, and 34-51% for sulfate, ammonium, and nitrate, respectively. These comparisons are all close to the stated ±30% accuracy of the ACSM except for nitrate. These discrepancies could be due to positive biases in the ACSM nitrate concentrations from interferences at the NO+ (m/z 30) fragment ion and/or negative artifacts in the nitrate filter measurement (from volatilization of NH4NO3) are also possible. The organic matter OM/OC ratios derived from linear regression of ACSM OM vs. Sunset OC/EC analyzer are 4.18 ± 0.04 and 3.59 ± 0.02 for summer and fall, respectively. Linear correlations of the ACSM NR-PM1 plus EC with TEOM PM2.5 mass are strong (r2 > 0.7) with percentage difference of 19% and 80% during summer and fall, respectively. On the other hand, the ACSM NR-PM1 correlation with FRM PM1 is high (r2 > 0.8) with percentage difference of ±47% over three seasons. Correlation of ACSM NR-PM1 plus EC mass with SEMS-MCPC PM1 volume concentration results in an estimation of aerosol density of 1.61 g cm-3 for fall 2012 period. ACSM organic concentrations measured during this study were obtained using relative ionization efficiency (RIE) values observed in Aerodyne Aerosol Mass Spectrometer (AMS). Explicit calibration of the ACSM relative ionizations for ammonium, nitrate, and sulfate, during this study was shown to improve the comparisons between ACSM and collocated measurements for these species. The accuracy of the organic and total mass concentrations would likely also be improved if organic relative ionization efficiency values for the ACSM were available during this study. Laboratory calibrations of ACSM relative ionization efficiencies using organic particles of known composition are recommended for future studies.

  6. Speciation and Toxic Emissions from On road Vehicles, and Particulate Matter Emissions from Light-Duty Gasoline Vehicles in MOVES201X

    EPA Science Inventory

    Updated methane, non-methane organic gas, and volatile organic compound calculations based on speciation data. Updated speciation and toxic emission rates for new model year 2010 and later heavy-duty diesel engines. Updated particulate matter emission rates for 2004 and later mod...

  7. Chemical Composition and Source Apportionment of high temporal resolution PM1 data for January-August 2017 in Delhi, India

    NASA Astrophysics Data System (ADS)

    Bhandari, S.; Wang, D. S.; Gani, S.; Seraj, S.; Arub, Z.; Habib, G.; Apte, J.; Hildebrandt Ruiz, L.

    2017-12-01

    Exposure to fine particulate matter (PM) poses significant health risks, especially to residents in heavily populated areas. The current understanding of the sources and dynamics of PM pollution in developing countries like India is limited. Delhi, India is the second most populated city in the world that has extremely high winter PM concentrations and frequent severe pollution episodes. This study reports on composition measurements of submicron aerosol at 1 minute time resolution from January to August of 2017, collected at the Indian Institute of Technology Delhi using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) and black carbon (BC) measurements using an Aethalometer. Source apportionment was conducted on organic and inorganic mass spectra measured by the ACSM and black carbon data measured using Positive Matrix Factorization (PMF). High concentrations of particulate matter were observed with total PM1 at times exceeding 200 µg m-3 in winter. A significant drop in PM1 concentrations was observed in the winter-spring transition. As observed elsewhere, organic species dominated the submicron mass, contributing 60% of the total mass over the duration of the campaign. However, this fractional contribution varied substantially over the day: from 48% early in the morning to 73% late at night. Along with diurnal variation in total PM1 mass loadings, particulate chloride levels also exhibited a strong diurnal cycle, with concentrations as high as 50 µg m-3 observed in the early mornings of January 2017. Literature review on identification of winter chloride sources in Delhi points to local and regional sources such as biomass/open-waste burning and coal combustion. PMF receptor modeling identified several factors with distinct diurnal patterns. While hydrocarbon-like organic aerosol (HOA) factor has the largest mass fraction contribution, PMF results consistently suggest chloride presence as attributable to ammonium chloride. Interestingly, aerosol neutralization characterization shows an apparent acidity of aerosols. These results point to substantial differences in aerosol composition in Indian cities in comparison to cities around the world, especially with regards to the abundance of particulate chloride, and provide insights into the sources of PM1 measured in Delhi.

  8. The Recent History of the Composition of Fine Particulate Matter in the Rural United States

    NASA Astrophysics Data System (ADS)

    Schichtel, B. A.; Hand, J. L.; Prenni, A. J.; Copeland, S.; Gebhart, K.; Vimont, J.; Moore, C. T.; Malm, W. C.

    2017-12-01

    Over the past 30 years, there have been dramatic shifts in fine particulate matter (PM2.5) emissions and their precursors, changing the composition and levels of ambient PM2.5. Many of these trends are reflected in the daily speciated PM2.5 samples collected in the Interagency Monitoring of Protected Visual Environments (IMPROVE) program, which has operated uninterrupted throughout the rural United States since 1988. PM2.5, measured at eastern U.S. IMPROVE sites, is now about half of what it was in the 1990s. This change is primarily the result of decreasing particulate sulfate brought on by declining SO2 emissions. Much of the decreased SO2 emissions were initially driven by regulations and then later accelerated by a switch from coal- to natural-gas-powered electrical generation. However, the development of oil and gas resources has led to the industrialization of once-rural landscapes, bringing increased local emissions impacting the air quality in surrounding areas. The reductions in sulfate appear to have also caused commensurate reductions in sulfate-processed, biogenic secondary organic aerosols. Many of these changes have also occurred in the intermountainous western U.S., but the response in ambient PM2.5 is more subtle due to the lower anthropogenic emissions. Instead, the changes in PM2.5 composition appear to be driven by external and more-natural forces. This includes increases in spring sulfate concentrations in the first decade of the 2000's, potentially due to international transport, as well as increased wildfires contributing to the background of carbonaceous aerosols and spatially and temporally varying PM2.5 episodes. Over the last decade, there has also been an earlier onset of the spring dust season in the Southwest, presumably due to the increased surface winds and decreased precipitation which was associated with a shift in the Pacific decadal oscillation. In this presentation we will explore these and other changes in the PM2.5 composition over the past few decades and their potential causes.

  9. PM Levels, Composition and Evolution in a Highly Industrialised Area. Objectives of Improvement

    NASA Astrophysics Data System (ADS)

    Minguillon, M. C.; Querol, X.; Alastuey, A.; Monfort, E.; Mantilla, E.; Miro, J. V.

    2007-05-01

    Evolution of levels and speciation of PM10 in the ceramic producing area of Castello (East Spain) was studied from April 2002 until December 2005. To this end, daily PM10 sampling was carried out at three urban sites and one suburban site of the area and chemical analyses were made in about 35 % of the samples. Average PM10 levels varied between 27-36 µg/m3 for the study period. The major constituent was mineral matter, exceeding by 5-12 µg/m3 the usual ranges of annual mineral loads in PM10 at similar Spanish urban or regional background sites with no industrial influence. Based on this comparison and on the efficiency of emission abatement techniques, a reduction target of 3-5 µgPM10/m3 of the annual mean seems to be achievable at the urban sites. Moreover, levels of Li, Sc, Co, Zn, As, Se, Rb, Zr, Cd, Cs, Ce, Tl and Pb were higher than the usual range of concentration in urban areas of Spain. Of these elements, Zr, Zn, Pb and As may be considered as tracers of the ceramic emissions from the study area. Their levels showed a simultaneous decrease with the progressive implementation of emission abatement techniques in frit (glaze component for the manufacture of glazed tiles) fusion kilns of the area. Given the high proportion of facilities with implemented abatement techniques at the end of the study period, the reduction margin for these elements is very low.

  10. Comparative source apportionment of PM10 in Switzerland for 2008/2009 and 1998/1999 by Positive Matrix Factorisation

    NASA Astrophysics Data System (ADS)

    Gianini, M. F. D.; Fischer, A.; Gehrig, R.; Ulrich, A.; Wichser, A.; Piot, C.; Besombes, J.-L.; Hueglin, C.

    2012-07-01

    PM10 speciation data from various sites in Switzerland for two time periods (January 1998-March 1999 and August 2008-July 2009) have been analysed for major sources by receptor modelling using Positive Matrix Factorisation (PMF). For the 2008/2009 period, it was found that secondary aerosols (sulphate- and nitrate-rich secondary aerosols, SSA and NSA) are the most abundant components of PM10 at sites north of the Alps. Road traffic and wood combustion were found to be the largest sources of PM10 at these sites. Except at the urban roadside site where road traffic is dominating (40% of PM10 -- including road salt), the annual average contribution of these two sources is of similar importance (17% and 14% of PM10, respectively). At a rural site south of the Alps wood combustion and road traffic contributions to PM10 were higher (31% and 24%, respectively), and the fraction of secondary aerosols lower (29%) than at similar site types north of the Alps. Comparison of PMF analyses for the two time periods (1998/1999 and 2008/2009) revealed decreasing average contributions of road traffic and SSA to PM10 at all sites. This indicates that the measures that were implemented in Switzerland and in neighbouring countries to reduce emissions of sulphur dioxide and PM10 from road traffic were successful. On the other hand, contributions of wood combustion did not change during this ten year period, and the contribution of nitrate-rich secondary aerosols has even increased. It is shown that PMF can be a helpful tool for the assessment of long-term changes of source contributions to ambient particulate matter.

  11. Atmospheric mercury and fine particulate matter in coastal New England: implications for mercury and trace element sources in the northeastern United States

    USGS Publications Warehouse

    Kolker, Allan; Engle, Mark A.; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas J.; Krabbenhotft, David P.; Bothner, Michael H.; Tate, Michael T.

    2013-01-01

    Intensive sampling of ambient atmospheric fine particulate matter was conducted at Woods Hole, Massachusetts over a four-month period from 3 April to 29 July, 2008, in conjunction with year-long deployment of the USGS Mobile Mercury Lab. Results were obtained for trace elements in fine particulate matter concurrently with determination of ambient atmospheric mercury speciation and concentrations of ancillary gasses (SO2, NOx, and O3). For particulate matter, trace element enrichment factors greater than 10 relative to crustal background values were found for As, Bi, Cd, Cu, Hg, Pb, Sb, V, and Zn, indicating contribution of these elements by anthropogenic sources. For other elements, enrichments are consistent with natural marine (Na, Ca, Mg, Sr) or crustal (Ba, Ce, Co, Cs, Fe, Ga, La, Rb, Sc, Th, Ti, U, Y) sources, respectively. Positive matrix factorization was used together with concentration weighted air-mass back trajectories to better define element sources and their locations. Our analysis, based on events exhibiting the 10% highest PM2.5 contributions for each source category, identifies coal-fired power stations concentrated in the U.S. Ohio Valley, metal smelting in eastern Canada, and marine and crustal sources showing surprisingly similar back trajectories, at times each sampling Atlantic coastal airsheds. This pattern is consistent with contribution of Saharan dust by a summer maximum at the latitude of Florida and northward transport up the Atlantic Coast by clockwise circulation of the summer Bermuda High. Results for mercury speciation show diurnal production of RGM by photochemical oxidation of Hg° in a marine environment, and periodic traverse of the study area by correlated RGM-SO2(NOx) plumes, indicative of coal combustion sources.

  12. Chemical characterization of fine particulate matter emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño

    NASA Astrophysics Data System (ADS)

    Jayarathne, Thilina; Stockwell, Chelsea E.; Gilbert, Ashley A.; Daugherty, Kaitlyn; Cochrane, Mark A.; Ryan, Kevin C.; Putra, Erianto I.; Saharjo, Bambang H.; Nurhayati, Ati D.; Albar, Israr; Yokelson, Robert J.; Stone, Elizabeth A.

    2018-02-01

    Fine particulate matter (PM2.5) was collected in situ from peat smoke during the 2015 El Niño peat fire episode in Central Kalimantan, Indonesia. Twenty-one PM samples were collected from 18 peat fire plumes that were primarily smoldering with modified combustion efficiency (MCE) values of 0.725-0.833. PM emissions were determined and chemically characterized for elemental carbon (EC), organic carbon (OC), water-soluble OC, water-soluble ions, metals, and organic species. Fuel-based PM2.5 mass emission factors (EFs) ranged from 6.0 to 29.6 g kg-1 with an average of 17.3 ± 6.0 g kg-1. EC was detected only in 15 plumes and comprised ∼ 1 % of PM mass. Together, OC (72 %), EC (1 %), water-soluble ions (1 %), and metal oxides (0.1 %) comprised 74 ± 11 % of gravimetrically measured PM mass. Assuming that the remaining mass is due to elements that form organic matter (OM; i.e., elements O, H, N) an OM-to-OC conversion factor of 1.26 was estimated by linear regression. Overall, chemical speciation revealed the following characteristics of peat-burning emissions: high OC mass fractions (72 %), primarily water-insoluble OC (84 ± 11 %C), low EC mass fractions (1 %), vanillic to syringic acid ratios of 1.9, and relatively high n-alkane contributions to OC (6.2 %C) with a carbon preference index of 1.2-1.6. Comparison to laboratory studies of peat combustion revealed similarities in the relative composition of PM but greater differences in the absolute EF values. The EFs developed herein, combined with estimates of the mass of peat burned, are used to estimate that 3.2-11 Tg of PM2.5 was emitted to atmosphere during the 2015 El Niño peatland fire event in Indonesia. Combined with gas-phase measurements of CO2, CO, CH4, and volatile organic carbon from Stockwell et al. (2016), it is determined that OC and EC accounted for 2.1 and 0.04 % of total carbon emissions, respectively. These in situ EFs can be used to improve the accuracy of the representation of Indonesian peat burning in emission inventories and receptor-based models.

  13. FIELD EVALUATION OF SAMPLERS FOR EPA'S NATIONAL PM 2.5 CHEMICAL SPECIATION NETWORK-PRELIMINARY RESULTS FROM ATLANTA

    EPA Science Inventory

    The US EPA bas established a national network at nearly 1100 sites to monitor PM2.5 mass for testing compliance with the PM2.5 National Ambient Air Quality Standards. The objective of the field evaluation is to determine the performance characteristics for the collection of the...

  14. Using structural equation modeling to construct calibration equations relating PM2.5 mass concentration samplers to the federal reference method sampler

    NASA Astrophysics Data System (ADS)

    Bilonick, Richard A.; Connell, Daniel P.; Talbott, Evelyn O.; Rager, Judith R.; Xue, Tao

    2015-02-01

    The objective of this study was to remove systematic bias among fine particulate matter (PM2.5) mass concentration measurements made by different types of samplers used in the Pittsburgh Aerosol Research and Inhalation Epidemiology Study (PARIES). PARIES is a retrospective epidemiology study that aims to provide a comprehensive analysis of the associations between air quality and human health effects in the Pittsburgh, Pennsylvania, region from 1999 to 2008. Calibration was needed in order to minimize the amount of systematic error in PM2.5 exposure estimation as a result of including data from 97 different PM2.5 samplers at 47 monitoring sites. Ordinary regression often has been used for calibrating air quality measurements from pairs of measurement devices; however, this is only appropriate when one of the two devices (the "independent" variable) is free from random error, which is rarely the case. A group of methods known as "errors-in-variables" (e.g., Deming regression, reduced major axis regression) has been developed to handle calibration between two devices when both are subject to random error, but these methods require information on the relative sizes of the random errors for each device, which typically cannot be obtained from the observed data. When data from more than two devices (or repeats of the same device) are available, the additional information is not used to inform the calibration. A more general approach that often has been overlooked is the use of a measurement error structural equation model (SEM) that allows the simultaneous comparison of three or more devices (or repeats). The theoretical underpinnings of all of these approaches to calibration are described, and the pros and cons of each are discussed. In particular, it is shown that both ordinary regression (when used for calibration) and Deming regression are particular examples of SEMs but with substantial deficiencies. To illustrate the use of SEMs, the 7865 daily average PM2.5 mass concentration measurements made by seven collocated samplers at an urban monitoring site in Pittsburgh, Pennsylvania, were used. These samplers, which included three federal reference method (FRM) samplers, three speciation samplers, and a tapered element oscillating microbalance (TEOM), operated at various times during the 10-year PARIES study period. Because TEOM measurements are known to depend on temperature, the constructed SEM provided calibration equations relating the TEOM to the FRM and speciation samplers as a function of ambient temperature. It was shown that TEOM imprecision and TEOM bias (relative to the FRM) both decreased as temperature increased. It also was shown that the temperature dependency for bias was non-linear and followed a sigmoidal (logistic) pattern. The speciation samplers exhibited only small bias relative to the FRM samplers, although the FRM samplers were shown to be substantially more precise than both the TEOM and the speciation samplers. Comparison of the SEM results to pairwise simple linear regression results showed that the regression results can differ substantially from the correctly-derived calibration equations, especially if the less-precise device is used as the independent variable in the regression.

  15. Improve regional distribution and source apportionment of PM2.5 trace elements in China using inventory-observation constrained emission factors.

    PubMed

    Ying, Qi; Feng, Miao; Song, Danlin; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Kleeman, Michael J; Li, Xinghua

    2018-05-15

    Contributions to 15 trace elements in airborne particulate matter with aerodynamic diameters <2.5μm (PM 2.5 ) in China from five major source sectors (industrial sources, residential sources, transportation, power generation and windblown dust) were determined using a source-oriented Community Multiscale Air Quality (CMAQ) model. Using emission factors in the composite speciation profiles from US EPA's SPECIATE database for the five sources leads to relatively poor model performance at an urban site in Beijing. Improved predictions of the trace elements are obtained by using adjusted emission factors derived from a robust multilinear regression of the CMAQ predicted primary source contributions and observation at the urban site. Good correlations between predictions and observations are obtained for most elements studied with R>0.5, except for crustal elements Al, Si and Ca, particularly in spring. Predicted annual and seasonal average concentrations of Mn, Fe, Zn and Pb in Nanjing and Chengdu are also consistently improved using the adjusted emission factors. Annual average concentration of Fe is as high as 2.0μgm -3 with large contributions from power generation and transportation. Annual average concentration of Pb reaches 300-500ngm -3 in vast areas, mainly from residential activities, transportation and power generation. The impact of high concentrations of Fe on secondary sulfate formation and Pb on human health should be evaluated carefully in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storey, John Morse; Lewis Sr, Samuel Arthur; Szybist, James P

    Gasoline direct injection (GDI) engines can offer improved fuel economy and higher performance over their port fuel-injected (PFI) counterparts, and are now appearing in increasingly more U.S. and European vehicles. Small displacement, turbocharged GDI engines are replacing large displacement engines, particularly in light-duty trucks and sport utility vehicles, in order for manufacturers to meet more stringent fuel economy standards. GDI engines typically emit the most particulate matter (PM) during periods of rich operation such as start-up and acceleration, and emissions of air toxics are also more likely during this condition. A 2.0 L GDI engine was operated at lambda ofmore » 0.91 at typical loads for acceleration (2600 rpm, 8 bar BMEP) on three different fuels; an 87 anti-knock index (AKI) gasoline (E0), 30% ethanol blended with the 87 AKI fuel (E30), and 48% isobutanol blended with the 87 AKI fuel. E30 was chosen to maximize octane enhancement while minimizing ethanol-blend level and iBu48 was chosen to match the same fuel oxygen level as E30. Particle size and number, organic carbon and elemental carbon (OC/EC), soot HC speciation, and aldehydes and ketones were all analyzed during the experiment. A new method for soot HC speciation is introduced using a direct, thermal desorption/pyrolysis inlet for the gas chromatograph (GC). Results showed high levels of aromatic compounds were present in the PM, including downstream of the catalyst, and the aldehydes were dominated by the alcohol blending.« less

  17. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    NASA Astrophysics Data System (ADS)

    George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.

    2013-12-01

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.

  18. Dissolved and labile concentrations of Cd, Cu, Pb, and Zn in the South Fork Coeur d'Alene River, Idaho: Comparisons among chemical equilibrium models and implications for biotic ligand models

    USGS Publications Warehouse

    Balistrieri, L.S.; Blank, R.G.

    2008-01-01

    In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.

  19. The contributions to long-term health-relevant particulate matter at the UK EMEP supersites between 2010 and 2013: Quantifying the mitigation challenge.

    PubMed

    Malley, Christopher S; Heal, Mathew R; Braban, Christine F; Kentisbeer, John; Leeson, Sarah R; Malcolm, Heath; Lingard, Justin J N; Ritchie, Stuart; Maggs, Richard; Beccaceci, Sonya; Quincey, Paul; Brown, Richard J C; Twigg, Marsailidh M

    2016-10-01

    Human health burdens associated with long-term exposure to particulate matter (PM) are substantial. The metrics currently recommended by the World Health Organization for quantification of long-term health-relevant PM are the annual average PM10 and PM2.5 mass concentrations, with no low concentration threshold. However, within an annual average, there is substantial variation in the composition of PM associated with different sources. To inform effective mitigation strategies, therefore, it is necessary to quantify the conditions that contribute to annual average PM10 and PM2.5 (rather than just short-term episodic concentrations). PM10, PM2.5, and speciated water-soluble inorganic, carbonaceous, heavy metal and polycyclic aromatic hydrocarbon components are concurrently measured at the two UK European Monitoring and Evaluation Programme (EMEP) 'supersites' at Harwell (SE England) and Auchencorth Moss (SE Scotland). In this work, statistical analyses of these measurements are integrated with air-mass back trajectory data to characterise the 'chemical climate' associated with the long-term health-relevant PM metrics at these sites. Specifically, the contributions from different PM concentrations, months, components and geographic regions are detailed. The analyses at these sites provide policy-relevant conclusions on mitigation of (i) long-term health-relevant PM in the spatial domain for which these sites are representative, and (ii) the contribution of regional background PM to long-term health-relevant PM. At Harwell the mean (±1 sd) 2010-2013 annual average concentrations were PM10=16.4±1.4μgm(-3) and PM2.5=11.9±1.1μgm(-3) and at Auchencorth PM10=7.4±0.4μgm(-3) and PM2.5=4.1±0.2μgm(-3). The chemical climate state at each site showed that frequent, moderate hourly PM10 and PM2.5 concentrations (defined as approximately 5-15μgm(-3) for PM10 and PM2.5 at Harwell and 5-10μgm(-3) for PM10 at Auchencorth) determined the magnitude of annual average PM10 and PM2.5 to a greater extent than the relatively infrequent high, episodic PM10 and PM2.5 concentrations. These moderate PM10 and PM2.5 concentrations were derived across the range of chemical components, seasons and air-mass pathways, in contrast to the highest PM concentrations which tended to associate with specific conditions. For example, the largest contribution to moderate PM10 and PM2.5 concentrations - the secondary inorganic aerosol components, specifically NO3(-) - were accumulated during the arrival of trajectories traversing the spectrum of marine, UK, and continental Europe areas. Mitigation of the long-term health-relevant PM impact in the regions characterised by these two sites requires multilateral action, across species (and hence source sectors), both nationally and internationally; there is no dominant determinant of the long-term PM metrics to target. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Characterization of fine aerosol and its inorganic components at two rural locations in New York State.

    PubMed

    Sunder Raman, Ramya; Hopke, Philip K; Holsen, Thomas M

    2008-09-01

    Samples of PM(2.5) were collected to measure the concentrations of its chemical constituents at two rural locations, Potsdam and Stockton, NY from November 2002 to August 2005. These samples were collected on multiple filters at both sites, every third day for a 24-h interval with a speciation network sampler. The Teflo filters were analyzed for PM(2.5) mass by gravimetry, and elemental composition by X-ray fluorescence (XRF). Nylasorb filters and Teflo filters were leached with water and analyzed for anions and cations, respectively, by ion chromatography (IC). Fine particulate matter (PM(2.5)) mass and its inorganic component measurements were statistically characterized, and the temporal behavior of these species were assessed. Over the entire study period, PM(2.5) mass concentrations were lower at Potsdam (8.35 microg/m(3)) than at Stockton (10.24 microg/m(3)). At both locations, organic matter (OM) was the highest contributor to mass. Sulfate was the second highest contributor to mass at 27.0% at Potsdam, and 28.7% at Stockton. Nitrate contributions to mass of 8.9 and 9.5% at Potsdam and Stockton, respectively, were the third highest. At both locations, fine PM mass exhibited an annual cycle with a pronounced summer peak and indications of another peak during the winter, consistent with an overall increase in the rate of secondary aerosol formation during the summer, and increased partitioning of ammonium nitrate to the particle phase and condensation of other semi-volatiles during the winter, respectively. An ion-balance analysis indicated that at both locations, during the summers as well as in the winters, the aerosol was acidic. Lognormal frequency distribution fits to the measured mass concentrations on a seasonal basis indicated the overall increase in particle phase secondary aerosol (sulfate and SOA) concentrations during the summers compared to the winters at both locations.

  1. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2005-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg0, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less

  2. Evaluation of the Emission, Transport, and Deposition of Mercury, Fine Particulate Matter, and Arsenic from Coal-Based Power Plants in the Ohio River Valley Region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2006-04-02

    As stated in the proposal: Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM stationmore » will contain sampling equipment to collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg0 and RGM. Approximately 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by the USEPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less

  3. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2005-04-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NO{sub x}, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less

  4. EVALUATION OF THE EMISSION, TRANSPORT, AND DEPOSITION OF MERCURY, FINE PARTICULATE MATTER, AND ARSENIC FROM COAL-BASED POWER PLANTS IN THE OHIO RIVER VALLEY REGION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin Crist

    2004-10-02

    Ohio University, in collaboration with CONSOL Energy, Advanced Technology Systems, Inc (ATS) and Atmospheric and Environmental Research, Inc. (AER) as subcontractors, is evaluating the impact of emissions from coal-fired power plants in the Ohio River Valley region as they relate to the transport and deposition of mercury, arsenic, and associated fine particulate matter. This evaluation will involve two interrelated areas of effort: ambient air monitoring and regional-scale modeling analysis. The scope of work for the ambient air monitoring will include the deployment of a surface air monitoring (SAM) station in southeastern Ohio. The SAM station will contain sampling equipment tomore » collect and measure mercury (including speciated forms of mercury and wet and dry deposited mercury), arsenic, particulate matter (PM) mass, PM composition, and gaseous criteria pollutants (CO, NOx, SO{sub 2}, O{sub 3}, etc.). Laboratory analysis of time-integrated samples will be used to obtain chemical speciation of ambient PM composition and mercury in precipitation. Near-real-time measurements will be used to measure the ambient concentrations of PM mass and all gaseous species including Hg{sup 0} and RGM. Approximately of 18 months of field data will be collected at the SAM site to validate the proposed regional model simulations for episodic and seasonal model runs. The ambient air quality data will also provide mercury, arsenic, and fine particulate matter data that can be used by Ohio Valley industries to assess performance on multi-pollutant control systems. The scope of work for the modeling analysis will include (1) development of updated inventories of mercury and arsenic emissions from coal plants and other important sources in the modeled domain; (2) adapting an existing 3-D atmospheric chemical transport model to incorporate recent advancements in the understanding of mercury transformations in the atmosphere; (3) analyses of the flux of Hg{sup 0}, RGM, arsenic, and fine particulate matter in the different sectors of the study region to identify key transport mechanisms; (4) comparison of cross correlations between species from the model results to observations in order to evaluate characteristics of specific air masses associated with long-range transport from a specified source region; and (5) evaluation of the sensitivity of these correlations to emissions from regions along the transport path. This will be accomplished by multiple model runs with emissions simulations switched on and off from the various source regions. To the greatest extent possible, model results will also be compared to field data collected at other air monitoring sites in the Ohio Valley region, operated independently of this project. These sites may include (1) the DOE National Energy Technologies Laboratory's monitoring site at its suburban Pittsburgh, PA facility; (2) sites in Pittsburgh (Lawrenceville) PA and Holbrook, PA operated by ATS; (3) sites in Steubenville, OH and Pittsburgh, PA operated by U.S. EPA and/or its contractors; and (4) sites operated by State or local air regulatory agencies. Field verification of model results and predictions will provide critical information for the development of cost effective air pollution control strategies by the coal-fired power plants in the Ohio River Valley region.« less

  5. Evolution of vehicle exhaust particles in the atmosphere.

    PubMed

    Canagaratna, Manjula R; Onasch, Timothy B; Wood, Ezra C; Herndon, Scott C; Jayne, John T; Cross, Eben S; Miake-Lye, Richard C; Kolb, Charles E; Worsnop, Douglas R

    2010-10-01

    Aerosol mass spectrometer (AMS) measurements are used to characterize the evolution of exhaust particulate matter (PM) properties near and downwind of vehicle sources. The AMS provides time-resolved chemically speciated mass loadings and mass-weighted size distributions of nonrefractory PM smaller than 1 microm (NRPM1). Source measurements of aircraft PM show that black carbon particles inhibit nucleation by serving as condensation sinks for the volatile and semi-volatile exhaust gases. Real-world source measurements of ground vehicle PM are obtained by deploying an AMS aboard a mobile laboratory. Characteristic features of the exhaust PM chemical composition and size distribution are discussed. PM mass and number concentrations are used with above-background gas-phase carbon dioxide (CO2) concentrations to calculate on-road emission factors for individual vehicles. Highly variable ratios between particle number and mass concentrations are observed for individual vehicles. NRPM1 mass emission factors measured for on-road diesel vehicles are approximately 50% lower than those from dynamometer studies. Factor analysis of AMS data (FA-AMS) is applied for the first time to map variations in exhaust PM mass downwind of a highway. In this study, above-background vehicle PM concentrations are highest close to the highway and decrease by a factor of 2 by 200 m away from the highway. Comparison with the gas-phase CO2 concentrations indicates that these vehicle PM mass gradients are largely driven by dilution. Secondary aerosol species do not show a similar gradient in absolute mass concentrations; thus, their relative contribution to total ambient PM mass concentrations increases as a function of distance from the highway. FA-AMS of single particle and ensemble data at an urban receptor site shows that condensation of these secondary aerosol species onto vehicle exhaust particles results in spatial and temporal evolution of the size and composition of vehicle exhaust PM on urban and regional scales.

  6. Origins of fine aerosol mass in the Baltimore-Washington corridor: implications from observation, factor analysis, and ensemble air parcel back trajectories

    NASA Astrophysics Data System (ADS)

    Antony Chen, L.-W.; Doddridge, Bruce G.; Dickerson, Russell R.; Chow, Judith C.; Henry, Ronald C.

    Chemically speciated fine particulate matter (PM 2.5) and trace gases (including NH 3, HNO 3, CO, SO 2, NO y) have been sampled at Fort Meade (FME: 39.10°N, 76.74°W; elevation 46 m MSL), Maryland, since July 1999. FME is suburban, located in the middle of the Baltimore-Washington corridor, and generally downwind of the highly industrialized Midwest. The PM 2.5 at FME is expected to be of both local and regional sources. Measurements over a 2-year period include eight seasonally representative months. The PM 2.5 shows an annual mean of 13 μg m -3 and primarily consists of sulfate, nitrate, ammonium, and carbonaceous material. Day-to-day and seasonal variations in the PM 2.5 chemical composition reflect changes of contribution from various sources. UNMIX, an innovative receptor model, is used to retrieve potential sources of the PM 2.5. A six-factor model, including regional sulfate, local sulfate, wood smoke, copper/iron processing industry, mobile, and secondary nitrate, is constructed and compared with reported source emission profiles. The six factors are studied further using an ensemble back trajectory method to identify possible source locations. Sources of local sulfate, mobile, and secondary nitrate are more localized around the receptor than those of other factors. Regional sulfate and wood smoke are more regional and associated with westerly and southerly transport, respectively. This study suggests that the local contribution to PM 2.5 mass can vary from <30% in summer to >60% in winter.

  7. SPECIATE--EPA'S DATABASE OF SPECIATED EMISSION PROFILES

    EPA Science Inventory

    SPECIATE is EPA's repository of Total Organic Compound and Particulate Matter speciated profiles for a wide variety of sources. The profiles in this system are provided for air quality dispersion modeling and as a library for source-receptor and source apportionment type models. ...

  8. Integration of optical and chemical parameters to improve the particulate matter characterization

    NASA Astrophysics Data System (ADS)

    Perrone, M. R.; Romano, S.; Genga, A.; Paladini, F.

    2018-06-01

    Integrating nephelometer measurements have been combined with co-located in space and time PM10 and PM1 mass concentration measurements to highlight the benefits of integrating aerosol optical properties with the chemical speciation of PM1 and PM10 samples. Inorganic ions (SO42-, NO3-, NH4+, Cl-, Na+, K+, Mg2+, and Ca2+), metals (Fe, Al, Zn, Ti, Cu, V, Mn, and Cr), and the elemental and organic carbon (EC and OC, respectively) have been monitored to characterize the chemical composition of PM1 and PM10 samples, respectively. The scattering coefficient (σp) at 450 nm, the scattering Ångström coefficient (Å) calculated at the 450-635 nm wavelength pair, and the scattering Ångström coefficient difference (ΔÅ) retrieved from nephelometer measurements have been used to characterize the optical properties of the particles at the surface. The frequency distribution of the Å daily means during the one-year monitoring campaign, performed at a southeastern Italian site, has allowed identifying three main Å variability ranges: Å ≤ 0.8, 0.8 < Å ≤ 1.2, and Å > 1.2. We found that σp and ΔÅ mean values and the mean chemical composition of the PM1 and PM10 samples varied with the Å variability range. σp and ΔÅ reached the highest (149 Mm-1) and the smallest (0.16) mean value, respectively, on the days characterized by Å > 1.2. EC, SO42-, and NH4+ mean mass percentages also reached the highest mean value on the Å > 1.2 days, representing on average 8.4, 9.8, and 4.2%, respectively, of the sampled PM10 mass and 12.4, 10.6, and 7.7%, respectively, of the PM1 mass. Conversely, σp and ΔÅ mean values were equal to 85 Mm-1 and 0.55, respectively, on the days characterized by Å ≤ 0.8 and the EC, SO42-, and NH4+ mean mass percentages reached smaller values on the Å ≤ 0.8 days, representing 4.5, 6.0, and 1.9% of the PM10 mass and 9.4, 7.3, and 5.8% of the PM1 mass, respectively. Primary and secondary OC (POC and SOC, respectively) contributions also varied with the Å variability range. POC and SOC mean mass percentages reached the highest and the smallest value, respectively, on the days characterized by Å > 1.2. Conversely, POC and SOC mean mass percentages reached the smallest and the highest value, respectively, on the days characterized by Å ≤ 0.8. It has also been shown that the PM, OC, OC + EC, POC, and SOC mass scattering cross sections varied significantly with the Å variability range, because of the Å dependence on aerosol sources and/or emission, transport, and transformation mechanisms. Therefore, it has been shown that Å daily mean values can represent a good tool to better differentiate the chemical speciation of size-fractioned PM samples.

  9. A Side by Side Comparison of Filter-Based PM(sub 2.5) Measurements at a Suburban Site: A Closure Study

    NASA Technical Reports Server (NTRS)

    Haines, Jennifer C.; Chen, Lung-Wen A.; Taubman, Brett F.; Doddridge, Bruce G.; Dickerson, Russell R.

    2007-01-01

    Reliable determination of the effects of air quality on public health and the environment requires accurate measurement of PM(sub 2.5) mass and the individual chemical components of fine aerosols. This study seeks to evaluate PM(sub 2.5) measurements that are part of a newly established national network by comparing them with a more conventional sampling system. Experiments were carried out during 2002 at a suburban site in Maryland, United States, where two samplers from the U.S. Environmental Protection Agency (USEPA) Speciation Trends Network: Met One Speciation Air Sampling System STNS and Thermo Scientific Reference Ambient Air Sampler STNR, two Desert Research Institute Sequential Filter Samplers DRIF, and a continuous TEOM monitor (Thermo Scientific Tapered Element Oscillating Microbalance) were sampling air in parallel. These monitors differ not only in sampling configuration but also in protocol-specific sample analysis procedures. Measurements of PM(sub 2.5) mass and major contributing species were well correlated among the different methods with r-values > 0.8. Despite the good correlations, daily concentrations of PM(sub 2.5) mass and major contributing species were significantly different at the 95% confidence level from 5 to 100% of the time. Larger values of PM(sub 2.5) mass and individual species were generally reported from STNR and STNS. The January STNR average PM(sub 2.5) mass (8.8 (micro)g/per cubic meter) was 1.5 (micro)g/per cubic meter larger than the DRIF average mass. The July STNS average PM(sub 2.5) mass (27.8 (micro)g/per cubic meter) was 3.8 (micro)g/per cubic meter larger than the DRIF average mass. These differences can only be partially accounted for by known random errors. Variations in flow control, face velocity, and sampling artifacts likely influence the measurement of PM(sub 2.5) speciation and mass closure. Simple statistical tests indicate that the current uncertainty estimates used in the STN network may underestimate the actual uncertainty.

  10. Determining Spatial Variability in PM2.5 Source Impacts across Detroit, MI

    EPA Science Inventory

    Intra-urban variability in air pollution source impacts was investigated using receptor modeling of daily speciated PM2.5 measurements collected at residential outdoor locations across Detroit, MI (Wayne County) as part of the Detroit Exposure and Aerosol Research Stud...

  11. Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific.

    PubMed

    Pan, Xiaole; Uno, Itsushi; Wang, Zhe; Yamamoto, Shigekazu; Hara, Yukari; Wang, Zifa

    2018-06-01

    Mass concentrations of chemical compounds in both PM 2.5 (particle aerodynamic diameter, Dp < 2.5 μm) and PM 2.5-10 (2.5 < Dp < 10 μm), and acidity of aerosol particles were measured at an urban site in western Japan using a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12) throughout 2014. Mass concentrations of both PM 2.5 and sulfate had distinct seasonal variabilities with maxima in spring and winter, mostly due to long-range transport with the prevailing westerly wind. Mass concentration of nitrate in PM 2.5 (fNO 3 ) showed an obvious warm-season-low and cold-season-high pattern as a result of both gas-aerosol phase equilibrium processes under high temperature conditions as well as transport. Nitrate in PM 2.5-10 (cNO 3 ) increased during long-range transport of dust, implying the great importance of heterogeneous processes at the surface of coarse mode particles. In this study, Δ[H + ] (derived from the difference in pH of extract liquid with/without sampling) was used to indicate the acidity of particles. We found that acidity of particles in PM 2.5 (fΔH) was mostly positive with a maximum in August because of the large fraction of nitrate and sulfate. Acidity of particles in PM 2.5-10 (cΔH) was negative in winter and spring due to presence of alkaline matter from crustal sources. This study highlights the great importance of anthropogenic pollutants on the acidity of particles in the western Pacific Ocean and further impact on the marine environment and climate. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. EMISSIONS INVENTORY OF PM 2.5 TRACE ELEMENTS ACROSS THE U.S.

    EPA Science Inventory

    This abstract describes work done to speciate PM2.5 emissions into emissions of trace metals to enable concentrations of metal species to be predicted by air quality models. Methods are described and initial results are presented. A technique for validating the resul...

  13. Urban PM in Eastern Germany: Source apportionment and contributions from different spatial scales

    NASA Astrophysics Data System (ADS)

    van Pinxteren, D.; Fomba, K. W.; Mothes, F.; Spindler, G.; Herrmann, H.

    2017-12-01

    Understanding the contributions of particulate matter (PM) sources and the source areas impacting total PM levels in a city are important requirements for further developing clean air policies and efficient abatement strategies. This presentation reports on two studies in Eastern Germany providing a detailed picture of present-day urban PM sources and discriminating contributions of local, regional and long-range sources. The "Leipzig Aerosol 2013-15" study yielded contributions of 12 sources to coarse, fine, and ultrafine particles, resolved by Positive Matrix Factorization (PMF) from comprehensive chemical speciation of 5-stage Berner impactor samples at 4 different sites in the Leipzig area. Dominant winter-time sources were traffic exhaust and non-exhaust emissions, secondary aerosol formation, and combustion emissions from both biomass and coal burning with different relative importance in different particle size ranges. Local sources dominated PM levels in ultrafine and coarse particles (60% - 80%) while high mass concentrations in accumulation mode particles mainly resulted from regional import into the city (70%). The "PM-East" study compiled PM10 mass and constituents' concentrations at 10 urban and rural sites in Eastern Germany during winter 2016/17, which included a 3-week episode of frequent exceedances of the PM10 limit value. PMF source apportionment is performed for a subset of the sites, including the city of Berlin. Contributions from short-, mid-, and long-range sources, including trans-boundary pollution import from neighbouring countries, are quantitatively assessed by advanced back trajectory statistical methods. Data analysis in PM-East is ongoing and final results will be available by November. Funding is acknowledged from 4 federal states of Germany: Berlin Senate Department for Environment, Transport and Climate Protection; Saxon State Office for Environment, Agriculture and Geology; State Agency for Environment, Nature Conservation and Geology Mecklenburg-Vorpommern; and Brandenburg State Office for Environment.

  14. Light-Duty GDI Vehicle PM and VOC Speciated Emissions at Differing Ambient Temperatures with Ethanol Blend Gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the US and more manufacturers implementing gasoline direct injection (GDI) technologies, interest is increasing in how these fuel blends affect PM and VOC emissions in GDI technology vehicles. EPA conducted a study characteri...

  15. Emission measurements from a crude oil tanker at sea.

    PubMed

    Agrawal, Harshit; Welch, William A; Miller, J Wayne; Cockert, David R

    2008-10-01

    This work presents an all-inclusive set of regulated and nonregulated emission factors for the main propulsion engine (ME), auxiliary engine (AE) and an auxiliary boiler on a Suezmax class tanker while operating at sea. The data include criteria pollutants (carbon monoxide, nitrogen oxides, sulfur oxides, and particulate matter), a greenhouse gas (carbon dioxide), the principal speciated hydrocarbons needed for human health risk assessments, and a detailed analysis of the PM into its primary constituents (ions, elements, organic, and elemental carbon). Measurements followed ISO 8178-1 methods with modifications described in the paper. The vessel burned two fuels: a heavy fuel oil in the ME and boiler and a distillate fuel in the AE. The weighted NO(x) emissions for the ME and AE are 19.87 +/- 0.95 and 13.57 +/- 0.31 g/kWh, respectively. The weighted PM mass emissions factor is 1.60 +/- 0.08 g/kWh for the ME and 0.141 +/- 0.005 g/kWh for the AE, with the sulfate content of the PM being the root cause for the difference. For the ME, sulfate with associated water is about 75% of total PM mass, and the organic carbon ranges from 15 to 25% of the PM mass. A deeper analysis showed that the conversion of fuel sulfur to sulfate in the ME ranged from 1.4to 5%. This article also provides emission factors for selected polycyclic aromatic hydrocarbons, heavy alkanes, carbonyls, light hydrocarbon species, metals, and ions for the ME, AE, and the boiler.

  16. Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea.

    PubMed

    Ryou, Hyoung Gon; Heo, Jongbae; Kim, Sun-Young

    2018-09-01

    Studies of source apportionment (SA) for particulate matter (PM) air pollution have enhanced understanding of dominant pollution sources and quantification of their contribution. Although there have been many SA studies in South Korea over the last two decades, few studies provided an integrated understanding of PM sources nationwide. The aim of this study was to summarize findings of PM SA studies of South Korea and to explore study characteristics. We selected studies that estimated sources of PM 10 and PM 2.5 performed for 2000-2017 in South Korea using Positive Matrix Factorization and Chemical Mass Balance. We reclassified the original PM sources identified in each study into seven categories: motor vehicle, secondary aerosol, soil dust, biomass/field burning, combustion/industry, natural source, and others. These seven source categories were summarized by using frequency and contribution across four regions, defined by northwest, west, southeast, and southwest regions, by PM 10 and PM 2.5 . We also computed the population-weighted mean contribution of each source category. In addition, we compared study features including sampling design, sampling and lab analysis methods, chemical components, and the inclusion of Asian dust days. In the 21 selected studies, all six PM 10 studies identified motor vehicle, soil dust, and combustion/industry, while all 15 PM 2.5 studies identified motor vehicle and soil dust. Different from the frequency, secondary aerosol produced a large contribution to both PM 10 and PM 2.5 . Motor vehicle contributed highly to both, whereas the contribution of combustion/industry was high for PM 10 . The population-weighted mean contribution was the highest for the motor vehicle and secondary aerosol sources for both PM10 and PM2.5. However, these results were based on different subsets of chemical speciation data collected at a single sampling site, commonly in metropolitan areas, with short overlap and measured by different lab analysis methods. We found that motor vehicle and secondary aerosol were the most common and influential sources for PM in South Korea. Our study, however, suggested a caution to understand SA findings from heterogeneous study features for study designs and input data. Copyright © 2018. Published by Elsevier Ltd.

  17. Source apportionment of speciated PM10 in the United Kingdom in 2008: Episodes and annual averages

    NASA Astrophysics Data System (ADS)

    Redington, A. L.; Witham, C. S.; Hort, M. C.

    2016-11-01

    The Lagrangian atmospheric dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), has been used to simulate the formation and transport of PM10 over North-West Europe in 2008. The model has been evaluated against UK measurement data and been shown to adequately represent the observed PM10 at rural and urban sites on a daily basis. The Lagrangian nature of the model allows information on the origin of pollutants (and hence their secondary products) to be retained to allow attribution of pollutants at receptor sites back to their sources. This source apportionment technique has been employed to determine whether the different components of the modelled PM10 have originated from UK, shipping, European (excluding the UK) or background sources. For the first time this has been done to evaluate the composition during periods of elevated PM10 as well as the annual average composition. The episode data were determined by selecting the model data for each hour when the corresponding measurement data was >50 μg/m3. All the modelled sites show an increase in European pollution contribution and a decrease in the background contribution in the episode case compared to the annual average. The European contribution is greatest in southern and eastern parts of the UK and decreases moving northwards and westwards. Analysis of the speciated attribution data over the selected sites reveals that for 2008, as an annual average, the top three contributors to total PM10 are UK primary PM10 (17-25%), UK origin nitrate aerosol (18-21%) and background PM10 (11-16%). Under episode conditions the top three contributors to modelled PM10 are UK origin nitrate aerosol (12-33%), European origin nitrate aerosol (11-19%) and UK primary PM10 (12-18%).

  18. Measurement of trace gases and organic compounds in the smoke plume from a wildfire in Penedono (central Portugal)

    NASA Astrophysics Data System (ADS)

    Vicente, Ana; Alves, Célia; Monteiro, Cristina; Nunes, Teresa; Mirante, Fátima; Evtyugina, Margarita; Cerqueira, Mário; Pio, Casimiro

    2011-09-01

    Gas and particulate fractions were measured simultaneously from a wildfire in Penedono, central Portugal, which occurred in summer 2009. The total volatile hydrocarbons (THC) and carbon oxides (CO 2 and CO) collected in Tedlar bags were measured using automatic analysers with flame ionisation and non-dispersive infrared detectors, respectively. Carbonyls (formaldehyde and acetaldehyde) were sampled from the Tedlar bags in DNHP cartridges and analysed by high-performance liquid chromatography. Fine (PM 2.5) and coarse (PM 2.5-10) smoke particles were collected sequentially, on pre-fired quartz fibre filters, with a portable high-volume sampler. The detailed speciation of organic compounds in smoke samples was carried out by gas chromatography-mass spectrometry. The organic and elemental carbon content of particulate matter was analysed by a thermal-optical transmission technique. Average emission factors of 1.86 ± 0.80 and 0.063 ± 0.066 g kg -1 (dry basis) were obtained for acetaldehyde and formaldehyde, respectively. The THC, CO, CO 2, PM 2.5, PM 10, OC and EC emission factors (g kg -1 fuel burned, dry basis) were 260 ± 88, 268 ± 92, 1200 ± 172, 37 ± 12.2, 40 ± 12.6, 21 ± 6.7 and 0.44 ± 0.21, respectively. The chromatographically resolved organics included n-alkanes, n-alkenes, n-alkanoic acids, n-di-acids, unsaturated fatty acids, phenolic compounds, ketones, steroids, di- and triterpenoids, PAHs, with retene as the major compound, oxygenated PAH and anhydrosugars.

  19. Light-duty vehicle PM and VOC speciated emissions at differing ambient temperatues with ethanol blend gasoline

    EPA Science Inventory

    With the rise in the use of ethanol-blend gasoline in the U.S., interest is increasing in how these fuel blends affect PM and VOC emissions. EPA conducted a study characterizing emissions from two flex-fuel and one non-flex-fueled light-duty vehicles operated on a chassis dynamom...

  20. SOURCE APPORTIONMENT OF PM 2.5 AND CARBON IN SEATTLE USING CHEMICAL MASS BALANCE AND POSITIVE MATRIX FACTORIZATION

    EPA Science Inventory

    Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...

  1. Receptor model source attributions for Utah’s Salt Lake City airshed and the impacts of wintertime secondary ammonium nitrate and ammonium chloride aerosol.

    EPA Science Inventory

    Communities along Utah’s Wasatch Front are currently developing strategies to reduce daily average PM2.5 levels to below National Ambient Air Quality Standards during wintertime, persistent, multi-day stable atmospheric conditions or cold-air pools. Speciated PM2.5 data from the ...

  2. Chemical profiling of PM10 from urban road dust.

    PubMed

    Alves, C A; Evtyugina, M; Vicente, A M P; Vicente, E D; Nunes, T V; Silva, P M A; Duarte, M A C; Pio, C A; Amato, F; Querol, X

    2018-09-01

    Road dust resuspension is one of the main sources of particulate matter with impacts on air quality, health and climate. With the aim of characterising the thoracic fraction, a portable resuspension chamber was used to collect road dust from five main roads in Oporto and an urban tunnel in Braga, north of Portugal. The PM 10 samples were analysed for: i) carbonates by acidification and quantification of the evolved CO 2 , ii) carbonaceous content (OC and EC) by a thermo-optical technique, iii) elemental composition by ICP-MS and ICP-AES after acid digestion, and iv) organic speciation by GC-MS. Dust loadings of 0.48±0.39mgPM 10 m -2 were obtained for asphalt paved roads. A much higher mean value was achieved in a cobbled pavement (50mgPM 10 m -2 ). In general, carbonates were not detected in PM 10 . OC and EC accounted for PM 10 mass fractions up to 11% and 5%, respectively. Metal oxides accounted for 29±7.5% of the PM 10 mass from the asphalt paved roads and 73% in samples from the cobbled street. Crustal and anthropogenic elements, associated with tyre and brake wear, dominated the inorganic fraction. PM 10 comprised hundreds of organic constituents, including hopanoids, n-alkanes and other aliphatics, polycyclic aromatic hydrocarbons (PAH), alcohols, sterols, various types of acids, glycerol derivatives, lactones, sugars and derivatives, phenolic compounds and plasticizers. In samples from the cobbled street, these organic classes represented only 439μgg -1 PM 10 , while for other pavements mass fractions up to 65mgg -1 PM 10 were obtained. Except for the cobbled street, on average, about 40% of the analysed organic fraction was composed of plasticizers. Although the risk via inhalation of PAH was found to be insignificant, the PM 10 from some roads can contribute to an estimated excess of 332 to 2183 per million new cancer cases in adults exposed via ingestion and dermal contact. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  4. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    NASA Astrophysics Data System (ADS)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  5. Evaluation of factors that affect diesel exhaust toxicity. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norbeck, J.M.; Smith, M.R.; Arey, J.

    1998-07-01

    The scope of this project was to obtain a preliminary assessment of the potential impact of the fuel formulation on the speciation and toxic components of diesel exhaust. The test bed was a Cummins L10 engine operating over the heavy-duty transient test cycle using three diesel fuels: a pre-1993 diesel fuel, a low aromatic diesel fuel, and an alternative formulation diesel fuel. The sampling/analysis plan included: determination of the criteria pollutant emission rates (THC, CO, NOx, and PM); determination of PM(10) and PM(2.5) emission rates; collection and analysis of particulate samples for elemental, inorganic ion and elemental/organic carbon analyses; collectionmore » of bas samples for VOC speciation analyses; collection of 2,4-dinitrophenylhydrazine (DNPH) cartridges for determination of oxygenates; collection of nitrosomorpholine with Thermosorb N cartridges; collection of semi-volatiles on PF/XAD and particulate samples for PAH, nitro-PAH, and mutagenicity studies; and collection and analysis of dioxins for the pre-1993 and alternative formulation diesel fuels.« less

  6. Mobile Particulate Emission Studies of New York City Vehicles

    NASA Astrophysics Data System (ADS)

    Canagaratna, M.; Jayne, J.; Shi, Q.; Kolb, C. E.; Worsnop, D.

    Emissions from both diesel and gasoline powered motor vehicles are a significant source of urban particulate (PM2.5) and trace gas pollution. Emission characteriza- tions of motor vehicles are typically performed using a dynamometer. Few studies have been performed which characterize emissions from in-use vehicles using a mo- bile sampling platform. This work, which was part of the PM2.5 Technology Assess- ment and Characterization Study in New York (PMTACS-NY), describes the applica- tion of new instrumentation for rapid (1-5 second) and real-time characterization of particulate emissions from in-use vehicles . An Aerosol Mass Spectrometer (AMS) was deployed on the Aerodyne Research (ARI) mobile laboratory designed to "chase" target vehicles in and around the New York City area and measure their emissions under actual driving conditions. The AMS provides quantitative particle size and composition information for volatile and semi- volatile matter (0.05-2.5 um). The AMS was operated in a fast acquisition mode de- signed to monitor particle emissions from the mobile sources. In this mode mass spec- tra (0-300 amu) and chemically speciated particle size distributions were recorded at 4 sec intervals. In addition to the AMS, the Mobile Laboratory was equipped with the ARI tunable diode laser (TILDAS) system which was configured to measure NO, NO2, CO, CH4, SO2 and formaldehyde, a global positioning system, a condensation particle counter, and a Licor CO2 instrument. The simultaneous measurement of particulate mass loading and plume CO2 enabled the calculation of emission indices for the targeted vehicles. Particulate matter emis- sion indices for a representative fraction of the NYC Metropolitan Transit Authority (MTA) bus fleet were determined in an effort to characterize new emission control technologies currently implemented by the NYC MTA. In addition to total particle emission indices, chemically speciated sulfate and organic mass loadings and size distributions were determined. Representative mass spectral signatures and size dis- tributions observed from the exhaust plume particles and correlations between the simultaneous gas and particulate measurements will be discussed. Differences in ob- served particle emission factors and compositions between buses using different fuels and technologies will also be presented.

  7. Preliminary analysis of variability in concentration of fine particulate matter - PM1.0, PM2.5 and PM10 in area of Poznań city

    NASA Astrophysics Data System (ADS)

    Sówka, Izabela; Chlebowska-Styś, Anna; Mathews, Barbara

    2018-01-01

    It is commonly known, that suspended particulate matter pose a threat to human life and health, negatively influence the flora, climate and also materials. Especially dangerous is the presence of high concentration of particulate matter in the area of cities, where density of population is high. The research aimed at determining the variability of suspended particulate matter concentration (PM1.0, PM2.5 and PM10) in two different thermal seasons, in the area of Poznań city. As a part of carried out work we analyzed the variability of concentrations and also performed a preliminary analysis of their correlation. Measured concentrations of particulate matter were contained within following ranges: PM10 - 8.7-69.6 μg/m3, PM2.5 - 2.2-88.5 μg/m3, PM1.0 - 2.5-22.9 μg/m3 in the winter season and 1.0-42.8 μg/m3 (PM10), 1.2-40.3 μg/m3 (PM2.5) and 2.7-10.4 (PM1.0) in the summer season. Preliminary correlative analysis indicated interdependence between the temperature of air, the speed of wind and concentration of particulate matter in selected measurement points. The values of correlation coefficients between the air temperature, speed of wind and concentrations of particulate matter were respectively equal to: for PM10: -0.59 and -0.55 (Jana Pawła II Street), -0.53 and -0.53 (Szymanowskiego Street), for PM2.5: -0.60 and -0.53 (Jana Pawła II Street) and for PM1.0 -0.40 and -0.59 (Jana Pawła II Street).

  8. A Regional Assessment of Marine Vessel PM2.5 Impacts in the U.S. Pacific Northwest Using a Receptor Based Source Apportionment Method

    EPA Science Inventory

    This work reports the results of a regional receptor-based source apportionment analysis using the Positive Matrix Factorization (PMF) model on chemically speciated PM2.5 data from 36 urban and rural monitoring sites within the U.S. Pacific Northwest. The approach taken is to mo...

  9. Source apportionment and air quality impact assessment studies in Beijing/China

    NASA Astrophysics Data System (ADS)

    Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.

    2012-04-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on the air pollution concentration could be demonstrated and will be discussed. The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2006, April 3rd until 12th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and measured dust storm concentration variability at Beijing in the course of time. The results show the importance of intertwine investigations of measurements and modeling, the analysis of local air pollution levels as well as the impact and analysis of advective process in the greater region of Beijing. Comprehensive investigations on particulate matter are a prerequisite for the knowledge of the source strengths and source attribution to the overall air pollution level. Only this knowledge can help to formulate and to introduce specific reduction measures to reduce coarser as well as finer particulates.

  10. Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation.

    PubMed

    Val, Stéphanie; Liousse, Cathy; Doumbia, El Hadji Thierno; Galy-Lacaux, Corinne; Cachier, Hélène; Marchand, Nicolas; Badel, Anne; Gardrat, Eric; Sylvestre, Alexandre; Baeza-Squiban, Armelle

    2013-04-02

    The involvement of particulate matter (PM) in cardiorespiratory diseases is now established in developed countries whereas in developing areas such as Africa with a high level of specific pollution, PM pollution and its effects are poorly studied. Our objective was to characterize the biological reactivity of urban African aerosols on human bronchial epithelial cells in relation to PM physico-chemical properties to identify toxic sources. Size-speciated aerosol chemical composition was analyzed in Bamako (BK, Mali, 2 samples with one having desert dust event BK1) and Dakar (DK; Senegal) for Ultrafine UF, Fine F and Coarse C PM. PM reactivity was studied in human bronchial epithelial cells investigating six biomarkers (oxidative stress responsive genes and pro-inflammatory cytokines). PM mass concentrations were mainly distributed in coarse mode (60%) and were impressive in BK1 due to the desert dust event. BK2 and DK samples showed a high content of total carbon characteristic of urban areas. The DK sample had huge PAH quantities in bulk aerosol compared with BK that had more water soluble organic carbon and metals. Whatever the site, UF and F PM triggered the mRNA expression of the different biomarkers whereas coarse PM had little or no effect. The GM-CSF biomarker was the most discriminating and showed the strongest pro-inflammatory effect of BK2 PM. The analysis of gene expression signature and of their correlation with main PM compounds revealed that PM-induced responses are mainly related to organic compounds. The toxicity of African aerosols is carried by the finest PM as with Parisian aerosols, but when considering PM mass concentrations, the African population is more highly exposed to toxic particulate pollution than French population. Regarding the prevailing sources in each site, aerosol biological impacts are higher for incomplete combustion sources resulting from two-wheel vehicles and domestic fires than from diesel vehicles (Dakar). Desert dust events seem to produce fewer biological impacts than anthropogenic sources. Our study shows that combustion sources contribute to the high toxicity of F and UF PM of African urban aerosols, and underlines the importance of emission mitigation and the imperative need to evaluate and to regulate particulate pollution in Africa.

  11. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles

    NASA Astrophysics Data System (ADS)

    Gordon, T. D.; Presto, A. A.; May, A. A.; Nguyen, N. T.; Lipsky, E. M.; Donahue, N. M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; Maldonado, H.; Maricq, M. M.; Robinson, A. L.

    2013-09-01

    The effects of photochemical aging on emissions from 15 light-duty gasoline vehicles were investigated using a smog chamber to probe the critical link between the tailpipe and ambient atmosphere. The vehicles were recruited from the California in-use fleet; they represent a wide range of model years (1987 to 2011), vehicle types and emission control technologies. Each vehicle was tested on a chassis dynamometer using the unified cycle. Dilute emissions were sampled into a portable smog chamber and then photochemically aged under urban-like conditions. For every vehicle, substantial secondary organic aerosol (SOA) formation occurred during cold-start tests, with the emissions from some vehicles generating as much as 6 times the amount of SOA as primary particulate matter after three hours of oxidation inside the chamber at typical atmospheric oxidant levels. Therefore, the contribution of light duty gasoline vehicle exhaust to ambient PM levels is likely dominated by secondary PM production (SOA and nitrate). Emissions from hot-start tests formed about a factor of 3-7 less SOA than cold-start tests. Therefore, catalyst warm-up appears to be an important factor in controlling SOA precursor emissions. The mass of SOA generated by photo-oxidizing exhaust from newer (LEV1 and LEV2) vehicles was only modestly lower (38%) than that formed from exhaust emitted by older (pre-LEV) vehicles, despite much larger reductions in non-methane organic gas emissions. These data suggest that a complex and non-linear relationship exists between organic gas emissions and SOA formation, which is not surprising since SOA precursors are only one component of the exhaust. Except for the oldest (pre-LEV) vehicles, the SOA production could not be fully explained by the measured oxidation of speciated (traditional) SOA precursors. Over the time scale of these experiments, the mixture of organic vapors emitted by newer vehicles appear to be more efficient (higher yielding) in producing SOA than the emissions from older vehicles. About 30% of the non-methane organic gas emissions from the newer (LEV1 and LEV2) vehicles could not be speciated, and the majority of the SOA formed from these vehicles appears to be associated with these unspeciated organics. These results for light-duty gasoline vehicles contrast with the results from a companion study of on-road heavy-duty diesel trucks; in that study late model (2007 and later) diesel trucks equipped with catalyzed diesel particulate filters emitted very little primary PM, and the photo-oxidized emissions produced negligible amounts of SOA.

  12. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2.5) and its chemical components: coherence and public health implications.

    PubMed

    Lippmann, Morton

    2014-04-01

    Recent investigations on PM2.5 constituents' effects in community residents have substantially enhanced our knowledge on the impacts of specific components, especially the HEI-sponsored National Particle Toxicity Component (NPACT) studies at NYU and UW-LRRI that addressed the impact of long-term PM2.5 exposure on cardiovascular disease (CVD) effects. NYU's mouse inhalation studies at five sites showed substantial variations in aortic plaque progression by geographic region that was coherent with the regional variation in annual IHD mortality in the ACS-II cohort, with both the human and mouse responses being primarily attributable to the coal combustion source category. The UW regressions of associations of CVD events and mortality in the WHI cohort, and of CIMT and CAC progression in the MESA cohort, indicated that [Formula: see text] had stronger associations with CVD-related human responses than OC, EC, or Si. The LRRI's mice had CVD-related biomarker responses to [Formula: see text]. NYU also identified components most closely associated with daily hospital admissions (OC, EC, Cu from traffic and Ni and V from residual oil). For daily mortality, they were from coal combustion ([Formula: see text], Se, and As). While the recent NPACT research on PM2.5 components that affect CVD has clearly filled some major knowledge gaps, and helped to define remaining uncertainties, much more knowledge is needed on the effects in other organ systems if we are to identify and characterize the most effective and efficient means for reducing the still considerable adverse health impacts of ambient air PM. More comprehensive speciation data are needed for better definition of human responses.

  13. Impact of covariate models on the assessment of the air pollution-mortality association in a single- and multipollutant context.

    PubMed

    Sacks, Jason D; Ito, Kazuhiko; Wilson, William E; Neas, Lucas M

    2012-10-01

    With the advent of multicity studies, uniform statistical approaches have been developed to examine air pollution-mortality associations across cities. To assess the sensitivity of the air pollution-mortality association to different model specifications in a single and multipollutant context, the authors applied various regression models developed in previous multicity time-series studies of air pollution and mortality to data from Philadelphia, Pennsylvania (May 1992-September 1995). Single-pollutant analyses used daily cardiovascular mortality, fine particulate matter (particles with an aerodynamic diameter ≤2.5 µm; PM(2.5)), speciated PM(2.5), and gaseous pollutant data, while multipollutant analyses used source factors identified through principal component analysis. In single-pollutant analyses, risk estimates were relatively consistent across models for most PM(2.5) components and gaseous pollutants. However, risk estimates were inconsistent for ozone in all-year and warm-season analyses. Principal component analysis yielded factors with species associated with traffic, crustal material, residual oil, and coal. Risk estimates for these factors exhibited less sensitivity to alternative regression models compared with single-pollutant models. Factors associated with traffic and crustal material showed consistently positive associations in the warm season, while the coal combustion factor showed consistently positive associations in the cold season. Overall, mortality risk estimates examined using a source-oriented approach yielded more stable and precise risk estimates, compared with single-pollutant analyses.

  14. Gas and aerosol carbon in California: comparison of ...

    EPA Pesticide Factsheets

    Co-located measurements of fine particulate matter (PM2.5) organic carbon (OC), elemental carbon, radiocarbon (14C), speciated volatile organic compounds (VOCs),and OH radicals during the CalNex field campaign provide a unique opportunity to evaluate the Community Multiscale Air Quality (CMAQ) model's representation of organic species from VOCs to particles. Episode average daily 23 h average 14C analysis indicates PM2.5 carbon at Pasadena and Bakersfield during the CalNex field campaign was evenly split between contemporary and fossil origins. CMAQ predicts a higher contemporary carbon fraction than indicated by the 14C analysis at both locations. The model underestimates measured PM2.5 organic carbon at both sites with very little (7% in Pasadena) of the modeled mass represented by secondary production, which contrasts with the ambient-based SOC/OC fraction of 63% at Pasadena. The National Exposure Research Laboratory’s (NERL’s) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA’s mission to protect human health and the environment. HEASD’s research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EPA’s strategic plan. More specifically, our division conducts research to characterize the movement of pollutants from the source to contact with humans. Our multidisciplinary research program produces Methods, Measurements, and Models to identify relationships between and characterize processe

  15. Monitoring of cotton dust and health risk assessment in small-scale weaving industry.

    PubMed

    Tahir, Muhammad Wajid; Mumtaz, Muhammad Waseem; Tauseef, Shanza; Sajjad, Muqadas; Nazeer, Awais; Farheen, Nazish; Iqbal, Muddsar

    2012-08-01

    The present study describes the estimation of particulate matter (cotton dust) with different sizes, i.e., PM(1.0), PM(2.5), PM(4.0), and PM(10.0 μm) in small-scale weaving industry (power looms) situated in district Hafizabad, Punjab, Pakistan, and the assessment of health problems of workers associated with these pollutants. A significant difference was found in PM(1.0), PM(2.5), PM(4.0), and PM(10.0) with reference to nine different sampling stations with p values <0.05. Multiple comparisons of particulate matter with respect to size, i.e. PM(1.0), PM(2.5), PM(4.0), and PM(10.0), depict that PM(1.0) differs significantly from PM(2.5), PM(4.0), and PM(10.0), with p values <0.05 and that PM(2.5) differs significantly from PM(1.0) and PM(10.0), with p values <0.05, whereas PM(2.5) differs non-significantly from PM(4.0), with a p value >0.05 in defined sampling stations on an average basis. Majority of the workers were facing several diseases due to interaction with particulate matter (cotton dust) during working hours. Flue, cough, eye, and skin infections were the most common diseases among workers caused by particulate matter (cotton dust).

  16. [Size distribution characteristics of particulate matter in the top areas of coke oven].

    PubMed

    Xie, Qiuyan; Zhao, Hongwei; Yu, Tao; Ning, Zhaojun; Li, Jinmu; Niu, Yong; Zheng, Yuxin; Zhao, Xiulan; Duan, Huawei

    2015-03-01

    To systematically evaluate the environmental exposure information of coke oven workers, we investigated the concentration and size distribution characteristics of the particle matter (PM) in the top working area of coke oven. The aerodynamic particle sizer spectrometer was employed to collect the concentration and size distribution information of PM at a top working area. The PM was divided into PM ≤ 1.0 µm, 1.0 µm < PM ≤ 2.5 µm, 2.5 µm < PM ≤ 5.0 µm, 5.0 µm < PM ≤ 10.0 µm and PM>10.0 µm based on their aerodynamic diameters. The number concentration, surface area concentration, and mass concentration were analyzed between different groups. We also conducted the correlation analysis on these parameters among groups. We found the number and surface area concentration of top area particulate was negatively correlated with particle size, but mass concentration curve showed bimodal type with higher point at PM = 1.0 µm and PM = 5.0 µm. The average number concentration of total particulate matter in the top working area was 661.27 number/cm³, surface area concentration was 523.92 µm²/cm³, and mass concentration was 0.12 mg/m³. The most number of particulate matter is not more than 1 µm (PM(1.0)), and its number concentration and surface area concentration accounted for 96.85% and 67.01% of the total particles respectively. In the correlation analysis, different particle size correlated with the total particulate matter differently. And the characteristic parameters of PM2.5 cannot fully reflect the total information of particles. The main particulate matter pollutants in the top working area of coke oven is PM1.0, and it with PM(5.0) can account for a large proportion in the mass concentration of PM. It suggest that PM1.0 and PM(5.0) should be considered for occupational health surveillance on the particulate matter in the top area of coke oven.

  17. Geochemistry of regional background aerosols in the Western Mediterranean

    NASA Astrophysics Data System (ADS)

    Pey, J.; Pérez, N.; Castillo, S.; Viana, M.; Moreno, T.; Pandolfi, M.; López-Sebastián, J. M.; Alastuey, A.; Querol, X.

    2009-11-01

    The chemical composition of regional background aerosols, and the time variability and sources in the Western Mediterranean are interpreted in this study. To this end 2002-2007 PM speciation data from an European Supersite for Atmospheric Aerosol Research (Montseny, MSY, located 40 km NNE of Barcelona in NE Spain) were evaluated, with these data being considered representative of regional background aerosols in the Western Mediterranean Basin. The mean PM 10, PM 2.5 and PM 1 levels at MSY during 2002-2007 were 16, 14 and 11 µg/m 3, respectively. After compiling data on regional background PM speciation from Europe to compare our data, it is evidenced that the Western Mediterranean aerosol is characterised by higher concentrations of crustal material but lower levels of OM + EC and ammonium nitrate than at central European sites. Relatively high PM 2.5 concentrations due to the transport of anthropogenic aerosols (mostly carbonaceous and sulphate) from populated coastal areas were recorded, especially during winter anticyclonic episodes and summer midday PM highs (the latter associated with the transport of the breeze and the expansion of the mixing layer). Source apportionment analyses indicated that the major contributors to PM 2.5 and PM 10 were secondary sulphate, secondary nitrate and crustal material, whereas the higher load of the anthropogenic component in PM 2.5 reflects the influence of regional (traffic and industrial) emissions. Levels of mineral, sulphate, sea spray and carbonaceous aerosols were higher in summer, whereas nitrate levels and Cl/Na were higher in winter. A considerably high OC/EC ratio (14 in summer, 10 in winter) was detected, which could be due to a combination of high biogenic emissions of secondary organic aerosol, SOA precursors, ozone levels and insolation, and intensive recirculation of aged air masses. Compared with more locally derived crustal geological dusts, African dust intrusions introduce relatively quartz-poor but clay mineral-rich silicate PM, with more kaolinitic clays from central North Africa in summer, and more smectitic clays from NW Africa in spring.

  18. Influence of salinity intrusion on the speciation and partitioning of mercury in the Mekong River Delta

    NASA Astrophysics Data System (ADS)

    Noh, Seam; Choi, Mijin; Kim, Eunhee; Dan, Nguyen Phuoc; Thanh, Bui Xuan; Ha, Nguyen Thi Van; Sthiannopkao, Suthipong; Han, Seunghee

    2013-04-01

    The lower Mekong and Saigon River Basins are dominated by distinctive monsoon seasons, dry and rainy seasons. Most of the Mekong River is a freshwater region during the rainy season, whereas during the dry season, salt water intrudes approximately 70 km inland. To understand the role of salinity intrusion controlling Hg behavior in the Mekong and Saigon River Basins, Hg and monomethylmercury (MMHg) in surface water and sediment of the Mekong River and in sediment of the Saigon River were investigated in the dry season. Sediment Hg distribution, ranging from 0.12 to 0.76 nmol g-1, was mainly controlled by organic carbon distribution in the Mekong River; however, the location of point sources was more important in the Saigon River (0.21-0.65 nmol g-1). The MMHg concentrations in Mekong (0.16-6.1 pmol g-1) and Saigon (0.70-8.7 pmol g-1) sediment typically showed significant increases in the estuarine head, with sharp increases of acid volatile sulfide. Unfiltered Hg (4.6-222 pM) and filtered Hg (1.2-14 pM) in the Mekong River increased in the estuarine zone due to enhanced particle loads. Conversely, unfiltered MMHg (0.056-0.39 pM) and filtered MMHg (0.020-0.17 pM) was similar between freshwater and estuarine zones, which was associated with mixing dilution of particulate MMHg by organic- and MMHg-depleted resuspended sediment. Partitioning of Hg between water and suspended particle showed tight correlation with the partitioning of organic carbon across study sites, while that of MMHg implied influences of chloride: enhanced chloride in addition to organic matter depletion decreased particulate MMHg in the estuarine zone. Primary production was an important determinant of inter-annual variation of particulate Hg and sediment MMHg. The bloom year showed relatively low particulate Hg with low C/N ratio, indicating biodilution of Hg. In contrast, the percentage of MMHg in sediment increased significantly in the bloom year, likely due to greater availability of metabolizable fresh organic matter. The overall results emphasize that Hg behavior in the lower Mekong River Basin is strongly connected to the local monsoon climate, via alterations in particle loads, biological productivity, and availability of sulfate, chloride and organic matter.

  19. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 5 2014-07-01 2014-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) [Reserved] (b) EPA approves the PM-10 attainment demonstration...-Wilmington, PA-NJ-DE fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5...

  20. Multi-Angle Imager for Aerosols (MAIA) Investigation of Airborne Particle Health Impacts

    NASA Astrophysics Data System (ADS)

    Diner, D. J.

    2016-12-01

    Airborne particulate matter (PM) is a well-known cause of heart disease, cardiovascular and respiratory illness, low birth weight, and lung cancer. The Global Burden of Disease (GBD) Study ranks PM as a major environmental risk factor worldwide. Global maps of PM2.5concentrations derived from satellite instruments, including MISR and MODIS, have provided key contributions to the GBD and many other health-related investigations. Although it is well established that PM exposure increases the risks of mortality and morbidity, our understanding of the relative toxicity of specific PM types is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. The satellite instrument that is part of the investigation is a multiangle, multispectral, and polarimetric camera system based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA was selected for funding in March 2016. Estimates of the abundances of different aerosol types from the WRF-Chem model will be combined with MAIA instrument data. Geostatistical models derived from collocated surface and MAIA retrievals will then be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents, including sulfate, nitrate, organic carbon, black carbon, and dust. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. MAIA launch is planned for early in the next decade. The MAIA instrument incorporates a pair of cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. Primary Target Areas (PTAs) on five continents are chosen to include major population centers covering a range of PM concentrations and particle types, surface-based aerosol sunphotometers, PM size discrimination and chemical speciation monitors, and access to geocoded health datasets. The MAIA investigation brings together an international team of researchers and policy specialists with expertise in remote sensing, aerosol science, air quality, epidemiology, and public health.

  1. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants.

    PubMed

    Zajusz-Zubek, Elwira; Kaczmarek, Konrad; Mainka, Anna

    2015-10-16

    This study reports the concentrations of PM1 trace elements (As, Cd, Co, Cr, Hg, Mn, Ni, Pb, Sb and Se) content in highly mobile (F1), mobile (F2), less mobile (F3) and not mobile (F4) fractions in samples that were collected in the surroundings of power plants in southern Poland. It also reports source identification by enrichment factors (EF) and a principal component analysis (PCA). There is limited availability of scientific data concerning the chemical composition of dust, including fractionation analyses of trace elements, in the surroundings of power plants. The present study offers important results in order to fill this data gap. The data collected in this study can be utilized to validate air quality models in this rapidly developing area. They are also crucial for comparisons with datasets from similar areas all over the world. Moreover, the identification of the bioavailability of selected carcinogenic and toxic elements in the future might be used as output data for potential biological and population research on risk assessment. This is important in the context of air pollution being hazardous to human health.

  2. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-07-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements which can provide further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows for the characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP supersite, Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-) were the dominating species (63 %) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt was the main component (73 %) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17 %) providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where smaller loadings at the site tended to be dominated by sea salt. As with other western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely that organic acids contributed to the charge balance. This study demonstrates the UK background atmospheric composition is primarily driven by meteorology with sea salt dominating air masses from the Atlantic Ocean and the Arctic, whereas secondary inorganic aerosols tended to dominate air masses from continental Europe.

  3. PM10 and PM2.5 chemical source profiles with optical attenuation and health risk indicators of paved and unpaved road dust in Bhopal, India.

    PubMed

    Samiksha, Shilpi; Sunder Raman, Ramya; Nirmalkar, Jayant; Kumar, Samresh; Sirvaiya, Rohit

    2017-03-01

    Size classified (PM 10 and PM 2.5 ) paved and unpaved road dust chemical source profiles, optical attenuation and potential health risk from exposure to these sources are reported in this study. A total of 45 samples from 9 paved road and 6 unpaved road sites located in and around Bhopal were re-suspended in the laboratory, collected onto filter substrates and subjected to a variety of chemical analyses. In general, road dust was enriched (compared to upper continental crustal abundance) in anthropogenic pollutants including Sb, Cu, Zn, Co, and Pb. Organic and elemental carbon (OC/EC) in PM 10 and PM 2.5 size fractions were 50-75% higher in paved road dust compared to their counterparts in unpaved road dust. Further, the results suggest that when it is not possible to include carbon fractions in source profiles, the inclusion of optical attenuation is likely to enhance the source resolution of receptor models. Additionally, profiles obtained in this study were not very similar to the US EPA SPECIATE composite profiles for PM 10 and PM 2.5 , for both sources. Specifically, the mass fractions of Si, Fe, OC, and EC were most different between SPECIATE composite profiles and Bhopal composite profiles. An estimate of health indicators for Bhopal road dust revealed that although Cr was only marginally enriched, its inhalation may pose a health risk. The estimates of potential lifetime incremental cancer risk induced by the inhalation of Cr in paved and unpaved road dust (PM 10 and PM 2.5 ) for both adults and children were higher than the baseline values of acceptable risk. These results suggest that road dust Cr induced carcinogenic risk should be further investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Influence of dissolved organic matter and manganese oxides on metal speciation in soil solution: A modelling approach.

    PubMed

    Schneider, Arnaud R; Ponthieu, Marie; Cancès, Benjamin; Conreux, Alexandra; Morvan, Xavier; Gommeaux, Maxime; Marin, Béatrice; Benedetti, Marc F

    2016-06-01

    Trace element (TE) speciation modelling in soil solution is controlled by the assumptions made about the soil solution composition. To evaluate this influence, different assumptions using Visual MINTEQ were tested and compared to measurements of free TE concentrations. The soil column Donnan membrane technique (SC-DMT) was used to estimate the free TE (Cd, Cu, Ni, Pb and Zn) concentrations in six acidic soil solutions. A batch technique using DAX-8 resin was used to fractionate the dissolved organic matter (DOM) into four fractions: humic acids (HA), fulvic acids (FA), hydrophilic acids (Hy) and hydrophobic neutral organic matter (HON). To model TE speciation, particular attention was focused on the hydrous manganese oxides (HMO) and the Hy fraction, ligands not considered in most of the TE speciation modelling studies in soil solution. In this work, the model predictions of free ion activities agree with the experimental results. The knowledge of the FA fraction seems to be very useful, especially in the case of high DOM content, for more accurately representing experimental data. Finally, the role of the manganese oxides and of the Hy fraction on TE speciation was identified and, depending on the physicochemical conditions of the soil solution, should be considered in future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Bioaccessibility, release kinetics, and molecular speciation of arsenic and lead in geo-dusts from the Iron King Mine Federal Superfund site in Humboldt, Arizona.

    PubMed

    Menka, Nazune; Root, Rob; Chorover, Jon

    2014-01-01

    Mine tailings contain multiple toxic metal(loid)s that pose a threat to human health via inhalation and ingestion. The goals of this research include understanding the speciation and molecular environment of these toxic metal(loid)s (arsenic and lead) as well as the impacts particle size and residence time have on their bioaccessibilty in simulated gastric and lung fluid. Additionally, future work will include smaller size fractions (PM10 and PM2.5) of surface mine tailings, with the goal of increasing our understanding of multi-metal release from contaminated geo-dusts in simulated bio-fluids. This research is important to environmental human health risk assessment as it increases the accuracy of exposure estimations to toxic metal(loid)s.

  6. Association between ambient particulate matter and disorders of vestibular function.

    PubMed

    Han, Changwoo; Lim, Youn-Hee; Jung, Kweon; Hong, Yun-Chul

    2017-05-01

    Exposure to environmental chemicals has been suggested to alter the physiologic state of the inner and middle ear. However, it is unknown if particulate matter exposure is associated with acute vestibular dysfunction. To estimate the effects of particulate matter exposure on the number of hospital visits related to three major diseases of vestibular dysfunction, Meniere's disease (MD), benign paroxysmal positional vertigo (BPPV), and vestibular neuronitis (VN). Our study subject is from Korean National Health Insurance Service-National Sample Cohort, which is dynamic cohort consist of 1 million participants representing the Korean population. Among total cohort participants, we used the hospital visit data of 210,000 individuals who resided in Seoul from 2007 to 2010. Time series analysis using the Poisson generalized additive model and case-crossover analysis using conditional logistic regression were used to investigate the association between daily particulate matter levels (PM 2.5 , particulate matter <2.5μg/m 3 ; PM 10 , particulate matter <10μg/m 3 ; PM 10-2.5 , PM 10 - PM 2.5 ) and number of MD, BPPV, and VN hospital visits. Time series analysis showed that an interquartile range (IQR) increase in PM 10 and PM 10-2.5 on lag day 1 was associated with an increased risk of MD hospital visits [relative risk (RR), 95% confidence interval (CI), PM 10 : 1.09 (1.02-1.15); PM 10-2.5 : 1.06 (1.02-1.10)]. In addition, elderly individuals (≥60 years old) showed an increased risk of MD hospital visits after particulate matter exposure when compared to younger individuals. An IQR increase in particulate matter on lag day 1 was associated with a marginally significant increase in VN hospital visits [RR (95%CI), PM 2.5 : 1.11 (0.98-1.25); PM 10 : 1.07 (0.99-1.15); PM 10-2.5 : 1.04 (0.99-1.09)]. However, no association between particulate matter exposure and BPPV hospital visits was noted. Case-crossover analyses showed similar results to the time-series analysis across all three diseases. MD hospital visits were associated with ambient particulate matter exposure. Elderly individuals, in particular, were more susceptible to particulate matter exposure than younger individuals. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. ASSOCIATIONS BETWEEN PARTICULATE MATTER COMPONENTS AND DAILY MORTALITY AND MORBIDITY IN PHILADELPHIA, PA

    EPA Science Inventory

    In evaluating the health risks from particulate matter (PM), the question remains as to which component(s) of PM are most harmful. We investigated this issue using PM mass, PM constituents, mortality, and the elderly hospital admission data in Philadelphia, PA. Daily paired PM...

  8. The Denver Aerosol Sources and Health (DASH) Study: Overview and Early Findings

    PubMed Central

    Vedal, S.; Hannigan, M.P.; Dutton, S.J.; Miller, S. L.; Milford, J.B.; Rabinovitch, N.; Kim, S.-Y.; Sheppard, L.

    2012-01-01

    Improved understanding of the sources of air pollution that are most harmful could aid in developing more effective measures for protecting human health. The Denver Aerosol Sources and Health (DASH) study was designed to identify the sources of ambient fine particulate matter (PM2.5) that are most responsible for the adverse health effects of short-term exposure to PM 2.5. Daily 24-hour PM2.5 sampling began in July 2002 at a residential monitoring site in Denver, Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through 2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate, nitrate and ammonium), and carbonaceous components, including elemental carbon, organic carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In addition, water soluble metals were measured daily for 12 months in 2003. A receptor-based source apportionment approach utilizing positive matrix factorization (PMF) will be used to identify PM 2.5 source contributions for each 24-hour period. Based on a preliminary assessment using synthetic data, the proposed source apportionment should be able to identify many important sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify due to high detection limits for certain organic molecular marker compounds. Measurements of these compounds are being improved and supplemented with additional organic molecular marker compounds. The health study will investigate associations between daily source contributions and an array of health endpoints, including daily mortality and hospitalizations and measures of asthma control in asthmatic children. Findings from the DASH study, in addition to being of interest to policymakers, by identifying harmful PM2.5 sources may provide insights into mechanisms of PM effect. PMID:22723735

  9. The Denver Aerosol Sources and Health (DASH) study: Overview and early findings

    NASA Astrophysics Data System (ADS)

    Vedal, S.; Hannigan, M. P.; Dutton, S. J.; Miller, S. L.; Milford, J. B.; Rabinovitch, N.; Kim, S.-Y.; Sheppard, L.

    Improved understanding of the sources of air pollution that are most harmful could aid in developing more effective measures for protecting human health. The Denver Aerosol Sources and Health (DASH) study was designed to identify the sources of ambient fine particulate matter (PM 2.5) that are most responsible for the adverse health effects of short-term exposure to PM 2.5. Daily 24-h PM 2.5 sampling began in July 2002 at a residential monitoring site in Denver, Colorado, using both Teflon and quartz filter samplers. Sampling is planned to continue through 2008. Chemical speciation is being carried out for mass, inorganic ionic compounds (sulfate, nitrate and ammonium), and carbonaceous components, including elemental carbon, organic carbon, temperature-resolved organic carbon fractions and a large array of organic compounds. In addition, water-soluble metals were measured daily for 12 months in 2003. A receptor-based source apportionment approach utilizing positive matrix factorization (PMF) will be used to identify PM 2.5 source contributions for each 24-h period. Based on a preliminary assessment using synthetic data, the proposed source apportionment should be able to identify many important sources on a daily basis, including secondary ammonium nitrate and ammonium sulfate, diesel vehicle exhaust, road dust, wood combustion and vegetative debris. Meat cooking, gasoline vehicle exhaust and natural gas combustion were more challenging for PMF to accurately identify due to high detection limits for certain organic molecular marker compounds. Measurements of these compounds are being improved and supplemented with additional organic molecular marker compounds. The health study will investigate associations between daily source contributions and an array of health endpoints, including daily mortality and hospitalizations and measures of asthma control in asthmatic children. Findings from the DASH study, in addition to being of interest to policymakers, by identifying harmful PM 2.5 sources may provide insights into mechanisms of PM effect.

  10. PMF5.0 vs. CMB8.2: An inter-comparison study based on the new European SPECIEUROPE database

    NASA Astrophysics Data System (ADS)

    Bove, Maria Chiara; Massabò, Dario; Prati, Paolo

    2018-03-01

    Receptor Models are tools widely adopted in source apportionment studies. We describe here an experiment in which we integrated two different approaches, i.e. Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) to apportion a set of PM10 (i.e. Particulate Matter with aerodynamic diameter lower than 10 μm) concentration values. The study was performed in the city of Genoa (Italy): a sampling campaign was carried out collecting daily PM10 samples for about two months in an urban background site. PM10 was collected on Quartz fiber filters by a low-volume sampler. A quite complete speciation of PM samples was obtained via Energy Dispersive-X Ray Fluorescence (ED-XRF, for elements), Ionic Chromatography (IC, for major ions and levoglucosan), thermo-optical Analysis (TOT, for organic and elemental carbon). The chemical analyses provided the input database for source apportionment by both PMF and CMB. Source profiles were directly calculated from the input data by PMF while in the CMB runs they were first calculated by averaging the profiles of similar sources collected in the European database SPECIEUROPE. Differences between the two receptor models emerged in particular with PM10 sources linked to very local processes. For this reason, PMF source profiles were adopted in refined CMB runs thus testing a new hybrid approach. Finally, PMF and the "tuned" CMB showed a better agreement even if some discrepancies could not completely been resolved. In this work, we compared the results coming from the last available PMF and CMB versions applied on a set of PM10 samples. Input profiles used in CMB analysis were obtained by averaging the profiles of the new European SPECIEUROPE database. The main differences between PMF and CMB results were linked to very local processes: we obtained the best solution by integrating the two different approaches with the implementation of some output PMF profiles to CMB runs.

  11. EXPOSURE ASSESSMENT FROM THE NERL RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY

    EPA Science Inventory

    The U.S. Environmental Protection Agency performed a particulate matter (PM) exposure assessment based on data from the National Exposure Research Laboratory (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study. This study was a one-year investigation of PM ...

  12. Fine Particle Sources and Cardiorespiratory Morbidity: An Application of Chemical Mass Balance and Factor Analytical Source-Apportionment Methods

    PubMed Central

    Sarnat, Jeremy A.; Marmur, Amit; Klein, Mitchel; Kim, Eugene; Russell, Armistead G.; Sarnat, Stefanie E.; Mulholland, James A.; Hopke, Philip K.; Tolbert, Paige E.

    2008-01-01

    Background Interest in the health effects of particulate matter (PM) has focused on identifying sources of PM, including biomass burning, power plants, and gasoline and diesel emissions that may be associated with adverse health risks. Few epidemiologic studies, however, have included source-apportionment estimates in their examinations of PM health effects. We analyzed a time-series of chemically speciated PM measurements in Atlanta, Georgia, and conducted an epidemiologic analysis using data from three distinct source-apportionment methods. Objective The key objective of this analysis was to compare epidemiologic findings generated using both factor analysis and mass balance source-apportionment methods. Methods We analyzed data collected between November 1998 and December 2002 using positive-matrix factorization (PMF), modified chemical mass balance (CMB-LGO), and a tracer approach. Emergency department (ED) visits for a combined cardiovascular (CVD) and respiratory disease (RD) group were assessed as end points. We estimated the risk ratio (RR) associated with same day PM concentrations using Poisson generalized linear models. Results There were significant, positive associations between same-day PM2.5 (PM with aero-dynamic diameter ≤ 2.5 μm) concentrations attributed to mobile sources (RR range, 1.018–1.025) and biomass combustion, primarily prescribed forest burning and residential wood combustion, (RR range, 1.024–1.033) source categories and CVD-related ED visits. Associations between the source categories and RD visits were not significant for all models except sulfate-rich secondary PM2.5 (RR range, 1.012–1.020). Generally, the epidemiologic results were robust to the selection of source-apportionment method, with strong agreement between the RR estimates from the PMF and CMB-LGO models, as well as with results from models using single-species tracers as surrogates of the source-apportioned PM2.5 values. Conclusions Despite differences among the source-apportionment methods, these findings suggest that modeled source-apportioned data can produce robust estimates of acute health risk. In Atlanta, there were consistent associations across methods between PM2.5 from mobile sources and biomass burning with both cardiovascular and respiratory ED visits, and between sulfate-rich secondary PM2.5 with respiratory visits. PMID:18414627

  13. 77 FR 31691 - Approval and Promulgation of Implementation Plans; State of Hawaii; Regional Haze Federal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-29

    ... Subject to BART 3. BART Determination for Kanoelehua Hill a. BART for NO X and Particulate Matter (PM) b.... The initials PM mean or refer to particulate matter. xxiv. The initials PM2.5 mean or refer to particulate matter with an aerodynamic diameter of less than 2.5 micrometers (fine particulate matter). xxv...

  14. Particulate matter and preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB) (gestation <37 weeks), but the role played by specific chemical components of PM has been little studied. We examined the association between ambient PM <2.5 micrometers in aerodynamic diameter (PM2.S) ...

  15. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: CASE STUDY RESULTS FOR PM 2.5 IN PHILADELPHIA, PA

    EPA Science Inventory

    A population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model, has been developed and applied in a case study of daily PM2.5 exposures for the population living in Philadelphia, PA. SHEDS-PM is a probabilisti...

  16. THE ROLE OF MICROVASCULAR THROMBOSIS IN PARTICULATE MATTER (PM) AND PM COMPONENT-INDUCED CARDIOVASCULAR EFFECTS: OXIDATIVE STRESS AS A MEDIATOR OF THROMBOSIS

    EPA Science Inventory

    Particulate matter (PM) exposure has been associated with increased plasma fibrinogen. We have found that Spontaneously hypertensive rats respond to PM by increasing fibrinogen and plasminogen activator inhibitor -1 at PM concentration that would cause minimal changes in healthy ...

  17. 40 CFR 60.43b - Standard for particulate matter (PM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43b Section 60.43b Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43b Standard for particulate matter (PM). (a...

  18. 40 CFR 60.43c - Standard for particulate matter (PM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.43c Section 60.43c Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Industrial-Commercial-Institutional Steam Generating Units § 60.43c Standard for particulate matter (PM). (a...

  19. AMBIENT PARTICULATE MATTER EXPOSURES: A COMPARISON OF SHEDS-PM EXPOSURE MODEL PREDICTIONS AND ESTIMATES DERIVED FROM MEASUREMENTS COLLECTED DURING NERL'S RTP PM PANEL STUDY

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) is currently refining and evaluating a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribu...

  20. Correlation of in Vitro Cytokine Responses with the Chemical Composition of Soil-Derived Particulate Matter

    PubMed Central

    Veranth, John M.; Moss, Tyler A.; Chow, Judith C.; Labban, Raed; Nichols, William K.; Walton, John C.; Watson, John G.; Yost, Garold S.

    2006-01-01

    We treated human lung epithelial cells, type BEAS-2B, with 10–80 μg/cm2 of dust from soils and road surfaces in the western United States that contained particulate matter (PM) < 2.5 μm aerodynamic diameter. Cell viability and cytokine secretion responses were measured at 24 hr. Each dust sample is a complex mixture containing particles from different minerals mixed with biogenic and anthropogenic materials. We determined the particle chemical composition using methods based on the U.S. Environmental Protection Agency Speciation Trends Network (STN) and the National Park Service Interagency Monitoring of Protected Visual Environments (IMPROVE) network. The functionally defined carbon fractions reported by the ambient monitoring networks have not been widely used for toxicology studies. The soil-derived PM2.5 from different sites showed a wide range of potency for inducing the release of the proinflammatory cytokines interleukin-6 (IL-6) and IL-8 in vitro. Univariate regression and multivariate redundancy analysis were used to test for correlation of viability and cytokine release with the concentrations of 40 elements, 7 ions, and 8 carbon fractions. The particles showed positive correlation between IL-6 release and the elemental and pyrolyzable carbon fractions, and the strongest correlation involving crustal elements was between IL-6 release and the aluminum:silicon ratio. The observed correlations between low-volatility organic components of soil- and road-derived dusts and the cytokine release by BEAS-2B cells are relevant for investigation of mechanisms linking specific air pollution particle types with the initiating events leading to airway inflammation in sensitive populations. PMID:16507455

  1. July 2013 MOVES Model Review Work Group Meeting Materials

    EPA Pesticide Factsheets

    Presentations from the Mobile Sources Technical Review Subcommittee (MSTRS) meeting on July 9th of 2013 include MOtor Vehicle Emission Simulator (MOVES) updates; data regarding vehicle populations and activity, PM speciation, and hazardous air pollutants.

  2. September 2016 MOVES Model Review Work Group Meeting Materials

    EPA Pesticide Factsheets

    Presentations from the Mobile Sources Technical Review Subcommittee (MSTRS) meeting on Sep. 14th of 2016 include MOtor Vehicle Emission Simulator (MOVES) updates; data regarding vehicle populations and activity, PM speciation, and hazardous air pollutants.

  3. Speciation and transformation of heavy metals during vermicomposting of animal manure.

    PubMed

    Lv, Baoyi; Xing, Meiyan; Yang, Jian

    2016-06-01

    This work was conducted to evaluate the effects of vermicomposting on the speciation and mobility of heavy metals (Zn, Pb, Cr, and Cu) in cattle dung (CD) and pig manure (PM) using tessier sequential extraction method. Results showed that the pH, total organic carbon and C/N ratio were reduced, while the electric conductivity and humic acid increased after 90days vermicomposting. Moreover, the addition of earthworm could accelerate organic stabilization in vermicomposting. The total heavy metals in final vermicompost from CD and PM were higher than the initial values and the control without worms. Sequential extraction indicated that vermicomposting decreased the migration and availability of heavy metals, and the earthworm could reduce the mobile fraction, while increase the stable fraction of heavy metals. Furthermore, these results indicated that vermicomposting played a positive role in stabilizing heavy metals in the treatment of animal manure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. [Methodical problems of monitoring of fine particulate matters in atmospheric air of residential areas].

    PubMed

    Karelin, A O; Lomtev, A Yu; Mozzhukhina, N A; Yeremin, G B; Nikonov, V A

    Inhalation of fine particulate matters (PM and PM ) poses a threat for the health of population. Purpose of the study the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint-Petersburg and identification of the main problems of the monitoring. Research methods methods of scientific hypothetical deductive cognition, sanitary-statistical methods, general logical methods and approaches of researches: analysis, synthesis, abstracting, generalization, induction. Results. The article represents the analysis of the monitoring of fine particulate matters in the atmospheric air of Saint- Petersburg. Only 11 in automatic monitoring stations out of 22 there is carried out the control of fine particulate matters: in 7 - PM and PM, and in 4 - PM The average year concentrations were below MAC in all the stations. The maximum concentrations achieved 3 MAC, but the repeatance of cases of exceedence of concentrations more than MAC was very rare. On the average of the city concentrations of PM were decreased from 0,8 MAC in 2006 and 1,1 MAC in 2007 to 0,5 MAC in 2013-14. The executed analysis revealed main problems of the monitoring of fine particulate matters in the Russian Federation. They include the absence of the usage 1of the officially approved methods of controlling of PM and PM in the atmospheric air until March 1, 2016, lack of the modern equipment for measurement of fine particulate matters. Conclusions. Therefore, the state of the monitoring of fine particulate matters in the atmospheric air in the Russian Federation fails to be satisfactory. It is necessary to improve system of the monitoring, create modern Russian appliances, methods and means for measurement of fine particulate matters concentrations in the atmospheric air.

  5. Characterisation of the organic composition of size segregated atmospheric particulate matter at traffic exposed and background sites in Madrid

    NASA Astrophysics Data System (ADS)

    Mirante, F.; Perez, R.; Alves, C.; Revuelta, M.; Pio, C.; Artiñano, B.; Nunes, T.

    2010-05-01

    The growing awareness of the impact of atmospheric particulate matter (PM) on climate, and the incompletely recognised but serious effects of anthropogenic aerosols on air quality and human health, have led to diverse studies involving almost exclusively the coarse or the fine PM fractions. However, these environmental effects, the PM formation processes and the source assignment depend greatly on the particle size distribution. The innovative character of this study consists in obtaining time series with a size-segregated detailed chemical composition of PM for differently polluted sites. In this perspective, a summer sampling campaign was carried out from 1 of June to 1 of July 2009. One of the sampling sites was located at a representative urban monitoring station (Escuelas Aguirre) belonging to the municipal network, located at a heavy traffic street intersection in downtown Madrid. Other sampling point was positioned within the CIEMAT area, located in the NW corner of the city, which can be considered an urban background or suburban site. Particulate matter was sampled with high volume cascade impactors at 4 size stages: 10-2.5, 2.5-0.95, 0.95-0.45 and < 0.45 µm. Daily sampling was carried out on quartz fibre filters. Based on meteorological conditions and PM mass concentrations, each one of the 7 groups of filters collected during the first week were combined with the corresponding filters of the third week. The same procedure was undertaken with samples of the second and fourth weeks. Filters of 0.95-0.45 and < 0.45 µm were pooled to obtain the PM0.95 organic composition. The PM size-segregated samples were subjected to organic analysis by gas chromatography-mass spectrometry (GC-MS), after solvent extraction of filters and an appropriate derivatisation technique. Besides the homologous compound series of organic classes (e.g. n-alkanes, n-alkanols and n-alkanoic acids), special attention was given to the determination of specific molecular markers for different sources (e.g. vehicular). Carbon preference indices (CPI) close to the unity and the presence of PAHs point out vehicle exhaust as the main emission source of the aliphatic and polycyclic aromatic fractions, especially for the roadside aerosols. Concentration ratios between PAHs were also used to assign emission sources. The abundance and the sources of these carcinogenic pollutants are discussed and compared taking into account the local/regional characteristics. Water-soluble ions in PM were also analysed by ionic chromatography. A portion of the same filters was subjected to metal speciation by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) or Instrumental Neutron Activation Analysis (INAA). Receptor-oriented modelling for source apportionment was applied to the size-segregated PM chemical composition data. Results of this work are expected to cover a lack of reliable information for the knowledge of the particle size-dependent constitution, sources and atmospheric formation processes in this area of the central Iberian Peninsula. Acknowledgements: F. Mirante thanks the Portuguese Science Foundation for financial support of the training period at CIEMAT, as well for the PhD grant SFRH/BD/45473/2008. M.A. Revuelta acknowledges the Ministry of Science and Innovation for their economical support through the FPI predoctoral grant BES-2008-007079.

  6. 40 CFR 60.42Da - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...

  7. 77 FR 60053 - Approval and Promulgation of Air Quality Implementation Plans; Delaware; Requirements for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-02

    ... Deterioration and Nonattainment New Source Review; Fine Particulate Matter (PM2.5) AGENCY: Environmental... preconstruction permitting requirements for fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition... fine particulate matter (PM 2.5 ) into the Delaware SIP. In addition, EPA proposed approval of SIP...

  8. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...

  9. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.2306 Section 52.2306 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a...

  10. 40 CFR 60.42Da - Standard for particulate matter (PM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter (PM). 60.42Da Section 60.42Da Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR....42Da Standard for particulate matter (PM). (a) On and after the date on which the initial performance...

  11. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...

  12. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate Matter (PM10) Group II SIP commitments. 52.1637 Section 52.1637 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico...

  13. Fine Aerosol Composition and Radiative Effects in the Baltimore-Washington Corridor: Findings From the 2001 Summer Intensive

    NASA Astrophysics Data System (ADS)

    Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.; Chow, J. C.; Holben, B. N.

    2002-12-01

    Chemically speciated PM2.5 and trace gases were measured at Fort Meade (FME: 39.10°N, 76.74°W; elevation 46 m MSL) during summer 2001 (6/30 through 8/3) as a continuous effort of the Maryland Aerosol Research and CHaracterization study. FME is suburban and within 30 km south of the urban Baltimore supersite. 24-hr PM2.5 mass ranged from 2.1 to 29.5 mg m-3. Major species, by average mass fraction, includes sulfate (37%), organic matter (27%), ammonium (13%), elemental carbon (6%), nitrate (3%), and crustal material (3%). Reconstructed PM2.5 mass, calculated by summing the major species, is generally less than the gravimetric mass but within 10% difference. Visible extinction coefficient (bext) was recorded by an Automated Surface Observing System at the Baltimore Washington International Airport and column aerosol optical depth (AOD) by sun radiometers at the Goddard Space Flight Center to evaluate the conditions of regional haze. Both detectors were located within 20 km from FME. The correlation (r2) between 24-hr bext and PM2.5 is low at 0.25 but increases to 0.51 when the aerosol water content, estimated using an aerosol thermodynamic modal ISORROPIA, is taken into account. Water contributed significantly on hazy days. This correlation suggests a mass extinction efficiency of ~ 9 m2 g-1. The hourly AOD at 500 nm was highly correlated with bext in the early morning and late afternoon (r2 ~ 0.9) but not during mid-day hours (r2 ~ 0.3) when bext is generally lower. This result, along with aircraft and ground lidar measurements, implies aloft fine aerosol mass in mid-day and a potentially stronger radiative forcing for the urban corridor.

  14. Chemical speciation of respirable suspended particulate matter during a major firework festival in India.

    PubMed

    Sarkar, Sayantan; Khillare, Pandit S; Jyethi, Darpa S; Hasan, Amreen; Parween, Musarrat

    2010-12-15

    Ambient respirable particles (PM ≤ 10 μm, denoted by PM(10)) were characterized with respect to 20 elements, 16 polycyclic aromatic hydrocarbons (PAHs), elemental and organic carbon (EC and OC) during a major firework event-the "Diwali" festival in Delhi, India. The event recorded extremely high 24-h PM(10) levels (317.2-616.8 μg m(-3), 6-12 times the WHO standard) and massive loadings of Ba (16.8 μg m(-3), mean value), K (46.8 μg m(-3)), Mg (21.3 μg m(-3)), Al (38.4 μg m(-3)) and EC (40.5 μg m(-3)). Elemental concentrations as high as these have not been reported previously for any firework episode. Concentrations of Ba, K, Sr, Mg, Na, S, Al, Cl, Mn, Ca and EC were higher by factors of 264, 18, 15, 5.8, 5, 4, 3.2, 3, 2.7, 1.6 and 4.3, respectively, on Diwali as compared to background values. It was estimated that firework aerosol contributed 23-33% to ambient PM(10) on Diwali. OC levels peaked in the post-Diwali samples, perhaps owing to secondary transformation processes. Atmospheric PAHs were not sourced from fireworks; instead, they correlated well with changes in traffic patterns indicating their primary source in vehicular emissions. Overall, the pollutant cocktail generated by the Diwali fireworks could be best represented with Ba, K and Sr as tracers. It was also found that chronic exposure to Diwali pollution is likely to cause at least a 2% increase in non-carcinogenic hazard index (HI) associated with Al, Mn and Ba in the exposed population. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...

  16. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 4 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.1489 Section 52.1489 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the...

  17. Petrodiesel and Waste Grease Biodiesel (B20) Emission Particles at a Rural Recycling Center: Characterization and Effects on Lung Epithelial Cells and Macrophages

    PubMed Central

    Traviss, Nora; Li, Muyao; Lombard, Melissa; Thelen, Brett Amy; Palmer, Brian C.; Poynter, Matthew E.; Mossman, Brooke T.; Holmén, Britt A.; Fukagawa, Naomi K.

    2016-01-01

    Diesel engine emissions are an important source of ultrafine particulate matter (PM) in both ambient air and many occupational settings. Biodiesel is a popular, ‘green’ alternative to petroleum diesel fuel, but little is known about the impact of ‘real world’ biodiesel combustion on workplace PM concentrations and particle characteristics including size, morphology, and composition; or on biological responses. The objectives of the present work were to characterize PM workplace concentrations and tailpipe emissions produced by the combustion of commercially purchased low sulfur petrodiesel and a waste grease B20 blend (20% biodiesel/80% petrodiesel by volume) in heavy duty diesel (HDD) nonroad equipment operating in a ‘real world’ rural recycling center. Furthermore, we assessed the in vitro responses of cell lines representing human lung epithelial cells (BEAS-2B) and macrophages (THP-1) after 24 h of exposure to these real-world particles. Compared to petroleum diesel, use of B20 in HDD equipment resulted in lower mass concentrations of PM2.5, PM<0.25 (particle diameter less than 2.5 and 0.25 micrometer, respectively), and elemental carbon. Transmission electron analysis of PM showed that primary particle size and morphology were similar between fuel types. Metals composition analysis revealed differences between fuels, with higher Fe, Al, V, and Se measured during B20 use, and higher As, Cd, Cu, Mn, Ni and Pb concentrations measured during petrodiesel use. In vitro responses varied between fuels but data supported that waste grease B20 particles elicited inflammatory responses in human macrophages and lung epithelial cells comparable to petrodiesel particles. However, the effects were more pronounced with B20 than petrodiesel at the same mass concentration. Since the primary particle size and morphology were similar between fuels, it is likely that the differential results seen in the in vitro assays points to differences in the composition of the PM. Future research should focus on the organic carbon and metals speciation and potential impact of real world particles on reactive oxygen species generation and mechanisms for differences in the cellular inflammatory responses. PMID:29430261

  18. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    NASA Astrophysics Data System (ADS)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    Aerosol mass spectrometer (AMS) measurements have been successfully used towards a better understanding of non-refractory submicron (PM1) aerosol chemical properties based on short-term campaigns. The recently developed Aerosol Chemical Speciation Monitor (ACSM) has been designed to deliver quite similar artifact-free chemical information but for low cost, and to perform robust monitoring over long-term periods. When deployed in parallel with real-time black carbon (BC) measurements, the combined data set allows for a quasi-comprehensive description of the whole PM1 fraction in near real time. Here we present 2-year long ACSM and BC data sets, between mid-2011 and mid-2013, obtained at the French atmospheric SIRTA supersite that is representative of background PM levels of the region of Paris. This large data set shows intense and time-limited (a few hours) pollution events observed during wintertime in the region of Paris, pointing to local carbonaceous emissions (mainly combustion sources). A non-parametric wind regression analysis was performed on this 2-year data set for the major PM1 constituents (organic matter, nitrate, sulfate and source apportioned BC) and ammonia in order to better refine their geographical origins and assess local/regional/advected contributions whose information is mandatory for efficient mitigation strategies. While ammonium sulfate typically shows a clear advected pattern, ammonium nitrate partially displays a similar feature, but, less expectedly, it also exhibits a significant contribution of regional and local emissions. The contribution of regional background organic aerosols (OA) is significant in spring and summer, while a more pronounced local origin is evidenced during wintertime, whose pattern is also observed for BC originating from domestic wood burning. Using time-resolved ACSM and BC information, seasonally differentiated weekly diurnal profiles of these constituents were investigated and helped to identify the main parameters controlling their temporal variations (sources, meteorological parameters). Finally, a careful investigation of all the major pollution episodes observed over the region of Paris between 2011 and 2013 was performed and classified in terms of chemical composition and the BC-to-sulfate ratio used here as a proxy of the local/regional/advected contribution of PM. In conclusion, these first 2-year quality-controlled measurements of ACSM clearly demonstrate their great potential to monitor on a long-term basis aerosol sources and their geographical origin and provide strategic information in near real time during pollution episodes. They also support the capacity of the ACSM to be proposed as a robust and credible alternative to filter-based sampling techniques for long-term monitoring strategies.

  19. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    PubMed

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  20. PM levels in urban area of Bejaia

    NASA Astrophysics Data System (ADS)

    Benaissa, Fatima; Maesano, Cara Nichole; Alkama, Rezak; Annesi-Maesano, Isabella

    2017-04-01

    Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. Air pollution is not routinely measured in Bejaia City, Algeria, an urban area of around 200,000 inhabitants. We present first time measurements of particulate matter (PM) mass concentrations for this city (PM10, PM7, PM4, PM2.5 and PM1) over the course of one week, from July 8 to July 14, 2015. This study covered eight urban sampling sites and 169 measurements were obtained to determine mass concentration levels. The average city-wide PM10 and PM2.5 concentrations measured during this sampling were 87.8 ± 33.9 and 28.7 ± 10.6 µg/m3 respectively. These results show that particulate matter levels are high and exceed Algerian ambient air quality standards (maximum 80 µg/m3, without specifying the particle size). Further, PM10 and PM2.5 averages were well above the prescribed 24-hour average World Health Organization Air Quality Guidelines (WHO AQG) (50 µg/m3 for PM10 and 25 µg/m3 for PM2.5). The PM1, PM2,5, PM4 and PM7 fractions accounted for 15%, 32 %, 56% and 78% respectively of the PM10 measurements. Our analysis reveals that PM concentration variations in the study region were influenced primarily by traffic. In fact, lower PM10 concentrations (21.7 and 33.1 µg/m3) were recorded in residential sites while higher values (53.1, and 45.2 µg/m3) were registered in city centers. Keywords: Particulate matter, Urban area, vehicle fleet, Bejaia.

  1. Speciated VOC Emissions from an Outdoor Residential Pellet burning Hydronic Heater

    EPA Science Inventory

    Outdoor hydronic heaters used for residential heating emit air pollutants such as particulate matter and volatile organic compounds (VOCs), which can lead to deleterious impacts on local air quality and human health. Detailed speciated emissions measurements are required to accur...

  2. STATISTICAL DISTRIBUTIONS OF PARTICULATE MATTER AND THE ERROR ASSOCIATED WITH SAMPLING FREQUENCY. (R828678C010)

    EPA Science Inventory

    The distribution of particulate matter (PM) concentrations has an impact on human health effects and the setting of PM regulations. Since PM is commonly sampled on less than daily schedules, the magnitude of sampling errors needs to be determined. Daily PM data from Spokane, W...

  3. Global emission projections of particulate matter (PM): II. Uncertainty analyses of on-road vehicle exhaust emissions

    NASA Astrophysics Data System (ADS)

    Yan, Fang; Winijkul, Ekbordin; Bond, Tami C.; Streets, David G.

    2014-04-01

    Estimates of future emissions are necessary for understanding the future health of the atmosphere, designing national and international strategies for air quality control, and evaluating mitigation policies. Emission inventories are uncertain and future projections even more so, thus it is important to quantify the uncertainty inherent in emission projections. This paper is the second in a series that seeks to establish a more mechanistic understanding of future air pollutant emissions based on changes in technology. The first paper in this series (Yan et al., 2011) described a model that projects emissions based on dynamic changes of vehicle fleet, Speciated Pollutant Emission Wizard-Trend, or SPEW-Trend. In this paper, we explore the underlying uncertainties of global and regional exhaust PM emission projections from on-road vehicles in the coming decades using sensitivity analysis and Monte Carlo simulation. This work examines the emission sensitivities due to uncertainties in retirement rate, timing of emission standards, transition rate of high-emitting vehicles called “superemitters”, and emission factor degradation rate. It is concluded that global emissions are most sensitive to parameters in the retirement rate function. Monte Carlo simulations show that emission uncertainty caused by lack of knowledge about technology composition is comparable to the uncertainty demonstrated by alternative economic scenarios, especially during the period 2010-2030.

  4. Water soluble aerosols and gases at a UK background site - Part 1: Controls of PM2.5 and PM10 aerosol composition

    NASA Astrophysics Data System (ADS)

    Twigg, M. M.; Di Marco, C. F.; Leeson, S.; van Dijk, N.; Jones, M. R.; Leith, I. D.; Morrison, E.; Coyle, M.; Proost, R.; Peeters, A. N. M.; Lemon, E.; Frelink, T.; Braban, C. F.; Nemitz, E.; Cape, J. N.

    2015-02-01

    There is limited availability of long-term, high temporal resolution, chemically speciated aerosol measurements, which can lead to further insight into the health and environmental impacts of particulate matter. The Monitor for AeRosols and Gases (MARGA, Applikon B.V., NL) allows characterisation of the inorganic components of PM10 and PM2.5 (NH4+, NO3-, SO42-, Cl-, Na+, K+, Ca2+, Mg2+) and inorganic reactive gases (NH3, SO2, HCl, HONO and HNO3) at hourly resolution. The following study presents 6.5 years (June 2006 to December 2012) of quasi-continuous observations of PM2.5 and PM10 using the MARGA at the UK EMEP "Supersite", Auchencorth Moss, SE Scotland. Auchencorth Moss was found to be representative of a remote European site with average total water soluble inorganic mass of PM2.5 of 3.82 μg m-3. Anthropogenically derived secondary inorganic aerosols (sum of NH4+, NO3- and nss-SO42-), were the dominating species (63%) of PM2.5. In terms of equivalent concentrations, NH4+ provided the single largest contribution to PM2.5 fraction in all seasons. Sea salt, was the main component (73%) of the PMcoarse fraction (PM10-PM2.5), though NO3- was also found to make a relatively large contribution to the measured mass (17%) as providing evidence of considerable processing of sea salt in the coarse mode. There was on occasions evidence of aerosol from combustion events being transported to the site in 2012 as high K+ concentrations (deviating from the known ratio in sea salt) coincided with increases in black carbon at the site. Pollution events in PM10 (defined as concentrations > 12 μg m-3) were on average dominated by NH4+ and NO3-, where as smaller loadings at the site tended to be dominated by sea salt. As with other Western European sites, the charge balance of the inorganic components resolved were biased towards cations, suggesting the aerosol was basic or more likely, that organic acids contributed to the charge balance. This study demonstrates the UK background atmospheric composition is primarily driven by meteorology with sea salt dominating air masses from the Atlantic Ocean and the Arctic, whereas secondary inorganic aerosols tended to dominate air masses from continental Europe.

  5. 78 FR 44886 - Approval and Promulgation of Implementation Plans; Tennessee: New Source Review-Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... Tennessee SIP the PM 2.5 SILs and SMC. See 78 FR 23704. Tennessee's May 10, 2013, final SIP revision... the administrative change to replace the term ``particulate matter'' with ``PM 2.5 , PM 10 ''\\2... matter'' with ``PM 10 .'' In the April 22, 2013, proposed rulemaking, EPA explained that TDEC had...

  6. MONITORING OF PARTICULATE MATTER OUTDOORS

    EPA Science Inventory

    Recent studies of the size and composition of atmospheric particulate matter (PM) have demonstrated the usefulness of separating atmospheric PM into its fine and coarse components. The need to measure the mass and composition of fine and coarse PM separately has been emphasized b...

  7. IN VIVO MECHANISMS OF PARTICULATE MATTER (PM)-INDUCED LUNG AND VASCULAR INJURY

    EPA Science Inventory

    Insight into the mechanisms by which ambient particulate matter (PM) mediates its adverse cardiopulmonary effects can provide biological plausibility to epidemiological associations between PM exposure and health effects. Current information on mechanisms of pulmonary injury have...

  8. Metal Speciation in Landfill Leachates with a Focus on the Influence of Organic Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F Claret; C Tournassat; C Crouzet

    This study characterizes the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmosphere to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc aremore » super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  9. Characterisation of PM(10), PM(2.5) and benzene soluble organic fraction of particulate matter in an urban area of Kolkata, India.

    PubMed

    Gupta, A K; Nag, Subhankar; Mukhopadhyay, U K

    2006-04-01

    In this study, the relationship between inhalable particulate (PM(10)), fine particulate (PM(2.5)), coarse particles (PM(2.5 - 10)) and meteorological parameters such as temperature, relative humidity, solar radiation, wind speed were statistically analyzed and modelled for urban area of Kolkata during winter months of 2003-2004. Ambient air quality was monitored with a sampling frequency of twenty-four hours at three monitoring sites located near traffic intersections and in an industrial area. The monitoring sites were located 3-5 m above ground near highly trafficked and congested areas. The 24 h average PM(10) and PM(2.5) samples were collected using Thermo-Andersen high volume samplers and exposed filter papers were extracted and analysed for benzene soluble organic fraction. The ratios between PM(2.5) and PM(10) were found to be in the range of 0.6 to 0.92 and the highest ratio was found in the most polluted urban site. Statistical analysis has shown a strong positive correlation between PM(10) and PM(2.5) and inverse correlation was observed between particulate matter (PM(10) and PM(2.5)) and wind speed. Statistical analysis of air quality data shows that PM(10) and PM(2.5) are showing poor correlation with temperature, relative humidity and solar radiation. Regression equations for PM(10) and PM(2.5) and meteorological parameters were developed. The organic fraction of particulate matter soluble in benzene is an indication of poly aromatic hydrocarbon (PAH) concentration present in particulate matter. The relationship between the benzene soluble organic fraction (BSOF) of inhalable particulate (PM(10)) and fine particulate (PM(2.5)) were analysed for urban area of Kolkata. Significant positive correlation was observed between benzene soluble organic fraction of PM(10) (BSM10) and benzene soluble organic fraction of PM(2.5) (BSM2.5). Regression equations for BSM10 and BSM2.5 were developed.

  10. Particulate matter neurotoxicity in culture is size-dependent

    EPA Science Inventory

    Exposure to particulate matter (PM) air pollution produces inflammatory damage to the cardiopulmonary system. This toxicity appears to be inversely related to the size of the PM particles, with the ultrafine particle being more inflammatory than larger sizes. Exposure to PM has m...

  11. A POPULATION EXPOSURE MODEL FOR PARTICULATE MATTER: SHEDS-PM

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure and dose model for particulate matter (PM) that will be publicly available in Fall 2002. The Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model uses a probabilistic approach ...

  12. MASS CONCENTRATION RELATIONSHIPS FROM THE NERL RTP PARTICULATE MATTER PANEL STUDY

    EPA Science Inventory

    The National Exposure Research Laboratory's (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study has completed a one-year investigation of personal, residential and ambient PM-related mass concentrations in two potentially susceptible subpopulations. PM2.5, P...

  13. Source apportionment of ambient PM10 and PM2.5 in Haikou, China

    NASA Astrophysics Data System (ADS)

    Fang, Xiaozhen; Bi, Xiaohui; Xu, Hong; Wu, Jianhui; Zhang, Yufen; Feng, Yinchang

    2017-07-01

    In order to identify the sources of PM10 and PM2.5 in Haikou, 60 ambient air samples were collected in winter and spring, respectively. Fifteen elements (Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb), water-soluble ions (SO42 - and NO3-), and organic carbon (OC) and elemental carbon (EC) were analyzed. It was clear that the concentration of particulate matter was higher in winter than in spring. The value of PM2.5/PM10 was > 0.6. Moreover, the proportions of TC, ions, Na, Al, Si and Ca were more high in PM10 and PM2.5. The SOC concentration was estimated by the minimum OC/EC ratio method, and deducted from particulate matter compositions when running CMB model. According to the results of CMB model, the resuspended dust (17.5-35.0%), vehicle exhaust (14.9-23.6%) and secondary particulates (20.4-28.8%) were the major source categories of ambient particulate matter. Additionally, sea salt also had partial contribution (3-8%). And back trajectory analysis results showed that particulate matter was greatly affected by regional sources in winter, while less affected in spring. So particulate matter was not only affected by local sources, but also affected by sea salt and regional sources in coastal cities. Further research could focuses on establishing the actual secondary particles profiles and identifying the local and regional sources of PM at once by one model or analysis method.

  14. Long-term exposure to residential ambient fine and coarse particulate matter and incident hypertension in post-menopausal women.

    PubMed

    Honda, Trenton; Eliot, Melissa N; Eaton, Charles B; Whitsel, Eric; Stewart, James D; Mu, Lina; Suh, Helen; Szpiro, Adam; Kaufman, Joel D; Vedal, Sverre; Wellenius, Gregory A

    2017-08-01

    Long-term exposure to ambient particulate matter (PM) has been previously linked with higher risk of cardiovascular events. This association may be mediated, at least partly, by increasing the risk of incident hypertension, a key determinant of cardiovascular risk. However, whether long-term exposure to PM is associated with incident hypertension remains unclear. Using national geostatistical models incorporating geographic covariates and spatial smoothing, we estimated annual average concentrations of residential fine (PM 2.5 ), respirable (PM 10 ), and course (PM 10-2.5 ) fractions of particulate matter among 44,255 post-menopausal women free of hypertension enrolled in the Women's Health Initiative (WHI) clinical trials. We used time-varying Cox proportional hazards models to evaluate the association between long-term average residential pollutant concentrations and incident hypertension, adjusting for potential confounding by sociodemographic factors, medical history, neighborhood socioeconomic measures, WHI study clinical site, clinical trial, and randomization arm. During 298,383 person-years of follow-up, 14,511 participants developed incident hypertension. The adjusted hazard ratios per interquartile range (IQR) increase in PM 2.5 , PM 10 , and PM 10-2.5 were 1.13 (95% CI: 1.08, 1.17), 1.06 (1.03, 1.10), and 1.01 (95% CI: 0.97, 1.04), respectively. Statistically significant concentration-response relationships were identified for PM 2.5 and PM 10 fractions. The association between PM 2.5 and hypertension was more pronounced among non-white participants and those residing in the Northeastern United States. In this cohort of post-menopausal women, ambient fine and respirable particulate matter exposures were associated with higher incidence rates of hypertension. These results suggest that particulate matter may be an important modifiable risk factor for hypertension. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Identification and chemical characterization of industrial particulate matter sources in southwest Spain.

    PubMed

    Alastuey, Andrés; Querol, Xavier; Plana, Feliciano; Viana, Mar; Ruiz, Carmen R; Sánchez de la Campa, Ana; de la Rosa, Jesús; Mantilla, Enrique; García dos Santos, Saul

    2006-07-01

    A detailed physical and chemical characterization of coarse particulate matter (PM10) and fine particulate matter (PM2.5) in the city of Huelva (in Southwestern Spain) was carried out during 2001 and 2002. To identify the major emission sources with a significant influence on PM10 and PM2.5, a methodology was developed based on the combination of: (1) real-time measurements of levels of PM10, PM2.5, and very fine particulate matter (PM1); (2) chemical characterization and source apportionment analysis of PM10 and PM2.5; and (3) intensive measurements in field campaigns to characterize the emission plumes of several point sources. Annual means of 37, 19, and 16 microg/m3 were obtained for the study period for PM10, PM2.5, and PM1, respectively. High PM episodes, characterized by a very fine grain size distribution, are frequently detected in Huelva mainly in the winter as the result of the impact of the industrial emission plumes on the city. Chemical analysis showed that PM at Huelva is characterized by high PO4(3-) and As levels, as expected from the industrial activities. Source apportionment analyses identified a crustal source (36% of PM10 and 31% of PM2.5); a traffic-related source (33% of PM10 and 29% of PM2.5), and a marine aerosol contribution (only in PM10, 4%). In addition, two industrial emission sources were identified in PM10 and PM2.5: (1) a petrochemical source, 13% in PM10 and 8% in PM2.5; and (2) a mixed metallurgical-phosphate source, which accounts for 11-12% of PM10 and PM2.5. In PM2.5 a secondary source has been also identified, which contributed to 17% of the mass. A complete characterization of industrial emission plumes during their impact on the ground allowed for the identification of tracer species for specific point sources, such as petrochemical, metallurgic, and fertilizer and phosphate production industries.

  16. Respiratory dose analysis for components of ambient particulate matter

    EPA Science Inventory

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to induce health effects, specific attributes of PM that may cause health effects are somewhat ambiguous. Dose of each specific compone...

  17. Respiratory dose analysis for components of ambient particulate matter#

    EPA Science Inventory

    Particulate matter (PM) in the atmosphere is a complex mixture of particles with different sizes and chemical compositions. Although PM is known to cause health hazard, specific attributes of PM that may cause health effects are somewhat ambiguous. The dose of each specific compo...

  18. Report: EPA Needs to Direct More Attention, Efforts, and Funding to Enhance Its Speciation Monitoring Program for Measuring Fine Particulate Matter

    EPA Pesticide Factsheets

    Report #2005-P-00004, February 7, 2005. EPA has made substantial progress in establishing a speciation monitoring network, but still faces a number of challenges in ensuring that the controls are implemented at the right sources.

  19. TEMPORAL VARIABILITY IN PHYSICAL SPECIATION OF METALS DURING A WINTER RAIN-ON-SNOW EVENT

    EPA Science Inventory

    Particulate matter in urban rivers transports a significant fraction of pollutants, changes rapidly during storm events and is difficult to characterize. In this study, the physical speciation of trace metals and organic carbon in an urban river and upstream headwaters site in To...

  20. Variations in speciated emissions from spark-ignition and compression-ignition motor vehicles in California's south coast air basin.

    PubMed

    Fujita, Eric M; Zielinska, Barbara; Campbell, David E; Arnott, W Patrick; Sagebiel, John C; Mazzoleni, Lynn; Chow, Judith C; Gabele, Peter A; Crews, William; Snow, Richard; Clark, Nigel N; Wayne, W Scott; Lawson, Douglas R

    2007-06-01

    The U.S. Department of Energy Gasoline/Diesel PM Split Study examined the sources of uncertainties in using an organic compound-based chemical mass balance receptor model to quantify the contributions of spark-ignition (SI) and compression-ignition (CI) engine exhaust to ambient fine particulate matter (PM2.5). This paper presents the chemical composition profiles of SI and CI engine exhaust from the vehicle-testing portion of the study. Chemical analysis of source samples consisted of gravimetric mass, elements, ions, organic carbon (OC), and elemental carbon (EC) by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) thermal/optical methods, polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, alkanes, and polar organic compounds. More than half of the mass of carbonaceous particles emitted by heavy-duty diesel trucks was EC (IMPROVE) and emissions from SI vehicles contained predominantly OC. Although total carbon (TC) by the IMPROVE and STN protocols agreed well for all of the samples, the STN/IMPROVE ratios for EC from SI exhaust decreased with decreasing sample loading. SI vehicles, whether low or high emitters, emitted greater amounts of high-molecular-weight particulate PAHs (benzo[ghi]perylene, indeno[1,2,3-cd]pyrene, and coronene) than did CI vehicles. Diesel emissions contained higher abundances of two- to four-ring semivolatile PAHs. Diacids were emitted by CI vehicles but are also prevalent in secondary organic aerosols, so they cannot be considered unique tracers. Hopanes and steranes were present in lubricating oil with similar composition for both gasoline and diesel vehicles and were negligible in gasoline or diesel fuels. CI vehicles emitted greater total amounts of hopanes and steranes on a mass per mile basis, but abundances were comparable to SI exhaust normalized to TC emissions within measurement uncertainty. The combustion-produced high-molecular-weight PAHs were found in used gasoline motor oil but not in fresh oil and are negligible in used diesel engine oil. The contributions of lubrication oils to abundances of these PAHs in the exhaust were large in some cases and were variable with the age and consumption rate of the oil. These factors contributed to the observed variations in their abundances to total carbon or PM2.5 among the SI composition profiles.

  1. Integrating Measurement Based New Knowledge on Wildland Fire Emissions and Chemistry into the AIRPACT Air Quality Forecasting for the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Nergui, T.; Lee, Y.; Chung, S. H.; Lamb, B. K.; Yokelson, R. J.; Barsanti, K.

    2017-12-01

    A number of chamber and field measurements have shown that atmospheric organic aerosols and their precursors produced from wildfires are significantly underestimated in the emission inventories used for air quality models for various applications such as regulatory strategy development, impact assessments of air pollutants, and air quality forecasting for public health. The AIRPACT real-time air quality forecasting system consistently underestimates surface level fine particulate matter (PM2.5) concentrations in the summer at both urban and rural locations in the Pacific Northwest, primarily result of errors in organic particulate matter. In this work, we implement updated chemical speciation and emission factors based on FLAME-IV (Fourth Fire Lab at Missoula Experiment) and other measurements in the Blue-Sky fire emission model and the SMOKE emission preprocessor; and modified parameters for the secondary organic aerosol (SOA) module in CMAQ chemical transport model of the AIRPACT modeling system. Simulation results from CMAQ version 5.2 which has a better treatment for anthropogenic SOA formation (as a base case) and modified parameterization used for fire emissions and chemistry in the model (fire-soa case) are evaluated against airborne measurements downwind of the Big Windy Complex Fire and the Colockum Tarps Fire, both of which occurred in the Pacific Northwest in summer 2013. Using the observed aerosol chemical composition and mass loadings for organics, nitrate, sulfate, ammonium, and chloride from aircraft measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), we assess how new knowledge gained from wildfire measurements improve model predictions for SOA and its contribution to the total mass of PM2.5 concentrations.

  2. Methods to assess carbonaceous aerosol sampling artifacts for IMPROVE and other long-term networks.

    PubMed

    Watson, John G; Chow, Judith C; Chen, L W Antony; Frank, Neil H

    2009-08-01

    Volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) adsorb to quartz fiber filters during fine and coarse particulate matter (PM2.5 and PM10, respectively) sampling for thermal/optical carbon analysis that measures organic carbon (OC) and elemental carbon (EC). Particulate SVOCs can evaporate after collection, with a small portion adsorbed within the filter. Adsorbed organic gases are measured as particulate OC, so passive field blanks, backup filters, prefilter organic denuders, and regression methods have been applied to compensate for positive OC artifacts in several long-term chemical speciation networks. Average backup filter OC levels from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network were approximately 19% higher than field blank values. This difference is within the standard deviation of the average and likely results from low SVOC concentrations in the rural to remote environments of most IMPROVE sites. Backup filters from an urban (Fort Meade, MD) site showed twice the OC levels of field blanks. Sectioning backup filters from top to bottom showed nonuniform OC densities within the filter, contrary to the assumption that VOCs and SVOCs on a backup filter equal those on the front filter. This nonuniformity may be partially explained by evaporation and readsorption of vapors in different parts of the front and backup quartz fiber filter owing to temperature, relative humidity, and ambient concentration changes throughout a 24-hr sample duration. OC-PM2.5 regression analysis and organic denuder approaches demonstrate negative sampling artifact from both Teflon membrane and quartz fiber filters.

  3. Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5-10)

    NASA Astrophysics Data System (ADS)

    Zhang, Boen; Jiao, Limin; Xu, Gang; Zhao, Suli; Tang, Xin; Zhou, Yue; Gong, Chen

    2018-06-01

    Though it is recognized that meteorology has a great impact on the diffusion, accumulation and transport of air pollutants, few studies have investigated the impacts on different-sized particulate matter concentrations. We conducted a systematic comparative analysis and used the framework of generalized additive models (GAMs) to explore the influences of critical meteorological parameters, wind and precipitation, on PM2.5, PM10 and PM2.5-10 concentrations in Wuhan during 2013-2016. Overall, results showed that the impacts of wind and precipitation on different-sized PM concentrations are significantly different. The fine PM concentrations decreased gradually with the increase of wind speed, while coarse PM concentrations would increase due to dust resuspension under strong wind. Wind direction exerts limited influence on coarse PM concentrations. Wind speed was linearly correlated with log-transformed PM2.5 concentrations, but nonlinearly correlated with log-transformed PM10 and PM2.5-10 concentrations. We also found the PM2.5 and PM2.5-10 concentrations decreased by nearly 60 and 15% when the wind speed was up to 6 m/s, respectively, indicating a stronger negative impact of wind-speed on fine PM than coarse PM. The scavenging efficiency of precipitation on PM2.5-10 was over twice as high as on PM2.5. Our findings may help to understand the impacts of meteorology on different PM concentrations as well as discriminate and forecast variation in particulate matter concentrations.

  4. Effects of emissions change, climate change and long-range transport on regional modeling of future U.S. particulate matter pollution and speciation

    NASA Astrophysics Data System (ADS)

    He, Hao; Liang, Xin-Zhong; Wuebbles, Donald J.

    2018-04-01

    This study investigates the future U.S. PM2.5 pollution under multiple emissions scenarios, climate states, and long-range transport (LRT) effects using the regional Community Multi-scale Air Quality (CMAQ) model integrated with a regional climate model. CMAQ with fixed chemical lateral boundary conditions (LBCs) successfully reproduces the present-day PM2.5 pollution and its major species in rural and suburban areas, but has some discrepancies in urban areas such as the Los Angeles Basin, where detailed emissions and meteorology conditions cannot be resolved by the 30 km grid. Its performance is slightly worsened when using dynamic chemical LBCs from global chemical transport model (CTM) simulations, which provide cleaner conditions into the CMAQ lateral boundaries. Under future Intergovernmental Panel on Climate Change (IPCC) emission scenarios, CMAQ projects large PM2.5 reductions (∼40% for A1B and ∼20% for A1Fi scenario) in the eastern United States, but slight to moderate increases (∼5% for A1B and ∼10% for A1Fi) in the western United States. The projected increases are particularly large (up to 30%) near the Mexico-U.S. border, suggesting that Mexico is a major source for future U.S. PM2.5 pollution. The effect from climate change alone is estimated to increase PM2.5 levels ubiquitously (∼5% for both A1B and A1Fi) over the United States, except for a small decrease in the Houston, Texas area, where anthropogenic non-methane volatile organic compounds (NMVOCs) emissions dominate. This climate penalty, however, is substantially smaller than effects of emissions change, especially in the eastern United States. Future PM2.5 pollution is affected substantially (up to -20%) by changes in SO2 emissions and moderately (3-5%) by changes in NOx and NH3 emissions. The long-range transport (LRT) effects, which are estimated by comparing CMAQ simulations with fixed and dynamic LBCs, are regional dependent, causing up to 10-20% decrease over the western United States in future summertime PM2.5 pollution. Therefore, it is important to consider the relative contributions of emissions scenarios, climate conditions, and LRT to the major PM2.5 components in future U.S. air quality regulation.

  5. Evaluation of ground-based particulate matter in association with measurements from space

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo

    2017-10-01

    Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.

  6. Enhanced PM10 bounded PAHs from shipping emissions

    NASA Astrophysics Data System (ADS)

    Pongpiachan, S.; Hattayanone, M.; Choochuay, C.; Mekmok, R.; Wuttijak, N.; Ketratanakul, A.

    2015-05-01

    Earlier studies have highlighted the importance of maritime transport as a main contributor of air pollutants in port area. The authors intended to investigate the effects of shipping emissions on the enhancement of PM10 bounded polycyclic aromatic hydrocarbons (PAHs) and mutagenic substances in an industrial area of Rayong province, Thailand. Daily PM10 speciation data across two air quality observatory sites in Thailand during 2010-2013 were collected. Diagnostic binary ratios of PAH congeners, analysis of variances (ANOVA), and principal component analysis (PCA) were employed to evaluate the enhanced genotoxicity of PM10 during the docking period. Significant increase of PAHs and mutagenic index (MI) of PM10 were observed during the docking period in both sampling sites. Although stationary sources like coal combustions from power plants and vehicular exhausts from motorway can play a great role in enhancing PAH concentrations, regulating shipping emissions from diesel engine in the port area like Rayong is predominantly crucial.

  7. A Simplified and Rapid Screening Assay using Zebrafish to Assess Cardiac Effects of Air Pollution-derived Particulate Matter

    EPA Science Inventory

    Comparative toxicity assessment of particulate matter (PM) from different sources will potentially inform the understanding of regional differences in PM-induced cardiac health effects by identifying PM sources linked to highest potency components. Conventional low-throughput in...

  8. MODELING ENVIRONMENTAL EXPOSURES TO PARTICULATE MATTER AND PESTICIDES

    EPA Science Inventory

    This presentation describes initial results from on-going research at EPA on modeling human exposures to particulate matter and residential pesticides. A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM1o and P...

  9. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 3 2013-07-01 2013-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based on... fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5 national ambient...

  10. 40 CFR 52.427 - Control strategy: Particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 3 2014-07-01 2014-07-01 false Control strategy: Particulate matter...: Particulate matter. (a) Determination of attainment. EPA has determined, as of May 16, 2012, that based on... fine particulate matter (PM2.5) nonattainment area has attained the 2006 24-hour PM2.5 national ambient...

  11. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2015-12-30

    FINAL REPORT Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM...Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M...report contains color. 14. ABSTRACT This project consists of demonstrating the performance and viability of two devices to condition aircraft turbine

  12. Zebrafish Locomotor Responses Reveal Irritant Effects of Fine Particulate Matter Extracts and a Role for TRPA1

    EPA Science Inventory

    Exposure to fine particulate matter (PM) air pollution causes adverse cardiopulmonary outcomes. Yet the limited capacity to readily identify contributing PM sources and associated PM constituents in any given ambient air shed impedes risk assessment efforts. The health effects of...

  13. AIRBORNE PARTICULATE MATTER: PHYSICO-CHEMICAL CHARACTERISTICS AND HUMAN EXPOSURE ISSUES RELATED TO HEALTH EFFECTS RESEARCH AND ASSESSMENT

    EPA Science Inventory

    Exposure to particulate matter (PM) is associated with excess mortality and morbidity, especially in individuals with cardiopulmonary disease. These epidemiologic findings are the cornerstone of EPA's revision of the PM National Ambient Quality Standards to include PM less tha...

  14. Design and evaluation of a low-volume total suspended particulate sampler

    USDA-ARS?s Scientific Manuscript database

    The regulation of particulate matter (PM) emitted by agricultural sources, e.g., cotton gins, feed mills, and concentrated animal feeding operations (CAFOs), is based on downwind concentrations of particulate matter less than 10 and 2.5 'm (PM10 and PM2.5) aerodynamic equivalent diameter (AED). Both...

  15. Techniques for determining partial size distribution of particulate matter: Laser diffraction versus electrical sensing zone

    USDA-ARS?s Scientific Manuscript database

    The study of health impacts, emission estimation of particulate matter (PM), and development of new control technologies require knowledge of PM characteristics. Among these PM characteristics, the particle size distribution (PSD) is perhaps the most important physical parameter governing particle b...

  16. SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    EPA Science Inventory

    SEASONAL EFFECTS OF ULTRAFINE, FINE, AND COARSE PARTICULATE MATTER (PM) ON HUMAN PRIMARY AIRWAY EPITHELIAL CELLS

    Exposure of humans to PM results in increased mortality and morbidity. Recent toxicology studies have shown a number of pathophysiological pulmonary and car...

  17. CORRELATION OF FINE AND ULTRAFINE PARTICULATE MATTER WITH METEOROLOGICAL CONDITIONS AND CRITERIA POLLUTANTS IN EL PASO, TEXAS

    EPA Science Inventory

    Because the harmful health effects of airborne particulate matter (PM) are not well understood, various researchers are investigating ambient PM in order to assess its hazardous components. Current hypotheses acknowledge that PM related morbidity and mortality may be a result ...

  18. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR CALIBRATION OF HARVARD PM SAMPLERS (UA-L-6.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the "Border" study. Keywords: lab; equipmen...

  19. An Automated Heart Rate Detection Platform in Wild-Type Zebrafish for Cardiotoxicity Screening of Fine Particulate Matter Air Pollution

    EPA Science Inventory

    Exposure to air pollution-derived particulate matter (PM) causes adverse cardiovascular health outcomes, with increasing evidence implicating soluble components of PM; however, the enormous number of unique PM samples from different air sheds far exceeds the capacity of conventio...

  20. Cellular oxidative response from exposure to size-resolved ambient particulate matter

    EPA Science Inventory

    Recent studies suggest that particulate matter (PM) derived from different sources may differ in toxicity. The goal of this study was to characterize the in vitro effects of ambient PM and PM components from eight different locations in the U.S. and to investigate the effects of ...

  1. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...

  2. 40 CFR 60.672 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... compliance requirements in Table 2 of this subpart. This exemption from the stack PM concentration limit does... Nonmetallic Mineral Processing Plants § 60.672 Standard for particulate matter (PM). (a) Affected facilities must meet the stack emission limits and compliance requirements in Table 2 of this subpart within 60...

  3. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter

    EPA Science Inventory

    ..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...

  4. The impact of airborne particulate matter on pediatric hospital admissions for pneumonia among children in Jinan, China: A case-crossover study.

    PubMed

    Lv, Chenguang; Wang, Xianfeng; Pang, Na; Wang, Lanzhong; Wang, Yuping; Xu, Tengfei; Zhang, Yu; Zhou, Tianran; Li, Wei

    2017-06-01

    This study aims to examine the effect of short-term changes in the concentration of particulate matter of diameter ≤2.5 µm (PM 2.5 ) and ≤10 µm (PM 10 ) on pediatric hospital admissions for pneumonia in Jinan, China. It explores confoundings factors of weather, season, and chemical pollutants. Information on pediatric hospital admissions for pneumonia in 2014 was extracted from the database of Jinan Qilu Hospital. The relative risk of pediatric hospital admissions for pneumonia was assessed using a case-crossover approach, controlling weather variables, day of the week, and seasonality. The single-pollutant model demonstrated that increased risk of pediatric hospital admissions for pneumonia was significantly associated with elevated PM 2.5 concentrations the day before hospital admission and elevated PM 10 concentrations 2 days before hospital admission. An increment of 10 μg/m 3 in PM 2.5 and PM 10 was correlated with a 6% (95% CI 1.02--1.10) and 4% (95% CI 1.00-1.08) rise in number of admissions for pneumonia, respectively. In two pollutant models, PM 2.5 and PM 10 remained significant after inclusion of sulfur dioxide or nitrogen dioxide but not carbon monoxide. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China. This study demonstrated that short-term exposure to atmospheric particulate matter (PM 2.5 /PM 10 ) may be an important determinant of pediatric hospital admissions for pneumonia in Jinan, China, and suggested the relevance of pollutant exposure levels and their effects. As a specific group, children are sensitive to airborne particulate matter. This study estimated the short-term effects attribute to other air pollutants to provide references for relevant studies.

  5. Particulate Matter (PM) Pollution

    EPA Pesticide Factsheets

    Particulate matter (PM) is one of the air pollutants regulated by the National Ambient Air Quality Standards (NAAQS). Reducing emissions of inhalable particles improves public health as well as visibility.

  6. Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non-Volatile Particulate Matter (PM) Emissions

    DTIC Science & Technology

    2017-03-06

    WP-201317) Demonstration of Novel Sampling Techniques for Measurement of Turbine Engine Volatile and Non -volatile Particulate Matter (PM...Engine Volatile and Non -Volatile Particulate Matter (PM) Emissions 6. AUTHOR(S) E. Corporan, M. DeWitt, C. Klingshirn, M.D. Cheng, R. Miake-Lye, J. Peck...the performance and viability of two devices to condition aircraft turbine engine exhaust to allow the accurate measurement of total (volatile and non

  7. Chemical compositions and reconstructed light extinction coefficients of particulate matter in a mega-city in the western Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Shen, Guofeng; Xue, Miao; Yuan, Siyu; Zhang, Jie; Zhao, Qiuyue; Li, Bing; Wu, Haisuo; Ding, Aijun

    2014-02-01

    Ambient particulate matter was collected in a megacity, Nanjing in western YRD during the spring and summer periods. Chemical compositions of fine PM including organic carbon, elemental carbon, elements and water soluble ions were analyzed. The light extinction coefficients were reconstructed following the IMPROVE formula. Organic matter was the most abundant composition in PM2.5 (20-25% of total mass), followed by the inorganic ions. During the spring time, geological materials contributed 25% of the total PM2.5. Estimated light extinction coefficient ranged from 133 to 560 Mm-1 with the deciview haze index value of 26-40 dv, indicating strong light extinction by PM and subsequently low visibility in the city. Reconstructed ammonium sulfate, ammonium nitrate, organic matter and light absorption carbon in fine PM contributed significantly (37 ± 10, 16 ± 6, 15 ± 4 and 10 ± 3%, respectively) to the total light extinction of PM, while soil (5-7%) and sea salt fractions (2-4%) in fine PM and coarse PM (6-11%) had relatively minor influences. The results of backward air trajectory showed that the site was strongly influenced by the air from the eastern (39%) and southeastern (29%) areas during the sampling period. Air plumes from the Southeastern had both high PM mass pollution and large light extinction, while the air mass originating from the Northwestern resulted in high PM mass loading but relatively lower light extinction.

  8. Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project.

    PubMed

    Samek, Lucyna; Furman, Leszek; Mikrut, Magdalena; Regiel-Futyra, Anna; Macyk, Wojciech; Stochel, Grażyna; van Eldik, Rudi

    2017-11-01

    Submicron particulate matter containing particles with an aerodynamic diameter ≤1 μm (PM1) are not monitored continuously by Environmental Protection Agencies around the World and are seldom studied. Numerous studies have indicated that people exposed to ultrafine (≤100 nm), submicron and fine particulate matter containing particles with an aerodynamic diameter ≤2.5 μm (PM2.5), can suffer from respiratory track diseases, cardiovascular, immunological or heart diseases and others. Inorganic pollutants containing redox active transition metals and small gaseous molecules, are involved in the generation of reactive oxygen and reactive nitrogen species. Inhalation of this kind of particles can affect immune-toxicity. Environmental pollution may aggravate the course of autoimmune diseases, in particular influence the mechanisms of the autoimmune system. Important factors that influence the toxicity of particulate matter, are particle size distribution, composition and concentration. This report deals with the composition of PM1 and PM2.5 fractions collected in Krakow, Poland. In spring 2015, the mean concentrations of PM1 and PM2.5 were 19 ± 14 and 27 ± 19 μg/m 3 , respectively. The PM2.5 fraction contained approximately 70 ± 17% of submicron particulate matter. In spring 2016, the mean concentrations of PM1 and PM2.5 were 12 ± 5 and 22 ± 12 μg/m 3 , respectively. The PM2.5 fraction contained approximately 60 ± 15% of submicron particulate matter. The concentrations of the elements Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in both fractions were determined by X-ray fluorescence spectrometry. Most of the analyzed metals had higher concentrations in the fine fraction than in the submicron one. Concentrations of V and As were below the detection limit in both fractions, whereas concentrations of Mn and Ca were below the detection limits in the PM1 fraction. The results are discussed in terms of the consequences they may have on the APARIC project presently underway in Krakow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Effect of meteorological parameters on fine and coarse particulate matter mass concentration in a coal-mining area in Zonguldak, Turkey.

    PubMed

    Tecer, Lokman Hakan; Süren, Pinar; Alagha, Omar; Karaca, Ferhat; Tuncel, Gürdal

    2008-04-01

    In this work, the effect of meteorological parameters and local topography on mass concentrations of fine (PM2.5) and coarse (PM2.5-10) particles and their seasonal behavior was investigated. A total of 236 pairs of samplers were collected using an Anderson Dichotomous sampler between December 2004 and October 2005. The average mass concentrations of PM2.5, PM2.5-10, and particulate matter less than 10 microm in aerodynamic diameter (PM10) were found to be 29.38, 23.85, and 53.23 microg/m3, respectively. The concentrations of PM2.5 and PM10 were found to be higher in heating seasons (December to May) than in summer. The increase of relative humidity, cloudiness, and lower temperature was found to be highly related to the increase of particulate matter (PM) episodic events. During non-rainy days, the episodic events for PM2.5 and PM10 were increased by 30 and 10.7%, respectively. This is a result of the extensive use of fuel during winter for heating purposes and also because of stagnant air masses formed because of low temperature and low wind speed over the study area.

  10. U.S.-MEXICO BORDER PROGRAM ARIZONA BORDER STUDY--STANDARD OPERATING PROCEDURE FOR CALIBRATION OF HARVARD PM SAMPLERS (UA-L-6.1)

    EPA Science Inventory

    The purpose of this SOP is to describe the procedures for calibrating Harvard particulate matter (PM) samplers. This procedure applies directly to the Harvard particulate matter (PM) samplers used during the Arizona NHEXAS project and the Border study. Keywords: lab; equipment;...

  11. Laboratory evaluation of electrostatic spray wet scrubber to control particulate matter emissions from poultry facilities

    USDA-ARS?s Scientific Manuscript database

    Particulate matter (PM) is a major air pollutant emitted from animal production and has significant impacts on health and the environment. Abatement of PM emissions is imperative and effective PM control technologies are strongly needed. In this work, an electrostatic spray wet scrubber (ESWS) techn...

  12. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter (PM-10) Group III SIP. (a) On September 14, 1988, the Governor of Hawaii submitted a revision to the... necessary to satisfy the requirements of the PM-10 Group III SIP. (b) The Hawaii Department of Health has...

  13. Source-receptor reconciliation of fine-particulate emissions from residential wood combustion in the southeastern United States

    EPA Science Inventory

    An extensive collection of speciated PM2.5 measurements including organic tracers permitted a detailed examination of the emissions from residential wood combustion (RWC) in the southeastern United States over an entire year (2007). The Community Multiscale Air Quality model-base...

  14. CONCENTRATIONS AND SPECIATION OF PM AT GROUND ZERO AND LOWER MANHATTAN FOLLOWING THE COLLAPSE OF THE WTC

    EPA Science Inventory

    The U.S. EPA National Exposure Research Laboratory (NERL), in conjunction with our Regional offices, established a network of air monitoring sites to characterize ambient air concentrations of gases and particles in lower Manhattan following the collapse of the World Trade Cent...

  15. Application of ensemble back trajectory and factor analysis methods to aerosol data from Fort Meade, MD: Implications for sources

    NASA Astrophysics Data System (ADS)

    Chen, L. A.; Doddridge, B. G.; Dickerson, R. R.

    2001-12-01

    As the primary field experiment for Maryland Aerosol Research and CHaracterization (MARCH-Atlantic) study, chemically speciated PM2.5 has been sampled at Fort Meade (FME, 39.10° N 76.74° W) since July 1999. FME is suburban, located in the middle of the bustling Baltimore-Washington corridor, which is generally downwind of the highly industrialized Midwest. Due to this unique sampling location, the PM2.5 observed at FME is expected to be of both local and regional sources, with relative contributions varying temporally. This variation, believed to be largely controlled by the meteorology, influences day-to-day or seasonal profiles of PM2.5 mass concentration and chemical composition. Air parcel back trajectories, which describe the path of air parcels traveling backward in time from site (receptor), reflect changes in the synoptic meteorological conditions. In this paper, an ensemble back trajectory method is employed to study the meteorology associated with each high/low PM2.5 episode in different seasons. For every sampling day, the residence time of air parcels within the eastern US at a 1° x 1° x 500 m geographic resolution can be estimated in order to resolve areas likely dominating the production of various PM2.5 components. Local sources are found to be more dominant in winter than in summer. "Factor analysis" is based on mass balance approach, providing useful insights on air pollution data. Here, a newly developed factor analysis model (UNMIX) is used to extract source profiles and contributions from the speciated PM2.5 data. Combing the model results with ensemble back trajectory method improves the understanding of the source regions and helps partition the contributions from local or more distant areas. >http://www.meto.umd.edu/~bruce/MARCH-Atl.html

  16. Face crack reduction strategy for particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  17. SENSITIVITY ANALYSIS AND EVALUATION OF MICROFACPM: A MICROSCALE MOTOR VEHICLE EMISSION FACTOR MODEL FOR PARTICULATE MATTER EMISSIONS

    EPA Science Inventory

    A microscale emission factor model (MicroFacPM) for predicting real-time site-specific motor vehicle particulate matter emissions was presented in the companion paper entitled "Development of a Microscale Emission Factor Model for Particulate Matter (MicroFacPM) for Predicting Re...

  18. 40 CFR 52.634 - Particulate matter (PM-10) Group III SIP.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group III SIP. 52.634 Section 52.634 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Hawaii § 52.634 Particulate matter...

  19. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 3 2011-07-01 2011-07-01 false Particulate matter (PM-10) Group II SIP commitments. 52.146 Section 52.146 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS Arizona § 52.146 Particulate matter...

  20. Canada-United States Transboundary Particulate Matter Science Assessment

    EPA Pesticide Factsheets

    This 2004 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  1. Aerosol Measurements in the Mid-Atlantic: Trends and Uncertainty

    NASA Astrophysics Data System (ADS)

    Hains, J. C.; Chen, L. A.; Taubman, B. F.; Dickerson, R. R.

    2006-05-01

    Elevated levels of PM2.5 are associated with cardiovascular and respiratory problems and even increased mortality rates. In 2002 we ran two commonly used PM2.5 speciation samplers (an IMPROVE sampler and an EPA sampler) in parallel at Fort Meade, Maryland (a suburban site located in the Baltimore- Washington urban corridor). The filters were analyzed at different labs. This experiment allowed us to calculate the 'real world' uncertainties associated with these instruments. The EPA method retrieved a January average PM2.5 mass of 9.3 μg/m3 with a standard deviation of 2.8 μg/m3, while the IMPROVE method retrieved an average mass of 7.3 μg/m3 with a standard deviation of 2.1 μg/m3. The EPA method retrieved a July average PM2.5 mass of 26.4 μg/m3 with a standard deviation of 14.6 μg/m3, while the IMPROVE method retrieved an average mass of 23.3 μg/m3 with a standard deviation of 13.0 μg/m3. We calculated a 5% uncertainty associated with the EPA and IMPROVE methods that accounts for uncertainties in flow control strategies and laboratory analysis. The RMS difference between the two methods in January was 2.1 μg/m3, which is about 25% of the monthly average mass and greater than the uncertainty we calculated. In July the RMS difference between the two methods was 5.2 μg/m3, about 20% of the monthly average mass, and greater than the uncertainty we calculated. The EPA methods retrieve consistently higher concentrations of PM2.5 than the IMPROVE methods on a daily basis in January and July. This suggests a systematic bias possibly resulting from contamination of either of the sampling methods. We reconstructed the mass and found that both samplers have good correlation between reconstructed and gravimetric mass, though the IMPROVE method has slightly better correlation than the EPA method. In January, organic carbon is the largest contributor to PM2.5 mass, and in July both sulfate and organic matter contribute substantially to PM2.5. Source apportionment models suggest that regional and local power plants are the major sources of sulfate, while mobile and vegetative burning factors are the major sources of organic carbon.

  2. Long-term trends of ambient particulate matter emission source contributions and the accountability of control strategies in Hong Kong over 1998-2008

    NASA Astrophysics Data System (ADS)

    Yuan, Zibing; Yadav, Varun; Turner, Jay R.; Louie, Peter K. K.; Lau, Alexis Kai Hon

    2013-09-01

    Despite extensive emission control measures targeting motor vehicles and to a lesser extent other sources, annual-average PM10 mass concentrations in Hong Kong have remained relatively constant for the past several years and for some air quality metrics, such as the frequency of poor visibility days, conditions have degraded. The underlying drivers for these long-term trends were examined by performing source apportionment on eleven years (1998-2008) of data for seven monitoring sites in the Hong Kong PM10 chemical speciation network. Nine factors were resolved using Positive Matrix Factorization. These factors were assigned to emission source categories that were classified as local (operationally defined as within the Hong Kong Special Administrative Region) or non-local based on temporal and spatial patterns in the source contribution estimates. This data-driven analysis provides strong evidence that local controls on motor vehicle emissions have been effective in reducing motor vehicle-related ambient PM10 burdens with annual-average contributions at neighborhood- and larger-scale monitoring stations decreasing by ˜6 μg m-3 over the eleven year period. However, this improvement has been offset by an increase in annual-average contributions from non-local contributions, especially secondary sulfate and nitrate, of ˜8 μg m-3 over the same time period. As a result, non-local source contributions to urban-scale PM10 have increased from 58% in 1998 to 70% in 2008. Most of the motor vehicle-related decrease and non-local source driven increase occurred over the period 1998-2004 with more modest changes thereafter. Non-local contributions increased most dramatically for secondary sulfate and secondary nitrate factors and thus combustion-related control strategies, including but not limited to power plants, are needed for sources located in the Pearl River Delta and more distant regions to improve air quality conditions in Hong Kong. PMF-resolved source contribution estimates were also used to examine differential contributions of emission source categories during high PM episodes compared to study-average behavior. While contributions from all source categories increased to some extent on high PM days, the increases were disproportionately high for the non-local sources. Thus, controls on emission sources located outside the Hong Kong Special Administrative Region will be needed to effectively decrease the frequency and severity of high PM episodes.

  3. Source Apportionment of Ambient Fine Particulate Matter in Dearborn, Michigan, using Hourly Resolved PM Chemical Composition Data

    EPA Science Inventory

    High time-resolution aerosol sampling was conducted for one month during July–August 2007 in Dearborn, MI, a non-attainment area for fine particulate matter (PM2.5) National Ambient Air Quality Standards (NAAQS). Measurements of more than 30 PM2.5 species were made using a suite o...

  4. THE RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY: MODELING AMBIENT SOURCE CONTRIBUTION TO PERSONAL AND RESIDENTIAL PM MASS CONCENTRATIONS

    EPA Science Inventory

    The Research Triangle Park (RTP) Particulate Matter (PM) Panel Study represented a one-year investigation of personal, residential and ambient PM mass concentrations across distances as large as 70 km in central North Carolina. One of the primary goals of this effort was to est...

  5. Canada-United States Transboundary Particulate Matter Science Assessment 2013

    EPA Pesticide Factsheets

    This 2013 document summarizes the findings of the Canada-U.S. subcommittee on Scientific Cooperation concerning the transboundary transport of particulate matter (PM) and PM precursors between the two countries.

  6. Barrow Black Carbon Source and Impact Study Final Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Tate

    2014-07-01

    The goal of the Barrow Black Carbon Source and Impact (BBCSI) Study was to characterize the concentration and isotopic composition of carbonaceous atmospheric particulate matter (PM) at the Atmospheric Radiation Measurement site in Barrow, AK. The carbonaceous component was characterized via measurement of the organic and black carbon (OC and BC) components of the total PM. To facilitate complete characterization of the particulate matter, filter-based collections were used, including a medium volume PM2.5 sampler and a high volume PM10 sampler. Thirty-eight fine (PM2.5) and 49 coarse (PM10) particulate matter fractions were collected at weekly and bi-monthly intervals. The PM2.5 samplermore » operated with minimal maintenance during the 12 month campaign. The PM10 sampler used for the BBCSI used standard Tisch hi-vol motors which have a known lifetime of ~1 month under constant use; this necessitated monthly maintenance and it is suggested that the motors be upgraded to industrial blowers for future deployment in the Arctic. The BBCSI sampling campaign successfully collected and archived 87 ambient atmospheric particulate matter samples from Barrow, AK from July 2012 to June 2013. Preliminary analysis of the organic and black carbon concentrations has been completed. This campaign confirmed known trends of high BC lasting from the winter through to spring haze periods and low BC concentrations in the summer.« less

  7. Trends in PM2.5 emissions, concentrations and apportionments in Detroit and Chicago

    NASA Astrophysics Data System (ADS)

    Milando, Chad; Huang, Lei; Batterman, Stuart

    2016-03-01

    PM2.5 concentrations throughout much of the U.S. have decreased over the last 15 years, but emissions and concentration trends can vary by location and source type. Such trends should be understood to inform air quality management and policies. This work examines trends in emissions, concentrations and source apportionments in two large Midwest U.S. cities, Detroit, Michigan, and Chicago, Illinois. Annual and seasonal trends were investigated using National Emission Inventory (NEI) data for 2002 to 2011, speciated ambient PM2.5 data from 2001 to 2014, apportionments from positive matrix factorization (PMF) receptor modeling, and quantile regression. Over the study period, county-wide data suggest emissions from point sources decreased (Detroit) or held constant (Chicago), while emissions from on-road mobile sources were constant (Detroit) or increased (Chicago), however changes in methodology limit the interpretation of inventory trends. Ambient concentration data also suggest source and apportionment trends, e.g., annual median concentrations of PM2.5 in the two cities declined by 3.2-3.6%/yr (faster than national trends), and sulfate concentrations (due to coal-fired facilities and other point source emissions) declined even faster; in contrast, organic and elemental carbon (tracers of gasoline and diesel vehicle exhaust) declined more slowly or held constant. The PMF models identified nine sources in Detroit and eight in Chicago, the most important being secondary sulfate, secondary nitrate and vehicle emissions. A minor crustal dust source, metals sources, and a biomass source also were present in both cities. These apportionments showed that the median relative contributions from secondary sulfate sources decreased by 4.2-5.5% per year in Detroit and Chicago, while contributions from metals sources, biomass sources, and vehicles increased from 1.3 to 9.2% per year. This first application of quantile regression to trend analyses of speciated PM2.5 data reveals that source contributions to PM2.5 varied as PM2.5 concentrations decreased, and that the fraction of PM2.5 due to emissions from vehicles and other local emissions has increased. Each data source has uncertainties, but emissions, monitoring and PMF data provide complementary information that can help to discern trends and identify contributing sources. Study results emphasize the need to target specific sources in policies and regulations aimed at decreasing PM2.5 concentrations in urban areas.

  8. Removal efficiency of particulate matters at different underlying surfaces in Beijing.

    PubMed

    Liu, Jiakai; Mo, Lichun; Zhu, Lijuan; Yang, Yilian; Liu, Jiatong; Qiu, Dongdong; Zhang, Zhenming; Liu, Jinglan

    2016-01-01

    Particulate matter (PM) pollution has been increasingly becoming serious in Beijing and has drawn the attention of the local government and general public. This study was conducted during early spring of 2013 and 2014 to monitor the concentration of PM at three different land surfaces (bare land, urban forest, and lake) in the Olympic Park in Beijing and to analyze its effect on the concentration of meteorological factors and the dry deposition onto different land cover types. The results showed that diurnal variation of PM concentrations at the three different land surfaces had no significant regulations, and sharp short-term increases in PM10 (particulate matter having an aerodynamic diameter <10 μm) occurred occasionally. The concentrations also differed from one land cover type to another at the same time, but the regulation was insignificant. The most important meteorological factor influencing the PM concentration is relative humidity; it is positively correlated with the PM concentration. While in the forests, the wind speed and irradiance also influenced the PM concentration by affecting the capture capacity of trees and dry deposition velocity. Other factors were not correlated with or influenced by the PM concentration. In addition, the hourly dry deposition in unit area (μg/m(2)) onto the three types of land surfaces and the removal efficiency based on the ratio of dry deposition and PM concentration were calculated. The results showed that the forest has the best removal capacity for both PM2.5 (particulate matter having an aerodynamic diameter <2.5 μm) and PM10 because of the faster deposition velocity and relatively low resuspension rate. The lake's PM10 removal efficiency is higher than that of the bare land because of the relatively higher PM resuspension rates on the bare land. However, the PM2.5 removal efficiency is lower than that of the bare land because of the significantly lower dry deposition velocity.

  9. Measurement and modeling of particulate matter concentrations: Applying spatial analysis and regression techniques to assess air quality.

    PubMed

    Sajjadi, Seyed Ali; Zolfaghari, Ghasem; Adab, Hamed; Allahabadi, Ahmad; Delsouz, Mehri

    2017-01-01

    This paper presented the levels of PM 2.5 and PM 10 in different stations at the city of Sabzevar, Iran. Furthermore, this study was an attempt to evaluate spatial interpolation methods for determining the PM 2.5 and PM 10 concentrations in the city of Sabzevar. Particulate matters were measured by Haz-Dust EPAM at 48 stations. Then, four interpolating models, including Radial Basis Functions (RBF), Inverse Distance Weighting (IDW), Ordinary Kriging (OK), and Universal Kriging (UK) were used to investigate the status of air pollution in the city. Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) were employed to compare the four models. The results showed that the PM 2.5 concentrations in the stations were between 10 and 500 μg/m 3 . Furthermore, the PM 10 concentrations for all of 48 stations ranged from 20 to 1500 μg/m 3 . The concentrations obtained for the period of nine months were greater than the standard limits. There was difference in the values of MAPE, RMSE, MBE, and MAE. The results indicated that the MAPE in IDW method was lower than other methods: (41.05 for PM 2.5 and 25.89 for PM 10 ). The best interpolation method for the particulate matter (PM 2.5 and PM 10 ) seemed to be IDW method. •The PM 10 and PM 2.5 concentration measurements were performed in the period of warm and risky in terms of particulate matter at 2016.•Concentrations of PM 2.5 and PM 10 were measured by a monitoring device, environmental dust model Haz-Dust EPAM 5000.•Interpolation is used to convert data from observation points to continuous fields to compare spatial patterns sampled by these measurements with spatial patterns of other spatial entities.

  10. Traffic-related air pollution impact on mouse brain accelerates myelin and neuritic aging changes with specificity for CA1 neurons

    PubMed Central

    Woodward, NC; Pakbin, P; Saffari, A; Shirmohammadi, F; Haghani, A; Sioutas, C; Cacciottolo, M; Morgan, TE; Finch, CE

    2017-01-01

    Traffic-related air pollution (TRAP) is associated with lower cognition and reduced white matter volume in older adults, specifically for particulate matter <2.5 μm diameter (PM2.5). Rodents exposed to TRAP have shown microglial activation and neuronal atrophy. We further investigated age differences of TRAP exposure, with focus on hippocampus for neuritic atrophy, white matter degeneration, and microglial activation. Young and middle-aged mice (3 and 18 month female C57BL/6J) were exposed to nanoscale-PM (nPM, <0.2 μm diameter). Young mice showed selective changes in the hippocampal CA1 region, with neurite atrophy (−25%), decreased MBP (−50%), and increased Iba1 (+50%), with dentate gyrus relatively unaffected. Exposure to nPM of young mice decreased GluA1 protein (−40%) and increased TNFa mRNA (10×). Older controls had age changes approximating nPM effects on young, with no response to nPM, suggesting an age ceiling effect. The CA1 selective vulnerability in young mice parallels CA1 vulnerability in Alzheimer’s disease. We propose that TRAP associated human cognitive and white matter changes involve hippocampal responses to nPM that begin at younger ages. PMID:28212893

  11. Source apportionment of speciated PM2.5 over Halifax, Nova Scotia, during BORTAS-B, using pragmatic mass closure and principal component analysis

    NASA Astrophysics Data System (ADS)

    Gibson, Mark D.; Kuchta, James; Chisholm, Lucy; Duck, Tom; Hopper, Jason; Beauchamp, Stephen; Waugh, David; King, Gavin; Pierce, Jeffrey; Li, Zhengyan; Leaitch, Richard; Ward, Tony J.; Haelssig, Jan; Palmer, Paul I.

    2013-04-01

    During BORTAS-B, 42 days of contiguous PM2.5 filter samples were collected during the summer of 2011 in Halifax, Nova Scotia. The aim of the PM2.5 filter sampling was to apportion the source contribution to the total PM2.5 mass concentration in Halifax to inform and validate other surface measurements and chemical transport models related to BORTAS-B. Sampling was conducted on the roof of a Dalhousie University building at a height of 15 m. The building is located in a residential area of Halifax. Continuous black carbon (BC) was measured using a Magee AE-42 aethalometer. Continuous organic carbon was measured using an Aerodyne, Aerosol Chemical Speciation Monitor. Daily teflon filter samples were collected for the determination of fine particulate with a median aerodynamic diameter less than or equal to 2.5 microns (PM2.5). An additional, daily, nylon filter was used for the determination of PM2.5 cations and anions by IC. The PM2.5 teflon filter was analysed for 33 metals by XRF and 10 trace metals by ICP-MS. The biomass burning marker levoglucosan was analysed by GC-MS following derivatization. Excellent agreement (R2 = 0.88) was observed between continuous and filter based measurements with a gradient of 2.76. The median (min : max) PM2.5 mass concentration during BORTAS-B = 3.9 (0.08 : 13.7) μg-m3. The median (min : max) continuous BC = 0.39 (0.12 : 1.03); SO4 = 0.47 (0.14 : 5.59); NO3 = 0.067 (0.007 : 0.64); OC = 0.77 (0.18 : 2.77); NH4 = 0.15 (0:003 : 1.45); Cl = 0.011 (0.0019 : 0.32); Fe = 0.018 (0.0011 : 0.097); Al = 0.011 (0.0091 : 0.086); Si = 0.03 (0.0044 : 0.29); V = 0.0026 (0.0016 : 0.017) and Ni = 0.0007 (0.0005 : 0.0037) μg-m3 respectively. Absolute principal component scores (APCS) and pragmatic mass closure (PMC) will be used to identify the sources driving the observed PM2.5 variability over Halifax, during BORTAS-B. A comparison of APCS and PMC PM2.5 receptor model output results will be presented. These model data will provide further insight into the source contribution to summertime surface PM2.5 mass in Halifax, Nova Scotia, Canada.

  12. Using Lagrangian Chemical Transport Modeling to Assess the Impact of Biomass Burning on Ozone and PM2.5

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Brodowski, C. M.

    2017-12-01

    One of the challenges of using in situ measurements to study the air quality and climate impacts of biomass burning is correctly determining the contribution of biomass burning sources to the measured ambient concentrations. This is especially important for policy purposes, as the ozone (O3) and fine particulate matter (PM2.5) from natural wildfires should not be confused with that from controllable anthropogenic sources. We have developed a Lagrangian chemical transport model called STILT-ASP that is able to quantify the impact of wildfire events on O3 and PM2.5 measurements made at surface monitoring sites, by mobile laboratories, or by aircraft. STILT-ASP is built by coupling the Stochastic Time Inverted Lagrangian Transport (STILT) model with AER's Aerosol Simulation Program (ASP), which has been used in many studies of the gas and aerosol chemistry of biomass burning smoke. Here we present recent revisions made in STILT-ASP v2.0, including the use of more detailed chemical speciation of fire emissions and biogenic emissions calculated using the MEGAN model with meteorological inputs consistent with those used to drive STILT. We will present the results of an evaluation of the performance of STILT-ASP v2.0 using surface, mobile lab, and aircraft data from the 2013 Houston DISCOVER-AQ campaign. STILT-ASP v2.0 showed good average performance for O3 during the peak of the high O3 episodes on Sept. 25-26, 2013, with a mean bias of -4 ppbv. We will also demonstrate the use of STILT-ASP to evaluate the impact of biomass burning on O3 and PM2.5 in urban areas and to assess the impact of remote fires on the boundary conditions used in Eulerian chemical transport models like CAMx.

  13. ANALYSIS OF COMPONENTS OF PARTICULATE MATTER (PM2.5) FOR AN EXPOSURE ASSESSMENT STUDY OF TWO SENSITIVE COHORTS IN ATLANTA, GA

    EPA Science Inventory

    Introduction
    An exposure assessment study was conducted in Atlanta, GA during fall 1999 and spring 2000 to examine the short-term effects of exposure to particulate matter and gaseous air pollutants on heart rate variability (HRV). Characterization of particulate matter (PM...

  14. 78 FR 27062 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-09

    ... requirement for inclusion of condensable emissions of particulate matter (condensables) within the definition of ``regulated new source review (NSR) pollutant'' for fine particulate matter (PM 2.5 ) and particulate matter emissions less than or equal to ten micrometers in diameter (PM 10 ). In addition, because...

  15. PRELIMINARY PARTICULATE MATTER MASS CONCENTRATIONS ASSOCIATED WITH LONGITUDINAL PANEL STUDIES "ASSESSING HUMAN EXPOSURES OF HIGH RISK SUBPOPULATIONS TO PARTICULATE MATTER"

    EPA Science Inventory

    The NERL Particulate Matter Longitudinal Panel Studies were used to characterize temporal variations of personal exposure to PM and related co-pollutants, including that of PM measured at ambient sites. These studies were fundamental in understanding the associations between p...

  16. 75 FR 24943 - Adequacy Status of the Indianapolis, Indiana Submitted Annual Fine Particulate Matter Attainment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-06

    ... ENVIRONMENTAL PROTECTION AGENCY [EPA-R05-OAR-2008-0398; FRL-9145-9] Adequacy Status of the Indianapolis, Indiana Submitted Annual Fine Particulate Matter Attainment Demonstration for Transportation... (MVEBs) for fine particulate matter (PM 2.5 ) and oxides of nitrogen (NOx) as a precursor to PM 2.5 in...

  17. 77 FR 63234 - Approval and Promulgation of Implementation Plans; North Carolina 110(a)(1) and (2...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... and 2006 Fine Particulate Matter National Ambient Air Quality Standards AGENCY: Environmental... SIP addresses emissions of particulate matter generally, and does not distinguish between PM 10 and PM 2.5. The Commenter also references the particulate matter maximum emission rates for two coal-fired...

  18. EMISSIONS OF BIOGENIC OXIDANT AND PM PRECURSORS- VERY HIGH REACTIVITY VOCS AND SURFACE LAYER CHEMISTRY ABOVE FORESTS

    EPA Science Inventory

    Recent analysis of ambient fine particulate matter (PM2.5) has found that significant portions of the organic matter contained therein are of biogenic origin. Radiocarbon (C-14) measurements of the bulk organic matter in fine particles collected near Nashville, TN, found that 40...

  19. Speciation of organic fractions does matter for aerosol source apportionment. Part 2: Intensive short-term campaign in the Paris area (France).

    PubMed

    Srivastava, D; Favez, O; Bonnaire, N; Lucarelli, F; Haeffelin, M; Perraudin, E; Gros, V; Villenave, E; Albinet, A

    2018-09-01

    The present study aimed at performing PM 10 source apportionment, using positive matrix factorization (PMF), based on filter samples collected every 4h at a sub-urban station in the Paris region (France) during a PM pollution event in March 2015 (PM 10 >50μgm -3 for several consecutive days). The PMF model allowed to deconvolve 11 source factors. The use of specific primary and secondary organic molecular markers favoured the determination of common sources such as biomass burning and primary traffic emissions, as well as 2 specific biogenic SOA (marine+isoprene) and 3 anthropogenic SOA (nitro-PAHs+oxy-PAHs+phenolic compounds oxidation) factors. This study is probably the first one to report the use of methylnitrocatechol isomers as well as 1-nitropyrene to apportion secondary OA linked to biomass burning emissions and primary traffic emissions, respectively. Secondary organic carbon (SOC) fractions were found to account for 47% of the total OC. The use of organic molecular markers allowed the identification of 41% of the total SOC composed of anthropogenic SOA (namely, oxy-PAHs, nitro-PAHs and phenolic compounds oxidation, representing 15%, 9%, 11% of the total OC, respectively) and biogenic SOA (marine+isoprene) (6% in total). Results obtained also showed that 35% of the total SOC originated from anthropogenic sources and especially PAH SOA (oxy-PAHs+nitro-PAHs), accounting for 24% of the total SOC, highlighting its significant contribution in urban influenced environments. Anthropogenic SOA related to nitro-PAHs and phenolic compounds exhibited a clear diurnal pattern with high concentrations during the night indicating the prominent role of night-time chemistry but with different chemical processes involved. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. The short-term association of selected components of fine particulate matter and mortality in the Denver Aerosol Sources and Health (DASH) study

    EPA Science Inventory

    Associations of short-term exposure to fine particulate matter (PM2.5) with daily mortality may be due to specific PM2.5 chemical components. Objectives: Daily concentrations of PM2.5 chemical species were measured over five consecutive years in Denver, CO to investigate whethe...

  1. EVALUATION OF AN ANNUAL SIMULATION OF OZONE AND FINE PARTICULATE MATTER OVER THE CONTINENTAL UNITED STATES - WHICH TEMPORAL FEATURES ARE CAPTURED?

    EPA Science Inventory

    Motivated by growing concerns about the detrimental effects of fine particulate matter (PM2.5) on human health, the U.S. Environmental Protection Agency (EPA) recently promulgated a National Ambient Air Quality Standard (NAAQS) for PM2.5. The PM2.5 standard includes a 24-hour li...

  2. 2015 Soft Condensed Matter Physics: Self-Assembly and Active Matter GRC/GRS

    DTIC Science & Technology

    2015-10-20

    or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O...were Minorities – 0% Hispanic, 14% Asian and 0% African American. Approximately 29% of the participants at the 2015 meeting were women. In designing ...Trees" 8:10 pm - 8:30 pm Discussion 8:30 pm - 9:10 pm Todd Yeates (University of California, Los Angeles, USA) "Using Ideas in Symmetry to Design

  3. Metal Ion Speciation and Dissolved Organic Matter Composition in Soil Solutions

    NASA Astrophysics Data System (ADS)

    Benedetti, M. F.; Ren, Z. L.; Bravin, M.; Tella, M.; Dai, J.

    2014-12-01

    Knowledge of the speciation of heavy metals and the role of dissolved organic matter (DOM) in soil solution is a key to understand metal mobility and ecotoxicity. In this study, soil column-Donnan membrane technique (SC-DMT) was used to measure metal speciation of Cd, Cu, Ni, Pb, and Zn in eighteen soil solutions, covering a wide range of metal sources and concentrations. DOM composition in these soil solutions was also determined. Our results show that in soil solution Pb and Cu are dominant in complex form, whereas Cd, Ni and Zn mainly exist as free ions; for the whole range of soil solutions, only 26.2% of DOM is reactive and consists mainly of fulvic acid (FA). The metal speciation measured by SC-DMT was compared to the predicted ones obtained via the NICA-Donnan model using the measured FA concentrations. The free ion concentrations predicted by speciation modelling were in good agreement with the measurements. Diffusive gradients in thin-films gels (DGT) were also performed to quantify the labile metal species in the fluxes from solid phase to solution in fourteen soils. The concentrations of metal species detected by DGT were compared with the free ion concentrations measured by DMT and the maximum concentrations calculated based on the predicted metal speciation in SC-DMT soil solutions. It is concluded that both inorganic species and a fraction of FA bound species account for the amount of labile metals measured by DGT, consistent with the dynamic features of this technique. The comparisons between measurements using analytical techniques and mechanistic model predictions provided mutual validation in their performance. Moreover, we show that to make accurate modelling of metal speciation in soil solutions, the knowledge of DOM composition is the crucial information, especially for Cu; like in previous studies the modelling of Pb speciation is not optimal and an updated of Pb generic binding parameters is required to reduce model prediction uncertainties.

  4. Zinc speciation in the suspended particulate matter of an urban river (Orge, France): influence of seasonality and urbanization gradient.

    PubMed

    Le Pape, Pierre; Quantin, Cécile; Morin, Guillaume; Jouvin, Delphine; Kieffer, Isabelle; Proux, Olivier; Ghanbaja, Jaafar; Ayrault, Sophie

    2014-10-21

    Among trace metal pollutants, zinc is the major one in the rivers from the Paris urban area, such as the Orge River, where Zn concentration in the suspended particulate matter (SPM) can reach 2000 mg/kg in the most urbanized areas. In order to better understand Zn cycling in such urban rivers, we have determined Zn speciation in SPM as a function of both the seasonal water flow variations and the urbanization gradient along the Orge River. Using TEM/SEM-EDX and linear combination fitting (LCF) of EXAFS data at the Zn K-edge, we show that Zn mainly occurs as tetrahedrally coordinated Zn(2+) sorbed to ferrihydrite (37-46%), calcite (0-37%), amorphous SiO2 (0-21%), and organic-P (0-30%) and as octahedrally coordinated Zn(2+) in the octahedral layer of phyllosilicates (18-25%). Moreover, the Zn speciation pattern depends on the river flow rate. At low water flow, Zn speciation changes along the urbanization gradient: geogenic forms of Zn inherited from soil erosion decrease relative to Zn bound to organic-phosphates and amorphous SiO2. At high water flow, Zn speciation is dominated by soil-borne forms of Zn regardless the degree of urbanization, indicating that erosion of Zn-bearing minerals dominates the Zn contribution to SPM under such conditions.

  5. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bone, Sharon E.; Dynes, James J.; Cliff, John

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO 2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yetmore » been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  6. Uranium(IV) adsorption by natural organic matter in anoxic sediments

    DOE PAGES

    Bone, Sharon E.; Dynes, James J.; Cliff, John; ...

    2017-01-09

    Uranium is an important carbon-free fuel source and environmental contaminant that accumulates in the tetravalent state, U(IV), in anoxic sediments, such as ore deposits, marine basins, and contaminated aquifers. However, little is known about the speciation of U(IV) in low-temperature geochemical environments, inhibiting the development of a conceptual model of U behavior. Until recently, U(IV) was assumed to exist predominantly as the sparingly soluble mineral uraninite (UO 2+x) in anoxic sediments; however, studies now show that this is not often the case. Yet a model of U(IV) speciation in the absence of mineral formation under field-relevant conditions has not yetmore » been developed. Uranium(IV) speciation controls its reactivity, particularly its susceptibility to oxidative mobilization, impacting its distribution and toxicity. Here we show adsorption to organic carbon and organic carbon-coated clays dominate U(IV) speciation in an organic-rich natural substrate under field-relevant conditions. Whereas previous research assumed that U(IV) speciation is dictated by the mode of reduction (i.e., whether reduction is mediated by microbes or by inorganic reductants), our results demonstrate that mineral formation can be diminished in favor of adsorption, regardless of reduction pathway. Projections of U transport and bioavailability, and thus its threat to human and ecosystem health, must consider U(IV) adsorption to organic matter within the sediment environment.« less

  7. Source-specific speciation profiles of PM2.5 for heavy metals and their anthropogenic emissions in China.

    PubMed

    Liu, Yayong; Xing, Jia; Wang, Shuxiao; Fu, Xiao; Zheng, Haotian

    2018-08-01

    Heavy metals are concerned for its adverse effect on human health and long term burden on biogeochemical cycling in the ecosystem. In this study, a provincial-level emission inventory of 13 kinds of heavy metals including V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Sn, Sb, Ba and Pb from 10 anthropogenic sources was developed for China, based on the 2015 national emission inventory of primary particulate matters and source category-specific speciation profiles collected from 50 previous studies measured in China. Uncertainties associated with the speciation profiles were also evaluated. Our results suggested that total emissions of the 13 types of heavy metals in China are estimated at about 58000 ton for the year 2015. The iron production is the dominant source of heavy metal, contributing 42% of total emissions of heavy metals. The emissions of heavy metals vary significantly at regional scale, with largest amount of emissions concentrated in northern and eastern China. Particular, high emissions of Cr, Co, Ni, As and Sb (contributing 8%-18% of the national emissions) are found in Shandong where has large capacity of industrial production. Uncertainty analysis suggested that the implementation of province-specific source profiles in this study significantly reduced the emission uncertainties from (-89%, 289%) to (-99%, 91%), particularly for coal combustion. However, source profiles for industry sectors such as non-metallic mineral manufacturing are quite limited, resulting in a relative high uncertainty. The high-resolution emission inventories of heavy metals are essential not only for their distribution, deposition and transport studies, but for the design of policies to redress critical atmospheric environmental hazards at local and regional scales. Detailed investigation on source-specific profile in China are still needed to achieve more accurate estimations of heavy metals in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. MOVES2014: Fuel Effects, Toxics Emissions, Total Organic Gases (TOG) and PM Speciation Analysis

    EPA Science Inventory

    The report updates fuel effects applied in MOVES2013 for selected fuel content and bulk fuel properties in gasolines containing up to 20% ethanol for gasoline fuel sulfur content and for fuel ethanol content for E85 and similar blends. These adjustments are applied to vehicle exh...

  9. Integrated Science Assessment (ISA) for Particulate Matter ...

    EPA Pesticide Factsheets

    EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Particulate Matter (PM). This report is EPA’s latest evaluation of the scientific literature on the potential human health and welfare effects associated with ambient exposures to particulate matter (PM). The development of this document is part of the Agency's periodic review of the national ambient air quality standards (NAAQS) for PM. The recently completed PM ISA and supplementary annexes, in conjunction with additional technical and policy assessments developed by EPA’s Office of Air and Radiation, will provide the scientific basis to inform EPA decisions related to the review of the current PM NAAQS. Key information and judgments formerly contained in an Air Quality Criteria Document (AQCD) for PM are incorporated in this assessment. Additional details of the pertinent literature published since the last review, as well as selected older studies of particular interest, are included in a series of annexes. This ISA thus serves to update and revise the evaluation of the scientific evidence available at the time of the previous review of the NAAQS for PM that was concluded in 2006.

  10. Characterization of particulate matter sources in an urban environment.

    PubMed

    Mazzei, F; D'Alessandro, A; Lucarelli, F; Nava, S; Prati, P; Valli, G; Vecchi, R

    2008-08-15

    Daily time series measurements of elements or compounds are widely used to apportion the contribution of specific sources of particulate matter concentration in the atmosphere. We present results obtained for the urban area of Genoa (Italy) based on several hundred of PM10, PM2.5 and PM1 daily samples collected in sites with different geo-morphological and urbanization characteristics. Elemental concentrations of Na to Pb were obtained through Energy Dispersive X-Ray Fluorescence (ED-XRF), and the contributions of specific sources of particulate matter (PM) concentration were apportioned through Positive Matrix Factorization (PMF). By sampling at different sites we were able to obtain, in each PM fraction, the average and stable values for the tracers of specific sources, in particular traffic (Cu, Zn, Pb) and heavy oil combustion (V, Ni). We could also identify and quote the contamination of anthropogenic PM in "natural" sources (sea, soil dust). Sampling at several sites in the same urban area allowed us to resolve local characteristics as well as to quote average values.

  11. Markers of inflammation in alveolar cells exposed to fine particulate matter from prescribed fires and urban air.

    PubMed

    Myatt, Theodore A; Vincent, Michael S; Kobzik, Lester; Naeher, Luke P; MacIntosh, David L; Suh, Helen

    2011-10-01

    To assess the effect of fine particulate matter (PM(2.5)) from different particle sources on tumor necrosis factor- (TNF-) α, we measured TNF production from rat alveolar macrophages (AM) and human dendritic cells (DC) exposed to PM(2.5) from different sources. Fire-related PM(2.5) samples, rural ambient, and urban indoor and outdoor samples were collected in the Southeast United States. Tumor necrosis factor release was measured from rat AM and human DC following incubation with PM(2.5). Tumor necrosis factor release in AMs was greatest for fire-related PM(2.5) compared with other samples (TNF: P value = 0.005; mortality: P value = 0.005). Tumor necrosis factor releases from the DCs and AMs exposed to fire-associated PM(2.5) were strongly correlated (r = 0.87, P value < 0.0001). Particulate matter exposure produces TNF release consistent with pulmonary inflammation in rat AMs and human DCs, with the response in rat AMs differing by particle source.

  12. Outdoor air pollution as a possible modifiable risk factor to reduce mortality in post-stroke population.

    PubMed

    Desikan, Anita

    2017-03-01

    Outdoor air pollution is a known risk factor for mortality and morbidity. The type of air pollutant most reliably associated with disease is particulate matter (PM), especially finer particulate matter that can reach deeper into the lungs like PM 2.5 (particulate matter diameter < 2.5 μm). Some subpopulations may be particularly vulnerable to PM pollution. This review focuses on one subgroup, long-term stroke survivors, and the emerging evidence suggesting that survivors of a stroke may be at a higher risk from the deleterious effects of PM pollution. While the mechanisms for mortality are still under debate, long-term stroke survivors may be vulnerable to similar mechanisms that underlie the well-established association between PM pollution and cardiovascular disease. The fact that long-term stroke survivors of ischemic, but not hemorrhagic, strokes appear to be more vulnerable to the risk of death from higher PM pollution may also bolster the connection to ischemic heart disease. Survivors of an ischemic stroke may be more vulnerable to dying from higher concentrations of PM pollution than the general population. The clinical implications of this association suggest that reduced exposure to PM pollution may result in fewer deaths amongst stroke survivors.

  13. Determination of the distribution and speciation of selenium in an argillaceous sample using chemical extractions and post-extractions analyses: application to the hydrogeological experimental site of Poitiers.

    PubMed

    Bassil, Joseph; Naveau, Aude; Bueno, Maïté; Di Tullo, Pamela; Grasset, Laurent; Kazpard, Véronique; Razack, Moumtaz

    2016-05-01

    To better understand selenium's dynamics in environmental systems, the present study aims to investigate selenium speciation and distribution in black argillaceous sediments, partially fulfilling karstic cavities into the Hydrogeological Experimental Site of Poitiers. These sediments are suspected to be responsible for selenium concentrations exceeding the European Framework Directive's drinking water limit value (10 μg L(-1)) in some specific wells. A combination of a sequential extractions scheme and single parallel extractions was thus applied on a representative argillaceous sample. Impacts of the extractions on mineral dissolution and organic matter mobilization were followed by quantifying major cations and total organic carbon (TOC) in the aqueous extracts. The nature of the released organic matter was characterized using thermochemolysis coupled with gas chromatography-mass spectrometry (GC-MS). About 10 % of selenium from the black argillaceous studied matrix could be defined as 'easily mobilizable' when the majority (around 70 %) revealed associated with the aliphatic and alkaline-soluble organic matter's fraction (about 20 %). In these fractions, selenium speciation was moreover dominated by oxidized species including a mixture of Se(VI) (20-30 %) and Se(IV) (70-80 %) in the 'easily mobilizable' fraction, while only Se(IV) was detected in alkaline-soluble organic matter fraction.

  14. 78 FR 19164 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 [EPA-R05-OAR-2012-0088; FRL-9783-4] Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards AGENCY: Environmental... submitted a request to approve a section of its particulate matter (PM) rules on February 23, 2012. The PM...

  15. Indoor air quality in university classrooms and relative environment in terms of mass concentrations of particulate matter.

    PubMed

    Gaidajis, George; Angelakoglou, Komninos

    2009-10-01

    The mass concentrations of coarse (PM10) and fine (PM2.5) particulate matter were measured in different classrooms and relevant indoors areas of Democritus University, School of Engineering, Xanthi, with portable aerosol monitoring equipment. Two sampling campaigns were conducted in different seasons. The results indicated that the average concentrations in classrooms ranged from 32-188 microg/m3 and 25-151 microg/m3 for PM10 and PM2.5, respectively. Concentration levels above 300 microg/m3 were usually recorded, while the PM2.5/PM10 ratio was about 0.8. As expected, PM10 and PM2.5 average concentrations were significantly higher in the open-access meeting place of common use, indicating the significance of student trespassing and occasional smoking in the deterioration of indoors air quality.

  16. Chemical characterization of outdoor and subway fine (PM(2.5-1.0)) and coarse (PM(10-2.5)) particulate matter in Seoul (Korea) by computer-controlled scanning electron microscopy (CCSEM).

    PubMed

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M

    2015-02-13

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%-60% (by weight) of fine particulate matter larger than 1 µm (PM(2.5-1.0)) in outdoor samples and 18% of PM2.5-1.0 in subway samples. Iron-containing particles accounted for only 3%-6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM(10-2.5)) with soil/road dust particles dominating outdoor samples (66%-83%) and iron-containing particles contributing most to subway PM(10-2.5) (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM(10-2.5) than PM(2.5-1.0). Also as expected, the mass fraction of iron-containing particles was substantially less in PM(10-2.5) than in PM(2.5-1.0). Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM(2.5-1.0) and PM(10-2.5) simultaneously and by composition at multiple locations.

  17. Measurements of particulate matter within the framework of the European Monitoring and Evaluation Programme (EMEP) I. First results.

    PubMed

    Lazaridis, Mihalis; Semb, Arne; Larssen, Steinar; Hjellbrekke, Anne-Gunn; Hov, Oystein; Hanssen, Jan Erik; Schaug, Jan; Tørseth, Kjetil

    2002-02-21

    Particulate matter (PM) monitoring presents a new challenge to the transboundary air pollution strategies in Europe. Evidence for the role of long-range transport of particulate matter and its significant association with a wide range of adverse health effects has urged for the inclusion of particulate matter within the European Monitoring and Evaluation Programme (EMEP) framework. Here we review available data on PM physico-chemical characteristics within the EMEP framework. In addition we identify future research needs for the characterisation of the background PM in Europe that include detailed harmonised measurements of mass, size and chemical composition (mass closure) of the ambient aerosol.

  18. Engineering system for simultaneous inhalation exposures of rodents to fine and ultrafine concentrated ambient particulate matter from a common air source

    EPA Science Inventory

    Exposure to elevated levels of ambient particulate matter (PM) smaller than 2.5 11m (PM2.5) has been associated with adverse health effects in both humans and animals. Specific properties of either fine (0.1-2.5 11m), or ultrafine « 0.1 11m) PM responsible for exposure related he...

  19. Characterization of coarse particulate matter in school gyms.

    PubMed

    Braniš, Martin; Šafránek, Jiří

    2011-05-01

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM(10-2.5) and PM(2.5-1.0)) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM(10-2.5) 4.1-7.4 μg m(-3) and PM(2.5-1.0) 2.0-3.3 μg m(-3)) than indoors (average PM(10-2.5) 13.6-26.7 μg m(-3) and PM(2.5-1.0) 3.7-7.4 μg m(-3)). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM(10-2.5) and 1.4-4.8 for the PM(2.5-1.0) values. Under extreme conditions, the I/O ratios reached 180 (PM(10-2.5)) and 19.1 (PM(2.5-1.0)). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. PREDICTING POPULATION EXPOSURES TO PM10 AND PM 2.5

    EPA Science Inventory

    An improved model for human exposure to particulate matter (PM), specifically PM10 and PM2.5 is under development by the U.S. EPA/NERL. This model will incorporate data from new PM exposure measurement and exposure factors research. It is intended to be used to predict exposure...

  1. Levels, Composition and Sources of PM in the Mexico City Metropolitan Area During the MILAGRO Campaign

    NASA Astrophysics Data System (ADS)

    Querol, X.; Pey, J.; Minguillon, M. C.; Perez, N.; Alastuey, A.; Moreno, T.; Bernabe, R.; Blanco, S.; Cardenas, B.

    2007-05-01

    Particle air pollution in urban agglomerations comes mostly from anthropogenic sources, mainly traffic, industrial processes, energy production, domestic and residential emissions, construction, but also a minor contribution from natural sources may be expected (bioaerosols, soil dust, marine aerosol). Once emitted into the atmosphere, this complex mixture of pollutants may be transformed as a function of the ambient conditions and the interaction among the different PM components, and also between PM components and gaseous pollutants. This system is especially complex in mega-cities due to the large emission volumes of PM components and gaseous precursors, the high variability and broad distribution of emission sources, and the possible long range transport of the polluted air masses. Speciation studies help to identify major sources of PM components with the end objective of applying plans and programs for PM pollution abatement. In this framework, concentration levels and compositions of particulate matter (PM2.5, PM10 and TSP) have been measured simultaneously at two sites in the Mexico City Metropolitan Area (T0 and CENICA) and at one site 50 km away from Mexico City (T1) during the MILAGRO campaign (1st to 31st March 2006). Spatial and time (day and night) variations have been analysed. Coarse fraction levels were higher at T1 than at CENICA and T0, contrary to what was expected. This was due to the important soil re-suspension at T1, contributing significantly to the crustal load. Moreover, crustal levels were higher during daytime than during nights at all sites, while some secondary compounds (sulphate and ammonium) presented an opposite trend. Regarding trace elements, levels of Pb, Zn and Cd were higher at T0 than at CENICA and T1, probably due to traffic contribution. Arsenic levels did not show a clear pattern, being alternatively higher at CENICA and T0. Two intense episodes of Hg particulate have been recorded, more noticeable at T1 than at the urban sites. V and Ni showed the same evolution at all sites and fractions, being alternatively higher at the three sites. In order to identify the sources of the studied pollutants, a statistical analysis has been carried out. Crustal, regional and industrial sources were identified at the three sites. Moreover, traffic and fuel combustion sources were found at the urban sites. Finally, a metallurgy source was detected at T1 and CENICA. Nevertheless these results must be considered as indicative of the possible sources but not completely definitive due to the relative low number of samples.

  2. [Impacts of airborne particulate matter and its components on respiratory system health].

    PubMed

    Cao, L M; Zhou, Y; Zhang, Z; Sun, W W; Mu, G; Chen, W H

    2016-12-06

    Nowadays, particulate air pollution has been a global environmental problem. Numerous studies has shown that long-term exposure to high level of airborne particulate matter (PM) can damage human health. Respiratory system, as a direct portal to contact with particulate matter, can be more susceptible to airborne particulates. Summarizing latest five-year epidemiological research, the present review is focused on the effects of PM on respiratory system health in different age groups. In detail, we investigated the harmful effect of PM, or its components on three common respiratory diseases, including lung function decline, chronic obstructive pulmonary disease (COPD) and asthma. The result showed that, to a certain degree, PM could induce the decline of lung function, the development and the exacerbation of COPD and asthma by oxidative stress and inflammatory reaction. And it may prompt that exposure to PM can be an improtant risk factor for the respiratory system health.

  3. OPEN PATH OPTICAL SENSING OF PARTICULATE MATTER

    EPA Science Inventory

    The paper discusses the concepts behind recent developments in optical remote sensing (ORS) and the results from experiments. Airborne fugitive and fine particulate matter (PM) from various sources contribute to exceedances of state and federal PM and visibility standards. Recent...

  4. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities

    NASA Astrophysics Data System (ADS)

    Amato, Fulvio; Alastuey, Andrés; Karanasiou, Angeliki; Lucarelli, Franco; Nava, Silvia; Calzolai, Giulia; Severi, Mirko; Becagli, Silvia; Gianelle, Vorne L.; Colombi, Cristina; Alves, Celia; Custódio, Danilo; Nunes, Teresa; Cerqueira, Mario; Pio, Casimiro; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Reche, Cristina; Cruz Minguillón, María; Manousakas, Manousos-Ioannis; Maggos, Thomas; Vratolis, Stergios; Harrison, Roy M.; Querol, Xavier

    2016-03-01

    The AIRUSE-LIFE+ project aims at characterizing similarities and heterogeneities in particulate matter (PM) sources and contributions in urban areas from southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB and MLN-UB), one suburban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples during 12 months (from January 2013 on) simultaneously at the five cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these data sets in a harmonized way for each city. The sum of vehicle exhaust (VEX) and non-exhaust (NEX) contributes between 3.9 and 10.8 µg m-3 (16-32 %) to PM10 and 2.3 and 9.4 µg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulfate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %), mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB, to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but is again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and is used as fuel in 96 % of homes, while in other cities, PM levels increase on an annual basis by 1-9 µg m-3 due to biomass burning influence. Other significant sources are the following. - Local dust, 7-12 % of PM10 at SUB and UB sites and 19 % at the TR site, revealing a contribution from road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industry, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR, but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB, but less than 4 % in the other cities). During high pollution days, the largest sources (i.e. excluding secondary aerosol factors) of PM10 and PM2.5 are VEX + NEX in BCN-UB (27-22 %) and POR-TR (31-33 %), BB in FI-UB (30-33 %) and MLN-UB (35-26 %) and Saharan dust in ATH-SUB (52-45 %). During those days, there are also quite important industrial contributions in BCN-UB (17-18 %) and local dust in POR-TR (28-20 %).

  5. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  6. Ash reduction system using electrically heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  7. PARTICULATE MATTER (PM) AND HOSPITAL ADMISSIONS AMONG U.S. VETERANS

    EPA Science Inventory

    Epidemiological studies have consistently demonstrated that exposure to particulate matter (PM) can result in increased mortality and morbidity. The susceptible population, the nature of morbidity and cause of death, however, have not been clearly identified. To accomplish these ...

  8. Fact Sheets and Additional information Regarding the 2012 Particulate Matter (PM) National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    Find tools for particulate matter, maps of nonattainment areas, an overview of the proposal, and information on designations, monitoring and permitting requirements and a presentation on the 2012 PM NAAQS revision.

  9. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    EPA Science Inventory

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...

  10. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    EPA Science Inventory

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM-exposure. The goal of this stud...

  11. ASSESSMENT OF HUMAN EXPOSURE TO AMBIENT PARTICULATE MATTER.

    EPA Science Inventory

    Recent epidemiological studies have consistently shown that the acute mortality effects of high concentrations of ambient particulate matter (PM), documented in historic air pollution episodes, may also be occurring at the low to moderate concentrations of ambient PM found in mod...

  12. ACUTE EXPOSURE TO PARTICULATE MATTER IN A RAT MODEL OF HEART FAILURE

    EPA Science Inventory

    Human exposure to ambient particulate matter (PM) has been linked to cardiovascular morbidity and mortality. This association strengthens in people with preexisting cardiopulmonary diseases—especially heart failure (HF). To better characterize the cardiovascular effects of PM, we...

  13. Particulate matter in rural and urban nursery schools in Portugal.

    PubMed

    Nunes, R A O; Branco, P T B S; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2015-07-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. 40 CFR 63.9913 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...

  15. 40 CFR 63.9913 - What test methods and other procedures must I use to demonstrate initial compliance with the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... must I use to demonstrate initial compliance with the emission limits for particulate matter and PM10... compliance with the emission limits for particulate matter and PM10? (a) You must conduct each performance... determine compliance with the applicable emission limits for particulate matter in Table 1 to this subpart...

  16. The density of dark matter in the Galactic bulge and implications for indirect detection

    DOE PAGES

    Hooper, Dan

    2016-11-29

    A recent study, making use of the number of horizontal branch stars observed in infrared photometric surveys and kinematic measurements of M-giant stars from the BRAVA survey, combined with N-body simulations of stellar populations, has presented a new determination of the dark matter mass within the bulge-bar region of the Milky Way. That study constrains the total mass within themore » $$\\pm 2.2 \\times \\pm 1.4 \\times \\pm 1.2$$ kpc volume of the bulge-bar region to be ($$1.84 \\pm 0.07) \\times 10^{10} \\, M_{\\odot}$$, of which 9-30% is made up of dark matter. Here, we use this result to constrain the the Milky Way's dark matter density profile, and discuss the implications for indirect dark matter searches. Furthermore uncertainties remain significant, these results favor dark matter distributions with a cusped density profile. For example, for a scale radius of 20 kpc and a local dark matter density of 0.4 GeV/cm$^3$, density profiles with an inner slope of 0.69 to 1.40 are favored, approximately centered around the standard NFW value. In contrast, profiles with large flat-density cores are disfavored by this information.« less

  17. Electrically heated particulate matter filter soot control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  18. Lability of Secondary Organic Particulate Matter

    DOE PAGES

    Liu, Pengfei; Li, Yong Jie; Wang, Yan; ...

    2016-10-24

    Accurate simulations of the consenctrations of atmospheric organic particulate matter (PM) are needed for predicting energy flow in the Earth’s climate system. In the past, simulations of organic PM widely assume equilibrium partitioning of semivolatile organic compounds (SVOCs) between the PM and surrounding vapor. Herein, we test this assumption by measuring evaporation rates and associated vapor mass concentration of organic films representative of atmospheric PM. For films representing anthropogenic PM, evaporation rates and vapor mass concentrations increased above a threshold relative humidity (RH), indicating equilibrium partitioning above a transition RH but not below. In contrast for films representing biogenic PM,more » no threshold was observed, indicating equilibrium partitioning at all RHs. The results suggest that the mass lability of atmospheric organic PM can differ in consequential ways among Earth’s natural biomes, polluted regions, and regions of land-use change, and these differences need to be considered when simulating atmospheric organic PM.« less

  19. Removal of particulate matter emitted from a subway tunnel using magnetic filters.

    PubMed

    Son, Youn-Suk; Dinh, Trieu-Vuong; Chung, Sang-Gwi; Lee, Jai-Hyo; Kim, Jo-Chun

    2014-01-01

    We removed particulate matter (PM) emitted from a subway tunnel using magnetic filters. A magnetic filter system was installed on the top of a ventilation opening. Magnetic field density was increased by increasing the number of permanent magnet layers to determine PM removal characteristics. Moreover, the fan's frequency was adjusted from 30 to 60 Hz to investigate the effect of wind velocity on PM removal efficiency. As a result, PM removal efficiency increased as the number of magnetic filters or fan frequency increased. We obtained maximum removal efficiency of PM10 (52%), PM2.5 (46%), and PM1 (38%) at a 60 Hz fan frequency using double magnetic filters. We also found that the stability of the PM removal efficiency by the double filter (RSD, 3.2-5.8%) was higher than that by a single filter (10.9-24.5%) at all fan operating conditions.

  20. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-11-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the Beijing 325 m meteorological tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition near ground level using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3- / SO42- mass ratios illustrates an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed of secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors. In addition to emission controls, the routine circulations of mountain-valley breezes were also found to play an important role in alleviating PM levels and achieving the "APEC blue" effect. The evolution of vertical differences between 260 m and the ground level was also investigated. Our results show complex vertical differences during the formation and evolution of severe haze episodes that are closely related to aerosol sources and boundary-layer dynamics.

  1. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China during 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-08-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the 325 m Beijing Meteorological Tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition at near ground level using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3-/SO42- mass ratios illustrate an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed by secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors such as SO2, NOx, and volatile organic compounds (VOCs). In addition to emission controls, the routine circulations of mountain-valley breezes were also found to play an important role in alleviating PM levels and achieving the "APEC blue" effect. The evolution of vertical differences between 260 m and the ground level was also investigated. Our results show complex vertical differences during the formation and evolution of severe haze episodes that are closely related to aerosol sources and boundary layer dynamics.

  2. IMPROVING SOURCE PROFILES AND APPORTIONMENT OF COMBUSTION SOURCES USING THERMAL CARBON FRACTIONS IN MULTIVARIATE RECEPTOR MODELS

    EPA Science Inventory

    The purpose of this study was to improve combustion source profiles and apportionment of a PM2.5 urban aerosol by using 7 individual organic and elemental carbon thermal fractions in place of total organic and elemental carbon. This study used 3 years (96-99) of speciated data...

  3. ASSOCIATIONS BETWEEN AIR POLLUTION AND MORTALITY IN PHOENIX, 1995-1997

    EPA Science Inventory

    We evaluated the association between mortality outcomes in elderly individuals and particulate matter (PM) of varying aerodynamic diameters (in micrometers) [PM10, PM2.5, and PMCF (PM10 minus PM2.5)], and selected particulate and gaseous phase pollutants in Phoenix, Arizona, us...

  4. A PROBABILISTIC POPULATION EXPOSURE MODEL FOR PM10 AND PM 2.5

    EPA Science Inventory

    A first generation probabilistic population exposure model for Particulate Matter (PM), specifically for predicting PM10, and PM2.5, exposures of an urban, population has been developed. This model is intended to be used to predict exposure (magnitude, frequency, and duration) ...

  5. Long-term exposure to elemental constituents of particulate matter and cardiovascular mortality in 19 European cohorts: results from the ESCAPE and TRANSPHORM projects.

    PubMed

    Wang, Meng; Beelen, Rob; Stafoggia, Massimo; Raaschou-Nielsen, Ole; Andersen, Zorana Jovanovic; Hoffmann, Barbara; Fischer, Paul; Houthuijs, Danny; Nieuwenhuijsen, Mark; Weinmayr, Gudrun; Vineis, Paolo; Xun, Wei W; Dimakopoulou, Konstantina; Samoli, Evangelia; Laatikainen, Tiina; Lanki, Timo; Turunen, Anu W; Oftedal, Bente; Schwarze, Per; Aamodt, Geir; Penell, Johanna; De Faire, Ulf; Korek, Michal; Leander, Karin; Pershagen, Göran; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Eriksen, Kirsten Thorup; Sørensen, Mette; Tjønneland, Anne; Bueno-de-Mesquita, Bas; Eeftens, Marloes; Bots, Michiel L; Meliefste, Kees; Krämer, Ursula; Heinrich, Joachim; Sugiri, Dorothea; Key, Timothy; de Hoogh, Kees; Wolf, Kathrin; Peters, Annette; Cyrys, Josef; Jaensch, Andrea; Concin, Hans; Nagel, Gabriele; Tsai, Ming-Yi; Phuleria, Harish; Ineichen, Alex; Künzli, Nino; Probst-Hensch, Nicole; Schaffner, Emmanuel; Vilier, Alice; Clavel-Chapelon, Françoise; Declerq, Christophe; Ricceri, Fulvio; Sacerdote, Carlotta; Marcon, Alessandro; Galassi, Claudia; Migliore, Enrica; Ranzi, Andrea; Cesaroni, Giulia; Badaloni, Chiara; Forastiere, Francesco; Katsoulis, Michail; Trichopoulou, Antonia; Keuken, Menno; Jedynska, Aleksandra; Kooter, Ingeborg M; Kukkonen, Jaakko; Sokhi, Ranjeet S; Brunekreef, Bert; Katsouyanni, Klea; Hoek, Gerard

    2014-05-01

    Associations between long-term exposure to ambient particulate matter (PM) and cardiovascular (CVD) mortality have been widely recognized. However, health effects of long-term exposure to constituents of PM on total CVD mortality have been explored in a single study only. The aim of this study was to examine the association of PM composition with cardiovascular mortality. We used data from 19 European ongoing cohorts within the framework of the ESCAPE (European Study of Cohorts for Air Pollution Effects) and TRANSPHORM (Transport related Air Pollution and Health impacts--Integrated Methodologies for Assessing Particulate Matter) projects. Residential annual average exposure to elemental constituents within particle matter smaller than 2.5 and 10 μm (PM2.5 and PM10) was estimated using Land Use Regression models. Eight elements representing major sources were selected a priori (copper, iron, potassium, nickel, sulfur, silicon, vanadium and zinc). Cohort-specific analyses were conducted using Cox proportional hazards models with a standardized protocol. Random-effects meta-analysis was used to calculate combined effect estimates. The total population consisted of 322,291 participants, with 9545 CVD deaths. We found no statistically significant associations between any of the elemental constituents in PM2.5 or PM10 and CVD mortality in the pooled analysis. Most of the hazard ratios (HRs) were close to unity, e.g. for PM10 Fe the combined HR was 0.96 (0.84-1.09). Elevated combined HRs were found for PM2.5 Si (1.17, 95% CI: 0.93-1.47), and S in PM2.5 (1.08, 95% CI: 0.95-1.22) and PM10 (1.09, 95% CI: 0.90-1.32). In a joint analysis of 19 European cohorts, we found no statistically significant association between long-term exposure to 8 elemental constituents of particles and total cardiovascular mortality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Derivation of a first order approximation of particulate matter from aircraft

    DOT National Transportation Integrated Search

    2003-06-22

    The mass of particulate matter (PM) emitted from aircraft must be predicted for major : actions at airports to comply with current federal regulations. However, this PM mass in : the jet exhaust has not been effectively quantified to permit accurate ...

  7. Particulate matter, its elemental carbon fraction, and very early preterm birth

    EPA Science Inventory

    Background: Particulate matter (PM) has been variably associated with preterm birth, with potentially increased vulnerability during weeks 20-27 of gestation (extremely preterm birth (EPTB)), but the role of PM components have been less studied. Objectives: To estimate associati...

  8. 40 CFR 52.725 - Control strategy: Particulates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... requests to redesignate the Granite City Particulate Matter (PM) nonattainment area to attainment status... Granite City area to ensure continued attainment of the NAAQS. The redesignation request and maintenance... the Lake Calumet (SE Chicago), McCook, and Granite City, Illinois, Particulate Matter (PM...

  9. 40 CFR 52.725 - Control strategy: Particulates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requests to redesignate the Granite City Particulate Matter (PM) nonattainment area to attainment status... Granite City area to ensure continued attainment of the NAAQS. The redesignation request and maintenance... the Lake Calumet (SE Chicago), McCook, and Granite City, Illinois, Particulate Matter (PM...

  10. 40 CFR 52.725 - Control strategy: Particulates.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requests to redesignate the Granite City Particulate Matter (PM) nonattainment area to attainment status... Granite City area to ensure continued attainment of the NAAQS. The redesignation request and maintenance... the Lake Calumet (SE Chicago), McCook, and Granite City, Illinois, Particulate Matter (PM...

  11. 40 CFR 52.725 - Control strategy: Particulates.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requests to redesignate the Granite City Particulate Matter (PM) nonattainment area to attainment status... Granite City area to ensure continued attainment of the NAAQS. The redesignation request and maintenance... the Lake Calumet (SE Chicago), McCook, and Granite City, Illinois, Particulate Matter (PM...

  12. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH HEMATOLOGIC FACTORS IN ADULT ASTHMATICS

    EPA Science Inventory

    Introduction: The elderly and those with cardiovascular disease are susceptible to particulate matter (PM) exposures. Asthmatics are thought to be primarily affected by PM via airway inflammation. We investigated whether factors in blood hemostasis change in response to fluctuat...

  13. Soluble Components of Ultraflne Particulate Matter Stimulate Endothelial H202 Production

    EPA Science Inventory

    A growing body of evidence shows a strong association between particulate matter (PM) exposure and adverse cardiovascular health effects such as atherosclerosis and myocardial ischemia. The mechanisms by which PM causes cardiovascular dysfunction is unknown, but there is increasi...

  14. Particulate Matter and Gaseous Pollutions in Three Metropolises along the Chinese Yangtze River: Situation and Implications.

    PubMed

    Mao, Mao; Zhang, Xiaolin; Yin, Yan

    2018-05-28

    The situation of criteria atmospheric pollutants, including particulate matter and trace gases (SO₂, NO₂, CO and O₃), over three metropolises (Chongqing, Wuhan, and Nanjing), representing the upstream, midstream and downstream portions of the Yangtze River Basin from September 2015 to August 2016 were analyzed. The maximum annual mean PM 2.5 and PM 10 concentrations were 61.3 and 102.7 μg/m³ in Wuhan, while highest annual average gaseous pollutions occurred in Nanjing, with 49.6 and 22.9 ppb for 8 h O₃ and NO₂, respectively. Compared to a few years ago, SO₂ and CO mass concentrations have dropped to well below the qualification standards, and the O₃ and NO₂ concentrations basically meet the requirements though occasionally is still high. In contrary, about 13%, 25%, 22% for PM 2.5 , and 4%, 17%, 15% for PM 10 exceed the Chinese Ambient Air Quality Standard (CAAQS) Grade II. Particulate matter, especially PM 2.5 , is the most frequent major pollutant to poor air quality with 73%, 64% and 88% accounting for substandard days. Mean PM 2.5 concentrations on PM 2.5 episode days are 2⁻3 times greater than non-episode days. On the basis of calculation of PM 2.5 /PM 10 and PM 2.5 /CO ratios, the enhanced particulate matter pollution on episode days is closely related to secondary aerosol production. Except for O₃, the remaining five pollutants exhibit analogous seasonal patterns, with the highest magnitude in winter and lowest in summer. The results of back trajectories show that air pollution displays synergistic effects on local emissions and long range transport. O₃ commonly demonstrated negative correlations with other pollutants, especially during winter, while moderate to strong positive correlation between particulate matter and NO₂, SO₂, CO were seen. Compared to pollutant substandard ratios over three megacities in eastern China (Beijing, Shanghai, and Guangzhou), the situation in our studied second-tier cities are also severe. The results in this paper provide basic knowledge for pollution status of three cities along Chinese Yangtze River and are conductive to mitigating future negative air quality levels.

  15. Chemical Characterization of Outdoor and Subway Fine (PM2.5–1.0) and Coarse (PM10–2.5) Particulate Matter in Seoul (Korea) by Computer-Controlled Scanning Electron Microscopy (CCSEM)

    PubMed Central

    Byeon, Sang-Hoon; Willis, Robert; Peters, Thomas M.

    2015-01-01

    Outdoor and indoor (subway) samples were collected by passive sampling in urban Seoul (Korea) and analyzed with computer-controlled scanning electron microscopy coupled with energy dispersive x-ray spectroscopy (CCSEM-EDX). Soil/road dust particles accounted for 42%–60% (by weight) of fine particulate matter larger than 1 µm (PM2.5–1.0) in outdoor samples and 18% of PM2.5–1.0 in subway samples. Iron-containing particles accounted for only 3%–6% in outdoor samples but 69% in subway samples. Qualitatively similar results were found for coarse particulate matter (PM10–2.5) with soil/road dust particles dominating outdoor samples (66%–83%) and iron-containing particles contributing most to subway PM10–2.5 (44%). As expected, soil/road dust particles comprised a greater mass fraction of PM10–2.5 than PM2.5–1.0. Also as expected, the mass fraction of iron-containing particles was substantially less in PM10–2.5 than in PM2.5–1.0. Results of this study are consistent with known emission sources in the area and with previous studies, which showed high concentrations of iron-containing particles in the subway compared to outdoor sites. Thus, passive sampling with CCSEM-EDX offers an inexpensive means to assess PM2.5–1.0 and PM10-2.5 simultaneously and by composition at multiple locations. PMID:25689348

  16. [Comparison of atmospheric particulate matter and aerosol optical depth in Beijing City].

    PubMed

    Lin, Hai-Feng; Xin, Jin-Yuan; Zhang, Wen-Yu; Wang, Yue-Si; Liu, Zi-Rui; Chen, Chuan-Lei

    2013-03-01

    The pollution of particulate matter was serious in Beijing City from the synchronous observation of particulate matter mass concentration and aerosol optical characteristics in 2009. The annual mean concentrations of PM2.5 and PM10 were (65 +/- 14) microg x m(-3) and (117 +/- 31) microg x m(-3), respectively, which exceeded the national ambient air quality annual standards to be implemented in 2016. There were 35% and 26% days of 2009 that the daily standards were exceeded. There was a significant correlation between fine particulate (PM2.5) and inhalable particle (PM10), with a correlation coefficient (R) of approximately 0.90 (P < 0.001). PM10 contained a large percentage of PM2.5, with an annual percentage of about 61%. The percentage became much higher from spring to winter, while the correlation between PM2.5 and PM10 became much stronger. The annual mean of AOD (500 nm) and Angstrom exponent were (0.55 +/- 0.1) and (1.12 +/- 0.08), respectively. There were significant correlations between PM2.5, PM10 and AOD in the four seasons and the whole year, and the correlation coefficients were greater than or equal to 0.50. Furthermore, the correlation functions and coefficients had seasonal variations. The correlations were more significant in summer and autumn than in spring and winter. The annual correlation could cover up the seasonal systematic differences. The correlations between AOD revised by Mixed Layer Height and PM2.5 PM10 revised by Relative Humidity became stronger, and the exponential correlations were superior to the linear correlations.

  17. PM SUPERSITES PROGRAM

    EPA Science Inventory

    In 1997, the EPA administrator published National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM) that included new standards for PM2.5 (PM with diameters less than 2.5 um). These revised standards stimulated national concern over uncertainties regarding the ex...

  18. Part 2. Development of Enhanced Statistical Methods for Assessing Health Effects Associated with an Unknown Number of Major Sources of Multiple Air Pollutants.

    PubMed

    Park, Eun Sug; Symanski, Elaine; Han, Daikwon; Spiegelman, Clifford

    2015-06-01

    A major difficulty with assessing source-specific health effects is that source-specific exposures cannot be measured directly; rather, they need to be estimated by a source-apportionment method such as multivariate receptor modeling. The uncertainty in source apportionment (uncertainty in source-specific exposure estimates and model uncertainty due to the unknown number of sources and identifiability conditions) has been largely ignored in previous studies. Also, spatial dependence of multipollutant data collected from multiple monitoring sites has not yet been incorporated into multivariate receptor modeling. The objectives of this project are (1) to develop a multipollutant approach that incorporates both sources of uncertainty in source-apportionment into the assessment of source-specific health effects and (2) to develop enhanced multivariate receptor models that can account for spatial correlations in the multipollutant data collected from multiple sites. We employed a Bayesian hierarchical modeling framework consisting of multivariate receptor models, health-effects models, and a hierarchical model on latent source contributions. For the health model, we focused on the time-series design in this project. Each combination of number of sources and identifiability conditions (additional constraints on model parameters) defines a different model. We built a set of plausible models with extensive exploratory data analyses and with information from previous studies, and then computed posterior model probability to estimate model uncertainty. Parameter estimation and model uncertainty estimation were implemented simultaneously by Markov chain Monte Carlo (MCMC*) methods. We validated the methods using simulated data. We illustrated the methods using PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter) speciation data and mortality data from Phoenix, Arizona, and Houston, Texas. The Phoenix data included counts of cardiovascular deaths and daily PM2.5 speciation data from 1995-1997. The Houston data included respiratory mortality data and 24-hour PM2.5 speciation data sampled every six days from a region near the Houston Ship Channel in years 2002-2005. We also developed a Bayesian spatial multivariate receptor modeling approach that, while simultaneously dealing with the unknown number of sources and identifiability conditions, incorporated spatial correlations in the multipollutant data collected from multiple sites into the estimation of source profiles and contributions based on the discrete process convolution model for multivariate spatial processes. This new modeling approach was applied to 24-hour ambient air concentrations of 17 volatile organic compounds (VOCs) measured at nine monitoring sites in Harris County, Texas, during years 2000 to 2005. Simulation results indicated that our methods were accurate in identifying the true model and estimated parameters were close to the true values. The results from our methods agreed in general with previous studies on the source apportionment of the Phoenix data in terms of estimated source profiles and contributions. However, we had a greater number of statistically insignificant findings, which was likely a natural consequence of incorporating uncertainty in the estimated source contributions into the health-effects parameter estimation. For the Houston data, a model with five sources (that seemed to be Sulfate-Rich Secondary Aerosol, Motor Vehicles, Industrial Combustion, Soil/Crustal Matter, and Sea Salt) showed the highest posterior model probability among the candidate models considered when fitted simultaneously to the PM2.5 and mortality data. There was a statistically significant positive association between respiratory mortality and same-day PM2.5 concentrations attributed to one of the sources (probably industrial combustion). The Bayesian spatial multivariate receptor modeling approach applied to the VOC data led to a highest posterior model probability for a model with five sources (that seemed to be refinery, petrochemical production, gasoline evaporation, natural gas, and vehicular exhaust) among several candidate models, with the number of sources varying between three and seven and with different identifiability conditions. Our multipollutant approach assessing source-specific health effects is more advantageous than a single-pollutant approach in that it can estimate total health effects from multiple pollutants and can also identify emission sources that are responsible for adverse health effects. Our Bayesian approach can incorporate not only uncertainty in the estimated source contributions, but also model uncertainty that has not been addressed in previous studies on assessing source-specific health effects. The new Bayesian spatial multivariate receptor modeling approach enables predictions of source contributions at unmonitored sites, minimizing exposure misclassification and providing improved exposure estimates along with their uncertainty estimates, as well as accounting for uncertainty in the number of sources and identifiability conditions.

  19. Chemical composition and speciation of particulate organic matter from modern residential small-scale wood combustion appliances.

    PubMed

    Czech, Hendryk; Miersch, Toni; Orasche, Jürgen; Abbaszade, Gülcin; Sippula, Olli; Tissari, Jarkko; Michalke, Bernhard; Schnelle-Kreis, Jürgen; Streibel, Thorsten; Jokiniemi, Jorma; Zimmermann, Ralf

    2018-01-15

    Combustion technologies of small-scale wood combustion appliances are continuously developed decrease emissions of various pollutants and increase energy conversion. One strategy to reduce emissions is the implementation of air staging technology in secondary air supply, which became an established technique for modern wood combustion appliances. On that account, emissions from a modern masonry heater fuelled with three types of common logwood (beech, birch and spruce) and a modern pellet boiler fuelled with commercial softwood pellets were investigated, which refer to representative combustion appliances in northern Europe In particular, emphasis was put on the organic constituents of PM2.5, including polycyclic aromatic hydrocarbons (PAHs), oxygenated PAHs (OPAHs) and phenolic species, by targeted and non-targeted mass spectrometric analysis techniques. Compared to conventional wood stoves and pellet boilers, organic emissions from the modern appliances were reduced by at least one order of magnitude, but to a different extent for single species. Hence, characteristic ratios of emission constituents and emission profiles for wood combustion identification and speciation do not hold for this type of advanced combustion technology. Additionally, an overall substantial reduction of typical wood combustion markers, such as phenolic species and anhydrous sugars, were observed. Finally, it was found that slow ignition of log woods changes the distribution of characteristic resin acids and phytosterols as well as their thermal alteration products, which are used as markers for specific wood types. Our results should be considered for wood combustion identification in positive matrix factorisation or chemical mass balance in northern Europe. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    NASA Astrophysics Data System (ADS)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures to particulate matter.

  1. Characterization and speciation of fine particulate matter inside the public transport buses running on bio-diesel.

    DOT National Transportation Integrated Search

    2009-09-01

    Air pollution with respect to particulate matter was investigated in Toledo, Ohio, USA, a : city of approximately 300,000, in 2009. Two study buses were selected to reflect typical : exposure conditions of passengers while traveling in the bus. Monit...

  2. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... STANDARDS Pt. 50, App. J Appendix J to Part 50—Reference Method for the Determination of Particulate Matter... sampler draws ambient air at a constant flow rate into a specially shaped inlet where the suspended...

  3. 40 CFR Appendix J to Part 50 - Reference Method for the Determination of Particulate Matter as PM10 in the Atmosphere

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of Particulate Matter as PM10 in the Atmosphere J Appendix J to Part 50 Protection of Environment... STANDARDS Pt. 50, App. J Appendix J to Part 50—Reference Method for the Determination of Particulate Matter... sampler draws ambient air at a constant flow rate into a specially shaped inlet where the suspended...

  4. Mechanistic Insights into the Relationship between Lung and Vascular Response to Ambient Particulate Matter (PM)

    EPA Science Inventory

    The mechanisms by which pulmonary-encountered ambient PM induces vascular response are not well understood. We examined lung and aortic response of rats following intratracheal instillation of three ambient PM. Chemically characterized PM10 and PM2.5 from th...

  5. ANALYZE EXISTING DATA ON PM COMPOSITION TO IDENTIFY KEY FACTORS WHICH INFLUENCE HUMAN EXPOSURES TO PM CONSTITUENTS

    EPA Science Inventory

    An association has been demonstrated between ambient particulate matter (PM 2.5 and PM 10) concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, interpersonal and intrapersonal variability in exposure, and the...

  6. Analysing temporal variability of particulate matter and possible contributing factors over Mahabaleshwar, a high-altitude station in Western Ghats, India

    NASA Astrophysics Data System (ADS)

    Leena, P. P.; Vijayakumar, K.; Anilkumar, V.; Pandithurai, G.

    2017-11-01

    Airborne particulate matter (PM) plays a vital role on climate change as well as human health. In the present study, temporal variability associated with mass concentrations of PM10, PM2.5, and PM1.0 were analysed using ground observations from Mahabaleswar (1348 m AMSL, 17.56 0N, 73.4 0E), a high-altitude station in the Western Ghats, India from June 2012 to May 2013. Concentrations of PM10, PM2.5, and PM1.0 showed strong diurnal, monthly, seasonal and weekday-weekend trends. The seasonal variation of PM1.0 and PM2.5 has showed highest concentrations during winter season compared to monsoon and pre-monsoon, but in the case of PM10 it showed highest concentrations in pre-monsoon season. Similarly, slightly higher PM concentrations were observed during weekends compared to weekdays. In addition, possible contributing factors to this temporal variability has been analysed based on the variation of secondary pollutants such as NO2, SO2, CO and O3 and long range transport of dust.

  7. Is the Relation Between Ozone and Mortality Confounded by Chemical Components of Particulate Matter? Analysis of 7 Components in 57 US Communities

    PubMed Central

    Anderson, G. Brooke; Krall, Jenna R.; Peng, Roger D.; Bell, Michelle L.

    2012-01-01

    Epidemiologic studies have linked tropospheric ozone pollution and human mortality. Although research has shown that this relation is not confounded by particulate matter when measured by mass, little scientific evidence exists on whether confounding exists by chemical components of the particle mixture. Using mortality and particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5) component data from 57 US communities (2000–2005), the authors investigate whether the ozone-mortality relation is confounded by 7 components of PM2.5: sulfate, nitrate, silicon, elemental carbon, organic carbon matter, sodium ion, and ammonium. Together, these components constitute most PM2.5 mass in the United States. Estimates of the effect of ozone on mortality were almost identical before and after controlling for the 7 components of PM2.5 considered (mortality increase/10-ppb ozone increase, before and after controlling: ammonium, 0.34% vs. 0.35%; elemental carbon, 0.36% vs. 0.37%; nitrate, 0.27% vs. 0.26%; organic carbon matter, 0.34% vs. 0.31%; silicon, 0.36% vs. 0.37%; sodium ion, 0.21% vs. 0.18%; and sulfate, 0.35% vs. 0.38%). Additionally, correlations were weak between ozone and each particulate component across all communities. Previous research found that the ozone-mortality relation is not confounded by particulate matter measured by mass; this national study indicates that the relation is also robust to control for specific components of PM2.5. PMID:23043133

  8. CARDIOVASCULAR MORTALITY IN PHOENIX: PM1 IS A BETTER INDICATOR THAN PM2.5.

    EPA Science Inventory

    EPA has obtained a 3-year database of particulate matter (PM) in Phoenix, AZ from 1995 - 1997 that includes elemental analysis by XRF of daily PM2.5. During this time period PM1 and PM2.5 TEOMs were run simultaneously for about 7 months during two periods of the year. Regressio...

  9. 75 FR 44142 - Determination of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-28

    ... of Attainment for PM-10; Fort Hall PM-10 Nonattainment Area, Idaho AGENCY: Environmental Protection Agency (EPA). ACTION: Final rule. SUMMARY: EPA is finalizing its determination that the Fort Hall PM-10... Standard for particulate matter with an aerodynamic diameter of less than or equal to 10 microns (PM-10...

  10. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL INSTILLATION IN RATS

    EPA Science Inventory

    Respirable ambient particulate matter (PM) exposure has been associated with an increased risk of cardiovascular disease. Direct translocation of PM associated metals from the lungs into systemic circulation may be partly responsible. We measured elemental content of lungs, pla...

  11. PRELIMINARY FINDINGS FROM THE NERL RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY

    EPA Science Inventory

    The U.S. Environmental Protection Agency is currently conducting the National Exposure Research Laboratory (NERL) Research Triangle Park (RTP) Particulate Matter (PM) Panel Study. This study represents a one year investigation of PM and related co-pollutants involving two dist...

  12. DOSE CONCENTRATED COARSE PARTICULATE MATTER EXPOSURE PRODUCE ADVERSE HEALTH EFFECTS?

    EPA Science Inventory

    The potential for experiencing adverse health effects from particulate matter (PM) exposure is an important public health issue. Mortality associations have generally been shown to be stronger for fine PM (<2.5uM) produced by combustion processes (e.g. power plants, automobile...

  13. An evaluation of indoor and outdoor biological particulate matter (BioPM)

    EPA Science Inventory

    Monitoring of indoor and ambient particulate matter (PM) and the characterization of the content for biological aerosol concentrations has not been extensively performed. Samples from urban and rural North Carolina, and Denver, CO, were collected and analyzed as the goal of this ...

  14. RECEPTOR MODELING OF AMBIENT PARTICULATE MATTER DATA USING POSITIVE MATRIX FACTORIZATION REVIEW OF EXISTING METHODS

    EPA Science Inventory

    Methods for apportioning sources of ambient particulate matter (PM) using the positive matrix factorization (PMF) algorithm are reviewed. Numerous procedural decisions must be made and algorithmic parameters selected when analyzing PM data with PMF. However, few publications docu...

  15. RELATIVE TOXICITY OF SIZE-FRACTIONATED PARTICULATE MATTER OBTAINED AT DIFFERENT DISTANCES FROM A HIGHWAY

    EPA Science Inventory

    Epidemiological studies have reported an association between proximity to highway traffic and increased respiratory symptoms. This study was initiated to determine the contribution of ambient particulate matter (PM) to these observed effects. Ambient PM was collected for 2 weeks ...

  16. Personal Coarse Particulate Matter Exposures in an Adult Cohort

    EPA Science Inventory

    Volunteers associated with the North Carolina Adult Asthma and Environment Study (NCAAES) participated in an investigation of personal daily exposures to coarse and fine particulate matter size fractions (PM10-2.5, PM2.5). Data from these personal measuremen...

  17. PARTICULATE MATTER AND HUMAN HEALTH: USING HUMAN STUDIES TO UNDERSTAND SUSCEPTIBILITY

    EPA Science Inventory

    The potential for experiencing adverse health effects from air pollution particulate matter (PM) exposure is an important public health issue. The World Health Organization has estimated that PM contributes to the deaths of 500,000 people world-wide each year. Epidemiologic stu...

  18. Relationship between chemical composition and pulmonary toxicity of source-specific ambient particulate matter

    EPA Science Inventory

    Epidemiological studies have reported incidence of cardio-pulmonary disease associated with increase in particulate matter (PM) exposure. In this study, the pulmonary toxicity potential of combustion and ambient PM were investigated using data from animal studies at the US EPA....

  19. Cardiovascular Effects of Concentrated Ambient Fine and Ultrafine Particulate Matter Exposure in Healthy Older Volunteers

    EPA Science Inventory

    Rationale: Epidemiological studies have shown an association between the incidence of adverse cardiovascular effects and exposure to ambient particulate matter (PM). Advanced age is among the factors identified as conferring susceptibility to PM inhalation. In order to characteri...

  20. THE 1999 FRESNO PARTICULATE MATTER EXPOSURE STUDIES: COMPARISON OF COMMUNITY, OUTDOOR, AND RESIDENTIAL PM MASS MEASUREMENTS

    EPA Science Inventory

    Two collaborative studies have been conducted by the USEPA National Exposure Research Laboratory (NERL) and the National Health Effects and Ecological Research Laboratory (NHEERL) to determine personal exposures and physiological responses to particulate matter (PM) and gaseous...

  1. Effects of wind direction on coarse and fine particulate matter concentrations in southeast Kansas.

    PubMed

    Guerra, Sergio A; Lane, Dennis D; Marotz, Glen A; Carter, Ray E; Hohl, Carrie M; Baldauf, Richard W

    2006-11-01

    Field data for coarse particulate matter ([PM] PM10) and fine particulate matter (PM2.5) were collected at selected sites in Southeast Kansas from March 1999 to October 2000, using portable MiniVol particulate samplers. The purpose was to assess the influence on air quality of four industrial facilities that burn hazardous waste in the area located in the communities of Chanute, Independence, Fredonia, and Coffeyville. Both spatial and temporal variation were observed in the data. Variation because of sampling site was found to be statistically significant for PM10 but not for PM2.5. PM10 concentrations were typically slightly higher at sites located within the four study communities than at background sites. Sampling sites were located north and south of the four targeted sources to provide upwind and downwind monitoring pairs. No statistically significant differences were found between upwind and downwind samples for either PM10 or PM2.5, indicating that the targeted sources did not contribute significantly to PM concentrations. Wind direction can frequently contribute to temporal variation in air pollutant concentrations and was investigated in this study. Sampling days were divided into four classifications: predominantly south winds, predominantly north winds, calm/variable winds, and winds from other directions. The effect of wind direction was found to be statistically significant for both PM10 and PM2.5. For both size ranges, PM concentrations were typically highest on days with predominantly south winds; days with calm/variable winds generally produced higher concentrations than did those with predominantly north winds or those with winds from "other" directions. The significant effect of wind direction suggests that regional sources may exert a large influence on PM concentrations in the area.

  2. Providing Context for Ambient Particulate Matter and Estimates of Attributable Mortality.

    PubMed

    McClellan, Roger O

    2016-09-01

    Four papers on fine particulate matter (PM2.5 ) by Anenberg et al., Fann et al., Shin et al., and Smith contribute to a growing body of literature on estimated epidemiological associations between ambient PM2.5 concentrations and increases in health responses relative to baseline notes. This article provides context for the four articles, including a historical review of provisions of the U.S. Clean Air Act as amended in 1970, requiring the setting of National Ambient Air Quality Standards (NAAQS) for criteria pollutants such as particulate matter (PM). The substantial improvements in both air quality for PM and population health as measured by decreased mortality rates are illustrated. The most recent revision of the NAAQS for PM2.5 in 2013 by the Environmental Protection Agency distinguished between (1) uncertainties in characterizing PM2.5 as having a causal association with various health endpoints, and as all-cause mortality, and (2) uncertainties in concentration--excess health response relationships at low ambient PM2.5 concentrations below the majority of annual concentrations studied in the United States in the past. In future reviews, and potential revisions, of the NAAQS for PM2.5 , it will be even more important to distinguish between uncertainties in (1) characterizing the causal associations between ambient PM2.5 concentrations and specific health outcomes, such as all-source mortality, irrespective of the concentrations, (2) characterizing the potency of major constituents of PM2.5 , and (3) uncertainties in the association between ambient PM2.5 concentrations and specific health outcomes at various ambient PM2.5 concentrations. The latter uncertainties are of special concern as ambient PM2.5 concentrations and health morbidity and mortality rates approach background or baseline rates. © 2016 Society for Risk Analysis.

  3. California wildfires of 2008: coarse and fine particulate matter toxicity.

    PubMed

    Wegesser, Teresa C; Pinkerton, Kent E; Last, Jerold A

    2009-06-01

    During the last week of June 2008, central and northern California experienced thousands of forest and brush fires, giving rise to a week of severe fire-related particulate air pollution throughout the region. California experienced PM(10-2.5) (particulate matter with mass median aerodynamic diameter > 2.5 mum to < 10 mum; coarse ) and PM(2.5) (particulate matter with mass median aerodynamic diameter < 2.5 mum; fine) concentrations greatly in excess of the air quality standards and among the highest values reported at these stations since data have been collected. These observations prompt a number of questions about the health impact of exposure to elevated levels of PM(10-2.5) and PM(2.5) and about the specific toxicity of PM arising from wildfires in this region. Toxicity of PM(10-2.5) and PM(2.5) obtained during the time of peak concentrations of smoke in the air was determined with a mouse bioassay and compared with PM samples collected under normal conditions from the region during the month of June 2007. Concentrations of PM were not only higher during the wildfire episodes, but the PM was much more toxic to the lung on an equal weight basis than was PM collected from normal ambient air in the region. Toxicity was manifested as increased neutrophils and protein in lung lavage and by histologic indicators of increased cell influx and edema in the lung. We conclude that the wildfire PM contains chemical components toxic to the lung, especially to alveolar macrophages, and they are more toxic to the lung than equal doses of PM collected from ambient air from the same region during a comparable season.

  4. Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.

    PubMed

    Tao, Ling; Fairley, David; Kleeman, Michael J; Harley, Robert A

    2013-09-17

    Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 μg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.

  5. 40 CFR 52.1678 - Control strategy and regulations: Particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-CT fine particle (PM2.5) nonattainment area has attained the 1997 PM2.5 National Ambient Air Quality... particle (PM2.5) nonattainment area has attained the 2006 PM2.5 National Ambient Air Quality Standard. This...

  6. OUTDOOR VS. HUMAN EXPOSURE: NERL PM EXPOSURE PANEL STUDIES

    EPA Science Inventory

    An association has been demonstrated between ambient particulate matter (PM 2.5 and PM 10) concentrations and human morbidity/mortality. However, little is known regarding the most important sources of PM exposure, interpersonal and intrapersonal variability in exposure, and the...

  7. Satellite-based retrieval of particulate matter concentrations over the United Arab Emirates (UAE)

    NASA Astrophysics Data System (ADS)

    Zhao, Jun; Temimi, Marouane; Hareb, Fahad; Eibedingil, Iyasu

    2016-04-01

    In this study, an empirical algorithm was established to retrieve particulate matter (PM) concentrations (PM2.5 and PM10) using satellite-derived aerosol optical depth (AOD) over the United Arab Emirates (UAE). Validation of the proposed algorithm using ground truth data demonstrates its good accuracy. Time series of in situ measured PM concentrations between 2014 and 2015 showed high values in summer and low values in winter. Estimated and in situ measured PM concentrations were higher in 2015 than 2014. Remote sensing is an essential tool to reveal and back track the seasonality and inter-annual variations of PM concentrations and provide valuable information on the protection of human health and the response of air quality to anthropogenic activities and climate change.

  8. Lead sequestration and species redistribution during soil organic matter decomposition

    USGS Publications Warehouse

    Schroth, A.W.; Bostick, B.C.; Kaste, J.M.; Friedland, A.J.

    2008-01-01

    The turnover of soil organic matter (SOM) maintains a dynamic chemical environment in the forest floor that can impact metal speciation on relatively short timescales. Here we measure the speciation of Pb in controlled and natural organic (O) soil horizons to quantify changes in metal partitioning during SOM decomposition in different forest litters. We provide a link between the sequestration of pollutant Pb in O-horizons, estimated by forest floor Pb inventories, and speciation using synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy. When Pb was introduced to fresh forest Oi samples, it adsorbed primarily to SOM surfaces, but as decomposition progressed over two years in controlled experiments, up to 60% of the Pb was redistributed to pedogenic birnessite and ferrihydrite surfaces. In addition, a significant fraction of pollutant Pb in natural soil profiles was associated with similar mineral phases (???20-35%) and SOM (???65-80%). Conifer forests have at least 2-fold higher Pb burdens in the forest floor relative to deciduous forests due to more efficient atmospheric scavenging and slower organic matter turnover. We demonstrate that pedogenic minerals play an important role in surface soil Pb sequestration, particularly in deciduous forests, and should be considered in any assessment of pollutant Pb mobility. ?? 2008 American Chemical Society.

  9. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis.

    PubMed

    Aneja, Viney P; Pillai, Priya R; Isherwood, Aaron; Morgan, Peter; Aneja, Saurabh P

    2017-04-01

    This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM 10 ), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM 2.5 ) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM 2.5 (r 2 = 0.62), and the two-variable (AOD-PM 2.5 ) model predicted PM 2.5 (r 2 = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM 2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM 2.5 . For the relevant period in 2008, in Roda, VA, the predicted PM 2.5 mass concentration is 9.11 ± 5.16 μg m -3 (mean ± 1SD). This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.

  10. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    NASA Astrophysics Data System (ADS)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this study regarding primary versus possible secondary PM2.5 production processes can help in identifying effective PM2.5 control strategies.

  11. Reactive oxygen species (ROS) activity of ambient fine particles (PM2.5) measured in Seoul, Korea.

    PubMed

    Park, Jieun; Park, Eun Ha; Schauer, James J; Yi, Seung-Muk; Heo, Jongbae

    2018-05-16

    Substantial increase in level of particulate matter has raised concerns in South Korea recently. Ambient particulate matter is classified as Group I carcinogen (IARC, 2013) and multiple epidemiological studies has demonstrated adverse health effects due to exposure of particulate matter. Fine particulate matter (PM 2.5 ) which has a diameter <2.5 μm is likely to penetrate deeply into lung and is known to be eliciting adverse health effects. A number of epidemiological studies have been conducted on adverse health effects of PM-related diseases and mortality rate, yet particulate matter (PM)-induced reactive oxygen species (ROS) activity at the cellular level has not been actively studied in Korea. This study assessed PM-induced oxidative potential by exposure of collected ambient PM 2.5 samples to the rat alveolar macrophage cell line. The characteristics of PM 2.5 in Korea were further characterized by linking chemical constituents and contributing sources to ROS. PM 2.5 mass concentration during the cold season was relatively higher than mass concentration during the warm season and chemical constituents except for Secondary Organic Carbon (SOC) and SO 4 2- which both showed similar trends in both the cold and cold seasons. The concentration of crustal elements was especially high during the cold season which can be an indication of long range transport of Asian dust. Water soluble organic carbon and water soluble transition metals (Cr and Zn) were also shown to be correlated to oxidative potential and metals such as As and V were shown to have a high contribution to ROS activity according to stepwise multiple linear regression. Principal Component Analysis (PCA) results identified six factors that can be interpreted as soil, mobile, industry, secondary inorganic aerosol, secondary organic aerosol and oil combustion. Moreover, through Principal Component Regression (PCR), industry, soil, mobile and SIA were shown to be statistically significant sources in a relation to ROS activity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. African dust contribution to mean ambient PM10 across the Mediterranean Basin: A quantitative approach to investigate spatial and seasonal patterns

    NASA Astrophysics Data System (ADS)

    Querol, X.; Pandolfi, M.; Pey, J.; Alastuey, A.; Cusack, M.; Pérez, N.; Amato, F.; Moreno, T.; Viana, M.; Mihalopoulos, N.

    2009-04-01

    The aim of the present study is quantifying African dust contributions to mean PM10 levels recorded across the Mediterranean basin (2001-2008, 1995-2008 in one case) and evidencing spatial variations and seasonal trends. To this end the same methodology has been applied to a number of data sets on PM levels recorded in aerosol research monitoring sites (Montseny-EUSAAR, Spain, Finokalia-EUSAAR, Greece) and from a number of regional background (RB) monitoring sites from the Co-operative Program for Monitoring and Evaluation of the Long-Range Transmission of Air pollutants in Europe (EMEP) and regional air quality monitoring networks available from Airbase-EEA data set. Around 20 data series spread across the whole Mediterranean and bordering regions have been selected and analyzed in the present study. Once the PM data were obtained the days under the influence of African dust outbreaks were identified (using HYSPLIT, DREAM-BSC, SKIRON and NAAPS tools) for each receptor site. Subsequently, a method (Escudero et al., 2007) based on the statistical data treatment of time series of PM levels, without a need of chemical analysis, was used for the quantification of the daily African PM load during dust outbreaks at each site. Finally, PM speciation data available at MSY and FKL were used to differentiate the local/regional from the African mineral contributions across the Mediterranean Basin. Results show a clear W to E and N to S increasing gradients, both on annual PM levels and annual African dust load. In the Eastern Mediterranean the episodes are more intense and are relatively frequent in spring and summer period. However in the western side of the basin, African dust outbreaks are more frequent in summer and winter. In the N, NW and NE sides of the basin 1-2 µgPM10/m3 of mean annual dust contribution was quantified, whereas in the S, SE, SW this annual contribution ranges from 6 to 10 µgPM10/m3. The number of exceedances of the PM10 daily limit value attributable to the African dust contributions was also evaluated fro the whole Mediterranean. Comparison of the African dust annual load with PM10 speciation allowed quantifying regional dust contributions. Thus, in urban areas we are able to discriminate the contribution of African, regional, urban and road dust. References Escudero M. et al., (2007). Atmos. Environ., 41, 5516- 5524. Acknowledgements This study was supported by the Ministry of Science and Innovation (CGL2005-03428-C04-03/CLI, CGL2007-62505/CLI, GRACCIE- CSD2007-00067), the European Union (6th framework CIRCE IP, 036961, EUSAAR RII3-CT-2006-026140). Finally, we would like to express our gratitude to Airbase-EEA for allowing free access to ambient PM levels recorded at a large number of sites in Europe.

  13. Short-term effects of particulate matter on total mortality during Saharan dust outbreaks: a case-crossover analysis in Madrid (Spain).

    PubMed

    Tobías, Aurelio; Pérez, Laura; Díaz, Julio; Linares, Cristina; Pey, Jorge; Alastruey, Andrés; Querol, Xavier

    2011-12-15

    The role of Saharan dust outbreaks on the relationship between particulate matter and daily mortality has recently been addressed in studies conducted in Southern Europe, although they have not given consistent results. We investigated the effects of coarse (PM(10-2.5)) and fine particulate matter (PM(2.5)) in Madrid on total mortality during Saharan dust and non-dust days using a case-crossover design. During Saharan dust days, an increase of 10mg/m(3) of PM(10-2.5) raised total mortality by 2.8% compared with 0.6% during non-dust days (P-value for interaction=0.0165). We found evidence of stronger adverse health effects of PM(10-2.5) during Saharan dust outbreaks effects for impacted European populations, but not for PM(2.5). Further research is needed to understand mechanisms by which Saharan dust increases risk of mortality. Copyright © 2011 Elsevier B.V. All rights reserved.

  14. Effect of biochar amendment on compost organic matter composition following aerobic composting of manure.

    PubMed

    Hagemann, Nikolas; Subdiaga, Edisson; Orsetti, Silvia; de la Rosa, José María; Knicker, Heike; Schmidt, Hans-Peter; Kappler, Andreas; Behrens, Sebastian

    2018-02-01

    Biochar, a material defined as charred organic matter applied in agriculture, is suggested as a beneficial additive and bulking agent in composting. Biochar addition to the composting feedstock was shown to reduce greenhouse gas emissions and nutrient leaching during the composting process, and to result in a fertilizer and plant growth medium that is superior to non-amended composts. However, the impact of biochar on the quality and carbon speciation of the organic matter in bulk compost has so far not been the focus of systematic analyses, although these parameters are key to determine the long-term stability and carbon sequestration potential of biochar-amended composts in soil. In this study, we used different spectroscopic techniques to compare the organic carbon speciation of manure compost amended with three different biochars. A non-biochar-amended compost served as control. Based on Fourier-transformed infrared (FTIR) and 13 C nuclear magnetic resonance (NMR) spectroscopy we did not observe any differences in carbon speciation of the bulk compost independent of biochar type, despite a change in the FTIR absorbance ratio 2925cm -1 /1034cm -1 , that is suggested as an indicator for compost maturity. Specific UV absorbance (SUVA) and emission-excitation matrixes (EEM) revealed minor differences in the extractable carbon fractions, which only accounted for ~2-3% of total organic carbon. Increased total organic carbon content of biochar-amended composts was only due to the addition of biochar-C and not enhanced preservation of compost feedstock-C. Our results suggest that biochars do not alter the carbon speciation in compost organic matter under conditions optimized for aerobic decomposition of compost feedstock. Considering the effects of biochar on compost nutrient retention, mitigation of greenhouse gas emissions and carbon sequestration, biochar addition during aerobic composting of manure might be an attractive strategy to produce a sustainable, slow release fertilizer. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Chemical Composition and Source Apportionment of Size Fractionated Particulate Matter in Cleveland, Ohio, USA

    EPA Science Inventory

    The Cleveland airshed comprises a complex mixture of industrial source emissions that contribute to periods of non-attainment for fine particulate matter (PM 2.5 ) and are associated with increased adverse health outcomes in the exposed population. Specific PM sources responsible...

  16. Fact Sheets and Additional Information Regarding the 2006 Particulate Matter (PM) National Ambient Air Quality Standards (NAAQS)

    EPA Pesticide Factsheets

    This page contains a fact sheet, a presentation providing an overview of the rule, and graphs and maps pertaining to the new standards that are supplementary to the October 2006 revision for the Particulate Matter (PM) NAAQS

  17. THE RESEARCH TRIANGLE PARK PARTICULATE MATTER PANEL STUDY: PM MASS CONCENTRATION RELATIONSHIPS

    EPA Science Inventory

    The U.S. Environmental Protection Agency has recently performed the Research Triangle Park Particulate Matter Panel Study. This was a one-year investigation of PM and related co-pollutants involving participants living within the RTP area of North Carolina. Primary goals were t...

  18. EFFECT OF METAL REMOVAL ON THE TOXICITY OF AIRBORNE PARTICULATE MATTER FROM THE UTAH VALLEY

    EPA Science Inventory

    Epidemiological studies have linked the inhalation of airborne particulate matter (PM) to increased morbidity and mortality in humans. However, the mechanisms of toxicity of these particles remains unclear. Several hypotheses state that the toxicity might stem from PM transitio...

  19. Ozone co-exposure modifies cardiac function responses to fine and ultrafine particulate matter in mice

    EPA Science Inventory

    There is growing evidence from epidemiological studies that show acute exposure to particulate matter (PM) increases the risk of cardiovascular morbidity and mortality. Although the data supporting these findings are increasingly more convincing, the immediate impact of PM inhala...

  20. SPATIO-TEMPORAL MODELING OF FINE PARTICULATE MATTER

    EPA Science Inventory

    Studies indicate that even short-term exposure to high concentrations of fine atmospheric particulate matter (PM2.5) can lead to long-term health effects. In this paper, we propose a random effects model for PM2.5 concentrations. In particular, we anticipa...

  1. AMBIENT COARSE PARTICULATE MATTER ASSOCIATED WITH PLASMINOGEN AND FIBRIOGEN LEVELS IN ADULT ASTHMATICS

    EPA Science Inventory

    Introduction: Recent reports indicate that the elderly and those with cardiovascular disease are susceptible to fine and coarse particulate matter (PM 2.5, PM 2.5-10) exposures. Asthmatics are thought to be primarily affected via airway inflammation. We investigated whether mark...

  2. IDENTIFICATION AND CHARACTERIZATION OF HUMAN AIRWAY EPITHELIAL CELL PROTEINS PHOSPHORYLATED IN RESPONSE TO PARTICULATE MATTER (PM) EXPOSURE.

    EPA Science Inventory

    Multiple studies conducted by NHEERL scientists in recent years have shown that acute exposure to metals found associated with combustion-derived particulate matter (PM) alters phosphoprotein metabolism in human airway epithelial cells causing intracellular signaling. This disreg...

  3. Effects of Source-Apportioned Coarse Particulate Matter (PM) on Allergic Responses in Mice

    EPA Science Inventory

    The Cleveland Multiple Air Pollutant Study (CMAPS) is one of the first comprehensive studies conducted to evaluate particulate matter (PM) over local and regional scales. Cleveland and the nearby Ohio River Valley impart significant regional sources of air pollution including coa...

  4. OXIDATIVE STRESS PARTICIPATES IN PARTICULATE MATTER (PM) INDUCED LUNG INJURY

    EPA Science Inventory

    Oxidative stress participates in particulate matter (PM) induced acute lung injury.
    Elizabeth S. Roberts1, Judy L. Richards2, Kevin L. Dreher2. 1College of Veterinary Medicine, NC State University, Raleigh, NC, 2US Environmental Protection Agency, NHEERL, RTP, NC.
    Epidemiol...

  5. Provisional Assessment of Recent Studies on Particulate Matter (2006)

    EPA Science Inventory

    A review of the national ambient air quality standards (NAAQS) for particulate matter (PM) is currently underway. The Criteria Document was completed in October 2004, and a proposed decision to revise the PM NAAQS was published in January 2006. The final decision is to be signe...

  6. CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERSENSITIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE

    EPA Science Inventory

    CARDIOPULMONARY GENE EXPRESSION PROFILES IN NORMO- AND SPONTANEOUSLY HYPERTENSIVE (SH) RATS: IMPACT OF PARTICULATE MATTER (PM) EXPOSURE. SS Nadadur UP Kodavanti, Pulmonary Toxicology Branch, ETD, ORD, NHEERL, US Environmental Protection Agency, Research Triangle Park, NC 27711.

  7. RECOVERY OF SEMI-VOLATILE ORGANIC COMPOUNDS DURING SAMPLE PREPARATION: IMPLICATIONS FOR CHARACTERIZATION OF AIRBORNE PARTICULATE MATTER

    EPA Science Inventory

    Semi-volatile compounds present special analytical challenges not met by conventional methods for analysis of ambient particulate matter (PM). Accurate quantification of PM-associated organic compounds requires validation of the laboratory procedures for recovery over a wide v...

  8. INDIVIDUAL PARTICLE ANALYSIS OF PERSONAL SAMPLES FROM THE 1998 BALTIMORE PARTICULATE MATTER STUDY

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) recently conducted the 1998 Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly. The primary goal of that study was to establish the relationship between outdoor PM concentrations and actual h...

  9. PROBING REACTIVITY OF DISSOLVED ORGANIC MATTER FOR DISINFECTION BY-PRODUCT FORMATION USING XAD-8 RESIN ADSORPTION AND ULTRAFILTRATION FRACTIONATION. (R828045)

    EPA Science Inventory

    The disinfection by-product (DBP) reactivity (yield and speciation upon reaction with chlorine) of dissolved organic matter (DOM) isolated from two surface waters was investigated. The source waters, each having significantly different specific ultraviolet absorbance (SUVA

  10. Temporal variation of fine and coarse particulate matter sources in Jeddah, Saudi Arabia

    PubMed Central

    Lim, Chris C.; Thurston, George D.; Shamy, Magdy; Alghamdi, Mansour; Khoder, Mamdouh; Mohorjy, Abdullah M.; Alkhalaf, Abdulrahman K.; Brocato, Jason; Chen, Lung Chi; Costa, Max

    2017-01-01

    This study provides the first comprehensive analysis of the seasonal variations and weekday/weekend differences in fine (PM2.5) and coarse (PM2.5–10) particulate matter mass concentrations, elemental constituents, and potential source origins in Jeddah, Saudi Arabia. Air quality samples were collected over one year, from June 2011 to May 2012 at a frequency of three times per week, and analyzed. The average mass concentrations of PM2.5 (21.9 µg/m3) and PM10 (107.8 µg/m3) during the sampling period exceeded the recommended annual average levels by the World Health Organization (WHO) for PM2.5 (10 µg/m3) and PM10 (20 µg/m3), respectively. Similar to other Middle Eastern locales, PM2.5–10 is the prevailing mass component of atmospheric particulate matter at Jeddah, accounting for approximately 80% of the PM10 mass. Considerations of enrichment factors, absolute principal component analysis (APCA), concentration roses, and backward trajectories identified the following source categories for both PM2.5 and PM2.5–10: 1) soil/road dust; 2) incineration; and 3) traffic; and for PM2.5 only, 4) residual oil burning. Soil/road dust accounted for a major portion of both the PM2.5 (27%) and PM2.5–10 (77%) mass, and the largest source contributor for PM2.5 was from residual oil burning (63%). Temporal variations of PM2.5–10 and PM2.5 were observed, with the elevated concentration levels observed for mass during the spring (due to increased dust storm frequency), and on weekdays (due to increased traffic). The predominant role of windblown soil and road dust in both the PM2.5 and PM2.5–10 masses in this city may have implications regarding the toxicity of these particles versus those in the western world where most PM health assessments have been made in the past. These results support the need for region-specific epidemiological investigations to be conducted and considered in future PM standard setting. PMID:28635552

  11. IMPLICATIONS OF SELECTING ALTERNATIVE EXPOSURE METRICS IN ANALYZING THE RELATIONSHIPS BETWEEN PM AND ACUTE MORTALITY AND MORBIDITY IN PHILADELPHIA

    EPA Science Inventory

    The US EPA National Exposure Research Laboratory (NERL) has developed a population exposure model for particulate matter (PM), called the Stochastic Human Exposure and Dose Simulation (SHEDS-PM) model. The SHEDS-PM model estimates the population distribution of PM exposures by...

  12. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing.

    PubMed

    Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao

    2016-12-28

    Background : The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods : The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results : Average concentrations of PM 2.5 and PM 10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM 2.5 and PM 10 during the APEC were the lowest. The economic cost associated with mortality caused by PM 2.5 and PM 10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions : The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection.

  13. Efficiency of Emission Control Measures on Particulate Matter-Related Health Impacts and Economic Cost during the 2014 Asia-Pacific Economic Cooperation Meeting in Beijing

    PubMed Central

    Liu, Qichen; Huang, Jing; Guo, Bin; Guo, Xinbiao

    2016-01-01

    Background: The Asia-Pacific Economic Cooperation (APEC) meeting was held from 5 November to 11 November 2014 in Beijing, and comprehensive emission control measures were implemented. The efficiency of these measures on particulate matter-related health impacts and economic cost need to be evaluated. Methods: The influences of emission control measures during APEC on particulate matter were evaluated, and health economic effects were assessed. Results: Average concentrations of PM2.5 and PM10 during APEC were reduced by 57.0%, and 50.6% respectively, compared with pre-APEC period. However, the concentrations of particulate matter rebounded after APEC. Compared with the pre-APEC and post-APEC periods, the estimated number of deaths caused by non-accidental, cardiovascular and respiratory diseases that could be attributed to PM2.5 and PM10 during the APEC were the lowest. The economic cost associated with mortality caused by PM2.5 and PM10 during the APEC were reduced by (61.3% and 66.6%) and (50.3% and 60.8%) respectively, compared with pre-APEC and post-APEC. Conclusions: The emission control measures were effective in improving short term air quality and reducing health risks and medical expenses during 2014 APEC, but more efforts is needed for long term and continuous air quality improvement and health protection. PMID:28036006

  14. Analysis of Odor-Causing VOCs and Semi-VOCs Associated with Particulate Matter in Swine Barns Using SPME-GC-MS-Olfactometry

    NASA Astrophysics Data System (ADS)

    Cai, Lingshuang; Koziel, Jacek A.; Lo, Yin-Cheung; Hoff, Steven J.

    2009-05-01

    Swine operations can affect air quality by emissions of odor, volatile organic compounds (VOCs) and other gases, and particulate matter (PM). Particulate matter has been proposed to be an important pathway for carrying odor. However, little is known about the odor-VOCs-PM interactions. In this research, continuous PM sampling was conducted simultaneously with three collocated TEOM analyzers inside a 1000-head swine finish barn located in central Iowa. Each TEOM (tapered element oscillating microbalance) was fitted with total suspended particulate (TSP), PM-10, PM-2.5 and PM-1 preseparators. Used filters were stored in 40 mL vials and transported to the laboratory. VOCs adsorbed/absorbed to dust were allowed to equilibrate with vial headspace. Solid-phase microextraction (SPME) Carboxen/polydimethylsiloxane(PDMS) 85 μm fibers were used to extract VOCs. Simultaneous chemical and olfactometry analyses of VOCs and odor associated with swine PM were completed using a gas chromatography-mass-olfactometry (GC-MS-O) system. Fifty VOCs categorized into nine chemical function groups were identified and confirmed with standards. Five of them are classified as hazardous air pollutants. VOCs were characterized with a wide range of molecular weight, boiling points, vapor pressures, water solubilities, odor detection thresholds, and atmospheric reactivities. All characteristic swine VOCs and odorants were present in PM and their abundance was proportional to PM size. However, the majority of VOCs and characteristic swine odorants were preferentially bound to smaller-size PM. The findings indicate that a significant fraction of swine odor can be carried by PM. Research of the effects of PM control on swine odor mitigation is warranted.

  15. Mercury speciation and mobilization in a wastewater-contaminated groundwater plume

    USGS Publications Warehouse

    Lamborg, Carl H.; Kent, Doug B.; Swarr, Gretchen J.; Munson, Kathleen M.; Kading, Tristan; O'Connor, Alison E.; Fairchild, Gillian M.; LeBlanc, Denis R.; Wiatrowski, Heather A.

    2013-01-01

    We measured the concentration and speciation of mercury (Hg) in groundwater down-gradient from the site of wastewater infiltration beds operated by the Massachusetts Military Reservation, western Cape Cod, Massachusetts. Total mercury concentrations in oxic, mildly acidic, uncontaminated groundwater are 0.5–1 pM, and aquifer sediments have 0.5–1 ppb mercury. The plume of impacted groundwater created by the wastewater disposal is still evident, although inputs ceased in 1995, as indicated by anoxia extending at least 3 km down-gradient from the disposal site. Solutes indicative of a progression of anaerobic metabolisms are observed vertically and horizontally within the plume, with elevated nitrate concentrations and nitrate reduction surrounding a region with elevated iron concentrations indicating iron reduction. Mercury concentrations up to 800 pM were observed in shallow groundwater directly under the former infiltration beds, but concentrations decreased with depth and with distance down-gradient. Mercury speciation showed significant connections to the redox and metabolic state of the groundwater, with relatively little methylated Hg within the iron reducing sector of the plume, and dominance of this form within the higher nitrate/ammonium zone. Furthermore, substantial reduction of Hg(II) to Hg0 within the core of the anoxic zone was observed when iron reduction was evident. These trends not only provide insight into the biogeochemical factors controlling the interplay of Hg species in natural waters, but also support hypotheses that anoxia and eutrophication in groundwater facilitate the mobilization of natural and anthropogenic Hg from watersheds/aquifers, which can be transported down-gradient to freshwaters and the coastal zone.

  16. INSTILLATION OF COARSE ASH PARTICULATE MATTER AND LIPOPOLYSACCHARIDE PRODUCES A SYSTEMIC INFLAMMATORY RESPONSE IN MICE

    EPA Science Inventory

    Coronary ischemic events increase significantly floowing a “bad air” day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 causes inflammatory injury to the lower airways. It is not clear, however, if pulmonary inflation transl...

  17. TEST METHODS TO CHARACTERIZE PARTICULATE MATTER EMISSIONS AND DEPOSITION RATES IN A RESEARCH HOUSE

    EPA Science Inventory

    The paper discusses test methods to characterize particulate matter (PM) emissions and deposition rates in a research house. In a room in the research house, specially configured for PM source testing, a high-efficiency particulate air (HEPA)-filtered air supply system, used for...

  18. GUIDANCE FOR THE PERFORMANCE EVALUATION OF THREE-DIMENSIONAL AIR QUALITY MODELING SYSTEMS FOR PARTICULATE MATTER AND VISIBILITY

    EPA Science Inventory

    The National Ambient Air Quality Standards for particulate matter (PM) and the federal regional haze regulations place some emphasis on the assessment of fine particle (PM; 5) concentrations. Current air quality models need to be improved and evaluated against observations to a...

  19. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    EPA Science Inventory

    The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM) in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences ...

  20. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-Duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  1. Zebrafish Locomotor Responses Demonstrate Irritant Effects of Fine Particulate Matter Sources and a Role for TRPA1

    EPA Science Inventory

    Fine particulate matter (PM) air pollution is a complex mixture of chemicals, the composition of which is determined by contributing sources, and has been linked to cardiopulmonary dysfunction. These effects stem in part from the irritating properties of PM constituents, which ...

  2. Comparative cardiopulmonary effects of particulate matter- and ozone-enhanced smog atmospheres in mice

    EPA Science Inventory

    This study was conducted to compare the cardiac effects of particulate matter (PM)-enhanced and ozone(O3)-enhanced smog atmospheres in mice. We hypothesized that O3-enhanced smog would cause greater cardiac dysfunction than PM-enhanced smog due to the higher concentrations of irr...

  3. ACTIVATION OF THE EGF RECEPTOR SIGNALING PATHWAY IN HUMAN AIRWAY EPITHELIAL CELLS EXPOSED TO UTAH VALLEY PARTICULATE MATTER

    EPA Science Inventory

    Exposure to ambient particulate matter (PM) in the Utah Valley (UV) has previously been associated with a variety of adverse health effects. To investigate intracellular signaling mechanisms for pulmonary responses to UV PM inhalation, human primary airway epithelial cells (NHBE)...

  4. SEASONAL ABUNDANCE OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    EPA Science Inventory

    Organic molecular markers were measured in airborne particulate matter (PM10) from the City of Philadelphia North Broad Street air quality monitoring site to identify the seasonal abundances of key tracer compounds together with their dominant sources. Daily PM10...

  5. METALS MIMIC AIRWAY EPITHELIAL INJURY INDUCED BY IN VITRO EXPOSURE TO UTAH VALLEY AMBIENT PARTICULATE MATTER EXTRACTS

    EPA Science Inventory

    Abstract

    Epidemiologic studies have shown positive associationsbetween changes in ambient particulate matter (PM) levels in Utah Valley during 1986-1988, and the respiratory health of the local population. Ambient PM reductions coincided withclosure of an open-hearth steel...

  6. Effect of Mitochondrial Oxidative Stress and Age on the Signaling Pathway of Ultrafine Particulate Matter Exposure in Murine Aorta

    EPA Science Inventory

    Epidemiological studies have linked ultrafine particulate matter (PM) exposure and adverse cardiovascular events. PM-induced oxidative stress is believed to be a key mechanism contributing to the adverse short-term vascular effects of air pollution exposure. Advanced age is one ...

  7. SOURCE APPORTIONMENT OF FINE PARTICULATE MATTER IN THE U.S. AND ASSOCIATIONS WITH LUNG INFLAMMATORY MARKERS IL -8, COX -2 AND HO -1

    EPA Science Inventory

    Associations are well established between particulate matter (PM) and increased human mortality and morbidity. The association between fine PM sources and lung inflammatory markers IL-8, COX-2, and HO-1 was evaluated in this study.

  8. Comparative Toxicity of Biodiesel Exhaust and Petroleum Diesel Exhaust Particulate Matter Using WKY Rat Alveolar Machrophages

    EPA Science Inventory

    Exposure to fine ambient particulate matter <2.5um (PM2.5) can induce airway inflammation, cardiopulmonary morbidity and mortality. Combustion of petroleum diesel and biodiesel contributes to PM2.5. Possible toxicity caused by inhalation of biodiesel emission particles (BioDEP) h...

  9. CARDIOVASCULAR INJURY FROM ACUTE AND REPEATED EXPOSURE TO PARTICULATE MATTER (PM): POTENTIAL ROLE OF ZINC

    EPA Science Inventory

    CARDIOVASCULAR INJURY FROM ACUTE AND REPEATED EXPOSURE TO PARTICULATE MATTER (PM): POTENTIAL ROLE OF ZINC. UP Kodavanti, MC Schladweiler, AD Ledbetter, RH Jaskot, PS Gilmour, DC Christiani, WP Watkinson, DL Costa, JK McGee, A Nyska. NHEERL, USEPA, RTP, NC; CEMALB, UNC, Chapel Hil...

  10. Omega-3 Fatty Acid Attenuates Cardiovascular Effects in Healthy Older Volunteers Exposed to Concentrated Ambient Fine and UltrafineParticulate Matter

    EPA Science Inventory

    Rationale: Ambient particulate matter (PM) exposure has been associated with adverse cardiovascular effects. A recent epidemiology study reported that omega-3 polyunsaturated fatty acid (fish oil) supplementation blunted the response of study participants to PM. Our study was des...

  11. PARTICULATE MATTER EXPOSURE IN CARS IS ASSOCIATED WITH CARDIOVASCULAR EFFECTS IN HEALTHY YOUNG MEN

    EPA Science Inventory

    Exposure to fine airborne particulate matter (PM(2.5)) is associated with cardiovascular events and mortality in older and cardiac patients. Potential physiologic effects of in-vehicle, roadside, and ambient PM(2.5) were investigated in young, healthy, nonsmoking, male North Caro...

  12. Airways Hyperresponsiveness Following a Single Inhalation Exposure to Doxorubicin-Induced Heart Failure Prevents Airways Transition Metal-Rich Particulate Matter in Hypertensive Rats

    EPA Science Inventory

    Exposure to particulate matter (PM) air pollution results in airways hyperresponsiveness (AHR), however it also results in adverse cardiovascular effects, particularly in individuals with underlying cardiovascular disease. The impact of pre-existing cardiac deficit on PM-induced ...

  13. FINE PARTICLE MATTER ASSOCIATED WITH AIRWAY NEUTROPHILIA IN A SUBPOPULATION OF ADULT ASTHMATICS

    EPA Science Inventory

    Asthmatic adults are a heterogeneous group that is sensitive to the mass concentration of ambient particulate matter (PM). However, it is not clear which components of PM are responsible for these effects, nor are the mechanisms understood. We evaluated whether increases in ambi...

  14. THE WORKSHOP ON THE SOURCE APPORTIONMENT OF PM HEALTH EFFECTS: INTER-COMPARISON OF RESULTS AND IMPLICATIONS

    EPA Science Inventory

    While the association between exposure to ambient fine particulate matter mass (PM2.5) and human mortality is well established, the most responsible particle types/sources are not yet certain. In May 2003, the U.S. Environmental Protection Agency's Particulate Matter Centers Prog...

  15. Species of fine particulate matter and the risk of preterm birth

    EPA Science Inventory

    Particulate matter (PM) has been variably associated with preterm birth (PTB), but the roles of PM species have been less studied. We estimated risk of birth in 4 preterm categories (risks reported as PTBs per 106 pregnancies; PTB categories = gestational age of 20-27; 28-31; 32-...

  16. Contribution of Lubricating Oil to Particulate Matter Emissions from Light-duty Gasoline Vehicles in Kansas City

    EPA Science Inventory

    The contribution of lubricating oil to particulate matter (PM) emissions representative of the in-use 2004 light-duty gasoline vehicles fleet is estimated from the Kansas City Light-Duty Vehicle Emissions Study (KCVES). PM emissions are apportioned to lubricating oil and gasoline...

  17. GASEOUS CO-POLLUTANTS ASSOCIATED WITH PARTICULATE MATTER-RESULTS FROM THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    The U.S. EPA National Exposure Research Laboratory (NERL) conducted a longitudinal particulate matter (PM) panel study in Research Triangle Park, NC between June 2000 and June 2001. Participants were selected from two potentially susceptible sub-populations: a multi-racial grou...

  18. IDENTIFICATION OF POSSIBLE SOURCES OF PARTICULATE MATTER IN THE PERSONAL CLOUD USING SEM/EDX

    EPA Science Inventory

    The United States Environmental Protection Agency (U.S. EPA) conducted the Baltimore Particulate Matter (PM) Epidemiology-Exposure Study of the Elderly during the summer of 1998. The study design included PM2.5 samples obtained from elderly (65+ years of age) retirement facility ...

  19. Comparative In Vivo and Ex Vivo Toxicity Studies of Wildfire Particulate Matter

    EPA Science Inventory

    Inhalation of particulate matter (PM) generated from biomass burning is of concern particularly as the frequency and severity of wildfires have been increasing. Size-fractionated PM samples (ultrafine, <0.2 µm; fine, 0.2-2.5 µm; coarse, 2.5-10 µm) were colle...

  20. INTERLABORATORY COMPARISON STUDIES FOR CHARACTERIZATION OF ORGANIC COMPOUNDS IN PARTICULATE MATTER

    EPA Science Inventory

    A working group of investigators, who are characterizing and quantifying the organic compounds in particulate matter (PM) as part of the US EPA's PM 2.5 research program and related studies, was established three years ago to advance the quality and comparability of data on the...

  1. PM POPULATION EXPOSURE AND DOSE MODELS

    EPA Science Inventory

    The overall objective of this study is the development of a refined probabilistic exposure and dose model for particulate matter (PM) suitable for predicting PM10 and PM2.5 population exposures. This modeling research will be conducted both in-house by EPA scientists and through...

  2. Selenium fractions in organic matter from Se-rich soils and weathered stone coal in selenosis areas of China.

    PubMed

    Qin, Hai-bo; Zhu, Jian-ming; Su, Hui

    2012-02-01

    A high degree of association between Selenium (Se) and organic matter has been demonstrated in natural environments, but Se fractions and speciation in organic matter is unclear. In this study, a method for quantifying organic matter associated with Se (OM-Se) was developed to investigate Se fractions in organic matter in Se-rich soils and weathered stone coal from Enshi, China, where Se poisoning of humans and livestock has been documented. Initially, Se was extracted using water and a phosphate buffer. Subsequently, OM-Se was extracted using NaOH, and then speciated into Se associated with fulvic acids (FA-Se) and humic acids (HA-Se). Both FA-Se and HA-Se were further speciated into the weakly bound and strongly bound fractions using a customized hydride generation reactor. The results show that FA-Se (1.91-479 mg kg(-1)) is the predominant form of Se in all Se-rich soils and the weathered stone coal samples, accounting for more than 62% of OM-Se (3.07-484 mg kg(-1)). Weakly bound FA-Se (1.33-450 mg kg(-1)) was prevalent in the total FA-Se, while weakly bound HA-Se (0.62-26.2 mg kg(-1)) was variable in the total HA-Se (1.15-32.5 mg kg(-1)). These data indicate that OM-Se could play a significant source and sink role in the biogeochemical cycling of Se in the supergene environment. Weakly bound FA-Se seems to act as a potential source for bioavailable Se, whereas strongly bound HA-Se is a possible OM-Se sink which is not readily transformed into bioavailable Se. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Transformation of heavy metal speciation during sludge drying: mechanistic insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weng, Huanxin; Ma, Xue-Wen; Fu, Feng-Xia

    2014-01-30

    Speciation can fundamentally affect on the stability and toxicity of heavy metals in sludge from wastewater treatment plants. This research investigated the speciation of heavy metals in sludge from both municipal and industrial sources, and metal speciation change as a result of drying process to reduce sludge volume. The changes in sludge properties including sludge moisture content, temperature, density, and electrical conductivity were also monitored to provide insights into the mechanisms causing the change in heavy metal speciation. The results show that the drying process generally stabilized the Cr, Cu, Cd and Pb in sludge by transforming acid-soluble, reducible andmore » oxidizable species into structurally stable forms. Such transformation and stabilization occurred regardless of the sludge source and type, and were primarily caused by the changes in sludge properties associated with decomposition of organic matter and sulfide. The results enhanced our understanding of the geochemical behavior of heavy metals in municipal sludge, and are useful for designing a treatment system for environment-friendly disposal of sludge.« less

  4. Biodegradation and speciation of residual SS-ethylenediaminedisuccinic acid (EDDS) in soil solution left after soil washing.

    PubMed

    Tandy, Susan; Ammann, Adrian; Schulin, Rainer; Nowack, Bernd

    2006-07-01

    This paper aims to investigate the degradation and speciation of EDDS-complexes (SS-ethylenediaminedisuccinic acid) in soil following soil washing. The changes in soil solution metal and EDDS concentrations were investigated for three polluted soils. EDDS was degraded after a lag phase of 7-11 days with a half-life of 4.18-5.60 days. No influence of EDDS-speciation on the reaction was observed. The decrease in EDDS resulted in a corresponding decrease in solubilized metals. Changes in EDDS speciation can be related to (1) initial composition of the soil, (2) temporarily anoxic conditions in the soil slurry after soil washing, (3) exchange of EDDS complexes with Cu even in soils without elevated Cu and (4) formation of NiEDDS. Dissolved organic matter is important for metal speciation at low EDDS concentrations. Our results show that even in polluted soils EDDS is degraded from a level of several hundred micromoles to below 1 microM within 50 days.

  5. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10.

    PubMed

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10-100 μg mL(-1) attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL(-1)). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter.

  6. Community airborne particulate matter from mining for sand used as hydraulic fracturing proppant.

    PubMed

    Peters, Thomas M; O'Shaughnessy, Patrick T; Grant, Ryan; Altmaier, Ralph; Swanton, Elizabeth; Falk, Jeffrey; Osterberg, David; Parker, Edith; Wyland, Nancy G; Sousan, Sinan; Stark, Aimee Liz; Thorne, Peter S

    2017-12-31

    Field and laboratory studies were conducted to evaluate the impact of proppant sand mining and processing activities on community particulate matter (PM) concentrations. In field studies outside 17 homes within 800m of sand mining activities (mining, processing, and transport), respirable (PM 4 ) crystalline silica concentrations were low (<0.4μg/m 3 ) with crystalline silica detected on 7 samples (2% to 4% of mass). In long-term monitoring at 6 homes within 800m of sand mining activities, the highest daily mean PM concentrations observed were 14.5μg/m 3 for PM 2.5 and 37.3μg/m 3 for PM 10 , although infrequent (<3% of time), short-term elevated PM concentrations occurred when wind blew over the facility. In laboratory studies, aerosolized sand was shown to produce respirable-sized particles, containing 6% to 19% crystalline silica. Dispersion modeling of a mine and processing facility indicated that PM 10 can exceed standards short distances (<40m) beyond property lines. Lastly, fence-line PM and crystalline silica concentrations reported to state agencies were substantially below regulatory or guideline values, although several excursions were observed for PM 10 when winds blew over the facility. Taken together, community exposures to airborne particulate matter from proppant sand mining activities at sites similar to these appear to be unlikely to cause chronic adverse health conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ambient particulate matter and lung function growth in Chinese children.

    PubMed

    Roy, Ananya; Hu, Wei; Wei, Fusheng; Korn, Leo; Chapman, Robert S; Zhang, Junfeng Jim

    2012-05-01

    Exposure to particulate matter (PM) has been associated with deficits in lung function growth among children in Western countries. However, few studies have explored this association in developing countries, where PM levels are often substantially higher. Children (n = 3273) 6-12 years of age were recruited from 8 schools in 4 Chinese cities. The lung function parameters of forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1) were measured using computerized spirometers twice a year for up to 3 years (1993-1996). Dichotomous samplers placed in each schoolyard were used to measure PM2.5 and PM10 (PM with diameter ≤ 2.5 μm and ≤ 10 μm, respectively). Multivariable generalized estimating equations were used to examine the association between the quarterly average PM levels and lung function growth during the period of follow-up. Annual average PM2.5 and PM10 levels in the 4 cities ranged from 57 to 158 μg/m and 95 to 268 μg/m, respectively. In multivariable models, an increase of 10 μg/m of PM2.5 was associated with decreases of 2.7 mL FEV1 (95% confidence interval = -3.5 to -2.0), 3.5 mL FVC (-4.3 to -2.7), 1.4 mL/year FEV1 growth (-1.8 to -0.9), and 1.5 mL/year FVC growth (-2.0 to -1.0). Similar results were seen with PM10 exposure. Exposure to ambient particulate matter was associated with decreased growth in lung function among Chinese children.

  8. Metal speciation in landfill leachates with a focus on the influence of organic matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Claret, Francis, E-mail: f.claret@brgm.fr; Tournassat, Christophe; Crouzet, Catherine

    Highlights: > This study characterises the heavy-metal content in leachates collected from eight landfills in France. > Most of the metals are concentrated in the <30 kDa fraction, while Pb, Cu and Cd are associated with larger particles. > Metal complexation with OM is not sufficient to explain apparent supersaturation of metals with sulphide minerals. - Abstract: This study characterises the heavy-metal content in leachates collected from eight landfills in France. In order to identify heavy metal occurrence in the different size fractions of leachates, a cascade filtration protocol was applied directly in the field, under a nitrogen gas atmospheremore » to avoid metal oxidation. The results of analyses performed on the leachates suggest that most of the metals are concentrated in the <30 kDa fraction, while lead, copper and cadmium show an association with larger particles. Initial speciation calculations, without considering metal association with organic matter, suggest that leachate concentrations in lead, copper, nickel and zinc are super-saturated with respect to sulphur phases. Speciation calculations that account for metal complexation with organic matter, considered as fulvic acids based on C1(s) NEXAFS spectroscopy, show that this mechanism is not sufficient to explain such deviation from equilibrium conditions. It is therefore hypothesized that the deviation results also from the influence of biological activity on the kinetics of mineral phase precipitation and dissolution, thus providing a dynamic system. The results of chemical analyses of sampled fluids are compared with speciation calculations and some implications for the assessment of metal mobility and natural attenuation in a context of landfill risk assessment are discussed.« less

  9. Monitoring of airborne particulate matter at mountainous urban sites.

    PubMed

    Dai, Jun; Kim, Ki-Hyun; Dutta, Tanushree; Park, Wha Me; Hong, Jong-Ki; Jung, Kweon; Brown, Richard J C

    2016-08-01

    Concentrations of various size fractions (TSP, PM10, PM2.5, and PM1.0) of particulate matter (PM) were measured at two mountainous sites, Buk Han (BH) and Gwan AK (GA), along with one ground reference site at Gwang Jin (GJ), located in Seoul, South Korea for the 4 years from 2010 to 2013. The daily average concentrations of TSP, PM10, PM2.5, and PM1.0 at BH were 47.9 ± 32.5, 37.0 ± 24.6, 20.6 ± 12.9, and 15.3 ± 9.53 μg m(-3), respectively. These values were slightly larger than those measured at GA while much lower than those measured at the reference site (GJ). Seasonal variations in PM concentrations were consistent across all locations with a relative increase in concentrations observed in spring and winter. Correlation analysis showed clear differences in PM concentrations between the mountainous sites and the reference site. Analysis of these PM concentrations indicated that the distribution of PM in the mountainous locations was affected by a number of manmade sources from nearby locations, including both traffic and industrial emissions.

  10. Satellite remote sensing of air quality in winter of Lanzhou

    NASA Astrophysics Data System (ADS)

    Wang, Dawei; Han, Tao; Jiang, Youyan; Li, Lili; Ren, Shuyuan

    2018-03-01

    Fine particulate matter (aerodynamic diameters of less than 2.5 μm, PM2.5) air pollution has become one of the global environmental problem, endangering the existence of residents living, climate, and public health. Estimation Particulate Matter (aerodynamic diameters of less than 10 μm, PM10) concentration and aerosol absorption was the key point in air quality and climate studies. In this study, we retrieve the Aerosol Optical Depth (AOD) from the Earth Observing System (EOS) and the Moderate Resolution Imaging Spectroradiometer (MODIS), and PM2.5, PM10 in winter on 2014 and 2015, using Extended Dense Dark Vegetation Algorithm and 6S radiation model to analysis the correlation. The result showed that at the condition of non-considering the influence of primary pollutants, the correlation of two Polynomials between aerosol optical depth and PM2.5 and PM10 was poor; taking the influence of the primary pollutants into consideration, the aerosol optical depth has a good correlation with PM2.5 and PM10. The version of PM10 by aerosol optical depth is higher than that of PM2.5, so the model can be used to realize the high precision inversion of winter PM10 in Lanzhou.

  11. ADVANCES IN CONTROL OF PM2..5 AND PM2..5 PRECURSORS GENERATED BY THE COMBUSTION OF PULVERIZED COAL

    EPA Science Inventory

    Particulate matter smaller than 2.5 micrometers in aerodynamic diameter (PM2.5) is of concern due to adverse health effects associated with elevated ambient mass concentrations of PM2.5. PM2.5 from coal-fired utility boilers is composed of directly emitted (primary) particles and...

  12. THE EXPOSURE PARADOX IN PARTICULATE MATTER COMMUNITY TIME-SERIES EPIDEMIOLOGY: CAN AMBIENT CONCENTRATIONS OF PM BE USED AS A SURROGATE FOR PERSONAL EXPOSURE TO PM ?

    EPA Science Inventory

    Objective: Explain why epidemiologic studies find a statistically significant relationship between ambient concentrations of PM and health effects even though only a near-zero correlation is found between ambient concentrations of PM and personal exposures to PM. Method: Consider...

  13. Urban airborne matter in central and southern Chile: Effects of meteorological conditions on fine and coarse particulate matter

    NASA Astrophysics Data System (ADS)

    Yáñez, Marco A.; Baettig, Ricardo; Cornejo, Jorge; Zamudio, Francisco; Guajardo, Jorge; Fica, Rodrigo

    2017-07-01

    Air pollution is one of the major global environmental problems affecting human health and life quality. Many cities of Chile are heavily polluted with PM2.5 and PM10, mainly in the cold season, and there is little understanding of how the variation in particle matter differs between cities and how this is affected by the meteorological conditions. The objective of this study was to assess the effect of meteorological variables on respirable particulate matter (PM) of the main cities in the central-south valley of Chile during the cold season (May to August) between 2014 and 2016. We used hourly PM2.5 and PMcoarse (PM10- PM2.5) information along with wind speed, temperature and relative humidity, and other variables derived from meteorological parameters. Generalized additive models (GAMs) were fitted for each of the eight cities selected, covering a latitudinal range of 929 km, from Santiago to Osorno. Great variation in PM was found between cities during the cold months, and that variation exhibited a marked latitudinal pattern. Overall, the more northerly cities tended to be less polluted in PM2.5 and more polluted in PMcoarse than the more southerly cities, and vice versa. The results show that other derived variables from meteorology were better related with PM than the use of traditional daily means. The main variables selected with regard to PM2.5 content were mean wind speed and minimum temperature (negative relationship). Otherwise, the main variables selected with regard to PMcoarse content were mean wind speed (negative), and the daily range in temperature (positive). Variables derived from relative humidity contributed differently to the models, having a higher effect on PMcoarse than PM2.5, and exhibiting both negative and positive effects. For the different cities the deviance explained by the GAMs ranged from 37.6 to 79.1% for PM2.5 and from 18.5 to 63.7% for PMcoarse. The percentage of deviance explained by the models for PM2.5 exhibited a latitudinal pattern, which was not observed in PMcoarse. This highlights the greater predictability of PM2.5 according to meteorological parameters in the cities to the south. Southern cities located spatially close to one another had similar patterns in both the selected variables for the models and the trends. The meteorological factor influencing the cities had a major impact on PM concentrations. The findings of this study may aid understanding of PM variation across the country, in the way of improving forecasting models.

  14. Particulate matter emissions of different brands of mentholated cigarettes.

    PubMed

    Gerharz, Julia; Bendels, Michael H K; Braun, Markus; Klingelhöfer, Doris; Groneberg, David A; Mueller, Ruth

    2018-06-01

    Inhaling particulate matter (PM) in environmental tobacco smoke (ETS) endangers the health of nonsmokers. Menthol, an additive in cigarettes, attenuates respiratory irritation of tobacco smoke. It reduces perceptibility of smoke and therefore passive smokers may inhale ETS unnoticed. To investigate a possible effect of menthol on PM concentrations (PM 10 , PM 2.5 , and PM 1 ), ETS of four mentholated cigarette brands (Elixyr Menthol, Winston Menthol, Reyno Classic, and Pall Mall Menthol Blast) with varying menthol content was analyzed. ETS was generated in a standardized way using an automatic environmental tobacco smoke emitter (AETSE), followed by laser aerosol spectrometry. This analysis shows that the tested cigarette brands, despite having different menthol concentrations, do not show differences with regard to PM emissions, with the exception of Reyno Classic, which shows an increased emission, although the menthol level ranged in the midfield. More than 90% of the emitted particles had a size smaller than or equal to 1 µm. Regardless of the menthol level, the count median diameter (CMD) and the mass median diameter (MMD) were found to be 0.3 µm and 0.5 µm, respectively. These results point out that there is no effect of menthol on PM emission and that other additives might influence the increased PM emission of Reyno Classic. Particulate matter (PM) in ETS endangers the health of nonsmokers and smokers. This study considers the effect of menthol, an additive in cigarettes, on PM emissions. Does menthol increase the amount of PM? Due to the exposure to secondhand smoke nearly 900,000 people die each year worldwide. The aim of the study is to measure the particle concentration (L -1 ), mass concentration (µg m -3 ), and dust mass fractions shown as PM 10 , PM 2.5 , and PM 1 of five different cigarette brands, including four with different menthol concentrations and one menthol-free reference cigarette, in a well-established standardized system.

  15. Combination effects of airborne particulate matter exposure and high-fat diet on hepatic fibrosis through regulating the ROS-endoplasmic reticulum stress-TGFβ/SMADs axis in mice.

    PubMed

    Ding, Shibin; Yu, Lanlan; An, Baijie; Zhang, Guofu; Yu, Pengxin; Wang, Zhe

    2018-05-01

    Hepatic fibrosis, characterized by an excessive accumulation of extracellular matrix, is associated with toxic substance exposure, chronic infections, mechanical injury, airborne fine particulate matter (PM 2.5 ) exposure and metabolic disease. This study aimed to investigate the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on hepatic fibrosis and further explored whether combination treatment of PM exposure and high-fat diet (HFD) aggravate the adverse effects in mice. Six-week-old male C57BL/6J mice fed with either a standard chow diet (STD) or an HFD were treated with either filtered air (FA) or PM for 18 weeks. Metabolic parameters, histological examination, gene expression analysis, and Western blot analysis were utilized to measure the effect and mechanism of PM exposure on hepatic fibrosis and to further analyze the synergistic effect of HFD. Subchronic airborne PM exposure induces hepatic fibrosis in mice, and combination treatment of PM exposure and HFD accelerate the adverse effect. Meanwhile, subchronic exposure to real-world PM increased the level of hepatic ROS, and the expression of endoplasmic reticulum (ER) stress markers (GRP78 and CHOP), p-SMAD2 and p-SMAD3, as well as up-regulated TGFβ and collagen 1 in liver tissues. Furthermore, PM exposure and HFD displayed the synergistic effects on these changes in liver. Our findings indicate that airborne PM exposure aggravates HFD -induced hepatic fibrosis. The ROS-ER stress-TGFβ/SMADs regulatory axis mediates the effects of airborne PM exposure on accelerating hepatic fibrosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Comparative assessment of a real-time particle monitor against the reference gravimetric method for PM10 and PM2.5 in indoor air

    NASA Astrophysics Data System (ADS)

    Tasić, Viša; Jovašević-Stojanović, Milena; Vardoulakis, Sotiris; Milošević, Novica; Kovačević, Renata; Petrović, Jelena

    2012-07-01

    Accurate monitoring of indoor mass concentrations of particulate matter is very important for health risk assessment as people in developed countries spend approximately 90% of their time indoors. The direct reading, aerosol monitoring device, Turnkey, OSIRIS Particle Monitor (Model 2315) and the European reference low volume sampler, LVS3 (Sven/Leckel LVS3) with size-selective inlets for PM10 and PM2.5 fractions were used to assess the comparability of available optical and gravimetric methods for particulate matter characterization in indoor air. Simultaneous 24-hour samples were collected in an indoor environment for 60 sampling periods in the town of Bor, Serbia. The 24-hour mean PM10 levels from the OSIRIS monitor were well correlated with the LVS3 levels (R2 = 0.87) and did not show statistically significant bias. The 24-hour mean PM2.5 levels from the OSIRIS monitor were moderately correlated with the LVS3 levels (R2 = 0.71), but show statistically significant bias. The results suggest that the OSIRIS monitor provides sufficiently accurate measurements for PM10. The OSIRIS monitor underestimated the indoor PM10 concentrations by approximately 12%, relative to the reference LVS3 sampler. The accuracy of PM10 measurements could be further improved through empirical adjustment. For the fine fraction of particulate matter, PM2.5, it was found that the OSIRIS monitor underestimated indoor concentrations by approximately 63%, relative to the reference LVS3 sampler. This could lead to exposure misclassification in health effects studies relying on PM2.5 measurements collected with this instrument in indoor environments.

  17. Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese city.

    PubMed

    Cao, Junji; Xu, Hongmei; Xu, Qun; Chen, Bingheng; Kan, Haidong

    2012-03-01

    Although ambient fine particulate matter (PM(2.5); particulate matter ≤ 2.5 µm in aerodynamic diameter) has been linked to adverse human health effects, the chemical constituents that cause harm are unknown. To our knowledge, the health effects of PM(2.5) constituents have not been reported for a developing country. We examined the short-term association between PM(2.5) constituents and daily mortality in Xi'an, a heavily polluted Chinese city. We obtained daily mortality data and daily concentrations of PM(2.5), organic carbon (OC), elemental carbon (EC), and 10 water-soluble ions for 1 January 2004 through 31 December 2008. We also measured concentrations of fifteen elements 1 January 2006 through 31 December 2008. We analyzed the data using overdispersed generalized linear Poisson models. During the study period, the mean daily average concentration of PM(2.5) in Xi'an was 182.2 µg/m³. Major contributors to PM(2.5) mass included OC, EC, sulfate, nitrate, and ammonium. After adjustment for PM(2.5) mass, we found significant positive associations of total, cardiovascular, or respiratory mortality with OC, EC, ammonium, nitrate, chlorine ion, chlorine, and nickel for at least one lag period. Nitrate demonstrated stronger associations with total and cardiovascular mortality than PM(2.5) mass. For a 1-day lag, interquartile range increases in PM(2.5) mass and nitrate (114.9 and 15.4 µg/m³, respectively) were associated with 1.8% [95% confidence interval (CI): 0.8%, 2.8%] and 3.8% (95% CI: 1.7%, 5.9%) increases in total mortality. Our findings suggest that PM(2.5) constituents from the combustion of fossil fuel may have an appreciable influence on the health effects attributable to PM(2.5) in Xi'an.

  18. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy.

    PubMed

    Sgrigna, G; Sæbø, A; Gawronski, S; Popek, R; Calfapietra, C

    2015-02-01

    A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm(-2). Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. PERSONAL PARTICULATE MATTER EXPOSURE MONITORING: IDENTIFYING IMPORTANT SOURCES, ACTIVITIES, AND LOCATIONS BASED ON DATA FROM THE NERL RTP PM PANEL STUDY

    EPA Science Inventory

    A longitudinal particulate matter (PM) exposure study was conducted in the Research Triangle Park, NC area between June 2000 and June 2001. Participants were selected from two groups of potentially susceptible sub-populations: a group of African-Americans living in an environme...

  20. 76 FR 59119 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-23

    ... MEETING: 9 a.m.-12 p.m., Wednesday, September 21, 2011. CHANGES TO OPEN MEETING: Time change to 10 a.m.-11 a.m. REVISED AGENDA: Matters To Be Considered: Briefing Matter: Table Saws-- Advance Notice of....) ANNOUNCED TIME AND DATE OF CLOSED MEETING: 2-3 p.m., Wednesday, September 21, 2011. CLOSED MEETING CANCELLED...

  1. The Effect of Composition, Size, and Solubility on Acute Pulmonary Injury in Rats Following Exposure to Mexico City Ambient Particulate Matter Samples

    EPA Science Inventory

    Particulate matter (PM) associated metals contribute to the adverse cardiopulmonary effects following exposure to air pollution. Here, we investigated how variation in the composition and size of ambient PM collected from two distinct regions in Mexico City relates to toxicity d...

  2. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...

  3. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...

  4. 40 CFR 60.42 - Standard for particulate matter (PM).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...

  5. Associations of ozone and PM2.5 concentrations with Parkinson’s disease among participants in the Agricultural Health Study

    EPA Science Inventory

    Background: Evidence from experimental studies suggests that exposure to air pollution may be associated with risk of Parkinson’s disease (PD). Objective: To evaluate associations of ambient ozone and fine particulate matter (PM2.5 – particulate matter with an aerodynamic diam...

  6. Impact of feed delivery pattern on aerial particulate matter and behavior of feedlot cattle

    USDA-ARS?s Scientific Manuscript database

    Fine particulate matter (PM) generated by cattle in feedlots is an environmental pollutant and a potential human and animal health issue. The objective of this study was to determine if a feeding schedule affects cattle behaviors that promote PM in a commercial feedlot. The study used 2,813 crossbre...

  7. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    EPA Science Inventory

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  8. 78 FR 882 - Approval and Promulgation of Air Quality Implementation Plans; Delaware, New Jersey, and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-07

    ...)(2).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control... 2011 ambient air quality data, the Philadelphia-Wilmington, PA-NJ-DE fine particulate matter (PM 2.5... 2011 ambient air quality data, the Philadelphia-Wilmington, PA-NJ-DE fine particulate matter (PM 2.5...

  9. Cardiopulmonary Toxicity of Size-Fractionated Particulate Matter Obtained at Different Distances from a Highway

    EPA Science Inventory

    This study was initiated to determine the effect of size fractionated particulate matter (PM) obtained at different distances from a highway on acute cardiopulmonary toxicity in mice. PM was collected for 2 weeks using a three-stage (ultrafine: <0.1µm; fine: 0.1-2.5µm; and coarse...

  10. Emissions calculated from particulate matter and gaseous ammonia measurements from a commercial dairy in California, USA

    USDA-ARS?s Scientific Manuscript database

    Emission rates and factors for particulate matter (PM) and gaseous ammonia (NH3) were estimated from measurements taken at a dairy in California, USA in June 2008. Concentration measurements were made using both point and remote sensors. Filter-based PM samplers and OPCs characterized aerodynamic an...

  11. Laboratory Validation of Four Black Carbon Measurement Methods for Determination of the Nonvolatile Particulate Matter (nvPM) Mass Emissions from Commercial Aircraft Engines

    EPA Science Inventory

    Four candidate black carbon (BC) measurement techniques have been identified by the SAE International E-31 Committee for possible use in determining nonvolatile particulate matter (nvPM) mass emissions during commercial aircraft engine certification. These techniques are carbon b...

  12. 78 FR 23492 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-19

    ... Promulgation of Air Quality Implementation Plans; Indiana; Particulate Matter Air Quality Standards AGENCY... submission contains the 24-hour fine particle (PM 2.5 ) National Ambient Air Quality Standards (NAAQS..., ``National primary and secondary ambient air quality standards for PM 2.5 .'' In the submission, IDEM has...

  13. Evaluating the dynamical characteristics of particle matter emissions in an open ore yard with industrial operation activities.

    PubMed

    Cong, X C; Yang, G S; Qu, J H; Dai, M X

    2016-11-01

    A study to investigate the dynamical characteristics of particle matter emissions in a working open yard is conducted in Caofeidian Port of Hebei Province, China. The average diurnal concentrations of the total suspended particulate (TSP) matter and respirable particulate matter (PM 10 and PM 5 ) are monitored during the field measurement campaign. Sampling is performed at a regular interval at 8 monitoring stations in the yard with normal industrial activities. The average TSP, PM 10 and PM 5 concentrations range from 285 to 568, 198 to 423 and 189 to 330 μg.m-3 in the yard, respectively. The linear regression correlation coefficient of TSP/PM 10 and TSP/PM 5 is 0.95±0.01 and 0.88±0.02, respectively.By using the Spearman correlation method, the wind speed and relative humidity are both weakly correlated with the PM 10 and PM 5 concentrations according to the measurements. In addition, industrial operation activities, such as vehicular traffic in the yard and the loading time of stackers, are significantly positively correlated with the PM concentration. Using the multivariate regression method, the main parameters influencing the TSP concentration variations are integratedly analysed. The traffic volume is found to be a significant predictor of TSP concentration variation, with the smallest P value (P<0.05).To understand the dynamical characteristics of particle emissions in the yard, the emissions from the truck transports, that is, from unpaved haul roads and from the loading process, are established. Then, the dynamical emission factor (EF D ) based on the industrial activities in the yard is proposed. The dynamical emissions average 5.25x10 5 kg.year -1 and EF D is evaluated to be 0.29 kg.(ton.day) -1 during the measurement period. These outcomes have meaningful implications not only for understanding the dynamical characteristics of particle emissions in the working stockyard but also for implementing effective control measures at appropriate sites in the harbour area.

  14. SYSTEMIC TRANSLOCATION OF PARTICULATE MATTER (PM)-ASSOCIATED METALS FOLLOWING A SINGLE INTRATRACHEAL (IT) INSTILLATION IN WKY RATS

    EPA Science Inventory

    Ambient PM contains transition metals with differing water solubilities. Epidemiological studies show a link between PM exposure and an increased risk of cardiovascular disease. Direct translocation of PM-associated metals from the lung into systemic circulation may be partly res...

  15. Field and laboratory comparison of PM10 instruments in high winds

    USDA-ARS?s Scientific Manuscript database

    Instruments capable of measuring PM10 (particulate matter less than or equal to 10µm in aerodynamic diameter) concentrations may vary in performance as a result of different technologies utilized in measuring PM10. Therefore, the performance of five instruments capable of measuring PM10 concentratio...

  16. March 10, 2006, Transportation Conformity Rule That Addresses Requirements for Project-level Conformity Determinations in PM2.5 and PM10 Nonattainment and Maintenance Areas

    EPA Pesticide Factsheets

    This final rule, published March 10, 2006, establishes requirements for project-level conformity determinations in particulate matter (PM) 2.5 nonattainment and maintenance areas, and revises existing requirements for projects in PM10 areas.

  17. LUNG INJURY IS INDUCED BY INSOLUBLE AND TOTAL BUT NOT SOLUBLE PARTICULATE MATTER (PM) COLLECTED IN MEXICO CITY

    EPA Science Inventory

    Exposure to ambient air PM has been associated with adverse cardiopulmonary health effects; however, causative components have not been identified. The solubility of PM constituents and their bioavalability may influence their toxicity. Chemically characterized PM10 an...

  18. CHARACTERIZATION OF THE FUGITIVE PARTICULATE EMISSIONS FROM CONSTRUCTION MUD/DIRT CARRYOUT

    EPA Science Inventory

    The paper describes a research program which directly determined mud/dirt carryout emission factors for both particulate matter (PM) with aerodynamic diameters of 10 micrometers or less (PM10) and PM with aerodynamic diameters of 2.5 micrometers or less (PM2.5). The research was ...

  19. COMPARISON OF PM-INDUCED GENE EXPRESSION PROFILES BETWEEN BRONCHIAL EPITHELIAL CELLS AND NASAL EPITHELIAL CELLS IN HUMAN

    EPA Science Inventory

    Epidemiologic studies have linked exposures to particulate matter (PM) and increased pulmonary mortality and morbidity. Bronchial epithelial cells (BEC) are the primary target of PM. PM exposure induces a wide array of biological responses in BEC. Primary human BEC, however, need...

  20. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter.

    PubMed

    Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Argyrou, Nikoleta; Tsourouktsoglou, Theodora; Lialiaris, Stergios; Constantinidis, Alexandros; Lykidis, Dimitrios; Lialiaris, Thedore S; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini

    2016-11-01

    Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (<0.49, 0.49-0.97, 0.97-3 and >3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the <0.49 μm size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities

    PubMed Central

    Krall, Jenna R.; Mulholland, James A.; Russell, Armistead G.; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E.; Waller, Lance A.; Sarnat, Stefanie Ebelt

    2016-01-01

    Background: Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. Objectives: We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. Methods: We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. Results: We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. Conclusions: We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect 125:97–103; http://dx.doi.org/10.1289/EHP271 PMID:27315241

  2. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities.

    PubMed

    Krall, Jenna R; Mulholland, James A; Russell, Armistead G; Balachandran, Sivaraman; Winquist, Andrea; Tolbert, Paige E; Waller, Lance A; Sarnat, Stefanie Ebelt

    2017-01-01

    Short-term exposure to ambient fine particulate matter (PM2.5) concentrations has been associated with increased mortality and morbidity. Determining which sources of PM2.5 are most toxic can help guide targeted reduction of PM2.5. However, conducting multicity epidemiologic studies of sources is difficult because source-specific PM2.5 is not directly measured, and source chemical compositions can vary between cities. We determined how the chemical composition of primary ambient PM2.5 sources varies across cities. We estimated associations between source-specific PM2.5 and respiratory disease emergency department (ED) visits and examined between-city heterogeneity in estimated associations. We used source apportionment to estimate daily concentrations of primary source-specific PM2.5 for four U.S. cities. For sources with similar chemical compositions between cities, we applied Poisson time-series regression models to estimate associations between source-specific PM2.5 and respiratory disease ED visits. We found that PM2.5 from biomass burning, diesel vehicle, gasoline vehicle, and dust sources was similar in chemical composition between cities, but PM2.5 from coal combustion and metal sources varied across cities. We found some evidence of positive associations of respiratory disease ED visits with biomass burning PM2.5; associations with diesel and gasoline PM2.5 were frequently imprecise or consistent with the null. We found little evidence of associations with dust PM2.5. We introduced an approach for comparing the chemical compositions of PM2.5 sources across cities and conducted one of the first multicity studies of source-specific PM2.5 and ED visits. Across four U.S. cities, among the primary PM2.5 sources assessed, biomass burning PM2.5 was most strongly associated with respiratory health. Citation: Krall JR, Mulholland JA, Russell AG, Balachandran S, Winquist A, Tolbert PE, Waller LA, Sarnat SE. 2017. Associations between source-specific fine particulate matter and emergency department visits for respiratory disease in four U.S. cities. Environ Health Perspect 125:97-103; http://dx.doi.org/10.1289/EHP271.

  3. Characterization of coarse particulate matter in school gyms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branis, Martin, E-mail: branis@natur.cuni.cz; Safranek, Jiri

    2011-05-15

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM{sub 10-2.5} and PM{sub 2.5-1.0}) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM{sub 10-2.5} 4.1-7.4 {mu}g m{sup -3} andmore » PM{sub 2.5-1.0} 2.0-3.3 {mu}g m{sup -3}) than indoors (average PM{sub 10-2.5} 13.6-26.7 {mu}g m{sup -3} and PM{sub 2.5-1.0} 3.7-7.4 {mu}g m{sup -3}). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM{sub 10-2.5} and 1.4-4.8 for the PM{sub 2.5-1.0} values. Under extreme conditions, the I/O ratios reached 180 (PM{sub 10-2.5}) and 19.1 (PM{sub 2.5-1.0}). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate matter, which can contribute to increased short-term inhalation exposure of exercising children. - Highlights: {yields} We studied concentration, composition and morphology of coarse particles in gyms. {yields} Indoor concentration of coarse particles was high during days with pupils activity. {yields} Effect of outdoor coarse dust on indoor levels was weak and inconsistent. {yields} Six main groups of minerals contributing to indoor resuspended dust were determined. {yields} The most abundant coarse particles were human skin scales.« less

  4. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    PubMed

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing.

  5. EVALUATION OF THE SMPS-APS SYSTEM AS A CONTINUOUS MONITOR FOR MEASURING PM2.5, PM10 AND COARSE (PM2.5-10) CONCENTRATIONS. (R827352C011)

    EPA Science Inventory

    Respirable particulate matter (PM) has been linked to mortality and morbidity by a variety of epidemiological studies. This research has led to the creation of a new PM standard for particles with diameters <2.5 μm (PM2.5). Since the conclusion of these studie...

  6. Measurement and modeling of diameter distributions of particulate matter in terrestrial solutions

    NASA Astrophysics Data System (ADS)

    Levia, Delphis F.; Michalzik, Beate; Bischoff, Sebastian; NäThe, Kerstin; Legates, David R.; Gruselle, Marie-Cecile; Richter, Susanne

    2013-04-01

    Particulate matter (PM) plays an important role in biogeosciences, affecting biosphere-atmosphere interactions and ecosystem health. This is the first known study to quantify and model PM diameter distributions of bulk precipitation, throughfall, stemflow, and organic layer (Oa) solution. Solutions were collected from a European beech (Fagus sylvatica L.) forest during leafed and leafless periods. Following scanning electron microscopy and image analysis, PM distributions were quantified and then modeled with the Box-Cox transformation. Based on an analysis of 43,278 individual particulates, median PM diameter of all solutions was around 3.0 µm. All PM diameter frequency distributions were skewed significantly to the right. Optimal power transformations of PM diameter distributions were between -1.00 and -1.56. The utility of this model reconstruction would be that large samples having a similar probability density function can be developed for similar forests. Further work on the shape and chemical composition of particulates is warranted.

  7. Spatial and seasonal variation of particulate matter (PM10 and PM2.5) in Middle Eastern classrooms

    NASA Astrophysics Data System (ADS)

    Elbayoumi, Maher; Ramli, Nor Azam; Md Yusof, Noor Faizah Fitri; Al Madhoun, Wesam

    2013-12-01

    Monitoring of PM10 and PM2.5 particularly in school microenvironments is extremely important due to their impact on the global burden of disease. PM10 and PM2.5 levels were monitored inside and outside the classrooms of twelve naturally ventilated schools located in Gaza strip, Palestine. The measurements were carried out using hand held particulate matter instrument during fall, winter and spring seasons from October 2011 to May 2012. The average concentration of indoor PM10 was 349.49 (±196.57) μg m-3 and for PM2.5 was 103.96 (±84.96) μg m-3. The indoor/outdoor ratios for PM10 and PM2.5 were found to be much greater than 1.00 for all case study schools due to resuspension of deposited particles from the floors. Furthermore, strong correlations were found between indoor-outdoor PM10 and PM2.5. The variations of PM10 and PM2.5 concentrations were significant for the three seasons. During winter, the mean indoor PM10 was 1.30 and 2.50 times higher than fall and spring concentrations respectively. Meanwhile, PM2.5 concentration in winter was 3.00 times higher than fall and spring concentrations. In relation to spatial variation, the concentration of PM10 in the lower storey level was significantly higher than the classrooms located in the higher storey level.

  8. Particulate matter dynamics in naturally ventilated freestall dairy barns

    NASA Astrophysics Data System (ADS)

    Joo, H. S.; Ndegwa, P. M.; Heber, A. J.; Ni, J.-Q.; Bogan, B. W.; Ramirez-Dorronsoro, J. C.; Cortus, E. L.

    2013-04-01

    Particulate matter (PM) concentrations and ventilation rates, in two naturally ventilated freestall dairy barns, were continuously monitored for two years. The first barn (B1) housed 400 fresh lactating cows, while the second barn (B2) housed 835 non-fresh lactating cows and 15 bulls. The relationships between PM concentrations and accepted governing parameters (environmental conditions and cattle activity) were examined. In comparison with other seasons, PM concentrations were lowest in winter. Total suspended particulate (TSP) concentrations in spring and autumn were relatively higher than those in summer. Overall: the concentrations in the barns and ambient air, for all the PM categories (PM2.5, PM10, and TSP), exhibited non-normal positively skewed distributions, which tended to overestimate mean or average concentrations. Only concentrations of PM2.5 and PM10 increased with ambient air temperature (R2 = 0.60-0.82), whereas only concentrations of TSP increased with cattle activity. The mean respective emission rates of PM2.5, PM10, and TSP for the two barns ranged between 1.6-4.0, 11.9-15.0, and 48.7-52.5 g d-1 cow-1, indicating similar emissions from the two barns.

  9. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    NASA Astrophysics Data System (ADS)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  10. Source identification of coarse particles in the Desert ...

    EPA Pesticide Factsheets

    The Desert Southwest Coarse Particulate Matter Study was undertaken to further our understanding of the spatial and temporal variability and sources of fine and coarse particulate matter (PM) in rural, arid, desert environments. Sampling was conducted between February 2009 and February 2010 in Pinal County, AZ near the town of Casa Grande where PM concentrations routinely exceed the U.S. National Ambient Air Quality Standards (NAAQS) for both PM10 and PM2.5. In this desert region, exceedances of the PM10 NAAQS are dominated by high coarse particle concentrations, a common occurrence in this region of the United States. This work expands on previously published measurements of PM mass and chemistry by examining the sources of fine and coarse particles and the relative contribution of each to ambient PM mass concentrations using the Positive Matrix Factorization receptor model (Clements et al., 2014). Highlights • Isolation of coarse particles from fine particle sources. • Unique chemical composition of coarse particles. • Role of primary biological particles on aerosol loadings.

  11. Space and time resolved monitoring of airborne particulate matter in proximity of a traffic roundabout in Sweden.

    PubMed

    Wilkinson, Kai E; Lundkvist, Johanna; Netrval, Julia; Eriksson, Mats; Seisenbaeva, Gulaim A; Kessler, Vadim G

    2013-11-01

    Concerns over exposure to airborne particulate matter (PM) are on the rise. Currently monitoring of PM is done on the basis of interpolating a mass of PM by volume (μg/m(3)) but has the drawback of not taking the chemical nature of PM into account. Here we propose a method of collecting PM at its emission source and employing automated analysis with scanning electron microscopy associated with EDS-analysis together with light scattering to discern the chemical composition, size distribution, and time and space resolved structure of PM emissions in a heavily trafficated roundabout in Sweden. Multivariate methods (PCA, ANOVA) indicate that the technogenic marker Fe follows roadside dust in spreading from the road, and depending on time and location of collection, a statistically significant difference can be seen, adding a useful tool to the repertoiré of detailed PM monitoring and risk assessment of local emission sources. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Characterization of Fine Particulate Matter (PM) and Secondary PM Precursor Gases in the Mexico City Metropolitan Area

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Volkamer, Rainer; de Foy, Benjamin; Lei, Wenfang; Zavala, Miguel; Velasco, Erik; Molina; Mario J.

    2008-10-31

    This project was one of three collaborating grants funded by DOE/ASP to characterize the fine particulate matter (PM) and secondary PM precursors in the Mexico City Metropolitan Area (MCMA) during the MILAGRO Campaign. The overall effort of MCMA-2006, one of the four components, focused on i) examination of the primary emissions of fine particles and precursor gases leading to photochemical production of atmospheric oxidants and secondary aerosol particles; ii) measurement and analysis of secondary oxidants and secondary fine PM production, with particular emphasis on secondary organic aerosol (SOA), and iii) evaluation of the photochemical and meteorological processes characteristic of the Mexico City Basin. The collaborative teams pursued the goals through three main tasks: i) analyses of fine PM and secondary PM precursor gaseous species data taken during the MCMA-2002/2003 campaigns and preparation of publications; ii) planning of the MILAGRO Campaign and deployment of the instrument around the MCMA; and iii) analysis of MCMA-2006 data and publication preparation.

  13. Photochemical model estimated fire impacts on ozone and aerosol evaluated with field studies and routine data sources

    NASA Astrophysics Data System (ADS)

    Baker, K. R.

    2017-12-01

    Highly instrumented field studies provide a unique opportunity to evaluate multiple aspects of photochemical grid model representation of fire emissions, dispersion, and chemical evolution. Fuel information and burn area for a specific fire coupled with near-fire and downwind chemical measurements provides information needed to constrain model predicted fire plume transport and chemical evolution of important pollutants such as ozone and particulate matter (PM2.5) that have deleterious health effects. Most local to regional scale field campaigns to date have made relatively few transects through plumes from fires with well characterized fuel type and consumption. While more comprehensive field studies are being planned for 2018 and beyond (WE-CAN, FIREX, FIRE-CHEM, and FASMEE), existing measurement data from multiple field campaigns including 2013 SEAC4RS, satellite data, and routine surface networks are used to assess how a regulatory modeling system captures fire impacts on local to regional scale ozone and PM2.5. Key aspects of the regulatory modeling system include fire location and burn area from SMARTFIRE2, emissions from BlueSky framework, and predictions of ambient O3 and PM2.5 from the Community Multiscale Air Quality (CMAQ) photochemical transport model. A comparison of model estimated O3 from specific fires with routine surface measurements at rural locations in proximity to the 2013 Rim fire, 2011 Wallow fire, and 2011 Flint Hills fires suggest the modeling system over-estimates smoke impacts on hourly ozone. Sensitivity simulations where solar radiation and photolysis rates are more aggressively attenuated by smoke reduced O3 predictions but did not ameliorate the over prediction bias. PM2.5 organic carbon tends to be overpredicted at rural surface sites downwind from the 2011 Flint Hills prescribed fires while results were mixed at rural sites downwind of the 2013 Rim fire and 2011 Wallow fire suggesting differences in fuel characterization (e.g., emission factors, emissions speciation, burn period, etc.) between these areas may contribute to differences in model prediction. Aircraft plume transects made downwind of the 2013 Rim fire and satellite information suggest the model does well at regional scale plume transport.

  14. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Tang, L. L.; Wang, Z.; Yu, H. X.; Sun, Y. L.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A. S. H.; Zhang, H. L.; Zhou, H. C.

    2015-02-01

    Atmospheric submicron particulate matter (PM1) is one of the most significant pollution components in China. Despite its current popularity in the studies of aerosol chemistry, the characteristics, sources and evolution of atmospheric PM1 species are still poorly understood in China, particularly for the two harvest seasons, namely, the summer wheat harvest and autumn rice harvest. An Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was deployed for online monitoring of PM1 components during summer and autumn harvest seasons in urban Nanjing, in the Yangtze River delta (YRD) region of China. PM1 components were shown to be dominated by organic aerosol (OA, 39 and 41%) and nitrate (23 and 20%) during the harvest seasons (the summer and autumn harvest). Positive matrix factorization (PMF) analysis of the ACSM OA mass spectra resolved four OA factors: hydrocarbon-like mixed with cooking-related OA (HOA + COA), fresh biomass-burning OA (BBOA), oxidized biomass-burning-influenced OA (OOA-BB), and highly oxidized OA (OOA); in particular the oxidized BBOA contributes ~80% of the total BBOA loadings. Both fresh and oxidized BBOA exhibited apparent diurnal cycles with peak concentration at night, when the high ambient relative humidity and low temperature facilitated the partitioning of semi-volatile organic species into the particle phase. The fresh BBOA concentrations for the harvests are estimated as BBOA = 15.1 × (m/z 60-0.26% × OA), where m/z (mass-to-charge ratio) 60 is a marker for levoglucosan-like species. The (BBOA + OOA-BB)/ΔCO, (ΔCO is the CO minus background CO), decreases as a function of f44 (fraction of m/z 44 in OA signal), which might indicate that BBOA was oxidized to less volatile OOA, e.g., more aged and low volatility OOA (LV-OOA) during the aging process. Analysis of air mass back trajectories indicates that the high BB pollutant concentrations are linked to the air masses from the western (summer harvest) and southern (autumn harvest) areas.

  15. Associations between long-term exposure to chemical constituents of fine particulate matter (PM2.5) and mortality in Medicare enrollees in the eastern United States.

    PubMed

    Chung, Yeonseung; Dominici, Francesca; Wang, Yun; Coull, Brent A; Bell, Michelle L

    2015-05-01

    Several epidemiological studies have reported that long-term exposure to fine particulate matter (PM2.5) is associated with higher mortality. Evidence regarding contributions of PM2.5 constituents is inconclusive. We assembled a data set of 12.5 million Medicare enrollees (≥ 65 years of age) to determine which PM2.5 constituents are a) associated with mortality controlling for previous-year PM2.5 total mass (main effect); and b) elevated in locations exhibiting stronger associations between previous-year PM2.5 and mortality (effect modification). For 518 PM2.5 monitoring locations (eastern United States, 2000-2006), we calculated monthly mortality rates, monthly long-term (previous 1-year average) PM2.5, and 7-year averages (2000-2006) of major PM2.5 constituents [elemental carbon (EC), organic carbon matter (OCM), sulfate (SO42-), silicon (Si), nitrate (NO3-), and sodium (Na)] and community-level variables. We applied a Bayesian hierarchical model to estimate location-specific mortality rates associated with previous-year PM2.5 (model level 1) and identify constituents that contributed to the spatial variability of mortality, and constituents that modified associations between previous-year PM2.5 and mortality (model level 2), controlling for community-level confounders. One-standard deviation (SD) increases in 7-year average EC, Si, and NO3- concentrations were associated with 1.3% [95% posterior interval (PI): 0.3, 2.2], 1.4% (95% PI: 0.6, 2.4), and 1.2% (95% PI: 0.4, 2.1) increases in monthly mortality, controlling for previous-year PM2.5. Associations between previous-year PM2.5 and mortality were stronger in combination with 1-SD increases in SO42- and Na. Long-term exposures to PM2.5 and several constituents were associated with mortality in the elderly population of the eastern United States. Moreover, some constituents increased the association between long-term exposure to PM2.5 and mortality. These results provide new evidence that chemical composition can partly explain the differential toxicity of PM2.5.

  16. Anti-Inflammatory Effects of Pomegranate Peel Extract in THP-1 Cells Exposed to Particulate Matter PM10

    PubMed Central

    Park, Soojin; Seok, Jin Kyung; Kwak, Jun Yup; Suh, Hwa-Jin; Kim, Young Mi; Boo, Yong Chool

    2016-01-01

    Epidemiological and experimental evidence support health risks associated with the exposure to airborne particulate matter with a diameter of <10 μM (PM10). PM10 stimulates the production of reactive oxygen species (ROS) and inflammatory mediators. Thus, we assumed that natural antioxidants might provide health benefits attenuating hazardous effects of PM10. In the present study, we examined the effects of pomegranate peel extract (PPE) on THP-1 monocytic cells exposed to PM10. PM10 induced cytotoxicity and the production of ROS. It also increased the expression and secretion of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and monocyte chemoattractant protein-1 (MCP-1), and cell adhesion molecules, such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). PPE at 10–100 μg mL−1 attenuated the production of ROS and the expression of TNF-α, IL-1β, MCP-1, and ICAM-1, but not VCAM-1, in THP-1 cells stimulated by PM10 (100 μg mL−1). PPE also attenuated the adhesion of PM10-stimulated THP-1 cells to EA.hy926 endothelial cells. PPE constituents, punicalagin and ellagic acid, attenuated PM10-induced monocyte adhesion to endothelial cells, and punicalagin was less cytotoxic compared to ellagic acid. The present study suggests that PPE and punicalagin may be useful in alleviating inflammatory reactions due to particulate matter. PMID:27247608

  17. Influence of background particulate matter (PM) on urban air quality in the Pacific Northwest.

    PubMed

    Timonen, H; Wigder, N; Jaffe, D

    2013-11-15

    Elevated particulate matter concentrations due to Asian long-range transport (LRT) are frequently observed in the free troposphere (FT) above the Pacific Northwest, U.S. Transport of this aerosol from the FT to the boundary layer (BL) and its effect to local air quality remain poorly constrained. We used data collected at the Mount Bachelor observatory (MBO, 2.8 km a.s.l) and from ground stations in the Pacific Northwest to study transport of fine particulate matter (PM) from the FT to the BL. During Asian LRT episodes PM concentrations were clearly elevated above the corresponding monthly averages at MBO as well as at low elevation sites across Washington and Oregon. Also, a clear correlation between MBO and low elevation sites was observed, indicating that LRT episodes are seen in both the FT and BL. In addition, drum impactor measurements show that the chemical composition of PM at MBO was similar to that measured at the BL sites. Using a simple regression model, we estimate that during springtime, when the transport from Asia is most effective, the contribution of Asian sources to PM2.5 in clean background areas of the Pacific Northwest was on average 1.7 μg m(-3) (representing approximately 50-80% of PM). The influence of LRT PM was also seen in measurement stations situated in the urban and urban background areas. However, the fraction of LRT PM was less pronounced (36-50% of PM) due to larger local emissions in the urban areas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Development of an assay to assess genotoxicity by particulate matter extract

    PubMed Central

    Priftis, Alexandros; Papikinos, Konstantinos; Koukoulanaki, Marina; Kerasioti, Efthalia; Stagos, Dimitrios; Konstantinopoulos, Konstantinos; Spandidos, Demetrios A.; Kermenidou, Marianthi; Karakitsios, Spyros; Sarigiannis, Dimosthenis; Tsatsakis, Aristides M.; Kouretas, Demetrios

    2017-01-01

    The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount. PMID:28260086

  19. Airborne endotoxin concentrations in indoor and outdoor particulate matter and their predictors in an urban city.

    PubMed

    Yoda, Y; Tamura, K; Shima, M

    2017-09-01

    Endotoxins are an important biological component of particulate matter and have been associated with adverse effects on human health. There have been some recent studies on airborne endotoxin concentrations. We collected fine (PM 2.5 ) and coarse (PM 10-2.5 ) particulate matter twice on weekdays and weekends each for 48 hour, inside and outside 55 homes in an urban city in Japan. Endotoxin concentrations in both fractions were measured using the kinetic Limulus Amebocyte Lysate assay. The relationships between endotoxin concentrations and household characteristics were evaluated for each fraction. Both indoor and outdoor endotoxin concentrations were higher in PM 2.5 than in PM 10-2.5 . In both PM 2.5 and PM 10-2.5 , indoor endotoxin concentrations were higher than outdoor concentrations, and the indoor endotoxin concentrations significantly correlated with outdoor concentrations in each fraction (R 2 =0.458 and 0.198, respectively). Indoor endotoxin concentrations in PM 2.5 were significantly higher in homes with tatami or carpet flooring and in homes with pets, and lower in homes that used air purifiers. Indoor endotoxin concentrations in PM 10-2.5 were significantly higher in homes with two or more children and homes with tatami or carpet flooring. These results showed that the indoor endotoxin concentrations were associated with the household characteristics in addition to outdoor endotoxin concentrations. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  20. Spatiotemporal patterns of particulate matter (PM) and associations between PM and mortality in Shenzhen, China.

    PubMed

    Zhang, Fengying; Liu, Xiaojian; Zhou, Lei; Yu, Yong; Wang, Li; Lu, Jinmei; Wang, Wuyi; Krafft, Thomas

    2016-03-02

    Most studies on air pollution exposure and its associations with human health in China have focused on the heavily polluted industrial areas and/or mega-cities, and studies on cities with comparatively low air pollutant concentrations are still rare. Only a few studies have attempted to analyse particulate matter (PM) for the vibrant economic centre Shenzhen in the Pearl River Delta. So far no systematic investigation of PM spatiotemporal patterns in Shenzhen has been undertaken and the understanding of pollution exposure in urban agglomerations with comparatively low pollution is still limited. We analyze daily and hourly particulate matter concentrations and all-cause mortality during 2013 in Shenzhen, China. Temporal patterns of PM (PM2.5 and PM10) with aerodynamic diameters of 2.5 (10) μm or less (or less (including particles with a diameter that equals to 2.5 (10) μm) are studied, along with the ratio of PM2.5 to PM10. Spatial distributions of PM10 and PM2.5 are addressed and associations of PM10 or PM2.5 and all-cause mortality are analyzed. Annual average PM10 and PM2.5 concentrations were 61.3 and 39.6 μg/m(3) in 2013. PM2.5 failed to meet the Class 2 annual limit of the National Ambient Air Quality Standard. PM2.5 was the primary air pollutant, with 8.8 % of days having heavy PM2.5 pollution. The daily PM2.5/PM10 ratios were high. Hourly PM2.5 concentrations in the tourist area were lower than downtown throughout the day. PM10 and PM2.5 concentrations were higher in western parts of Shenzhen than in eastern parts. Excess risks in the number of all-cause mortality with a 10 μg/m(3) increase of PM were 0.61 % (95 % confidence interval [CI]: 0.50-0.72) for PM10, and 0.69 % (95 % CI: 0.55-0.83) for PM2.5, respectively. The greatest ERs of PM10 and PM2.5 were in 2-day cumulative measures for the all-cause mortality, 2-day lag for females and the young (0-65 years), and L02 for males and the elder (>65 years). PM2.5 had higher risks on all-cause mortality than PM10. Effects of high PM pollution on mortality were stronger in the elder and male. Our findings provide additional relevant information on air quality monitoring and associations of PM and human health, valuable data for further scientific research in Shenzhen and for the on-going discourse on improving environmental policies.

Top