Science.gov

Sample records for matter polar mesosphere

  1. Detecting Aerosols in the Polar Mesosphere

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Sternovsky, Z.; Horanyi, M.

    2005-12-01

    Two instruments have been developed to detect charged aerosol particles in the mesosphere. The first is a flat charge collecting graphite surface on the skin of the rocket that has returned data in several sounding rocket campaigns. The collection surfaces have permanent magnets behind them to provide shielding from electrons. Some of the probes also have an electrical bias to repel light positive ions. Two probes, one with and one without an electric bias, have been launched in January 2005 from Esrange, Sweden, as a part of the MAGIC campaign. The probes have detected a distinct layer of aerosols at around 82 km altitude. The second instrument has been developed to detect charged, sub-visible aerosol particles in the upper atmosphere. The instrument is designed to fly on a sounding rocket and has a 30 square centimeter entrance slit. Venting ports are placed lower on the detector in order to let the air out and reduce pressure buildup inside the detector. The air sample flows between four pairs of graphite electrodes biased symmetrically with increasing bias potentials. Electrons, light ions, cluster ions and heavy charged aerosol particles of both polarities are collected mass-selectively on the electrodes that are connected to sensitive electrometers. Direct Simulation Monte Carlo (DSMC) codes have been used to optimize the supersonic airflow within and around the instrument. A laboratory prototype of the instrument has been fabricated and calibrated using low energy ion beams. The instrument is scheduled for launch in the summer of 2007 from Andoya, Norway. These in-situ measurements are planned to coincide with the Aeronomy of Ice in the Mesosphere (AIM) mission. Acknowledgement: The project is supported by NASA.

  2. Measuring the Polar Mesosphere With Radio Telescopes

    NASA Astrophysics Data System (ADS)

    Martin, C. L.; Burrows, S. M.

    2004-12-01

    The 1957 IGY launched a program of upper atmosphere observations that continues to this day. However in 1957, observations of the upper atmosphere were limited to the tools available at the time. As we head toward the 2007 IPY we can take advantage of the tools developed in the past 50 years to continue and expand upon this extensive dataset, as well as consider novel uses for the tools already available on the continent. Over the past ten years, the polar plateau has been established as one of the preeminent sites on Earth from which to perform radio astronomy observations at frequencies ranging from 100 to 2000 GHz. As a by-product of their astronomical observations, these telescopes often collect high quality aeronomy data that is frequently overlooked. By using data from a radio telescope located at the Amundsen-Scott South Pole Station, we have measured the J=2 -> 1 (230 GHz), J=4-> 3 (461 GHz), and J=7 -> 6 (807 GHz) rotational transitions of carbon monoxide (CO) at altitudes from 50 to 90 km above the Earth's surface. These high frequency data provide a surprisingly high resolution window into the dynamics and structure of the mesosphere. With a time series extending over multiple years, these data allow us to study the dynamics of an altitude range difficult to access with other methods. The IPY provides us with an opportunity to expand these interdisciplinary collaborations and use the resources invested in the Antarctic continent to further the scientific aims of a broad range of researchers.

  3. NLC-91: An experimental study of the polar summer mesosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Kopp, E.; Witt, G.

    1994-01-01

    In the summer of 1991, a major scientific campaign (NLC-91) involving 31 rocket flights was conducted from ESRANGE, Kiruna, Sweden and from Heiss Island, Russia to investigate the chemical, dynamical, and electrodynamical properties of the polar summer mesosphere. The rocket flights were also coordinated with two coherent radar facilities, EISCAT (European Incoherent Scatter Scientific Association) and CUPRI (Cornell University Portable Radar Instrument), as well as other ground facilities, to provide continual monitoring of the mesosphere by remote sensing techniques. The primary objectives of the campaign were to study noctilucent clouds (NLC's) and polar mesospheric summer echoes (PMSE's), including their possible relationship to local aerosols and/or small scale turbulence. The program involved scientific participation from eight countries, and promises to produce many results during the next few years. This overview considers the scientific campaign and briefly discusses preliminary results. These results are provided in more detail in papers following this overview.

  4. Investigating seasonal gravity wave activity in the summer polar mesosphere

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Taylor, M. J.; Randall, C. E.; Lumpe, J. D.; Siskind, D. E.; Bailey, S. M.; Russell, J. M.

    2015-05-01

    The NASA Aeronomy of Ice in the Mesosphere (AIM) satellite is the first spaceborne mission dedicated to studying high-altitude (~83 km) Polar Mesospheric Clouds (PMCs). Since its launch in 2007, the Cloud Imaging and Particle Size (CIPS) instrument onboard AIM has obtained large-field, high resolution (25 km2/pixel) images of the PMCs, enabling a unique investigation of mesospheric gravity wave activity in the summer polar mesosphere where previous measurements have been sparse. In this study, we have analyzed 12 consecutive seasons of AIM/CIPS PMC albedo data to determine the statistical properties of medium and large horizontal scale (>100 km) gravity waves present in the PMC data. Over 60,000 wave events with horizontal scale-sizes ranging up to >2000 km have been identified and measured, revealing a wealth of wave events particularly in the ~300-800 km range where our analysis sensitivity is largest. These data are ideal for investigating the intra-seasonal, inter-annual and hemispheric variability of these waves as observed over the whole summer polar cap regions. Throughout this 6 year study, the wave activity in the southern hemisphere was found to be consistently 10-15% higher than in the northern hemisphere and both the northern and southern hemisphere wave activity was determined to decrease systematically (by ~15%) during the course of each summer season. This decrease agrees well with previous seasonal stratospheric studies of variations in the wave energy, suggesting a direct influence of the lower atmospheric sources on polar mesospheric dynamics. Very similar and consistent results were also found from season to season in both hemispheres providing new information for gravity wave modeling and dynamical studies of the high-latitude summer-time mesosphere.

  5. Polar mesosphere summer echoes (PMSE) a southern hemisphere perspective

    NASA Astrophysics Data System (ADS)

    Morris, R. J.; Murphy, D. J.; Klekociuk, A. R.; Holdsworth, D. A.

    The existence of Polar Mesosphere Summer Echoes PMSE in the Southern Hemisphere SH has recently been confirmed using HF radar Ogawa et al 2002 MST radar Morris et al 2004 and a Dynasonde Jarvis et al 2005 following earlier observations using MST radar Woodman et al 1999 These studies spanned the geographic latitudes 62 1 r S Machu Picchu 68 6 r S Davis 69 0 r S Syowa and 75 5 r S Halley Bay The emerging array of SH SuperDARN radars provide an opportunity to extend the spatial coverage of PMSE observations An understanding of the occurrence and intensity of PMSE against latitude in the SH is needed to facilitate a comparison with the better spatial coverage of Northern Hemisphere NH PMSE observations Such a comparison will contribute to the ongoing debate as to whether PMSE can provide a proxy for mesosphere temperature and thus shed light on the existence of any interhemispheric asymmetry or otherwise in the polar mesosphere regions The argument for different polar mesosphere environments spawned in part by the reported lack of SH PMSE observations Recent PMSE reflectivity and intensity results from Davis 68 6 r S and Andenes 69 0 r N are given The characteristics and morphology of PMSE events above these Antarctic stations are considered in the context of the thermal and dynamical state of the mesosphere as deduced from satellite i e SABER and AURA and radar i e MF and MST observations respectively A brief account of recent coincident PMSE MST radar and Polar Mesospheric Cloud PMC

  6. Long-term changes of (polar) mesosphere summer echoes

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Hoffmann, P.; Latteck, R.; Singer, W.; Zecha, M.

    2009-10-01

    Strong VHF radar echoes have been observed not only during summer months at polar latitudes (polar mesosphere summer echoes, PMSE) but also at middle latitudes (mesosphere summer echoes, MSE). These echoes are closely connected with small ice particles, thus containing information about mesospheric temperature and water vapour content. But the (P)MSE also depend on the ionisation due to solar wave radiation and precipitating high energetic particles. Observations with VHF radars at Andenes (69.3°N; 16.0°E) since 1994 and at Kühlungsborn (54.6°N; 11.8°E) since 1998 are used for investigations of the solar and geomagnetic control of the (P)MSE as well as of possible long-term changes. The (P)MSE are positively correlated with the solar Lyman [alpha] radiation and the geomagnetic activity and have slightly positive trends. Due to the limited measuring period, the significance levels of the detected (P)MSE trends are small. Positive trends in noctilucent clouds (NLC) and polar mesospheric clouds (PMC) are in general agreement with (P)MSE trends.

  7. Power spectra of mesospheric velocities in polar regions

    NASA Technical Reports Server (NTRS)

    Czechowsky, P.; Ruster, R.

    1985-01-01

    The mobile SOUSY radar was operated on Andoya in Northern Norway during the MAP/WINE campaign from November 1983 to February 1984 and for about two weeks in June 1984 to study the seasonal dependence of mesospheric structures and dynamics at polar latitudes. During the winter period, measurements were carried out on 57 days, primarily in coordination with the schedule of the rocket experiments. Echoes were detected in the troposphere and stratosphere up to 30 km and at mesospheric heights from about 50 to 90 km with a distinct maximum around noon. In summer, the radar system was operated continuously from 19th to the 28th of June 1984. Echoes occurred almost for 24 hours in the height range from 70 to 95 km showing no recognizable diurnal variation. Similar observations in polar latitudes were carried out for several years with the Poker Flat Radar in Alaska.

  8. Radar scattering from the summer polar mesosphere: Theory and observations

    NASA Astrophysics Data System (ADS)

    Cho, John Yungdo Nagamichi

    1993-12-01

    The anomalously large radar reflectivities observed in the summer polar mesosphere have eluded satisfactory explanation until now. We propose that the following chain of causality is responsible for the so-called polar mesosphere summer echoes (PMSE): The uniquely low temperatures in the summer mesopause produce ice aerosols. Because the aerosols exist in a plasma, they become electrically charged. The ambient electrons become coupled to the aerosols through electric fields and their effective diffusivity is retarded due to the large size of the aerosols. The reduction in diffusivity allows electron density inhomogeneities to be maintained at the radar Bragg scales. The radar waves are then scattered by the inhomogeneities. We support the above concept by developing a quantitative theory of ambipolar diffusion in the mesosphere. We then apply the results to isotropic turbulence and Fresnel radar scatter to show that the observed radar reflectivities can be explained by the theory. We show that the presence of realistic charged aerosols are sufficient to explain PMSE. We also show that dressed aerosol radar scatter, proposed by others as a generation mechanism for PMSE, can only apply to echoes detected by UHF radars. We present data taken with the Sondrestrom 1.29-GHz radar and attribute it to dressed aerosol scatter. In the summer of 1991, we used the Cornell University portable radar interferometer (CUPRI) to observe the mesosphere while rockets carrying in situ sensors were flown through two PMSE occurrences and a noctilucent cloud/PMSE event. We present a selection of first results from this campaign (NLC-91). The first simultaneous height comparison between noctilucent clouds and PMSE show that the radar scattering region was near or slightly above the visible cloud layer. We also infer from aspect sensitivity measurements and Doppler spectrograms that there were two distinct types of PMSE: enhanced turbulent scatter and partial (Fresnel) reflection from steep

  9. PoSSUM: Polar Suborbital Science in the Upper Mesosphere

    NASA Astrophysics Data System (ADS)

    Reimuller, J. D.; Fritts, D. C.; Thomas, G. E.; Taylor, M. J.; Mitchell, S.; Lehmacher, G. A.; Watchorn, S. R.; Baumgarten, G.; Plane, J. M.

    2013-12-01

    Project PoSSUM (www.projectpossum.org) is a suborbital research project leveraging imaging and remote sensing techniques from Reusable Suborbital Launch Vehicles (rSLVs) to gather critical climate data through use of the PoSSUM Observatory and the PoSSUM Aeronomy Laboratory. An acronym for Polar Suborbital Science in the Upper Mesosphere, PoSSUM grew from the opportunity created by the Noctilucent Cloud Imagery and Tomography Experiment, selected by the NASA Flight Opportunities Program as Experiment 46-S in March 2012. This experiment will employ an rSLV (e.g. the XCOR Lynx Mark II) launched from a high-latitude spaceport (e.g. Eielson AFB, Alaska or Kiruna, Sweden) during a week-long deployment scheduled for July 2015 to address critical questions concerning noctilucent clouds (NLCs) through flights that transition the cloud layer where the clouds will be under direct illumination from the sun. The 2015 Project PoSSUM NLC campaign will use the unique capability of rSLVs to address key under-answered questions pertaining to NLCs. Specifically, PoSSUM will answer: 1) What are the small-scale dynamics of NLCs and what does this tell us about the energy and momentum deposition from the lower atmosphere? 2) What is the seasonal variability of NLCs, mesospheric dynamics, and temperatures? 3) Are structures observed in the OH layer coupled with NLC structures? 4) How do NLCs nucleate? and 5) What is the geometry of NLC particles and how do they stratify? Instrumentation will include video and still-frame visible cameras (PoSSUMCam), infrared cameras, a mesospheric temperatures experiment, a depolarization LiDAR, a mesospheric density and temperatures experiment (MCAT), a mesospheric winds experiment, and a meteoric smoke detector (MASS). The instrument suite used on PoSSUM will mature through subsequent campaigns to develop an integrated, modular laboratory (the ';PoSSUM Observatory') that will provide repeatable, low cost, in-situ NLC and aeronomy observations as well

  10. Five-day Waves in Polar Stratosphere and Mesosphere Temperature and Mesospheric Ice Water Measured by SOFIE/AIM

    NASA Astrophysics Data System (ADS)

    Yue, J.; Liu, X.

    2015-12-01

    The temperature and column ice water content (IWC) of polar mesospheric clouds (PMCs) have been simultaneously measured by the Solar Occultation for Ice Experiment (SOFIE) onboard NASA's Aeronomy of Ice in the Mesosphere (AIM) satellite since April 2007. The 8-year (2007-2014) data of the temperature and IWC are used to extract the 5-day planetary waves (PWs) with zonal wavenumbers ranging from -1 to -3 (eastward propagating mode, E1-E3), 0 (stationary mode, W0), and 1 to 3 (westward propagating mode, W1-W3) in the polar stratosphere and mesosphere. The 5-day PWs in temperature are stronger in the polar winter stratosphere and mesosphere and exhibit substantial inter-hemispheric asymmetry. The date-height distributions of the 5-day waves coincide with those of the eastward jet in each hemisphere. This indicates that the 5-day PWs might be generated from barotropic/baroclinic instability in the polar stratosphere. The relative strengths of 5-day PWs decrease with increasing wavenumbers. The E1 (W1) 5-day PW is stronger than any other mode in the winter stratosphere and lower mesosphere (summer upper mesosphere). SOFIE temperature and IWC data are derived from simultaneous measurements in the same air column and thus provide a good opportunity to study the phase relationship between the 5-day PWs in temperature and IWC. Our analyses show that the phase shifts of W1 5-day PW in temperature relative to that in IWC have a mean of -2.0 h (0.3 h) with a standard deviation of 3.8 h (4.2 h) in the northern (southern) polar region. This indicates that the formation of the W1 5-day PW in PMCs is controlled mainly by the W1 5-day PW in temperature and influenced by other factors and is consistent with previous studies.

  11. Five-day waves in polar stratosphere and mesosphere temperature and mesospheric ice water measured by SOFIE/AIM

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Yue, Jia; Xu, Jiyao; Yuan, Wei; Russell, James M., III; Hervig, Mark E.

    2015-05-01

    The temperature and column ice water content (IWC) of polar mesospheric clouds (PMCs) have been simultaneously measured by the Solar Occultation for Ice Experiment (SOFIE) on board NASA's Aeronomy of Ice in the Mesosphere satellite since April 2007. The 8 year (2007-2014) data of the temperature and IWC are used to extract the 5 day planetary waves (PWs) with zonal wave numbers ranging from -1 to -3 (eastward propagating mode, E1-E3), 0 (stationary mode, W0), and 1 to 3 (westward propagating mode, W1-W3) in the polar stratosphere and mesosphere. The 5 day PWs in temperature are stronger in the polar winter stratosphere and mesosphere and exhibit substantial interhemispheric asymmetry. The date-height distributions of the 5 day waves coincide with those of the eastward jet in each hemisphere. This indicates that the 5 day PWs might be generated from barotropic/baroclinic instability in the polar stratosphere. The relative strengths of 5 day PWs decrease with increasing wave numbers. The E1 (W1) 5 day PW is stronger than any other mode in the winter stratosphere and lower mesosphere (summer upper mesosphere). SOFIE temperature and IWC data are derived from simultaneous measurements in the same air column and thus provide a good opportunity to study the phase relationship between the 5 day PWs in temperature and IWC. Our analyses show that the phase shifts of W1 5 day PW in temperature relative to that in IWC have a mean of -2.0 h (0.3 h) with a standard deviation of 3.8 h (4.2 h) in the northern (southern) polar region. This indicates that the formation of the W1 5 day PW in PMCs is controlled mainly by the W1 5 day PW in temperature and influenced by other factors and is consistent with previous studies.

  12. Radar Scattering from the Summer Polar Mesosphere: Theory and Observations

    NASA Astrophysics Data System (ADS)

    Cho, John Yungdo Nagamichi

    The anomalously large radar reflectivities observed in the summer polar mesosphere have eluded satisfactory explanation until now. We propose that the following chain of causality is responsible for the so-called polar mesosphere summer echoes (PMSE): The uniquely low temperatures in the summer mesopause produce ice aerosols. Because the aerosols exist in a plasma, they become electrically charged. The ambient electrons become coupled to the aerosols through electric fields and their effective diffusivity is retarded due to the large size of the aerosols. The reduction in diffusivity allows electron density inhomogeneities to be maintained at the radar Bragg scales. The radar waves are then scattered by the inhomogeneities. We support the above concept by developing a quantitative theory of ambipolar diffusion in the mesosphere. We then apply the results to isotropic turbulence and Fresnel radar scatter to show that the observed radar reflectivities can be explained by the theory. We show that the presence of realistic charged aerosols are sufficient to explain PMSE. We also show that dressed aerosol radar scatter, proposed by others as a generation mechanism for PMSE, can only apply to echoes detected by UHF radars. We present data taken with the Sondrestrom 1.29-GHz radar, which we believe to be the first PMSE event observed above one gigahertz, and attribute it to dressed aerosol scatter. In the summer of 1991, we used the Cornell University portable radar interferometer (CUPRI) to observe the mesosphere while rockets carrying in situ sensors were flown through two PMSE occurrences and a noctilucent cloud/PMSE event. We present a selection of first results from this campaign (NLC-91). The first simultaneous height comparison between noctilucent clouds and PMSE show that the radar scattering region was near or slightly above the visible cloud layer. We also infer from aspect sensitivity measurements and Doppler spectrograms that there were two distinct types of

  13. The PHOCUS Project: Particle Interactions in the Polar Summer Mesosphere

    NASA Astrophysics Data System (ADS)

    Gumbel, J.; Hedin, J.; Khaplanov, M.

    2012-12-01

    On the morning of July 21, 2011, the PHOCUS sounding rocket was launched from Esrange, Sweden, into strong noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE) observed by the Esrange lidar and the ESRAD MST radar. The aim of the PHOCUS project (Particles, Hydrogen and Oxygen Chemistry in the Upper Summer mesosphere) is to study mesospheric particles (ice and meteoric smoke) and their interaction with their neutral and charged environment. Starting out from first ideas in 2005, PHOCUS has developed into a comprehensive venture that connects to a number of new and renewed scientific questions. Interactions of interest comprise the charging and nucleation of particles, the relationship between meteoric smoke and ice, and the influence of these particles on gas-phase chemistry. This presentation gives an overview of the campaign and scientific results. The backbone of the campaign was a sounding rocket with 18 instruments from 8 scientific groups in Sweden, Norway, Germany, Austria and the USA. Atmospheric composition and ice particle properties were probed by a set of optical instruments from Stockholm University, in collaboration with the University in Trondheim. Exciting new instrument developments concerned microwave radiometers for in situ measurements of water vapour at 183 and 558 GHz by Chalmers University of Technology. Charged particles were probed by impact detectors from the University of Colorado, the University of Tromsø and the Leibniz Institute of Atmospheric Physics (IAP), complemented by direct particle sampling from Stockholm University. The neutral and charged background state of the atmosphere was quantified by the Technical University Graz, IAP, and the Norwegian Defence Research Establishment. Important ground-based instrumentation included the Esrange lidar, the ESRAD MST radar, the SkiYMET meteor radar and EISCAT.

  14. Radar Observations and Dynamics of the Polar Summer Mesosphere.

    NASA Astrophysics Data System (ADS)

    Hall, Timothy Mather

    The lowest temperatures and the highest clouds on Earth, complex ion chemistry, large amplitude waves, and intense radar scatter make the summer polar mesosphere a fascinating atmospheric region. In this work, we tackle two puzzles of the region related to radar echoing and detection: the role of the Stokes drift in measurements of the seasonal circulation, and the extension of the electron density variance spectrum to length scales smaller than those of the driving turbulence. Although the mass flux rate at the summer polar mesopause must be about 1 cm/s upward to be consistent with the temperature, radars measure 20 to 30 cm/s downward (Balsley and Riddle 1984; Meek and Manson, 1989). We have verified this surprising result with four years of radar data, the longest analysis performed to date. Coy et al. (1986) argue that the Stokes drift associated with acoustic-gravity waves can resolve this discrepancy by inducing an Eulerian mean velocity opposite to the mass flux rate. However, for a reliable estimate of this Stokes drift effect, the calculation must include a realistic spectrum of waves. In this work, after discussing the Stokes drift in detail, we generalize the calculation to include such a spectrum. The results indicate that the Stokes drift is not large enough to explain the radar measurements. As an alternative, eve suggest the radar is detecting the fall speed of charged aerosols. Structuring of the polar summer mesospheric electron density at scales shorter than the inner scale of turbulence is necessary to explain the intensity of VHF radar echoes. As the second major topic of this work, we describe a combined rocket-radar experiment measuring simultaneous mesopause region profiles of the electron diffusive-inner scale and the turbulence inner scale. The results imply a reduction in the effective diffusion coefficient at least 100 times below other atmospheric regions. We believe ice aerosols, the same aerosols implicated in the vertical velocity

  15. Range imaging results from polar mesosphere summer echoes

    NASA Astrophysics Data System (ADS)

    Zecha, Marius; Hoffmann, Peter; Rapp, Markus; Chen, Jenn-Shyong

    The range resolution of pulsed radars is usually limited by the transmitting pulse length and the sampling time. The so-called range imaging (RIM) has been developed to reduce these lim-itations. To apply this method the radar operates alternately over a set of distinct frequencies. Then the phase differences of the receiving signals can be used for optimization methods to generate high-resolution maps of reflections as function of range insight the pulse length. The technique has been implemented on the ALWIN VHF radar in Andenes (69) and the OSWIN VHF radar in Kühlungsborn (54N). Here we present results of the RIM method from measurements in polar mesosphere summer echoes -PMSE. These strong radar echoes are linked to ice particle clouds in the mesopause region. The dynamic of the PMSE can be reflected very well by RIM. The movement of PMSE and the edges of the extension can be tracked with a high altitude resolution. Comparisons between simultaneous measurements by RIM and by standard radar techniques demonstrate the advan-tages of RIM. Wave structures can be identified with RIM whereas they are not detectable with the lesser resolution of the standard measurements. Gravity wave parameter associated with these variations are estimated using the simultaneous measured velocity field.

  16. Polar Mesospheric Cloud properties derived from the NASA Aeronomy of Ice in the Mesosphere Mission (2007-2008)

    NASA Astrophysics Data System (ADS)

    Thomas, Gary; Russell, J. M., III; Bailey, Scott

    The Aeronomy of Ice in the Mesosphere (AIM) is the first satellite experiment dedicated solely to the study of polar mesospheric clouds (PMC) and their atmospheric environment. Launched on April 25, 2007 into a 600-km circular sun-synchronous orbit, the three AIM instruments have performed flawlessly. The three instruments on board are (1) the Cloud Imaging and Particle Size (CIPS) experiment, (2) the Solar Occultation for Ice (SOFIE) experiment, and (3) the Cosmic Dust Experiment (CDE). CIPS consists of an array of four cameras, viewing downward and providing wide-field coverage of the polar regions in the UV at spatial resolutions of 5 km. SOFIE uses the technique of satellite solar occultation to measure vertical profiles of limb path atmospheric transmission within 16 spectral bands between wavelengths of 0.29 and 5.32 µm. The Cosmic Dust Experiment (CDE) on the AIM satellite is an impact detector designed to monitor the influx of micrometeorite particles greater than approximately 1 µm in radius. The overall goal of the two-year baseline mission is to determine why PMCs form and vary. AIM has provided the most detailed picture of NH clouds ever collected. The major results to date are: The clouds are highly-structured, are widespread and are variable on hourly to daily time scales. PMC brightness varies over horizontal scales of a few kilometers, and with the superior horizontal resolution of the images, highly-localized regions occur where the clouds are ten times brighter than measured by previous space-based instruments viewing the limb. As previously suspected, but never before seen, a population of very small ice particles was measured that is believed to be responsible for strong radar echoes from the summertime mesosphere. Mesospheric ice occurs in one continuous layer extending from below the main peak at 83 km up to around 90 km. Mesospheric cloud structures, resolved for the first time by the CIPS imager, exhibit complex features present in normal

  17. Studies of Polar Mesospheric Clouds from Observations by the Student Nitric Oxide Explorer

    NASA Technical Reports Server (NTRS)

    Bailey, Scott M.

    2005-01-01

    The Geospace Sciences SR&T award NAG5-12648 "Studies of polar mesospheric clouds from observations by the Student Nitric Oxide Explorer" has been completed. The project was very successful in completing the proposed objectives and brought forth unexpected results in the study of Polar Mesospheric Clouds (PMCs). This work has provided key results to the community, provided valuable experience to two students, and inspired new research and collaborations with other research groups. Here we briefly summarize the progress and the scientific results.

  18. The DROPPS Program: A Rocket/Lidar/Radar Study of the Polar Summer Mesosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Holzworth, R. H.; Schmidlin, F. J.; Voss, H. D.; Tuzzolino, A. J.; Croskey, C. L.; Mitchell, J. D.; vonZhan, U.; Singer, W.

    1999-01-01

    During July of 1999, two sequences of rockets were launched from the Norwegian rocket range in Andoya, Norway. The purpose of these studies was to investigate the properties of the polar summer mesosphere, particularly relating to polar mesospheric summer echoes (PMSE) and their possible relationship to noctilucent clouds (NLC). Each of two sequences was anchored with a DROPPS Black Brant payload, consisting of 20 instruments to measure the electrodynamic and optical structure of the mesosphere and lower thermosphere. These were provided by participants from five American and two European scientific laboratories. The DROPPS (Distribution and Role of Particles in the Polar Summer) payloads were each accompanied by a sequence of meteorological rockets, and by several European payloads designed to study electrodynamics structure of the same region. ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research) Lidars, and MF (Medium Frequency) and MST (Mesosphere, Stratosphere, and Troposphere) Radars were used to continuously monitor the mesosphere for NLCs and PMSEs respectively. EISCAT VHF (European Incoherent Scatter Radar Very High Frequency) radar provided similar information about PMSEs downstream from the launch site. Sequence 1 was launched on the night of 5-6 July into a strong PMSE display coupled with a weak NLC at the low end of the PMSE. Sequence 2 was launched on the early morning of 14 July into a strong NLC with no PMSE evident. Here we describe the details of the program along with preliminary results.

  19. Temperature Trends in the Polar Mesosphere between 2002-2007 using TIMED/SABER Data

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Kutepov, Alexander A.; Pesnell, William Dean; Latteck, Ralph; Russell, James M.

    2008-01-01

    The TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The TIMED/SABER instrument is a limb scanning infrared radiometer designed to measure a large number of minor constituents as well as the temperature of the region. In this study, we have concentrated on the polar mesosphere, to investigate the temperature characteristics as a function of spatial and temporal considerations. We used the recently revised SABER dataset (1.07) that contains improved temperature retrievals in the Earth polar summer regions. Weekly averages are used to make comparisons between the winter and summer, as well as to study the variability in different quadrants of each hemisphere. For each year studied, the duration of polar summer based on temperature measurements compares favorably with the PMSE (Polar Mesospheric Summer Echoes) season measured by radar at the ALOMAR Observatory in Norway (69 N). The PMSE period should also define the summer period suitable for the occurrence of polar mesospheric clouds. The unusual short and relatively warm polar summer in the northern hemisphere

  20. An overview of NLC-91: A rocket/radar study of the polar summer mesosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Kopp, E.; Witt, G.; Swartz, W. E.

    1993-01-01

    In late July and early August of 1991, a major suborbital scientific campaign (NLC-91) involving scientists from eight countries was conducted as ESRANGE, Kiruna, Sweden and at Heiss Island, Russia. The purpose of the program was to investigate the chemical, dynamical, and electrodynamical properties of the polar summer mesosphere. Thirty one rocket flights were coordinated with two coherent radar facilities, EISCAT and CUPRI, and with other ground-based observatories and facilities. This permitted direct comparison between the in situ measurements and those obtained by remote sensing of the mesosphere via continuous ground-based monitoring. The primary objectives of the campaign were to study noctilucent clouds (NLCs) and polar mesospheric summer echoes (PMSEs), including their possible relationship to local aerosols and/or small scale turbulence. This overview describes the scientific program, discusses the geophysical conditions during launch activities, and reviews some of the preliminary results. More detailed results can be found in the papers which follow.

  1. Long-term changes of mesospheric summer echoes at polar and middle latitudes

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Hoffmann, P.; Höffner, J.; Latteck, R.; Singer, W.; Zecha, M.; Zeller, O.

    2006-12-01

    Strong mesospheric VHF radar echoes can be observed during summer months mainly at polar latitudes (polar mesosphere summer echoes, PMSE) but with a reduced echo power also at middle latitudes (mesosphere summer echoes, MSE). This phenomenon of unexpected strong radar echoes is closely connected with the existence of small ice particles in the upper mesosphere and mesopause region. Therefore, these echoes contain information about the mesospheric temperature and water vapour content. But the strength of (P)MSE also depends on the level of ionisation due to incident solar wave radiation and precipitating high energetic particle fluxes. Using observations with VHF radars at Andenes (69.3°N, 16.0°E) since 1994 and at Kühlungsborn (54.6°N, 11.8°E) since 1998, the dependence of the strength of the (P)MSE on the solar and geomagnetic activity has been analysed and, in addition, possible long-term variations were derived. The special behaviour of the year 2002 is discussed in connection with an interhemispheric coupling due to enhanced planetary wave activity at the southern hemisphere winter season. There are some hints of small trends with increasing radar echo power and duration of the (P)MSE season in qualitative agreement with some changes of the observed occurrences rate of noctilucent clouds (NLC) and of the brightness of polar mesospheric clouds (PMC). However, the significance levels of the derived trends are low, and in most cases the trends are not significantly different from zero.

  2. Contribution to polar albedo from a mesospheric aerosol layer

    NASA Technical Reports Server (NTRS)

    Hummel, J. R.

    1977-01-01

    An examination is made of the impact of a layer of particulate matter, assumed to be ice crystals, on the albedo of the polar region. The model is time dependent, includes the growth of the layer, and incorporates the diffuse nature of radiation reflected from the surface and atmosphere. Although the magnitude of the effect is about an order of magnitude less than previous results, the impact is one of heating instead of cooling. It is also shown that ignoring the diffuse nature of the radiation reflected from the underlying earth-atmosphere system, as has been done in many previous simple models, can result in overestimation of the climatological impact of aerosols in sign and magnitude by a factor of up to 4-6.

  3. Inter-hemispheric asymmetry in polar mesosphere summer echoes and temperature at 69° latitude

    NASA Astrophysics Data System (ADS)

    Morris, Ray J.; Klekociuk, Andrew R.; Latteck, Ralph; Singer, Werner; Holdsworth, David A.; Murphy, Damian J.

    2009-03-01

    An inter-hemispheric asymmetry is found in the characteristics of polar mesosphere summer echoes (PMSE) and upper mesosphere temperatures at conjugate latitudes (~69°) above Antarctica and the Arctic. The second complete mesosphere-stratosphere-troposphere (MST) radar summer observation season at Davis (68.6°S) revealed that PMSE occur less frequently, with lower strength and on average 1 km higher compared with their northern counterparts at Andenes (69.3°N). We consider the thermodynamic state of the mesosphere for conjoining hemispheric summers based on satellite and ground-based radar measurements, and show the mesopause region near ~80-87 km of the Southern Hemisphere (SH) to be up to 7.5 K warmer than its Northern Hemisphere (NH) counterpart. We show that this is consistent with our observation of asymmetries in the characteristics of PMSE and demonstrate how the mesosphere meridional wind field influences the existence and strength of the echoes in both hemispheres.

  4. The Mesospheric OH* layer above Spitsbergen: Investigation of polar mesospheric dynamics and temperature trends by means of ground based OH* airglow measurements and model studies

    NASA Astrophysics Data System (ADS)

    Kowalewski, S.; Palm, M.; Notholt, J.

    2012-04-01

    The hydroxyl (OH*) emission layer is one of the dominant features of the mesopause region. It is primarily formed via the reaction of ozone and atomic hydrogen, which results in vibrationally excited OH* radicals. Due to radiative deexcitation, these radicals contribute to the airglow, which we can observe at different emission bands. For low excitation levels (ν≤6) of OH*, its lifetime can be sufficient to become thermalized by collision with the surrounding molecules, hence its emission can serve as a measure of ambient temperature. Because of the remoteness of the mesosphere, this offers a valuable source of information on mesospheric temperatures. While satellite based observations of the OH* layer offer comprehensive data sets on global scales, the spatial as well as the temporal resolution is limited by the corresponding orbits. Ground based measurements can fill this gap and enable us to study mesospheric disturbances at shorter time scales. Particularly the polar mesospheric region can be subject to large variability, which becomes apparent in the brightness and temperature signals from the OH* emission layer. In this poster we present temperatures derived from measurements taken from a Fourier Transform Spectrometer (FTS), which is located at the AWIPEV Arctic Research Base in Ny-Ålesund, Spitsbergen (79°). Measurements are available since 2007 and cover various emission bands of OH* in the spectral region from 5900 cm^-1 to 6500 cm^-1. We illustrate large scale polar mesospheric warming events, which have a striking impact on mesospheric dynamics and the coupling to the lower atmosphere. In addition to satellite based observations that we compare with our data, we illustrate the ability of our instrument to resolve short term perturbations. We discuss how we will combine these observations to model studies, in order to shed more light on the associated polar mesospheric dynamics in an upcoming analyis.

  5. Horizontally resolved structures of polar mesospheric echoes obtained with the Middle Atmosphere Alomar Radar System

    NASA Astrophysics Data System (ADS)

    Latteck, Ralph; Zecha, Marius; Rapp, Markus; Stober, Gunter; Singer, Werner

    2012-07-01

    Polar Mesosphere Summer Echoes have been observed in Andenes/Norway (69°N, 16°E) for more than 18 years using the Alomar SOUSY and the ALWIN VHF radars. In 2011 the Leibniz-Institute of Atmospheric Physics in Kühlungsborn completed the installation of the Middle Atmosphere Alomar Radar System ({MAARSY}). The new radar is designed for atmospheric studies from the troposphere up to the lower thermosphere, especially for the investigation of horizontal structures of polar mesospheric echoes. The system is composed of an active phased antenna consisting of 433 array elements and an identical number of transceiver modules individually controllable in frequency, phase, and output power on a pulse-to-pulse basis. This arrangement allows very high flexibility of beam forming and beam steering with a symmetric 3.6° small radar beam and arbitrary beam pointing directions down to 30° off-zenith. The monitoring of polar mesosphere echoes using a vertical pointed radar beam has been continued already during the construction period of MAARSY in order to complete the long term data base available for Andenes. Additionally first multi-beam scanning experiments using up to 97 beams quasi-simultaneously in the mesosphere have been carried out during several campaigns starting in summer 2010. Sophisticated wind analysis methods such as an extended velocity azimuth display have been applied to retrieve additional parameters from the wind field, e.g. horizontal divergence, vertical velocity, stretching and shearing deformation. The results provide a first insight into the strong horizontal variability of scattering structures occurring in the polar mesosphere over Andenes during summer and winter time. The implementation of interferometric radar imaging methods offers further improvement of the horizontal and the vertical resolution.

  6. Generation of waves by jet-stream instabilities in winter polar stratosphere/mesosphere

    NASA Astrophysics Data System (ADS)

    Shpynev, B. G.; Churilov, S. M.; Chernigovskaya, M. A.

    2015-12-01

    In the paper we investigate the manifestation of large-scale and middle-scale atmospheric irregularities observed on stratosphere/mesosphere heights. We consider typical patterns of circulation in stratosphere and lower mesosphere which are formed due to a difference of air potential energy between equatorial and polar latitudes, especially in polar night conditions. On the base of ECMWF Era Interim reanalysis data we consider the dynamics of midlatitude winter jet-streams which transfer heat from low latitudes to polar region and which develop due to equator/pole baroclinic instabilities. We consider typical patterns of general circulation in stratosphere/lower mesosphere and reasons for creation of flaky structure of polar stratosphere. Also we analyze conditions that are favorable for splitting of winter circumpolar vortex during sudden stratosphere warming events and role of phase difference tides in this process. The analysis of vertical structure of the stratosphere wind shows the presence of regions with significant shear of horizontal velocity which favors for inducing of shear-layer instability that appears as gravity wave on boundary surface. During powerful sudden stratosphere warming events the main jet-stream can amplify these gravity waves to very high amplitudes that causes wave overturning and releasing of wave energy into the heat due to the cascade breakdown and turbulence. For the dynamics observed in reanalysis data we consider physical mechanisms responsible for observed phenomena.

  7. Evidence for Interhemispheric Coupling during the Unusual Northern Polar Summer Mesosphere of 2002

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem; Kutepov, Alexandr; Schmidlin, Francis J.; Russell, James M.

    2009-01-01

    Data from the MaCWAVE MIDAS Rocket Program launched during July, 2002, from Andoya Rocket Range (ARR) in Norway have demonstrated that the temperature structure of the summer polar mesosphere during this period was atypical, at least above ARR. The summer polar mesopause region was warmer than normal and of shorter duration than for other years analyzed. Theoretical studies have since been published that imply that the abnormal characteristics of this polar summer were generated by unusual dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA TIMED Satellite to study these characteristics on a global scale and compare them with the features observed in the ensuing seven years. For background, The TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere (MLT). The SABER instrument on TIMED is a limb scanning infrared radiometer designed to measure a large number of minor constituents as well as temperature of the MLT. In this study, we have investigated the temperature characteristics of the polar mesosphere as a function of spatial and temporal considerations. We have used the most recent SABER dataset (1.07) that includes the improved temperature retrievals in Earth polar regions, Weekly averages were used 10 make the comparisons between the winter and summer hemispheres. The unusually short polar summer in the northern hemisphere during 2002 is clearly defined by this analysis and is shown to be unique for the 7 years analyzed. Furthermore, the data analysis agrees with recent theoretical studies showing that this behavior is a result of anomalous heating events in the southern polar stratosphere. The time sequence of the coupling process, as predicted by recent theoretical models, is well defined in a sequence of weekly temperature contour maps measured by SABER.

  8. Long-term changes of mesospheric summer echoes at polar and middle latitudes

    NASA Astrophysics Data System (ADS)

    Bremer, J.; Hoffmann, P.; Latteck, R.; Singer, W.; Zecha, M.

    During summer season unexpectedly strong radar echoes from an altitude range between about 80-90 km can regularly be observed at polar latitudes (polar mesosphere echoes, PMSE), but with markedly reduced amplitudes also at middle latitudes (mesosphere summer echoes, MSE). These (P)MSE are strongly coupled with the existence of small ice particles and are therefore dependent on mesospheric temperature and water vapour content. On the other side the strength of the (P)MSE depends also on the level of ionization in the mesopause region. Using VHF radar observations at Andenes (69.3N, 16.0E) between 1994 and 2003 as well as at Kühlungsborn (54.6N, 11.8E) between 1998 and 2003 a clear influence of solar and geomagnetic activity upon (P)MSE has been found. The reasons of the detected correlations are discussed for polar and middle latitudes. After elimination of the solar and geomagnetically induced parts by a twofold regression analysis long-term trends of (P)MSE are estimated. There are indication of slightly positive trends of PMSE as well as MSE occurrence rates. Due to the relatively short data series available the derived trends are however not statistically significant. Nevertheless some qualitative agreement has been found with long-term variations of the occurrence rate and brightness of noctilucent clouds (NLC).

  9. VHF radar measurements in the summer polar mesosphere

    NASA Technical Reports Server (NTRS)

    Ruester, R.; Reid, I. M.; Czechowsky, P.; Schmidt, G.

    1989-01-01

    Measurements in the mesosphere over Andoya/Norway (69 N, 16 E) were carried out using the mobile SOUSY-VHF radar with an extended beam configuration during the MAC/SINE campaign in summer 1987. First results of a 48 h and a 3 h observational period for heights between about 83 and 91 km are presented. Zonal mean winds are characterized by a strong westward flow of up to 50/ms, whereas the equatorward directed meridional component is weaker. The dominating semidiurnal tide has amplitudes up to 30/ms and a vertical wavelength of about 55 km. The diurnal tide is less pronounced. The total upward flux of horizontal momentum takes values of -2 sq m/sq s near 84 km and increases with increasing height, reaching a maximum value of 22 sq m/sqs for both the zonal and meridional components. However, measurements of the horizontal isotropy of the wave field suggest significant anisotropy. The major contribution to the momentum flux is from the 10 min to 1 h period range below about 87 km, and from the 1 to 6 h period range above this height.

  10. Study of the mesosphere using wide-field twilight polarization measurements: Early results beyond the polar circle

    NASA Astrophysics Data System (ADS)

    Ugolnikov, O. S.; Kozelov, B. V.

    2016-07-01

    This paper discusses the results of early measurements of temperature and dust in the mesosphere on the basis of wide-field twilight sky polarimetry, which began in 2015 in Apatity (North of Russia, 67.6° N, 33.4° E) using the original entire-sky camera. These measurements have been performed for the first time beyond the Polar Circle in the winter and early spring period. The general polarization properties of the twilight sky and the procedure for identifying single scattering are described. The key results of the study include the Boltzmann temperature values at altitudes higher than 70 km and the conclusion on a weak effect of dust on scattering properties of the mesosphere during this period.

  11. On the occurrence and formation of multiple layers of polar mesosphere summer echoes

    NASA Astrophysics Data System (ADS)

    Hoffmann, P.; Rapp, M.; Serafimovich, A.; Latteck, R.

    2005-03-01

    Polar Mesosphere Summer Echoes (PMSE) have been studied at Andenes (69°N, 16°E), Norway, using VHF radar observations from 1994-1997 and since 1999. One remarkable feature of all PMSE is the fact that the radar echoes often occur in the form of two or more distinct layers that can persist for periods of up to several hours. Until now, the layering mechanism leading to these multiple structures is not well understood. Here we are studying the occurrence and the mean altitude distribution of these multiple layer events. To discuss the processes that are potentially responsible for the creation of these multiple structures, we apply a microphysical model of the generation and growth of mesospheric ice particles under the influence of temperature and wind variations caused by a long period gravity wave. Finally, this model approach is tested with gravity wave characteristics derived from MF and VHF radar wind measurements during the PMSE observations.

  12. Gravity Waves in the Polar Stratosphere and Mesosphere and Their Relations with Ice Cloud Observed Sofie/AIM

    NASA Astrophysics Data System (ADS)

    Liu, X.; Yue, J.; Xu, J.; Wang, L.; Yuan, W.; Russell, J. M., III; Hervig, M. E.

    2014-12-01

    A six-years (2007-2013) temperature dataset from the Solar Occultation for Ice Experiment (SOFIE) onboard the Aeronomy of Ice in the Mesosphere (AIM) satellite is used to extract gravity waves (GWs) in the polar stratosphere and mesosphere of both hemispheres. These data are continuous in the polar regions. The monthly mean GW potential energy (PE) increases exponentially with a scale height of ~13 km in the upper stratosphere and mesosphere. GWs are stronger in the winter than in the summer and exhibit strong annual variation. GWs are stronger in the southern polar region (SPR) than in the northern polar region (NPR) except in the summer months. This is likely because there are stronger and longer-lasting zonal wind jets in the SPR stratosphere, as revealed from Modern-Era Retrospective analysis for Research and Applications (MERRA) wind data. The longitudinal variations of PE in the winter polar stratosphere are consistent with the elevated regions. In the mesosphere, the longitudinal variations of PE do not vary with height significantly. The correlations between GW PE and the column ice water content (IWC, an indicator of the polar mesosphere cloud) exhibit longitudinal and annual variations.

  13. First Measurements of Polar Mesospheric Summer Echoes by a Tri-static Radar System

    NASA Astrophysics Data System (ADS)

    La Hoz, C.

    2015-12-01

    Polar Mesospheric Summer Echoes (PMSE) have been observed for the first time by a tri-static radar system comprising the EISCAT VHF (224 MHz, 0.67 m Bragg wavelength) active radar in Tromso (Norway) and passive receiving stations in Kiruna, (Sweden) and Sodankyla (Finland). The antennas at the receiving stations, originally part of the EISCAT tri-static UHF radar system at 930 MHz, have been refitted with new feeder systems at the VHF frequency of the transmitter in Tromso. The refitted radar system opens new opportunities to study PMSE for its own sake and as a tracer of the dynamics of the polar mesosphere, a region that is difficult to investigate by other means. The measurements show that very frequently both remote receiving antennas detect coherent signals that are much greater than the regular incoherent scattering due to thermal electrons and coinciding in time and space with PMSE measured by the transmitter station in Tromso. This represents further evidence that PMSE is not aspect sensitive, as was already indicated by a less sensitive radar system in a bi-static configuration, and implying that the underlying atmospheric turbulence, at least at sub-meter scales, is isotropic in agreement with Kolmogorov's hypothesis. Measurements also show that the vertical rate of fall of persistent features of PMSE is the same as the vertical line of sight velocity inferred from the doppler shift of the PMSE signals. This equivalence forms the basis for using PMSE as a tracer of the dynamics of the background mesosphere. Thus, it is possible to measure the 3-dimensional velocity field in the PMSE layer over the intersection volume of the three antennas. Since the signals have large signal-to-noise ratios (up to 30 dB), the inferred velocities have high accuracies and good time resolutions. This affords the possibility to make estimates of momentum flux in the mesosphere deposited by overturning gravity waves. Gravity wave momentum flux is believed to be the engine of a

  14. Highlights of the MaCWAVE program to study the polar mesosphere

    NASA Astrophysics Data System (ADS)

    Goldberg, R. A.; Fritts, D. C.

    MaCWAVE M ountain A nd C onvective W aves A scending Ve rtically was a highly coordinated rocket ground-based and satellite program designed to address gravity wave forcing of the mesosphere and lower thermosphere MLT The MaCWAVE program was conducted at the Norwegian And o ya Rocket Range ARR 69 3 r N in July 2002 and continued at the Swedish Rocket Range ESRANGE 67 9 r N during January 2003 Correlative instrumentation included the ALOMAR MF and MST radars and RMR and Na lidars ESRANGE MST and meteor radars and RMR lidar radiosondes and TIMED satellite measurements of thermal and constituent structures The data have been used to define the wave field structure fluxes and turbulence generation leading to forcing of the large-scale flow down to a description of small-scale turbulence In summer launch sequences coupled with ground-based measurements at ARR addressed the forcing of the summer mesopause environment by anticipated convective and shear generated gravity waves The summer program demonstrated that the mean state of the upper mesosphere was unusually warm slowing the formation of Polar Mesospheric Summer echoes PMSE and noctilucent clouds NLC The winter program was designed to study the upward propagation and penetration of mountain waves from northern Norway into the MLT at a site favored for such penetration As the major response was expected to be downstream east of Norway these motions were measured with rocket sequences and ground-based instrumentation

  15. The Climatology of Polar Mesospheric Clouds From the Student Nitric Oxide Explorer

    NASA Astrophysics Data System (ADS)

    Bailey, S. M.; Thomas, G. E.; Merkel, A. W.

    2001-05-01

    Polar Mesospheric Clouds (PMCs) are a high latitude phenomenon known to occur at altitudes near 83 km at times near the summer solstice, and are related to the phenomenon of Noctilucent Clouds (NLCs). The first recorded siting of an NLC occurred in 1885 and there is evidence that the frequency of occurrence of NLCs is increasing, suggesting long term change in the mesosphere. The first climatology of PMCs was derived from observations by the Solar Mesospheric Explorer (SME) made during 1981 through 1986. SME observations showed seasonal variations with a typical PMC season lasting from approximately 90 days beginning 21 days before summer solstice. The Student Nitric Oxide Explorer (SNOE), like SME, observes the Earth's UV limb radiance and thus also observes PMCs. The instrumentation on SNOE and SME are nearly identical making the observations comparable. SNOE was launched on February 27, 1998; thus, the combination of SNOE and SME measurements cover a span of nearly two decades. To date, SNOE has observed three northern and three southern PMC seasons. In this talk we will present the algorithms for determining PMC scattering properties from the background limb radiance. We will present the derived rates of occurrence of PMCs from the SNOE measurements, and we will show how the variation of cloud brightness and latitudinal extent vary through the season. These results will be compared to those from SME.

  16. Impact of the January 2012 solar proton event on polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Bardeen, C. G.; Marsh, D. R.; Jackman, C. H.; Hervig, M. E.; Randall, C. E.

    2016-08-01

    We use data from the Aeronomy of Ice in the Mesosphere mission and simulations using the Whole Atmosphere Community Climate Model to determine the impact of the 23-30 January 2012 solar proton event (SPE) on polar mesospheric clouds (PMCs) and mesospheric water vapor. We see a small heating and loss of ice mass on 26 January that is consistent with prior results but is not statistically significant. We also find a previously unreported but statistically significant ~10% increase in ice mass and in water vapor in the sublimation area in the model that occurs in the 7 to 14 days following the start of the event. The magnitude of the response to the January 2012 SPE is small compared to other sources of variability like gravity waves and planetary waves; however, sensitivity tests suggest that with larger SPEs this delayed increase in ice mass will increase, while there is little change in the loss of ice mass early in the event. The PMC response to SPEs in models is dependent on the gravity wave parameterization, and temperature anomalies from SPEs may be useful in evaluating and tuning gravity wave parameterizations.

  17. Polar Cap Disturbances: Mesosphere and Thermosphere-Ionosphere Response to Solar-Terrestrial Interactions

    NASA Technical Reports Server (NTRS)

    Sivjee, G.; McEwen, D.; Walterscheid, R.

    2003-01-01

    The Polar Cap is the Upper-Atmosphere cum Mag-netosphere region which is enclosed by the poleward boundary of the Auroral Oval and is threaded by open geomagnetic tield lines. In this region, there is normally a steady precipition (Polar "drizzle") of low energy (w 300eV) electrons that excite optical emissions from the ionosphere. At times, enhanced ionization patches are formed near the Dayside Cusp regions that drift across the Polar Cap towards the Night Sector of the Auroral Oval. Discrete auroral arcs and auroras formed during Solar Magnetic Cloud (SMC)/Coronal Mass Ejection (CME) events are also observed in the Polar Cap. Spectrophotometric observations of all these Polar Cap phenomena provide a measure of the average energy as well a energy flux of the electrons precipitating in the Polar Cap region during these disturbances. Such measurements also point to modulations of the Polar Cap Mesosphere-Lower Thermosphere (MLT) air density and temperature by zonally symmetric tides whose Hough functions peak in the Polar region. MLT cooling during Stratospheric Warming events and their relation to Polar Vortex and associated Gravity wave activities are also observed at the Polar Cap sites.

  18. Polar mesosphere and lower thermosphere dynamics: 1. Mean wind and gravity wave climatologies

    NASA Astrophysics Data System (ADS)

    Dowdy, Andrew J.; Vincent, Robert A.; Tsutsumi, Masaki; Igarashi, Kiyoshi; Murayama, Yasuhiro; Singer, Werner; Murphy, Damian J.

    2007-09-01

    Mean wind and gravity wave climatologies are presented for the polar mesosphere and lower thermosphere (MLT). The data were derived using MF radars at Davis (69°S, 78°E) and Syowa (69°S, 40°E) in the Antarctic and Poker Flat (65°N, 147°W) and Andenes (69°N, 16°E) in the Arctic. The dynamics of the Antarctic MLT are found to be significantly different from the Arctic MLT. Summer maxima in both the westward and equatorward winds occur closer to the solstice in the Antarctic than in the Arctic. The greater symmetry around the solstice suggests radiative effects may play a greater role in controlling the state of the Antarctic MLT than in the Arctic, where dynamical effects appear to be more important. Gravity wave observations also suggest that wave drag may be greater in the Arctic than in the Antarctic. The equatorward flow near the mesopause persists later in summer in the Arctic than in the Antarctic, as do observations of polar mesospheric clouds and polar mesospheric summer echoes. All three phenomena begin at about the same time in each hemisphere, but end later in the Arctic than in the Antarctic. It is proposed that the magnitude of the meridional winds can be used as a proxy for gravity wave driving and the consequent adiabatic cooling in the MLT. Seasonal variations in gravity wave activity are predominately combinations of annual and semiannual components. Significant hemispheric differences are observed for both the timing and magnitude of these seasonal variations.

  19. Polar mesosphere summer echo observations at HF frequencies using the HAARP Gakona Ionospheric Observatory

    NASA Astrophysics Data System (ADS)

    Kelley, Michael C.; Huaman, Mercedes; Chen, Charlie Y.; Ramos, Camilo; Djuth, Frank; Kennedy, Edward

    2002-06-01

    We present initial polar mesosphere summer echo (PMSE) observations over Alaska in the HF band. Echoes were detected near 85 km over 50% of the observation time even though it was late in the PMSE season. The signal-to-noise ratio sometimes exceeded 25 dB. We also present the effects of different transmitted powers and antenna pointing directions on PMSE strength and occurrence. There is some evidence that using 4.5 MHz electron heating occurred, even at the low duty cycle used.

  20. Calibration of a Rocket-borne Probe for Aerosol Particles in the Polar Mesosphere

    NASA Astrophysics Data System (ADS)

    Knappmiller, S.; Robertson, S.; Sternovsky, Z.; Horanyi, M.

    2006-12-01

    An instrument has been developed to detect charged, sub-visible aerosol particles in the polar mesosphere. This instrument has a 30 square centimeter entrance slit that admits a continuous flow of air. Venting ports are placed lower on the detector in order to let the air out and reduce pressure buildup. The air sample flows between four pairs of graphite electrodes biased symmetrically with increasing bias potentials. Electrons, light ions, cluster ions and heavy charged aerosol particles of both polarities are collected mass-selectively on the electrodes that are connected to sensitive electrometers. Direct Simulation Monte Carlo (DSMC) codes have been used to optimize the supersonic airflow within and around the instrument. A laboratory prototype of the instrument has been fabricated and calibrated using low energy ion beams. The calibration shows that the mass ranges that are collected by the plates are approximately those from the simulations. Two of these instruments are scheduled for launch in the summer of 2007 from Andoya, Norway. These in-situ measurements are planned to coincide with measurements by the Aeronomy of Ice in the Mesosphere (AIM) satellite. Acknowledgement: The project is supported by NASA.

  1. Three-satellite comparison of polar mesospheric clouds: Evidence for long-term change

    NASA Astrophysics Data System (ADS)

    Shettle, E. P.; Thomas, G. E.; Olivero, J. J.; Evans, W. F. J.; Debrestian, D. J.; Chardon, L.

    2002-06-01

    Measurements of polar mesospheric clouds (PMCs) from three different satellite instruments are compared. These instruments are the Solar Mesospheric Explorer (SME), the Wind Imaging Interferometer (WINDII), and the Polar Ozone and Aerosol Measurement (POAM II). These measurements have been put on a common basis, correcting for differences in the wavelengths and measurement techniques used. This common basis is the probability distribution of the excess extinction ratio (EER) at a standard wavelength of 265 nm, where the EER is the ratio of the PMC extinction coefficient to the background molecular Rayleigh scattering coefficient. The results indicate that the POAM and WINDII measurements in the Southern Hemisphere had a higher probability of observing bright PMCs during the 1993-1996 time period than SME did a decade earlier in 1983-1986. Local time variations identified in WINDII data are interpreted in terms of a diurnal and semidiurnal component of average EER. These results are qualitatively similar to those found from lidar soundings of noctilucent cloud at sites in Norway and at the South Pole. Differences in interannual variability, local time of the measurements, assumed particle size distributions, and solar cycle effects are ruled out as possible explanations of the differences.

  2. Effect of Gravity Waves Generated in the Monsoon Region on Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Thurairajah, B.; Bailey, S. M.; Carstens, J. N.; Siskind, D. E.

    2015-12-01

    Gravity Waves (GWs) play an important role in both the formation and destruction of polar mesospheric clouds. In summer, while vertically propagating GWs induce a residual circulation that cools the summer mesosphere and therefore supports the formation of PMCs, observation and modeling studies have also shown that short period GWs can additionally destroy PMCs. In this study we analyze the effect of non-vertical propagation of GWs on PMCs using temperature data from the SABER instrument on TIMED satellite and PMC occurrence frequency from the CIPS instrument on the AIM satellite. During the 2007 PMC season, time series of GWs over the monsoon region at 50 km and PMCs over the polar region at 84 km have a correlation coefficient of 0.9. SABER GW amplitude and momentum flux over the monsoon region show a poleward tilt with altitude. This slanted structure suggests a poleward, but non-vertical, propagation of GWs facilitated by the easterly winds associated with the monsoon circulation, thus indicating a possible source of high latitude middle atmospheric GWs.

  3. Polar Mesospheric Clouds (PMCs) Observed by the Ozone Monitoring Instrument (OMI) on Aura

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Shettle, Eric P.; Levelt, Pieternel F.; Kowalewski, Matthew G.

    2010-01-01

    Backscattered ultraviolet (BUV) instruments designed for measuring stratospheric ozone profiles have proven to be robust tools for observing polar mesospheric clouds (PMCs). These measurements are available for more than 30 years, and have been used to demonstrate the existence of long-term variations in PMC occurrence frequency and brightness. The Ozone Monitoring Instrument (OMI) on the EOS Aura satellite provides new and improved capabilities for PMC characterization. OMI uses smaller pixels than previous BUV instruments, which increases its ability to identify PMCs and discern more spatial structure, and its wide cross-track viewing swath provides full polar coverage up to 90 latitude every day in both hemispheres. This cross-track coverage allows the evolution of PMC regions to be followed over several consecutive orbits. Localized PMC variations determined from OMI measurements are consistent with coincident SBUV/2 measurements. Nine seasons of PMC observations from OMI are now available, and clearly demonstrate the advantages of these measurements for PMC analysis.

  4. The influence of geomagnetic activity on mesospheric summer echoes in middle and polar latitudes

    NASA Astrophysics Data System (ADS)

    Zeller, O.; Bremer, J.

    2009-02-01

    The dependence of mesospheric VHF radar echoes during summer months on geomagnetic activity has been investigated with observation data of the OSWIN radar in Kühlungsborn (54° N) and of the ALWIN radar in Andenes (69° N). Using daily mean values of VHF radar echoes and of geomagnetic activity indices in superimposed epoch analyses, the comparison of both data sets shows in general stronger radar echoes on the day of the maximum geomagnetic activity, the maximum value one day after the geomagnetic disturbance, and enhanced radar echoes also on the following 2-3 days. This phenomenon is observed at middle and polar latitudes and can be explained by precipitating particle fluxes during the ionospheric post storm effect. At polar latitudes, the radar echoes decrease however during and one day after very strong geomagnetic disturbances. The possible reason of this surprising effect is discussed.

  5. Extreme stratospheric springs and their consequences for the onset of polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Allen, Douglas R.; Randall, Cora E.; Harvey, V. Lynn; Hervig, Mark E.; Lumpe, Jerry; Thurairajah, Brentha; Bailey, Scott M.; Russell, James M.

    2015-09-01

    We use data from the Aeronomy of Ice in the Mesosphere (AIM) explorer and from the NASA Modern Era Retrospective Analysis for Research and Applications (MERRA) stratospheric analysis to explore the variability in the onset of the Northern Hemisphere (NH) Polar Mesospheric Cloud (PMC) season. Consistent with recently published results, we show that the early onset of the NH PMC season in 2013 was accompanied by a warm springtime stratosphere; conversely, we show that the late onset in 2008 coincides with a very cold springtime stratosphere. Similar stratospheric temperature anomalies for 1997 and 2011 also are connected either directly, through observed temperatures, or indirectly, through an early PMC onset, to conditions near the mesopause. These 4 years, 2008, 1997, 2011, and 2013 represent the extremes of stratospheric springtime temperatures seen in the MERRA analysis and correspond to analogous extrema in planetary wave activity. The three years with enhanced planetary wave activity (1997, 2011 and 2013) are shown to coincide with the recently identified stratospheric Frozen In Anticyclone (FrIAC) phenomenon. FrIACs in 1997 and 2013 are associated with early PMC onsets; however, the dramatic FrIAC of 2011 is not. This may be because the 2011 FrIAC occurred too early in the spring. The link between NH PMC onset and stratospheric FrIAC occurrences represents a new mode of coupling between the stratosphere and mesosphere. Since FrIACs appear to be more frequent in recent years, we speculate that as a result, PMCs may occur earlier as well. Finally we compare the zonal mean zonal winds and observed gravity wave activity for the FrIACs of 2011 and 2013. We find no evidence that gravity wave activity was favored in 2013 relative to 2011, thus suggesting that direct forcing by planetary waves was the key mechanism in accelerating the cooling and moistening of the NH mesopause region in May of 2013.

  6. 3D measurements in the polar mesosphere using coherent radar imaging

    NASA Astrophysics Data System (ADS)

    Zecha, M.; Sommer, S.; Rapp, M.; Stober, G.; Latteck, R.

    2012-12-01

    Radars provide the opportunity of continuous measurements in the interesting area of the polar mesosphere. Usually the spatial resolution of measurements by pulsed VHF radars is limited by the radar beam width, transmitting pulse length, and sampling time. Due to these technical restrictions the typical small-scale structures in the mesosphere often cannot be resolved. Furthermore the quality of the estimation of dynamic atmosphere parameters is reduced if the position and direction of scatter returns cannot determined exactly. Radar interferometry methods have been developed to reduce these limitations. The coherent radar imaging method gives a high resolving image of the scatter structure insight the radar beam volume. In recent years the VHF radar MAARSY was installed in Andenes/Norway (69°N). This new radar was designed to allow improved three-dimensional observations in the atmosphere. It consists of 433 Yagis and allows a minimum beam width of about 4 degree. The beam direction can be changed pulse-by-pulse freely in azimuth angle and practicable up to 40 degree in zenith angle. The pulse length can be varied from a couple of km down to 50 m. Up to 16 receiving channels of spaced antennas can be used. In this presentation we show the detection of the angles-of-arrival of radar echoes and the correction of the wind measurements. We demonstrate the improvement of measurement results by using coherent radar imaging. The differences to the results of conventional methods depend on the beam width, range resolution, antenna distances, and beam tilting. We show that the application of interferometry is necessary to improve considerably the quality of 3D-measurement results. Furthermore we demonstrate the synthesis of high resolved images to get a real 3D image of the mesosphere.

  7. Mesospheric Temperatures and Meteoric Dust Detection based on Wide-angle Polarization Measurements of the Twilight Sky

    NASA Astrophysics Data System (ADS)

    Ugolnikov, Oleg; Maslov, Igor

    The work is based on fast all-sky polarization measurements of the twilight background started in 2011 in central Russia (55.2 deg N, 37.5 deg E). The data is used to build the polarization scattering functions of the mesospheric medium depending on the altitude. These functions can be used for dust scattering detection and study. The problem is hard to be solved by space or lidar measurements providing the data just for one definite scattering angle, however, the twilight technique is the least expensive method for the mesospheric research. The method described in (Ugolnikov, Maslov, 2013) is used to separate single and multiple scattering, which is the basic problem of the twilight remote sensing. Light scattering in the mesosphere is turned out to be Rayleigh-dominated for the most part of observation dates. This allows finding the altitude dependencies of pressure and the temperatures in the mesosphere. The values of temperature are in good agreement with TIMED/SABER and EOS Aura/MLS space limb data for nearby locations. Admixture of dust scattering was occasionally observed, reaching the maximum during the Perseids meteor shower activity in 2013. The scattering functions analysis gives the value of moderated dust layer in the mesosphere (81-83 km) and helps to estimate the particles size. The work is supported by Russian Foundation for Basic Research, grant 12-05-00501-a. References Ugolnikov O.S., Maslov I.A. Summer mesosphere temperature distribution from wide-angle polarization measurements of the twilight sky // Journal of Atmospheric and Solar-Terrestrial Physics, V.105-106, P.8-14, 2013.

  8. Gravity waves in polar mesospheric clouds measured by Odin/OSIRIS since 2002

    NASA Astrophysics Data System (ADS)

    Petelina, S. V.

    2009-05-01

    The Optical Spectrograph and InfraRed Imager System instrument (OSIRIS) on the limb-viewing Odin satellite observes Polar Mesospheric Clouds (PMCs) in both hemispheres since November, 2001. The orbit period of Odin is 96 minutes and the maximum latitudinal coverage in the orbit plane is between 82.2 N and 82.2 S. In this work, the longitudinal distribution of Odin/OSIRIS PMC brightness in each hemisphere during a 4-week period around the summer solstice from 2002 until 2009 is analyzed. It is found that in the southern hemisphere, the cloud brightness was consistently up to 30% lower around 250-300°E (70-120°W) - above the Antarctic peninsular. In the northern hemisphere, the PMC brightness was systematically 20-30% lower around 50-130°E - above Ural Mountains. Similar results have been obtained for the PMC 2007-08 season in Antarctica and PMC-2007 Arctic season by one of the instruments on a recently launched Aeronomy of Ice in the Mesosphere (AIM) satellite. We attribute this effect to the influence of gravity waves generated by the Earth's terrain.

  9. Polar mesosphere and lower thermosphere dynamics: 2. Response to sudden stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Dowdy, Andrew J.; Vincent, Robert A.; Tsutsumi, Masaki; Igarashi, Kiyoshi; Murayama, Yasuhiro; Singer, Werner; Murphy, Damian J.; Riggin, D. M.

    2007-09-01

    The dynamical response of the polar mesosphere and lower thermosphere (MLT) to sudden stratospheric warmings is investigated using MF radars at Davis (69°S, 78°E), Syowa (69°S, 40°E) and Rothera (68°S, 68°W) in the Antarctic and Poker Flat (65°N, 147°W) and Andenes (69°N, 16°E) in the Arctic. Mean winds, gravity waves and planetary waves are investigated during sudden stratospheric warmings, and comparisons are made with climatological means. The available MF radar data set includes six major sudden stratospheric warmings in the Northern Hemisphere and the unprecedented 2002 Southern Hemisphere major stratospheric warming. Three of the six northern events are relatively weak and could almost be classed as minor warmings, while the larger three have similar characteristics to the event in the Southern Hemisphere. Zonal wind reversals associated with the major warmings in both hemispheres are generally weaker and earlier by several days in the mesosphere than in the stratosphere. There are, however, significant differences between locations in their response to stratospheric warmings. The zonal winds are remarkably weaker than average during both winter and spring around the time of the southern major warming of 2002, but these effects are not observed for the Northern Hemisphere events. Gravity wave activity is found to vary significantly between individual stratospheric warming events and also between individual locations.

  10. Thermodynamics of polarized relativistic matter

    NASA Astrophysics Data System (ADS)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  11. On the angular dependence and scattering model of polar mesospheric summer echoes at VHF

    NASA Astrophysics Data System (ADS)

    Sommer, Svenja; Stober, Gunter; Chau, Jorge L.

    2016-01-01

    We present measurements of the angular dependence of polar mesospheric summer echoes (PMSE) with the Middle Atmosphere Alomar Radar System in Northern Norway (69.30° N, 16.04° E). Our results are based on multireceiver and multibeam observations using beam pointing directions with off-zenith angles up to 25° as well as on spatial correlation analysis (SCA) from vertical beam observations. We consider a beam filling effect at the upper and lower boundaries of PMSE in tilted beams, which determines the effective mean angle of arrival. Comparing the average power of the vertical beam to the oblique beams suggests that PMSE are mainly not as aspect sensitive as in contrast to previous studies. However, from SCA, times of enhanced correlation are found, indicating aspect sensitivity or a localized scattering mechanism. Our results suggest that PMSE consist of nonhomogeneous isotropic scattering and previously reported aspect sensitivity values might have been influenced by the inhomogeneous nature of PMSE.

  12. A Review of Recent Lidar Studies of the Diurnal and Seasonal Variations of Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Gardner, C. S.; Chu, X.

    2001-05-01

    Lidar observations during the past decade have contributed enormously to our understanding of the structure of polar mesospheric clouds. Multi-wavelength observations have provided key insights into the size distribution and concentration of the PMC particles while 24 hour measurements have revealed the strong influence of tidal perturbations on the height and volume backscatter properties of the cloud layers. We summarize pioneering observations in the Northern Hemisphere at Andoya, Norway and Sondrestromfjord, Greenland. We also discuss seasonal trends emerging from the first lidar measurments of PMCs in the Southern Hemisphere. These data, obtained at the Amundsen-Scott South Pole Station, provide new insights into possible hemispherical differences in mesopause region dynamics and temperature structure.

  13. Local time dependence of polar mesospheric clouds and model validation with satellite data

    NASA Astrophysics Data System (ADS)

    Schmidt, Francie; Berger, Uwe; Lübken, Franz-Josef

    2016-04-01

    Polar mesospheric clouds (PMCs), also known as noctilucent clouds (NLCs), consist of water-ice cystals. They occur at high latitudes in the summer mesopause region at very low temperatures below 150 K. In this case PMCs are highly sensitive to atmospheric conditions. Therefore, PMCs are thought to be sensitive indicators of climate changes in the middle atmosphere. The ice clouds show spatial and temporal variations. We present a model that can help to understand the variability of mesospheric clouds. The model is called Mesospheric Ice Microphysics And tranSport model (MIMAS) and is a threedimensional Lagrangian transport model, which can be used on multiple dynamic fields. MIMAS is a good instrument to check observations and also to fill some gaps that are included in satellite observations, e.g., the local time dependence of PMCs. The ice model is used to study local time dependencies of the PMC occurrence frequency, brightness and ice water content. At the station ALOMAR in Northern Norway (69°N, 16°E) we have the most ice water content with a total mean of around 90 g/km² (July 2008) in the morning hours. In the afternoons the ice water content decreases to 10 g/km² and increases again in the evening hours to 50 g/km². Tidal variability will impact results of long-term PMC observations which do not cover the full diurnal cycle. To investigate the local time dependence of PMCs in its entirety, ground-based remote sensing instruments, e.g., lidars are usefull. Variations in PMCs relating to occurrence frequency and brightness as function of local time had been already observed with the ALOMAR Rayleigh/Mie/Raman lidar. But lidar measurements offer only observations at a single local station. Models give the opportunity of a global perspective on a possible local time dependence of PMCs. In this context we will present latitudinal variations regarding to local time dependence. The combination of further observations and modeling studies can help to understand

  14. The importance of ice particle shape on UV measurements of polar mesospheric clouds: SBUV/2 observations

    NASA Astrophysics Data System (ADS)

    Baumgarten, Gerd; Thomas, Gary E.

    2006-01-01

    We present calculations of scattering of solar UV radiation from polar mesospheric clouds (PMC) for the wavelengths and scattering angles appropriate to the SBUV/2 series of satellite experiments. Our model includes for the first time the effects of non-sphericity of ice particles whose evidence has been recently gained from lidar depolarization experiments. Our results apply to the scattering cross section averaged over a particle size ensemble which spans the mean size and size ranges expected for PMC. We demonstrate that for the size range 20 100 nm (effective spherical particle radius), the wavelength range 252 292 nm, and the scattering angle range 100 140, non-spherical particles cause only moderate (<35%) deviations from conventional Mie theory, which assumes spherical shapes. The total UV scattering efficiency of PMC particles per unit mass of water vapor is not significantly affected by shape effects, in the range of parameters studied. On the other hand, our study suggests that shape effects need to be considered in the analysis of UV spectra of PMC, such as those of Carbary et al. [2004. Evidence for bimodal particle distribution from the spectra of polar mesospheric clouds. Geophysical Research Letters 31 (13), 3108] and DeLand et al. [2005. Spectral measurements of PMCs from SBUV/2 instruments. Journal of Atmospheric and Solar-Terrestrial Physics, to appear, doi: 10.1016/j.astp.2005.08.006]. In particular, attention must also be paid to the scattering angle dependence of the measurements, and the range of scattering angles involved in compiling average spectra of PMC.

  15. Solar-induced 27-day variations of mesospheric temperature and water vapor from the AIM SOFIE experiment: Drivers of polar mesospheric cloud variability

    NASA Astrophysics Data System (ADS)

    Thomas, Gary E.; Thurairajah, Brentha; Hervig, Mark E.; von Savigny, Christian; Snow, Martin

    2015-11-01

    Polar Mesospheric Clouds (PMCs) are known to be influenced by changes in water vapor and temperature in the cold summertime mesopause. Solar variability of these constituents has been held responsible for 11-year and 27-day variability of PMC activity, although the detailed mechanisms are not yet understood. It is also known that the solar influence on PMC variability is a minor contributor to the overall day-to-day variability, which is dominated by effects of gravity waves, planetary waves, and inter-hemispheric coupling. To address this issue, we have analyzed 15 seasons of data taken from the Solar Occultation for Ice Experiment (SOFIE) on the Aeronomy of Ice in the Mesosphere (AIM) satellite. The SOFIE data contain precise measurements of water vapor, temperature and ice water content (among other quantities). These high-latitude measurements are made during the PMC season at the terminator, and therefore directly relate to the simultaneous measurements of mesospheric ice. Using a composite data set of Lyman-α irradiance, we correlated the time variation of the atmospheric variables with the 27-day variability of solar ultraviolet irradiance. We used a combination of time-lagged linear regression and Superposed Epoch Analysis to extract the solar contribution as sensitivity values (response/forcing) vs. height. We compare these results to previously published results, and show that the temperature sensitivity is somewhat higher, whereas the water sensitivity is nearly the same as published values. The time lags are shorter than that expected from direct solar heating and photodissociation, suggesting that the responses are due to 27-day variations of vertical winds. An analytic solution for temperature changes forced by solar irradiance variations suggests that if the response is due purely to Lyman-α heating and Newtonian cooling, the response should vary throughout the summertime season and depend primarily upon the height-dependent column density of

  16. Rocket-borne Probes for Aerosol Particles in the Polar Mesosphere

    NASA Astrophysics Data System (ADS)

    Robertson, S.; Knappmiller, S.; Sternovsky, Z.; Horanyi, M.

    2006-05-01

    Two instruments have been developed to detect charged aerosol particles in the mesosphere. The first is a flat charge-collecting graphite surface on the skin of the rocket that has returned data in several sounding rocket campaigns. The collection surfaces have permanent magnets behind them to provide shielding from electrons, and have a positive voltage bias that repels light ions. Probes with and without an electric bias were launched in January 2005 from Esrange, Sweden, as a part of the MAGIC campaign. The probes detected a distinct layer of positive aerosols at around 82 km altitude. A second instrument has been developed to detect charged, sub-visible aerosol particles in the upper atmosphere. This instrument has a 30 square centimeter entrance slit that admits a continuous flow of air. Venting ports are placed lower on the detector in order to let the air out and reduce pressure buildup. The air sample flows between four pairs of graphite electrodes biased symmetrically with increasing bias potentials. Electrons, light ions, cluster ions and heavy charged aerosol particles of both polarities are collected mass-selectively on the electrodes that are connected to sensitive electrometers. Direct Simulation Monte Carlo (DSMC) codes have been used to optimize the supersonic airflow within and around the instrument. A laboratory prototype of the instrument has been fabricated and calibrated using low energy ion beams. Two of these instruments are scheduled for launch in the summer of 2007 from Andoya, Norway. These in-situ measurements are planned to coincide with measurements by the Aeronomy of Ice in the Mesosphere (AIM) satellite.

  17. Persistent longitudinal variations in 8 years of CIPS/AIM polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Yue, Jia; Xu, Jiyao; Yuan, Wei; Russell, James M.; Hervig, M. E.; Nakamura, Takuji

    2016-07-01

    The Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) satellite provides an opportunity to study the longitudinal variation in polar mesospheric cloud (PMC). We examined the longitudinal variation in PMC albedo using 8 years (2007-2014) of observations from the CIPS instrument. The results show that the PMC albedo in the Southern Hemisphere (SH), especially in the latitude band of 80°S-85°S, is persistently low ( 65% relative to the rest of the hemisphere) within 60°W to 150°W longitude. In the Northern Hemisphere (NH), however, PMC albedo is found to be relatively zonally asymmetry. Harmonic analyses show that the persistent longitudinal variation in the SH PMC albedo is due to zonal wave numbers 1 through 4 (WN1-WN4) processes with minima in the longitude range of 60°W-150°W. The influence of temperature and H2O on the longitudinal variation of the PMC albedo is discussed based on results obtained using a simple 0-D PMC model and temperature from the Microwave Limb Sounder (MLS) and the Sounding of the Atmosphere with Broadband Emission Radiometry (SABER) and H2O from MLS. The modeled region of low ice mass in the SH is generally consistent with that of low PMC albedo seen in CIPS. Tidal analyses using the SABER temperatures indicate that the nonmigrating semidiurnal tides with modes of S0, W1, and E1 might be the main drivers of the persistent longitudinal variations of PMC albedo in the SH. Nonmigrating tides are much weaker in the NH and consistent with the observed lack of longitudinal variability in PMC albedo.

  18. Similarities and differences in polar mesosphere summer echoes observed in the Arctic and Antarctica

    NASA Astrophysics Data System (ADS)

    Latteck, R.; Singer, W.; Morris, R. J.; Hocking, W. K.; Murphy, D. J.; Holdsworth, D. A.; Swarnalingam, N.

    2008-09-01

    Polar Mesosphere Summer Echoes (PMSE) have been observed in the high latitudes of the Northern and Southern Hemisphere for several years using VHF radars located at Andenes/Norway (69° N, 16° E), Resolute Bay/Canada (75° N, 95° W), and Davis/Antarctica (69° S, 78° E). The VHF radars at the three sites were calibrated using the same methods (noise source and delayed transmitting signal) and identical equipment. Volume reflectivity was derived from the calibrated echo power and the characteristics of the seasonal variation of PMSE were estimated at the sites for the years 2004 to 2007. The largest peak volume reflectivity of about 2×10-9 m-1 was observed at Andenes compared with their counterparts at Davis (~4×10-11 m-1) and Resolute Bay (~6×10-12 m-1). The peak of the PMSE height distribution is 85.6 km at Davis which is about 1 km higher than at Andenes. At Resolute Bay the height distribution peaks at about 85 km but only a few layers were found below 84 km. The mean PMSE occurrence rate is 83% at Andenes, 38% at Davis with larger variability and only 18% at Resolute Bay (in late summer). The duration of the PMSE season varies at Andenes from 104 to 113 days and at Davis from 88 to 93 days. In general the PMSE seasons starts about 5 days later at Davis and ends about 10 days earlier compared to Andenes. In all three seasons the PMSE occurrence suddenly drops to a much lower level at Davis about 32 days after solstice whereas the PMSE season decays smoothly at Andenes. The duration of the PMSE season at Andenes and Davis is highly correlated with the presence of equatorward directed winds, the observed differences in PMSE occurrence are related to the mesospheric temperatures at both sites.

  19. Wave Driven Disturbances of the Thermal Structure in the Polar Winter Upper Stratosphere and Lower Mesosphere

    NASA Astrophysics Data System (ADS)

    Greer, Katelynn R.

    The polar winter middle atmosphere is a dynamically active region that is driven primarily by wave activity. Planetary waves intermittently disturbed the region at different levels and the most spectacular type of disturbance is a major Sudden Stratospheric Warming (SSW). However, other types of extreme disturbances occur on a more frequent, intraseasonal basis. One such disturbance is a synoptic-scale "weather event" observed in lidar and rocket soundings, soundings from the TIMED/SABER instrument and UK Meteorological Office (MetO) assimilated data. These disturbances are most easily identified near 42 km where temperatures are elevated over baseline conditions by a remarkable 50 K and an associated cooling is observed near 75 km. As these disturbances have a coupled vertical structure extending into the lower mesosphere, they are termed Upper Stratospheric/Lower Mesospheric (USLM) disturbances. This research begins with description of the phenomenology of USLM events in observations and the assimilated data set MetO, develops a description of the dynamics responsible for their development and places them in the context of the family of polar winter middle atmospheric disturbances. Climatologies indicates that USLM disturbances are commonly occurring polar wintertime disturbances of the middle atmosphere, have a remarkably repeating thermal structure, are located on the East side of the polar low and are related planetary wave activity. Using the same methodology for identifying USLM events and building climatologies of these events, the Whole Atmosphere Community Climate Model WACCM version 4 is established to spontaneously and internally generate USLM disturbances. Planetary waves are seen to break at a level just above the stratopause and convergence of the EP-flux vector is occurring in this region, decelerating the eastward zonal-mean wind and inducing ageostrophic vertical motion to maintain mass continuity. The descending air increases the horizontal

  20. 27-day solar forcing of mesospheric temperature, water vapor and polar mesospheric clouds from the AIM SOFIE and CIPS satellite experiments

    NASA Astrophysics Data System (ADS)

    Thomas, Gary; Thurairajah, Brentha; von Savigny, Christian; Hervig, Mark; Snow, Martin

    2016-04-01

    Solar cycle variations of ultraviolet radiation have been implicated in the 11-year and 27-day variations of Polar Mesospheric Cloud (PMC) properties. Both of these variations have been attributed to variable solar ultraviolet heating and photolysis, but no definitive studies of the mechanisms are available. The solar forcing issue is critical toward answering the broader question of whether PMC's have undergone long-term changes, and if so, what is the nature of the responsible long-term climate forcings? One of the principal goals of the Aeronomy of Ice in the Mesosphere satellite mission was to answer the question: "How does changing solar irradiance affect PMCs and the environment in which they form?" We describe an eight-year data set from the AIM Solar Occultation for Ice Experiment (SOFIE) and the AIM Cloud Imaging and Particle Size (CIPS) experiment. Together, these instruments provide high-precision measurements of high-latitude summertime temperature (T), water vapor (H2O), and PMC ice properties for the period 2007-present. The complete temporal coverage of the summertime polar cap region for both the primary atmospheric forcings of PMC (T and H2O), together with a continually updated time series of Lyman-alpha solar irradiance, allows an in-depth study of the causes and effects of 27-day PMC variability. The small responses of these variables, relative to larger day-to-day changes from gravity waves, tides, inter-hemispheric coupling, etc. require a careful statistical analysis to isolate the solar influence. We present results for the 27-day responses of T, H2O and PMC for a total of 15 PMC seasons, (30 days before summer solstice to 60 days afterward, for both hemispheres). We find that the amplitudes and phase relationships are not consistent with the expected mechanisms of solar UV heating and photolysis - instead we postulate a primarily dynamical response, in which a periodic vertical wind heats/cools the upper mesosphere, and modulates PMC

  1. Patches of polar mesospheric summer echoes characterized from radar imaging observations with MAARSY

    NASA Astrophysics Data System (ADS)

    Sommer, Svenja; Chau, Jorge L.

    2016-12-01

    A recent study has hypothesized that polar mesospheric summer echoes (PMSEs) might consist mainly of localized isotropic scattering. These results have been inferred from indirect measurements. Using radar imaging with the Middle Atmosphere Alomar Radar System (MAARSY), we observed horizontal structures that support our previous findings. We observe that small-scale irregularities, causing isotropic scattering, are organized in patches. We find that patches of PMSEs, as observed by the radar, are usually smaller than 1 km. These patches occur throughout the illuminated volume, supporting that PMSEs are caused by localized isotropic or inhomogeneous scattering. Furthermore, we show that imaging can be used to identify side lobe detections, which have a significant influence even for narrow beam observations. Improved spectra estimations are obtained by selecting the desired volume to study parameters such as spectral width and to estimate the derived energy dissipation rates. In addition, a combined wide beam experiment and radar imaging is used to resolve the radial velocity and spectral width at different volumes within the illuminated volume.

  2. Bright polar mesospheric clouds formed by main engine exhaust from the space shuttle's final launch

    NASA Astrophysics Data System (ADS)

    Stevens, Michael H.; Lossow, Stefan; Fiedler, Jens; Baumgarten, Gerd; Lübken, Franz-Josef; Hallgren, Kristofer; Hartogh, Paul; Randall, Cora E.; Lumpe, Jerry; Bailey, Scott M.; Niciejewski, R.; Meier, R. R.; Plane, John M. C.; Kochenash, Andrew J.; Murtagh, Donal P.; Englert, Christoph R.

    2012-10-01

    The space shuttle launched for the last time on 8 July 2011. As with most shuttle launches, the three main engines injected about 350 t of water vapor between 100 and 115 km off the east coast of the United States during its ascent to orbit. We follow the motion of this exhaust with a variety of satellite and ground-based data sets and find that (1) the shuttle water vapor plume spread out horizontally in all directions over a distance of 3000 to 4000 km in 18 h, (2) a portion of the plume reached northern Europe in 21 h to form polar mesospheric clouds (PMCs) that are brighter than over 99% of all PMCs observed in that region, and (3) the observed altitude dependence of the particle size is reversed with larger particles above smaller particles. We use a one-dimensional cloud formation model initialized with predictions of a plume diffusion model to simulate the unusually bright PMCs. We find that eddy mixing can move the plume water vapor down to the mesopause near 90 km where ice particles can form. If the eddy diffusion coefficient is 400 to 1000 m2/s, the predicted integrated cloud brightness is in agreement with both satellite and ground-based observations of the shuttle PMCs. The propellant mass of the shuttle is about 20% of that from all vehicles launched during the northern 2011 PMC season. We suggest that the brightest PMC population near 70°N is formed by space traffic exhaust.

  3. First SuperDARN polar mesosphere summer echoes observed at SANAE IV, Antarctica

    NASA Astrophysics Data System (ADS)

    Ogunjobi, Olakunle; Sivakumar, Venkataraman; Judy; Stephenson, A. E.

    For over 3 decades studies on Polar mesosphere summer echo (PMSE) is ongoing. Its causative mechanism in the Antarctic and Arctic mesopause altitude is yet to be completely understood and is partly due to few observations from Antarctica. Also important were the varied influencing factors across the observable locations. For the first time, we report the PMSE occurrence probability rates over South African National Antarctic Expedition IV (SANAE IV). A comparison is made with observation from SANAE IV magnetic conjugate vicinity, Goose Bay in Arctic region. Here, a new matching coincidence method allowing filtration of possible contaminating echoes is described and implemented for extraction of PMSE during the 2005-2007 summers. In this method, Riometer and Super Dual Auroral Radar Network (SuperDARN) measurements from SANAE IV location are matched to obtain PMSE occurrence probability rate. Whereas the seasonal and diurnal variations followed the known features of PMSE, the percentage difference in probability occurrence rate is found to be remarkable. The SANAE IV probability rate is found to be high for the summer months reaching about 50% peak around the summer solstice. When the coincidence algorithm is relaxed, we found a substantial 30% increase in PMSE occurrence rate at SANAE IV. At this time, about 100% peak is found for Goose Bay. The contribution from the ionospheric D region electron density enhancements to SuperDARN PMSE occurrence rates at locations under auroral regions will be presented.

  4. Double-layer structure in polar mesospheric clouds observed from SOFIE/AIM

    NASA Astrophysics Data System (ADS)

    Gao, Haiyang; Shepherd, Gordon G.; Tang, Yuanhe; Bu, Lingbing; Wang, Zhen

    2017-02-01

    Double-layer structures in polar mesospheric clouds (PMCs) are observed by using Solar Occultation for Ice Experiment (SOFIE) data between 2007 and 2014. We find 816 and 301 events of double-layer structure with percentages of 10.32 and 7.25 % compared to total PMC events, and the mean distances between two peaks are 3.06 and 2.73 km for the Northern Hemisphere (NH) and Southern Hemisphere (SH) respectively. Double-layer PMCs almost always have less mean ice water content (IWC) than daily IWC during the core of the season, but they are close to each other at the beginning and the end. The result by averaging over all events shows that the particle concentration has obvious double peaks, while the particle radius exhibits an unexpected monotonic increase with decreasing altitude. By further analysis of the background temperature and water vapour residual profiles, we conclude that the lower layer is a reproduced one formed at the bottom of the upper layer. 56.00 and 47.51 % of all double-layer events for the NH and SH respectively have temperature enhancements larger than 2 K locating between their double peaks. The longitudinal anti-correlation between the gravity waves' (GWs') potential energies and occurrence frequencies of double-layer PMCs suggests that the double-layer PMCs tend to form in an environment where the GWs have weaker intensities.

  5. Simulation of particle size distributions in Polar Mesospheric Clouds from Microphysical Models

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Merkel, A.; Bardeen, C.; Rusch, D. W.; Lumpe, J. D.

    2009-12-01

    The size distribution of ice particles is perhaps the most important observable aspect of microphysical processes in Polar Mesospheric Cloud (PMC) formation and evolution. A conventional technique to derive such information is from optical observation of scattering, either passive solar scattering from photometric or spectrometric techniques, or active backscattering by lidar. We present simulated size distributions from two state-of-the-art models using CARMA sectional microphysics: WACCM/CARMA, in which CARMA is interactively coupled with WACCM3 (Bardeen et al, 2009), and stand-alone CARMA forced by WACCM3 meteorology (Merkel et al, this meeting). Both models provide well-resolved size distributions of ice particles as a function of height, location and time for realistic high-latitude summertime conditions. In this paper we present calculations of the UV scattered brightness at multiple scattering angles as viewed by the AIM Cloud Imaging and Particle Size (CIPS) satellite experiment. These simulations are then considered discretely-sampled “data” for the scattering phase function, which are inverted using a technique (Lumpe et al, this meeting) to retrieve particle size information. We employ a T-matrix scattering code which applies to a wide range of non-sphericity of the ice particles, using the conventional idealized prolate/oblate spheroidal shape. This end-to-end test of the relatively new scattering phase function technique provides insight into both the retrieval accuracy and the information content in passive remote sensing of PMC.

  6. Tomographic and spectral views on the lifecycle of polar mesospheric clouds from Odin/OSIRIS

    NASA Astrophysics Data System (ADS)

    Hultgren, Kristoffer; Gumbel, Jörg

    2014-12-01

    Vertical and horizontal structures of Polar Mesospheric Clouds (PMC) have been recovered by tomographic retrieval from the OSIRIS instrument aboard the Odin satellite. The tomographic algorithm has been used to return local scattering coefficients at seven wavelengths in the ultraviolet. This spectral information is used to retrieve PMC particle sizes, number density, and ice mass density. While substantial horizontal variations are found, local vertical structures are overall consistent with the idea of a growth-sedimentation process leading to a visible cloud. Large numbers of small particles are present near the top of the observed cloud layer. Toward lower altitudes, particle sizes increase while particle number densities decrease. A close relationship is found between the distribution of local PMC scattering coefficient and ice mass density. The bottom of the cloud often features large particles with mode radii exceeding 70 nm that rain out of the cloud before sublimating. The number density of these large particles is small, and they do not contribute significantly to the overall cloud brightness. As a consequence, the presence of these large particles can be difficult to identify for remote sensing techniques that integrate over the entire cloud column. When it comes to deriving absolute values of particle mode radius and number density, there is a strong sensitivity to assumptions on the mathematical form of the particle size distribution. We see a continued strong need to resolve this issue by co-analysis of various remote sensing techniques and observation geometries.

  7. Seasonal Variation of turbulent Energy Dissipation Rates in the Polar Mesosphere

    NASA Astrophysics Data System (ADS)

    Singer, W.; Latteck, R.; Becker, E.

    Turbulent energy dissipation rates have been derived from the width of the observed signal spectra obtained with a narrow beam Doppler radar operated at 3 17 MHz in Andenes 69 r N using a computationally intensive correction method to remove contributions from non-turbulent processes Vertical and oblique beams with a minimum half-power full-beam width of 6 6 r are used The radar provides estimates of turbulent energy dissipation rates in an altitude range from 50 to about 90 km with a time resolution of 1 h and a range resolution of 1 km since September 2003 Turbulent energy dissipation rates based on radar observations vary in the order of 2-10 mW kg around 70 km and between about 10 and 200 mW kg around 85 km in dependence on season During the occurrence of strong polar mesosphere winter echoes in January 2005 energy dissipation rates between 30 and about 100 mW kg are observed at altitudes from 55 to 65 km The radar estimates of turbulent energy dissipation rates are in reasonable agreement with climatologically winter and summer data from previous rocket soundings at Andenes as well as with time-resolved results 1-h resolution from the Kuehlungsborn Mechanistic General Circulation Model KMCM model for summer and winter conditions

  8. Tomographic retrieval of water vapour and temperature around polar mesospheric clouds using Odin-SMR

    NASA Astrophysics Data System (ADS)

    Christensen, O. M.; Eriksson, P.; Urban, J.; Murtagh, D.; Hultgren, K.; Gumbel, J.

    2015-05-01

    A special observation mode of the Odin satellite provides the first simultaneous measurements of water vapour, temperature and polar mesospheric cloud (PMC) brightness over a large geographical area while still resolving both horizontal and vertical structures in the clouds and background atmosphere. The observation mode was activated during June, July and August of 2010 and 2011, and for latitudes between 50 and 82° N. This paper focuses on the water vapour and temperature measurements carried out with Odin's sub-millimetre radiometer (SMR). The tomographic retrieval approach used provides water vapour and temperature between 75 and 90 km with a vertical resolution of about 2.5 km and a horizontal resolution of about 200 km. The precision of the measurements is estimated to 0.2 ppmv for water vapour and 2 K for temperature. Due to limited information about the pressure at the measured altitudes, the results have large uncertainties (> 3 ppmv) in the retrieved water vapour. These errors, however, influence mainly the mean atmosphere retrieved for each orbit, and variations around this mean are still reliably captured by the measurements. SMR measurements are performed using two different mixer chains, denoted as frequency mode 19 and 13. Systematic differences between the two frontends have been noted. A first comparison with the Solar Occultation For Ice Experiment instrument (SOFIE) on-board the Aeronomy of Ice in the Mesosphere (AIM) satellite and the Fourier Transform Spectrometer of the Atmospheric Chemistry Experiment (ACE-FTS) on-board SCISAT indicates that the measurements using the frequency mode 19 have a significant low bias in both temperature (> 15 K) and water vapour (> 0.5 ppmv), while the measurements using frequency mode 13 agree with the other instruments considering estimated errors. PMC brightness data is provided by OSIRIS, Odin's other sensor. Combined SMR and OSIRIS data for some example orbits is considered. For these orbits, effects of

  9. Studies of polar mesosphere summer echoes at multiple sites using calibrated radars

    NASA Astrophysics Data System (ADS)

    Swarnalingam, Nimalan

    A 51.5 MHz VHF radar system, located at Resolute Bay in northern Canada has been monitoring Polar Mesosphere Summer Echoes (PMSE) since 1997. This is currently the northernmost radar used to monitor PMSE in the North American sector. It has been recording a lower level of PMSE activity in this region, compared with the PMSE activity recorded by other high latitudes radars operating at similar frequencies. To investigate the reason for this, the radar system has been absolutely calibrated by means of cosmic sky noise variations along with the help of a calibrated noise source. A general theory is developed in such a way that the calibration procedure can be directly applied to any MST radar system anywhere in the world, provided the sky noise variations are known. PMSE backscatter cross-sections for the Resolute Bay radar are estimated, converted into an equivalent electron density structure function constant, C2N , and compared with three other radars located at Yellowknife and Andenes during simultaneous measurements. It was found that the estimated C2N for Resolute Bay is at least an order of magnitude lower than the estimated values at the other two locations. This leads us to conclude that the reason why PMSE strengths at Resolute Bay are weak compared with other sites is geophysical in origin, and not due to instrumental effects. The seasonal and diurnal variations of PMSE at Resolute Bay, and their connection to cold mesopause temperatures, are investigated on a long term basis, and compared with the observations at Andenes on a short term basis. Although the PMSE season is relatively short at Resolute Bay, the PMSE temporal variation pattern agrees with Andenes for at least one season. On the other hand, the two sites show a completely different picture for diurnal variations. While PMSE at Andenes show a clear diurnal variation, PMSE at Resolute Bay are modulated by high frequency oscillations. For the first time, a group of near identical SKiYMET meteor

  10. Improvement of OMI ozone profile retrievals by simultaneously fitting polar mesospheric clouds

    NASA Astrophysics Data System (ADS)

    Bak, Juseon; Liu, Xiong; Kim, Jae H.; Deland, Matthew T.; Chance, Kelly

    2016-09-01

    The presence of polar mesospheric clouds (PMCs) at summer high latitudes could affect the retrieval of ozone profiles using backscattered ultraviolet (UV) measurements. PMC-induced errors in ozone profile retrievals from Ozone Monitoring Instrument (OMI) backscattered UV measurements are investigated through comparisons with Microwave Limb Sounder (MLS) ozone measurements. This comparison demonstrates that the presence of PMCs leads to systematic biases for pressures smaller than 6 hPa; the biases increase from ˜ -2 % at 2 hPa to ˜ -20 % at 0.5 hPa on average and are significantly correlated with brightness of PMCs. Sensitivity studies show that the radiance sensitivity to PMCs strongly depends on wavelength, increasing by a factor of ˜ 4 from 300 to 265 nm. It also strongly depends on the PMC scattering, thus depending on viewing geometry. The optimal estimation-based retrieval sensitivity analysis shows that PMCs located at 80-85 km have the greatest effect on ozone retrievals at ˜ 0.2 hPa ( ˜ 60 km), where the retrieval errors range from -2.5 % with PMC vertical optical depth (POD) of 10-4 to -20 % with 10-3 POD at backscattering angles. The impacts increase by a factor of ˜ 5 at forward-scattering angles due to stronger PMC sensitivities. To reduce the interference of PMCs on ozone retrievals, we perform simultaneous retrievals of POD and ozone with a loose constraint of 10-3 for POD, which results in retrieval errors of 1-4 × 10-4. It is demonstrated that the negative bias of OMI ozone retrievals relative to MLS can be improved by including the PMC in the forward-model calculation and retrieval.

  11. Simultaneous Retrievals of Polar Mesospheric Clouds (PMCs) with Ozone from OMI UV measurements

    NASA Astrophysics Data System (ADS)

    Bak, J.; Liu, X.; Kim, J. H.; Deland, M. T.; Chance, K.

    2015-09-01

    The presence of polar mesospheric clouds (PMCs) at high latitudes could affect the retrieval of ozone profiles using backscattered ultraviolet (BUV) measurements. PMC-induced errors in ozone profile retrievals from Ozone Monitoring Instrument (OMI) BUV measurements are investigated through comparisons with Microwave Limb Sounder (MLS) ozone measurements. This comparison demonstrates that the presence of PMCs leads to systematic biases at altitudes above 6 hPa in summer high latitudes; the biases increase from ~ -2 % at 2 hPa to ~ -20 % at 0.5 hPa on average, and are significantly correlated with brightness of PMCs. Sensitivity studies show that the radiance sensitivity to PMCs strongly depends on wavelengths, increasing by a factor of ~ 4 from 300 to 265 nm. It also strongly depends on the PMC scattering, thus depending on viewing geometry. The optimal estimation-based retrieval sensitivity analysis shows that PMCs located at 80-85 km have the greatest effect on ozone retrievals at ~ 0.2 hPa (~ 60 km), where the retrieval errors range from -2.5 % with PMC optical depth (POD) of 10-4 to -20 % with 10-3 at back scattering angles, and the impacts increase by a factor of ~ 5 at forward scattering angles due to stronger PMC sensitivities. To reduce the interference of PMCs on ozone retrievals, we perform simultaneous retrievals of POD and ozone with a loose constraint of 10-3 for POD, which results in retrieval errors of 1-4 × 10-4. It is demonstrated that the negative bias of OMI ozone retrievals relative to MLS could be improved by including the PMC in the forward model calculation and retrieval.

  12. Measurements of global distributions of polar mesospheric clouds during 2005-2012 by MIPAS/Envisat

    NASA Astrophysics Data System (ADS)

    García-Comas, Maya; López-Puertas, Manuel; Funke, Bernd; Aythami Jurado-Navarro, Á.; Gardini, Angela; Stiller, Gabriele P.; von Clarmann, Thomas; Höpfner, Michael

    2016-06-01

    We have analysed MIPAS (Michelson Interferometer for Passive Atmopheric Sounding) infrared measurements of PMCs for the summer seasons in the Northern (NH) and Southern (SH) hemispheres from 2005 to 2012. Measurements of PMCs using this technique are very useful because they are sensitive to the total ice volume and independent of particle size. For the first time, MIPAS has provided coverage of the PMC total ice volume from midlatitudes to the poles. MIPAS measurements indicate the existence of a continuous layer of mesospheric ice, extending from about ˜ 81 km up to about 88-89 km on average and from the poles to about 50-60° in each hemisphere, increasing in concentration with proximity to the poles. We have found that the ice concentration is larger in the Northern Hemisphere than in the Southern Hemisphere. The ratio between the ice water content (IWC) in both hemispheres is also latitude-dependent, varying from a NH / SH ratio of 1.4 close to the poles to a factor of 2.1 around 60°. This also implies that PMCs extend to lower latitudes in the NH. A very clear feature of the MIPAS observations is that PMCs tend to be at higher altitudes with increasing distance from the polar region (in both hemispheres), particularly equatorwards of 70°, and that they are about 1 km higher in the SH than in the NH. The difference between the mean altitude of the PMC layer and the mesopause altitude increases towards the poles and is larger in the NH than in the SH. The PMC layers are denser and wider when the frost-point temperature occurs at lower altitudes. The layered water vapour structure caused by sequestration and sublimation of PMCs is present at latitudes northwards of 70° N and more pronounced towards the pole. Finally, MIPAS observations have also shown a clear impact of the migrating diurnal tide on the diurnal variation of the PMC volume ice density.

  13. Light in condensed matter in the upper atmosphere as the origin of homochirality: circularly polarized light from Rydberg matter.

    PubMed

    Holmlid, Leif

    2009-01-01

    Clouds of the condensed excited Rydberg matter (RM) exist in the atmospheres of comets and planetary bodies (most easily observed at Mercury and the Moon), where they surround the entire bodies. Vast such clouds are recently proposed to exist in the upper atmosphere of Earth (giving rise to the enormous features called noctilucent clouds, polar mesospheric clouds, and polar mesospheric summer radar echoes). It has been shown in experiments with RM that linearly polarized visible light scattered from an RM layer is transformed to circularly polarized light with a probability of approximately 50%. The circular Rydberg electrons in the magnetic field in the RM may be chiral scatterers. The magnetic and anisotropic RM medium acts as a circular polarizer probably by delaying one of the perpendicular components of the light wave. The delay process involved is called Rabi-flopping and gives delays of the order of femtoseconds. This strong effect thus gives intense circularly polarized visible and UV light within RM clouds. Amino acids and other chiral molecules will experience a strong interaction with this light field in the upper atmospheres of planets. The interaction will vary with the stereogenic conformation of the molecules and in all probability promote the survival of one enantiomer. Here, this strong effect is proposed to be the origin of homochirality. The formation of amino acids in the RM clouds is probably facilitated by the catalytic effect of RM.

  14. Seasonal Variation of the Quasi 5 Day Planetary Wave: Causes and Consequences for Polar Mesospheric Cloud Variability in 2007

    DTIC Science & Technology

    2010-01-01

    t 1=2 C Y0 0ð Þ Xn i¼m Wr ai; bð Þ a1=2i : ðA6Þ [65] The constants depend on the mother wavelet used and the temporal resolution in the time series...may not be sufficiently large to generate responses in the analyzed humidity fields. [9] Merkel et al. [2009] and Eckermann et al. [2009] showed that...day wave in the polar mesosphere in greater temporal and spatial detail utilizing wavelet techniques. As satellite tempera- ture and water vapor

  15. High-speed solar wind streams and polar mesosphere winter echoes at Troll, Antarctica

    NASA Astrophysics Data System (ADS)

    Kirkwood, S.; Osepian, A.; Belova, E.; Lee, Y.-S.

    2015-06-01

    A small, 54 MHz wind-profiler radar, MARA, was operated at Troll, Antarctica (72° S, 2.5° E), continuously from November 2011 to January 2014, covering two complete Antarctic winters. Despite very low power, MARA observed echoes from heights of 55-80 km (polar mesosphere winter echoes, PMWE) on 60% of all winter days (from March to October). This contrasts with previous reports from radars at high northern latitudes, where PWME have been reported only by very high power radars or during rare periods of unusually high electron density at PMWE heights, such as during solar proton events. Analysis shows that PWME at Troll were not related to solar proton events but were often closely related to the arrival of high-speed solar wind streams (HSS) at the Earth, with PWME appearing at heights as low as 56 km and persisting for up to 15 days following HSS arrival. This demonstrates that HSS effects penetrate directly to below 60 km height in the polar atmosphere. Using local observations of cosmic-noise absorption (CNA), a theoretical ionization/ion-chemistry model and a statistical model of precipitating energetic electrons associated with HSS, the electron density conditions during the HSS events are estimated. We find that PMWE detectability cannot be explained by these variations in electron density and molecular-ion chemistry alone. PWME become detectable at different thresholds depending on solar illumination and height. In darkness, PWME are detected only when the modelled electron density is above a threshold of about 1000 cm-3, and only above 75 km height, where negative ions are few. In daylight, the electron density threshold falls by at least 2 orders of magnitude and PWME are found primarily below 75 km height, even in conditions when a large proportion of negative ions is expected. There is also a strong dawn-dusk asymmetry with PWME detected very rarely during morning twilight but often during evening twilight. This behaviour cannot be explained if PMWE

  16. Remote Sensing of PMCs with the Polar Suborbital Science in the Upper Mesosphere (PoSSUM) Lidar

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Thayer, J. P.; Reimuller, J. D.

    2013-12-01

    The Polar Suborbital Science in the Upper Mesosphere (PoSSUM) experiment is a modular observatory readily integrated into commercial manned Reusable Suborbital Launch Vehicles (RSLV) for aeronomy, remote sensing, solar physics, astronomy/astrophysics, and Earth observations. The proposed observatory, scheduled for deployment in July 2015, is being designed to operate onboard the XCOR Lynx and Virgin Galactic SpaceShipTwo vehicles. The observatory will enable unprecedented capabilities to dedicate low-cost suborbital campaigns for the study of the small-scale dynamics of polar mesospheric clouds (PMC) by obtaining imagery and remotely sensed data from apogee altitudes in excess of 100 km. A key component of the observatory is the PoSSUM Lidar, a Rayleigh/Mie backscatter lidar currently being designed at the University of Colorado at Boulder. The proposed instrument transmitter consists of a 532 nm linearly polarized laser coupled with conditioning and steering optics. The receiver employs a photon counting approach to detect the received optical signals backscattered from PMCs during flight operations. The design of the PoSSUM Lidar will be presented, including the unique challenges associated with developing a lidar instrument for operations onboard a RSLV. Initial simulation data will be explored, including a discussion of the expected science products output by the lidar, such as PMC height and density, as well as the potential for depolarization measurements to evaluate PMC asphericity.

  17. Near-simultaneous Observations of Polar Mesospheric Clouds from the International Space Station and from Orbiting Optical Instruments

    NASA Astrophysics Data System (ADS)

    Pettit, D.; Rusch, D. W.; Thomas, G. E.; Merkel, A.; Bailey, S. M.; Russell, J. M.; Deland, M.

    2004-12-01

    The orbit of the International Space Station (ISS) carried the spacecraft to latitudes high enough for observations of Polar Mesospheric Clouds (PMC). During the PMC southern-hemisphere season 2002-2003, a series of digital images and visual observations were taken over the Antarctic continent of PMC at the sunlit limb. Approximately twenty such observations, available through the ISS LAB window towards the summer pole, revealed the PMC as a distinct narrow scattering layer in the upper mesosphere, often many thousands of kilometers in horizontal expanse. The field of view from the ISS covered a sufficiently wide area of the polar region, that it was possible to co-locate measurements taken by instruments on board unmanned spacecraft in the near vicinity of the Space Station (but taken from a higher altitude). This provided an opportunity to combine accurate limb scans and nadir views of PMC with high-resolution information on the horizontal spatial structure. The SNOE and NOAA-16 and NOAA-17 SBUV/2 instruments obtained 15 orbits per day of PMC measurements at UV wavelengths. In addition, the SABER experiment on board the TIMED satellite obtained temperature profiles in the same vicinity. We will report on the first comparisons of these data, and describe the specific advantages of this unique combination of data.

  18. Studies of stratospheric and mesospheric chemistry in polar regions with the Berlin Climate Middle Atmosphere Model (CMAM CHEM)

    NASA Astrophysics Data System (ADS)

    Grenfell, J. L.; Mieth, P.; Kruger, K.; Langematz, U.; Labitzke, K.; Steil, B.

    2001-12-01

    The Berlin Climate Middle Atmosphere model (CMAM) with resolution T21 and lid at 84km (Langematz and Pawson, 1997) has been interactively coupled with the chemistry module of Steil et al., (1998). Chemical tracer fields from a test run which used the Palmer gravity wave drag (GWD) scheme have been found to compare well both with observations and other models (e.g. MA-ECHAM4-CHEM). However, in this run the model pole has a warm bias and dynamical variability is not well reproduced. Therefore we are currently testing a suite of orographic and non-orographic GWD schemes in the model. Preliminary results from these latter runs are presented here and focus on stratospheric and mesospheric chemical processes during polar winter, particularly those affecting ozone. The contrast between hemispheres, the springtime 'recovery' of polar stratospheric ozone and relevant chemical diurnal cycles are explored. Bibliography U. Langematz, and Pawson S., The Berlin troposphere-stratosphere-mesosphere GCM: Climatology and forcing mechanisms, Q. J. R. Meteorol. Soc., 123, 1075-1096, 1997 B. Steil, Dameris M., Brühl C., Crutzen P. J., Grewe V., Ponater M., and Sausen R., Development of a chemistry module for GCMs: first results of a multiannual integration, Ann. Geophys., 16, 205-228, 1998

  19. Preliminary Study on Active Modulation of Polar Mesosphere Summer Echoes with the Radio Propagation in Layered Space Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Shengguo; Li, Hailong; Fu, Luyao; Wang, Maoyan

    2016-06-01

    Radar echoes intensity of polar mesosphere summer echoes (PMSE) is greatly affected by the temperature of dusty plasma and the frequency of electromagnetic wave about the radar. In this paper, a new method is developed to explain the active experiment results of PMSE. The theory of wave propagation in a layered media is used to study the propagation characteristics of an electromagnetic wave at different electron temperatures. The simulation results show that the variation tendency of the reflected power fraction almost agrees with the results observed by radar in the European Incoherent Scatter Scientific Association (EISCAT). The radar echoes intensity of PMSE greatly decreases with the increase of the radio frequency and the enhancement of the electron temperature. supported by National Natural Science Foundation of China (Nos. 41104097 and 41304119) and by the National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation (CRIRP)

  20. Rocket observations of positive ions during polar mesosphere winter echo conditions at Andenes in January 2005; first analysis and interpretations

    NASA Astrophysics Data System (ADS)

    Brattli, A.; Rapp, M.; Singer, W.; Lattek, R.; Friedrich, M.; Havnes, O.; Blix, T. A.; Svenes, K. R.

    2005-08-01

    On Janurary 18, 2005, two instrumented miniaturised rocket payloads, each with a Positive Ion Probe (PIP) and a Faraday rotation/differential absorption experiment, were launched from Andøya Rocket Range (69°N). The instrumented payloads were launched into conditions with Polar Mesosphere Winter Echoes (PMWE) as part of a salvo of meteorological rockets measuring temperature and wind using falling spheres and chaff. Layers of PMWE were detected in the altitude range 55-77 km by the 53.5 MHz ALWIN radar. Fluctuations in the ion density, as measured in situ by the instrumented payloads, show that there was turbulence inside the PMWE layers, but not above/below and between. Data from the PIPs are analysed and related to the geophysical conditions, as observed with the ALWIN radar and meteorological rockets.

  1. Seasonal transitions and possible polar mesospheric cloud regions calculated by a zonally averaged model of the middle atmosphere

    NASA Astrophysics Data System (ADS)

    Memmesheimer, M.; Gaertner, V.; Blum, P. W.

    1986-12-01

    A global, zonally averaged dynamical model of the middle atmosphere is used to calculate the seasonal variations of winds and temperature from 10 to 110 km. The main purpose of the study is to search for the existence of regions where noctilucent or polar mesospheric clouds (NLC/PMC) may be formed. For this purpose the difference between the actual temperature and the frost point is calculated based on a fixed water vapor mixing ratio. A value of 10 ppmV is chosen, which is in the upper range of the data obtained by different measurement techniques. Possible cloud existence regions (PCR) are defined by the condition that the actual temperature is below the frost point inside the PCR. It is found that this is the case for the summer polar mesopause during May-August (in the northern hemisphere) and November-February (in the southern hemisphere). The PCR extends from the pole to approximately 60° latitude at a height of about 85 km. In addition, in the lower stratosphere during winter the temperature also falls below the frost point, approximately at an altitude where stratospheric clouds are observed. The time-dependent behaviour of the PCR is investigated and compared with the data of the ultraviolet spectrometer on board the SME satellite and with ground-based observations of noctilucent clouds. It can be shown that the time of the NLC/PMC season is in good agreement with the time span covered by the estimated possible cloud region. The fast changes in atmospheric circulation and temperatures at mesospheric heights during late spring/early summer and late summer/beginning of autumn are an interesting fact. This may be responsible for the sudden start/end of the cloud season. The study shows that two dimensional modeling may be a good approach to get more insight into the development of large-scale atmospheric background conditions necessary for PMC/NLC formation.

  2. Laboratory studies of VUV photochemistry of water ice: measurements of photodesorption rates and implication for Polar Mesospheric Clouds

    NASA Astrophysics Data System (ADS)

    Kulikov, Mikhail; Feigin, Alexander; Ignatov, Stanislav; Sennikov, Petr; Schrems, Otto

    Polar Mesospheric Clouds (PMC) are the highest clouds of the Earth's atmosphere. They are formed during summer at middle to high latitudes in an altitude range between 80 and 90 km when the air temperature drops below 150K. The particles of PMC consist primarily of ice [1] and are formed as a result of water vapor condensation. In the day time, PMC are subjected to strong solar Lyman -α irradiation with the wavelength of 121.6 nm which penetrates into ice particles and is absorbed essentially. This leads to photodissociation of H2 O molecules and to formation of mobile and chemically active components in the solid phase. As a result, a whole spectrum of physicochemical processes can be initiated inside the particles: diffusion of primary products, chemical formation of secondary products, accumulation of both type of products in the ice matrix and their escaping into gas-phase. Murray and Plane [2] hypothesized that the last process is dominant, i.e. each Lyman -α photon absorbed by a particle of PMC results in the ejection of one H atom and one OH radical into gas phase that provides essential enhancement of HOx concentration with a corresponding increase in Ox removal. Nevertheless, they justly pointed to the need of laboratory measurements of the H and OH yield from ice under conditions pertinent to the summer mesosphere. We have carried out first laboratory studies of water ice photochemistry to acquiring knowledge about physicochemical processes inside particles of PMC initiated by solar irradiation. The experimental set-up used includes a high-vacuum chamber, a gas-inlet system, a refrigerator-cryostat with temperature controller, a FTIR spectrometer, a vacuum ultraviolet hydrogen lamp and a microwave generator. This work presents results of measurements of the absolute photodesorption rate (loss of substance due to the escape of photoproducts into gas phase) from thin (20-100nm) water ice samples at temperatures of 120-150 K. The data obtained demonstrate

  3. Imaging of Polar Mesosphere Summer Echoes with the 450 MHz Poker Flat Advanced Modular Incoherent Scatter Radar

    NASA Astrophysics Data System (ADS)

    Nicolls, M. J.; Heinselman, C. J.; Hope, E. A.; Ranjan, S.; Kelley, M. C.; Kelly, J. D.

    2007-10-01

    Polar Mesosphere Summer Echoes (PMSE) occur near the mesopause during the polar summer months. PMSE are primarily studied at VHF, however there have been some detections at higher frequencies. Here, we report on some of the first detections of PMSE with the 450 MHz (67 cm) Poker Flat Advanced Modular Incoherent Scatter Radar (PFISR). Echoes were observed with volume reflectivities (radar scattering cross section per unit volume) near 2-3 × 10-17 m-1. On 11 June 2007, PFISR was operating in a 26-beam position mode, with look directions spread over an approximately 80 by 80 km2 region at 85 km altitude with elevation angles as low as ~50°. The measurements showed patchy (tens of kilometer) irregularity regions drifting in from the north, in addition to smaller, more localized structures. There was no evidence for strong aspect sensitivity of these UHF echoes, as PMSE was observed in all look directions with relatively uniform intensity. The observations indicate the presence of fossilized irregularities drifting with the background wind field as well as areas of developing irregularities possibly associated with the presence of active neutral air turbulence.

  4. Polar mesosphere summer echoes observed with the EISCAT 933-MHz radar and the CUPRI 46.9-MHz radar, their similarity to 224-MHz radar echoes, and their relation to turbulence and electron density profiles

    NASA Astrophysics Data System (ADS)

    Roettger, J.; Rietveld, M. T.; La Hoz, C.; Hall, T.; Kelley, M. C.

    1990-08-01

    The relation of the coherent echoes from the mesosphere detected by an incoherent scatter UHF radar to the echoes registered simultaneously with a portable radar interferometer is analyzed. It is demonstrated that these 933-MHz echoes are of the same character as the VHF radar polar mesosphere summer echoes. It is also noted that a narrow electron density observed in the incoherent scatter UHF radar data occurs at the comparable altitude as the portable radar interferometer polar mesosphere summer echoes (PMSE). Potential origins of the scattering process of the PMSEs observed in VHF and UHF are discussed, with focus placed on enhanced electron density fluctuations as well as steep electron density gradients in the presence of cluster ions in the cold polar mesosphere.

  5. Polar mesosphere summer echoes at Wasa, Antarctica (73°S): First observations and comparison with 68°N

    NASA Astrophysics Data System (ADS)

    Kirkwood, S.; Wolf, I.; Nilsson, H.; Dalin, P.; Mikhaylova, D.; Belova, E.

    2007-08-01

    Polar mesosphere summer echoes (PMSE) have been observed for the first time at Wasa, Antarctica (73°S, 13°W, 61° geomagnetic). A new 54.5 MHz radar, MARA, operated first in Kiruna (68°N) during late summer 2006 and then at Wasa between 18 January and 5 February 2007. Operation in Kiruna allowed accurate cross calibration with the permanent 52 MHz radar ESRAD. PMSE at 73°S are found to have very similar characteristics to PMSE at 68°N. When observations from the same part of the summer season are compared, volume reflectivities show very similar distributions over different intensities, over height and over local-time. PMSE at 68°N (65° geomagnetic) are stronger in the midnight sector, likely due to the different geomagnetic latitudes. Above 85 km altitude, weak PMSE have a higher occurrence rate at 73°S. The height of peak PMSE occurrence is ~1 km higher at 73°S compared to 68°N.

  6. Observation of polar mesosphere summer echoes with calibrated VHF radars at 69° in the Northern and Southern hemispheres

    NASA Astrophysics Data System (ADS)

    Latteck, R.; Singer, W.; Morris, R. J.; Holdsworth, D. A.; Murphy, D. J.

    2007-07-01

    Polar Mesosphere Summer Echoes (PMSE) observed in the northern and southern hemisphere were studied using continuous measurements obtained by calibrated VHF radars located at Andenes (69.3°N) and Davis (68.6°S) during the boreal summer 2004 and the austral summer 2004/2005. The PMSE observed at Davis have a lower peak volume reflectivity of approximately 4 . 10-11 m-1 compared with their counterparts (7 . 10-10 m-1) observed at Andenes. The duration of the PMSE season is correlated with the dynamical and thermal state of the mesopause region supported by recent studies using meridional winds and temperatures. PMSE occurred less frequently but with greater variability above Davis. The diurnal variation of PMSE occurrence has a maximum around 11-16 LT in both hemispheres, and a minimum occurs during late evening with a longer duration in the southern hemisphere. The mean PMSE season at both sites started around 34 days before solstice, but the duration of the Davis PMSE season is about 9 days shorter than at Andenes. The maximum occurrence height of PMSE at Davis is 86 km which is about 1 km higher than at Andenes.

  7. Evidence for two different structuring and scattering mechanisms and the associated role of aerosols in the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Ulwick, J. C.; Kelley, M. C.; Alcala, C.; Blix, T. A.; Thrane, E. V.

    1993-10-01

    A Super Arcas rocket, MISTI B, was launched as part of the Polar Mesospheric Summer Echoes (PMSE) salvo to measure electron density irregularities using rf and dc probes. Large and small scale structures in the electron density were measured on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- .5 km. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- .5 km for 30 seconds giving us an unusual measurement of horizontal structure over a distance of 5.5 km. A power spectrum of the fluctuations for the upper layer gives further evidence that turbulent mixing is an important process in PMSE. The power spectrum of the lower layer, however, gives evidence that this layer is characterized by a form of partial or Fresnel scattering. Both spectra are in excellent agreement with similar analysis of electron fluctuation spectra measured in the same layers on the TURBO-B rocket flown 12 minutes later and the analysis of Cornell University Portable Radar Interferometer (CUPRI) data by Cho et al., 1993A. Thus two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Using the simultaneous dc and rf probe measurements of electron depletions and sharp gradients in the lower layer, we speculate on the role of aerosols in creating these depletions and gradients.

  8. Comparing nadir and limb observations of polar mesospheric clouds: The effect of the assumed particle size distribution

    NASA Astrophysics Data System (ADS)

    Bailey, Scott M.; Thomas, Gary E.; Hervig, Mark E.; Lumpe, Jerry D.; Randall, Cora E.; Carstens, Justin N.; Thurairajah, Brentha; Rusch, David W.; Russell, James M.; Gordley, Larry L.

    2015-05-01

    Nadir viewing observations of Polar Mesospheric Clouds (PMCs) from the Cloud Imaging and Particle Size (CIPS) instrument on the Aeronomy of Ice in the Mesosphere (AIM) spacecraft are compared to Common Volume (CV), limb-viewing observations by the Solar Occultation For Ice Experiment (SOFIE) also on AIM. CIPS makes multiple observations of PMC-scattered UV sunlight from a given location at a variety of geometries and uses the variation of the radiance with scattering angle to determine a cloud albedo, particle size distribution, and Ice Water Content (IWC). SOFIE uses IR solar occultation in 16 channels (0.3-5 μm) to obtain altitude profiles of ice properties including the particle size distribution and IWC in addition to temperature, water vapor abundance, and other environmental parameters. CIPS and SOFIE made CV observations from 2007 to 2009. In order to compare the CV observations from the two instruments, SOFIE observations are used to predict the mean PMC properties observed by CIPS. Initial agreement is poor with SOFIE predicting particle size distributions with systematically smaller mean radii and a factor of two more albedo and IWC than observed by CIPS. We show that significantly improved agreement is obtained if the PMC ice is assumed to contain 0.5% meteoric smoke by mass, in agreement with previous studies. We show that the comparison is further improved if an adjustment is made in the CIPS data processing regarding the removal of Rayleigh scattered sunlight below the clouds. This change has an effect on the CV PMC, but is negligible for most of the observed clouds outside the CV. Finally, we examine the role of the assumed shape of the ice particle size distribution. Both experiments nominally assume the shape is Gaussian with a width parameter roughly half of the mean radius. We analyze modeled ice particle distributions and show that, for the column integrated ice distribution, Log-normal and Exponential distributions better represent the range

  9. Polar mesosphere summer echoes (PMSE) studied at Bragg wavelengths of 2.8 m, 67 cm, and 16 cm

    NASA Astrophysics Data System (ADS)

    Rapp, Markus; Strelnikova, Irina; Latteck, Ralph; Hoffmann, Peter; Hoppe, Ulf-Peter; Häggström, Ingemar; Rietveld, Michael T.

    2008-05-01

    We present observations of radar volume reflectivities under conditions of polar mesosphere summer echoes (PMSE) at three frequencies, i.e., 53.5, 224, and 930 MHz corresponding to Bragg wavelengths of 2.8, 0.67, and 0.16 m. These measurements were made with the ALWIN radar in Andenes and the EISCAT VHF and UHF radars in Tromsø. Contributions to the signal at 930 MHz by incoherent scatter are used to estimate electron number densities and their gradient at PMSE altitudes, and spectral width measurements of Doppler spectra recorded at 224 MHz are used to estimate the turbulent energy dissipation rate. We further derive a theoretical expression for the radar volume reflectivity for the case of turbulent scatter aided by a large Schmidt number (i.e., the current standard theory of PMSE) and show that our observations quantitatively agree with this theory if Schmidt numbers between 2500 and 5000 are assumed. We then show that these Schmidt numbers correspond to ice particles with radii in the range 20-30 nm which should frequently occur in the polar summer mesopause region. In addition, we show that for the short period when PMSE was observed at UHF frequencies the volume reflectivity is proportional to a factor determined by the turbulent energy dissipation rate, electron number density, and the electron number density gradient in agreement with theory. We consider our findings as strong support that PMSE at all considered frequencies is indeed created by turbulent scatter in the presence of a large Schmidt number. We finally highlight that ultimate proof of this concept will require the direct measurement of ice particle sizes in a PMSE environment probed by radars covering frequencies between 50 MHz and 1 GHz.

  10. Studying the Inter-Hemispheric Coupling During Polar Summer Mesosphere Warming in 2002

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem; Pesnell, William; Kutepov, Alexander A.

    2010-01-01

    It has been found that the northern summer polar mesopause region in 2002 was warmer than normal and of shorter duration than for other years analyzed. Theoretical studies have implied that the abnormal characteristics of this polar summer were generated by unusual dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA TIMED Satellite to study these processes for polar summer periods of 2002-2009. For background, SABER is a broadband limb scanning radiometer that measures a large number of minor atmospheric constituents as well as pressure and temperature in the 13-110 km altitude range over most of the globe.We will use SABER temperature data to illustrate the correlated heating seen between the southern and northern hemispheres during June and July 2002. We will then describe the approach to study the wave characteristics of the atmospheric temperature profiles and demonstrate the features that were unique for 2002 compared to the other years.

  11. Seasonal variations of the Na and Fe layers at the South Pole and their implications for the chemistry and general circulation of the polar mesosphere

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Plane, John M. C.; Pan, Weilin; Vondrak, Tomas; Murray, Benjamin J.; Chu, Xinzhao

    2005-05-01

    Lidar observations, conducted at the South Pole by University of Illinois researchers, are used to characterize the seasonal variations of mesospheric Na and Fe above the site. The annual mean layer abundances are virtually identical to midlatitude values, and the mean centroid height is just 100 m higher for Na and 450 m higher for Fe compared with 40°N. The most striking feature of the metal profiles is the almost complete absence of Na and Fe below 90 km during midsummer. This leads to summertime layers with significantly higher peaks, narrower widths, and smaller abundances than are observed at lower latitudes. The measurements are compared with detailed chemical models of these species that were developed at the University of East Anglia. The models accurately reproduce most features of these observations and demonstrate the importance of rapid uptake of the metallic species on the surfaces of polar mesospheric clouds and meteoric smoke particles. The models show that vertical downwelling in winter, associated with the meridional circulation system, must be less than about 1 cm s-1 in the upper mesosphere in order to avoid displacing the minor constituents O, H, and the metal layers too far below 85 km. They also show that an additional source of gas-phase metallic species, that is comparable to the meteoric input, is required during winter to correctly model the Na and Fe abundances. This source appears to arise from the wintertime convergence of the meridional flow over the South Pole.

  12. Small-scale structure of O2(+) and proton hydrates in a Noctilucent Cloud and polar mesospheric summer echo of August 9/10 1991 above Kiruna

    NASA Technical Reports Server (NTRS)

    Balsiger, F.; Kopp, E.; Friedrich, M.; Torkar, K. M.; Walchli, U.

    1993-01-01

    A novel mass spectrometer designed to measure simultaneously positive ion composition in the mesosphere, was successfully launched during the NLC-91 project. Instruments supporting the mass spectrometer were a probed to measure both electrons and positive ions as well as a wave propagation experiment. The location of the Noctilucent Clouds (NLC) was determined by a particle impact sensor to detect secondary electrons and ions from the impact of NLC particle. The density of proton hydrates and of the related total ions is depleted in the NLC region at 83 km. An improved detection limit of 5 x 10(exp 4)/cu m for positive ions and improved height resolution revealed for the first time large gradients in the O2(+), H(+)(H2O)2 and H(+)(H2O)6 densities within a small height range of the order of 50 m. Such gradients at the altitude of NLC and Polar Mesospheric Summer Echoes (PMSE) are associated with strong variability of mesospheric water vapor, temperature and neutral air density.

  13. Polar thermospheric Joule heating, and redistribution of recombination energy in the upper mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Harris, I.; Dube, M.

    1990-01-01

    Kellogg (1961), suggested that transport of atomic oxygen from the summer into the winter hemisphere and subsequent release of energy by three body recombination, O+O+N2 yields O2+N2+E, may contribute significantly to the so-called mesopause temperature anomaly. Earlier model calculations have shown that Kellogg's mechanism produces about a 10-percent increase in the temperature from summer to winter at 90 km. This process, however, is partly compensated by differential heating from absorption of UV radiation associated with dissociation of O2. In the auroral region of the thermosphere, there is a steady energy dissipation by Joule heating causing a redistribution and depletion of atomic oxygen due to wind-induced diffusion. With the removal of O, latent chemical energy normally released by three body recombination is also removed, and the result is that the temperature decreases by almost 2 percent near 90 km. Through dynamic feedback, this process reduces the depletion of atomic oxygen by about 25 percent and the temperature perturbation in the exosphere from 10 to 7 percent at polar latitudes. Under the influence of the internal dynamo interaction, the prevailing zonal circulation in the upper thermosphere changes direction when the redistribution of recombination energy is considered.

  14. Polarization of photons emitted by decaying dark matter

    NASA Astrophysics Data System (ADS)

    Bonivento, W.; Gorbunov, D.; Shaposhnikov, M.; Tokareva, A.

    2017-02-01

    Radiatively decaying dark matter may be searched through investigating the photon spectrum of galaxies and galaxy clusters. We explore whether the properties of dark matter can be constrained through the study of a polarization state of emitted photons. Starting from the basic principles of quantum mechanics we show that the models of symmetric dark matter are indiscernible by the photon polarization. However, we find that the asymmetric dark matter consisted of Dirac fermions is a source of circularly polarized photons, calling for the experimental determination of the photon state.

  15. On the formation of sharp gradients in electron density resulting from an ice-plasma feedback instabilities in the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Yee, J.; Bahcivan, H.

    2014-12-01

    Polar Mesospheric Summer Echoes (PMSEs) have commonly been attributed to scattering from (1) volume-filled electron density turbulence and (2) extremely sharp (meter-scale) gradients in electron density. In-situ sounding rockets have measured both extended regions of turbulence as well as electron density ledges. Unlike the turbulence theory, which has been extensively studied, a theory on the formation of sharp edges has yet to be explored. In this study, we reconsider the study of Gumbel et al. [2002] on the influences of ice particles on the ion chemistry and propose a theory of ice-plasma feedback instability in order to explain the origin of sharp electron density gradients. A one-dimensional particle-in-cell simulation of a multi-constituent weakly-ionized plasma has been developed to capture the physics of proton-hydrates (H+[H20]n), ice, and plasma interactions on a spatial grid of approximately 25 m. The simulation captures (1) the development of the proton-hydrate chain starting at n=4 via Thomson's model and Natanson's recombination scheme, (2) the formation of ice nucleation on large cluster proton-hydrates (n > 73), (3) the attachment of electrons (and ions) to ice particles, and resulting depletion of the plasma density, which significantly accelerates the proton-hydrate chain and ionic nucleation of new ice particles, (4) and the development of an ice-plasma feedback instability whereby the repeated process of developing new ice particles leads to capture of even more electrons and further depletion of existing regions of lower plasma density. Since this feedback instability process is faster than typical aerosol diffusion rates in this region, existing gradients steepen to produce electron density ledges. Although ionic nucleation is not feasible as the major mesospheric nucleation process, it can become efficient locally, near the coldest parts of the mesosphere because the proton-hydrate chain development is extremely sensitive to ambient

  16. Proof-of-Concept Study for Ground-based Millimetre-wave Observations of Horizontal Winds in the Polar Stratosphere and Mesosphere

    NASA Astrophysics Data System (ADS)

    Newnham, D.; Ford, G. P.; Moffat-Griffin, T.; Pumphrey, H. C.

    2015-12-01

    Detailed observations of horizontal winds in the Polar Regions are essential to understand chemical transport, atmospheric dynamics, waves and tides, and improve knowledge of polar and global climate systems. New measurement techniques for the altitude range 20-70 km are needed to address the current sparse wind observations for the upper stratosphere and mesosphere that limits our understanding of vertical wave propagation and its impact on planetary-scale circulation. We demonstrate the feasibility of remote sensing stratospheric and mesospheric zonal and meridional winds using ground-based passive millimetre wave spectroradiometry. Vertical profiles of horizontal winds are retrieved from simulations of line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37'S, 26°14'W), Antarctica. Using the 231.28 GHz ozone line, or the pair of ozone lines at 249.79 GHz and 249.96 GHz, and a radiometer system temperature of 1400 K we estimate that daily mean wind profiles over the altitude range 25-75 km could be observed with a measurement uncertainty of 4-8 ms-1 and vertical resolution of 10-15 km. Under optimal observing conditions at Halley the temporal resolution is predicted to improve to 1-3 hrs, allowing studies of planetary and large-scale gravity waves. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line extends the altitude coverage to ~95 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.

  17. Electrodynamics of the high-latitude mesosphere

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.

    1989-01-01

    The discovery of apparent large (V/m) electric fields within the mesosphere suggests that this region is more active electrically than originally suspected. High-latitude observations have been particularly productive in developing new concepts regarding mesospheric electrodynamics. Several high-latitude observations of large mesospheric fields have been made under both quiet and aurorally active conditions but always below heights where enhanced ionizing radiations could significantly penetrate. Two measurements from Andoya, Norway, have also produced an anticorrelation of horizontal electric field directions with neutral wind velocities, leading to the theoretical description of a newly defined mechanism for V/m electric field generation involving wind-induced separation of charged aerosols. Evidence for mesospheric aerosols and winds exists at all latitudes but is most evident at high latitudes during the appearance of noctilucent and/or polar mesospheric clouds.

  18. Does cell polarity matter during spermatogenesis?

    PubMed

    Gao, Ying; Cheng, C Yan

    2016-01-01

    Cell polarity is crucial to development since apico-basal polarity conferred by the 3 polarity protein modules (or complexes) is essential during embryogenesis, namely the Par (partition defective)-, the CRB (Crumbs)-, and the Scribble-based polarity protein modules. While these protein complexes and their component proteins have been extensively studied in Drosophila and C. elegans and also other mammalian tissues and/or cells, their presence and physiological significance in the testis remain unexplored until the first paper on the Par-based protein published in 2008. Since then, the Par-, the Scribble- and the CRB-based protein complexes and their component proteins in the testis have been studied. These proteins are known to confer Sertoli and spermatid polarity in the seminiferous epithelium, and they are also integrated components of the tight junction (TJ) and the basal ectoplasmic specialization (ES) at the Sertoli cell-cell interface near the basement membrane, which in turn constitute the blood-testis barrier (BTB). These proteins are also found at the apical ES at the Sertoli-spermatid interface. Thus, these polarity proteins also play a significant role in regulating Sertoli and spermatid adhesion in the testis through their actions on actin-based cytoskeletal function. Recent studies have shown that these polarity proteins are having antagonistic effects on the BTB integrity in which the Par6- and CRB3-based polarity complexes promotes the integrity of the Sertoli cell TJ-permeability barrier, whereas the Scribble-based complex promotes restructuring/remodeling of the Sertoli TJ-barrier function. Herein, we carefully evaluate these findings and provide a hypothetic model regarding their role in the testis in the context of the functions of these polarity proteins in other epithelia, so that better experiments can be designed in future studies to explore their significance in spermatogenesis.

  19. PERSPECTIVE: Snow matters in the polar regions

    NASA Astrophysics Data System (ADS)

    Sodeau, John

    2010-03-01

    to 30 times greater than those found in ice-free areas. The main question to ask is: how might the bromine have become released to the atmosphere? Many ideas have, in fact, been put forward over the last few years as to how such polar ocean-troposphere exchanges can take place. Much of the interest was driven by the so-called 'sudden' ozone depletion episodes first detected in Arctic air during the 1990s alongside simultaneous bromine 'explosions' which were monitored by ground-based instrumentation and satellite (as the radical BrO) over sea-ice covered by snowpack (Hausmann and Platt 1994, Schonhardt et al 2008). The likely precursors suggested, to date, have been sea-salt, frost-flowers and anthropogenic contents rather than organo- bromine matter (Simpson et al 2007). Associated processing routes including the formation of HOBr, the need for acidity, the involvement of trihalide ions and the potential role of freezing processes and the quasi-liquid layer have all been discussed in this context (Abbatt 1994, Neshyba et al 2009, O'Driscoll et al 2006). Computational work has also led to suggestions that preferential surface dispersion of the more highly polarizable halides (iodide and bromide ions) may lead to their direct interfacial reaction with atmospheric ozone leading to BrO or IO formation (Jungwirth and Winter 2008). The involvement of snow micro-algae in the production of halo-compounds such as CHBr3 and CH2Br2 in Antarctica cannot, of course, be ignored following the measurement of these compounds by Sturges and co-workers over 15 years ago (Sturges et al 1993). And the measurement of high levels of nutrient discussed in the recent work by Antony et al (2010) in the ice-cap areas do provide a basis for understanding why micro- algae growth in snow might be promoted. However the question still comes back to: how are these halo-compounds processed to produce 'active' species like BrO radicals, HOBr, Br atoms, Br2 gas or interhalogens such as BrCl? The

  20. Polar cap mesosphere wind observations: comparisons of simultaneous measurements with a Fabry-Perot interferometer and a field-widened Michelson interferometer.

    PubMed

    Fisher, G M; Killeen, T L; Wu, Q; Reeves, J M; Hays, P B; Gault, W A; Brown, S; Shepherd, G G

    2000-08-20

    Polar cap mesospheric winds observed with a Fabry-Perot interferometer with a circle-to-line interferometer optical (FPI/CLIO) system have been compared with measurements from a field-widened Michelson interferometer optimized for E-region winds (ERWIN). Both instruments observed the Meinel OH emission emanating from the mesopause region (approximately 86 km) at Resolute Bay, Canada (74.9 degrees N, 94.9 degrees W). This is the first time, to our knowledge, that winds measured simultaneously from a ground-based Fabry-Perot interferometer and a ground-based Michelson interferometer have been compared at the same location. The FPI/CLIO and ERWIN instruments both have a capability for high temporal resolution (less than 10 min for a full scan in the four cardinal directions and the zenith). Statistical comparisons of hourly mean winds for both instruments by scatterplots show excellent agreement, indicating that the two optical techniques provide equivalent observations of mesopause winds. Small deviations in the measured wind can be ascribed to the different zenith angles used by the two instruments. The combined measurements illustrate the dominance of the 12-h wave in the mesopause winds at Resolute Bay, with additional evidence for strong gravity wave activity with much shorter periods (tens of minutes). Future operations of the two instruments will focus on observation of complementary emissions, providing a unique passive optical capability for the determination of neutral winds in the geomagnetic polar cap at various altitudes near the mesopause.

  1. Role of correlations in spin-polarized neutron matter

    NASA Astrophysics Data System (ADS)

    Vidaña, Isaac; Polls, Artur; Durant, Victoria

    2016-11-01

    Background: The possible existence of a phase transition to a ferromagnetic state in neutron matter as origin of the extremely high magnetic fields of neutron stars is still an open issue. Whereas many phenomenological interactions predict this transition at densities accessible in neutron stars, microscopic calculations based on realistic interactions show no indication of it. The existence or non-existence of this transition is a consequence of the different role of nucleon-nucleon correlations in polarized and unpolarized neutron matter. Therefore, to give a definite answer to this issue it is necessary to analyze the behavior of these correlations. Purpose: Using the Hellmann-Feynman theorem we analyze the contribution of the different terms of the nucleon-nucleon interaction to the spin symmetry energy of neutron matter with the purpose of identifying the nature and role of correlations in polarized and unpolarized neutron matter. Methods: The analysis is performed within the microscopic Brueckner-Hartree-Fock approach using the Argonne V18 realistic potential plus the Urbana IX three-body force. Results: Our results show no indication of a ferromagnetic transition as the spin symmetry energy of neutron matter is always an increasing function of density. They show also that the main contribution to it comes from the S =0 channel, acting only in non-polarized neutron matter, in particular from the 1S0 and the 1D2 partial waves. Three-body forces are found to play a secondary role in the determination of the spin symmetry energy. Conclusions: By evaluating the kinetic energy difference between the correlated system and the underlying Fermi sea to estimate the importance of correlations in spin-polarized neutron matter, we conclude that non-polarized neutron matter is more correlated than totally polarized one.

  2. Polarizing matter and antimatter: A new method

    SciTech Connect

    Onel, Y.

    1992-02-01

    Several years ago a self-polarization effect for stored (anti)- protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at the Indiana University Cyclotron Facility (IUCF) is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low-energy range and at SSC and LHC energies. In this progress report we will describe our progress in three parts: (A) Experimental work at IUCF Cooler Ring; (B) Our extensive computer simulations of the spin stability for the IUCF Cooler Ring; and (C) Theoretical studies.

  3. Seasonal variations of stratospheric gravity waves in Antarctica and correlations to polar mesospheric cloud brightness in summer

    NASA Astrophysics Data System (ADS)

    Yamashita, C.; Chu, X.; Huang, W.; Nott, G. J.; Espy, P. J.

    2007-12-01

    Gravity waves (GWs) play an important role in the dynamics of global middle and upper atmosphere. However, quantitative characterization of GWs in the upper stratosphere is still rare in Antarctica. Here we present a study of stratospheric GW parameters and seasonal variations using the data obtained with the University of Illinois Fe Boltzmann/Rayleigh lidar at the South Pole (90°S) from December 1999 to January 2001 and at Rothera (67.5°S, 68.0°W) from December 2002 to March 2005. Through analyzing the Rayleigh lidar density data in 30-60 km, GW parameters are derived for the South Pole and Rothera, and the results are comparable. The annual mean GW vertical wavelength is 4.3 +/- 1.5 km, vertical phase speed is 0.33 +/- 0.15 m/s, and the period is 245 +/- 110 min. We characterize the stratospheric GW strength with the root- mean-square (RMS) relative density perturbation. The seasonal variation of GW strength is clear at Rothera, with the maximum in winter and the minimum in summer. No significant seasonal variations are observed at the South Pole. The data also show that the GW period is shorter in summer than in winter at Rothera. In addition, the stratospheric GW strength is negatively correlated with PMC brightness at Rothera but no significant correlation at the South Pole. Two important factors, i.e., the wind filtering effect and topographical GW source difference, are investigated in order to explain the GW seasonal variations. We then apply a GW ray-tracing model to analyze the GW source and propagation. The correlation between GW strength and PMC brightness also provides a clue of GW propagation from the stratosphere to the mesosphere.

  4. Thermal and dynamical perturbations in the winter polar mesosphere-lower thermosphere region associated with sudden stratospheric warmings under conditions of low solar activity

    NASA Astrophysics Data System (ADS)

    Lukianova, Renata; Kozlovsky, Alexander; Shalimov, Sergey; Ulich, Thomas; Lester, Mark

    2015-06-01

    The upper mesospheric neutral winds and temperatures have been derived from continuous meteor radar (MR) measurements over Sodankyla, Finland, in 2008-2014. Under conditions of low solar activity pronounced sudden mesospheric coolings linked to the major stratospheric warming (SSW) in 2009 and a medium SSW in 2010 are observed while there is no observed thermal signature of the major SSW in 2013 occurred during the solar maximum. Mesosphere-ionosphere anomalies observed simultaneously by the MR, the Aura satellite, and the rapid-run ionosonde during a period of major SSW include the following features. The mesospheric temperature minimum occurs 1 day ahead of the stratospheric maximum, and the mesospheric cooling is almost of the same value as the stratospheric warming (~50 K), the former decay faster than the latter. In the course of SSW, a strong mesospheric wind shear of ~70 m/s/km occurs. The wind turns clockwise (anticlockwise) from north-eastward (south-eastward) to south-westward (north-westward) above (below) 90 km. As the mesospheric temperature reaches its minimum, the gravity waves (GW) in the ionosphere with periods of 10-60 min decay abruptly while the GWs with longer periods are not affected. The effect is explained by selective filtering and/or increased turbulence near the mesopause.

  5. First simultaneous and co-located measurements of the overshoot effect in the Polar Mesosphere Summer Echoes at 56 and 224 MHz

    NASA Astrophysics Data System (ADS)

    Pinedo, H.; La Hoz, C.; Senior, A.; Havnes, O.; Rietveld, M.; Kosch, M. J.

    2014-12-01

    We report the first observations at 56 MHz (MORRO radar) of the overshoot effect in the polar mesosphere summer echoes (PMSE) when they are subject to artificial high power HF pulsed waves (Heating). Statistics indicate that there is an overall overshoot at this frequency despite of the high fluctuation of the backscatter. Simultaneous and co-located PMSE measurements at 224 MHz (EISCAT VHF radar) show also the overshoot effect. This experimental campaign was done around the peak of the PMSE season in 2013. The overall effect of the active modification of the PMSE strength is studied through the overshoot characteristic curve (OCC). At 224 MHz, available PMSE OCC measurements and modeling results indicate that during Heating the time scale of electron diffusion is shorter than the charging of dust particles. In this way, the free electron Bragg scatter structures surrounding dust particles are dispersed right after the Heating is turned on and leading to a decrease of the PMSE strength which can be followed by a recovery due to a slight increase of dust particle charging while the pulse is still active. Once the Heating is turned-off, the electrons cool down almost instantaneously and adopt the spatial distribution defined by dust particles, which at this time they are expected to be more charged due to influx of electrons. A highlight in this study is that we found some particular cases at 56MHz and 224MHz indicating that dust charging may overcome the diffusion process. This condition is known as the onset overshoot in which the backscatter increases after the heater was switched on. We have resorted to available models of the PMSE OCC at these two frequencies for finding similarities with our observations; especially those related to the onset overshoot. Through this evaluation we provide discussions about the differences between present measurements and model results, and plausible interpretation of physical conditions of particles and processes constituting

  6. Effect of polarization on superfluidity in low density neutron matter

    NASA Technical Reports Server (NTRS)

    Clark, J. W.; Kallman, C.-G.; Yang, C.-H.; Chakkalakal, D. A.

    1976-01-01

    The singlet-state quasi-particle interaction in neutron matter is examined on the basis of results of a detailed evaluation of the Landau Fermi-liquid parameters for pure neutron effects, including polarization effects. This means that the interaction induced by exchange of density and spin-density excitations is taken into account. It is shown that polarization actually works to suppress the pairing matrix elements, owing to the spin dependence of the quasi-particle interaction and, ultimately, the balance of attraction, repulsion, and spin dependence in the fundamental two-neutron interaction. Since the isotropic energy gap and the condensation energy in low-density neutron-star matter are extremely sensitive functions of the pairing matrix elements, they will also be suppressed by the polarizability of the neutron medium.

  7. SMM mesospheric ozone measurements

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.

    1990-01-01

    The main objective was to understand the secular and seasonal behavior of ozone in the lower mesosphere, 50 to 70 km. This altitude region is important in understanding the factors which determine ozone behavior. A secondary objective is the study of stratospheric ozone in the polar regions. Use is made of results from the SBUV satellite borne instrument. In the Arctic the interaction between chlorine compounds and low molecular weight hydrocarbons is studied. More than 30,000 profiles were obtained using the UVSP instrument on the SMM spacecraft. Several orbits of ozone data per day were obtained allowing study of the current rise in solar activity from the minimum until the present. Analysis of Nimbus 7 SBUV data in Antarctic spring indicates that ozone is depleted within the polar vortex relative to ozone outside the vortex. This depletion confirms the picture of ozone loss at altitudes where polar stratospheric clouds exist. In addition, there is ozone loss above the cloud level indicating that there is another mechanism in addition to ozone loss initiated by heterogeneous chlorine reactions on cloud particles.

  8. Spectral Induced Polarization Signature of Soil Organic Matter

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Furman, Alex

    2015-04-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  9. On the spectral induced polarization signature of soil organic matter

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Furman, A.

    2015-01-01

    Although often composing a non-negligible fraction of soil cation exchange capacity (CEC), the impact of soil organic matter (OM) on the electrical properties of soil has not been thoroughly investigated. In this research the impact of soil OM on the spectral induced polarization (SIP) signature of soil was investigated. Electrical and chemical measurements for two experiments using the same soil, one with calcium as the dominant cation and the other with sodium, with different concentration of OM were performed. Our results show that despite the high CEC of OM, a decrease in polarization and an increase in relaxation time with increasing concentration of OM is observed. For the soil with calcium as the dominant cation, the decreases in polarization and the increase in relaxation time were stronger. We explain these non-trivial results by accounting for the interactions between the OM and the soil minerals. We suggest that the formation of organo-mineral complexes reduce ionic mobility, explaining both the decrease in polarization and the increase in relaxation time. These results demonstrate the important role of OM on SIP response of soil, and call for a further research in order to establish a new polarization model that will include the impact of OM on soil polarization.

  10. Simulataneous observations of polar mesosphere winter echo and cosmic noise absorption based on the PANSY radar in the Antarctic (69.0°S, 39.6°E)

    NASA Astrophysics Data System (ADS)

    Nishiyama, Takanori; Nakamura, Takuji; Tsutsumi, Masaki; Tanaka, Yoshi; Sato, Toru; Nishimura, Koji; Sato, Kaoru; Tomikawa, Yoshihiro; Kohma, Masashi

    2016-07-01

    In the Mesosphere and lower Thermosphere, both neutral turbulence and ionization of atmosphere due to solar radiations cause irregularities of refractive index, and as a result back scatter echoes from that altitude are frequently observed by radars on the ground. In the mesosphere, Polar Mesosphere Winter Echo (PMWE) is known as back scatter echo from 55 to 85 km in the mesosphere, and it has been observed by MST and IS radar in polar region during non-summer period. PMWE occurrence rate is known to be quite low (2.9%) [Zeller et al., 2006], partly because density of free electrons as scatterer is low in the dark mesosphere during winter. Thus, it is suggested that PMWE requires strong ionization of neutral atmosphere associated with Energetic Particles Precipitations (EPPs) during Solar Proton Events [Kirkwood et al., 2002] or during geomagnetically disturbed periods [Nishiyama et al., 2015]. However, direct comparison between occurrence of PMWE and background electron density by in-situ measurements has been limited yet [e.g., Luebken et al., 2006]. Neutral turbulence associated with breaking of atmospheric gravity waves is also important and its contribution to PMWE generation should be evaluated. The PANSY (Program of the Antarctic Syowa MST/IS) radar, which is the largest MST radar in Antarctica, observed many PMWE events since it has started mesosphere observations in June 2012. In addition, we established an application method of the PANSY radar as riometer, which makes it possible to estimate Cosmic Noise Absorptions (CNA) as proxy of relative variations on background electron density. In addition, electron density profiles from 60 to 150 km altitude are calculated by Ionospheric Model for the Auroral Zone (IMAZ) [McKinnell and Friedrich, 2007] and CNA estimated by the PANSY radar. In this presentation, we would like to focus on simultaneous PMWE and CNA observation on May 23, 2013 when large SPE took place in order to evaluate contributions of relative

  11. Observation of atomic oxygen O(1S) green-line emission in the summer polar upper mesosphere associated with high-energy (≥30 keV) electron precipitation during high-speed solar wind streams

    NASA Astrophysics Data System (ADS)

    Lee, Young-Sook; Kwak, Young-Sil; Kim, Kyung-Chan; Solheim, Brian; Lee, Regina; Lee, Jaejin

    2017-01-01

    The auroral green-line emission at 557.7 nm wavelength as arising from the atomic oxygen O(1S → 1D) transition typically peaks at an altitude of 100 km specifically in the nightside oval, induced by auroral electrons within an energy range of 100 eV-30 keV. Intense aurora is known as being suppressed by sunlight in summer daytime but usually occurs in low electrical background conductivity. However, in the present study in summer (July) sunlit condition, enhancements of O(1S) emission rates observed by using the Wind Imaging Interferometer/UARS were frequently observed at low altitudes below 90 km, where ice particles are created initially as subvisible and detected as polar mesosphere summer echoes, emerging to be an optical phenomenon of polar mesospheric clouds. The intense O(1S) emission occurring in summer exceeds those occurring in the daytime in other seasons both in occurrence and in intensity, frequently accompanied by occurrences of supersonic neutral velocity (300-1500 m s-1). In the mesosphere, ion motion is controlled by electric field and the momentum is transferred to neutrals. The intense O(1S) emission is well associated with high-energy electron precipitation as observed during an event of high-speed solar wind streams. Meanwhile, since the minimum occurrences of O(1S) emission and supersonic velocity are maintained even in the low precipitation flux, the mechanism responsible is not only related to high-energy electron precipitation but also presumably to the local conditions, including the composition of meteoric-charged ice particles and charge separation expected in extremely low temperatures (<150 K).

  12. A study of the origin, nature, and behavior of particulate matter and metallic atoms in the mesosphere, lower thermosphere, and at the mesopause. [using lidar data

    NASA Technical Reports Server (NTRS)

    Poultney, S. K.

    1973-01-01

    In a study of particulate matter and metallic atoms in the vicinity of the mesopause, three areas have received the most effort. These areas are: the significance of cometary dust influxes to the earth's atmosphere; the relation of nightglows to atmospheric motions and aerosols; and the feasibility of using an airborne resonant scatter lidar to study polar noctilucent clouds, the sodium layer, and fireball dust.

  13. Polar Mesospheric Waves and Structure

    DTIC Science & Technology

    1993-05-01

    1 1 1 4:1 93--1.2336 i .* .:: *• lIIlIli hiiIIIl~lii SDL/93-039 Page i May 1993 FORWORD * The Department of the Navy/Office of Naval Research awarded...that the inner scale of the electron fluctuation spectrum decreases at least as fast as e- 1/4, which is the case for neutral turbulence. ŔI I SDL

  14. Aeronomy of Ice in the Mesosphere (AIM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The overall goal of the Aeronomy of Ice in the Mesosphere (AIM) experiment is to resolve why Polar Mesospheric Clouds form and why they vary. By measuring PMCs and the thermal, chemical and dynamical environment in which they form, we will quanti@ the connection between these clouds and the meteorology of the polar mesosphere. In the end, this will provide the basis for study of long-term variability in the mesospheric climate and its relationship to global change. The results of AIM will be a rigorous validation of predictive models that can reliably use past PMC changes and present trends as indicators of global change. The AIM goal will be achieved by measuring PMC extinction, brightness, spatial distribution, particle size distributions, gravity wave activity, dust influx to the atmosphere and precise, vertical profile measurements of temperature, H20, C&, 0 3 , C02, NO. and aerosols. These data can only be obtained by a complement of instruments on an orbiting spacecraft (S/C).

  15. Towards a quantitative kinetic theory of polar active matter

    NASA Astrophysics Data System (ADS)

    Ihle, T.

    2014-06-01

    A recent kinetic approach for Vicsek-like models of active particles is reviewed. The theory is based on an exact Chapman- Kolmogorov equation in phase space. It can handle discrete time dynamics and "exotic" multi-particle interactions. A nonlocal mean-field theory for the one-particle distribution function is obtained by assuming molecular chaos. The Boltzmann approach of Bertin, et al., Phys. Rev. E 74, 022101 (2006) and J. Phys. A 42, 445001 (2009), is critically assessed and compared to the current approach. In Boltzmann theory, a collision starts when two particles enter each others action spheres and is finished when their distance exceeds the interaction radius. The average duration of such a collision, τ0, is measured for the Vicsek model with continuous time-evolution. If the noise is chosen to be close to the flocking threshold, the average time between collisions is found to be roughly equal to τ0 at low densities. Thus, the continuous-time Vicsek-model near the flocking threshold cannot be accurately described by a Boltzmann equation, even at very small density because collisions take so long that typically other particles join in, rendering Boltzmann's binary collision assumption invalid. Hydrodynamic equations for the phase space approach are derived by means of a Chapman-Enskog expansion. The equations are compared to the Toner-Tu theory of polar active matter. New terms, absent in the Toner-Tu theory, are highlighted. Convergence problems of Chapman-Enskog and similar gradient expansions are discussed.

  16. The Mega Mesospheric Parachute

    NASA Technical Reports Server (NTRS)

    Kloesel, Kurt J.; Oberto, Robert; Kinsey, Robert

    2005-01-01

    The current understanding and modeling of the upper reaches of the atmosphere is incomplete. Upper atmospheric interactions with the lower atmosphere, effects of ionizing radiation, high altitude cloud phenomena, and the dynamical interaction with the magnetosphere require greater definition. The scientific objective of obtaining a greater understanding of the upper atmosphere can be achieved by designing, implementing, testing, and utilizing a facility that provides long period in-situ measurements of the mesosphere. Current direct sub-sonic measurements of the upper atmosphere are hampered by the approximately one minute sub-sonic observation window of a ballistic sounding rocket regardless of the launch angle. In-situ measurements at greater than transonic speeds impart energy into the molecular atmospheric system and distort the true atmospheric chemistry. A long duration, sub-sonic capability will significantly enhance our ability to observe and measure: (1) mesospheric lightning phenomena (sprites and blue jets) (2) composition, structure and stratification of noctilucent clouds (3) physics of seasonal radar echoes, gravity wave phenomena (4) chemistry of mesospheric gaseous ratio mixing (5) mesospheric interaction of ionizing radiation (6) dynamic electric and magnetic fields This new facility will also provide local field measurements which complement those that can be obtained through external measurements from satellite and ground-based platforms. The 400 foot (approximately 130 meter) diameter lightweight mega-mesospheric parachute system, deployed with a sounding rocket, is proposed herein as a method to increase sub-sonic mesospheric measurement time periods by more than an order of magnitude. The report outlines a multi-year evolving science instrumentation suite in parallel with the development of the mega meso-chute facility. The developmental issues surrounding the meso-chute are chiefly materials selection (thermal and structural) and deployment

  17. Stratospheric Impact on the Onset of the Mesospheric Ice Season

    NASA Astrophysics Data System (ADS)

    Fiedler, J.; Baumgarten, G.; Berger, U.; Gabriel, A.; Latteck, R.; Luebken, F. J.

    2014-12-01

    Mesospheric ice layers, observed as noctilucent clouds (NLC) from ground, are the visible manifestation of extreme conditions in the polar summer mesopause region. Temperatures fall very low so that water vapor can freeze condence, which at 69°N usually occurs beginning of June. However, in 2013 the ALOMAR RMR lidar observed the first NLC on 21 May and the clouds reoccured during the following days. These were the earliest detections since 20 years and indicated an about 10 days earlier onset of the mesospheric ice season. This is supported by the colocated MAARSY radar which showed the occurrence rates of polar mesospheric summer echoes (PMSE) increasing faster than usual.The exceptional case was accompanied by ˜6 K lower temperatures and higher water vapor mixing ratios at NLC altitudes above ALOMAR from end of April until beginning of June as measured by the MLS instrument onboard the AURA satellite. Using MERRA reanalysis data we will show that the zonal mean temperature as well as the dynamic conditions in the Arctic middle atmosphere deviated in spring 2013 significantly from the mean conditions of the last 20 years. The planetary wave activity in the high latitude stratosphere was enhanced from 20 April to beginning of May. The colder and wetter upper mesosphere in May 2013 is attributed to this unusual late planetary wave activity in the stratosphere, introducing a strong upwelling in the mesosphere, lower temperatures and an upward transport of water vapor, which finally resulted into earlier existence conditions for mesospheric ice particles. For the southern hemisphere a high correlation between winter/summer transition in the stratosphere and onset of mesospheric ice is known as intra-hemispheric coupling. We regard the processes in the Arctic middle atmosphere in spring 2013 as a first evidence for intra-hemispheric coupling in the northern hemisphere, extending from the stratosphere into the mesopause region.

  18. Mesospheric gravity-wave climatology at Adelaide

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1986-01-01

    The MF Adelaide partial-reflection radar has been operating continuously since November 1983. This has enabled a climatology of gravity-wave activity to be constructed for the mesosphere. The data have been analyzed for a medium-period range of 1 to 8 hr. and a longer period range between 8 and 24 hr. covering the inertio-period waves. The tidal motions have been filtered out prior to analysis. For the data analyses so far (Nov. 1983 to Dec. 1984), a number of interesting features emerged. Firstly, the wave activity at heights above 80 km shows a small seimannual variation with season with the activity being strongest in summer and winter. At heights below 80 km however, there is a similar but more marked variation with the weakest amplitudes occurring at the time of the changeovers in the prevailing circulation. If breaking gravity waves are responsible for much of the turbulence in the mesosphere, then the periods March to April and September to October might also be expected to be periods of weak turbulence. The wave field appears to be partially polarized. The meridional amplitudes are larger than the zonal amplitudes, especially in water. It is found that the degree of polarization is about 15% in summer and 30% in winter. The polarized component is found to propagate in the opposite direction to the background flow in the stratosphere, which suggests that the polarization arises through directional filtering of the waves as they propagate up from below.

  19. Coherent control of light-matter interactions in polarization standing waves

    NASA Astrophysics Data System (ADS)

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-08-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle.

  20. Coherent control of light-matter interactions in polarization standing waves

    PubMed Central

    Fang, Xu; MacDonald, Kevin F.; Plum, Eric; Zheludev, Nikolay I.

    2016-01-01

    We experimentally demonstrate that standing waves formed by two coherent counter-propagating light waves can take a variety of forms, offering new approaches to the interrogation and control of polarization-sensitive light-matter interactions in ultrathin (subwavelength thickness) media. In contrast to familiar energy standing waves, polarization standing waves have constant electric and magnetic energy densities and a periodically varying polarization state along the wave axis. counterintuitively, anisotropic ultrathin (meta)materials can be made sensitive or insensitive to such polarization variations by adjusting their azimuthal angle. PMID:27514307

  1. Joule heating in the high-latitude mesosphere

    NASA Technical Reports Server (NTRS)

    Banks, P. M.

    1979-01-01

    The contribution made by Joule dissipation to heating of the daytime high-latitude upper mesosphere is discussed. During solar proton precipitation events in regions of large electric fields, Joule dissipation can be substantially larger than the local solar heating rate. Altitude profiles of Joule dissipation are presented for the polar cleft region for the August 4, 1972, solar proton event.

  2. Magnetometry with mesospheric sodium

    PubMed Central

    Higbie, James M.; Rochester, Simon M.; Patton, Brian; Holzlöhner, Ronald; Bonaccini Calia, Domenico; Budker, Dmitry

    2011-01-01

    Measurement of magnetic fields on the few 100-km length scale is significant for many geophysical applications including mapping of crustal magnetism and ocean circulation measurements, yet available techniques for such measurements are very expensive or of limited accuracy. We propose a method for remote detection of magnetic fields using the naturally occurring atomic sodium-rich layer in the mesosphere and existing high-power lasers developed for laser guide star applications. The proposed method offers a dramatic reduction in cost and opens the way to large-scale, parallel magnetic mapping and monitoring for atmospheric science, navigation, and geophysics. PMID:21321235

  3. Mesospheric and thermospheric tides

    NASA Astrophysics Data System (ADS)

    Forbes, J. M.

    1980-08-01

    Recent calculations of atmospheric solar tides in the mesosphere and thermosphere are reviewed. The numerical models considered consist of a full three-dimensional solution of the tidal equations in a rotating viscous spherical atmosphere (Forbes and Garret 1976, 1978), and an approximate solution for some modes given by an equivalent gravity wave on a rotating plane (Forbes and Hagan 1979, 1980). Both models take into account eddy and molecular diffusion of heating and momentum, rotation, and hydromagnetic coupling, and use new calculations of thermal forcing by insolation absorption due to H2O and O3 below 70 km.

  4. Solar Mesosphere Explorer

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Five experiments and the instruments packages designed for use in studying reactions between sunlight, ozone, and other chemicals in the atmosphere as well as for determining how ozone concentrations are transported in the mesosphere are described. The spin-stabilized satellite carrying the experiments consists of an observatory module and a spacecraft bus. Powered by a solar array which charges the nickel-cadmium batteries, the satellite is to be inserted into a sun synchronous orbit by a two stage Delta 2310 launch vehicle. The mission objectives, spacecraft configurations, and various subsystems are described as well as the ground support and prelaunch operations.

  5. Characterization and origin of polar dissolved organic matter from the Great Salt Lake

    USGS Publications Warehouse

    Leenheer, J.A.; Noyes, T.I.; Rostad, C.E.; Davisson, M.L.

    2004-01-01

    Polar dissolved organic matter (DOM) was isolated from a surface-water sample from the Great Salt Lake by separating it from colloidal organic matter by membrane dialysis, from less-polar DOM fractions by resin sorbents, and from inorganic salts by a combination of sodium cation exchange followed by precipitation of sodium salts by acetic acid during evaporative concentration. Polar DOM was the most abundant DOM fraction, accounting for 56% of the isolated DOM. Colloidal organic matter was 14C-age dated to be about 100% modern carbon and all of the DOM fractions were 14C-age dated to be between 94 and 95% modern carbon. Average structural models of each DOM fraction were derived that incorporated quantitative elemental and infrared, 13C-NMR, and electrospray/mass spectrometric data. The polar DOM model consisted of open-chain N-acetyl hydroxy carboxylic acids likely derived from N-acetyl heteropolysaccharides that constituted the colloidal organic matter. The less polar DOM fraction models consisted of aliphatic alicyclic ring structures substituted with carboxyl, hydroxyl, ether, ester, and methyl groups. These ring structures had characteristics similar to terpenoid precursors. All DOM fractions in the Great Salt Lake are derived from algae and bacteria that dominate DOM inputs in this lake.

  6. Equation of state of hot polarized nuclear matter using the generalized Skyrme interaction

    NASA Astrophysics Data System (ADS)

    Abd-Alla, M.; Hager, S. A.

    2000-04-01

    We used the generalized Skyrme potential to study the equation of state of polarized nuclear matter in the frame of the Thomas-Fermi model. The critical temperature of the liquid-gas phase transition is found to be Tc=16.2 MeV. This critical temperature was found to decease with the asymmetry, spin, and spin-isospin excess parameters. The isothermal compressibility of polarized nuclear matter was also studied. The volume compressibility Kv was found to decrease with temperature. The symmetry compressibility Kx, the spin symmetry compressibility Ky, and the spin-isospin symmetry compressibility Kz were found to have a little increasing behavior with temperature.

  7. Polar Ring Galaxies Favor Milgromian Dynamics over Standard Dark-Matter-Based Models

    NASA Astrophysics Data System (ADS)

    Lüghausen, F.; Famaey, B.; Kroupa, P.

    2014-05-01

    Polar ring galaxies are ideal objects with which to study the 3-dimensional shapes of galactic gravitational potentials since two rotation curves can be measured in two perpendicular planes. Observational studies have uncovered systematically larger rotation velocities in the extended polar rings than in the associated host galaxies. In the dark matter context, this can only be explained through dark halos that are systematically flattened along the polar rings. Here, we point out that these objects can also be used as very effective tests of gravity theories, such as those based on Milgromian dynamics. We run a set of polar ring models using both Milgromian and Newtonian dynamics to predict the expected shapes of the rotation curves in both planes, varying the total mass of the system, the mass of the ring with respect to the host, as well as the size of the hole at the center of the ring. We find that Milgromian dynamics not only naturally leads to rotation velocities being typically higher in the extended polar rings than in the hosts, as would be the case in Newtonian dynamics without dark matter, but that it also gets the shape and amplitude of velocities correct. Observational data on polar ring galaxies thus favour Milgromian dynamics over Newtonian dynamics plus dark matter.

  8. High-latitude remote sensing of mesospheric wind speeds and carbon monoxide

    NASA Astrophysics Data System (ADS)

    Burrows, S. M.; Martin, C. L.; Roberts, E. A.

    2007-09-01

    We present high-resolution ground-based measurements of mesospheric carbon monoxide (CO) taken in the years 2002-5 from the AST/RO sub-millimeter telescope, located at Amundsen-Scott South Pole Station. These include the first winter measurements of CO directly from one of the geographic poles, which agree well with expected high concentrations within the polar vortex. We also use CO as a tracer to estimate mesospheric neutral wind speeds, by measuring small Doppler shifts in the rotational emission spectrum. We highlight the potential of high-resolution radiometric measurements mesospheric winds to fill a significant experimental data gap.

  9. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    USGS Publications Warehouse

    Kile, D.E.; Wershaw, R. L.; Chiou, C.T.

    1999-01-01

    Polarities of the soiL/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment sam pies were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (K(oc)) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxylamide-ester carbons. A plot of the measured partition coefficients (K(oc)) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K(oc) values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K(oc) between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K(oc) illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state 13C-CP/MAS NMR spectra and compared with published partition coefficients (Koc) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct

  10. Impact of molecular diffusion on the CO2 distribution and the temperature in the mesosphere

    NASA Astrophysics Data System (ADS)

    Chabrillat, Simon; Kockarts, Gaston; Fonteyn, Dominique; Brasseur, Guy

    2002-08-01

    Modelling the energy budget in the mesosphere and lower thermosphere requires a precise evaluation of CO2 distribution in this region. This distribution is primarily determined by competition between vertical eddy diffusion and molecular diffusion. A simple algorithm is proposed to take into account both processes, at all altitudes. Using the SOCRATES bi-dimensional model of the middle atmosphere, we show that molecular diffusion has a direct impact on CO2 vertical distribution down to approximately 80 km altitude, i.e. well into the mesosphere and below the turbopause altitude. A sensitivity study with regard to different aeronomical processes shows that molecular diffusion has the deepest influence in the mesospheric polar night region. Our model shows that molecular diffusion of CO2 is responsible for a polar night mesopause 12 K warmer than if this process was neglected. Hence, dynamical models should take this process in account across the whole mesospheric altitude range.

  11. Correlation of soil and sediment organic matter polarity to aqueous sorption of nonionic compounds

    SciTech Connect

    Kile, D.E. ); Wershaw, R.L.; Chiou, C.T. )

    1999-06-15

    Polarities of the soil/sediment organic matter (SOM) in 19 soil and 9 freshwater sediment samples were determined from solid-state [sup 13]C-CP/MAS NMR spectra and compared with published partition coefficients (K[sub oc]) of carbon tetrachloride (CT) from aqueous solution. Nondestructive analysis of whole samples by solid-state NMR permits a direct assessment of the polarity of SOM that is not possible by elemental analysis. The percent of organic carbon associated with polar functional groups was estimated from the combined fraction of carbohydrate and carboxyl-amide-ester carbons. A plot of the measured partition coefficients (K[sub oc]) of carbon tetrachloride (CT) vs. percent polar organic carbon (POC) shows distinctly different populations of soils and sediments as well as a roughly inverse trend among the soil/sediment populations. Plots of K[sub oc] values for CT against other structural group carbon fractions did not yield distinct populations. The results indicate that the polarity of SOM is a significant factor in accounting for differences in K[sub oc] between the organic matter in soils and sediments. The alternate direct correlation of the sum of aliphatic and aromatic structural carbons with K[sub oc] illustrates the influence of nonpolar hydrocarbon on solute partition interaction. Additional elemental analysis data of selected samples further substantiate the effect of the organic matter polarity on the partition efficiency of nonpolar solutes. The separation between soil and sediment samples based on percent POC reflects definite differences of the properties of soil and sediment organic matters that are attributable to diagenesis.

  12. Spin-polarized neutron matter: Critical unpairing and BCS-BEC precursor

    NASA Astrophysics Data System (ADS)

    Stein, Martin; Sedrakian, Armen; Huang, Xu-Guang; Clark, John W.

    2016-01-01

    We obtain the critical magnetic field required for complete destruction of S -wave pairing in neutron matter, thereby setting limits on the pairing and superfluidity of neutrons in the crust and outer core of magnetars. We find that for fields B ≥1017 G the neutron fluid is nonsuperfluid—if weaker spin 1 superfluidity does not intervene—a result with profound consequences for the thermal, rotational, and oscillatory behavior of magnetars. Because the dineutron is not bound in vacuum, cold dilute neutron matter cannot exhibit a proper BCS-BEC crossover. Nevertheless, owing to the strongly resonant behavior of the n n interaction at low densities, neutron matter shows a precursor of the BEC state, as manifested in Cooper-pair correlation lengths being comparable to the interparticle distance. We make a systematic quantitative study of this type of BCS-BEC crossover in the presence of neutron fluid spin polarization induced by an ultrastrong magnetic field. We evaluate the Cooper-pair wave function, quasiparticle occupation numbers, and quasiparticle spectra for densities and temperatures spanning the BCS-BEC crossover region. The phase diagram of spin-polarized neutron matter is constructed and explored at different polarizations.

  13. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  14. HF radar observations of a quasi-biennial oscillation in midlatitude mesospheric winds

    NASA Astrophysics Data System (ADS)

    Malhotra, Garima; Ruohoniemi, J. M.; Baker, J. B. H.; Hibbins, R. E.; McWilliams, K. A.

    2016-11-01

    The equatorial quasi-biennial oscillation (QBO) is known to be an important source of interannual variability in the middle- and high-latitude stratosphere. The influence of the QBO on the stratospheric polar vortex in particular has been extensively studied. However, the impact of the QBO on the winds of the midlatitude mesosphere is much less clear. We have applied 13 years (2002-2014) of data from the Saskatoon Super Dual Auroral Radar Network HF radar to show that there is a strong QBO signature in the midlatitude mesospheric zonal winds during the late winter months. We find that the Saskatoon mesospheric winds are related to the winds of the equatorial QBO at 50 hPa such that the westerly mesospheric winds strengthen when QBO is easterly, and vice versa. We also consider the situation in the late winter Saskatoon stratosphere using the European Centre for Medium-Range Weather Forecasts ERA-Interim reanalysis data set. We find that the Saskatoon stratospheric winds between 7 hPa and 70 hPa weaken when the equatorial QBO at 50 hPa is easterly, and vice versa. We speculate that gravity wave filtering from the QBO-modulated stratospheric winds and subsequent opposite momentum deposition in the mesosphere plays a major role in the appearance of the QBO signature in the late winter Saskatoon mesospheric winds, thereby coupling the equatorial stratosphere and the midlatitude mesosphere.

  15. Methanogenesis, Mesospheric Clouds, and Global Habitability

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F.; Condon, Estelle P. (Technical Monitor)

    2000-01-01

    Hyperthermophilic methanogens can exist in a deep hot biosphere up to 110 C, or 10 km deep. Methane (CH4) itself is thermodynamically stable to depths of 300 km. Geologic (microbial plus abiogenic thermal) methane is transported upward, attested to by its association with helium, to form petroleum pools. Near or at the surface, geologic CH4 mixes with other natural and with anthropogenic CH4 yielding annual emissions into the atmosphere of 500 Tg, of which 200 Tg are natural and 300 Tg are man-made. The atmospheric lifetime of CH4, a greenhouse gas 20 times more effective than CO2 in raising global temperatures, is approximately 10 years. It is removed from the atmosphere mainly by reactions with hydroxyl radical (OH) to form CO2, but also by dry soil and by conversion to H2O in the stratosphere and middle atmosphere. A sudden rise in atmospheric temperatures by 9-12 C some 55 million years ago has been explained by the release in a few thousand years of three trillion tons of CH4 out of 15 trillion tons that had formed beneath the sea floor. What prevented this CH4-induced greenhouse effect from running away? An analog to the CH4-burp of 55 million years ago is the CH4-doubling over the past century which resulted in a increase in upper level H2O from 4.3 ppmv to 6 ppmv. This 30% increase in H2O vapor yielded a tenfold increase in brightness of polar mesospheric clouds because of a strong dependence of the ice particle nucleation rate on the water saturation ratios. Models show that at a given temperature the optical depth of mesospheric clouds scales as [H2O]beta with beta varying between 4 and 8. Radiative transfer tools applied to mesospheric particles suggest that an optical depth of approximately one, or 1000 times the current mesospheric cloud optical depth, would result in tropospheric cooling of about 10 K. Assuming beta=6, a thousandfold increase in optical thickness would require a three-fold increase of H2O, or a 20-fold increase of CH4. At the current

  16. Antarctic Mesospheric Clouds Formed From Space Shuttle Exhaust

    DTIC Science & Technology

    2005-07-06

    Antarctica identify iron ablated from the shuttle’s main engines. Additional satellite observations of polar mesospheric clouds (PMCs) show a burst...evidence heretofore that a shuttle plume can reach Antarctica . Any significant global-scale impact to PMCs has therefore been unsupported by...ground-based lidar observations of both Fe and PMCs from Antarctica that show rapid inter-hemispheric transport of the plume and its arrival in

  17. Ice particulates in the mesosphere

    NASA Technical Reports Server (NTRS)

    Chesworth, E. T.; Hale, L. C.

    1974-01-01

    The observations of noctilucent clouds, the measurements of hydrated and of large immobile ions, and the light-scattering layer detected by the OGO-6 satellite suggest the presence of particulates, probably ice, in the mesosphere. The correlation between temperature and positive ion conductivity where the vapor pressure over ice becomes greater than atmospheric pressure in the stratopause region indicates the presence of ice crystals throughout the mesosphere over a wide range of latitudes during all seasons. Between one and ten billion ice crystals per cubic meter of order 10 nanometers in diameter can dominate ionization loss processes in the mesosphere, and can explain a variety of experimental observations, including observed solar angle dependence and seasonal variability of electron density.

  18. Inertio Gravity Waves in the Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours (Hernandez et al., 1992). Such waves are generated in our Numerical Spectral Model (NSM) and appear to be inertio gravity waves (IGW). Like the planetary waves (PW) in the model, the IGWs are generated by instabilities that arise in the mean zonal circulation. In addition to stationary waves for m = 0, eastward and westward propagating waves for m = 1 to 4 appear above 70 km that grow in magnitude up to about 110 km, having periods between 9 and 11 hours. The m = 1 westward propagating IGWs have the largest amplitudes, which can reach at the poles 30 m/s. Like PWs, the IGWs are intermittent but reveal systematic seasonal variations, with the largest amplitudes occurring generally in winter and spring. The IGWs propagate upward with a vertical wavelength of about 20 km.

  19. Attosecond nonlinear polarization and light-matter energy transfer in solids

    NASA Astrophysics Data System (ADS)

    Sommer, A.; Bothschafter, E. M.; Sato, S. A.; Jakubeit, C.; Latka, T.; Razskazovskaya, O.; Fattahi, H.; Jobst, M.; Schweinberger, W.; Shirvanyan, V.; Yakovlev, V. S.; Kienberger, R.; Yabana, K.; Karpowicz, N.; Schultze, M.; Krausz, F.

    2016-06-01

    Electric-field-induced charge separation (polarization) is the most fundamental manifestation of the interaction of light with matter and a phenomenon of great technological relevance. Nonlinear optical polarization produces coherent radiation in spectral ranges inaccessible by lasers and constitutes the key to ultimate-speed signal manipulation. Terahertz techniques have provided experimental access to this important observable up to frequencies of several terahertz. Here we demonstrate that attosecond metrology extends the resolution to petahertz frequencies of visible light. Attosecond polarization spectroscopy allows measurement of the response of the electronic system of silica to strong (more than one volt per ångström) few-cycle optical (about 750 nanometres) fields. Our proof-of-concept study provides time-resolved insight into the attosecond nonlinear polarization and the light-matter energy transfer dynamics behind the optical Kerr effect and multi-photon absorption. Timing the nonlinear polarization relative to the driving laser electric field with sub-30-attosecond accuracy yields direct quantitative access to both the reversible and irreversible energy exchange between visible-infrared light and electrons. Quantitative determination of dissipation within a signal manipulation cycle of only a few femtoseconds duration (by measurement and ab initio calculation) reveals the feasibility of dielectric optical switching at clock rates above 100 terahertz. The observed sub-femtosecond rise of energy transfer from the field to the material (for a peak electric field strength exceeding 2.5 volts per ångström) in turn indicates the viability of petahertz-bandwidth metrology with a solid-state device.

  20. Spin polarization in high density quark matter under a strong external magnetic field

    NASA Astrophysics Data System (ADS)

    Tsue, Yasuhiko; da Providência, João; Providência, Constança; Yamamura, Masatoshi; Bohr, Henrik

    In high density quark matter under a strong external magnetic field, possible phases are investigated by using the two-flavor Nambu-Jona-Lasinio (NJL) model with tensor-type four-point interaction between quarks, as well as the axial-vector-type four-point interaction. In the tensor-type interaction under the strong external magnetic field, it is shown that a quark spin polarized phase is realized in all regions of the quark chemical potential under consideration within the lowest Landau level approximation. In the axial-vector-type interaction, it is also shown that the quark spin polarized phase appears in the wide range of the quark chemical potential. In both the interactions, the quark mass in zero and small chemical potential regions increases which indicates that the chiral symmetry breaking is enhanced, namely the magnetic catalysis occurs.

  1. Charging of mesospheric particles - Implications for electron density and particle coagulation

    NASA Technical Reports Server (NTRS)

    Jensen, Eric J.; Thomas, Gary E.

    1991-01-01

    The relationship between N(e) and mesospheric aerosols near the mesopause is studied. The full distribution of charges on mesospheric aerosols is calculated, including dust and ice particles with radii ranging from 1 to 400 nm. The N(e) and ion density N(i) are obtained and ionization height profiles are calculated. The effects of dust and ice particles on N(e) and N(i) are studied for a wide range of assumed conditions. The results indicate that aerosol concentrations associated with visible polar mesospheric clouds are unlikely to cause a severe N(e) depletion. The pronounced 'bite-out' of N(e) at about 87 km in the summertime may be caused by a large concentration of small ice particles in a narrow cold layer near the mesosphere. Net negative charge on mesospheric aerosols may severely inihibit coagulation, so that mesospheric dust would not grow significantly. A higher supersaturation with respect to water vapor would be needed for heterogeneous nucleation of ice crystals.

  2. Antimatter and Dark Matter Search in Space: BESS-Polar Results

    NASA Technical Reports Server (NTRS)

    Mitchell, John W.; Yamamoto, Akira

    2009-01-01

    The apex of the Balloon-borne Experiment with a Superconducting Spectrometer program was reached with the Antarctic flight of BESS-Polar II, during the 2007-2008 Austral Summer, that obtained 24.5 days of data on over 4.7 billion cosmic-ray events. The US-Japan BESS Collaboration uses elementary particle measurements to study the early Universe and provides fundamental data on the spectra of light cosmic-ray elements and isotopes. BESS measures the energy spectra of cosmic-ray antiprotons to investigate signatures of possible exotic sources, such as dark-matter candidates, and searches for heavier anti-nuclei that might reach Earth from antimatter domains formed during symmetry breaking processes in the early Universe. Since 1993, BESS has carried out eleven high-latitude balloon flights, two of long duration, that together have defined the study of antiprotons below about 4 GeV, provided standard references for light element and isotope spectra, and set the most sensitive limits on the existence of anti-deuterons and anti-helium, The BESS-Polar II flight took place at Solar Minimum, when the sensitivity of the low-energy antiproton measurements to a primary source is greatest. The rich BESS-Polar II dataset more than doubles the combined data from all earlier BESS flights and has 10-20 times the statistics of BESS data from the previous Solar Minimum. Here, we summarize the scientific results of BESS program, focusing on the results obtained using data from the long-duration flights of BESS-Polar I (2004) and BESS-Polar II.

  3. Automatic identification of gray and white matter components in polarized light imaging.

    PubMed

    Dammers, Jürgen; Breuer, Lukas; Axer, Markus; Kleiner, Melanie; Eiben, Björn; Grässel, David; Dickscheid, Timo; Zilles, Karl; Amunts, Katrin; Shah, N Joni; Pietrzyk, Uwe

    2012-01-16

    Polarized light imaging (PLI) enables the visualization of fiber tracts with high spatial resolution in microtome sections of postmortem brains. Vectors of the fiber orientation defined by inclination and direction angles can directly be derived from the optical signals employed by PLI analysis. The polarization state of light propagating through a rotating polarimeter is varied in such a way that the detected signal of each spatial unit describes a sinusoidal signal. Noise, light scatter and filter inhomogeneities, however, interfere with the original sinusoidal PLI signals, which in turn have direct impact on the accuracy of subsequent fiber tracking. Recently we showed that the primary sinusoidal signals can effectively be restored after noise and artifact rejection utilizing independent component analysis (ICA). In particular, regions with weak intensities are greatly enhanced after ICA based artifact rejection and signal restoration. Here, we propose a user independent way of identifying the components of interest after decomposition; i.e., components that are related to gray and white matter. Depending on the size of the postmortem brain and the section thickness, the number of independent component maps can easily be in the range of a few ten thousand components for one brain. Therefore, we developed an automatic and, more importantly, user independent way of extracting the signal of interest. The automatic identification of gray and white matter components is based on the evaluation of the statistical properties of the so-called feature vectors of each individual component map, which, in the ideal case, shows a sinusoidal waveform. Our method enables large-scale analysis (i.e., the analysis of thousands of whole brain sections) of nerve fiber orientations in the human brain using polarized light imaging.

  4. Cisplatin loaded albumin mesospheres for lung cancer treatment

    PubMed Central

    Lee, Hung-Yen; Mohammed, Kamal A; Goldberg, Eugene P; Kaye, Frederic; Nasreen, Najmunnisa

    2015-01-01

    The low solubility of cisplatin in aqueous solution limits the treatment effectiveness and the application of cisplatin in various kinds of drug-eluting devices. Although cisplatin has a high solubility in Dimethyl sulfoxide (DMSO), the toxicity of cisplatin can be greatly reduced while dissolved in DMSO. In this study, the solid powder of cisplatin-loaded albumin mesospheres (CDDP/DMSO-AMS), in a size range of 1 to 10 µm, were post-loaded with cisplatin and showed high cisplatin content (16% w/w) and effective cytotoxicity to lung cancer cells. Cisplatin were efficiently absorbed into the albumin mesospheres (AMS) in DMSO and, most importantly, the toxicity of cisplatin was remained at 100% after the loading process. This CDDP/DMSO-AMS was designed for the intratumoral injection through the bronchoscopic catheter or dry powder inhalation (DPI) due to its high stability in air or in solution. This CDDP/DMSO-AMS showed a fast cisplatin release within 24 hours. In the in vitro study, CDDP/DMSO-AMS showed high effectiveness on killing the lung cancer cells including the non-small cell lung cancer (NCL-H23 and A549), malignant mesothelioma (CRL-2081) and the mouse lung carcinoma (Lewis lung carcinoma) cell lines. The albumin based mesospheres provide an ideal loading matrix for cisplatin and other metal-based drugs due to the high swelling degree and fast uptake rate in the organic solvents with high polarity. In addition, to investigate the effects of polysaccharides, such as chitosan and chondroitin, on enhancing loading efficiency and lasting cytotoxicity of cisplatin, the polysaccharide-modified albumin mesospheres were synthesized and loaded with cisplatin in this study. PMID:25973300

  5. Impacts of Polar Changes on the UV-induced Mineralization of Terrigenous Dissolved Organic Matter.

    PubMed

    Sulzberger, Barbara; Arey, J Samuel

    2016-07-05

    Local climates in the Northern and Southern Hemisphere are influenced by Arctic Amplification and by interactions of the Antarctic ozone hole with climate change, respectively. Polar changes may affect hydroclimatic conditions in temperate regions, for example, by increasing the length and intensity of precipitation events at Northern Hemisphere midlatitudes. Additionally, global warming has led to the thawing of ancient permafrost soils, particularly in Arctic regions, due to Arctic Amplification. Both heavy precipitation events and thawing of permafrost are increasing the net transfer of terrestrially derived dissolved organic matter (DOM) from land to surface waters. In aquatic ecosystems, UV-induced oxidation of terrigenous DOM (tDOM) produces atmospheric CO2 and this process is one of several mechanisms by which natural organic matter in aquatic and soil environments may play an important role in climate feedbacks. The Arctic is particularly affected by these processes: for example, melting of Arctic sea ice allows solar UV radiation to penetrate into the ice-free Arctic Ocean and to cause photochemical reactions that result in bleaching and mineralization of tDOM. Open questions, in addition to those shown in the Graphical Abstract, remain regarding the resulting contributions of tDOM photomineralization to CO2 production and global warming.

  6. Missing driver in the Sun–Earth connection from energetic electron precipitation impacts mesospheric ozone

    PubMed Central

    Andersson, M. E.; Verronen, P. T.; Rodger, C. J.; Clilverd, M. A.; Seppälä, A.

    2014-01-01

    Energetic electron precipitation (EEP) from the Earth’s outer radiation belt continuously affects the chemical composition of the polar mesosphere. EEP can contribute to catalytic ozone loss in the mesosphere through ionization and enhanced production of odd hydrogen. However, the long-term mesospheric ozone variability caused by EEP has not been quantified or confirmed to date. Here we show, using observations from three different satellite instruments, that EEP events strongly affect ozone at 60–80 km, leading to extremely large (up to 90%) short-term ozone depletion. This impact is comparable to that of large, but much less frequent, solar proton events. On solar cycle timescales, we find that EEP causes ozone variations of up to 34% at 70–80 km. With such a magnitude, it is reasonable to suspect that EEP could be an important part of solar influence on the atmosphere and climate system. PMID:25312693

  7. Mesospheric Dynamical Changes Induced by the Solar Proton Events in October-November 2003

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.; Roble, Raymond G.; Fleming, Eric L.

    2007-01-01

    The very large solar storms in October-November 2003 caused solar proton events (SPEs) at the Earth that impacted the upper atmospheric polar cap regions. The Thermosphere Ionosphere Mesosphere Electrodynamic General Circulation Model (TIME-GCM) was used to study the atmospheric dynamical influence of the solar protons that occurred in Oct-Nov 2003, the fourth largest period of SPEs measured in the past 40 years. The highly energetic solar protons caused ionization, as well as dissociation processes, and ultimately produced odd hydrogen (HOx) and odd nitrogen (NOy). Significant short-lived ozone decreases (10-70%) followed these enhancements of HOx and NOy and led to a cooling of most of the lower mesosphere. This cooling caused an atmospheric circulation change that led to adiabatic heating of the upper mesosphere. Temperature changes up to plus or minus 2.6 K were computed as well as wind (zonal, meridional, vertical) perturbations up to 20-25% of the background winds as a result of 22 the solar protons. The solar proton-induced mesospheric temperature and wind perturbations diminished over a period of 4-6 weeks after the SPEs. The Joule heating in the mesosphere, induced by the solar protons, was computed to be relatively insignificant for these solar storms with most of the temperature and circulation perturbations caused by ozone depletion in the sunlit hemisphere.

  8. Analysis of Trends at Mesospheric Heights in the Northern Hemisphere during 1961-2013

    NASA Astrophysics Data System (ADS)

    Berger, Uwe; Baumgarten, Gerd; Luebken, Franz Josef

    2016-04-01

    We have performed trend studies in the mesosphere in the period 1961-2013 with Leibniz-Institute Middle Atmosphere (LIMA) model driven by European Centre for Medium-Range Weather Forecasts reanalysis (ERA-interim) below approximately 45 km. LIMA adapts temporal variations of CO2 and O3 according to observations, and observed daily Lyman alpha fluxes. The simulation of the thermal state at the summer upper mesosphere allows to investigate the impact on the morphology of ice particle related phenomena such as polar mesosphere clouds (PMC). The PMC characteristics deduced from LIMA are validated with various data sets from satellite (NOAA-SBUV, AIM-SOFIE) observations. Generally good agreement is found between the modeled long-term PMC variations and that derived from SBUV observations. We investigate the role of trends in mesospheric water vapor and temperature that mainly force PMC trends. We show that water vapor and temperatures in the stratosphere/meso- sphere/lower thermosphere vary none-uniformly with time. Especially, we analyze the contribution of varying concentrations of CO2 and O3 to the temperature trend in the mesosphere. It is important to distinguish between trends on pressure altitudes and geometrical altitudes, where the latter includes the effect of shrinking due to cooling at lower heights. As a highlight, we will present first results in analyzing the very first appearance of NLC in 1885 observed after the volcanic eruption of Krakatao in August 1883 that injected a tremendous mass of water vapor into the stratosphere.

  9. Characteristics of mesosphere echoes over Antarctica obtained using PANSY and MF radars

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Masaki; Nakamura, Takuji; Sato, Toru; Nishimura, Koji; Sato, Kaoru; Tomikawa, Yoshihiro; Kohma, Masashi

    2016-07-01

    In the polar region characteristic radar echoes are observed from the mesosphere by using a VHF system. The nature of the echoes is distinctively different between summer and winter and those echoes are called Polar Mesosphere Summer Echoes (PMSEs) and Polar Mesosphere Winter Echoes (PMWEs), respectively. Since the PMSEs are usually very strong and can be easily measured with a small radar system, their nature is relatively well understood. On the other hand PMWEs are much weaker and they are still only poorly understood. The PANSY radar (47MHz) at Syowa station (69S) is the only large aperture atmospheric radar in the Antarctic, and can continuously survey the dynamics of the middle atmosphere with high time and height resolutions [Sato et al., 2014]. Nishiyama et al [2014] reported the first study of PMWEs using PANSY radar and showed a seasonal and local time dependence of these echoes. An MF radar system (2.4MHz) is co-located at Syowa, and has been operating for mesosphere and lower thermosphere observations. Although the MF radar has only a much poorer height resolution and is incapable of vertical wind measurement, it can almost continuously measure mesosphere day and night. In this study the nature of the mesosphere echoes, mainly PMWEs, are being studied using the two radars based on the observation made in 2015. These radars are operated using largely different radio frequencies and can provide complementary information with each other such as wind velocities and also echo scattering mechanisms. Horizontal wind velocities have been compared between the two radars with a great care mostly in the MF radar winds in order to avoid possible biases inherent in the correlation analysis technique employed for the MF radar wind measurement. A careful analysis has shown that the horizontal wind velocities agree well between the two systems with a high correlation coefficient around 0.8 throughout the height region of 65-85km. Aspect sensitivities estimated using

  10. Solar Mesosphere Explorer observations of stratospheric and mesospheric water vapor

    NASA Astrophysics Data System (ADS)

    Jakosky, Bruce M.; Thomas, Gary E.; Rusch, David W.; Barth, Charles A.; Lawrence, George M.; Olivero, John J.; Clancy, R. Todd; Sanders, Ryan W.; Knapp, Barry G.

    It is noted that while the SME (Solar Mesosphere Explorer) data is consistent with the earlier LIMS (Limb Infrared Monitor of the Stratosphere) results, its interpretation is complicated by aerosol contamination, particularly at altitudes below 35 km. This contamination arose from several volcanic eruptions, including that of El Chichon. Analyses are reported of a subset of data from the SME satellite, concentrating primarily on the period January through March 1982 so as to avoid contamination from the El Chichon volcanic aerosol. The SME observations of water vapor between 20 and 60 km were inverted for the first three months of 1982 as well as for selected additional periods. Reasonable results are obtained at locations where no contamination by aerosol is suspected.

  11. Mesosphere-Stratosphere Coupling: Implications for Climate Variability and Trends

    NASA Technical Reports Server (NTRS)

    Baldwin, Mark P.

    2004-01-01

    A key aspect of this project is the establishment of a causal link from circulation anomalies in the lower mesosphere and stratopause region downward through the stratosphere to the troposphere. The observational link for stratospheric sudden warmings and surface climate is fairly clear. However, our understanding of the dynamics is incomplete. We have been making significant progress in the area of dynamical mechanisms by which circulation anomalies in the stratosphere affect the troposphere. We are trying to understand the details and sequence of events that occur when a middle atmosphere (wind) anomaly propagates downward to near the tropopause. The wind anomaly could be caused by a warming or solar variations in the low-latitude stratopause region, or could have other causes. The observations show a picture that is consistent with a circulation anomaly that descends to the tropopause region, and can be detected as low as the mid-troposphere. Processes near the stratopause in the tropics appear to be important precursors to the wintertime development of the northern polar vortex. This may affect significantly our understanding of the process by which low-latitude wind anomalies in the low mesosphere and upper stratosphere evolve through the winter and affect the polar vortex.

  12. Vertical constituent transport in the mesosphere

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.; Summers, Michael E.; Bevilacqua, Richard M.; Deland, Matthew T.; Allen, Mark

    1987-01-01

    Ground-based microwave spectroscopy measurements of mesospheric CO and H2O vertical mixing ratio profiles are used to infer vertical mixing rates in the upper mesosphere. The CO and H2O data consistently imply vertical eddy diffusion coefficients in the 70- to 85-km region of 100,000-200,000 sq cm/s during spring through summer at midlatidues. Although chemical acceleration of vertical transport is substantial for O and O3, below the mesopause, the divergences of their associated fluxes are modest, with at most a factor of 2 effect on the concentrations of O and O3 for measured variability in gravity wave activity. Comparison of Solar Mesosphere Explorer (SME) O3 data with model results reinforces the conclusions of slow vertical mixing in the upper mesosphere as a consequence of the reduced HO(x) catalytic loss of odd oxygen. The changes in chemical rate constants recommended by Rusch and Eckman (1985), in conjunction with slow vertical mixing, yield good agreement with SME O3 data. The slow vertical mixing deduced in this study is consistent with upper limits obtained from studies of the mesospheric heat budget and could be construed as evidence for an advectively controlled mesosphere. A comparison of the vertical eddy diffusion coefficients for momentum stresses, constituent transport, and heat transport suggests that the eddy Prandtl number must be of order 10.

  13. Vertical constituent transport in the mesosphere

    NASA Astrophysics Data System (ADS)

    Strobel, Darrell F.; Summers, Michael E.; Bevilacqua, Richard M.; Deland, Matthew T.; Allen, Mark

    1987-06-01

    Ground-based microwave spectroscopy measurements of mesospheric CO and H2O vertical mixing ratio profiles are used to infer vertical mixing rates in the upper mesosphere. The CO and H2O data consistently imply vertical eddy diffusion coefficients in the 70- to 85-km region of 100,000-200,000 sq cm/s during spring through summer at midlatidues. Although chemical acceleration of vertical transport is substantial for O and O3, below the mesopause, the divergences of their associated fluxes are modest, with at most a factor of 2 effect on the concentrations of O and O3 for measured variability in gravity wave activity. Comparison of Solar Mesosphere Explorer (SME) O3 data with model results reinforces the conclusions of slow vertical mixing in the upper mesosphere as a consequence of the reduced HO(x) catalytic loss of odd oxygen. The changes in chemical rate constants recommended by Rusch and Eckman (1985), in conjunction with slow vertical mixing, yield good agreement with SME O3 data. The slow vertical mixing deduced in this study is consistent with upper limits obtained from studies of the mesospheric heat budget and could be construed as evidence for an advectively controlled mesosphere. A comparison of the vertical eddy diffusion coefficients for momentum stresses, constituent transport, and heat transport suggests that the eddy Prandtl number must be of order 10.

  14. Simulation study for measurement of horizontal wind profiles in the polar stratosphere and mesosphere using ground-based observations of ozone and carbon monoxide lines in the 230-250 GHz region

    NASA Astrophysics Data System (ADS)

    Newnham, David A.; Ford, George P.; Moffat-Griffin, Tracy; Pumphrey, Hugh C.

    2016-07-01

    Meteorological and atmospheric models are being extended up to 80 km altitude but there are very few observing techniques that can measure stratospheric-mesospheric winds at altitudes between 20 and 80 km to verify model datasets. Here we demonstrate the feasibility of horizontal wind profile measurements using ground-based passive millimetre-wave spectroradiometric observations of ozone lines centred at 231.28, 249.79, and 249.96 GHz. Vertical profiles of horizontal winds are retrieved from forward and inverse modelling simulations of the line-of-sight Doppler-shifted atmospheric emission lines above Halley station (75°37' S, 26°14' W), Antarctica. For a radiometer with a system temperature of 1400 K and 30 kHz spectral resolution observing the ozone 231.28 GHz line we estimate that 12 h zonal and meridional wind profiles could be determined over the altitude range 25-74 km in winter, and 28-66 km in summer. Height-dependent measurement uncertainties are in the range 3-8 m s-1 and vertical resolution ˜ 8-16 km. Under optimum observing conditions at Halley a temporal resolution of 1.5 h for measuring either zonal or meridional winds is possible, reducing to 0.5 h for a radiometer with a 700 K system temperature. Combining observations of the 231.28 GHz ozone line and the 230.54 GHz carbon monoxide line gives additional altitude coverage at 85 ± 12 km. The effects of clear-sky seasonal mean winter/summer conditions, zenith angle of the received atmospheric emission, and spectrometer frequency resolution on the altitude coverage, measurement uncertainty, and height and time resolution of the retrieved wind profiles have been determined.

  15. Spin-orbit-induced photoelectron spin polarization in angle-resolved photoemission from both atomic and condensed matter targets.

    PubMed

    Heinzmann, Ulrich; Dil, J Hugo

    2012-05-02

    The existence of highly spin polarized photoelectrons emitted from non-magnetic solids as well as from unpolarized atoms and molecules has been found to be very common in many studies over the past 40 years. This so-called Fano effect is based upon the influence of the spin-orbit interaction in the photoionization or the photoemission process. In a non-angle-resolved photoemission experiment, circularly polarized radiation has to be used to create spin polarized photoelectrons, while in angle-resolved photoemission even unpolarized or linearly polarized radiation is sufficient to get a high spin polarization. In past years the Rashba effect has become very important in the angle-resolved photoemission of solid surfaces, also with an observed high photoelectron spin polarization. It is the purpose of the present topical review to cross-compare the spin polarization experimentally found in angle-resolved photoelectron emission spectroscopy of condensed matter with that of free atoms, to compare it with the Rashba effect and topological insulators to describe the influence and the importance of the spin-orbit interaction and to show and disentangle the matrix element and phase shift effects therein.The relationship between the energy dispersion of these phase shifts and the emission delay of photoelectron emission in attosecond-resolved photoemission is also discussed. Furthermore the influence of chiral structures of the photo-effect target on the spin polarization, the interferences of different spin components in coherent superpositions in photoemission and a cross-comparison of spin polarization in photoemission from non-magnetic solids with XMCD on magnetic materials are presented; these are all based upon the influence of the spin-orbit interaction in angle-resolved photoemission.

  16. Mean characteristics of mesosphere winter echoes at mid- and high-latitudes

    NASA Astrophysics Data System (ADS)

    Zeller, O.; Zecha, M.; Bremer, J.; Latteck, R.; Singer, W.

    2006-06-01

    VHF radar observations are used to investigate different regions of the Earth's atmosphere. Strong echoes from the mesosphere are mainly observed during summer months at polar latitudes (polar mesosphere summer echoes [PMSE]), and less often at mid-latitudes (mesosphere summer echoes [MSE]). Interestingly, in recent years similar echoes have been observed during winter months ([polar] mesosphere winter echoes (P)MWE). This paper reports on VHF radar measurements between September and April at Andenes (2001 2005) and Kühlungsborn (2003 2005) to determine the mean features of (P)MWE at polar and mid-latitudes. The (P)MWE are a rare phenomenon with mean occurrence rates of about 2.9% in polar and only 0.3% in mid-latitudes, with a maximum occurrence height at 70.5 km for daytime and 77.5 km for nighttime echoes. The diurnal variation is characterised by a maximum near noon and minimum during nighttime. The seasonal variation of (P)MWE is weak with some indication of an increased number of PMWE during mid-winter. The occurrence rate of (P)MWE is positively correlated with the ionisation level of the D region of the ionosphere. Mainly high-energetic proton (and electron) fluxes and enhanced X-ray radiation are important for the existence of (P)MWE. The second factor for the existence of (P)MWE are irregularities of the refraction index of half the radar wavelength (about 3 m for the radars used in this paper). Neutral air turbulence due to breaking gravity waves seems to be an important process. Whether charged aerosol particles or partial reflections of infrasound have additionally to be considered to explain (P)MWE is currently a point of discussion in the literature.

  17. Seasonal and interannual variability of mesospheric gravity wave activity at high and mid-latitudes

    NASA Astrophysics Data System (ADS)

    Hoffmann, Peter; Singer, Werner; Becker, Erich; Latteck, Ralph; Keuer, Dieter

    The seasonal variation and interannual variability of the gravity wave activity in the mesosphere/lower thermosphere (MLT) region at high and mid-latitudes is investigated. Variations of the gravity wave activity are examined in relation to the filtering processes due to the changes of the background winds, tides and planetary waves. Our studies are basing on wind measurements from meteor and MF radars at Andenes (69° N, 16° E) and Juliusruh (55° N, 13° E). These measurements are supplemented by mesospheric temperatures derived from meteor decay times. Additionally, turbulent energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the influence of the solar activity on the gravity wave activity during the summer months when the mesospheric winds show the strongest correlation with the solar activity. Possible dependencies between the occurrence rates of polar mesospheric summer echoes (PMSE) and the gravity wave activity are discussed. Furthermore, the activity of gravity waves and their dissipation are investigated in winter in relation with wind changes during sudden stratospheric warming (SSW) events. The summer/ winter behavior of the gravity wave activity will be compared to simulations with the simple general circulation model KMCM (K¨hlungsborn Mechanistic u Circulation Model) that extends up to 100 km. In all cases, the percentage rates of the kinetic energy of defined period ranges in relation to the total variances of the horizontal wind fluctuations are estimated.

  18. Nanodust shedding and its potential influence on dust-related phenomena in the mesosphere

    NASA Astrophysics Data System (ADS)

    Havnes, O.; Hartquist, T. W.

    2016-10-01

    We explore the possibility that some meteoric smoke particles that collide with larger nanoparticles near the mesopause can escape from the larger particles by capturing surface electrons. If the process were sufficiently efficient, under certain conditions it would influence the responses of polar mesospheric summer echoes to artificial heating in a manner that is compatible with observations that are unexplained with previous models. The process would have a number of other possible consequences for nanoparticles near the mesopause.

  19. Active Dust Experiment in the Mesosphere

    SciTech Connect

    Norberg, Carol; Pellinen-Wannberg, Asta

    2008-09-07

    The mesosphere stretches from an altitude of about 50 to 90 km above the Earth's surface. Meteors entering the Earth's atmosphere are believed to ablate and hence give rise to a thin layer of dust particles in the upper part of the Earth's mesosphere. It seems that the dust is most dense in a layer that lies between 80 and 90 km. The dust particles are thought to have sizes of a few to tens of nanometers. Efforts have been made to measure these particles using rockets and radar techniques with limited success. We propose to release dust into the mesosphere over northern Sweden at a height of about 90 km and observe the released dust using the EISCAT radar system. The dust will be launched from the Swedish Space Corporation Esrange Space Centre on a single-stage Improved-Orion rocket that will be launched so that its flight path will be in the radar field of view.

  20. Mesosphere and Lower Thermosphere Wind Models

    NASA Astrophysics Data System (ADS)

    Rees, David

    An overview of existing empirical middle atmosphere wind models is presented, with special emphasis on the widely used CIRA-86 and HWM-93 models. We especially focus on the mesosphere/lower thermosphere (MLT) region. We present results of the recently established Global Empirical Wind Model (GEWM), a new wind climatology (0-120 km) based upon the GEWM, stratospheric reanalysis data, and a numerical model. Supplementary information on the interannual variability of winds, planetary wave activity, tides, and possible trends in the stratosphere and mesosphere is provided.

  1. Mesospheric dynamics and chemistry from SME data

    NASA Technical Reports Server (NTRS)

    Strobel, Darrell F.

    1987-01-01

    A fast Curtis matrix calculation of cooling rates due to the 15 micron band of CO2 is modified to parameterize the detailed calculations by Dickinson (1984) of infrared cooling by CO2 in the mesosphere and lower thermosphere. The calculations included separate NLTE treatment of the different 15 micron bands likely to be important for cooling. The goal was to compress the detailed properties of the different bands into a modified Curtis matrix, which represents one composite band with appropriate averaged radiative properties to allow for a simple and quick calculation of cooling rates given a temperature profile. Vertical constituent transport in the mesosphere was also studied.

  2. A review of mesospheric dynamics and chemistry

    SciTech Connect

    Viereck, R.A. )

    1991-01-01

    Advances made in understanding the chemistry and dynamics of the atmosphere in the approximate altitude range of 50 to 90 km are addressed. Attention is given to mesospheric structure and seasonal variations, gravity waves and gravity wave saturation, the effects of gravity waves on thermal, momentum and constituent fluxes, and the effect of gravity waves on airglow emissions. A review of research on tides and planetary waves and their effects on the mesosphere are presented as well as discussions on ozone hydroxyl, water vapor, and noctilucent cloud research. 217 refs.

  3. Planetary-scale inertio gravity waves in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. R.; Porter, H. S.; Chan, K. L.

    2003-12-01

    In the polar region of the upper mesosphere, horizontal wind oscillations have been observed with periods around 10 hours. Waves with such periods are generated in our Numerical Spectral Model (NSM), and they are identified as planetary-scale inertio gravity waves (IGW). These waves have periods between 9 and 11 hours and appear above 70 km in the zonal mean (m = 0), as well as in m = 1 to 4 propagating eastward and westward. They grow in magnitude to altitudes near 100 km and have vertical wavelengths of about 25 km. The m = 1 westward IGWs have the largest amplitudes, up to 30 m/s at the poles. The IGWs occur intermittently but reveal systematic seasonal variations. Their amplitudes generally are largest in late winter and spring. Numerical experiments show that the waves also appear without tidal excitation. Like the planetary waves in the model, the IGWs are produced by instabilities that arise in the mean zonal circulation.

  4. Collision between variably polarized plane gravitational wave and a shell of null matter

    NASA Astrophysics Data System (ADS)

    Feinstein, Alexander; Senovilla, Josém. M.

    1989-06-01

    We construct a solution to the Einstein field equations which describes the collision between a variably polarized gravitational wave and a shell of null dust. Depending on the choice of the parameters the variably polarized wave can have an arbitrarily smooth wavefront. The shell of null dust is followed by a constantly polarized plane gravitational wave. Also Grupo de Física Teórica, Departamento de Física, Ingeniería y Radiología Médica, Facultad de Ciencias, Universidad de Salamanca, 37008 Salamanca, Spain.

  5. The effect of natural organic matter polarity and molecular weight on NDMA formation from two antibiotics containing dimethylamine functional groups.

    PubMed

    Leavey-Roback, Shannon L; Krasner, Stuart W; Suffet, Irwin H Mel

    2016-12-01

    N-nitrosodimethylamine (NDMA) is a disinfection byproduct preferentially formed in chloraminated water. NDMA may be formed from certain chemicals containing dimethylamine (DMA) functional groups. This reaction may be slowed by the presence of natural organic matter (NOM). In this study, NOM fractionated by size or polarity was tested for its ability to slow or impede the formation of NDMA from two DMA-containing precursors, the antibiotics tetracycline and spiramycin. The high molecular weight NOM fractions (>10KDa) were shown to be the most effective in reducing the amount of NDMA formed from the precursor chemicals. The filtrate of a C-18 non-polar cartridge was also effective at reducing NDMA formation from tetracycline (spyramycin not tested). Therefore, polar and charged NOM components may be responsible for the reduction in NDMA formation. A possible mechanism for the reduction of NDMA formation from tetracycline is complexation due to the hydrogen bonding of the DMA functional group on tetracycline to polar phenolic functional groups in the NOM.

  6. The anomalous solid state decomposition of ammonium dinitramide: a matter of surface polarization.

    PubMed

    Rahm, Martin; Brinck, Tore

    2009-05-28

    Polarized dinitramide anions on the surface of solid ammonium dinitramide (ADN) have a decomposition barrier that is reduced by 16 kcal mol(-1) and explain the anomalous solid state decomposition of ADN.

  7. Getting to the root of plant iron uptake and cell-cell transport: Polarity matters!

    PubMed

    Dubeaux, Guillaume; Zelazny, Enric; Vert, Grégory

    2015-01-01

    Plasma membrane proteins play pivotal roles in mediating responses to endogenous and environmental cues. Regulation of membrane protein levels and establishment of polarity are fundamental for many cellular processes. In plants, IRON-REGULATED TRANSPORTER 1 (IRT1) is the major root iron transporter but is also responsible for the absorption of other divalent metals such as manganese, zinc and cobalt. We recently uncovered that IRT1 is polarly localized to the outer plasma membrane domain of plant root epidermal cells upon depletion of its secondary metal substrates. The endosome-recruited FYVE1 protein interacts with IRT1 in the endocytic pathway and plays a crucial role in the establishment of IRT1 polarity, likely through its recycling to the cell surface. Our work sheds light on the mechanisms of radial transport of nutrients across the different cell types of plant roots toward the vascular tissues and raises interesting parallel with iron transport in mammals.

  8. Seasonal variations of long period oscillations in the mesosphere at high- and mid-latitudes and their relation to mesospheric summer echoes

    NASA Astrophysics Data System (ADS)

    Zeller, Olof; Hoffmann, Peter; Bremer, Juergen; Singer, Werner

    Continuous MF and meteor radar observations allow detailed studies of the wind field in the mesosphere and lower thermosphere, which is characterized by a high variability due to the presence of gravity and tidal waves as well as planetary waves. Here the seasonal variation of long period oscillations (periods of few days) is used to indicate the presence of transient planetary waves in the mesosphere at high and mid-latitudes. Our studies are based on wind measurements from meteor and MF radars at Andenes (69° N, 16° E) and Juliusruh (55° N, 13° E). These measurements are supplemented by mesospheric temperatures derived from meteor decay times. For investigations of wind and temperature oscillations wavelet analyses have been performed showing the seasonal varations of their preferred periods and amplitudes. The activity of oscillations with a period in the range 2 - 4 d have their maximum during summer while the long period ones (˜10 d) occur preferably in winter. Oscillations with periods of 4 - 7 d occur in every season. Such periods are not only observed in wind and temperature variations, but also in variations of (polar) mesosphere summer echos (P)MSE observed by VHF radars in Kuehlungsborn (54° N, 12° E) and Andenes. (P)MSE are connected with very cold temperatures where ice particles can exist. Due to an equatorward directed meridional temperature gradient variations of meridional wind and temperature are positively correlated. Generally radar echoes at mid latitudes are strongly affected by meridional wind variations due to a mean temperature around the frost point of water vapour. In contrast there is mostly no significant impact of the meridional wind on radar echoes at polar latitudes. A mean temperature well below the frost point and a weaker meridional temperature gradient than at mid latitudes are reasons for this reduced impact. But because of higher temperatures in 2002 long period temperature and meridional wind variations impact the PMSE

  9. Ultracold Polar Molecules: New Phases of Matter for Quantum Information and Quantum Control

    DTIC Science & Technology

    2013-06-01

    Devil’s staircase” where Mott solids appear at rational fillings of the lattice.   Studied 1D  fermionic  and bosonic gases with repulsive power‐law...superfluid transition in single‐component  fermionic  gas in a trap with dipole  moments polarized in perpendicular layers, finding that many‐body effects...Zoller, Bilayer superfluidity of fermionic polar molecules: Many‐Body effects, Phys. Rev. A 83, 043602 (2011).  2012 Phase   1) N. Henkel, F. Cinti, P

  10. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Study of Squeezed Excitons in Polar Semiconductors

    NASA Astrophysics Data System (ADS)

    Yin, Miao; Cheng, Ze; Wu, Zi-Xia; Ping, Yun-Xia

    2009-03-01

    Some properties of excitons in polar semiconductors are studied theoretically by means of squeezed state variational approach. This method makes it possible to consider bilinear terms of the phonon operators as well as linear terms arising from the Lee-Low-Pines (LLP)-like transformation. The exciton ground state energy and binding energy are calculated numerically. It is shown that the squeezing effect is significant in the case of strong exciton-phonon coupling region.

  11. Sprite streamer initiation from natural mesospheric structures.

    PubMed

    Liu, Ningyu; Dwyer, Joseph R; Stenbaek-Nielsen, Hans C; McHarg, Matthew G

    2015-06-29

    Sprites are large, luminous electrical discharges in the upper atmosphere caused by intense cloud-to-ground lightning flashes, manifesting an impulsive coupling mechanism between lower and upper atmospheric regions. Their dynamics are governed by filamentary streamer discharges whose propagation properties have been well studied by past work. However, how they are initiated is still under active debate. It has recently been concluded that ionospheric/mesospheric inhomogeneities are required for their initiation, but it is an open question as to what the sources of those inhomogeneities are. Here we present numerical simulation results to demonstrate that naturally-existing, small-scale mesospheric structures such as those created by gravity waves via instability and breaking are viable sources. The proposed theory is supported by a recent, unique high-speed observation from aircraft flying at 14-km altitude. The theory naturally explains many aspects of observed sprite streamer initiation and has important implications for future observational work.

  12. Model ozone photochemistry on the basis of Solar Mesosphere Explorer mesospheric observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Rusch, D. W.; Thomas, R. J.; Allen, M.; Eckman, R. S.

    1987-01-01

    Morning and afternoon mesospheric ozone profiles (50-90 km) measured by the Solar Mesosphere Explorer (SME) satellite are analyzed with one-dimensional photochemical models. The observed ozone abundances are 40 percent and 100 percent greater than the model ozone abundances at 50 and 80 km, respectively. Diurnal model calculations are compared with SME observations of ozone profiles at about 0400 and 1400 LT for high northern summer latitudes. Analysis of the ratios of these early morning and midafternoon ozone profiles provides the additional constraint that larger odd-oxygen production rates are required if lower odd-hydrogen activity is invoked to increase model O3 abundances. The increase in odd-oxygen production must be solar zenith angle independent in the mesosphere, ruling out significant changes in the Schumann-Runge band O2 opacities from Allen and Frederrick (1982).

  13. The impact of emotion intensity on recognition memory: Valence polarity matters.

    PubMed

    Meng, Xianxin; Zhang, Ling; Liu, Wenwen; Ding, XinSheng; Li, Hong; Yang, Jiemin; Yuan, JiaJin

    2017-02-07

    Although the effects of emotion of different emotional intensity on memory have been investigated, it remain unclear whether the influence of emotional intensity on memory varies depending on the stimulus valence polarity (i.e., positive or negative). To address this, event-related potentials were recorded when subjects performed a continuous old/new discrimination task, for highly negative (HN), mildly negative (MN) and neutral pictures in the negative session; and for highly positive (HP), mildly positive (MP) and neutral pictures in the positive session. The results showed that relative to neutral stimuli, both HN and MN stimuli showed increased memory discrimination scores, and enhanced old/new effect in early FN400 (Frontal Negativity), but not late positive component (LPC) amplitudes. By contrast, relative to MP stimuli, HP and neutral stimuli showed increased memory discrimination scores and enhanced old/new effect in LPC but not FN400 amplitudes. Additionally, we observed a significant positive correlation between the memory discrimination score and the old/new effect in the amplitudes of the FN400 and LPC, respectively. These results indicate that both HN and MN stimuli were remembered better than neutral stimuli; whereas the recognition was worse for MP stimuli than Neutral and HP stimuli. In conclusion, in the present study, we observed that the effect of emotion intensity on memory depends on the stimulus valence polarity.

  14. Comparison of two polarity measurements of hydrophobic organic matter for the evaluation of water treatment processes: XAD resin and PRAM.

    PubMed

    Philibert, Marc; Rosario-Ortiz, Fernando; Suffet, Mel

    2012-01-01

    Dissolved organic matter (DOM) is a mixture of thousands of organic molecules wide-ranging in molecular weight, polarity and physicochemical properties. DOM is responsible for multiple water treatment issues such as trihalomethane (THM) formation potential and membrane fouling. Two methods of evaluating the polarity of DOM are being used for water treatment application: a serial XAD resin adsorption method at acid pH and the polarity rapid assessment method (PRAM) by parallel solid phase extraction (SPE) cartridges at natural pH. These two methods have been described by their authors as able to define a hydrophobic fraction though they do so by sorption onto different types of material at different pHs. The first part of this study compared the PRAM and XAD methods and showed that the hydrophobic fractions defined by the two approaches were not correlated. This result highlighted the difficulties in defining fractions as 'hydrophobic material'. It appeared that the sorbents for XAD-8 (an acrylic polymer containing oxygen) at pH <3 and C-18 (a pure hydrocarbon polymer coating on silica particles) at neutral or pH <3 did not retain similar hydrophobic fractions. This hypothesis was verified by fluorescence spectroscopy of the effluent of the XAD-8 resin and PRAM C-18 SPE cartridge. Finally the study concentrated on the use of fluorescence and ultrafiltration methods in series with PRAM to gain more insight into the structure and characteristics of the hydrophobic DOM present in drinking water sources. This evaluation showed that the smaller molecular weight fraction of DOM (<1 kDa) had a higher percentage of hydrophobic character and that the fluorescence-defined aromatic protein fraction was the most hydrophilic.

  15. High-Resolution Infra-Red Imaging Studies of Mesospheric Gravity Waves (Invited)

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P.; Zhao, Y.; Pendleton, W. R.; Yuan, T.; Esplin, R.; McLain, D.; Fritts, D. C.; Stober, G.

    2013-12-01

    This presentation highlights new research capabilities and recent results focusing on polar latitudes using two new infra-red imaging systems operating at the ALOMAR Arctic Observatory, Norway and at the Amundsen-Scott Base, South Pole, Antarctica. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ~1.5μm) to create high-quality intensity and temperature maps of a broad spectrum of mesospheric gravity waves (with periods ranging from several minutes to many hours). The data are obtained with an unprecedented spatial (~0.5 km) and temporal (typically 30 sec) resolution over a large 120° field of view enabling detailed measurements of wave propagation and dissipation at the ~87 km level, even in the presence of strong aurora. Several new results will be presented and discussed, including high-resolution imaging studies of gravity wave breaking, first evidence of gravity wave 'self-acceleration' and new coordinated lidar, radar and AMTM measurements of gravity wave propagation and ducting at mid-latitudes.

  16. Evolution of stationary wave patterns in mesospheric water vapor due to climate change

    NASA Astrophysics Data System (ADS)

    Demirhan Barı, Deniz; Gabriel, Axel; Sezginer Ünal, Yurdanur

    2016-07-01

    The variability in the observed stationary wave patterns of the mesospheric water vapor (H2O) is investigated using CMIP5 RCP 4.5 and RCP 8.5 projections. The change in the vertical and meridional wave structure at northern mid- and polar latitudes associated to the zonal and meridional eddy heat fluxes is discussed by analyzing the advection of H2O due to residual wind components. The alteration in the characteristics of the stationary wave-1 pattern of the lower mesospheric H2O (up to about 75km) related to change in the projected radiative forcing is observed for the years from 2006 to 2100. Additionally the remarkable effect of the increase in global temperature on the zonal asymmetries in small-scale transient waves and parameterized gravity waves, which largely contribute to the observed stationary wave patterns of H2O in the upper mesosphere, is analyzed. For validation purposes, the derived stratospheric patterns are verified against the eddy heat fluxes and residual advection terms derived from Aura/MLS satellite data between 2004-2010 and the reference period of the CMIP5 MPI dataset (1976-2005) providing confidence in the applied method.

  17. Circulation Changes in the Mesosphere and the Lower Thermosphere Associated with Sudden Stratospheric Warmings

    NASA Astrophysics Data System (ADS)

    Hirooka, Toshihiko; Iwao, Koki

    2016-07-01

    Influences of sudden stratospheric warmings (SSWs) reach the mesosphere and the thermosphere. Recently, significant global cooling during SSWs in the thermosphere have been reported on the basis of numerical simulations. However, observational studies are insufficient for the region, so that detailed 3-dimendional structure and the dynamical mechanism are still unclear. Hence, we investigate circulation changes in the mesosphere and thermosphere along with in the stratosphere during SSWs by using TIMED/SABER satellite data and radar data. The SABER observes the atmospheric temperature field in high altitudes up to the lower thermosphere (~120km). Time series of the SABER data includes tidal components, because the satellite orbit is not sun-synchronous and the local time of observation gradually decreases at a specific latitude. The perfect separation of the time series data into tidal and daily changes is difficult especially when diurnal components are amplified. Therefore, we additionally analyze the radar data at some selected stations. Resultantly, north polar temperatures during SSWs show lower thermosphere warming and mesospheric cooling along with the anti-correlated temperature changes in the wide region except over the north pole. In the presentation, we discuss further detailed features of circulation changes associated with SSWs.

  18. Spin-dependent structure functions in nuclear matter and the polarized EMC effect

    SciTech Connect

    I.C. Cloet; W. Bentz; A.W. Thomas

    2005-04-01

    An excellent description of both spin-independent and spin-dependent quark distributions and structure functions has been obtained with a modified Nambu-Jona-Lasinio model, which is free of unphysical thresholds for nucleon decay into quarks--hence incorporating an important aspect of confinement. We utilize this model to investigate nuclear medium modifications to structure functions, and find that we are readily able to reproduce both nuclear matter saturation and the experimental F{sub 2N}{sup A}/F{sub 2N} ratio, that is, the EMC effect. Applying this framework to determine g{sub 1p}{sup A}, we find that the ratio g{sub 1p}{sup A}/g{sub 1p} differs significantly from 1, with the quenching caused by the nuclear medium being about twice that of the spin-independent case. This represents an exciting result, which if confirmed experimentally, will reveal much about the quark structure of nuclear matter.

  19. Observation of 27 day solar cycles in the production and mesospheric descent of EPP-produced NO

    NASA Astrophysics Data System (ADS)

    Hendrickx, K.; Megner, L.; Gumbel, J.; Siskind, D. E.; Orsolini, Y. J.; Tyssøy, H. Nesse; Hervig, M.

    2015-10-01

    Nitric oxide (NO) is produced by energetic particle precipitation (EPP) in the mesosphere-lower thermosphere (MLT) region, and during the polar winter, NO can descend to stratospheric altitudes where it destroys ozone. In this paper, we study the general scenario, as opposed to a case study, of NO production in the thermosphere due to energetic particles in the auroral region. We first investigate the relationship between NO production and two geomagnetic indices. The analysis indicates that the auroral electrojet index is a more suitable proxy for EPP-produced NO than the typically used midlatitude Ap index. In order to study the production and downward transport of NO from the lower thermosphere to the mesosphere, we perform superposed epoch analyses on NO observations made by the Solar Occultation For Ice Experiment instrument on board the Aeronomy of Ice in the Mesosphere satellite. The epoch analysis clearly shows the impact of the 27 day solar cycle on NO production. The effect is observed down to an altitude range of about 50 km to 65 km, depending on the hemisphere and the occurrence of stratospheric warmings. Initially, a rapid downward transport is noted during the first 10 days after EPP onset to an altitude of about 80-85 km, which is then followed by a slower downward transport of approximately 1-1.2 km/d to lower mesospheric altitudes in the order of 30 days.

  20. An analysis of Solar Mesospheric Explorer temperatures for the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.

    1993-01-01

    We proposed to analyze Solar Mesosphere Explorer (SME) limb profiles of Rayleigh scattered solar flux at wavelengths of 304, 313, and 443 nm to retrieve atmospheric temperature profiles over the 40-65 km altitude region. These temperatures can be combined with the previous analysis of SME 296 nm limb radiances to construct a monthly average climatology of atmospheric temperatures over the 40-90 km, upper stratosphere-mesosphere region, with approximately 4 km vertical resolution. We proposed to investigate the detailed nature of the global temperature structure of this poorly measured region, based on these 1982-1986 SME temperatures. The average vertical structure of temperatures between the stratopause and mesopause has never been determined globally with vertical resolution sufficient to retrieve even scale-height structures. Hence, the SME temperatures provided a unique opportunity to study the detailed thermal structure of the mesosphere, in advance of Upper Atmosphere Research Satellite (UARS) measurements and the Thermosphere Ionosphere Mesosphere Energy and Dynamics (TIMED) mission.

  1. Rocket measurements of mesospheric ionization irregularities

    NASA Technical Reports Server (NTRS)

    Stoltzfus, R. B.; Bowhill, S. A.

    1985-01-01

    The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.

  2. Characterizing the compositional variation of dissolved organic matter over hydrophobicity and polarity using fluorescence spectra combined with principal component analysis and two-dimensional correlation technique.

    PubMed

    Su, Ben-Sheng; Qu, Zhen; He, Xiao-Song; Song, Ying-Hao; Jia, Li-Min

    2016-05-01

    Dissolved organic matter (DOM) obtained from three leachates with different landfill ages was fractionated, and its compositional variation based on hydrophobicity and polarity was characterized by synchronous fluorescence spectra combined with principal component analysis (PCA) and two-dimensional correlation technique. The results showed that the bulk DOM and its fractions were comprised of tryosine-, tryptophan-, fulvic-, and humic-like substances. Tyrosine-like matter was dominant in the young leachate DOM and its fractions, while tryptophan-, fulvic-, and humic-like substances were the main components in the intermediate and old leachate DOMs and their fractions. Tryosine-, tryptophan-, fulvic-, and humic-like substances varied concurrently with the hydrophobicity and polarity. However, the change ratio of these substances was different for the three leachates. Tyrosine-like matter, humic-like materials, and fulvic-like substances were the most sensitive to the hydrophobicity and polarity in the young, intermediate, and old leachates, respectively. Such an integrated approach jointly enhances the characterization of the hydrophobicity- and polarity-dependent DOM fractions and provides a promising way to elucidate the environmental behaviors of different DOM species.

  3. The near-global mesospheric potassium layer: Observations and modeling

    NASA Astrophysics Data System (ADS)

    Dawkins, E. C. M.; Plane, J. M. C.; Chipperfield, M. P.; Feng, W.

    2015-08-01

    The meteoric metal layers act as unique tracers of chemistry and dynamics in the upper atmosphere. Existing lidar studies from a few locations show that K exhibits a semiannual seasonality (winter and summer maxima), quite unlike the annual seasonality (winter maximum and summer minimum) seen with Na and Fe. This work uses spaceborne observations made with the Optical Spectrograph and InfraRed Imager System instrument on the Odin satellite to retrieve the near-global K layer for the first time. The satellite data (2004 to mid-2013) are used to validate the implementation of a recently proposed potassium chemistry scheme in a whole atmosphere chemistry climate model, which provides a chemical basis for this semiannual seasonal behavior. The satellite and model data show that this semiannual seasonality is near global in extent, with the strongest variation at middle and high latitudes. The column abundance, centroid layer height, and root-mean-square width of the K layer are consistent with the limited available lidar record. The K data set is then used to investigate the impact of polar mesospheric clouds on the metal layers at high latitudes during summer. Finally, the occurrence frequency of sporadic K layers and their possible link to sporadic E layers are examined.

  4. The near‐global mesospheric potassium layer: Observations and modeling

    PubMed Central

    Dawkins, E. C. M.; Chipperfield, M. P.; Feng, W.

    2015-01-01

    Abstract The meteoric metal layers act as unique tracers of chemistry and dynamics in the upper atmosphere. Existing lidar studies from a few locations show that K exhibits a semiannual seasonality (winter and summer maxima), quite unlike the annual seasonality (winter maximum and summer minimum) seen with Na and Fe. This work uses spaceborne observations made with the Optical Spectrograph and InfraRed Imager System instrument on the Odin satellite to retrieve the near‐global K layer for the first time. The satellite data (2004 to mid‐2013) are used to validate the implementation of a recently proposed potassium chemistry scheme in a whole atmosphere chemistry climate model, which provides a chemical basis for this semiannual seasonal behavior. The satellite and model data show that this semiannual seasonality is near global in extent, with the strongest variation at middle and high latitudes. The column abundance, centroid layer height, and root‐mean‐square width of the K layer are consistent with the limited available lidar record. The K data set is then used to investigate the impact of polar mesospheric clouds on the metal layers at high latitudes during summer. Finally, the occurrence frequency of sporadic K layers and their possible link to sporadic E layers are examined. PMID:27478716

  5. Space Shuttle Impacts on Mesospheric Clouds and Iron Layers as Observed by Lidars and Satellites in the Antarctic and Arctic

    NASA Astrophysics Data System (ADS)

    Chu, X.; Collins, R. L.; Stevens, M. H.; Plane, J. M.; Meier, R. R.; Deland, M. T.; Kelley, M. C.; Nicolls, M. J.; Thurairajah, B.; Varney, R. H.; Mizutani, K.; Yu, Z.

    2009-12-01

    Meteoric iron layers and mesospheric clouds are two layered phenomena that have been used as tracers to study the global thermal and dynamic structures in the mesosphere and lower thermosphere. In January 2003, three days after the Columbia Space Shuttle was launched from the Kennedy Space Center, an iron (Fe) Boltzmann lidar detected strong sporadic Fe layers in the altitude range from 105 to 115 km at Rothera (67.5 S, 68.0 W), Antarctica. Located ~20 km above the peak of meteoric iron layers (near 90 km), these sporadic Fe layers were believed to be from the relocated shuttle exhaust plume and produced by the normal ablation of main engine components during the shuttle launch. This hypothesis was supported by Lyman-alpha observations from the Global Ultraviolet Imager on NASA’s TIMED satellite, showing a major portion of the shuttle plume transported to Antarctica. Enhanced polar mesospheric cloud (PMC) occurrence was observed by the same lidar at Rothera after the shuttle launch, and confirmed by the SBUV data. Such an enhancement of PMC occurrence has been attributed to the large amount of water vapor injected by the shuttle’s main engines near 110 km altitude. Similar phenomena were observed in the Arctic by a resonance Fe lidar and a Rayleigh lidar at Chatanika, Alaska (65 N, 147 W) after the launch of Space Shuttle Endeavor in August 2007. An intense sporadic E layer was co-located with the atom layer indicating a steady state in which iron atoms and ions are in some type of equilibrium. Initial analysis indicates the water vapor plays an important role in the chemistry. In this paper through detailed study of these examples, we demonstrate the impacts of Space Shuttle traffic on the ice mass of mesospheric clouds and on the mesosphere environment.

  6. Ozone in the upper stratosphere and mesosphere

    SciTech Connect

    Prather, M.J.

    1981-06-20

    A detailed photochemical model of the upper stratosphere and mesosphere is compared with three extensive sets of ozone observations: Atmospheric Explorer-E backscattered ultraviolet experiment (BUV), Nimbus-4 BUV, and rocket flights from Wallops Flight Center (ROCOZ). The Nimbus-4 and rocket observations are most sensitive to ozone between 30 and 50 km, whereas observations from AE-E measure the abundance of ozone up to 70 km. The photochemical model accurately reproduces the observed relationship between BUV intensity and local solar zenith angle, although the absolute calibration on AE-E appears to be in error. The AE-E observations and the model both exhibit a morning-afternoon asymmetry, with more ozone in the morning owing to the build up of HO/sub x/ species in the afternoon. Seasonal changes in atmospheric temperature produce an annual maximum in tropical mesospheric ozone during June-July-August. The amplitude of the observed effect is somewhat larger than calculated by the model. Some problems appear to remain with the presently accepted kinetic rates for HO/sub x/ species in the atmosphere. 71 references, 19 figures, 6 tables.

  7. Mesospheric heating due to intense tropospheric convection

    NASA Technical Reports Server (NTRS)

    Taylor, L. L.

    1979-01-01

    A series of rocket measurements made twice daily at Wallops Island, Va., revealed a rapid heating of the mesosphere on the order of 10 K on days when thunderstorms or squall lines were in the area. This heating is explained as the result of frictional dissipation of vertically propagating internal gravity waves generated by intense tropospheric convection. Ray-tracing theory is used to determine the spectrum of gravity wave groups that actually reach mesospheric heights. This knowledge is used in an equation describing the spectral energy density of a penetrative convective element to calculate the fraction of the total energy initially available to excite those waves that do reach the level of heating. This value, converted into a vertical velocity, is used as the lower boundary condition for a multilayer model used to determine the detailed structure of the vertically propagating waves. The amount of frictional dissipation produced by the waves is calculated from the solutions of the frictionless model by use of a vertically varying eddy viscosity coefficient. The heating produced by the dissipation is then calculated from the thermodynamic equation.

  8. Connecting small-scale turbulence to large-scale dynamics in the mesosphere using the Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX)

    NASA Astrophysics Data System (ADS)

    Triplett, C. C.; Collins, R. L.; Lehmacher, G. A.; Barjatya, A.; Fritts, D. C.; Luebken, F. J.; Thurairajah, B.; Harvey, V. L.

    2015-12-01

    The general circulation of the middle and upper atmosphere is determined by waves that form in the lower atmosphere. Large-scale Rossby waves and small-scale gravity waves propagate upward and release their energy in regions of instability such as critical layers. Rossby wave breaking leads to large scale disturbances in the wind and temperature fields known as a sudden stratospheric warming (SSW). These have a great impact on the seasonal weather and climate of the middle atmosphere. SSW events have a particular relationship with gravity waves in the Arctic middle atmosphere. During these events gravity waves reestablish geostrophic balance in the wind field, i.e. the stratospheric polar jet. This return to geostrophic balance, called geostrophic adjustment, generates gravity waves. We used the data from a recent rocket mission, lidar measurements, satellites, and MERRA to understand the coupling of small scale turbulent motions to large scale wave motions in the atmosphere. The Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) rocket investigation was composed of two rockets launched from Poker Flat Research Range on 25-26 January 2015. MTeX was launched into a mesospheric inversion layer (MIL) giving us a known meteorology. A neutral density sensor that measured turbulence at 20 cm scales flew on both MTeX payloads. Rayleigh lidar measurements of the stratosphere and mesosphere give us the temperature and density structure at kilometer scales characterized the mean environment as well as gravity waves and the MIL. Satellite measurements allow us to characterize the planetary wave activity. MERRA reanalysis gives us a characterization of the winds and planetary waves and their effect on the generation and propagation of waves from scales of tens to thousands of km. The combination of these three data sources and MERRA reanalysis gives us a view of the waves from the synoptic-scale generation and propagation of waves to the small-scale generation of

  9. An Overview of the Impact of Energetic Particle Precipitation on the Mesosphere and Stratosphere

    NASA Technical Reports Server (NTRS)

    Jackman, Charles H.

    2008-01-01

    Energetic precipitating particles (EPPs) can cause significant constituent changes in the polar mesosphere and stratosphere (middle atmosphere) during certain periods. Both protons and electrons can influence the polar middle atmosphere through ionization and dissociation processes. EPPs can enhance HOx (H, OH, HO2) through the formation of positive ions followed by complex ion chemistry and NOx (N, NO, NO2) through the dissociation of molecular nitrogen. The HO, increases can lead to ozone destruction in the mesosphere and upper stratosphere via several catalytic loss cycles. Such middle atmospheric HOx,-caused ozone loss is rather short-lived due to the relatively short lifetime (hours) of the HOx constituents. The HOx,-caused ozone depletion has been observed during several solar proton events (SPEs) in the past 40 years. HOx enhancements due to SPEs were confirmed by observations in the past solar cycle. A number of modeling studies have been undertaken over this time period that show predictions of enhanced HO, accompanied by decreased ozone due to energetic particles. The NO, family has a longer lifetime than the HOx family and can also lead to catalytic ozone destruction. EPP-caused enhancements of the NOx family can affect ozone promptly, if produced in the stratosphere, or subsequently, if produced in the 1ow.er thermosphere or mesosphere and transported to the stratosphere. NOx enhancements due to auroral electrons, medium and high energy electrons, relativistic electron precipitation (REP) events, and SPEs have been measured and/or modeled for decades Only a small number of SPEs (less than 10) in each solar cycle have sufficient flux of high energy protons (greater than 30 MeV) to produce a significant amount of NOx directly in the stratosphere to cause a measurable ozone destruction. Very high energy electrons (greater than 1500 keV) during REP events can also produce NOx directly in the stratosphere, however, the frequency and intensity of these

  10. NOx fluxes from the mesosphere and lower thermosphere and their impact on the middle atmosphere composition

    NASA Astrophysics Data System (ADS)

    Stiller, Gabriele

    NOx production in the mesosphere and lower thermosphere (MLT) due to EEPs and SPEs, its subsequent downward transport within polar winter vortices, and its impact on stratospheric NOy and ozone chemistry is currently in the focus of interest. Various publications suggest a link between solar activity and the MLT NOx production, as well as a link and/or possible feedback between man-made climate change and downward transport mechanisms. An overview on the contributions from the MIPAS/ENVISAT observations to this topic, combined with data from other instruments and 2D- and 3D-CTM and CCM studies, will be presented. Enhanced levels of NOx in the upper stratosphere and lower mesosphere have been found for several winters within polar vortices, and after the Halloween SPE in fall 2003. NOx was subsequently transformed to N2 O and other NOy species, leading, for example, to a secondary upper stratospheric HNO3 maximum. The impact of upper stratospheric enhanced NOx levels on the stratospheric NOy budget, the mechanisms of their transformation to other NOy species, and their effect on stratospheric ozone has been studied. The MIPAS data have been compared to results from several chemical models (CCM and CTMs), some of them including ion cluster chemistry. We will present the MIPAS observations and will analyse the comparisons to the various atmospheric models.

  11. UV-screening Organic Matter (CDOM and MAA) as indicators for monitoring changes of the polar marine ecosystem

    NASA Astrophysics Data System (ADS)

    PARK, M. O.; Kang, S. H.; Ha, S. Y.

    2014-12-01

    At Kongsfjorden bay, DOC, CDOM, FDOM, composition of phytoplankton and MAAs were measured from seawater. The relationship between CDOM, DOC vs Chl a was also investigated. DOC of seawater in 2010 and 2011 was increased 68% and 34% respectively in average compared to DOC in 2009. CDOM was in the range of acdom(375): 0.1855 m-1 ~ 0.0965 m-1, and it showed clear decreasing gradient form inside bay to offshore. CDOM vs DOC and Chl a was inversely related in the study area. Biomass of phytoplankton during 2009~2011 was 0.43~ 0.76 mg/m3 and little change was observed, but the composition and dominant classes have changed. Phaeocystis sp. was rare and diatom and cryptophyte were dominant in the center of bay and coastal area, respectively. 5 different MAAs, shinorine, palythine, mycosporine-glycine, porphyra-334, asterine-330 are identified and separated from Arctic phytoplanktons by HPLC and an unknown MAA was identified from Phaeocystis pouchetti. The spatial distribution pattern of MAAs in the study area was similar with the distribution of Phaeocystis sp. in 2009. The concentration of MAA in 2011 was decreased upto 50% with maximum concentration and seems to related with very low abundance of Phaeocystis sp. in the bay. The results from UV B exposure experiment with Phaeocystis pouchetti. and Porosira glacialis revealed clear discrepancy in the response to carbon uptake rate and photo-inhibition, and also the organic matter from these phytoplankton showed a different photo reactivity. Porosira glacialis, larger than Phaeocystis pouchetti. was more resistant to harmful UV B effect and result of carbon uptake rate using 13C support this tendency. In case Phaeocystis pouchetti becomes the dominant species, it is likely CDOM will be easily degraded and the UV screening effect of seawater will be reduced. acdom(375) 0.14m-1in spring in the arctic was higher than 0.11m-1 in the antarctic at monitoring station. These 3 year monitoring in the arctic Kongsfjorden showed a

  12. The MATS Satellite Mission - Tomographic Perspectives on the Mesosphere

    NASA Astrophysics Data System (ADS)

    Karlsson, B.; Gumbel, J.

    2015-12-01

    Tomography in combination with space-borne limb imaging opens exciting new ways of probing atmospheric structures. MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a new Swedish satellite mission that applies these ideas to the mesosphere. MATS science questions focus on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. This poster introduces instrument and analysis ideas, and discusses scientific perspectives and connections to other missions. MATS is being prepared for a launch in 2018.

  13. The stability of the mesospheric plasma layer

    SciTech Connect

    Pandey, B. P.; Vladimirov, S. V.

    2011-12-15

    The presence of micron and sub-micron size dust in the Earth's summer mesopause are a possible cause of electron density depletion. Whereas electrons in this weakly ionized and weakly magnetized layer are frozen in the magnetic field, the ions and dust are highly diffusive. This relative drift between the plasma particles will cause a current in the medium. The presence of such a current can destabilize the plasma layer with a growth rate of the order of Alfven frequency. Since required current density for the onset of this instability is on the order of J > or approx. 0.03A/m{sup 2}, it is quite unlikely that such a strong current is present in the mesosphere. However, owing to the prevailing ambiguity of measurements, the existence of such a current is not completely ruled out.

  14. Upper mesospheric lunar tides over middle and high latitudes during sudden stratospheric warming events

    NASA Astrophysics Data System (ADS)

    Chau, J. L.; Hoffmann, P.; Pedatella, N. M.; Matthias, V.; Stober, G.

    2015-04-01

    In recent years there have been a series of reported ground- and satellite-based observations of lunar tide signatures in the equatorial and low latitude ionosphere/thermosphere around sudden stratospheric warming (SSW) events. This lower atmosphere/ionosphere coupling has been suggested to be via the E region dynamo. In this work we present the results of analyzing 6 years of hourly upper mesospheric winds from specular meteor radars over a midlatitude (54°N) station and a high latitude (69°N) station. Instead of correlating our results with typical definitions of SSWs, we use the definition of polar vortex weaking (PVW) used by Zhang and Forbes. This definition provides a better representation of the strength in middle atmospheric dynamics that should be responsible for the waves propagating to the E region. We have performed a wave decomposition on hourly wind data in 21 day segments, shifted by 1 day. In addition to the radar wind data, the analysis has been applied to simulations from Whole Atmosphere Community Climate Model Extended version and the thermosphere-ionosphere-mesosphere electrodynamics general circulation model. Our results indicate that the semidiurnal lunar tide (M2) enhances in northern hemispheric winter months, over both middle and high latitudes. The time and magnitude of M2 are highly correlated with the time and associated zonal wind of PVW. At middle/high latitudes, M2 in the upper mesosphere occurs after/before the PVW. At both latitudes, the maximum amplitude of M2 is directly proportional to the strength of PVW westward wind. We have found that M2 amplitudes could be comparable to semidiurnal solar tide amplitudes, particularly around PVW and equinoxes. Besides these general results, we have also found peculiarities in some events, particularly at high latitudes. These peculiarities point to the need of considering the longitudinal features of the polar stratosphere and the upper mesosphere and lower thermosphere regions. For

  15. Polarizing matter and antimatter: A new method. The study of a repetitive Stern-Gerlach on stored polarized protons and the spin-splitter experiment: Progress report

    SciTech Connect

    Onel, Y.

    1992-02-01

    Several years ago a self-polarization effect for stored (anti)- protons and ions was investigated theoretically. The effect is based on the well-known Stern-Gerlach effect in gradient fields. The aim of the ongoing measurements at the Indiana University Cyclotron Facility (IUCF) is to verify experimentally the various assumptions on which this effect is based. The final goal is to demonstrate this new polarization effect. The proposed effect could be a powerful tool to produce polarized stored hadron beams both in the low-energy range and at SSC and LHC energies. In this progress report we will describe our progress in three parts: (A) Experimental work at IUCF Cooler Ring; (B) Our extensive computer simulations of the spin stability for the IUCF Cooler Ring; and (C) Theoretical studies.

  16. Observed Seasonal to Decadal-Scale Responses in Mesospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis

    2010-01-01

    The 14-yr (1991-2005) time series of mesospheric water vapor from the Halogen Occultation Experiment (HALOE) are analyzed using multiple linear regression (MLR) techniques for their6 seasonal and longer-period terms from 45S to 45N. The distribution of annual average water vapor shows a decrease from a maximum of 6.5 ppmv at 0.2 hPa to about 3.2 ppmv at 0.01 hPa, in accord with the effects of the photolysis of water vapor due to the Lyman-flux. The distribution of the semi-annual cycle amplitudes is nearly hemispherically symmetric at the low latitudes, while that of the annual cycles show larger amplitudes in the northern hemisphere. The diagnosed 11-yr, or solar cycle, max minus min, water vapor values are of the order of several percent at 0.2 hPa to about 23% at 0.01 hPa. The solar cycle terms have larger values in the northern than in the southern hemisphere, particularly in the middle mesosphere, and the associated linear trend terms are anomalously large in the same region. Those anomalies are due, at least in part, to the fact that the amplitudes of the seasonal cycles were varying at northern mid latitudes during 1991-2005, while the corresponding seasonal terms of the MLR model do not allow for that possibility. Although the 11-yr variation in water vapor is essentially hemispherically-symmetric and anti-phased with the solar cycle flux near 0.01 hPa, the concurrent temperature variations produce slightly colder conditions at the northern high latitudes at solar minimum. It is concluded that this temperature difference is most likely the reason for the greater occurrence of polar mesospheric clouds at the northern versus the southern high latitudes at solar minimum during the HALOE time period.

  17. First detection of charged dust particles in the Earth's mesosphere

    NASA Astrophysics Data System (ADS)

    Havnes, O.; Trøim, J.; Blix, T.; Mortensen, W.; Næsheim, L. I.; Thrane, E.; Tønnesen, T.

    1996-05-01

    Some theories for the observed anomalous radar backscatter during the summer (polar mesospheric summer echoes, or PMSE) and electron bite outs measured by rockets require the presence of charged dust. To investigate this, two dust probes have been launched in 1994 from Andyøa Rocket Range and we here report the results from the dust and an electron probe on the two payloads. The dust probes were designed to block out the electron and ion components at the mesopause but to detect primary currents due to impacts of charged dust and also to detect secondary plasma production during dust impacts. The results indicate that both during PMSE and noctilucent cloud (NLC) conditions, large amounts of dust, with average sizes apparently of about 0.1 μm and less, were present. The number densities Nd can be up to many thousand per cubic centimeter, and the charge density NdZd likewise. Large local gradients in density and charge density of dust are detected. Dust carrying both positive and negative charges can apparently be present on different occasions. In some parts of the NLC/PMSE layers we find that the negative charge density locked in grains is so large that the number of free electrons is significantly reduced there because the dust acts like sinks for electrons, and an electron bite out results. We also find that in one case the presence of positive dust leads to an increase in the local electron density by photoionization. The main uncertainties in the data analysis are the structure of the dust and the secondary plasma production at the comparatively low dust impact velocities (1 kms-1) in the experiment.

  18. Heterogeneous nucleation and growth of water vapor on meteoric smoke particle analogues at mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Nachbar, Mario; Duft, Denis; Leisner, Thomas

    2016-04-01

    Sub 2 nm meteoric smoke particles (MSP) produced from the ablation and recondensation of meteoric material are believed to be the major kind of nuclei causing the formation of water ice particles in the mesopause of Earth at heights of 80-90 km. These so called noctiLucent clouds (NLC) are frequently detected during polar summer, whereas the microphysical nucleation process and subsequent growth on such small particles are understood only poorly. Parameterizing these processes results in large uncertainties especially due to a lack of experimental data on desorption energies and critical saturation for the activation of nucleation under realistic mesospheric conditions, which states the need of laboratory measurements. We produce charged nanometer sized (2-3 nm) MSP analogues in a microwave plasma particle source and transfer them to a novel linear ion trap which allows us to trap the particles under typical mesospheric temperatures and H2O concentrations. The adsorption of H2O molecules on the particles surface followed by nucleation and growth can be examined by analyzing the mass distribution of the particles with a time-of-flight mass spectrometer as function of the residence time under supersaturated conditions. In this contribution we present such measurements for single positively as well as negatively charged particles which allow us to determine the desorption energy of water vapor on the investigated nanoparticles as well as the critical saturation needed to activate nucleation and subsequent growth.

  19. Mesospheric wave number spectra from Poker Flat MST radar measurements compared with gravity-wave model

    NASA Technical Reports Server (NTRS)

    Smith, S. A.; Fritts, D. C.; Vanzandt, T. E.

    1986-01-01

    The results of a comparison of mesospheric wind fluctuation spectra computed from radial wind velocity estimates made by the Poker Flat mesosphere-stratosphere-troposphere (MST) radar are compared with a gravity-wave model developed by VanZandt (1982, 1985). The principal conclusion of this comparison is that gravity waves can account for 80% of the mesospheric power spectral density.

  20. Mesospheric Temperature Inversion Layers: Recent Observations from UARS ISAMS and MLS

    NASA Technical Reports Server (NTRS)

    Wu, D.

    1999-01-01

    This paper presents an observational study of the mesospheric temperature inversion layer with Upper Atmosphere Research Satellite (UARS) Improved Stratospheric and Mesospheric Sounder (ISAMS) and Microwave Limb Sounder (MLS). The satellite data show that the temperature inversion layer can be generated from deep penetration of planetary waves in the mesosphere.

  1. Advanced mesospheric temperature mapper for high-latitude airglow studies.

    PubMed

    Pautet, P-D; Taylor, M J; Pendleton, W R; Zhao, Y; Yuan, T; Esplin, R; McLain, D

    2014-09-10

    Over the past 60 years, ground-based remote sensing measurements of the Earth's mesospheric temperature have been performed using the nighttime hydroxyl (OH) emission, which originates at an altitude of ∼87  km. Several types of instruments have been employed to date: spectrometers, Fabry-Perot or Michelson interferometers, scanning-radiometers, and more recently temperature mappers. Most of them measure the mesospheric temperature in a few sample directions and/or with a limited temporal resolution, restricting their research capabilities to the investigation of larger-scale perturbations such as inertial waves, tides, or planetary waves. The Advanced Mesospheric Temperature Mapper (AMTM) is a novel infrared digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ∼1.5  μm) to create intensity and temperature maps of the mesosphere around 87 km. The data are obtained with an unprecedented spatial (∼0.5  km) and temporal (typically 30″) resolution over a large 120° field of view, allowing detailed measurements of wave propagation and dissipation at the ∼87  km level, even in the presence of strong aurora or under full moon conditions. This paper describes the AMTM characteristics, compares measured temperatures with values obtained by a collocated Na lidar instrument, and presents several examples of temperature maps and nightly keogram representations to illustrate the excellent capabilities of this new instrument.

  2. Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology

    NASA Astrophysics Data System (ADS)

    Damiani, A.; Storini, M.; Santee, M. L.; Wang, S.

    2010-06-01

    Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS), have shown medium- (weeks) and short-term (days) variability of the nighttime OH layer. Because of the exceptional descent of air from the mesosphere-lower thermosphere region, medium-term variability occurred during February 2006 and February/March 2009. The layer normally situated at about 82 km descended by about 5-7 km, and its density increased to more than twice January values. In these periods and location the abundance of the lowered OH layer is comparable with the OH values induced by Solar Energetic Particle (SEP) forcing (e.g. SEP events of January 2005) at the same altitudes. In both years, the drop of the OH layer was coupled with increased mesospheric temperatures, elevated carbon monoxide and an almost complete disappearance of ozone at the altitude of the descended layer (which was not observed in other years). Moreover, under these exceptional atmospheric conditions, the third ozone peak is shown descending to lower altitude and increasing its abundance, with maximum values recorded during February 2009. Short-term variability occurred during Sudden Stratospheric Warming (SSW) events, in particular in January 2006, February 2008 and January 2009, when dynamics led to a smaller abundance of the OH layer at its typical altitude. The upward extension of the OH layer coupled to changes in ozone and carbon monoxide is shown to be strongest during the SSW of January 2009, coincident with the lowest upper mesospheric temperatures recorded at that time of year during 2005-2009. Finally, the series of SSW events that occurred in late January/February 2008 induced noticeable short-term variability in ozone at altitudes of both the ozone minimum and the third ozone peak. These phenomena, confined inside the polar vortex, are an additional tool that can be used to investigate mesospheric vortex dynamics.

  3. An experimental investigation of mesospheric ionization

    NASA Technical Reports Server (NTRS)

    Mitchell, J. D.

    1973-01-01

    Mesospheric ionization and its variability are examined. Data were obtained primarily by the parachute-borne blunt probe technique conducted in coordinated rocket experiments at White Sands Missile Range, New Mexico and Wallops Island, Virginia. Electrical conductivity measurements and deduced charge density values from ten rocket launches are presented and discussed. Positive ion conductivity and electron density were found to be relatively invariant with height between 45 and 60 km. Variations in positive conductivity of a factor of two and enhancements in negative conductivity by as much as a factor of four were measured by the blunt probe. A simple lumped parameter ion chemistry model is shown to satisfactorily explain the charge density values for the undisturbed lower D-region. Implications of the data in terms of this model are considered. The principal loss mechanism for positive ions in the 45 to 60 km. region is concluded to be dissociative recombination. Electron densities deduced from the conductivity data are explained by detachment involving a minor neutral constituent which is mixed between 65 and 45 km. and then cuts off sharply below 45 km. A correlation study involving blunt probe measurements shows relatively good agreement between variations in positive conductivity and temperature.

  4. Mesospheric ozone measurements by SAGE II

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Cunnold, D. M.

    1994-01-01

    SAGE II observations of ozone at sunrise and sunset (solar zenith angle = 90 deg) at approximately the same tropical latitude and on the same day exhibit larger concentrations at sunrise than at sunset between 55 and 65 km. Because of the rapid conversion between atomic oxygen and ozone, the onion-peeling scheme used in SAGE II retrievals, which is based on an assumption of constant ozone, is invalid. A one-dimensional photochemical model is used to simulate the diurnal variation of ozone particularly within the solar zenith angle of 80 deg - 100 deg. This model indicates that the retrieved SAGE II sunrise and sunset ozone values are both overestimated. The Chapman reactions produce an adequate simulation of the ozone sunrise/sunset ratio only below 60 km, while above 60 km this ratio is highly affected by the odd oxygen loss due to odd hydrogen reactions, particularly OH. The SAGE II ozone measurements are in excellent agreement with model results to which an onion peeling procedure is applied. The SAGE II ozone observations provide information on the mesospheric chemistry not only through the ozone profile averages but also from the sunrise/sunset ratio.

  5. Analysis of charged aerosols in the mesosphere during the MASS/ECOMA rocket campaign

    NASA Astrophysics Data System (ADS)

    Knappmiller, Scott Robert

    In the polar summer mesosphere ice particles grow sufficiently large to scatter sunlight, giving rise to visible cloud displays called Noctilucent Clouds (NLC). In August of 2007, two sounding rockets were launched from the Andoya Rocket Range, Norway carrying the newly developed MASS instrument (Mesospheric Aerosol Sampling Spectrometer) to study NLC. The instrument detects charged aerosols in four different mass ranges on four pairs of biased collector plates, one set for positive particles and one set for negative particles. The first sounding rocket was launched into a Polar Mesospheric Summer echo (PMSE) and into a NLC on 3 August. The solar zenith angle was 93 degrees and NLC were seen in the previous hour at 83 km by the ALOMAR RMR lidar. NLC were also detected at the same altitude by rocket-borne photometer measurements. The data from the MASS instrument shows a negatively charged population with radii >3 nm in the 83--89 km altitude range, which is collocated with PMSE detected by the ALWIN radar. Smaller particles, 1--2 nm in radius with both positive and negative polarity were detected between 86--88 km. Positively charged particles <1 nm in radius were detected at the same altitude. This is the first time the charge number densities of positive and negative NLC particles have been measured simultaneously. A charging model is developed to investigate the coexistence of positively and negatively charged aerosols in the NLC environment as measured by the MASS instrument. Natanson's rate equations are used for the attachment of free electrons and ions and the model includes charging by photo-electron emission and photo-detachment. Although the MASS flight occurred during twilight conditions, the solar UV flux was still sufficient to affect the charge state of the aerosols. The calculations are done assuming three types of particles with different photo-electron charging properties: (1) Icy NLC particles, (2) Hematite particles of meteoric origin as

  6. Observations of mesosphere summer echoes with calibrated VHF radars at latitudes between 54°N and 69°N in summer 2004

    NASA Astrophysics Data System (ADS)

    Latteck, R.; Singer, W.; Kirkwood, S.; Jönsson, L. O.; Eriksson, Håkan

    2005-08-01

    Mesosphere Summer Echoes (MSE) have been observed with 50-MHz VHF radars at middle (MSE) and polar latitudes (PMSE) for more than 20 years. The occurrence and seasonal variation of these radar echoes as well as their dependence on solar and geomagnetic activity are mostly studied basing on relative signal strength measurements (signal-to-noise ratios). The latitudinal dependence of the appearance and intensity of mesospheric summer echoes is still an open question as the widely used relative signal strength observations are determined by the atmospheric properties as well as by the individual radar characteristics. The use of absolutely calibrated echo powers allows a system in-depended comparison of mesospheric summer echoes observed at different sites by different systems. We present two different radar calibration methods. One applies a noise source to calibrate the receive path of the radar only, a second uses the radar signal itself to calibrate the complete transmitting and receiving path of the radar system. Both techniques and the same calibration hardware have been applied to the ALWIN VHF radar at Andenes/Norway (69°N), the ESRAD radar at Kiruna/Sweden (68deg;N) and OSWIN radar at Kühlungsborn/Germany (54°N). The sensitivity of the different radar systems and the seasonal and diurnal variation of the occurrence of mesospheric summer echoes at different locations are discussed on the basis of radar backscatter cross-sections.

  7. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin-Polarized Carriers Injection from Ferromagnetic Metal into Organic Semiconductor

    NASA Astrophysics Data System (ADS)

    Qiao, Shi-Zhu; Zhao, Jun-Qing; Jia, Zhen-Feng; Zhang, Tian-You

    2010-10-01

    Charge carriers in organic semiconductor are different from that of traditional inorganic semiconductor. Based on three-current model, considering electrical field effect, we present a theoretical model to discuss spin-polarized injection from ferromagnetic electrode into organic semiconductor by analyzing electrochemical potential both in ferromagnetic electrode and organic semiconductors. The calculated result of this model shows effects of electrode's spin polarization, equilibrium value of polarons ratio, interfacial conductance, bulk conductivity of materials and electrical field. It is found that we could get decent spin polarization with common ferromagnetic electrode by increasing equilibrium value of polarons ratio. We also find that large and matched bulk conductivity of organic semiconductor and electrode, small spin-dependent interfacial conductance, and enough large electrical field are critical factors for increasing spin polarization.

  8. The MATS satellite mission - tomographic perspectives on the mesosphere

    NASA Astrophysics Data System (ADS)

    Christensen, Ole Martin; Gumbel, Jörg; Megner, Linda; Murtagh, Donal P.; Ivchenko, Nickolay

    2016-04-01

    MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) is a Swedish satellite mission scheduled for launch in 2019. MATS science focuses on mesospheric wave activity and noctilucent clouds. Primary measurement targets are O2 Atmospheric band dayglow and nightglow in the near infrared (759-767 nm) and sunlight scattered from noctilucent clouds in the ultraviolet (270-300 nm). While tomography provides horizontally and vertically resolved data, spectroscopy allows analysis in terms of mesospheric composition, temperature and cloud properties. During 2015, the design of the MATS instrument was finalized, and the first complete instrument design will be shown in this presentation. As a part of this work, simulated measurements were performed and inverted using a 3 dimensional tomographic algorithm based on the optimal estimation method. As a result, the first quantitative estimation of the instruments capabilities and performance figures can now be presented, and hence give a more accurate picture of the scientific opportunities that the MATS mission provides.

  9. Resonance lidar detection of the mesospheric nickel layer

    NASA Astrophysics Data System (ADS)

    Martus, C. M.; Collins, R. L.

    2013-12-01

    We present the first reported detection of the mesospheric nickel (Ni) layer with resonance lidar. Ni is abundant in meteorites, the source of the metal layers, but has not been previously detected in the mesosphere. We detail the wavelength search we used to find the Ni absorption line and the SNR technique we used to extract the low resonance signal. Simulation results based on measurements of sodium (Na) with our system show that the signals received are as expected. We present an initial estimate of the Ni layer density and spatial parameters and find that the Ni layer characteristics are similar to those of the sodium layer.

  10. Solar Mesosphere Explorer optical-mechanical systems engineering

    NASA Technical Reports Server (NTRS)

    Gause, K. A.; Stuart, J. R.

    1979-01-01

    Mission overview of the Solar Mesosphere Explorer is presented along with design analysis and summaries of results. The Solar Mesosphere Explorer is a spin stabilized satellite carrying a complement of four Ebert-Fastie spectrometers and a four-channel Mersenne radiometer. Description of the spectrometer is given including a telescope and its aberrations. The radiometer is also described with consideration given to isothermal and thermal design, a Winston paraboloid, and optical tolerances. These five instruments are for measuring the earth's ozone density and distribution and providing quantitative data about those processes which govern the formation and destruction of ozone.

  11. Mesospheric electron detachment and LORE recovery times

    NASA Astrophysics Data System (ADS)

    Gordillo-Vazquez, Francisco J.; Haldoupis, Christos; Luque, Alejandro

    2015-04-01

    We present new results concerning the recovery times (> 10 minutes) of LOng Recovery Early VLF events (LORE) in the upper mesosphere connected to electromagnetic pulses (EMP) of large (> 250 kA km) charge moment change (CMC) ± CG (cloud to ground) lightning capable of producing elves or elve-sprite pairs (in the case of +CG parent lightning) [1], [2]. We have modeled two possible scenarios considering first the relaxation of slightly perturbed ambient electron densities (ne0 + Δne) without an impulsive ionization source and another scenario where the ambient electron density is considerably enhanced due to an impulsive ionization source (the lightning EMP). The full non-equilibrium kinetic and 2D EMP modelling of the perturbed mesosphere in the 76 km - 92 km range during LORE occurring conditions indicates that the electron density relaxation time (defined as the time the perturbed electron density, Δne, takes to decay a factor 1/e of the way to the ambient electron density (ne0)) is critically controlled at each altitude by the relative importance of associative detachment (of O- by, respectively, O and CO and of O2- by O) with respect to electron loss mechanisms (mainly 3-body, 2-body attachment and electron-ion recombination at the highest altitudes). We found that the maximum electron density relaxation time (> 15000 s) occur between 80 km and 82 km while it decreases with increasing altitudes to 12000 s (at 85 km) and about 2000 s (at 92 km). However, LORES are presumably due to VLF scattering from electron density enhancements caused by lightning-induced EMPs in the uppermost D region ionosphere (85 - 92 km). Thus the observed VLF signal recoveries (LORE recovery times) should associate with the relaxation of the maximum enhanced electron densities produced by elves between 85 km and 92 km [3]. Finally, our results for the lowest altitudes considered (76 km and 77 km) are in good agreement with the recovery times (between 20 s and 120 s) of the typical

  12. Metals in the mesosphere: chemistry and change

    NASA Astrophysics Data System (ADS)

    Plane, John; Marsh, Daniel; Höffner, Josef; Janches, Diego; Dawkins, Erin; Gomez-Martin, Juan Carlos; Bones, David; Feng, Wuhu; Chipperfield, Martyn

    2016-07-01

    The meteoric metal layers (e.g. Na, Fe, K and Ca) - which form as a result of the ablation of incoming meteors - act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere region. This presentation examines whether these metal layers are sensitive indicators of longer-term changes within the upper atmosphere. Output from the Whole Atmosphere Community Climate Model (WACCM) is used to assess the response of the Na, K and Fe layers across a 50-year period (1955-2005), while both model and observational data (satellite and lidar) is used to assess the response of the Na and K layers to the 11-year solar cycle extending between 2004-2013. On short time-scales, the K layer exhibits a very different seasonal behaviour compared to the other metals. This unusual behaviour is also exhibited at longer time-scales (both the 11-yr solar cycle and 50-yr periods); K displays a much more pronounced response to atmospheric changes at a 50-yr time scale than either Na or Fe. Underpinning this modelling work are two new laboratory systems developed at Leeds. First, a time-of-flight mass spectrometer with laser photo-ionization has been used to study the reactions of neutral metallic compounds in the gas phase which are not detectable by conventional spectroscopic probes. This has enabled significant advances in Na layer chemistry to be made. The second is a flowing afterglow/laser ablation experiment which has been used to study the dissociative recombination of metallic ions such as FeO ^{+} and CaO ^{+} with electrons; these processes are particularly important for modelling the phenomenon of sporadic metal layers.

  13. Model of Semidiurnal Pseudo Tide in the High-Latitude Upper Mesosphere

    NASA Technical Reports Server (NTRS)

    Talaat, E. R.; Mayr, H. G.

    2011-01-01

    We present numerical results for the m = 1 meridional winds of semi diurnal oscillations in the high-latitude upper mesosphere, which are generated in the Numerical Spectral Model (NSM) without solar excitations of the tides. Identified with heuristic computer runs, the pseudo tides attain amplitudes that are, at times, as large as the non-migrating tides produced with standard solar forcing. Under the influence of parameterized gravity waves, the nonlinear NSM generates internal oscillations like the quasi-biennial oscillation, that are produced with periods favored by the dynamical properties of the system. The Coriolis force would favor at polar latitudes the excitation of the 12-hour periodicity. This oscillation may help explain the large non-migrating semidiurnal tides that are observed in the region with ground-based and satellite measurements.

  14. Electrical structure and E-fields in the high-latitude mesosphere

    NASA Technical Reports Server (NTRS)

    Mitchell, John D.; Walter, Deborah J.; Croskey, Charles L.; Goldberg, Richard A.

    1995-01-01

    A description of the electric structure as observed during a rocket sounding noctilucent cloud (NLC) observation program in the summer of 1991, is presented. Both NLC and polar mesosphere summer echo (PMSE) conditions were determined. The observable effects on ions and electrons were measured in the NLC and PMSE regions and associated electric field (E-fields) measurements indicated small alternating current vertical fields. The following findings are reported: small and large scale electron density structure is noticeable in the NLC regions; above 82 km, the occurrence of very low-mobility positive ions directly demonstrates the existence of charged aerosols, and small alternating current vertical electric fields were observed in the NLC and PMSE region.

  15. Short-period mesospheric gravity waves and their sources at the South Pole

    NASA Astrophysics Data System (ADS)

    Mehta, Dhvanit; Gerrard, Andrew J.; Ebihara, Yusuke; Weatherwax, Allan T.; Lanzerotti, Louis J.

    2017-01-01

    The sourcing locations and mechanisms for short-period, upward-propagating gravity waves at high polar latitudes remain largely unknown. Using all-sky imager data from the Amundsen-Scott South Pole Station, we determine the spatial and temporal characteristics of 94 observed small-scale waves in 3 austral winter months in 2003 and 2004. These data, together with background atmospheres from synoptic and/or climatological empirical models, are used to model gravity wave propagation from the polar mesosphere to each wave's source using a ray-tracing model. Our results provide a compelling case that a significant proportion of the observed waves are launched in several discrete layers in the tropopause and/or stratosphere. Analyses of synoptic geopotentials and temperatures indicate that wave formation is a result of baroclinic instability processes in the stratosphere and the interaction of planetary waves with the background wind fields in the tropopause. These results are significant for defining the influences of the polar vortex on the production of these small-scale, upward-propagating gravity waves at the highest polar latitudes.

  16. Seasonal and interannual variations of mesospheric gravity waves and background winds

    NASA Astrophysics Data System (ADS)

    Hoffmann, P.; Rapp, M.; Becker, E.; Placke, M.

    2011-12-01

    The seasonal variation of the activity of gravity waves (GW) in the mesosphere/lower thermosphere is investigated using wind measurements with meteor and MF radars at Juliusruh (55°N, 13°E) and Andenes (69°N, 16°E), as well as on the basis of the simulated annual cycle using a gravity-wave resolving mechanistic general circulation model. Observational and computational results show the strongest GW energy during winter and a secondary maximum during summer. Additional observational analysis of short-period GWs yields a more pronounced summer maximum. The semi-annual variation is consistent with the selective filtering of westward and eastward GWs by the mean zonal wind. The latitudinal dependence during summer is characterized by stronger GW energy between 65 and 85 km at middle latitudes than at polar latitudes, and a corresponding upward shift of the wind reversal towards the pole which is also reflected by the simulated GW drag. Based on long term measurements of mesospheric winds at mid and polar altitudes, the interannual variations of the activity of GW with different periods and their dependence from the background winds are investigated. First results indicate that the observed zonal wind trend at about 75 km during summer at mid latitudes goes along with an enhanced activity of GW with periods between 3 - 6 hours at altitudes between 80 and 88 km. We will continue our studies of GW trends for other seasons at both latitudes to illuminate the contribution of the selective GW filtering by the background winds.

  17. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Controllable Spin Polarization of Charge Current by Rashba Spin Orbital Coupling

    NASA Astrophysics Data System (ADS)

    Cui, Juan; Yang, Yong-Hong; Wang, Jun

    2009-11-01

    We report a theoretic study on modulating the spin polarization of charge current in a mesoscopic four-terminal device of cross structure by using the inverse spin hall effect. The scattering region of device is a two-dimensional electron gas (2DEG) with Rashba spin orbital interaction (RSOI), one of lead is ferromagnetic metal and other three leads are spin-degenerate normal metals. By using Landauer-Büttiker formalism, we found that when a longitudinal charge current flows through 2DEG scattering region from FM lead by external bias, the transverse current can be either a pure spin current or full-polarized charge current due to the combined effect of spin hall effect and its inverse process, and the polarization of this transverse current can be easily controlled by several device parameters such as the Fermi energy, ferromagnetic magnetization, and the RSOI constant. Our method may pave a new way to control the spin polarization of a charge current.

  18. Influence of El Nino Southern Oscillation on the Mesospheric Temperature

    NASA Technical Reports Server (NTRS)

    Li, Tao; Calvo, Natalia; Yue, Jia; Dou, Xiankang; Russell, J. M, III; Mlynczak, M. G.; She, Chiao-Yao; Xue, Xianghui

    2013-01-01

    Using the middle atmosphere temperature data set observed by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) satellite experiment between 2002 and 2012, and temperatures simulated by the Whole Atmospheric Community Climate Model version 3.5 (WACCM3.5) between 1953 and 2005, we studied the influence of El Niño-Southern Oscillation (ENSO) on middle atmosphere temperature during the Northern Hemisphere (NH) wintertime. For the first time, a significant winter temperature response to ENSO in the middle mesosphere has been observed, with an anomalous warming of approximately 1.0 K/MEI (Multivariate ENSO Index) in the tropics and an anomalous cooling of approximately 2.0 K/MEI in the NH middle latitudes. The observed temperature responses to ENSO in the mesosphere are opposite to those in the stratosphere, in agreement with previous modeling studies. Temperature responses to ENSO observed by SABER show similar patterns to those simulated by the WACCM3.5 model. Analysis of the WACCM3.5 residual mean meridional circulation response to ENSO reveals a significant downwelling in the tropical mesosphere and upwelling in the NH middle and high latitudes during warm ENSO events, which is mostly driven by anomalous eastward gravity wave forcing in the NH mesosphere.

  19. Evidence for parallel elongated structures in the mesosphere

    NASA Technical Reports Server (NTRS)

    Adams, G. W.; Brosnahan, J. W.; Walden, D. C.

    1983-01-01

    The physical cause of partial reflection from the mesosphere is of interest. Data are presented from an image-forming radar at Brighton, Colorado, that suggest that some of the radar scattering is caused by parallel elongated structures lying almost directly overhead. Possible physical sources for such structures include gravity waves and roll vortices.

  20. Spatial Heterodyne Imager for Mesospheric Radicals on STPSat-1

    DTIC Science & Technology

    2010-10-22

    by many other sat- ellite experiments such as MLS, OSIRIS, or the suite of instruments on the NASA Aeronomy of Ice in the Meso- sphere (AIM... Aeronomy of Ice in the Mesosphere (AIM) mission: Overview and early science results, J. Atmos. Sol. Terr. Phys., 71, 289–299. Sander, S. P., et al

  1. Mesospheric Mountain Wave Breaking and Oceanic Wave Signatures During DEEPWAVE

    NASA Astrophysics Data System (ADS)

    Taylor, M. J.; Pautet, P. D.; Fritts, D. C.; Doyle, J. D.; Eckermann, S. D.; Williams, B. P.; Kaifler, B.; Bossert, K.; Criddle, N.

    2015-12-01

    DEEPWAVE is an international program designed to quantify gravity wave (GW) dynamics and effects from the ground to the upper mesosphere in unprecedented detail utilizing a range of airborne and ground-based measurements. DEEPWAVE was based on the South Island, New Zealand, to provide access to well-documented, but little understood, New Zealand and Tasmania "hotspots" as identified in satellite stratospheric measurements. Deep orographic GWs over New Zealand were a primary target, but multiple flights were also conducted over the Southern Ocean and Tasman Sea to quantify deep GW arising from convection, jet streams, and frontal systems. This presentation highlights new airborne and ground-based results obtained using an Advanced OH Mesospheric Temperature Mapper (AMTM) which creates high-quality intensity and temperature maps of a broad spectrum of mesospheric GWs. Two AMTM's were employed, one sited at the NIWA Observatory, Lauder (45°S), on the South Island, and one on the NSF GV Gulfstream aircraft which was supplemented by two side viewing IR OH imagers providing large field, ~900 km cross-track, GW maps. These instruments formed part of a comprehensive measurements capability including airborne Rayleigh and Na lidars, dropsondes, ground-based Rayleigh lidar, all-sky imagers and wind measurements. A total of 25 long duration (typically 7-8 hours) nighttime flights were conducted creating an exceptionally rich data set. Here we focus on two key initial findings (a) discovery of large amplitude, mesospheric mountain waves and their intermittent wave breaking signatures, and (b) first measurements of large-field open-ocean mesospheric GW and their near-identical stratospheric wave signatures using AIRS satellite and model forecasting data.

  2. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Transport Through a Precessing Spin Coupled to Noncollinearly Polarized Ferromagnetic Leads

    NASA Astrophysics Data System (ADS)

    Wang, Xian-Chao; Xin, Zi-Hua; Feng, Li-Ya

    2010-02-01

    The quantum electronic transport through a precessing magnetic spin coupled to noncollinearly polarized ferromagnetic leads (F-MS-F) has been studied in this paper. The nonequilibrium Green function approach is used to calculate local density of states (LDOS) and current in the presence of external bias. The characters of LDOS and the electronic current are obtained. The tunneling current is investigated for different precessing angle and different configurations of the magnetization of the leads. The investigation reveals that when the precessing angle takes θ < π/2 and negative bias is applied, the resonant tunneling current appears, otherwise, it appears when positive bias is applied. When the leads are totally polarized and the precessing angel takes 0, the tunneling current changes with the configuration of two leads; and it becomes zero when the two leads are antiparallel.

  3. Estimating pesticide sampling rates by the polar organic chemical integrative sampler (POCIS) in the presence of natural organic matter and varying hydrodynamic conditions

    USGS Publications Warehouse

    Charlestra, Lucner; Amirbahman, Aria; Courtemanch, David L.; Alvarez, David A.; Patterson, Howard

    2012-01-01

    The polar organic chemical integrative sampler (POCIS) was calibrated to monitor pesticides in water under controlled laboratory conditions. The effect of natural organic matter (NOM) on the sampling rates (Rs) was evaluated in microcosms containing -1 of total organic carbon (TOC). The effect of hydrodynamics was studied by comparing Rs values measured in stirred (SBE) and quiescent (QBE) batch experiments and a flow-through system (FTS). The level of NOM in the water used in these experiments had no effect on the magnitude of the pesticide sampling rates (p > 0.05). However, flow velocity and turbulence significantly increased the sampling rates of the pesticides in the FTS and SBE compared to the QBE (p < 0.001). The calibration data generated can be used to derive pesticide concentrations in water from POCIS deployed in stagnant and turbulent environmental systems without correction for NOM.

  4. Choosing the polarity of the phase-encoding direction in diffusion MRI: Does it matter for group analysis?

    PubMed Central

    Kennis, M.; van Rooij, S.J.H.; Kahn, R.S.; Geuze, E.; Leemans, A.

    2016-01-01

    Notorious for degrading diffusion MRI data quality are so-called susceptibility-induced off-resonance fields, which cause non-linear geometric image deformations. While acquiring additional data to correct for these distortions alleviates the adverse effects of this artifact drastically – e.g., by reversing the polarity of the phase-encoding (PE) direction – this strategy is often not an option due to scan time constraints. Especially in a clinical context, where patient comfort and safety are of paramount importance, acquisition specifications are preferred that minimize scan time, typically resulting in data obtained with only one PE direction. In this work, we investigated whether choosing a different polarity of the PE direction would affect the outcome of a specific clinical research study. To address this methodological question, fractional anisotropy (FA) estimates of FreeSurfer brain regions were obtained in civilian and combat controls, remitted posttraumatic stress disorder (PTSD) patients, and persistent PTSD patients before and after trauma-focused therapy and were compared between diffusion MRI data sets acquired with different polarities of the PE direction (posterior-to-anterior, PA and anterior-to-posterior, AP). Our results demonstrate that regional FA estimates differ on average in the order of 5% between AP and PA PE data. In addition, when comparing FA estimates between different subject groups for specific cingulum subdivisions, the conclusions for AP and PA PE data were not in agreement. These findings increase our understanding of how one of the most pronounced data artifacts in diffusion MRI can impact group analyses and should encourage users to be more cautious when interpreting and reporting study outcomes derived from data acquired along a single PE direction. PMID:27158586

  5. Subseasonal variability of water vapor in the upper stratosphere/lower mesosphere over Northern Europe in winter 2009/2010

    NASA Astrophysics Data System (ADS)

    Peters, D. H. W.; Hallgren, K.; Lübken, F.-J.; Hartogh, P.

    2014-07-01

    For the upper stratosphere and lower mesosphere (USLM) we used microwave spectrometer measurements of water vapor to investigate the cause of subseasonal variability over Northern Europe: at ALOMAR (Andenes, 69.3° N, 16.1° E), Northern Norway, and at the Leibniz Institute of Atmospheric Physics (Kühlungsborn, 54.2° N, 11.8° E), Northern Germany, for winter 2009/2010. The MERRA data set of NASA is applied to study the dynamical link between the local variability of H2O and transport in the USLM. Besides a slow increase in January and a stronger decrease in February and March 2010, episodes of significant increase and decrease of H2O were found over Northern Germany. These structural changes are in good agreement with MERRA which show similar patterns induced by a dominant conservative horizontal transport of H2O. Due to the strong negative meridional gradient and mixing barrier, higher values of water vapor have been observed outside the polar vortex and lower values inside. We found that the complex polar vortex evolution over Northern Germany during the minor stratospheric sudden warming (mSSW) in the beginning of December 2009 and the major warming (MSSW) at the end of January 2010, as well as between the two, fits well into this relationship. An episode of strong increase in water vapor over ALOMAR at about 55-60 km altitude was observed during the MSSW on the 27th of January 2010 resulting in a significant double peak in altitude. Based on MERRA data we show that this dual peak was caused by a relatively strong regional northward propagation of more moist air in the lower mesosphere. In the lower mesosphere strong polar intrusion of warm and moist air occurred mainly over Northern Europe resulting in a well-mixed polar anticyclone on the 30th of January. In comparison with observations the local maxima of H2O in MERRA are underestimated by approximately 1-2 ppmv. After the MSSW, the vertical descent rate of the MERRA reanalysis is half as much as the

  6. The Detached Haze Layer in Titan's Mesosphere

    NASA Astrophysics Data System (ADS)

    Lavvas, P.; Yelle, R. V.; Vuitton, V.

    2008-12-01

    The Cassini observations reveal the presence of a detached haze layer in Titan's mesosphere at an altitude of 520 km, well above the stratosphere. Observations of scattered light made by the Imaging Science Subsystem (ISS) reveal a clearly defined layer encircling low and mid-latitude regions. The aerosol layer is also detected in stellar occultation measurements of UV extinction by the UltraViolet Imaging Spectrometer (UVIS). The haze is a global and permanent feature of Titan's atmosphere. Furthermore the location of the detached haze layer is coincident with and the likely cause of a local maximum in the temperature profile measured by the Huygens Atmospheric Structure Instrument (HASI). This temperature inversion is also permanent and global, having been detected in ground-based stellar occultations. The correlation between the extinction profile and the temperature maximum imply that the detached haze cannot be due to condensation, as previously suggested. Previously, Voyager high phase angle images at 500 nm revealed a detached haze layer near 350 km, more than 150 km lower than the Cassini layer. Close examination of the Voyager images suggests that the Cassini detached layer at 520 km is a separate phenomenon rather than a change in the Voyager detached layer. Analysis of the observed optical properties suggests that the average size of particles in the Cassini detached layer is < 45 nm, with an imaginary index k < 0.3 at 187.5 nm, while Non-LTE calculations of the temperature perturbation induced by the detached haze show that the average particle size must be greater than 35 nm for reproducing the heating rate implied by the HASI temperature profile. Calculation of the sedimentation velocity of the particles, coupled with the derived number density, imply a mass flux of 1.9-3.2 × 10-14 g cm-2 s-1. This is approximately equal to the mass flux required to explain the main haze layer and suggests that the stratospheric haze is formed primarily by

  7. SWAS observations of water vapor in the Venus mesosphere

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Melnick, Gary J.; Tolls, Volker; Bergin, Edwin A.; Patten, Brian M.

    2007-06-01

    We present the first detections of the ground-state H 216O ( 1-1) rotational transition (at 556.9 GHz) and the 13CO (5-4) rotational transition from the atmosphere of Venus, measured with the Submillimeter Wave Astronomy Satellite (SWAS). The observed spectral features of these submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. The measured water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the line in December 2002 and July 2004, and no detections in January and March 2004. Retrieval of atmospheric parameters was performed using a multi-transition inversion algorithm, combining simultaneous retrievals of temperature, carbon monoxide, and water profiles under imposed constraints. Analysis of the SWAS spectra resulted in measurements or upper limits for the globally averaged mesospheric water vapor abundance for each of the four observation periods, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. These results are fully consistent with the long-term study of mesospheric water vapor from millimeter and submillimeter observations of HDO [Sandor, B.J., Clancy, R.T., 2005. Icarus 177, 129-143]. The December 2002 observations detected very rapid change in the mesospheric water abundance. Over five days, a deep water absorption feature consistent with a water vapor abundance of 4.5±1.5 parts per million suddenly gave way to a significantly shallower absorption, implying a decrease in the water vapor abundance by a factor of nearly 50 in less that 48 h. In 2004, similar changes in the water vapor abundance were measured between the March and July SWAS observing periods, but

  8. Summary of Sessions: Ionosphere - Thermosphere - Mesosphere Working Group

    NASA Technical Reports Server (NTRS)

    Spann, J. F.; Bhattacharyya, A.

    2006-01-01

    The topics covered by the sessions under the working group on Ionosphere-Thermosphere-Mesosphere dealt with various aspects of the response of the ionosphere-thermosphere coupled system and the middle atmosphere to solar variability. There were four plenary talks related to the theme of this working group, thirteen oral presentations in three sessions and six poster presentations. A number of issues related to effects of solar variability on the ionosphere-thermosphere, observed using satellite and ground-based data including ground magnetometer observations, radio beacon studies of equatorial spread F, and modeling of some of these effects, were discussed. Radar observations of the mesosphere-lower thermosphere region and a future mission to study the coupling of thunderstorm processes to this region, the ionosphere, and magnetosphere were also presented.

  9. Maui mesosphere and lower thermosphere (MALT) Na lidar enterprise

    NASA Astrophysics Data System (ADS)

    Carlson, Chad G.; Swenson, Gary R.; Dragic, Peter; Liu, Alan

    2005-10-01

    Na Wind/Temperature lidar offers a method to study the dynamics and thermal structure of the mesosphere and lower thermosphere (MALT) through Doppler methods. The University of Illinois system has been operated at both the USAF Starfire Optical Range in Albuquerque, NM (94, 98-00') and at the USAF AMOS Maui facilities with receiving mirrors that are 3.5 m in diameter. An autonomous receiving system is being developed which will provide unrestricted and continuous operational capabilities. The bi-static operational receivers will be coupled with multiple fibers so that Na (589 nm) returns from the MALT region and Rayleigh (355 nm) returns from the stratosphere and mesosphere can be received simultaneously. The system will be described with attention to increased efficiencies in the receiver.

  10. Report of the Ionosphere-Thermosphere-Mesosphere Panel

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, Edward P.; Killeen, Tim L.; Arnoldy, Roger L.; Brace, Larry H.; Christensen, Andrew B.; Fejer, B.; Heelis, Roderick A.; Keskinen, Michael J.; Maynard, Nelson C.; Mayr, Hans G.

    1991-01-01

    The scientific objectives and mission concept that emerged from the discussions of this panel are presented. The overall scientific theme of this report is the investigation of the ionosphere, thermosphere, and mesosphere (near Earth space environment) as a global, dynamic, and coupled system. Among the specific goals of this area of research are: (1) understanding the consequences of transition between turbulent and laminar flow and collisional and collisionless media; (2) understanding the thermospheric/mesospheric coupling due to gravity wave, tidal, and trace constituent transport processes; (3) understanding the electrodynamical coupling between the thermosphere/ionosphere and magnetosphere; (4) understanding the coupling processes between small scale plasma structures; and (5) determining the real-time evolution of the global ionosphere electric field in response to solar wind and magnetosphere coupling.

  11. The crystal structure of ice under mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Murray, Benjamin J.; Malkin, Tamsin L.; Salzmann, Christoph G.

    2015-05-01

    Ice clouds form in the summer high latitude mesopause region, which is the coldest part of the Earth's atmosphere. At these very low temperatures (<150 K) ice can exist in metastable forms, but the nature of these ices remains poorly understood. In this paper we show that ice which is grown at mesospherically relevant temperatures does not have a structure corresponding to the well-known hexagonal form or the metastable cubic form. Instead, the ice which forms under mesospheric conditions is a material in which cubic and hexagonal sequences of ice are randomly arranged to produce stacking disordered ice (ice Isd). The structure of this ice is in the trigonal crystal system, rather than the cubic or hexagonal systems, and is expected to produce crystals with aspect ratios consistent with lidar observations.

  12. The accuracy of Nimbus 7 LIMS temperatures in the mesosphere

    NASA Astrophysics Data System (ADS)

    Remsberg, E. E.

    1986-04-01

    Zonal-mean temperatures from the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) experiment are compared with a temperature 'climatology' derived from 4 years of Rayleigh backscatter lidar measurements at 44 N and for the months of March, April, and May, when wave activity and thus atmospheric variability is very weak. The mean difference between the two data sets is less than 3.5 K between 37 and 64 km and is consistent with the theoretical estimates of accuracy reported for the LIMS data. The effects of longitudinal and year-to-year variaiations in this comparison were considered, but they do not change the conclusions significantly. These validation results extend the altitude range of accurate LIMS temperatures in the mesosphere some 10 km higher than previously reported. It also means the LIMS ozone and NO2 retrievals in the lower mesosphere should be free of any major temperature bias error effects.

  13. Mesospheric optical signatures of possible lightning on Venus

    NASA Astrophysics Data System (ADS)

    Pérez-Invernón, F. J.; Luque, A.; Gordillo-Vázquez, F. J.

    2016-07-01

    A self-consistent two-dimensional model is proposed to account for the transient mesospheric nighttime optical emissions associated to possible intracloud (IC) lightning occurring in the Venusian troposphere. The model calculates the mesospheric (between 75 km and 120 km in altitude) quasi-elestrostatic electric field and electron density produced in response to IC lightning activity located between 40 km and 65 km in the Venusian cloud layer. The optical signatures and the densities of perturbed excited atomic and molecular neutral and ionic species in the mesosphere of Venus are also calculated using a basic kinetic scheme. The calculations were performed for different IC lightning discharge properties. We found that the calculated electric fields in the mesosphere of Venus are above breakdown values and that, consequently, visible transient glows (similar to terrestrial Halos produced by lightning) right above the parent IC lightning are predicted. The transient optical emissions result from radiative deexcitation of excited electronic states of N2 (in the ultraviolet, visible and near-infrared ranges) and of O(1S) and of O(1D) in, respectively, the green (557 nm) and red (630 nm) wavelengths. The predicted transient lightning-induced glows from O(1S) can reach an intensity higher than 167 R and, consequently, be above the detection threshold of the Lightning and Airglow Camera instrument aboard the Japanese Akatsuki probe orbiting Venus since December 2015. However, according to our model, successful observations of transient lightning-induced optical glows could only be possible for sufficiently close (300 km or maximum 1000 km) distances.

  14. A Model Study of Global Variability in Mesospheric Cloudiness

    DTIC Science & Technology

    2005-01-01

    Journal of Atmospheric and Solar - Terrestrial Physics 67 (2005) 501–513 A model study of global variability in mesospheric cloudiness David E. Siskind...produced clouds ARTICLE IN PRESS D.E. Siskind et al. / Journal of Atmospheric and Solar - Terrestrial Physics 67 (2005) 501–513502 between 82 and 84km at...2003). ARTICLE IN PRESS D.E. Siskind et al. / Journal of Atmospheric and Solar

  15. Spherical solitons in Earth’S mesosphere plasma

    SciTech Connect

    Annou, K.; Annou, R.

    2016-01-15

    Soliton formation in Earth’s mesosphere plasma is described. Nonlinear acoustic waves in plasmas with two-temperature ions and a variable dust charge where transverse perturbation is dealt with are studied in bounded spherical geometry. Using the perturbation method, a spherical Kadomtsev–Petviashvili equation that describes dust acoustic waves is derived. It is found that the parameters taken into account have significant effects on the properties of nonlinear waves in spherical geometry.

  16. Thermosphere-Ionosphere-Mesosphere Modeling Using the TIME-GCM

    DTIC Science & Technology

    2014-09-30

    Thermosphere-Ionosphere-Mesosphere Modeling Using the TIME-GCM Raymond G. Roble High Altitude Observatory National Center for Atmospheric...ORGANIZATION NAME(S) AND ADDRESS(ES) High Altitude Observatory,National Center for Atmospheric Research,,Box 3000,,Boulder,,CO, 80307 8. PERFORMING...climate model that extends from the ground, including oceans, to 500 km altitude to study global atmospheric variability and couplings. A project is

  17. Mesospheric Winds and Magnetic Fields from the South Pole

    NASA Astrophysics Data System (ADS)

    Martin, C. L.; Burrows, S. M.; Brown, M. J.; Roberts, E. A.

    2007-12-01

    We show how carbon monoxide (CO) can be used as a tracer of mesospheric neutral wind speeds, by measuring small Doppler shifts in its rotational emission spectrum. Since the altitude range we are most sensitive to is generally inaccessible to many other measurement techniques, this fills a significant experimental gap. Using this method, high-resolution ground-based measurements of mesospheric CO taken from the AST/RO sub-millimeter telescope, located at Amundsen-Scott South Pole Station have been used to calculate wind speeds and column densities over the Antarctic from 2002 to 2005. For more information see Burrows et al. JGR-Atmospheres doi:10.1029/2006JD007993. In addition, the 2→ 1 rotational transition of O18O has been measured and used as a tracer of the mesospheric magnetic field over the Antarctic. We demonstrate how the Zeeman splitting of this molecule was used to measure the Earth's magnetic field during the geomagnetic storm of January 2003.

  18. Morphology and sources of turbulence in the mesosphere during DYANA

    NASA Astrophysics Data System (ADS)

    Lubken, F.-J.; Hillert, W.; Lehmacher, G.; von Zahn, U.; Blix, T. A.; Thrane, E. V.; Widdel, H.-U.; Kokin, G. A.; Knyazev, A. K.

    1994-12-01

    During the DYnamics Adapted Network for the Atmosphere (DYANA) campaign in early 1990 turbulent parameters were measured at various places by means of in situ and ground supported techniques. Rocket borne instruments detected small-scale fluctuations of neutral (TOTAL instrument) and ion (PIP instrument) number densities in the mesosphere and lower thermosphere. A total of six flights was successfully performed in Andoya (69 deg N) and two in Biscarosse (44 deg N). Altitude profiles of turbulent parameters, such as turbulent energy dissipation rates epsilon and turbulent diffusion coefficients Kappa were derived from the fluctuations. Thanks to improvements in the instrumental capabilities, the reliability of the absolute values is unprecedented. The mean turbulent energy dissipation rates measured both by TOTAL and PIP in Andoya show very low values (less than 1 mW/kg) in the lower mesosphere, increasing to approximately 10 W/kg in the upper mesosphere. The corresponding heating rates are approximately 0.05 and 1 K/day, respectively. The two flights performed in Biscarosse showed similar low values. In addition to the in situ measurements, energy dissipation rates were measured around 75 km by the chaff dispersion technique at Heiss Island (81 deg N) and at Volgograd (48 deg N). Much higher epsilon values were observed (typically 100 mW/kg) using this procedure than those values obtained by in situ measurements.

  19. Interaction of polar and nonpolar organic pollutants with soil organic matter: sorption experiments and molecular dynamics simulation.

    PubMed

    Ahmed, Ashour A; Thiele-Bruhn, Sören; Aziz, Saadullah G; Hilal, Rifaat H; Elroby, Shaaban A; Al-Youbi, Abdulrahman O; Leinweber, Peter; Kühn, Oliver

    2015-03-01

    The fate of organic pollutants in the environment is influenced by several factors including the type and strength of their interactions with soil components especially SOM. However, a molecular level answer to the question "How organic pollutants interact with SOM?" is still lacking. In order to explore mechanisms of this interaction, we have developed a new SOM model and carried out molecular dynamics (MD) simulations in parallel with sorption experiments. The new SOM model comprises free SOM functional groups (carboxylic acid and naphthalene) as well as SOM cavities (with two different sizes), simulating the soil voids, containing the same SOM functional groups. To examine the effect of the hydrophobicity on the interaction, the organic pollutants hexachlorobenzene (HCB, non-polar) and sulfanilamide (SAA, polar) were considered. The experimental and theoretical investigations explored four major points regarding sorption of SAA and HCB on soil, yielding the following results. 1--The interaction depends on the SOM chemical composition more than the SOM content. 2--The interaction causes a site-specific adsorption on the soil surfaces. 3--Sorption hysteresis occurs, which can be explained by inclusion of these pollutants inside soil voids. 4--The hydrophobic HCB is adsorbed on soil stronger than the hydrophilic SAA. Moreover, the theoretical results showed that HCB forms stable complexes with all SOM models in the aqueous solution, while most of SAA-SOM complexes are accompanied by dissociation into SAA and the free SOM models. The SOM-cavity modeling had a significant effect on binding of organic pollutants to SOM. Both HCB and SAA bind to the SOM models in the order of models with a small cavity>a large cavity>no cavity. Although HCB binds to all SOM models stronger than SAA, the latter is more affected by the presence of the cavity. Finally, HCB and SAA bind to the hydrophobic functional group (naphthalene) stronger than to the hydrophilic one (carboxylic acid

  20. Impact of horizontal transport, temperature, and PMC uptake on mesospheric Fe at high latitudes

    NASA Astrophysics Data System (ADS)

    Gardner, Chester S.; Huang, Wentao

    2016-06-01

    We analyze year-round Fe lidar observations made in Antarctica at Rothera (67.7°S), South Pole (90°S), and McMurdo (77.8°S). During midsummer, when the mesopause region is continuously sunlit, the Fe density between 84 and 88 km is independent of temperature, because photolysis of FeOH is so fast that virtually all of the FeOH is converted to Fe via this path, rather than via the temperature-dependent FeOH + H reaction. The extremely low summertime densities at Rothera and South Pole are caused primarily by meridional transport northward out of the polar cap and, to a lesser extent, by uptake of Fe species on polar mesospheric cloud (PMC) ice particles. In midwinter, both meridional transport and temperature dominate Fe variations. The temperature sensitivity of Fe during winter is 2.2%/K at Rothera and 3.0%/K at South Pole. The annual mean Fe abundance at McMurdo is more than 50% larger than that observed at any other lidar site in both the Northern and Southern Hemispheres. McMurdo is located at the magnetic poleward edge of the auroral oval, just north of the deep polar cap. We hypothesize that southward transport of Fe+ out of the auroral oval in winter and northward transport of Fe+ out of the deep polar cap and auroral zone in summer, to McMurdo where it is neutralized, could be the source of the enhanced Fe. Theoretical calculations show that Fe+ densities of ~13,000 cm-3 in midwinter and ~1600 cm-3 in midsummer, between 84 and 88 km, are required to account for the high Fe densities at McMurdo.

  1. SOIR/VEX mesospheric aerosols observations and modelling

    NASA Astrophysics Data System (ADS)

    Wilquet, Valérie; Carine Vandaele, Ann; Drummond, Rachel; Mahieux, Arnaud; Robert, Séverine; Daerden, Frank; Neary, Lori; Bertaux, Jean-Loup

    2013-04-01

    SPICAV/SOIR on-board Venus Express is able to target the layer of aerosols above the cloud layer at the terminator (Wilquet et al., 2009). A high temporal variability in the aerosol content in Venus' atmosphere was inferred from SOIR observations, as well as a latitudinal dependency of the aerosol loading (Wilquet et al., 2012). This is in agreement with results from previous missions and with the facts that (i) H2SO4 aerosol particles are formed through SO2 photo-oxidation and hydration at the cloud top of Venus, (ii) SO2 photolysis is more efficient at low latitudes, (iii) the altitude of the cloud top is up to one scale height lower in the polar region than at the equator. A increasing SO2 abundance with increasing altitude was recently observed with SPICAV-UV at altitudes of ~ 85-105 km (Belyaev et al., 2012) but also from microwave ground-based spectra in the Venus mesosphere (Sandor et al., 2010), which suggest a source of SO2 at high altitudes. Zhang et al. (2012) proposed a one dimensional photochemistry-diffusion model in order to reconcile these puzzling findings; he suggested that H2SO4 might be a source of SO2 above 90 km through aerosol evaporation followed by SO3 photolysis. This model and the observations are however disputed by others demonstrating the necessity for a more global interpretation of the observations and for modelling of the upper haze layer. For example, the variations in aerosol loading can be compared to other key parameters of the atmosphere retrieved from the same SOIR spectra such as water and SO2 composition or temperature. In addition, a microphysical model is being developed that will calculate the time dependent haze particle size distributions assuming an initial size distribution of background sulphate aerosols. The model will simulate the formation, growth, evaporation, and sedimentation of particles. Results of this on-going research will be presented and discussed. References : Belyaev, D.A., F. Montmessin, J.-L. Bertaux

  2. Variability of the nighttime OH layer and mesospheric ozone at high latitudes during northern winter: influence of meteorology

    NASA Astrophysics Data System (ADS)

    Damiani, A.; Storini, M.; Santee, M. L.; Wang, S.

    2010-11-01

    Analyses of OH zonal means, recorded at boreal high latitudes by the Aura Microwave Limb Sounder (MLS) in winters of 2005-2009, have shown medium- (weeks) and short- (days) term variability of the nighttime OH layer. Because of the exceptional descent of air from the mesosphere-lower thermosphere (MLT) region, medium-term variability occurred during February 2006 and February/March 2009. The layer normally situated at about 82 km descended by about 5-7 km, and its density increased to more than twice January values. In these periods and location the abundance of the lowered OH layer is comparable to the OH values induced by Solar Energetic Particle (SEP) forcing (e.g., SEP events of January 2005) at the same altitudes. In both years, the descent of the OH layer was coupled with increased mesospheric temperatures, elevated carbon monoxide and an almost complete disappearance of ozone at the altitude of the descended layer (which was not observed in other years). Moreover, under these exceptional atmospheric conditions, the third ozone peak, normally at about 72 km, is shown to descend about 5 km to lower altitude and increase in magnitude, with maximum values recorded during February 2009. Short-term variability occurred during Sudden Stratospheric Warming (SSW) events, in particular in January 2006, February 2008 and January 2009, when dynamics led to a smaller abundance of the OH layer at its typical altitude. During these periods, there was an upward displacement of the OH layer coupled to changes in ozone and carbon monoxide. These perturbations were the strongest during the SSW of January 2009; coincident upper mesospheric temperatures were the lowest recorded over the late winters of 2005-2009. Finally, the series of SSW events that occurred in late January/February 2008 induced noticeable short-term variability in ozone at altitudes of both the ozone minimum and the third ozone peak. These phenomena, confined inside the polar vortex, are an additional tool

  3. The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016

    NASA Astrophysics Data System (ADS)

    Matthias, V.; Dörnbrack, A.; Stober, G.

    2016-12-01

    The Arctic polar vortex in the early winter 2015/2016 was the strongest and coldest of the last 68 years. Using global reanalysis data, satellite observations, and mesospheric radar wind measurements over northern Scandinavia we investigate the characteristics of the early stage polar vortex and relate them to previous winters. We found a correlation between the planetary wave (PW) activity and the strength and temperature of the northern polar vortex in the stratosphere and mesosphere. In November/December 2015, a reduced PW generation in the troposphere and a stronger PW filtering in the troposphere and stratosphere, caused by stronger zonal winds in midlatitudes, resulted in a stronger polar vortex. This effect was strengthened by the equatorward shift of PWs due to the strong zonal wind in polar latitudes resulting in a southward shift of the Eliassen-Palm flux divergence and hence inducing a decreased deceleration of the polar vortex by PWs.

  4. Remote sensing of mesospheric dust layers using active modulation of PMWE by high-power radio waves

    NASA Astrophysics Data System (ADS)

    Mahmoudian, A.; Mohebalhojeh, A. R.; Farahani, M. M.; Scales, W. A.; Kosch, M.

    2017-01-01

    This paper presents the first study of the modulation of polar mesospheric winter echoes (PMWE) by artificial radio wave heating using computational modeling and experimental observation in different radar frequency bands. The temporal behavior of PMWE response to HF pump heating can be employed to diagnose the charged dust layer associated with mesospheric smoke particles. Specifically, the rise and fall time of radar echo strength as well as relaxation and recovery time after heater turn-on and turnoff are distinct parameters that are a function of radar frequency. The variation of PMWE strength with PMWE source region parameters such as electron-neutral collision frequency, photodetachment current, electron temperature enhancement ratio, dust density, and radius is considered. The comparison of recent PMWE measurements at 56 MHz and 224 MHz with computational results is discussed, and dust parameters in the PMWE generation regime are estimated. Predictions for HF PMWE modification and its connection to the dust charging process by free electrons is investigated. The possibility for remote sensing of dust and plasma parameters in artificially modified PMWE regions using simultaneous measurements in multiple frequency bands are discussed.

  5. Correlation between mesospheric ozone and Energetic Particle Precipitation over Troll, Antarctica in the years 2008 and 2009

    NASA Astrophysics Data System (ADS)

    Daae, M.; Espy, P. J.; Nesse Tyssøy, H.; Newnham, D. A.

    2013-12-01

    The British Antarctic Survey radiometer stationed at Troll, Antarctica (72S, 2.5E, L=4.76) measured ozone in the lower mesosphere and upper stratosphere from February 2008 until February 2010. By looking at anomalies in the polar-winter nighttime ozone, we are able to quantify the influence of Energetic Particle Precipitation (EPP) on ozone during these two years. Time-lagged correlations between geomagnetic indices (AE, Kp and Dst) and ozone anomalies as a function of height have been calculated to quantify which of the indices best accounts for the variability in the ozone. In addition, the MEPED instruments aboard the NOAA satellites have been used to quantify the EPP flux precipitating over Troll. Since the solar activity in 2008 undergoes a strong periodicity, which is linked to rotating coronal holes, this periodicity is also manifested in the EPP and the geomagnetic indices. A correlation analysis between the ozone over Troll and the periodic solar activity that is reflected in the EPP is also carried out, resulting in a statistical quantification of the EPP effects on mesospheric ozone as measured over Troll, Antarctica.

  6. Comparison of wind measurements in the troposphere and mesosphere by VHF/MF radars and in-situ techniques

    NASA Astrophysics Data System (ADS)

    Engler, N.; Singer, W.; Latteck, R.; Strelnikov, B.

    2008-11-01

    Radar wind observations at frequencies between 1.98 and 53.5 MHz obtained at polar latitudes were compared to in-situ wind measurements by radiosondes at tropospheric altitudes and to winds from falling spheres at mesospheric altitudes. Comparisons are shown for several campaigns of radiosonde and falling sphere observations. The radar wind directions agree well to the radiosonde and falling sphere observations and are highly correlated. The winds estimated from radar measurements are less than the radiosonde data by about 15% for spaced antenna observations and by about 10% for the Doppler beam swinging experiment. At mesospheric altitudes the spaced antenna winds obtained from the wide-beam Andenes MF radar are underestimated in the order of 35% and winds from the narrow-beam Saura MF radar are underestimated by about 20% compared to falling sphere winds at altitudes between 70 and 80 km. Furthermore, the relation between wind measurements using narrow-beam and wide-beam antenna arrangements for the MF radars is discussed and VHF radar observations are compared to the wide-beam MF radar.

  7. White matter injury and microglia/macrophage polarization are strongly linked with age-related long-term deficits in neurological function after stroke.

    PubMed

    Suenaga, Jun; Hu, Xiaoming; Pu, Hongjian; Shi, Yejie; Hassan, Sulaiman Habib; Xu, Mingyue; Leak, Rehana K; Stetler, R Anne; Gao, Yanqin; Chen, Jun

    2015-10-01

    , aged mice exhibited significantly reduced M2 polarization compared to young adults. Remarkably, we discovered a strong positive correlation between favorable neurological outcomes after dMCAO and MBP levels or the number of M2 microglia/macrophages. In conclusion, our studies suggest that the distal MCAO stroke model consistently results in ischemic brain injury with long-term behavioral deficits, and is therefore suitable for the evaluation of long-term stroke outcomes. Furthermore, aged mice exhibit deterioration of functional outcomes after stroke and this deterioration is linked to white matter damage and reductions in M2 microglia/macrophage polarization.

  8. MAARSY - the new MST radar on Andøya: first results of spaced antenna and Doppler measurements of atmospheric winds in the troposphere and mesosphere using a partial array

    NASA Astrophysics Data System (ADS)

    Stober, G.; Latteck, R.; Rapp, M.; Singer, W.; Zecha, M.

    2012-09-01

    MST radars have been used to study the troposphere, stratosphere and mesosphere over decades. These radars have proven to be a valuable tool to investigate atmospheric dynamics. MAARSY, the new MST radar at the island of Andøya uses a phased array antenna and is able to perform spaced antenna and Doppler measurements at the same time with high temporal and spatial resolution. Here we present first wind observations using the initial expansion stage during summer 2010. The tropospheric spaced antenna and Doppler beam swinging experiments are compared to radiosonde measurements, which were launched at the nearby Andøya Rocket Range (ARR). The mesospheric wind observations are evaluated versus common volume meteor radar wind measurements. The beam steering capabilities of MAARSY are demonstrated by performing systematic scans of polar mesospheric summer echoes (PMSE) using 25 and 91 beam directions. These wind observations permit to evaluate the new radar against independent measurements from radiosondes and meteor radar measurements to demonstrate its capabilities to provide reliable wind data from the troposphere up to the mesosphere.

  9. Wintertime Polar Ozone Evolution during Stratospheric Vortex Break-Down

    NASA Astrophysics Data System (ADS)

    Tweedy, O.; Limpasuvan, V.; Smith, A. K.; Richter, J. H.; Orsolini, Y.; Stordal, F.; Kvissel, O.

    2011-12-01

    Stratospheric Sudden Warming (SSW) is characterized by the rapid warming of the winter polar stratosphere and the weakening of the circumpolar flow. During the onset of a major SSW (when the circumpolar flow reverses direction), the warm stratopause layer (SL) descends from its climatological position to the mid-stratosphere level. As the vortex recovers from SSW, a "new" SL forms in the mid-mesosphere region before returning to its typical level. This SL discontinuity appears in conjunction with enhanced downward intrusion of chemical species from the lower thermosphere/upper mesosphere to the stratosphere. The descended species can potentially impact polar ozone. In this study, the NCAR's Whole Atmosphere Community Climate Model (WACCM) is used to investigate the behavior of polar ozone related to major SSWs. Specifically, dynamical evolution and chemistry of NOx, CO, and O3 are examined during three realistic major SSWs and compared with a non-SSW winter season. The simulated (zonal-mean) polar ozone distribution exhibits a "primary" maximum near 40 km, a "secondary" maximum between 90-105 km, and a "tertiary" maximum near 70 km. The concentration of the secondary maximum reduces by ~1.5 parts per million by volume (ppmv) as the vortex recovers and the upper mesospheric polar easterlies return. Enhanced downwelling above the newly formed SL extends up to just above this secondary maximum (~110 km). With an averaged concentration of 2 ppmv, the tertiary ozone maximum layer displaces upward with enhanced upwelling during SSW in conjunction with the lower mesospheric cooling. The downward propagation of the stratospheric wind reversal is accompanied by CO intrusion toward the lowermost stratosphere and anomalous behavior in the primary ozone maximum. Overall, the major SSW, SL, and polar ozone evolution mimic recently reported satellite observations.

  10. Mesospheric observations by a forward scattering meteor radar basic setup

    NASA Astrophysics Data System (ADS)

    Madkour, Waleed; Yamamoto, Masa-yuki

    2016-08-01

    The durations of radio echo signals scattered from meteor ionized trails might not show a consistent increase corresponding to higher density trails due to the rapid removal of meteor ions at certain heights. Several studies have concluded the dominant role of the secondary ozone layer over diffusion in the removal of the meteor trails below 95 km through chemical oxidization of the meteor ions. Using a basic setup configuration of a forward scattering receiver, a trial to observe the mesospheric ozone concentration was performed by analyzing the meteor echo duration distributions. The forward scattered meteor echoes have the advantage of long durations that can enable observing the transition from the diffusion-removal regime to the chemistry-removal regime. The cumulative meteor echo duration distribution of two meteor showers, the Perseids and the Geminids, were analyzed over 10 years and the chemistry-removal regime in each shower was observed. The knee duration position at which a drop in the number of long overdense meteor echoes starts differed by around 30 seconds between the two showers. As the secondary ozone concentration is inversely related to the solar activity level, the Geminids 2011 corresponding to a high solar activity level showed a significant higher counts of long duration echoes compared to the Geminids 2006 during a low activity level, with the knee position shifted to longer duration. The knee positions obtained during the two distinct meteor showers and the two half solar cycle points are generally in agreement with the mesospheric ozone conditions expected in each case. However, continuous data record is required for the other meteor showers and the sporadic meteors at different heights to observe the mesospheric ozone concentration vertically and the full 11-years solar cycle.

  11. Metals in the mesosphere: meteoroids, satellite retrievals and modelling

    NASA Astrophysics Data System (ADS)

    Dawkins, E.; Plane, J. M.; Chipperfield, M.; FENG, W.; Gumbel, J.; Hedin, J.; Höffner, J.; Friedman, J. S.

    2013-12-01

    Changes in the mesosphere may be an important signal of climate change and there is increasing evidence that accurate simulations of changes to the Earth's climate require models with a well resolved and accurate stratosphere and mesosphere. Following the ablation of meteoroids, the resulting metal species which are injected into the mesosphere/lower thermosphere region (80-110 km) offer a unique way of observing this region and of testing the accuracy of climate models in this domain. An earlier sodium retrieval algorithm has been extended, and modified to retrieve potassium densities using data from the OSIRIS spectrometer on-board the Odin satellite. Here we present an overview of the new potassium retrieval scheme, along with the first ever climatology of the global potassium layer from space for 2004-2012. These layers have been validated using lidar data and successfully capture the unusual semi-annual seasonal behaviour of potassium, which is starkly different to the other metals. Unlike sodium and iron which both display early wintertime density maxima, potassium also displays a summertime maximum which points to some unique and surprising features in the chemistry and the way it interacts with other atmospheric species. A detailed potassium chemistry scheme, developed by a team at Leeds (modules for Na, Fe, Ca, Si and Mg already added), has now been included in a version of the NCAR Whole Atmosphere Community Climate Model (WACCM). The annual, latitudinal and long-term variation of these modelled potassium layers are compared with the retrieved datasets to evaluate model chemistry and dynamics.

  12. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, Therese; Moreno, Raphael; Moullet, Arielle; Lellouch, Emmanuel; Fouchet, Thierry

    2014-05-01

    ALMA offers a unique opportunity to map mesospheric species on Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11 arcsec and the illumination factor was about 90 percent. Maps of CO, SO, SO2, and HDO have been built from transitions recorded in the 335-347 GHz frequency range. The mesospheric thermal profile has been inferred using the CO transition at 345.795 GHz. From the integrated spectrum of SO recorded on Nov. 14 at 346.528 GHz, we find that the best fit is obtained with a cut-off in the SO vertical distribution at about 88 km and a mean mixing ratio of about 8.0 ppb above this level. In the case of SO2, as for SO, we find that the best fit is obtained with a cut-off at about 88 km; the SO2 mixing ratio above this level is about 12 ppb. The map of HDO is retrieved from the 335.395 GHz transition. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is consistent with a H2O mixing ratio of about 2.5 ppm, constant with altitude. Our results are in good agreement with previous single dish submillimeter observations (Sandor and Clancy, Icarus 177, 129, 2005; Gurwell et al. Icarus 188, 288, 2007; Sandor et al. Icarus 208, 49, 2010; Icarus 217, 836, 2012), as well as with the predictions of photochemical models (Zhang et al. Icarus 217, 714, 2012).

  13. A superposed epoch study of the effects of solar wind stream interface events on the upper mesospheric and lower thermospheric temperature

    NASA Astrophysics Data System (ADS)

    Ogunjobi, O.; Sivakumar, V.; Sivla, W. T.

    2014-11-01

    The response of mesosphere and lower thermosphere (MLT) temperature to energetic particle precipitation over the Earth’s polar regions is not uniform due to complex phenomena within the MLT environment. Nevertheless, the modification of MLT temperatures may require an event-based study to be better observed. This work examines the influence of precipitation, triggered by solar wind stream interfaces (SI) event from 2002 to 2007, on polar MLT temperature. We first test the relationship between the ionospheric absorption measured by the SANAE IV (South African National Antarctic Expedition IV) riometer and the layer of energetic particle precipitation from POES (Polar Orbiting Environmental Satellites). The combined particle measurements from POES 15, 16, 17 and 18 were obtained close in time to the pass of the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature retrieval. Here, a superposed epoch technique is described and implemented to obtain average temperature profiles during SI-triggered particle precipitation. The superposed epoch average shows no significant temperature decrease below 100 km prior to the onset of SI-triggered precipitation, whereas a clear superposed average temperature decrease is observed at 95 km after the SI impact. A case study of SI event also yields similar observations. Results indicate that cooling effects due to the production of mesospheric odd hydrogen might be major contributors to temperature decrease under compressed solar wind stream.

  14. In situ measurements of the mesosphere and stratosphere

    NASA Technical Reports Server (NTRS)

    Crosky, C.

    1976-01-01

    The operation of a subsonic, Gerdien condenser probe for in situ measurements of the mesosphere and stratosphere is presented. The inclusion of a flashing Lyman alpha ultraviolet source provides an artifically produced ionization of particular constituents. Detailed theory of operation is presented and the data results from two flights are shown. A great deal of fine structure in mobility is observed due to the presence of various hydrated positive ions. The effect of the Lyman alpha source in the 35 km region was to dissociate a light hydrate ion rather than produce additional ionization. At the 70 km region, photodissociation of the heaviest ions (probably ice crystals) was also observed.

  15. Global observations of the mesospheric sodium layer from the OSIRIS instrument on ODIN

    NASA Astrophysics Data System (ADS)

    Fan, Z.; Plane, J.; Gumbel, J.; Llywellyn, E.; She, C.

    Limb-scanning observations of the Na D -line radiance at 589 nm in the earth s dayglow made from the OSIRIS instrument on the ODIN satellite have been used to retrieve absolute Na density profiles These have been ground-truthed using a Na lidar at Ft Collins Colorado Two years of data 2003 2004 have been analyzed to characterize the seasonal and latitudinal dependence of the global Na layer This paper will first describe the retrieval algorithm and error analysis and then discuss some of the important findings First is a pronounced diurnal variation in the equatorial region with the morning Na density being much lower than in early evening This is almost certainly caused by the effect of the strong diurnal tide on the local atomic oxygen density Second there is substantial depletion of Na in the presence of polar mesospheric clouds at high latitudes during summer which leads to a very marked seasonal variation in the layer Finally the vertical resolution in the retrieved profiles is good enough to resolve sporadic or sudden Na layers SSLs The global probability distribution of SSLs is rather unexpected with a much higher probability at mid- to high latitudes in the southern hemisphere

  16. HRDI Observations of Inertia-Gravity Waves in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Lieberman, Ruth S.

    1999-01-01

    Vertical profiles of High-resolution Doppler imager (HRDI) mesospheric winds have small-scale structure (vertical wavelengths between 10 and 20 km) that is virtually always present. Fourier analysis of HRDI zonal and meridional wind profiles have been carried out, and the spectral characteristics are sorted by latitude, month and local time. Power spectral density (PSD) exhibits a universal exp(-km) structure in the 10-20km wavelength regime, with K lying between 2 and 3. The observed PSD for wavelengths between 10 and 20 km is a factor of 3 higher than a null spectrum constructed from HRDI reported error bars multiplied by randomly varying numbers between -1 and +1. Stokes parameters were consolidated by month into Northern and Southern hemisphere middle and high latitudes belts (40-72 degrees), tidal belts (32-16 degrees) and a tropical belt (8S-8N). Vertical waves between 10 and 15 km in wavelength are about 10-15% polarized everywhere. The inferred propagation direction in the middle and high latitude Southern hemisphere is predominantly meridional during solstice, and significantly more zonal during equinoxes. In the tropical belt, the wave orientations are nearly North-South during solstices, with a slightly higher east-west component during equinox. In the tidal belts where the background wind includes a strong meridional tidal wind, the preferred wave orientation has a significant zonal component during equinox. These findings are consistent with the interpretation of wave filtering by the background wind.

  17. Joule heating in the mesosphere and thermosphere during the July 13, 1982, solar proton event

    NASA Technical Reports Server (NTRS)

    Roble, R. G.; Emery, B. A.; Garcia, R. R.; Killeen, T. L.; Hays, P. B.; Reid, G. C.; Solomon, S.; Evans, D. S.; Spencer, N. W.; Brace, L. H.

    1987-01-01

    The solar proton event of July 13, 1982 produced considerable ionization in the polar-cap mesosphere. Energetic solar proton fluxes were measured by the NOAA-6 satellite. The DE-2 satellite measured the low-energy electrons, the ion drift velocity, and other atmospheric and ionospheric properties during the event in the region of the measured maximum electric field (189 mV/m at 2215 UT near 60 deg N), a Joule heating rate of 1-3 K/day is calculated between 70 and 80 km, exceeding the heating due to ozone absorption at noon in the summer hemisphere in that altitude range. The Joule heating rate above 90 km greatly exceeded 20 K/day. The calculated height-integrated Joule heating rate above 100 km in the same region exceeded 400 ergs/sq cm sec, and DE-2 near 350 km measured neutral winds of nearly 1000 m/s and neutral gas temperatures of over 2000 K. The overall ionospheric structure calculated below the DE-2 satellite is described.

  18. Seasonal variation of mesospheric waves at northern middle and high latitudes

    NASA Astrophysics Data System (ADS)

    Hoffmann, Peter; Becker, Erich; Singer, Werner; Placke, Manja

    2010-09-01

    The seasonal variation of the wave activity in the mesosphere/lower thermosphere is investigated using wind measurements with meteor and MF radars at Juliusruh (55°N, 13°E) and Andenes (69°N, 16°E), as well as on the basis of the simulated annual cycle using a gravity-wave resolving mechanistic general circulation model. For the observations, proxies for the activity of gravity waves (GWs) and waves with longer periods are computed from wind variances for defined bandwidths. Our corresponding proxy for the simulated GWs is the non-rotational kinetic energy due to the resolved mesoscales. Both observational and computational results show the strongest GW energy during winter and a secondary maximum during summer. Additional observational analysis of short-period GWs yields a more pronounced summer maximum. The semi-annual variation is consistent with the selective filtering of westward and eastward GWs by the mean zonal wind. The latitudinal dependence during summer is characterized by stronger GW energy between 65 and 85 km at middle latitudes than at polar latitudes, and a corresponding upward shift of the wind reversal towards the pole which is also reflected by the simulated GW drag. Also the observed oscillations with periods from 2 to 4 days show a latitudinal dependence and a clear seasonal cycle which is related to the mean zonal wind shear.

  19. [Review] Polarization and Polarimetry

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha

    2014-02-01

    Polarization is a basic property of light and is fundamentally linked to the internal geometry of a source of radiation. Polarimetry complements photometric, spectroscopic, and imaging analyses of sources of radiation and has made possible multiple astrophysical discoveries. In this article I review (i) the physical basics of polarization: electromagnetic waves, photons, and parameterizations; (ii) astrophysical sources of polarization: scattering, synchrotron radiation, active media, and the Zeeman, Goldreich-Kylafis, and Hanle effects, as well as interactions between polarization and matter (like birefringence, Faraday rotation, or the Chandrasekhar-Fermi effect); (iii) observational methodology: on-sky geometry, influence of atmosphere and instrumental polarization, polarization statistics, and observational techniques for radio, optical, and X/γ wavelengths; and (iv) science cases for astronomical polarimetry: solar and stellar physics, planetary system bodies, interstellar matter, astrobiology, astronomical masers, pulsars, galactic magnetic fields, gamma-ray bursts, active galactic nuclei, and cosmic microwave background radiation.

  20. A climatology of nitric oxide in the mesosphere and thermosphere

    NASA Astrophysics Data System (ADS)

    Global measurements of nitric oxide (NO) in the earth's upper atmosphere have now been obtained by two satellite experiments during the declining phases of the last two solar cycles. In the 1980's, NO was measured by the Solar Mesosphere Explorer while in the 1990's, NO has been observed by the Halogen Occultation Experiment (HALOE) on board the UARS satellite. The SME data cover the altitude range from 95 to 160 km and extend from pole to pole. The HALOE data used here cover the altitude range from 50 to 125 km and extend from 70N to 70S. Both datasets show a well defined decrease in NO during the decline of solar activity. Also, large perturbations due to auroral activity are seen at middle and high latitudes. In addition, the HALOE data show large increases in the high latitude winter mesosphere which are associated with downward transport from the thermosphere. This paper presents a reference NO model which is based upon the two datasets and which covers a wide range of solar, geomagnetic and seasonal conditions.

  1. Bite-outs and other depletions of mesospheric electrons

    NASA Astrophysics Data System (ADS)

    Friedrich, Martin; Rapp, Markus; Plane, John M. C.; Torkar, Klaus M.

    2011-09-01

    The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio β/αi (attachment rate over ion-ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions.

  2. Bite-outs and other depletions of mesospheric electrons.

    PubMed

    Friedrich, Martin; Rapp, Markus; Plane, John M C; Torkar, Klaus M

    2011-09-01

    The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio β/αi (attachment rate over ion-ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions.

  3. Bite-outs and other depletions of mesospheric electrons

    PubMed Central

    Friedrich, Martin; Rapp, Markus; Plane, John M.C.; Torkar, Klaus M.

    2011-01-01

    The ionised mesosphere is less understood than other parts of the ionosphere because of the challenges of making appropriate measurements in this complex region. We use rocket borne in situ measurements of absolute electron density by the Faraday rotation technique and accompanying DC-probe measurements to study the effect of particles on the D-region charge balance. Several examples of electron bite-outs, their actual depth as well as simultaneous observations of positive ions are presented. For a better understanding of the various dependencies we use the ratio β/αi (attachment rate over ion–ion recombination coefficient), derived from the electron and ion density profiles by applying a simplified ion-chemical scheme, and correlate this term with solar zenith angle and moon brightness. The probable causes are different for day and night; recent in situ measurements support existing hypotheses for daytime cases, but also reveal behaviour at night hitherto not reported in the literature. Within the large range of β/αi values obtained from the analysis of 28 high latitude night flights one finds that the intensity of scattered sunlight after sunset, and even moonlight, apparently can photodetach electrons from meteoric smoke particles (MSP) and molecular anions. The large range of values itself can best be explained by the variability of the MSPs and by occasionally occurring atomic oxygen impacting on the negative ion chemistry in the night-time mesosphere under disturbed conditions. PMID:27570472

  4. Carbon Dioxide Ice Structure and Density in the Martian Mesosphere

    NASA Astrophysics Data System (ADS)

    Mangan, Thomas; Murray, Benjamin

    2016-04-01

    CO2 ice has been grown experimentally via deposition in order to mimic ice formation in Martian mesospheric CO2 clouds. This is achieved through the use of a low temperature and low pressure controlled stage mounted within an X-ray diffractomer (XRD). XRD patterns of CO2 deposited at temperatures of 80 - 130 K and pressures below 1 mbar were analysed using a Rietveld refinement method and fitted to a crystalline cubic structure (space group Pa3). This crystal structure is consistent with XRD patterns also taken of dry ice. CO2 ice densities were then determined from the refined lattice parameters across the 80 - 130 K range and extrapolated using literature values resulting in a temperature dependent density parameter valid over 80 - 195 K. This temperature dependent parameter for CO2 ice density was applied to nucleation, sedimentation and growth rates of CO2 ice particles under conditions relevant to the Martian mesosphere. The results were then compared to commonly used literature values, illustrating the need for the use of temperature dependent CO2 ice densities.

  5. Modeling Study of Mesospheric Planetary Waves: Genesis and Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    In preparation for the measurements from the TIMED mission and coordinated ground based observations, we discuss results for the planetary waves (PWs) that appear in our Numerical Spectral Model (NSM). The present model accounts for a tropospheric heat source in the zonal mean (m = 0), which reproduces qualitatively the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variations. We discuss the PWs that are solely generated internally, i.e., without the explicit excitation sources related to tropospheric convection or topography. Our analysis shows that PWs are not produced when the zonally averaged heat source into the atmosphere is artificially suppressed, and that the PWs generally are significantly weaker when the tropospheric source is not applied. Instabilities associated with the zonal mean temperature, pressure and wind fields, which still need to be explored, are exciting PWs that have amplitudes in the mesosphere comparable to those observed. Three classes of PWs are generated in the NSM. (1) Rossby waves, (2) Rossby gravity waves propagating westward at low latitudes, and (3) Eastward propagating equatorial Kelvin waves. A survey of the PWs reveals that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere, but above that altitude they occur in the summer hemisphere where the amplitudes can approach 50 meters per second. It is shown that the non-migrating tides in the mesosphere, generated by non-linear coupling between migrating tides and PWs, are significantly larger for the model with the tropospheric heat source.

  6. Laboratory Studies of Vibrational Relaxation: Important Insights for Mesospheric OH

    NASA Astrophysics Data System (ADS)

    Kalogerakis, Konstantinos S.; Matsiev, Daniel

    2016-04-01

    The hydroxyl radical has a key role in the chemistry and energetics of the Earth's middle atmosphere. A detailed knowledge of the rate constants and relevant pathways for OH(high v) vibrational relaxation by atomic and molecular oxygen and their temperature dependence is absolutely critical for understanding mesospheric OH and extracting reliable chemical heating rates from atmospheric observations. We have developed laser-based experimental approaches to study the complex collisional energy transfer processes involving the OH radical and other relevant atmospheric species. Previous work in our laboratory indicated that the total removal rate constant for OH(v = 9) + O at room temperature is more than one order of magnitude larger than that for removal by O2. Thus, O atoms are expected to significantly influence the intensity and vibrational distribution extracted from the Meinel OH(v) emissions. We will report our most recent laboratory experiments that corroborate the aforementioned result for OH(v = 9) + O and provide important new insights on the mechanistic pathways involved. We will also highlight relevant atmospheric implications, including warranted revisions of current mesospheric OH models. Research supported by SRI International Internal R&D and NSF Aeronomy grant AGS-1441896. Previously supported by NASA Geospace Science grant NNX12AD09G.

  7. The Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX)

    NASA Astrophysics Data System (ADS)

    Collins, R. L.; Barjatya, A.; Lehmacher, G. A.; Fritts, D. C.; Luebken, F.

    2013-12-01

    The Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX), is designed is to contribute to answering one of the key questions in solar-terrestrial science: How do meteorological processes control the impact of solar processes on the Earth's atmosphere? The goal of MTeX is to answer the specific question: What is the contribution of wave-generated turbulence to energetics and mixing in the mesosphere and lower thermosphere (MLT) in the presence of persistent regions of stability and instability? During recent Arctic winters, satellite observations have revealed significant transport of nitrogen oxides (produced by energetic particle precipitation) downward from the thermosphere into the mesosphere, stratosphere and ozone layer. These events have been associated with sudden stratospheric warming events (SSWs) where strong downward transport is observed in the recovery phase of the SSW. However, simulations with current coupled chemistry circulation models indicate that the observed transport cannot be explained by mean flow advection alone. Simulation of the observed transport of nitrogen oxides requires diffusive transport from the thermosphere where the magnitude of the diffusive transport is on order of the mean flow transport. Turbulence is both characterized and measured in terms of energy dissipation rates (used in circulation studies) and eddy diffusion coefficients (used in chemical transport studies). Variability over several orders of magnitude has been reported in turbulence measurements due to both the variety of background conditions present and methods used. High-resolution fluid dynamic simulations continue to raise questions about the physical and statistical assumptions used in determining turbulent characteristics. We propose to make repeated measurements of turbulence in the presence of a Mesospheric Inversion Layer (MIL) in January-February 2015 at Poker Flat Research Range, Chatanika, Alaska. The MIL (~70-90 km) and gravity wave activity in

  8. A semi-empirical model for mesospheric and stratospheric NOy produced by energetic particle precipitation

    NASA Astrophysics Data System (ADS)

    Funke, Bernd; López-Puertas, Manuel; Stiller, Gabriele P.; Versick, Stefan; von Clarmann, Thomas

    2016-07-01

    The MIPAS Fourier transform spectrometer on board Envisat has measured global distributions of the six principal reactive nitrogen (NOy) compounds (HNO3, NO2, NO, N2O5, ClONO2, and HNO4) during 2002-2012. These observations were used previously to detect regular polar winter descent of reactive nitrogen produced by energetic particle precipitation (EPP) down to the lower stratosphere, often called the EPP indirect effect. It has further been shown that the observed fraction of NOy produced by EPP (EPP-NOy) has a nearly linear relationship with the geomagnetic Ap index when taking into account the time lag introduced by transport. Here we exploit these results in a semi-empirical model for computation of EPP-modulated NOy densities and wintertime downward fluxes through stratospheric and mesospheric pressure levels. Since the Ap dependence of EPP-NOy is distorted during episodes of strong descent in Arctic winters associated with elevated stratopause events, a specific parameterization has been developed for these episodes. This model accurately reproduces the observations from MIPAS and is also consistent with estimates from other satellite instruments. Since stratospheric EPP-NOy depositions lead to changes in stratospheric ozone with possible implications for climate, the model presented here can be utilized in climate simulations without the need to incorporate many thermospheric and upper mesospheric processes. By employing historical geomagnetic indices, the model also allows for reconstruction of the EPP indirect effect since 1850. We found secular variations of solar cycle-averaged stratospheric EPP-NOy depositions on the order of 1 GM. In particular, we model a reduction of the EPP-NOy deposition rate during the last 3 decades, related to the coincident decline of geomagnetic activity that corresponds to 1.8 % of the NOy production rate by N2O oxidation. As the decline of the geomagnetic activity level is expected to continue in the coming decades, this is

  9. The Transfer Function Model (TFM) as a Tool for Simulating Gravity Wave Phenomena in the Mesosphere

    NASA Astrophysics Data System (ADS)

    Porter, H.; Mayr, H.; Moore, J.; Wilson, S.; Armaly, A.

    2008-12-01

    The Transfer Function Model (TFM) is semi-analytical and linear, and it is designed to describe the acoustic gravity waves (GW) propagating over the globe and from the ground to 600 km under the influence of vertical temperature variations. Wave interactions with the flow are not accounted for. With an expansion in terms of frequency-dependent spherical harmonics, the time consuming vertical integration of the conservation equations is reduced to computing the transfer function (TF). (The applied lower and upper boundary conditions assure that spurious wave reflections will not occur.) The TF describes the dynamical properties of the medium divorced from the complexities of the temporal and horizontal variations of the excitation source. Given the TF, the atmospheric response to a chosen source is then obtained in short order to simulate the GW propagating through the atmosphere over the globe. In the past, this model has been applied to study auroral processes, which produce distinct wave phenomena such as: (1) standing lamb modes that propagate horizontally in the viscous medium of the thermosphere, (2) waves generated in the auroral oval that experience geometric amplification propagating to the pole where constructive interference generates secondary waves that propagate equatorward, (3) ducted modes propagating through the middle atmosphere that leak back into the thermosphere, and (4) GWs reflected from the Earth's surface that reach the thermosphere in a narrow propagation cone. Well-defined spectral features characterize these wave modes in the TF to provide analytical understanding. We propose the TFM as a tool for simulating GW in the mesosphere and in particular the features observed in Polar Mesospheric Clouds (PMC). With present-day computers, it takes less than one hour to compute the TF, so that there is virtually no practical limitation on the source configurations that can be applied and tested in the lower atmosphere. And there is no limitation on

  10. Mesospheric potassium layer observation by a frequency-tunable resonance scattering lidar system

    NASA Astrophysics Data System (ADS)

    Ejiri, Mitsumu K.; Nakamura, Takuji; Kawahara, Takuya D.; Abo, Makoto; Nishiyama, Takanori; Tsuda, Takuo T.

    The National Institute of Polar Research (NIPR) is leading a six year prioritized project of the Antarctic research observations since 2010. One of the sub-project is entitled "the global environmental change revealed through the Antarctic middle and upper atmosphere". Profiling dynamical parameters such as temperature and wind, as well as minor constituents is the key component of observations in this project, together with a long term observations using existent various instruments in Syowa, the Antarctic (69S, 39E). As a part of the sub-project, Rayleigh/Raman lidar was installed at Syowa Station in January, 2011 and has measured temperature profiles more than 3000 hours by February, 2014. In order to extend the height coverage to include mesosphere and lower thermosphere region, and also to extend the parameters observed, a new resonance scattering lidar system with tunable wavelengths is developed at NIPR in Tokyo (36N, 139E), Japan. The lidar transmitter is based on injection-seeded, pulsed alexandrite laser for 768-788 nm (fundamental wavelengths) and a second-harmonic generation (SHG) unit for 384-394 nm (second harmonic wavelengths). The laser wavelengths are tuned in to the resonance wavelengths by a wavemeter that is well calibrated using a wavelength-stabilized He-Ne laser. The new lidar has capabilities to measure density variations of minor constituents such as atomic iron (Fe, 386 nm), atomic potassium (K, 770 nm), calcium ion (Ca+, 393 nm), and aurorally excited nitrogen ion (N2+, 390-391 nm) and temperature profiles in the mesosphere and lower thermosphere (MLT) region using resonance scatter of K. This unique observation is expected to make important contribution to studies on the atmospheric vertical coupling process and the neutral and charged particle interaction. The resonance scattering lidar system is being developed at NIPR in Tokyo and conducting observations at the mid-latitude. The fundamental laser pulses are transmitted with 120-160 m

  11. Stratosphere/mesosphere coupling during the winter/summer transition at Davis, Antarctica

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Höffner, Josef; Viehl, Timo P.; Becker, Erich; Latteck, Ralph; Kaifler, Bernd; Morris, Ray J.

    2015-04-01

    The mobile scanning iron lidar of the Leibniz Institute of Atmospheric Physics in Kühlungsborn (IAP) was in operation at Davis, Antarctica, from December 15, 2010, until December 31, 2012. It measured iron densities, vertical winds, and temperatures in the iron layer, i. e. from approximately 80 to 100 km. The measurement principle is based on probing the Doppler broadened resonance line of iron atoms at 386 nm. The lidar can operate under daylight conditions. Typical values for temperature uncertainty, altitude and time resolution are 3-5 K, 1 km, and 1 hour, respectively. At Davis, the lidar has achieved at total of 2900 hours of temperature measurements which is presumably the largest nearly continuous data set in Antarctica. In this presentation we concentrate on the winter/summer transition in three consecutive years and compare with circulation changes in the stratosphere derived from MERRA (NASA's Modern-Era Retrospective analysis for Research and Applications). We also compare with the northern hemisphere (NH). We find that the thermal structure around the mesopause at Davis is closely coupled to the general circulation in the stratosphere, more precisely to the transition from winter to summer conditions. In contrast to theoretical expectations we occasionally find the mesopause significantly higher and colder(!) compared to the NH. The mesopause altitude changes by several kilometers throughout the summer season, which is significantly different from the summer in the northern hemispheric. Depending on altitude, temperatures can be warmer or colder compared to the NH summer. The Australian Antarctic Division has been operating a 55 MHz VHF radar at Davis since February 2003. We have studied the seasonal variation of polar mesosphere summer echoes (PMSE). PMSE are strong radar echoes related to ice particles and therefore require atmospheric temperatures lower than the frost point temperature. We note that (apart from low temperatures) more ingredients

  12. Energy balance constraints on gravity wave induced eddy diffusion in the mesosphere and lower thermosphere

    NASA Technical Reports Server (NTRS)

    Strobel, D. F.; Apruzese, J. P.; Schoeberl, M. R.

    1985-01-01

    The constraints on turbulence improved by the mesospheric heat budget are reexamined, and the sufficiency of the theoretical evidence to support the hypothesis that the eddy Prandtl number is greater than one in the mesosphere is considered. The mesopause thermal structure is calculated with turbulent diffusion coefficients commonly used in chemical models and deduced from mean zonal wind deceleration. It is shown that extreme mesopause temperatures of less than 100 K are produced by the large net cooling. The results demonstrate the importance of the Prandtl number for mesospheric turbulence.

  13. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (< 200 ppb) allowed assigning the elemental composition (C, H, O, N, S…) to each of the obtained mass peaks and thus already a description of the mixture in terms of molecular composition. This possibility is used by the authors together with a high resolution separation method of charged compounds: capillary electrophoresis. A CE-ESI-MS method using an ammonium acetate based background electrolyte (pH 4.7) was developed for the determination of isomeric benzoic acids in

  14. All Aboard! The Polar Express Is Traveling to Science--Understanding the States of Matter While Differentiating Instruction for Young Learners

    ERIC Educational Resources Information Center

    Vowell, Julie; Phillips, Marianne

    2015-01-01

    This standards-based science lesson introduces young learners to scientific inquiry and critical thinking by using activities to demonstrate three phases of matter (solid, liquid, and gas). By learning about the states of matter through a 5E instructional approach, students are encouraged to observe changes in the states of matter and to discuss…

  15. Mesospheric imaging Michelson interferometer instrument development and observations

    NASA Astrophysics Data System (ADS)

    Babcock, David D.

    This dissertation demonstrated the capability of the Mesospheric Imaging Michelson Interferometer (MIMI) instrument to passively measure wind velocities from Doppler-shifted atmospheric airglow emissions. The work consisted of two parts, (i) laboratory work focused on the measurement of simulated atmospheric winds with both Doppler-shifted visible and near-IR wavelengths and (ii) the development of a field instrument based on a lab prototype to investigate the potential of measuring Mesospheric winds from the ground. The primary component of the MIMI instrument was a custom built Michelson interferometer which was field widened, chromatically compensated, thermally compensated, and monolithic with no moving parts. The Michelson interferometer, used together with a novel four-point wind retrieval algorithm, provides simultaneous emission rate and wind velocity data over a single integration time. Simultaneously measuring the emission rate over the FOV and measuring wind velocity relative to the observer, of an air parcel containing an emitting chemical species, is a unique feature of the MIMI instrument. Eliminating sequential scanning of the Michelson to measure wind velocities (or being able to take a 'snapshot' of the atmosphere) and provide data on the emission rates and wind velocities, renders the instrument insensitive to scene changes over the integration time, which is an advantage over traditional scanning Michelson interferometers. Spectral lines from visible and near-IR sources were Doppler shifted in a controllable procedure to provide known velocities which were compared to the velocities measured by the interferometer. Wind simulations completed in the visible wavelength region retrieved velocities to within a standard deviation of +/-1ms-1. Wind simulations in the near-IR retrieved wind velocities to within a standard deviation of +/-2ms -1. These standard deviations are acceptable when compared to typical Mesospheric winds of 10 to 100ms-1 and when

  16. Mesosphere Dynamics with Gravity Wave Forcing. 2; Planetary Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Chan, K. L.; Porter, H. S.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    We present results from a non-linear, 3D, time dependent numerical spectral model (NSM) which extends from the ground up into the thermosphere and incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GW). Our focal point is the mesosphere where wave interactions are playing a dominant role. We discuss planetary waves in the present paper and diurnal and semi-diurnal tides in the companion paper. Without external time dependent energy or momentum sources, planetary waves (PWs) are generated in the model for zonal wavenumbers 1 to 4, which have amplitudes in the mesosphere above 50 km as large as 30 m/s and periods between 2 and 50 days. The waves are generated primarily during solstice conditions, which indicates that the baroclinic instability (associated with the GW driven reversal in the latitudinal temperature gradient) is playing an important role. Results from a numerical experiment show that GWs are also involved directly in generating the PWs. For the zonal wavenumber m = 1, the predominant wave periods in summer are around 4 days and in winter between 6 and 10 days. For m = 2, the periods are in summer and close to 2.5 and 3.5 days respectively For m = 3, 4 the predominant wave periods are in both seasons close to two days. The latter waves have the characteristics of Rossby gravity waves with meridional winds at equatorial latitudes. A common feature of the PWs (m = 1 to 4) generated in summer and winter is that their vertical wavelengths throughout the mesosphere are large which indicates that the waves are not propagating freely but are generated throughout the region. Another common feature is that the PWs propagate preferentially westward in summer and eastward in winter, being launched from the westward and eastward zonal winds that prevail respectively in summer and winter altitudes below 80 km. During spring and fall, for m = 1 and 2 eastward propagating long period PWs are generated that are launched from the smaller

  17. Noctilucent clouds observed from the ground: sensitivity to mesospheric parameters and long-term time series

    NASA Astrophysics Data System (ADS)

    Pertsev, Nikolay; Dalin, Peter; Perminov, Vladimir; Romejko, Vitaly; Dubietis, Audrius; Balčiunas, Ričardas; Černis, Kazimieras; Zalcik, Mark

    2014-12-01

    Long-term systematic observations of noctilucent clouds in the regions of Moscow (Russia), Vilnius (Lithuania), and La Ronge (Canada) are considered. Variables, describing the seasonal activity of noctilucent clouds, are discussed. It is shown that there are no statistically significant trends within time intervals of several recent decades. This result is compared to other known findings on trends in mesospheric clouds. Based on the data of the modern ground-based noctilucent cloud observing network in the northern hemisphere and simultaneous satellite data on mesospheric temperature and humidity, we estimate sensitivity of noctilucent clouds to the relative humidity of the upper mesosphere. Such an approach allows us to discuss possible changes of the upper-mesospheric relative humidity, which are consistent with a zero secular trend in noctilucent cloud activity.

  18. Overview of the Temperature Response in the Mesosphere and Lower Thermosphere to Solar Activity

    NASA Technical Reports Server (NTRS)

    Beig, Gufran; Scheer, Juergen; Mlynczak, Martin G.; Keckhut, Philippe

    2008-01-01

    The natural variability in the terrestrial mesosphere needs to be known to correctly quantify global change. The response of the thermal structure to solar activity variations is an important factor. Some of the earlier studies highly overestimated the mesospheric solar response. Modeling of the mesospheric temperature response to solar activity has evolved in recent years, and measurement techniques as well as the amount of data have improved. Recent investigations revealed much smaller solar signatures and in some case no significant solar signal at all. However, not much effort has been made to synthesize the results available so far. This article presents an overview of the energy budget of the mesosphere and lower thermosphere (MLT) and an up-to-date status of solar response in temperature structure based on recently available observational data. An objective evaluation of the data sets is attempted and important factors of uncertainty are discussed.

  19. Mesospheric Odd Nitrogen Enhancements During Relativistic Electron Precipitation Events

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Smith, H. J. P.

    1999-01-01

    The behavior of mesospheric odd nitrogen species during and following relativistic and diffuse auroral precipitation events is simulated, Below 75 km nitric oxide is enhanced in proportion to the ion pair production function associated with the electron precipitation and the length of the event. Nitrogen dioxide and nitric acid are also enhanced. At 65 km the percentage of odd nitrogen for N is 0.1%, HNO3 is 1.6%, NO2 is 15%, and NO is 83.3%. Between 75 and 85 km NO is depleted during particle events due to the faster destruction of NO by N relative to the production of NO by N reacting with O2. Recovery of NO depends on transport from the lower thermosphere, where NO is produced in abundant amounts during particle events.

  20. Passive remote sensing of stratospheric and mesospheric winds

    NASA Technical Reports Server (NTRS)

    Mccleese, Daniel J.; Margolis, Jack S.

    1985-01-01

    A passive infrared sensor is described for remote sounding of the wind field in the stratosphere and mesosphere from near Earth orbital spacecraft. The instrument uses gas correlation spectroscopy together with electro-optic phase modulation techniques to measure winds in the 20- to 120-km altitude range globally, both in the day and at night, and with a vertical resolution of better than the atmospheric scale height. Measurement of temperature and the amounts of key atmospheric species may also be made simultaneously and in coincident fields of view with the wind observations. The sensor is currently being developed at the Jet Propulsion Laboratory as a candidate for the upcoming NASA Earth Observation System.

  1. Submillimeter mapping of mesospheric minor species on Venus with ALMA

    NASA Astrophysics Data System (ADS)

    Encrenaz, T.; Moreno, R.; Moullet, A.; Lellouch, E.; Fouchet, T.

    2015-08-01

    Millimeter and submillimeter heterodyne spectroscopy offers the possibility of probing the mesosphere of Venus and monitoring minor species and winds. ALMA presents a unique opportunity to map mesospheric species of Venus. During Cycle 0, we have observed Venus on November 14 and 15, 2011, using the compact configuration of ALMA. The diameter of Venus was 11″ and the illumination factor was about 90%. Maps of CO, SO, SO2 and HDO have been built from transitions recorded in the 335-347 GHz frequency range. A mean mesospheric thermal profile has been inferred from the analysis of the CO transition at the disk center, to be used in support of minor species retrieval. Maps of SO and SO2 abundance show significant local variations over the disk and contrast variations by as much as a factor 4. In the case of SO2, the spatial distribution appears more "patchy", i.e. shows short-scale structures apparently disconnected from day-side and latitudinal variations. For both molecules, significant changes occur over a timescale of one day. From the disk averaged spectrum of SO recorded on November 14 at 346.528 GHz, we find that the best fit is obtained with a cutoff in the SO vertical distribution at 88±2 km and a uniform mixing ratio of 8.0±2.0 ppb above this level. The SO2 map of November 14, derived from the weaker transition at 346.652 GHz, shows a clear maximum in the morning side at low latitudes, which is less visible in the map of November 15. We find that the best fit for SO2 is obtained for a cutoff in the vertical distribution at 88±3 km and a uniform mixing ratio of 12.0±3.5 ppb above this level. The HDO maps retrieved from the 335.395 GHz show some enhancement in the northern hemisphere, but less contrasted variations than for the sulfur species maps, with little change between November 14 and 15. Assuming a typical D/H ratio of 200 times the terrestrial value in the mesosphere of Venus, we find that the disk averaged HDO spectrum is best fitted with a

  2. Tropical behavior of mesospheric ozone as observed by SMM

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Kendig, D. J.

    1992-01-01

    The seasonal behavior of low latitude mesospheric ozone, as observed by the SMM satellite solar occultation experiment, is detailed for the 1985-1989 period. Annual as well as semi-annual waves are observed in the 50-70 km altitude region. In the latitude range of +/- 30 deg the ozone phase and amplitude are functions of temperature and seasonal changes in solar flux. Temperature is the controlling factor for the equatorial region and seasonal changes in solar flux become more dominant at latitudes outside the equatorial zone (greater than +/- 15 deg). There is a hemispheric asymmetry in the ozone annual wave in the 20-30 deg region, with Northern Hemispheric ozone having a larger amplitude than Southern Hemispheric ozone.

  3. Minor constituents in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Rusch, David W.; Clancy, R. Todd

    1987-04-01

    The paper highlights the research of the period 1983-1986 on the physical processes responsible for the control of the odd oxyen (Ox) content of the mesosphere. The findings obtained from satellite data sets of LIMS (on ozone, stratospheric water vapor, and NO2), SAMS (on CH4, N2O, and temperature), SBUV (on the UV radiance scattered from the atmosphere), SME, and Spacelab 1 and 'ATMOS' experiments (furnishing data on ozone, stratospheric water vapor, NO2, NO, and temperature) are presented together with the findings based on ground and laboratory observations. Consideration is also given to the results obtained by modeling of the ozone abundances; the solar-induced diurnal variations of ozone; and the transport of NOx, H2O, and CO molecules.

  4. Long-term changes in the mesosphere calculated by a two-dimensional model

    NASA Astrophysics Data System (ADS)

    Gruzdev, Aleksandr N.; Brasseur, Guy P.

    2005-02-01

    We have used the interactive two-dimensional model SOCRATES to investigate the thermal and the chemical response of the mesosphere to the changes in greenhouse gas concentrations observed in the past 50 years (CO2, CH4, water vapor, N2O, CFCs), and to specified changes in gravity wave drag and diffusion in the upper mesosphere. When considering the observed increase in the abundances of greenhouse gases for the past 50 years, a cooling of 3-7 K is calculated in the mesopause region together with a cooling of 4-6 K in the middle mesosphere. Changes in the meridional circulation of the mesosphere damp the pure radiative thermal effect of the greenhouse gases. The largest cooling in the winter upper mesosphere-mesopause region occurs when the observed increase in concentrations of greenhouse gases and the strengthening of the gravity wave drag and diffusion are considered simultaneously. Depending on the adopted strengthening of the gravity wave drag and diffusion, a cooling varying from typically 6-10 K to 10-20 K over the past 50 years is predicted in the extratropical upper mesosphere during wintertime. In summer, however, consistently with observations, the thermal response calculated by the model is insignificant in the vicinity of the mesopause. Although the calculated cooling of the winter mesopause is still less than suggested by some observations, these results lead to the conclusion that the increase in the abundances of greenhouse gases alone may not entirely explain the observed temperature trends in the mesosphere. Long-term changes in the dynamics of the middle atmosphere (and the troposphere), including changes in gravity wave activity may have contributed significantly to the observed long-term changes in thermal structure and chemical composition of the mesosphere.

  5. Stratospheric and Mesospheric Trace Gas Studies Using Ground-Based mm-Wave Receivers

    NASA Technical Reports Server (NTRS)

    daZafra, Robert L.

    1997-01-01

    The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum.

  6. Variabilities of low latitude mesospheric and E region echoes: linked to common sources?

    NASA Astrophysics Data System (ADS)

    Dharmalingam, Selvaraj; Patra, Amit; Sathishkumar, Sundararaman; Narayana Rao, D.

    2016-07-01

    Variability in dynamics of the mesospheric and E region echoes have been studied in isolation. Both echoing phenomena are directly or indirectly coupled with each other through neutral dynamics. This is especially so for the low-latitudes outside the equatorial electrojet belt, where E region plasma irregularities causing radar echoes are governed by neutral dynamics, such as tides and gravity waves. Although these regions are close to each other, no effort has been made yet to understand the dynamical coupling processes manifesting the observed variabilities in the two echoing phenomena. To investigate linkage between the two phenomena, if any, we conducted systematic observations of low latitude mesospheric and E region echoes during 2011-2012 using the Gadanki MST radar and used these in conjunction with SABER temperature, MF radar wind, and sporadic E observations. Both echoes are found to occur in the height regions where temperature observations show negative gradients. Mesospheric echoes are collocated with temperature gradient associated with mesospheric temperature inversion while the E region echoes are collocated with negative temperature gradient close to the mesopause. Observations have revealed a common signature of semi-annual variations in the occurrence of both mesospheric and ionospheric E-region - occurrences peak in the equinoxes. The E region echoes have an additional peak occurring in the summer and this occurrence is well correlated with the enhancement in the diurnal tidal amplitude. We surmise that the enhancement in the diurnal tidal amplitude is linked with non-migrating tide of tropospheric weather phenomena in summer. Intriguingly, mesospheric echoing layers display descending pattern quite similar to the E region echoes and sporadic E layer, which have been used to invoke tidal dynamics in manifesting similar morphology in both mesospheric and E region echoes. These results will be presented and the role of tidal dynamics on the

  7. High-Altitude Data Assimilation System Experiments for the Northern Summer Mesosphere Season of 2007

    DTIC Science & Technology

    2009-01-01

    variations in PMC frequency measured from the aeronomy of ice in the mesosphere (AIM) satellite. Synoptic maps of these diagnostic saturation ratios...compare well with seasonal variations in PM Cfrequency measured from the aeronomy of ice in themesosphere (AIM )satellite. Synoptic maps of these...data, such as provided by the aeronomy of ice in the mesosphere (AIM) satellite (Russell et al., 2008), are particularly valuable, either for direct

  8. A review of mesospheric and lower thermosphere models

    NASA Astrophysics Data System (ADS)

    Portnyagin, Yuri

    2006-01-01

    The empirical mesosphere/lower thermosphere (MLT) models, in particular Fleming et al. [Fleming, E.L., Chandra, S., Schoeberl, M.R., Barnett, J.J. Monthly mean global climatology of temperature, wind, geopotential height and pressure for 0-120 km. NASA Technical Memorandum 100697, 1988; Fleming, E.L., Chandra, S., Barnett, J.J., Corney, M. Zonal mean temperature, pressure, zonal wind and geopotential height as function of latitude. Adv. Space Res., 10 (12), 11-59, 1990.], HWM-93 [Hedin, A.E., Fleming, E.L., Manson, A.H., Schmidlin, F.J., Avery, S.K., Clark, R.R., Franke, S.J., Fraser, G.J., Tsuda, T., Vial, F., Vincent, R.A. Empirical wind model for the middle and lower atmosphere. J. Atmos.Terr. Phys., 58, 1421-1447, 1996] and GEWM [Portnyagin, Yu.I, Solovjova, T., Merzlyakov, E., et al., Mesosphere/lower thermosphere prevailing wind model. Adv. Space Res., 34, 1755-1762, 2004] models, are compared. The main reasons of the differences between the models are discussed. These reasons are mainly connected with the differences between the used ground- and space-based datasets, including the systematic biases between the ground-based and space-based measurements, and with the different methods of the data assimilation. The effects of year-to-year wind variations and the longitudinal prevailing wind variability, as well as the effects of non-migrating tides in construction of the climatic empirical models is not so strong. The recommendation to construct a new and updated CIRA wind model for the MLT region has been followed.

  9. Trends and solar cycle effects in mesospheric ice clouds

    NASA Astrophysics Data System (ADS)

    Lübken, Franz-Josef; Berger, Uwe; Fiedler, Jens; Baumgarten, Gerd; Gerding, Michael

    Lidar observations of mesospheric ice layers (noctilucent clouds, NLC) are now available since 12 years which allows to study solar cycle effects on NLC parameters such as altitudes, bright-ness, and occurrence rates. We present observations from our lidar stations in Kuehlungsborn (54N) and ALOMAR (69N). Different from general expectations the mean layer characteris-tics at ALOMAR do not show a persistent anti-correlation with solar cycle. Although a nice anti-correlation of Ly-alpha and occurrence rates is detected in the first half of the solar cycle, occurrence rates decreased with decreasing solar activity thereafter. Interestingly, in summer 2009 record high NLC parameters were detected as expected in solar minimum conditions. The morphology of NLC suggests that other processes except solar radiation may affect NLC. We have recently applied our LIMA model to study in detail the solar cycle effects on tempera-tures and water vapor concentration the middle atmosphere and its subsequent influence on mesospheric ice clouds. Furthermore, lower atmosphere effects are implicitly included because LIMA nudges to the conditions in the troposphere and lower stratosphere. We compare LIMA results regarding solar cycle effects on temperatures and ice layers with observations at ALO-MAR as well as satellite borne measurements. We will also present LIMA results regarding the latitude variation of solar cycle and trends, including a comparison of northern and southern hemisphere. We have adapted the observation conditions from SBUV (wavelength and scatter-ing angle) in LIMA for a detailed comparison with long term observations of ice clouds from satellites.

  10. Charged aerosols and electrical structure of the polar summer mesopause region

    NASA Technical Reports Server (NTRS)

    Mitchell, John D.; Walter, Deborah J.; Croskey, Charles L.

    1997-01-01

    The results of observations carried out in the framework of two programs, the middle atmosphere electrodynamics campaign and the noctilucent cloud (NLC) campaign, are reported. The measurements performed during overhead NLC and polar mesosphere summer echo (PMSE) conditions revealed a number of aerosol-related layering effects on the region's electrical structure. It was found that both polar components of electrical conductivity can be affected in NLC regions.

  11. Radar studies of turbulence and lidar studies of the nickel layer in the arctic mesosphere

    NASA Astrophysics Data System (ADS)

    Li, Jintai

    This thesis presents studies of the Arctic middle atmosphere using Incoherent Scatter Radar (ISR) and resonance lidar at Poker Flat Research Range (PFRR), Chatanika, Alaska. The Poker Flat Incoherent Scatter Radar (PFISR) provides measurements of mesospheric turbulence and the resonance lidar provides measurements of mesospheric nickel layer. We develop retrieval and analysis techniques to determine the characteristics of the turbulence and the nickel layer. We present measurements of mesospheric turbulence with PFISR on 23 April 2008 and 18 February 2013. We characterize mesospheric turbulence in terms of the energy dissipation rate as a function of altitude and time on these days. We present an extensive analysis of the radar measurements to show that the use of high quality PFISR data and an accurate characterization of the geophysical conditions are essential to achieve accurate turbulent measurements. We find that the retrieved values of the energy dissipation rate vary significantly based on how the data is selected. We present measurements of mesospheric nickel layer with resonance lidar on the night of 27-28 November 2012 and 20-21 December 2012. We characterize the mesospheric nickel layer in terms of the nickel concentration as a function of altitude on these days. We find that our nickel concentrations are significantly higher than expected from studies of meteors. We present an extensive analysis of the lidar measurements to show that these measurements of unexpectedly high values of the nickel concentrations are accurate and not biased by the lidar measurements.

  12. Wave-coupling from the troposphere to the mesosphere and thermosphere observed by the Optical Mesosphere Thermosphere Imagers (OMTIs)

    NASA Astrophysics Data System (ADS)

    Shiokawa, Kazuo; Otsuka, Yuichi; Takeo, Daiki; Fujinami, Hatsuki

    2016-07-01

    The airglow emissions from the mesopause region and the thermosphere are very useful to monitor dynamical variations of the neutral and plasma atmosphere in the upper atmosphere. The Optical Mesosphere Thermosphere Imagers (OMTIs) measure two-dimensional pattern, Doppler wind, and temperature through airglow emissions from oxygen (wavelength: 557.7 nm) and OH (near infrared band) in the mesopause region (80-100 km) and from oxygen (630.0 nm) in the thermosphere/ionosphere (200-300 km) at various locations in the world. Station information and quick look plots are available at http://stdb2.stelab.nagoya-u.ac.jp/omti/. In this presentation we show recent observations by OMTIs for the vertical coupling of atmospheric gravity waves from the troposphere to the mesopause region and to the thermosphere/ionosphere.

  13. Observations of the global structure of the stratosphere and mesosphere with sounding rockets and with remote sensing techniques from satellites

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Hilsenrath, E.; Krueger, A. J.; Nordberg, W.; Prabhakara, C.; Theon, J. S.

    1972-01-01

    Brief descriptions are given of the techniques involved in determining the global structure of the mesosphere and stratosphere based on sounding rocket observations and satellite remotely sensed measurements.

  14. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Polarized spin transport in mesoscopic quantum rings with electron-phonon and Rashba spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Liu, Ping; Xiong, Shi-Jie

    2009-12-01

    The influence of electron-phonon (EP) scattering on spin polarization of current output from a mesoscopic ring with Rashba spin-orbit (SO) interaction is numerically investigated. There are three leads connecting to the ring at different positions; unpolarized current is injected to one of them, and the other two are output channels with different bias voltages. The spin polarization of current in the outgoing leads shows oscillations as a function of EP coupling strength owing to the quantum interference of EP states in the ring region. As temperature increases, the oscillations are evidently suppressed, implying decoherence of the EP states. The simulation shows that the magnitude of polarized current is sensitive to the location of the lead. The polarized current depends on the connecting position of the lead in a complicated way due to the spin-sensitive quantum interference effects caused by different phases accumulated by transmitting electrons with opposite spin states along different paths.

  15. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin Polarizations of Electron with Rashba Couplings in T-Shaped Devices: A Finite Element Approach

    NASA Astrophysics Data System (ADS)

    Zhu, Song; Liu, Hui-Ping; Yi, Lin

    2010-09-01

    A generalized finite element formulation is proposed for the study of the spin-dependent ballistic transport of electron through the two-dimensional quantum structures with Rashba spin-orbit interactions (SOI). The transmission coefficient, conductance, the total and local polarization are numerically calculated and discussed as the Rashba coefficient, the geometric sizes, and incident energy are changed in the T-shaped devices. Some interesting features are found in the proper parameter regime. The polarization has an enhancement as the Rashba coefficient becomes stronger. The polarization valley is rigid in the regime of the conductance plateaus since the local interference among the polarized multi-wave modes. The Rashba interactions coupling to geometry in sizes could form the structure-induced Fano-Rashba resonance. In the wider stub, the localized spin lattice of electron could be produced. The conductance plateaus correspond to weak polarizations. Strong polarizations appear when the stub sizes, incident energy, and the Rashba coupling coefficient are matched. The resonances are formed in a wide Fermi energy segment easily.

  16. Mesospheric temperature soundings with the new, daylight-capable IAP RMR lidar

    NASA Astrophysics Data System (ADS)

    Gerding, Michael; Kopp, Maren; Höffner, Josef; Baumgarten, Kathrin; Lübken, Franz-Josef

    2016-08-01

    Temperature measurements by lidar are an important tool for the understanding of the mean state of the atmosphere as well as the propagation of gravity waves and thermal tides. Though, mesospheric lidar soundings are often limited to nighttime conditions (e.g., solar zenith angle > 96°) due to the low signal-to-noise ratio during the day. By this, examination of long-period gravity waves and tides is inhibited, as well as soundings in summer at polar latitudes. We developed a new daylight-capable Rayleigh-Mie-Raman (RMR) lidar at our site in Kühlungsborn, Germany (54° N, 12° E), that is in routine operation since 2010 for temperature soundings up to 90 km or ˜ 75 km (night or day) and soundings of noctilucent clouds. Here we describe the setup of the system with special emphasis on the daylight suppression methods like spatial and spectral filtering. The small bandwidth of the Fabry-Pérot etalons for spectral filtering of the received signal induces an altitude-dependent transmission of the detector. As a result, the signal is no longer proportional to the air density and the hydrostatic integration of the profile results in systematic temperature errors of up to 4 K. We demonstrate a correction method and the validity of correction by comparison with data obtained by our co-located, nighttime-only RMR lidar where no etalon is installed. As a further example a time series of temperature profiles between 20 and 80 km is presented for day and night of 9-10 March 2014. Together with the other data of March 2014 these profiles are used to calculate tidal amplitudes. It is found that tidal amplitudes vary between ˜ 1 and 5 K depending on altitude.

  17. Coordinated investigation of midlatitude upper mesospheric temperature inversion layers and the associated gravity wave forcing by Na lidar and Advanced Mesospheric Temperature Mapper in Logan, Utah

    NASA Astrophysics Data System (ADS)

    Yuan, Tao; Pautet, P.-D.; Zhao, Y.; Cai, X.; Criddle, N. R.; Taylor, M. J.; Pendleton, W. R.

    2014-04-01

    Mesospheric inversion layers (MIL) are well studied in the literature but their relationship to the dynamic feature associated with the breaking of atmospheric waves in the mesosphere/lower thermosphere (MLT) region are not well understood. Two strong MIL events (ΔT ~30 K) were observed above 90 km during a 6 day full diurnal cycle Na lidar campaign conducted from 6 August to 13 August Logan, Utah (42°N, 112°W). Colocated Advanced Mesospheric Temperature Mapper observations provided key information on concurrent gravity wave (GW) events and their characteristics during the nighttime observations. The study found both MILs were well correlated with the development and presence of an unstable region ~2 km above the MIL peak altitudes and a highly stable region below, implicating the strengthening of MIL is likely due to the increase of downward heat flux by the enhanced saturation of gravity wave, when it propagates through a highly stable layer. Each MIL event also exhibited distinct features: one showed a downward progression most likely due to tidal-GW interaction, while the peak height of the other event remained constant. During further investigation of atmospheric stability surrounding the MIL structure, lidar measurements indicate a sharp enhancement of the convective stability below the peak altitude of each MIL. We postulate that the sources of these stable layers were different; one was potentially triggered by concurrent large tidal wave activity and the other during the passage of a strong mesospheric bore.

  18. Infrared radiation in the mesosphere and lower thermosphere: energetic effects and coupling with lower atmosphere

    NASA Astrophysics Data System (ADS)

    Feofilov, Artem; Kutepov, Alexander; Rezac, Ladislav

    2013-04-01

    The translational degrees of freedom of atmospheric molecular and atomic gaseous compounds represent the heat reservoir. This reservoir obtains or loses energy due to a number of sources and sinks, among them heating and cooling related to various types of mass motions, redistribution of energy released in the course of various photochemical reactions (the translational energy, the chemical energy and the nascent electronic, vibration and rotational energy of the reaction products), and absorption and emission of the infrared (IR) radiation. In the latter case, one deals with interaction between matter and the IR radiative field, which, for the case of the mesosphere/lower thermosphere (MLT), includes the atmospheric radiation formed in these layers, the upwelling radiation from the ground and lower atmosphere, and, during daytime, the IR solar radiation. In this talk, we address the energetic effects of IR radiation in the MLT and its radiative coupling with lower atmosphere by analyzing the interaction between IR radiation and matter. In the MLT, this interaction is strongly affected by the situation when vibrational (and in its upper part also rotational) excitation of the molecules does not obey Boltzmann's law with the local kinetic temperature. As a result, the IR radiation emitted in these layers does not reflect the thermal state of matter. This situation is referred to as the breakdown of local thermodynamic equilibrium (LTE) for the vibrational (or rotational-vibrational) degrees of freedom. Detailed treatment of non-LTE plays a crucial role for estimating thermal effects of the IR radiation as well as for the diagnostics of space-based IR observations. We discuss the peculiarities of the non-LTE radiation formation in the IR bands of CO2, O3, and H2O molecules, estimate radiative cooling/heating rates for typical atmospheric scenarios, and analyze sensitivity of the MLT radiative energy balance to various mechanisms of populating/depopulating molecular

  19. MTeX: The Mesosphere-Lower Thermosphere Turbulence Experiment

    NASA Astrophysics Data System (ADS)

    Collins, R. L.; Triplett, C. C.; Barjatya, A.; Lehmacher, G. A.; Fritts, D. C.; Luebken, F. J.; Strelnikov, B.; Nicolls, M. J.

    2015-12-01

    The Mesosphere-Lower Thermosphere Turbulence Experiment (MTeX) is a rocket-based experiment that was conducted on the night of the 25-26 January 2015 at Poker Flat Research Range (PFRR), Chatanika, Alaska (65°N, 147°W). The experiment required two key elements: the ability to measure turbulence in well-defined meteorological conditions and the ability to measure fluctuations in the atmosphere at sub-meter scales. Modern lidar (or laser radar) systems provided the first element. Rocket-borne ionization gauges and ionization probes provided the second element. We used the established rocket launching and lidar facilities at PFRR to study this turbulence. The specific weather condition we required to frame our turbulence measurement was a Mesospheric Inversion Layer. MILs are a signature of large-scale planetary wave breaking in the upper atmosphere, where a region with a temperature inversion lies below a region with an adiabatic lapse rate. The region with the inversion allows small-scale waves to become unstable, break, and generate turbulence. The region with the adiabatic lapse rate is indicative of a well-mixed layer and the presence of turbulence. The Rayleigh lidar observations began at 18:37 25 January local time. By 20:30 we had acquired sufficient lidar signal to detect a MIL between 80-85 km. The first MTeX rocket was launched at 00:13 and the second one at 00:46. The lidar temperature soundings show that the atmosphere was disturbed with temperatures in the stratosphere being cooler than expected from climatology with no clear stratopause. Our preliminary analysis of the rocket measurements shows spectral characteristics typical of layers of strong turbulence. Measurements were made both on the upleg and downleg of each rocket flight. In this presentation we present the technical details of the rocket flight, key data from the flight, and show how that data from different instruments is combined to characterize the waves and turbulence present during

  20. Rapid Variability of Water Vapor Abundance in the Venus Mesosphere

    NASA Astrophysics Data System (ADS)

    Gurwell, Mark A.; Melnick, G. J.; Tolls, V.; Bergin, E. A.; Patten, B. M.

    2006-09-01

    We present the first detections of the water vapor ground-state rotational transition (at 556.9 GHz) and the 13CO(5-4) rotational transition (at 550.9 GHz) from the atmosphere of Venus, obtained with the Submillimeter Wave Astronomy Satellite (SWAS). These submillimeter transitions originate primarily from the 70-100 km altitude range, within the Venus mesosphere. Observations were obtained in December 2002, and January, March, and July 2004, coarsely sampling one Venus diurnal period as seen from Earth. Complementary observations of the 12CO(2-1) rotational transition (at 230.5 GHz) were obtained concurrently with the Submillimeter Array (SMA) to help constrain global atmospheric parameters. The water vapor absorption line depth shows large variability among the four observing periods, with strong detections of the water line in December 2002 and July 2004, and no detections in January and March of 2004. Using a multi-transition inversion algorithm (combining temperature, carbon monoxide, and water profile retrieval under some constraints), we retrieved or found upper limits for the globally averaged mesospheric water vapor abundance for each period, finding variability over at least two orders of magnitude. The results are consistent with both temporal and diurnal variability, but with short-term fluctuations clearly dominating. The observations from December 2002 detected very rapid changes in water vapor abundance. Over five days, a deep ground-state water absorption feature consistent with a water abundance of 4.5±1.5 ppm suddenly gave way to a significantly shallower absorption, implying a decrease in the water abundance by a factor of nearly 50 in less than 48 hours. In 2004 similar changes in water vapor abundance are seen between the March and July SWAS observing periods, but variability on timescales of less than a week was not detected. M.A.G. gratefully acknowledges support from NASA contract NAG5-7946. G.J.M., V.T., E.A.B, and B.M.P. were supported by

  1. SCIAMACHY’s View of the Polar Atmosphere

    USGS Publications Warehouse

    Gottwald, M.; Krieg, E.; von Savigny, C.; Noël, S.; Reichl, A.; Bovensmann, H.; Burrows, J.P.

    2007-01-01

    The instrument SCIAMACHY onboard the European ENVISAT mission provides unique capabilities for deriving atmospheric geophysical parameters. Since its launch in early 2002 it has operated successfully in orbit. Due to ENVISAT’s high inclination orbit the polar regions are monitored continuously. We report here results about the status of the polar atmosphere in the past 5 years with special emphasis on the southern hemisphere. This part of the atmosphere is considered to be highly sensitive to anthropogenic impacts on the Earth system and thus to climate change. The acquired data permit retrieving information on the Earth’s atmosphere from troposphere up to the mesosphere

  2. Statistical analysis of solar wind stream interface induced temperature effects on the upper mesosphere and lower thermosphere over SANAE IV, Antarctica

    NASA Astrophysics Data System (ADS)

    Ogunjobi, Olakunle; Sivakumar, Venkataraman; William; Sivla, T.

    Using superposed epoch techniques, the TIMED (Thermosphere Ionosphere Mesosphere Energetic and Dynamics) and NOAA 15-18 (National Oceanic and Atmospheric Administration) satellites measurements are used to examine the response of the polar MLT (Mesosphere and Lower Thermosphere) temperature to energetic electron precipitation during solar wind stream interfaces (SI). We first investigate the relationship between the ionospheric absorption from the ground based riometer and degree of energetic electron precipitation from the MEPED (Medium Energy Proton and Electron Detectors) on board the NOAA satellites. By interpolating the energetic electron measurements from MEPED instruments, we can obtain the electron precipitation rates close in time to the SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature retrieval. Using measurements sorted over the vicinity of SANAE IV (South Africa National Antarctic Expedition IV), we investigate if there are significant temperature effects in the MLT altitude on SI arrival at Earth. The preliminary analysis indicate that there are no temperature increase below 100 km prior to the SI triggered precipitation; whereas a clear temperature increase is observed at 95 km immediately after the SI impact. The analysis on the SI geophysical properties indicates that an enhanced magnetospheric convection resulting to heating could be responsible for the temperature modification on SI arrival.

  3. Modeling of long-term change in the mesosphere: Radiative and dynamical mechanisms

    NASA Astrophysics Data System (ADS)

    Gruzdev, A.; Brasseur, G.

    We have used the interactive two-dimensional model, SOCRATES, to investigate the response of the thermal structure and chemical composition of the mesosphere to the changes in greenhouse gas concentrations (CO2, CH4, water vapor, N2O, CFCs) observed for the past 50 years, and the response to specified changes in gravity wave drag and diffusion in the upper mesosphere. When considering the observed increase in the abundances of greenhouse gases for the past 50 years, a cooling of 3-7 K has been calculated in the mesopause region together with a cooling of 4-6 K in the middle mesosphere. These effects are significantly lower than the cooling suggested by observations. Increased gravity wave drag and diffusion in the upper mesosphere results in a calculated cooling of several Kelvin in this region of the atmosphere. Larger cooling occurs in the winter upper mesosphere-mesopause region when the observed increase in concentrations of greenhouse gases and the strengthening of the gravity wave drag and diffusion are considered simultaneously in the model. In summer, consistently with observations, a thermal effect in this layer is insignificant, while a significant cooling (˜ 10 K and more) occurs in the middle mesosphere. Depending on the adopted strengthening of the gravity wave drag and diffusion, the cooling in the northern hemisphere extratropical mesopause layer in winter varies from 6-10 K to 10-20 K. The cooling of the mesopause is associated with the significant predicted increase in abundances of methane and water vapor in the upper mesosphere, and with the increase in the divergence of the vertical diffusive flux of heat (downward) in this region, due to enhanced diffusive transport of heat and species in the region of intense gravity wave breaking. Although the calculated cooling of the winter mesopause is still less than suggested by observations, these results lead to the conclusion that the increase in abundances of greenhouse gases alone could not explain

  4. On the Possible Anticorrelation of Polar Mesospheric (Noctilucent) Clouds and Aurorae.

    DTIC Science & Technology

    1986-08-01

    reported from N. America whereas hundreds of observations had been reported from Europe and the USSR where a network of observing stations already...Alaska, similar to those already done in W. Europe and the USSR. Information from this network of observating stations indicate that NLC do occur...PMC ice particles. 2.2.2 NLC/PMC Formation Theories Several noctilucent cloud models have been devised. The suggestion that NLC consist of ice crystals

  5. Polar Mesospheric Cloud Mass and the Ice Budget: 2. Application to Satellite Data Sets

    DTIC Science & Technology

    2007-04-20

    now indicate that the environment over Antarctica is less conducive to PMC formation than over the Arctic [Thomas et al., 1991; Bailey et al., 2005...satellites operating at vari- ous times since November 1978 [DeLand et al., 2006]. SBUV PMC albedos are reported at 252.0 nm and the ice mass from one northern...2007]. Such high frequencies can lead to a negative bias in SBUV cloud frequencies and albedos because there are not enough clear air data to reliably

  6. Consequences of Recent Southern Hemisphere Winter Variability on Polar Mesospheric Clouds

    DTIC Science & Technology

    2011-01-01

    to the latitude region where ground based observers see these clouds as noctilucent clouds ( NLCs ). We also only considered clouds, which occurred at...cloudy (colder) and clear (warmer) airmasses. However, even ground based data (Hoffner et al., 2003) have recorded NLCs at temperatures as warm as 157 K...Baumgarten, G., Berger, U., Hoffmann, P., Kaifler, N., Lubken, F.-J., 2011. NLC and the background atmosphere above ALOMAR. Atmospheric Chemistry

  7. Development of Mesospheric Sodium Laser Beacon for Atmospheric Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Jeys, T. H.

    1992-01-01

    A solid-state source of long pulse length, sodium-resonance radiation was developed for the purpose of generating an artificial star in the earth's mesospheric sodium layer. This radiation is generated by sum-frequency mixing the output of a 1.064 micron Nd:YAG laser with the output of a 1.319-micron Nd:YAG laser. By operating these lasers at wavelengths very close to the peak of their tuning curves, it is possible to match the wavelength of the sum-frequency radiation to that of the sodium D2 adsorption wavelength. Two pulsed laser systems were constructed, one producing as much as 0.6 J of sodium resonance radiation at a 10-Hz repetition rate and another producing as much as 24 mJ at a 840-Hz repetition rate. In both laser systems, the 1.06-micron and 1.32-micron Nd:YAG lasers are configured as mode-locked master oscillators followed by power amplifiers. Other aspects of this project are presented.

  8. Mesospheric Water Vapor Retrieved from SABER/TIMED Measurements

    NASA Technical Reports Server (NTRS)

    Feofilov, Arte, G.; Yankovsky, Valentine A.; Marshall, Benjamin T.; Russell, J. M., III; Pesnell, W. D.; Kutepov, Alexander A.; Goldberg, Richard A.; Gordley, Larry L.; Petelina, Svetlama; Mauilova, Rada O.; Garaci-A-Comas, M.

    2007-01-01

    The SABER instrument on board the TIMED satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT) The H2O concentrations are retrieved from 6.3 micron band radiances. The interpretation of this radiance requires developing a non-LTE H2O model that includes energy exchange processes with the system of O3 and O2 vibrational levels populated at the daytime through a number of photoabsorption and photodissociation processes. We developed a research model base on an extended H2O non-LTE model of Manuilova coupled with the novel model of the electronic kinetics of the O2 and O3 photolysis products suggested by Yankosvky and Manuilova. The performed study of this model helped u to develop and test an optimized operational model for interpretation of SABER 6.3 micron band radiances. The sensitivity of retrievals to the parameters of the model is discussed. The H2O retrievals are compared to other measurements for different seasons and locations.

  9. Planetary and Gravity Waves in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Vincent, R. A.

    1985-01-01

    Rocket and ground based studies of the mesosphere and lower thermosphere show that waves play an important role in the dynamics of their region. The waves manifest themselves in wind, temperature, density, pressure, ionization and airglow fluctuations in the 80-120 km height range. Rockets have enabled the density and temperature structure to be measured with excellent height resolution, while long term studies of wind motions using MST, partial reflection and meteor radars and, more recently, lidar investigations of temperature and density, have enabled the temporal behaviour of the waves to be better understood. A composite of power spectra is shown of wind motions measured near the mesopause at widely separated locations and illustrates how wave energy is distributed as a function of frequency. The spectra show three distinct parts; (1) a long period section corresponding to periods longer than 24 h; (2) a section between 12 and 24 h priod where the spectra are dominated by narrow; peaks associated with the semidiurnal and diurnal tides and (3) a section at periods less than 12 h where the spectral density decreases montonically (except for the 8 h tidal peak). The long period section is associated with transient planetary scale waves while the short period motions are caused by gravity waves.

  10. In-flight calibration of mesospheric rocket plasma probes

    SciTech Connect

    Havnes, Ove; Hartquist, Thomas W.; Kassa, Meseret; Morfill, Gregor E.

    2011-07-15

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  11. In-flight calibration of mesospheric rocket plasma probes.

    PubMed

    Havnes, Ove; Hartquist, Thomas W; Kassa, Meseret; Morfill, Gregor E

    2011-07-01

    Many effects and factors can influence the efficiency of a rocket plasma probe. These include payload charging, solar illumination, rocket payload orientation and rotation, and dust impact induced secondary charge production. As a consequence, considerable uncertainties can arise in the determination of the effective cross sections of plasma probes and measured electron and ion densities. We present a new method for calibrating mesospheric rocket plasma probes and obtaining reliable measurements of plasma densities. This method can be used if a payload also carries a probe for measuring the dust charge density. It is based on that a dust probe's effective cross section for measuring the charged component of dust normally is nearly equal to its geometric cross section, and it involves the comparison of variations in the dust charge density measured with the dust detector to the corresponding current variations measured with the electron and/or ion probes. In cases in which the dust charge density is significantly smaller than the electron density, the relation between plasma and dust charge density variations can be simplified and used to infer the effective cross sections of the plasma probes. We illustrate the utility of the method by analysing the data from a specific rocket flight of a payload containing both dust and electron probes.

  12. Silicon chemistry in the mesosphere and lower thermosphere

    PubMed Central

    Gómez‐Martín, Juan Carlos; Feng, Wuhu; Janches, Diego

    2016-01-01

    Abstract Silicon is one of the most abundant elements in cosmic dust, and meteoric ablation injects a significant amount of Si into the atmosphere above 80 km. In this study, a new model for silicon chemistry in the mesosphere/lower thermosphere is described, based on recent laboratory kinetic studies of Si, SiO, SiO2, and Si+. Electronic structure calculations and statistical rate theory are used to show that the likely fate of SiO2 is a two‐step hydration to silicic acid (Si(OH)4), which then polymerizes with metal oxides and hydroxides to form meteoric smoke particles. This chemistry is then incorporated into a whole atmosphere chemistry‐climate model. The vertical profiles of Si+ and the Si+/Fe+ ratio are shown to be in good agreement with rocket‐borne mass spectrometric measurements between 90 and 110 km. Si+ has consistently been observed to be the major meteoric ion around 110 km; this implies that the relative injection rate of Si from meteoric ablation, compared to metals such as Fe and Mg, is significantly larger than expected based on their relative chondritic abundances. Finally, the global abundances of SiO and Si(OH)4 show clear evidence of the seasonal meteoric input function, which is much less pronounced in the case of other meteoric species. PMID:27668138

  13. Arctic Strato-Mesospheric Temperature and Wind Variations

    NASA Technical Reports Server (NTRS)

    Schmidlin, F. J.; Goldberg, R. A.

    2004-01-01

    Upper stratosphere and mesosphere rocket measurements are actively used to investigate interaction between the neutral, electrical, and chemical atmospheres and between lower and upper layers of these regions. Satellite temperature measurements from HALOE and from inflatable falling spheres complement each other and allow illustrations of the annual cycle to 85 km altitude. Falling sphere wind and temperature measurements reveal variability that differs as a function of altitude, location, and time. We discuss the state of the Arctic atmosphere during the summer 2002 (Andoya, Norway) and winter 2003 (ESRANGE, Sweden) campaigns of MaCWAVE. Balloon-borne profiles to 30 km altitude and sphere profiles between 50 and 90 km show unique small-scale structure. Nonetheless, there are practical implications that additional measurements are very much needed to complete the full vertical profile picture. Our discussion concentrates on the distribution of temperature and wind and their variability. However, reliable measurements from other high latitude NASA programs over a number of years are available to help properly calculate mean values and the distribution of the individual measurements. Since the available rocket data in the Arctic's upper atmosphere are sparse the results we present are basically a snapshot of atmospheric structure.

  14. CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES: Spin-Polarized Transport through a Quantum Dot Coupled to Ferromagnetic Leads and a Mesoscopic Ring

    NASA Astrophysics Data System (ADS)

    Huang, Rui; Wu, Shao-Quan

    2010-02-01

    Using an equation of motion technique, we investigate the spin-polarized transport through a quantum dot coupled to ferromagnetic leads and a mesoscopic ring by the Anderson Hamiltonian. We analyze the transmission probability of this system in both the equilibrium and nonequilibrium cases, and our results reveal that the transport properties show some noticeable characteristics depending upon the spin-polarized strength p, the magnetic flux Φ and the number of lattice sites NR in the mesoscopic ring. These effects might have some potential applications in spintronics.

  15. Titan's winter polar vortex structure revealed by chemical tracers

    NASA Astrophysics Data System (ADS)

    Teanby, N. A.; de Kok, R.; Irwin, P. G. J.; Osprey, S.; Vinatier, S.; Gierasch, P. J.; Read, P. L.; Flasar, F. M.; Conrath, B. J.; Achterberg, R. K.; Bézard, B.; Nixon, C. A.; Calcutt, S. B.

    2008-12-01

    The winter polar vortex on Saturn's largest moon Titan has profound effects on atmospheric circulation and chemistry and for the current northern midwinter season is the major dynamical feature of Titan's stratosphere and mesosphere. We use 2 years of observations from Cassini's composite infrared spectrometer to determine cross sections of five independent chemical tracers (HCN, HC3N, C2H2, C3H4, and C4H2), which are then used to probe dynamical processes occurring within the vortex. Our results provide compelling evidence that the vortex acts as a strong mixing barrier in the stratosphere and mesosphere, effectively separating a tracer-enriched air mass in the north from air at lower latitudes. In the mesosphere, above the level of the vortex jet, a tracer-depleted zone extends away from the north pole toward the equator and enrichment is confined to high northern latitudes. However, below this level, mixing processes cause tongues of gas to extend away from the polar region toward the equator. These features are not reproduced by current general circulation models and suggest that a residual polar circulation is present and that waves and instabilities form a more important part of Titan's atmospheric dynamics than previously thought. We also observe an unexpected enrichment of C4H2 in the northern stratosphere, which suggests photochemical polymerization of C2H2. Our observations provide stringent new constraints for dynamical and photochemical models and identify key polar processes for the first time. Some of the processes we see have analogues in Earth's polar vortex, while others are unique to Titan.

  16. Daytime lidar measurements of tidal winds in the mesospheric sodium layer at Urbana, Illinois

    NASA Technical Reports Server (NTRS)

    Kwon, K. H.; Senft, D. C.; Gardner, C. S.; Voelz, D. G.; Sechrist, C. F., Jr.; Roesler, F. L.

    1986-01-01

    For more than 15 years lidar systems have been used to study the chemistry and dynamics of the mesospheric sodium layer. Because the layer is an excellent tracer of atmospheric wave motions, sodium lidar has proven to be particularly useful for studying the influence of gravity waves and tides on mesospheric dynamics. These waves, which originate in the troposphere and stratosphere, propagate through the mesosphere and dissipate their energy near the mesopause making important contributions to the momentum and turbulence budget in this region of the atmosphere. Recently, the sodium lidar was modified for daytime operation so that wave phenomena and chemical effects could be monitored throughout the complete diurnal cycle. The results of continuous 24 hour lidar observations of the sodium layer structure are presented alond with measurement of the semidiurnal tidal winds.

  17. Model/data comparisons of ozone in the upper stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Siskind, David E.; Remsberg, Ellis E.; Eckman, Richard S.; Connor, Brian J.; Tsou, J. J.; Parrish, Alan

    1994-01-01

    We compare ground-based microwave observations of ozone in the upper stratosphere and mesosphere with daytime observations made from the SME (Solar Mesosphere Explorer) satellite, with nighttime data from the LIMS instrument, and with a diurnal photochemical model. The results suggest that the data are all in reasonable agreement and that the model-data discrepancy is much less than previously thought, particularly in the mesosphere. This appears to be due to the fact that the latest data are lower than earlier reports and the updated model predicts more ozone than older versions. The model and the data agree to within a factor of 1.5 at all altitudes and typically are within 20 percent.

  18. Studies of high latitude mesospheric turbulence by radar and rocket. II - Measurements of small scale turbulence

    NASA Technical Reports Server (NTRS)

    Blood, S. P.; Mitchell, J. D.; Croskey, C. L.; Raymund, T. D.; Thrane, E. V.; Blix, T. A.; Hoppe, U. P.; Fritts, D. C.; Schmidlin, F. J.

    1988-01-01

    Measurements of mesospheric small scale turbulence and associated larger scale wave structures were obtained from rocket probe flights during equinox in spring 1985. The measurements were verified by data from the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. Electron density irregularities down to an altitude of about 62 km and fluctuations in positive ion density in the altitude region from 50 to 90 km were measured. Turbulence in the inertial subrange was observed at heights where the fluctuations generally were largest. Measurement of background electron density exhibited gradients relative to the monotonically increasing density profile, suggesting the presence of large amplitude wave motions transporting the plasma by mixing. The radar detected the occurrence of 1-3 km wavelike perturbations superimposed on a 7-km wave in the wind velocity field. It is suggested that the 1-3 km waves are more important in the transport of energy and momentum and in the production of turbulence in the lower mesosphere.

  19. Studies of high latitude mesospheric turbulence by radar and rocket. I - Energy deposition and wave structure

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Fritts, D. C.; Chou, H.-G.; Schmidlin, F. J.; Barcus, J. R.

    1988-01-01

    The origin of wintertime mesospheric echoes observed with the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska, was studied by probing the mesosphere with in situ rocket measurements during echo occurrences in the early spring, 1985. Within the height range 65-75 km, the structure of the large scale wave field was identified. In this region, a gravity wave with a vertical wavelength of about 2 km was found superimposed on a wave with a larger amplitude and a vertical wavelength of about 6.6 km. Because of the close correlation between the smaller amplitude wave and the modulation observed in the S/N profiles, it is concluded that the smaller wave was dominant in generating turbulence within the middle atmosphere.

  20. Quasi-Stationary Zonally Asymmetric Circulations in the Equatorial Lower Mesosphere.

    NASA Astrophysics Data System (ADS)

    Hitchman, Matthew H.; Leovy, Conway B.; Gille, John C.; Bailey, Paul L.

    1987-08-01

    Data from the Limb Infrared Monitor of the Stratosphere (LIMS) are used to identify a new type of planetary scale disturbance in the equatorial lower mesosphere during northern winter 1978/79. The disturbances consist of two or three vertically stacked temperature extrema of alternating sign. They persist for as long as two weeks and do not propagate. Their occurrence is confined to regions of very weak or negative inertial stability, and their meridional to vertical aspect ratio, meridional structure and zonal spectrum are consistent with disturbances predicted by inertial instability theory. However, they are found only when there is strong forcing of the subtropical mesosphere by zonal wavenumber one and two Rossby waves. This fact, together with the absence of zonal propagation, suggests that stationary Rossby waves determine their occurrence and longitudinal structure. These structures can significantly modify the zonal mean flow and should be taken into account in dynamical models of the equatorial mesosphere.

  1. Model/data comparisons of ozone in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Remsberg, Ellis E.; Eckman, Richard S.; Connor, Brian J.; Tsou, J. J.; Parrish, Alan

    1994-04-01

    We compare ground-based microwave observations of ozone in the upper stratosphere and mesosphere with daytime observations made from the SME (Solar Mesosphere Explorer) satellite, with nighttime data from the LIMS instrument, and with a diurnal photochemical model. The results suggest that the data are all in reasonable agreement and that the model-data discrepancy is much less than previously thought, particularly in the mesosphere. This appears to be due to the fact that the latest data are lower than earlier reports and the updated model predicts more ozone than older versions. The model and the data agree to within a factor of 1.5 at all altitudes and typically are within 20 percent.

  2. Propagation of short period (10-40 min) atmospheric gravity waves from troposphere to mesosphere over Gadanki, India

    NASA Astrophysics Data System (ADS)

    Chakravarty, S. C.; Nagaraja, Kamsali

    2015-09-01

    The Indian MST radar at Gadanki (13.5°N, 79.2°E) has been utilised to conduct a detailed study of the close coupling between the troposphere and the mesosphere through the vertically propagating atmospheric gravity waves. For this purpose two cases from a special campaign dedicated to the simultaneous measurement of the fluctuations in the UTLS (Upper Troposphere and Lower Stratosphere) and in the mesosphere during 2001 and one case from a follow up observation in 2002 have been investigated. By using both the FFT and wavelet techniques, the near simultaneous tropospheric and mesospheric data of radar return signal strengths and tropospheric wind fields are analysed. The signatures of relatively high frequency gravity waves with periods between ~10 and 40 min have been clearly traced as propagating waves from the tropospheric turbulent layer heights (~8-18 km) to the lower mesospheric heights (65-80 km). Significant peak correlation coefficients of 0.56 and 0.45 have been found between the SNR time series of pairs of troposphere and mesosphere levels indicating the propagation of high speed gravity waves. The time series of wavelet spectra determined for the tropospheric SNR/zonal winds and the mesospheric SNR show that the detectability of the gravity waves increases at mesospheric heights. It is shown that the continuous SNR values received from the mesosphere can be used as an effective parameter for studies featuring mesospheric wave dynamics. Based on the observed values of vertical wavelengths and wave amplitudes, the horizontal wavelengths, wave phase and group velocities have been estimated for different wave periods. These results have implications on monitoring of the ubiquitous atmospheric gravity waves generated mainly by the tropospheric weather system of the tropical region from their imprint on the mesospheric turbulence structures.

  3. Polarized cells, polar actions.

    PubMed

    Maddock, J R; Alley, M R; Shapiro, L

    1993-11-01

    The recognition of polar bacterial organization is just emerging. The examples of polar localization given here are from a variety of bacterial species and concern a disparate array of cellular functions. A number of well-characterized instances of polar localization of bacterial proteins, including the chemoreceptor complex in both C. crescentus and E. coli, the maltose-binding protein in E. coli, the B. japonicum surface attachment proteins, and the actin tail of L. monocytogenes within a mammalian cell, involve proteins or protein complexes that facilitate bacterial interaction with the environment, either the extracellular milieux or that within a plant or mammalian host. The significance of this observation remains unclear. Polarity in bacteria poses many problems, including the necessity for a mechanism for asymmetrically distributing proteins as well as a mechanism by which polar localization is maintained. Large structures, such as a flagellum, are anchored at the pole by means of the basal body that traverses the peptidoglycan wall. But for proteins and small complexes, whether in the periplasm or the membrane, one must invoke a mechanism that prevents the diffusion of these proteins away from the cell pole. Perhaps the periplasmic proteins are retained at the pole by the presence of the periseptal annulus (35). The constraining features for membrane components are not known. For large aggregates, such as the clusters of MCP, CheA, and CheW complexes, perhaps the size of the aggregate alone prevents displacement. In most cases of cellular asymmetry, bacteria are able to discriminate between the new pole and the old pole and to utilize this information for localization specificity. The maturation of new pole to old pole appears to be a common theme as well. Given numerous examples reported thus far, we propose that bacterial polarity displays specific rules and is a more general phenomenon than has been previously recognized.

  4. Implications of the comparison of ozone abundances measured by the Solar Mesosphere Explorer to model calculations

    NASA Technical Reports Server (NTRS)

    Rusch, D. W.; Eckman, R. S.

    1985-01-01

    Two years of ozone measurements from the Solar Mesosphere Explorer satellite are compared to the results of a model of lower mesospheric photochemistry. The measured ozone mixing ratios are larger than those predicted by the model by as much as a factor of two at pressures near 0.1 mbar and 1.3 at 1.0 mbar using currently accepted reaction rate coefficients. The model is brought into good agreement with the measurements over a wide range of latitudes and solar zenith angles only if the efficiency of the odd hydrogen catalytic cycle which destroys odd oxygen is decreased by 30-50 percent.

  5. Correlated measurements of mesospheric density and near infrared airglow

    NASA Astrophysics Data System (ADS)

    Moreels, G.; Pautet, D.; Faivre, M.; Keckhut, P.; Hauchecorne, A.

    A program aimed at simultaneously measuring the mesospheric density and the evolution with time of the near IR emission at the mesopause level was initiated in July 2000 and July 2001. The atmospheric density is measured along a vertical line using the Rayleigh scattering lidar located at Observatoire de Haute Provence (OHP). The near IR emission, mainly due to OH, is measured along a slant path from the Pic de Château-Renard (Hautes-Alpes, altitude 2989 m). The field of view of the CCD camera encompasses an area located vertically above OHP. Rayleigh scattering by air molecules is much less efficient than fluorescence by alkaline atoms. Therefore, the lidar data could only be retrieved with a one-hour time resolution at altitudes of 65, 70, 72.5 and 75 km. The time resolution for the airglow intensity measurement was equal to three minutes. The temporal evolution over the 5-hour duration of the night appears as opposite in the density up to 75 km and in the near IR airglow. The airglow shows around 23h30 a minimum intensity about 28% lower than its maximum value. During the first part of the night the intensity decreases. During the second part, it increases. The increase during the second part cannot be explained by the evolution of the atmospheric chemical system. Given the variation in opposite phases of the air density and of the emission, it is suggested that the near IR airglow is a semi-direct tracer of the density variations at the mesopause level, the air molecules being effective quenchers of the excited OH radicals. The excitation and quenching rates will therefore be discussed. Two short movie films showing the airglow waves coming across the observation field of view will be presented.

  6. Nucleation of mesospheric cloud particles: Sensitivities and limits

    NASA Astrophysics Data System (ADS)

    Wilms, Henrike; Rapp, Markus; Kirsch, Annekatrin

    2016-03-01

    Nucleation of mesospheric ice particles is thought to occur via heterogeneous nucleation on meteor smoke particles. However, several factors determining the nucleation rate are poorly known. To study the effect of uncertainties in the nucleation rate on cloud properties, we use the Community Aerosol and Radiation Model for Atmospheres and systematically vary the nucleation rate over ±10 orders of magnitude. In one set of simulations, the background state of the atmosphere is described by climatological conditions. In a second set, gravity wave-perturbed profiles from the Kühlungsborn Mechanistic general Circulation Model (KMCM) are used with typical temperature (vertical wind) perturbations at the mesopause on the order of 9 K (0.45 m/s). The resulting noctilucent cloud (NLC) characteristics are compared to lidar and satellite measurements. Realistic NLCs compared to the lidar measurements can only be modeled if the nucleation rate is reduced by up to 3 orders of magnitude compared to standard assumptions. For the same cases, the simulated NLCs compare best to the satellite measurements if the nucleation rate is reduced by 2 orders of magnitude or more. Dynamical processes at the mesopause strongly influence the NLC development. In a gravity wave-perturbed atmosphere, the ice particles have only limited time for nucleation and growth. The growth time is limited by the vertical wind, because the vertical wind determines the residence time of the ice particles in the supersaturated region. Since the vertical wind amplitudes reach 1.5 m/s in KMCM (compared to a mean upwelling of ˜4 cm/s in the climatology), the ice particles remain significantly smaller in a gravity wave-perturbed atmosphere than in climatological background conditions.

  7. Inter-Hemispheric Coupling During Recent North Polar Summer Periods as Predicted by MaCWAVE/MIDAS Rocket Data and Traced by TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem G.; Kutepov, Alexander A.; Pesnell W. Dean; Schmidlin, Francis J.

    2011-01-01

    In July, 2002, the MaCWAVE-MIDAS Rocket Program was launched from Andoya Rocket Range (ARR) in Norway. Data from these flights demonstrated that the polar summer mesosphere during this period was unusual, at least above ARR. Theoretical studies have since been published that imply that the abnormal characteristics of this polar summer were generated by dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) Satellite to study these characteristics and compare them with the features observed in the ensuing eight years. For background, the TIMED Satellite was launched on December 7,2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The SABER instrument is a limb scanning infrared radiometer designed to measure temperature of the region as well as a large number of minor constituents. In this study, we review the MaCWAVE rocket results. Next, we investigate the temperature characteristics of the polar mesosphere as a function of spatial and temporal considerations. We have used the most recent SABER dataset (1.07). Weekly averages are used to make comparisons between the winter and summer hemispheres. Furthermore, the data analysis agrees with recent theoretical studies showing that this behavior is a result of anomalous dynamical events in the southern hemisphere. The findings discussed here clearly show the value of scientific rocket flights used in a discovery mode.

  8. Nighttime mesospheric hydroxyl enhancements during SEP events and accompanying geomagnetic storms: Ionization rate modeling and Aura satellite observations

    NASA Astrophysics Data System (ADS)

    Verkhoglyadova, O. P.; Wissing, J. M.; Wang, S.; Kallenrode, M.-B.; Zank, G. P.

    2016-07-01

    We quantify the effects of combined precipitating solar protons and magnetospheric electrons on nighttime odd hydrogen density enhancements during two solar energetic particle (SEP) events accompanied by strong geomagnetic storms. We perform detailed modeling of ionization rates for 7-17 November 2004 and 20-30 August 2005 intervals with improved version 1.6 of the Atmospheric Ionization Module Osnabrück model. Particle measurements from Geostationary Operational Environmental Satellites and Polar Orbiting Environmental Satellites are sorted and combined in 2 h intervals to create realistic particle precipitation maps that are used as the modeling input. We show that modeled atmospheric ionization rates and estimated peak odd hydrogen (primarily hydroxyl) production from 0.001 hPa to 0.1 hPa atmospheric pressure levels during these intervals are consistent with enhancements in nighttime averaged zonal odd hydrogen densities derived from newly reprocessed and improved data set of Microwave Limb Sounder instrument on board Aura satellite. We show that both precipitating SEPs and magnetospheric electrons contribute to mesospheric ionization and their relative contributions change throughout the intervals. Our event-based modeling results underline the importance of the combined ionization sources for odd hydrogen chemistry in the middle atmosphere.

  9. Polarization measurement through combination polarizers

    NASA Astrophysics Data System (ADS)

    Bai, Yunfeng; Li, Linjun; He, Zhelong; Liu, Yanwei; Ma, Cheng; Shi, Guang; Liu, Lu

    2014-02-01

    Polarization measurement approaches only using polarizer and grating is present. The combination polarizers consists of two polarizers: one is γ degree with the X axis; the other is along the Y axis. Binary grating is covered by the combination polarizers, and based on Fraunhofer diffraction, the diffraction intensity formula is deduced. The polarization state of incident light can be gotten by fitting the diffraction pattern with the deduced formula. Compared with the traditional polarization measurement method, this measurement only uses polarizer and grating, therefore, it can be applied to measure a wide wavelength range without replacing device in theory.

  10. Tracing the Inter-Hemispheric Coupling During Polar Summer Periods of 2002-2010 Using TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard; Feoflow, Artem; Pesnell, Dean; Kutepov, Alexander

    2010-01-01

    It has been found that for more than one polar summer season between 2002-2010, the northern polar mesospheric region near and above the mesospheric maximum was warmer than normal. The strongest warming effect of this type was observed to occur during northern summer 2002. Theoretical studies have implied that these "anomalies" were preceded by unusual dynamical processes occurring in the southern hemisphere. We have analyzed temperature distributions measured by the SABER limb scanning infrared radiometer aboard the NASA TIMED satellite between 2002-2010 at altitudes from 15 to 110 km and for latitudes between 83 deg. S to 83 deg. N. We describe the approach to trace the inter-hemispheric temperature correlatoins and to identify the global features that were unique for the "anomalous" northern polar summers.

  11. Characterization of Dusty Plasmas in the Earth's Mesosphere Using Radiowave Heating

    SciTech Connect

    Scales, Wayne; Chen, Chen

    2008-09-07

    Recently it has become evident that significant diagnostic information may be available to characterize charged sub-visible mesospheric dust layers from the temporal behavior of the associated electron irregularities during radiowave heating which ultimately modifies the mesospheric electron temperature. Particularly important time periods of the irregularity temporal behavior are during the turn-on and turn-off of the radio wave heating. The objective of this work is to first consider the physical processes that control the evolution of electron irregularities associated with mesospheric dust layers during radio wave heating. It is shown that two dominant processes are dust charging and ambipolar diffusion. In particular, it will be shown that a fundamental parameter that controls the temporal behavior is the ratio of the dust charging to ambipolar diffusion time during the turn-on and turn-off period. Both computational and analytical models are described that may be used to directly investigate the electron irregularity temporal evolution with particular emphasis placed on modeling the electron irregularity temporal evolution during the time periods when the radio wave heating is turned on and off. The models results may then be used to obtain diagnostic information on the characteristics of the charged dust layer, such as dust density and radius. Predictions of the models are used to describe possibilities for new experiments that may provide further diagnostic information on charged mesospheric dust layers.

  12. Solar and chemical reaction-induced heating in the terrestrial mesosphere and lower thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.

    1992-01-01

    Airglow and chemical processes in the terrestrial mesosphere and lower thermosphere are reviewed, and initial parameterizations of the processes applicable to multidimensional models are presented. The basic processes by which absorbed solar energy participates in middle atmosphere energetics for absorption events in which photolysis occurs are illustrated. An approach that permits the heating processes to be incorporated in numerical models is presented.

  13. Mesospheric sodium airglow emission: Modeling and first results over a mid-latitude

    NASA Astrophysics Data System (ADS)

    Bag, Tikemani; Krishna, M. V. Sunil; Singh, Vir

    2016-07-01

    Atmospheric sodium plays a very important role in the mesospheric chemistry and dynamics. We have developed a comprehensive model for mesospheric/thermospheric sodium airglow emission by incorporating all the known reaction mechanisms. The latest reaction rate coefficients and the related cross sections are obtained from the theoretical studies and experimental observations. The continuity equations are explicitly solved for the major species. Similarly, the steady-state approximation has been used for the intermediate and short lived minor species. The number densities from in-situ observations, NRLMSISE-00, and IRI-2012 have been successfully implemented to calculate the vertical volume emission rate. The modeled results compared to a good agreement with the measured profiles of Na airglow emission. The mesospheric sodium density shows a large day-to-day variability. The observed variations in the mesospheric sodium layer have been incorporated to obtain the variations in the sodium airglow intensities. The nocturnal variation of sodium airglow emissions are presented over a mid latitude location using this model.

  14. Mesospheric CO2 clouds at Mars: 6 Martian years of survey by OMEGA/MEx.

    NASA Astrophysics Data System (ADS)

    Gondet, B.; Bibring, JP.; Vincendon, M.

    2014-04-01

    Mesospheric clouds have been detected first from Earth (Bell et al 1996 [1]), then from Mars orbit (MGS/TES and MOC, Clancy et al 1998 [2]). Their composition (CO2) was inferred from temperature. Similar detection and temperature-inferred composition was then performed by SPICAM and PFS on board Mars Express (Montmessin et al., 2006 [3]; Formisano et al.,2006 [4]).

  15. Impact of the stratospheric warming 2012/2013 on the upper mesosphere

    NASA Astrophysics Data System (ADS)

    Bittner, Michael; Lisa, Kuechelbacher; Carsten, Schmidt; Sabine, Wuest

    2014-05-01

    Impact of the stratospheric warming 2012 / 2013 on the upper mesosphere The effects of stratospheric warming events are not restricted to the stratosphere only. There is also considerable impact on the mesosphere. Remote-sensing data derived by satellite and ground-based instruments are analysed in order to dynamically characterize the stratospheric warming event which took place during winter 2012/2013. The temporal and spatial structure of planetary waves with zonal wave number 1 to 3 is studied from strato- to mesospheric heights using global ozone and temperature data from METOP-GOME-2 and TIMED-SABER, respectively. Ground-based infrared airglow spectrometer measurements (GRIPS) of OH rotational temperature in the mesopause region derived at European mid-latitude NDMC stations complete the data set. Planetary wave amplitudes show characteristic warming pulses whereby planetary wave with zonal wave number 3 significantly changes period and phase speed. The changing planetary wave regime obviously affects gravity wave propagation up to the mesosphere. Indication for varying mesopause airglow layer height is found.

  16. Effect of trends of middle atmosphere gases on the mesosphere and thermosphere

    NASA Astrophysics Data System (ADS)

    Qian, Liying; Marsh, Daniel; Merkel, Aimee; Solomon, Stanley C.; Roble, Raymond G.

    2013-06-01

    We conducted model simulations to examine how changes in concentration of radiatively active trace gases in the middle atmosphere affect long-term changes in the upper atmosphere. We focused our model study on the impact of increases in carbon dioxide (CO2), methane (CH4), and water vapor (H2O), and decreases in ozone (O3) between 1983 and 2003. We used both the National Center for Atmospheric Research Whole Atmosphere Community Climate Model and the Thermosphere-Ionosphere-Mesosphere-Electrodynamics General Circulation Model, global mean version, in this study. The model simulations indicate that CO2 is the main forcing mechanism of long-term changes in the thermsophere, with minor influences from O3, CH4, and H2O. At 400 km altitude, global mean thermospheric neutral density decreased by ~4.5% due to CO2 forcing alone, whereas it decreased by ~4.8% due to the combined forcing from all four gases. O3 depletion caused cooling in the stratosphere and mesosphere (maximum decrease of 0.5 K) due to reduced absorption of solar ultraviolet radiation, but had nearly no cooling effect in the thermosphere. However, due to thermal contraction in the stratosphere and mesosphere, O3 depletion caused a small decrease in thermospheric neutral density of ~0.25%. Increases in both CH4 and H2O may slightly warm the upper mesosphere and thermosphere due to increased chemical heating and absorption of solar ultraviolet radiation.

  17. The validation of ozone measurements from the improved stratospheric and mesospheric sounder

    NASA Technical Reports Server (NTRS)

    Connor, Brian J.; Scheuer, Christopher J.; Chu, D. A.; Remedios, John J.; Marks, C. J.; Rodgers, Clive D.; Taylor, Fredric W.

    1994-01-01

    We present preliminary results of the validation of ozone measurements from the Improved Stratospheric and Mesospheric Sounder (ISAMS). The indications are that the ISAMS provides ozone data which generally agrees with other experiments and climatological values, except in regions of large thermal gradients or high aerosol loading. Corrections for these effects will be included in future reprocessing of the data.

  18. Four Years of Simultaneous Observations of Noctilucent Clouds and Mesospheric Summer Echoes at a Mid-Latitude Site (Kühlungsborn/Germany, 54°N)

    NASA Astrophysics Data System (ADS)

    Gerding, M.; Zoellner, J.; Zecha, M.; Luebken, F. J.

    2015-12-01

    Occurrence of ice particles in the polar summer mesopause region is an intriguing phenomenon that can be observed either optically as Noctilucent Clouds (NLC) / Polar Mesospheric Clouds (PMC) or by radar as (Polar) Mesosphere Summer Echoes ((P)MSE). The relation of both phenomena is well understood and allows insights into atmospheric properties like temperature, humidity, winds, turbulence and electron density. Simultaneous observations of NLC and PMSE require sufficient electron density (for the radar observation) and therefore daylight conditions that may hinder optical observations by lidar. Up to now, simultaneous observations of NLC and PMSE are mainly limited to polar latitudes, while data from mid-latitudes are lacking. Since 2010 we operate a new RMR lidar at our site at Kühlungsborn/Germany (54°N, 12°E). From the best of our knowledge this lidar allows for the first time observations of mid-latitude NLC independent of solar elevation, i.e. during night and day. With our new RMR lidar and the co-located OSWIN radar we are for the first time able to compare the occurrence and altitude structure of NLC and MSE at mid-latitudes. It turns out that the lower edges of simultaneously observed NLC/MSE typically agree, as expected from higher latitudes. Though, the top edge of MSE is observed about 500 m above the NLC edge, indicating the presence of particles being too small to be observed by lidar. Nevertheless, height difference is small compared to the typical layer widths and smaller than observed at higher latitudes. This hints at different size distributions and, by this, different growing conditions at mid-latitudes. We will present a statistical overview on the comparison of simultaneously observed NLC and MSE layers and their main characteristics. Simultaneous NLC and MSE are of additional importance if observed during twilight conditions. The onset or disappearance of MSE during morning and evening twilight is directly related with changing electron

  19. Meridional trends in the radiative energy balance of the Venus mesosphere

    NASA Astrophysics Data System (ADS)

    Lee, Y. J.; Titov, D.; Ignatiev, N.; Tellmann, S.; Paetzold, M.; Piccioni, G.

    2012-04-01

    The Venus clouds play an important role in the radiative energy balance. Thermal cooling to space occurs from the cloud tops. Also almost half of the solar energy received by Venus is deposited at about the same altitude by the unknown UV absorber. Observations revealed the latitudinal trend in the aerosol structure with cloud top altitude decreasing from ~68 km in low latitudes to ~62 km in polar region and aerosol scale height changing from ~4 km to ~1-2 km. This results in significant changes in the radiative energy balance at the cloud tops and the mesosphere as well as global energy balance of the planet. Here we present calculations of the thermal flux in the 0-99 km altitude range using the latitude dependent cloud top structure. Aerosol and temperature profiles are based on the radio science experiment (VeRa) and the thermal spectrometer (VIRTIS) onboard Venus Express [1]. We used radiative transfer model merged with a fast line-by-line routine to calculate thermal fluxes in the broad wavenumber range from 50 to 2590 cm-1 (=3.86-200.0 μm). The cloud layers are responsible for thermal cooling below ~70 km altitude. The meridional changes in the upper clouds result in cooling rate variation 6-10 K/day along the latitude. Contribution of the CO2 emission to the outgoing flux becomes dominant above 70 km altitude. The outgoing flux shows maxima at equator (164 W/m2) and pole (171 W/m2) and a minimum (133 W/m2) in the "cold collar" region (50-60° S). The earlier studies of the solar heating rate were used to derive a meridional trend of the radiative energy balance. The comparison shows dominant thermal cooling in high latitudes and strong solar heating at low latitudes suggesting radiative disequilibrium, that implies a need for another, possibly dynamical, mechanism to maintain the observed temperature and cloud structure [2,3].

  20. Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

    NASA Astrophysics Data System (ADS)

    Lainer, Martin; Hocke, Klemens; Kämpfer, Niklaus

    2016-06-01

    Many studies investigated solar-terrestrial responses (thermal state, O3, OH, H2O) with emphasis on the tropical upper atmosphere. In this paper the focus is switched to water vapor in the mesosphere at a mid-latitudinal location. Eight years of water vapor profile measurements above Bern (46.88 ° N / 7.46 ° E) are investigated to study oscillations with the focus on periods between 10 and 50 days. Different spectral analyses revealed prominent features in the 27-day oscillation band, which are enhanced in the upper mesosphere (above 0.1 hPa, ∼ 64 km) during the rising sunspot activity of solar cycle 24. Local as well as zonal mean Aura MLS observations support these results by showing a similar behavior. The relationship between mesospheric water and the solar Lyman-α flux is studied by comparing the similarity of their temporal oscillations. The H2O oscillation is negatively correlated to solar Lyman-α oscillation with a correlation coefficient of up to - 0.3 to - 0.4, and the phase lag is 6-10 days at 0.04 hPa. The confidence level of the correlation is ≥ 99 %. This finding supports the assumption that the 27-day oscillation in Lyman-α causes a periodical photodissociation loss in mesospheric water. Wavelet power spectra, cross-wavelet transform and wavelet coherence analysis (WTC) complete our study. More periods of high common wavelet power of H2O and solar Lyman-α are present when amplitudes of the Lyman-α flux increase. Since this is not a measure of physical correlation a more detailed view on WTC is necessary, where significant (two sigma level) correlations occur intermittently in the 27 and 13-day band with variable phase lock behavior. Large Lyman-α oscillations appeared after the solar superstorm in July 2012 and the H2O oscillations show a well pronounced anti-correlation. The competition between advective transport and photodissociation loss of mesospheric water vapor may explain the sometimes variable phase relationship of mesospheric H2

  1. Lasers and the Dynamic Mesosphere/Thermosphere of Venus

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Fast, Kelly E.; Livengood, Timothy A.; Schmuelling, Frank; Hewagama, Tilak; Annen, John; Buhl, David; Sonnabend, Guido; Sornig, Manuela; Kroetz, Peter; Goldstein, Jeffrey

    2010-01-01

    A review of ground based mid-infrared uniquely high spectral. resolution measurements of Venus dynamics, temperature, and chemistry will be presented. The described studies will focus on the use of CO2 absorption features and the discovery- and use of CO2 thermospheric non-thermal emission: lines as probes of Venus' atmosphere, from the cloud tops to approx.120 km in the thermosphere. The first investigations using infrared heterodyne spectroscopy with resolving power lambda/Delta(lambda) approx. 10(exp 6) to measure true emission line profiles and to determine their non-thermal nature and lasing component will be described. The use of the thermospheric non-thermal CO2 emission to directly measure sub-solar to anti-solar winds and zonal circulation near 110 km altitudes on Venus to approx.2 m/s accuracy will also be described. The measured emission lures are also used to obtain global maps of mesospheric/thermospheric kinetic and rotational temperatures as well as to obtain evidence of the natural lasing phenomena. Carbon dioxide absorption features globally probe lower altitudes in the atmosphere and can be used to determine nightside temperatures. Isotopic 13 CO2 absorption lines are used to probe deeper in the atmosphere to measure the sub-solar to anti-solar return flow at altitudes just above the cloud tops. These results provided a model for global circulation in the 65 - 120 km altitude region first proposed by Goldstein (1989, PhD.Thesis, U. Pennsylvania, Philadelphia, USA). Results of similar wind and temperature measurements made in recent years will be compared to earlier results to investigate changes in the circulation and temperatures since approx.1990. The high resolution infrared heterodyne technique was also used to investigate chemical processes above the cloud tops, specifically evidence and constraints on oxygen-based chemistry. Described measurements were made by infrared heterodyne spectroscopy using the Goddard Space Flight Center Infrared

  2. On the Observed Changes in Upper Stratospheric and Mesospheric Temperatures from UARS HALOE

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.

    2006-01-01

    Temperature versus pressure or T(p) time series from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) have been extended and re-analyzed for the period of 1991-2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60S to 60N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in T(p). Multiple linear regression (MLR) techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale), and linear trend terms. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude, and in almost all cases they are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (about -2 K/decade), at tropical latitudes of the middle mesosphere (about -1 K/decade), and at 2 hPa (or order -1 K/decade).

  3. Observations of the CO bulge on Venus and implications for mesospheric winds

    NASA Technical Reports Server (NTRS)

    Gurwell, Mark A.; Muhleman, Duane O.; Shah, Kathryn Pierce; Berge, Glenn L.; Rudy, Donald J.; Grossman, Arie W.

    1995-01-01

    Observations of CO at 2.6 mm (115.27 GHz) were made with the Owens Valley Radio Observatory (OVRO) millimeter interferometer in 1986 and 1988, yielding high-quality disk-resolved spectra which were inverted to determine the CO mixing ratio profile from distinct regions on the disk, allowing us to map the distribution of CO in the upper mesosphere of Venus both horizontally and vertically. The 1986 observations were of the morning terminator and were particularly useful in searching for a suspected CO maximum ('bulge') on the nightside. The resulting CO mixing ratio profiles were mapped for various altitudes as functions of latitude and local time, and we report that we have resolved the previously inferred CO bulge. The bulge increases in magnitude from a small day-night variation at 90 km to an extensive nightside peak at 100 km, the upper limit of our observations. The peak bulge-to-dayside ratio approached 20-30 at 100 km in 1986 and may have been as large as 50-100, assuming late-afternoon CO abundances found in 1988 were similar to those in 1986. Three-dimensional mapping shows that in the upper mesosphere the bulge was displaced from local midnight toward the morning equator, centered at 3:30 AM local time. Using the qualitative model of mesospheric circulation on Venus proposed by Clancy and Muhleman (1985, 1991), we explain this shift in terms of strong retrograde zonal winds throughout the mesosphere, matching the directly detected mesospheric circulation (Shah, K., D. O. Muhleman, and G. L. Berge 1991) observed with the same dataset in 1988.

  4. New measurements of vertical thermal structure and wind velocities in the Venusian mesosphere

    NASA Astrophysics Data System (ADS)

    Widemann, T.; Sandor, B. J.; Clancy, R. T.; Lellouch, E.

    2009-04-01

    The Venus mesosphere is a highly variable transition region, in latitude, local time and over short time scales, between the zonal circulation of the lower atmosphere and the diurnal, sub-solar to anti-solar circulation in the upper atmosphere. In the framework of European Space Agency's second campaign of ground-based observations (Feb 8-22, 2009) in support of the Venus-Express mission, we coordinated new observations sampling a large range of altitudes in the Venus mesosphere on Feb. 7-8 and Feb. 14-15 : (1) James Clerk Maxwell Submillimeter Telescope (JCMT) submillimeter lines observations of mesospheric CO spectral lines measurements of temperature, CO mixing ratio and winds over the 95-115 km altitude range (Clancy et al., 2008), while SO2, SO and HDO observations were also probed in the 70-100 km range ; (2) Canada-France-Hawaii Telescope (CFHT) optical spectropolarimeter ESPaDOnS observations of visible Solar Fraunhofer lines measuring the winds at cloud tops near 70 km and visible CO2 lines 1-2 scale heights above (Widemann et al., 2007, 2008). Synchronization of wind measurements helps characterize possible correlation patterns between wind variations in the lower and middle mesosphere over a day time scale. Preliminary results will be presented at the meeting. Clancy, R.T., Sandor, B.J., and Moriarty-Schieven, G.H. 2008, Planet. Space Sci. 56, 1320-1334. Widemann, T., Lellouch, E., and Campargue, A. 2007, New Wind Measurements in Venus' Lower Mesosphere From Visible Spectroscopy, Planet. Space Sci. 55, 1741-1756 Widemann, T., Lellouch, E., Donati, J.-F., 2008, Venus Doppler winds at Cloud Tops Observed with ESPaDOnS at CFHT, Planet. Space Sci. 56, 1320-133 --

  5. Variability of mesospheric water vapor above Bern in relation to the 27-day solar rotation cycle

    NASA Astrophysics Data System (ADS)

    Lainer, Martin; Hocke, Klemens; Kämpfer, Niklaus

    2016-04-01

    We investigate the solar-terrestrial response of mesospheric water vapor from a mid-latitudinal observation site at the 27-day solar rotation cycle time scale. Eight years of water vapor profile measurements above Bern (46.88°N/7.46°E) by the microwave radiometer MIAWARA are used to study prominent oscillation features. The spectral data analyses shows enhanced oscillations in the 27-day period band above 0.1hPa during the rising sunspot activity of solar cycle 24. Aura MLS observations of H2O support these results by showing a similar behavior. The relationship between mesospheric H2O and the solar Lyman-α flux (FLyα) is studied by comparing the similarity of their temporal oscillations. The H2O oscillation is negatively correlated to FLyα oscillation with a correlation coefficient of up to -0.3 to -0.4, and the phase lag is 6-10 days on 0.04hPa. The confidence level of the correlation is ≥ 99%. Additionally we compute wavelet power spectra, cross-wavelet transform and wavelet coherence (WTC). The latter shows significant (two σ level) correlations occurring intermittently in the 27 and 13-day band with variable phase lock behavior. Large FLyα oscillations appeared after the solar superstorm in July 2012 and the H2O oscillations show a well pronounced anti-correlation. The competition between advective transport and photo-dissociation loss of mesospheric H2O may explain the sometimes variable phase relationship of mesospheric H2O and FLyα oscillations. Generally, the WTC analysis indicates that solar variability causes observable photochemical and dynamical processes in the mid-latitude mesosphere.

  6. Statistics on the parameters of nonisothermal ionospheric plasma in large mesospheric electric fields

    NASA Astrophysics Data System (ADS)

    Martynenko, S.; Rozumenko, V.; Tyrnov, O.; Manson, A.; Meek, C.

    The large V/m electric fields inherent in the mesosphere play an essential role in lower ionospheric electrodynamics. They must be the cause of large variations in the electron temperature and the electron collision frequency at D region altitudes, and consequently the ionospheric plasma in the lower part of the D region undergoes a transition into a nonisothermal state. This study is based on the databases on large mesospheric electric fields collected with the 2.2-MHz radar of the Institute of Space and Atmospheric Studies, University of Saskatchewan, Canada (52°N geographic latitude, 60.4°N geomagnetic latitude) and with the 2.3-MHz radar of the Kharkiv V. Karazin National University (49.6°N geographic latitude, 45.6°N geomagnetic latitude). The statistical analysis of these data is presented in Meek, C. E., A. H. Manson, S. I. Martynenko, V. T. Rozumenko, O. F. Tyrnov, Remote sensing of mesospheric electric fields using MF radars, Journal of Atmospheric and Solar-Terrestrial Physics, in press. The large mesospheric electric fields is experimentally established to follow a Rayleigh distribution in the interval 0 mesosphere and the lower ionospheric plasma.

  7. Detection of Long-Term Temperature Changes in the Stratosphere and Mesosphere

    NASA Astrophysics Data System (ADS)

    Yee, J.; Swartz, W. H.; Mlynczak, M. G.; Russell, J. M.

    2010-12-01

    Over the past five decades, temporal and spatial changes in the Earth's Stratosphere and Mesosphere have been documented by measurements by numerous rocket/satellite borne and groundbased in-situ and remote sensing instruments. These datasets have allowed us to gain physical insights into processes that control the observed changes through high-fidelity physics-based first-principle models. These processes, although being complex because of their mutual coupling nature, they, however, can generally be attributed to two distinct origins: the Sun above and the human below. NASA'S Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED) mission, over the past eight and half years, has provided an excellent quantitative description of the upper atmosphere variabilities. Its observations, covering near an entire solar cycle, along with other worldwide network of groundbased and satellite observations of the stratosphere/mesosphere/thermosphere/ ionosphere system have transformed our understanding of this gateway region of near-Earth space by successfully characterizing its physics, dynamics, energetics, composition and thermal structures in the context of solar induced variabilities. It is clear that without measurements in at least one or more solar cycle, it is impossible to separate out the relative effects of solar driving, inter-annual lower atmosphere variability, and the long-term human-induced changes. Combining measurements covering several solar cycles are clearly needed. However, these measurements have generally been taken by different sensors on different platforms using different sensing techniques. In this paper, we will present nearly three decades of stratospheric and mesospheric temperature measurements from LIMS, HALOE/UARS, MLS/UARS, SABER/TIMED, COSMIC, CHAMP, MLS/Aura, and assess their measurement qualities for decadal-scale temperature change studies. The systematic measurement biases among these datasets will be documented, and

  8. The seasonal variation of water vapor and ozone in the upper mesosphere - Implications for vertical transport and ozone photochemistry

    NASA Technical Reports Server (NTRS)

    Bevilacqua, Richard M.; Summers, Michael E.; Strobel, Darrell F.; Olivero, John J.; Allen, Mark

    1990-01-01

    This paper reviews the data base supplied by ground-based microwave measurements of water vapor in the mesosphere obtained in three separate experiments over an eight-year period. These measurements indicate that the seasonal variation of water vapor in the mesosphere is dominated by an annual component with low values in winter and high values in summer, suggesting that the seasonal variation of water vapor in the mesosphere (below 80 km) is controlled by advective rather than diffusive processes. Both the seasonal variation and the absolute magnitude of the water vapor mixing ratios obtained in microwave measurements were corroborated by measurements obtained in the Spacelab GRILLE and ATMOS experiments, and were found to be consistent with several recent mesospheric dynamics studies.

  9. Mesospheric effects of solar ultraviolet variations - Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data

    NASA Technical Reports Server (NTRS)

    Hood, L. L.; Huang, Z.; Bougher, S. W.

    1991-01-01

    In order to improve the constraints on models of the mesospheric response to solar UV variations, an analysis is conducted of the Solar Mesosphere Explorer (SME) IR ozone data and Nimbus 7 stratosphere and mesosphere sounder (SAMS) temperature data. Maximum low-altitude ozone and temperature-response amplitudes occur at about the same altitude, where a strong coupling between photochemical and thermal components of the mesospheric response is suggested by the simultaneous positive temperature and negative ozone response maxima. Increased Lyman-alpha dissociation of water vapor and temperature feedback are theorized to account for the negative ozone response. HO(x) chemical heating can increase as ozone destruction increases, and can therefore account for the positive temperature response.

  10. Space-Borne H2O Observations in the Arctic Stratosphere and Mesosphere in the Spring of 1992

    NASA Technical Reports Server (NTRS)

    Aellig, C. P.; Bacmeister, J.; Bevilacqua, R. M.; Daehler, M.; Kriebel, D.; Pauls, T.; Siskind, D.; Kaempfer, N.; Langen, J.; Hartmann, G.; Berg, A.; Park, J. H.; Russell, J. M., III

    1996-01-01

    We report on stratospheric and mesospheric water vapor (H2O) observations obtained by the Millimeter wave Atmospheric Sounder (MAS) in the Arctic spring of 1992. In the lower stratosphere, the observations show enhanced H2O inside the vortex between 450 K and 625 K, in agreement with other H2O observations. In the upper stratosphere and lower mesosphere, at potential temperatures between 1850 K and 2200 K, we find regions of depressed H2O volume mixing ratio coincident with remnants of high potential vorticity. The depressed mesospheric H2O, as well as the enhanced lower stratospheric H2O, are consistent with wintertime descent. It also suggests effective containment of air up into the lower mesosphere.

  11. Gravity waves and turbulence from troposphere to mesosphere over the Indian MST radar station

    NASA Astrophysics Data System (ADS)

    Chakravarty, Subhas

    The Indian MST radar facility at Gadanki (13.5° N, 79.2° E) has been utilised to study the backscattered signals received near simultaneously from troposphere, stratosphere and meso-sphere. The main objective is to identify the signatures of gravity waves in the troposphere/stratosphere and their upward propagation to produce mesospheric turbulence. The observations were car-ried out during different months of 2001-2003 using five beam positions for E-W, N-S at 10° beam angle and the Zenith direction, variable pulse widths (range bins between 150 m to 2.4 km) and minimum time resolution of 80 s (for one radar scan) covering the height range of 4-85 km. While results shown on the intermittent, inhomogeneous and anisotropic nature of mesospheric scattering regions are explained by the neutral turbulence driven perturbations in the radio refractive index corresponding to the Bragg scale of about 3 m for the radar frequency of 53 MHz, the seasonal variation in the occurrence of scattering layer heights between 70-80 km (including stratification and multiple layers) and signal strengths are dependent on (but may not be limited to) the severe weather related tropical convective sources generating grav-ity waves in the troposphere, their propagation through the stratosphere and breaking in the mesosphere. The spectrum of gravity waves of a convective event with different phase velocities would go through various interaction regimes with the mean flows acting as filters as well as producing turbulence in all the three regions of interest. On a typical day (e.g. 25 June 2002) of well developed mesospheric scattering layer, the height profile of SNR (related to different turbulence patches) shows an average maximum value of 15 dB below 18 km with 3-4 prominent and continuous tropospheric scatter layers of 3 km thickness and 5 dB in the mesosphere with 2 km thick intermittent layer around 74 km. Wind velocity contours show a reversal in mean wind direction around 8-10 km

  12. Submillimeter Observations of Global Variations in Chemistry and Dynamics in the Venus Mesosphere

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Sandor, B. J.; Moriarty-Schieven, G.

    2005-08-01

    Circulation and photochemical behaviors of the Venus middle atmosphere (mesosphere, 65-105 km altitudes) exhibit remarkable temporal variations that are often defined by ground-based studies. Sub-millimeter spectral line observations in particular play and important role in the investigation of the Venus mesosphere due to relatively strong transitions for CO, HDO, SO2, and SO in the wavelength region and the pressure-broadened lineshapes of these absorptions. Venus nightside sub-millimeter 12CO spectra (345 GHz) exhibit sharp, deep absorption cores that yield excellent temperature weighting functions about the Venus mesopause (Clancy et al., 2003) and maximum sensitivity to Doppler line shifts, a modest 10 m/sec line-of-sight wind is easily detectable in short integrations (5-10 minutes). An accumulated set of James Clerk Maxwell Telescope (JCMT) observations during Venus inferior conjunctions in 2000, 2002, and 2004 provide nightside mapping of Doppler winds, CO, and temperatures over the 95-105 km altitude region. The nightside distribution of winds varies over all observed timescales. For periods separated by one week, the Venus nightside global circulation changes character for zonal rotation to subsolar-to-antisolar (SS-AS) flow. On hourly timescales, wind velocities may vary by > 50 m/sec over 3000 km spatial scales. The instantaneous nightside circulation field is extremely asymmetric in latitude and local time. During the June 2004 inferior conjunction of Venus, we also obtained the first detection of mesospheric SO2 and a very sensitive upper limit for SO; indicating Venus mesospheric SO2 abundances roughly twice that predicted by the preferred photochemical model of Yung and DeMore (1982), and an SO2/SO ratio at least 8 times the same model predictions. These departures from the model are probably due in large part to the fixed water vapor abundance of 1 ppmv throughout the Venus mesosphere, employed in the Yung and DeMore model for lack of data. As an

  13. Latitudinal and longitudinal variability of mesospheric winds and temperatures during stratospheric warming events

    NASA Astrophysics Data System (ADS)

    Hoffmann, P.; Singer, W.; Keuer, D.; Hocking, W. K.; Kunze, M.; Murayama, Y.

    2007-12-01

    Continuous MF and meteor radar observations allow detailed studies of winds in the mesosphere and lower thermosphere (MLT) as well as temperatures around the mesopause. This height region is characterized by a strong variability in winter due to enhanced planetary wave activity and related stratospheric warming events, which are distinct coupling processes between lower, middle and upper atmosphere. Here the variability of mesospheric winds and temperatures is discussed in relation with major and minor stratospheric warmings as observed during winter 2005/06 in comparison with results during winter 1998/99. Our studies are based on MF radar wind measurements at Andenes (69°N, 16°E), Poker Flat (65°N, 147°W) and Juliusruh (55°N, 13°E) as well as on meteor radar observations of winds and temperatures at Resolute Bay (75°N, 95°W), Andenes (69°N, 16°E) and Kühlungsborn (54°N, 12°E). Additionally, energy dissipation rates have been estimated from spectral width measurements using a 3 MHz Doppler radar near Andenes. Particular attention is directed to the changes of winds, turbulence and the gravity wave activity in the mesosphere in relation to the planetary wave activity in the stratosphere. Observations indicate an enhancement of planetary wave 1 activity in the mesosphere at high latitudes during major stratospheric warmings. Daily mean temperatures derived from meteor decay times indicate that strong warming events are connected with a cooling of the 90 km region by about 10 20 K. The onset of these cooling processes and the reversals of the mesospheric circulation to easterly winds occur some days before the changes of the zonal circulation in the stratosphere start indicating a downward propagation of the circulation disturbances from the MLT region to the stratosphere and troposphere during the stratospheric warming events. The short-term reversal of the mesospheric winds is followed by a period of strong westerly winds connected with enhanced

  14. On the seasonal variations of reflectivity and turbulence characteristics of low-latitude mesospheric echoes over Gadanki

    NASA Astrophysics Data System (ADS)

    Selvaraj, D.; Patra, A. K.; Narayana Rao, D.

    2016-06-01

    Gadanki radar observations of the low-latitude mesospheric echoes studied earlier have shown that while both occurrence rate and signal-to-noise ratio of the mesospheric echoes peak in the equinoxes turbulent kinetic energy (TKE) dissipation rate and eddy diffusivity, estimated using spectral width of these echoes, peak in the summer. This seasonal difference is apparently inconsistent with the understanding that the mesospheric echoes are generated by turbulence. In this paper, we analyze Gadanki radar observations of mesospheric echoes made during 2011 and 2012 and study seasonal variations in reflectivity and TKE dissipation rate in an attempt to address the aforementioned puzzle. We show that both reflectivity and TKE dissipation rate in the mesosphere show semiannual variations peaking in the equinoxes, which are vastly different from those reported earlier. We also show that seasonal variations in reflectivity and TKE dissipation rate have a close correspondence with gravity wave activity. These results are found to be consistent with the gravity wave breaking hypothesis generating turbulence and radar echoes in the low-latitude mesosphere.

  15. CE-MS: a useful tool for the identification of water-soluble polar organics in air and vehicular emitted particulate matter.

    PubMed

    Yassine, Mahmoud M; Dabek-Zlotorzynska, Ewa; Schmitt-Kopplin, Philippe

    2009-05-01

    A CE-ESI/quadrupole-MS method using an ammonium acetate-based BGE (pH 4.7) was developed for the determination of isomeric benzoic acids in atmospheric aerosols and vehicular emission. UltraTrol LN was employed as the pre-coating polymer to suppress the EOF (0.3 x 10(-9) m2 V(-1) s(-1)) and achieve a baseline separation of the studied acids. Good repeatability for migration time (RSD < 1%, N = 10) was obtained without coating regeneration. The high pre-coating stability allowed coupling of CE to MS without ion suppression in the MS. In scanning mode and using field-amplified sample injection with electrokinetic injection (-5 kV for 60 s), LODs (S/N = 3) ranged from 2.5 to 6 microg/L for standard target analytes prepared in DI water. In the presence of 100 mg/L of sulfate (added to simulate a sample matrix), LODs ranged from 8 to 90 microg/L. Several isomeric aromatic acids could be separated in atmospheric and diesel-engine-emitted particulate matter extracts based on their different acidities. Additional measurements with a flow infusion ESI Fourier transform ion cyclotron resonance MS were used for further structural information acquisition on the unknown compounds and allowed their formula to be proposed.

  16. Development of a stratospheric and mesospheric microwave temperature sounder experiment

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Anderson, B. G.; Kunzi, K. F.; Paroskie, R. M.; Parr, R. J.; Waters, J. W.

    1975-01-01

    A passive microwave spectrometer system for measuring global atmospheric temperature profiles from 0-75 km altitude was developed and analyzed. The system utilizes 12 channels near the 5 mm wavelength oxygen absorption band and is designed to provide global coverage by scanning perpendicular to the orbital track of a polar orbiting satellite. A significant improvement in the accuracy of theoretical atmospheric microwave transmittance functions was achieved through the development of a first-order approximation to overlapping line theory for the oxygen molecule. This approximation is particularly important in the troposphere and lower stratosphere where pressure-broadening blends nearby lines. Ground-based and aircraft observations of several resonances of stratospheric oxygen generally support the theory. The 23, 25, 29, and 31 atmospheric oxygen lines were measured and the frequencies of several such oxygen lines were measured with improved precision. The polarization and Zeeman splitting of the atmospheric 27 line was also observed.

  17. The stratospheric polar vortex: evolving perspectives

    NASA Astrophysics Data System (ADS)

    Plumb, R. A.

    2005-12-01

    The discovery of dramatic Antarctic ozone depletion occurred at a time of rapid change in our understanding of stratospheric dynamics. The existence of the polar vortex, encircled by the polar night jet, had been well known for some time, as had the planetary scale Rossby waves that so dominate stratospheric meteorology. But, 25 years ago, the concepts of Rossby wave breaking, and of the "surf zone" and the sharpness of its boundaries at the vortex edge and in the subtropics, were relatively new, and the role of these waves in the driving of the mean diabatic circulation was not fully appreciated. While the local importance of gravity wave drag in the mesosphere was recognized by that time, its impact in the stratosphere was by no means clear. For a time, it was thought by many that the "ozone hole" was produced by anomalous polar upwelling, whose existence seemed to be demanded by observations of widespread, anomalously low temperatures in high southern latitudes in spring, which (at first) did not appear to be a consequence of depleted ozone. In the event, of course, chemical observations provided overwhelming support for the chemical depletion theory, while tracer observations, as well as revised radiative calculations, undermined the case for polar upwelling. The demands of stratospheric chemistry have always required that dynamical understanding of the stratosphere should extend beyond traditional meteorology to include questions of the transport of chemical species. Stratospheric transport has many facets, of which one - the impermeability of the vortex edge - was brought into focus by the appearance of the ozone hole and the need to understand the degree to which vortex air is isolated from its environment. The issue was controversial for a time, but analyses of tracer observations have confirmed expectations based on dynamical theory and on modeling studies that the isolation is strong, except during major vortex disturbances. Interest in polar vortex

  18. Mesospheric gravity waves and ionospheric plasma bubbles observed during the COPEX campaign

    NASA Astrophysics Data System (ADS)

    Paulino, I.; Takahashi, H.; Medeiros, A. F.; Wrasse, C. M.; Buriti, R. A.; Sobral, J. H. A.; Gobbi, D.

    2011-07-01

    During the Conjugate Point Experiment (COPEX) campaign performed at Boa Vista (2.80∘N;60.70∘W, dip angle21.7∘N) from October to December 2002, 15 medium-scale gravity waves in the OHNIR airglow images were observed. Using a Keogram image analysis, we estimate their parameters. Most of the waves propagate to Northwest, indicating that their main sources are Southeast of Boa Vista. Quasi-simultaneous plasma bubble activities in the OI 630 nm images were observed in seven cases. The distances between the bubble depletions have a linear relationship with the wavelengths of the gravity waves observed in the mesosphere, which suggests a direct contribution of the mesospheric medium-scale gravity waves in seeding the equatorial plasma bubbles.

  19. Understanding the Latitude Structure of Nitric Oxide in the Mesosphere and Lower Thermosphere

    NASA Technical Reports Server (NTRS)

    Fuller-Rowell, T.J.

    1997-01-01

    The goal of the proposed work was to understand the latitude structure of nitric oxide in the mesosphere and lower thermosphere. The problem was portrayed by a clear difference between predictions of the nitric oxide distribution from chemical/dynamical models and data from observations made by the Solar Mesosphere Explorer (SMEE) in the early to mid eighties. The data exhibits a flat latitude structure of NO, the models tend to produce at equatorial maximum. The first task was to use the UARS-HALOE data to confirm the SME observations. The purpose of this first phase was to verify the UARS-NO structure is consistent with the SME data. The next task was to determine the cause of the discrepancy between modeled and observed nitric oxide latitude structure. The result from the final phase indicated that the latitude structure in the Photo-Electron (PE) production rate was the most important.

  20. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  1. Vertical temperature and density patterns in the Arctic mesosphere analyzed as gravity waves

    NASA Technical Reports Server (NTRS)

    Eberstein, I. J.; Theon, J. S.

    1975-01-01

    Rocket soundings conducted from high latitude sites in the Arctic mesosphere are described. Temperature and wind profiles and one density profile were observed independently to obtain the thermodynamic structure, the wind structure, and their interdependence in the mesosphere. Temperature profiles from all soundings were averaged, and a smooth curve (or series of smooth curves) drawn through the points. A hydrostatic atmosphere based on the average, measured temperature profile was computed, and deviations from the mean atmosphere were analyzed in terms of gravity wave theory. The vertical wavelengths of the deviations were 10-20 km, and the wave amplitudes slowly increased with height. The experimental data were matched by calculated gravity waves having a period of 15-20 minutes and a horizontal wavelength of 60-80 km. The wind measurements are consistent with the thermodynamic measurements. The results also suggest that gravity waves travel from East to West with a horizontal phase velocity of approximately 60 m sec-1.

  2. One: Microphysics of frost metamorphism: Applications to Triton and Mars. Two: A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere. Three: The diabatic circulation in the stratosphere as diagnosed from Microwave Limb Sounder data

    SciTech Connect

    Eluszkiewicz, J.B.

    1993-01-01

    The present thesis is devoted to two broad subjects, planetary frost metamorphism and the terrestrial middle atmosphere, and consists of three papers. Paper 1 considers frost metamorphism on the surfaces of Triton and Mars. Based on an analysis of the microphysical processes involved in the pressureless sintering, it is concluded that fine-grained nitrogen and carbon dioxide frosts can undergo seasonal metamorphism into semitransparent layers on the surface of Triton and in the Martian seasonal polar caps, respectively. The presence of such layers explains a host of facts about Triton's surface and about the Martian seasonal caps. Paper 2 is devoted to elucidating a long-standing issue in the terrestrial middle atmosphere chemistry, the so-called 'ozone deficit problem.' Based on an analysis of data acquired by the Limb Infrared Monitor of the Stratosphere (LIMS) instrument between October 1978 and May 1979, it is concluded that current photochemical models systematically underestimate observed ozone abundances in the upper stratosphere and lower mesosphere. Three modifications to the accepted photochemical scheme, capable of providing a global solution to this problem, are proposed and discussed. Paper 3 differs from the other two in that it reports on results from an ongoing research effort. It considers the diabatic circulation in the stratosphere and lower mesosphere, using ozone and temperature measurements acquired by the Microwave Limb Sounder (MLS) instrument onboard the Upper Atmosphere Research Satellite (UARS). The present study extends past analyses of the diabatic circulation by considering a full annual cycle, November 1991-November 1992, and by taking advantage of the high vertical resolution of MLS data. In the tropical upper stratosphere and lower mesosphere, a semiannual oscillation (SAO) is observed in the computed circulation, with the region of downwelling reaching maximum spatial extent approximately 1 month before the equinox.

  3. One: Microphysics of frost metamorphism: Applications to Triton and Mars. Two: A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere. Three: The diabatic circulation in the stratosphere as diagnosed from Microwave Limb Sounder data

    NASA Astrophysics Data System (ADS)

    Eluszkiewicz, Janusz Bronistaw

    The present thesis is devoted to two broad subjects, planetary frost metamorphism and the terrestrial middle atmosphere, and consists of three papers. Paper 1 considers frost metamorphism on the surfaces of Triton and Mars. Based on an analysis of the microphysical processes involved in the pressureless sintering, it is concluded that fine-grained nitrogen and carbon dioxide frosts can undergo seasonal metamorphism into semitransparent layers on the surface of Triton and in the Martian seasonal polar caps, respectively. The presence of such layers explains a host of facts about Triton's surface and about the Martian seasonal caps. Paper 2 is devoted to elucidating a long-standing issue in the terrestrial middle atmosphere chemistry, the so-called 'ozone deficit problem.' Based on an analysis of data acquired by the Limb Infrared Monitor of the Stratosphere (LIMS) instrument between October 1978 and May 1979, it is concluded that current photochemical models systematically underestimate observed ozone abundances in the upper stratosphere and lower mesosphere. Three modifications to the accepted photochemical scheme, capable of providing a global solution to this problem, are proposed and discussed. Paper 3 differs from the other two in that it reports on results from an ongoing research effort. It considers the diabatic circulation in the stratosphere and lower mesosphere, using ozone and temperature measurements acquired by the Microwave Limb Sounder (MLS) instrument onboard the Upper Atmosphere Research Satellite (UARS). The present study extends past analyses of the diabatic circulation by considering a full annual cycle, November 1991-November 1992, and by taking advantage of the high vertical resolution of MLS data. In the tropical upper stratosphere and lower mesosphere, a semiannual oscillation (SAO) is observed in the computed circulation, with the region of downwelling reaching maximum spatial extent approximately 1 month before the equinox. The projected

  4. Unique polarized light-matter interaction in single one-dimensional semiconducting oxide nanomaterials and applications of indium tin oxide nanorod networks as surface enhanced raman spectroscopy and photodetection platforms

    NASA Astrophysics Data System (ADS)

    Choi, Daniel So Ri

    With increasing demand of miniaturized optoelectronic, photonic, sensors and biodetection platforms, understanding and elucidating the fundamental material properties at nanoscale is crucial for development and advancement of these devices. Specifically, one-dimensional (1D) semiconducting oxide (SCO) materials have drawn considerable interest in these fields as said materials exhibit unique, as well as highly advantageous optical and electronic properties compared to their bulk counterparts. As SCOs of interests are typically wide bandgap materials, most of the research has focused on these materials' interaction with short wavelength light in the near UV regime. Thusly, materials' interaction with sub-bandgap light, primarily those in the visible region, is seldom investigated. This report presents a systematic study of elastic light scattering of four 1D SCO materials of indium tin oxide (ITO), tin oxide (SnO2), zinc tin oxide (ZTO), and zinc oxide (ZnO) with visible light as the incident radiation source. The light-matter interaction is investigated by introducing incident light of a fixed polarization to a single, orientation- and position- controlled nanomaterial, then analyzing the scattered signals along the materials' long axis as a function of the analyzer angles. The results show that under constant irradiation of polarized light, nanomaterials of all four SCO types show material independent, orientation dependent behavior previously not reported. Furthermore, material dependent scattering phenomenon from single nanorods is validated by observing the change in the polarization state of the scattered light from one end of the NR to the other end. Lastly, two different devices are fabricated from an array of these 1D, SCO materials to assess their potential as a surface enhanced Raman (SER) platform and a photodetector of the visible light. First, the ITO NR array as a SERS platform is established by introducing two ubiquitous fluorescing biomarkers of

  5. High-Resolution Temperature Mapping of Mesospheric Gravity Waves and Breaking Events

    NASA Astrophysics Data System (ADS)

    Taylor, Michael J.; Pautet, Pierre-Dominique; Zhao, Yucheng; Yuan, Tao; Pendleon, William R.; Fritts, David; Esplin, Roy; McLain, David; Stober, Gunter

    2016-04-01

    This presentation highlights new research capabilities and recent results using a novel infra-red imaging system operating at high-latitudes at the ALOMAR Arctic Observatory, Norway (69°N), and at Amundsen-Scott South Pole Station, Antarctica (90°S). The Advanced Mesospheric Temperature Mapper (AMTM) is a high-performance digital imaging system that measures selected emission lines in the mesospheric OH (3,1) band (at ~1.55 μm) to create high-quality intensity and temperature maps of a broad spectrum of gravity waves at the ~87 km level (with periods ranging from several minutes to many hours). The temperature data are obtained with an unprecedented spatial (~0.5 km) and temporal (typically 30 sec) resolution over a large 120° field of view enabling detailed studies of gravity wave propagation and breaking events in the Mesosphere and Lower Thermosphere (MLT) region, even in the presence of strong aurora and moonlight. New results include high-resolution wintertime studies of continuous (24-hr) gravity wave activity and spectral evolution, and first evidence of gravity wave "self-acceleration" in the MLT region using coordinated lidar and radar measurements. These results are complemented by very high resolution (~4 sec) gravity wave observations using a third AMTM developed for airborne measurements on the National Science Foundation (NSF) Gulfstream V aircraft as part of the DEEPWAVE program. This mission was successfully conducted from New Zealand during the Austral winter, June-July 2014, and obtained spectacular new data on mesospheric mountain waves, including large amplitude breaking events associated with variable orographic forcing over the Southern Alps.

  6. The Ames two-dimensional stratosphere-mesospheric model. [chemistry and transport of SST pollution

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Watson, V. R.; Capone, L. A.; Maples, A. L.; Riegel, C. A.

    1974-01-01

    A two-dimensional model of the stratosphere and mesosphere has recently been developed at Ames Research Center. The model contains chemistry based on 18 species that are solved for at each step and a seasonally-varying transport model based on both winds and eddy transport. The model is described and a preliminary assessment of the impact of supersonic aircraft flights on the ozone layer is given.

  7. Radio Observations of Spatial and Temporal Variations in the Mesospheric Winds of Venus

    NASA Astrophysics Data System (ADS)

    Buhl, David; Goldstein, Jeffrey J.; Chin, Gordon

    1993-12-01

    The atmosphere of Venus contains a large amount of CO in the upper mesosphere. The abundance at 100 Km altitude is about 1000 ppm. The millimeter rotational lines of CO at 115 and 230 GHz have been used to study the abundance and time variations of the Venus upper atmosphere (Clancy and Muhleman Icarus 64, 157; 64, 183; 89, 129). At the center of the CO line is a narrow Doppler core which can be used to measure the velocity of the mesospheric winds (Buhl, Chin and Goldstein, ApJ 369, L17). The millimeter CO lines arise from the 100 km altitude region in the Venus mesosphere. Observations were made of this line, using the NRAO 12 meter telescope at Kitt Peak, before the inferior conjunction of January 18, 1990 and before and after the inferior conjunction of April 1, 1993. Wind velocities of approximately 100 m/s were measured and two distinct circulation flows were observed. During all three observing periods (December 1989, March 1993 and April 1993) a Zonal flow was measured with an equatorial velocity of 100 m/s in the same direction as the planets rotation (retrograde). The second global wind flow was first seen by Goldstein 1989 in the infrared using lines of CO2 and is directed from the subsolar point on the planet to the antisolar point. This wind flow is at a higher altitude than the 100 km winds studied with the CO line. For the first two observing periods we measured an antisolar to subsolar wind or return flow of about 120 m/s. During the third observing period this flow reversed from a return flow to a direct flow of about 50 m/s. This change in the wind pattern is most likely part of a cycle taking place in the Venus mesosphere. An alternative explanation is that the altitude of the line we observed changed dramatically from March to April 1993, hence sampling a different wind field.

  8. Mesospheric wind measurements using a medium-frequency imaging Doppler interferometer

    NASA Technical Reports Server (NTRS)

    Adams, G. W.; scatterers.

    1986-01-01

    Wind results from a medium-frequency radar operated as an imaging Doppler interferometer are presented. Ten independent antennas, together with mesospheric wind motions, were used to Doppler-sort and then echo-locate individual scattering points. The three-dimensional location and radial velocity of each discrete scattering point was determined. Mean winds were then determined by a least squares fit to the radial velocities of the ensemble of scatterers.

  9. Development of a mesospheric sodium laser beacon for atmospheric adaptive optics. (Reannouncement with new availability information)

    SciTech Connect

    Jeys, T.H.

    1991-12-31

    The authors have developed laser sources of sodium-resonance radiation based on the sum-frequency mixing of Nd:YAG laser radiation. The sources are suitable for generating a fluorescence spot in the earth`s mesospheric sodium layer for use in adaptive optics compensation. Taking into account the sodium fluorescence lifetime, Doppler broadening, hyperfine structure, radiative saturation, optical pumping, and radiation pressure, we can optimize the intensity of the fluorescence by using spectral and temporal tailoring of the laser radiation.

  10. On the Origin of Mid-Latitude Mesospheric Clouds: The July 2009 Cloud Outbreak

    DTIC Science & Technology

    2011-09-01

    both at 423N) on the night of 14/15 July, 2009. The NLC displays extended across the camera’s horizontal fields of view ( 633) and 82103 in...Fig. 3c). However, thismay be a reflection of a lack of NLC observations, either due to no observers or extensive tropospheric cloud cover. Hence...mesospheric wind data during the period of NLC observations. The hourly averaged zonal (dash) and meridional (solid)winds, at an altitudeof 85 km, are

  11. High spatial Resolution mapping of Venus Mesospheric Winds by infrared heterodyne Spectroscopy of CO2

    NASA Astrophysics Data System (ADS)

    Sonnabend, G.; Sornig, M.; Krötz, P.; Stupar, D.; Livengood, T.; Schieder, R.; Kostiuk, T.

    2007-08-01

    We present wind measurements in the Venusian upper mesosphere / lower thermosphere by means of infrared heterodyne spectroscopy of CO2 features at 959.3917 cm-1. Observations are carried out using the Cologne Tuneable Heterodyne Infrared Spectrometer (THIS) from May 25th to June 6th 2007 shortly before Venus superior conjunction at the McMath-Pierce solar telescope on Kitt Peak in Arizona. Providing high spectral resolution winds can be retrieved from Doppler-shifts of CO2 non-thermal emission from the upper mesosphere. The sub-solar to anti-solar flow (SS-AS flow) and the retrograde superrotating zonal circulation (RSZ) are targeted and observations are carried out systematically on the day-side of the planet which is illuminated appr. 50%. The mesospheric region is of special interest because it is the not very well understood transitions zone form the RSZ dominated troposphere and the SS-AS flow dominated thermosphere. Measurements are part of the coordinated ground-based observing campaign to support VenusExpress from May 25th to June 9th. Complementary ground based observing methods probing wind velocities at different altitudes in the atmosphere of Venus provide the possibility to get a vertical wind profile. E.g. Doppler shifts of CO2 lines at visible wavelength together with reflected solar Frauenhofer lines probe dynamics at the cloud tops and a few kilometer above while interferometric CO millimeter observations provide information about the lower mesosphere and sub-millimeter spectral line observations are pointing to a region between 95 and 105km. The presented mid- IR measurements probe an altitude of 100-120km.

  12. Estimation of stratospheric-mesospheric density fields from satellite radiance data

    NASA Technical Reports Server (NTRS)

    Quiroz, R. S.

    1974-01-01

    Description of a method for deriving horizontal density fields at altitudes above 30 km directly from satellite radiation measurements. The method is applicable to radiation measurements from any instrument with suitable transmittance weighting functions. Data such as those acquired by the Satellite Infrared Spectrometers on satellites Nimbus 3 and 4 are employed for demonstrating the use of the method for estimating stratospheric-mesospheric density fields.

  13. Mesospheric ozone changes associated with 27-day solar ultraviolet flux variations

    NASA Technical Reports Server (NTRS)

    Aikin, A. C.; Smith, H. J. P.

    1986-01-01

    Solar ultraviolet flux changes associated with the 27-day solar rotational period cause corresponding variations in mesospheric ozone near the maximum of the 11-year sunspot cycle. This statement is based on a correlation and spectral analysis of ozone mixing ratios, deduced from Solar Mesospheric explorer satellite-based measurements of 1.27-micron O2 airglow emission and solar flux observations made from the same spacecraft in 1982. With the Lyman-alpha flux taken as an indicator of solar ultraviolet variability, spectral analysis shows a primary period of 27.1 days with a secondary period of 13.5 days. The 27.1-day period is observed in the ozone mixing ratio data together with other periods, including 13.5 days. Both a classical statistical analysis and a time series treatment show that, for 244 days, there is a correlation between ozone and solar flux near 50 km and between 65 and 70 km. Calculations predict a positive correlation over the entire mesosphere if there is no change in temperature accompanying the solar flux. Lack of correlation is temperature induced.

  14. Modification of mesospheric OH and O3 during a measured highly relativistic electron precipitation event

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Jackman, C. H.; Backer, D. N.; Herrero, F. A.

    1994-01-01

    Highly relativistic electron precipitation events (HRE's) can provide a major source of energy affecting mesospheric constituents and ionization. Based on satellite data, these events are most pronounced near the minimum of the solar sunspot cycle, increasing in intensity, spectral hardness, and frequency of occurrence as the solar cycle declines. Since such events can be sustained up to several days, their integrated effect in the mesosphere can dominate over those of other energy sources such as relativistic electron precipitation events (REP's) and auroral precipitation. The energy deposition data to be discussed and analyzed were obtained by rocket at Poker Flat, Alaska, in May 1990 during a modest HRE observed at midday near the peak of the sunspot cycle. Using a NASA two dimensional model, significant enhancement of OH and depletion of O3 at 75 +/- 10 km altitude from the measured radiation are found. Estimates of enhanced effects were made for more intense HRE events, as might be expected during solar minimum. By causing O3 depletion, the electron precipitation can also regulate the penetration of solar UV radiation, which could affect the thermal properties of the mesosphere.

  15. Solar control of winter mesospheric echo occurrence at Poker Flat, Alaska

    NASA Technical Reports Server (NTRS)

    Ecklund, W. L.; Balsley, B. B.

    1983-01-01

    Winter mesospheric echoes are observed between about 55 and 80 km when auroral absorption is present during daylight hours. Relatively steady auroral absorption during sunrise and sunset periods causes a distinct onset and decay signature in mesospheric echo occurrence. The echo onset and disappearance time are shown versus height by the inclined lines for four different dates. The more vertical lines give the visible sunlight height/time curves for both sunrise (SR) and sunset (SS). The data is combined and replotted to give the morning onset height and the afternoon disappearance height as a function of solar zenith angle. Echoes are not observed at the lowest heights in the morning until the solar zenith angle is less than 90 deg. The afternoon echoes at the lowest heights also start to disappear as soon as the solar zenith angle exceeds 90 deg, implying that the solar component which sustains the mesospheric echo is screened by a layer extending up to about 60 km. The morning echo at 73 km onsets near the time of visible sunrise, but in the afternoon the 73 km echo lasts well past visible sunset.

  16. Comparison of mesospheric VHF radar echoes and rocket probe electron concentration measurements

    NASA Technical Reports Server (NTRS)

    Royrvik, O.; Smith, L. G.

    1984-01-01

    Refractive index irregularities in the equatorial mesosphere have been investigated using both the Jicamarca VHF radar and a rocket-borne Langmuir probe launched from Punta Lobos, Peru. On February 27, 1983, a single layer of turbulence was observed in the upper mesosphere by both experiments. There is very good agreement between the observed radar echo power and the radar scattering cross section calculated from the rocket data when these are interpreted in the context of isotropic turbulence. The inner and outer scales of turbulence have been calculated from both the radar and the rocket data, and good agreement is found. The radar data show indications of large-scale vortices in the layer of irregularities. Rocket data show that the inner scale of turbulence in the upper mesosphere is a few tens of meters and that the Jicamarca radar Bragg wavelength (3 m) is well within the viscous subrange of turbulence in this altitude range. The spectral index in the inertial subrange is close to -5/3, changing to about - 7 at higher wave numbers. Energy dissipation rate in the layer was calculated to be 0.05 W/kg, in good agreement with previous estimates.

  17. Laser Measurements of the H Atom + Ozone Rate Constant at Mesospheric Temperatures.

    PubMed

    Liu, Yingdi; Peng, Jian; Reppert, Kelsey; Callahan, Sara; Smith, Gregory P

    2016-06-09

    The exothermic H + O3 reaction produces OH(v) Meinel band emissions, used to derive mesospheric H concentrations and chemical heating rates. We remeasured its rate constant to reduce its uncertainty and extended the measurements to lower mesospheric temperatures using modern laser-induced fluorescence (LIF) techniques. H atoms were produced by pulsed ultraviolet laser trace photolysis of O3, followed by reaction of O((1)D) with added H2. A second, delayed, frequency-mixed dye laser measured the reaction decay rate with the remaining ozone using LIF. We monitored either the H atom decay by two photon excitation at 205 nm and detection of red fluorescence, or the OH (v = 9) product time evolution with excitation of the B(2)Σ(+)-X(2)Π (0,9) band at 237 nm and emission in the blue B(2)Σ(+)-A(2)Σ(+) (0,7) band. By cooling the enclosed low pressure flow cell we obtained measurements from 140 to 305 K at 20 to 200 Torr in Ar. Small kinetic modeling corrections were made for secondary regeneration of H atoms. The results are consistent with the current NASA JPL recommendation for this rate constant and establish its extrapolation down to the lower temperatures of the mesosphere.

  18. A Multi-Instrument Measurement of a Mesospheric Bore at the Equator

    NASA Technical Reports Server (NTRS)

    Shiokawa, K.; Suzuki, S.; Otsuka, Y.; Ogawa, T.; Nakamura, T.; Mlynczak, M. G.; Russell, J. M., III

    2005-01-01

    We have made a comprehensive measurement of mesospheric bore phenomenon at the equator at Kototabang, Indonesia (0.2 deg S, 100.3 deg E), using an airglow imager, an airglow temperature photometer, a meteor radar, and the SABER instrument on board the TIMED satellite. The bore was detected in airglow images of both OH-band (peak emission altitude: 87 km) and 557.7-nm (96 km) emissions, as east-west front-like structure propagating northward with a velocity of 52-58 m/s. Wave trains with a horizontal wavelength of 30-70 km are observed behind the bore front. The airglow intensity decreases for all the mesospheric emissions of OI (557.7 nm), OH-band, O2-band (altitude: 94 km), and Na (589.3 nm) (90 km) after the bore passage. The rotational temperatures of both OH-band and O2-band also decrease approximately 10 K after the bore passage. An intense shear in northward wind velocity of 80m/s was observed at altitudes of 84-90 km by the meteor radar. Kinetic temperature profile at altitudes of 20-120 km was observed near Kototabang by TIMED/SABER. On the basis of these observations, we discuss generation and ducting of the observed mesospheric bore.

  19. Mesospheric Response to Strong and Weak Orographic Forcing During the DEEPWAVE Project

    NASA Astrophysics Data System (ADS)

    Pautet, P. D.; Taylor, M. J.; Fritts, D. C.; Williams, B. P.; Bossert, K.

    2015-12-01

    Gravity waves (GWs) are one of the main drivers of the Earth's atmosphere as they vertically couple energy and momentum throughout its successive layers. Orographic forcing is a well-known source for these waves which can impact the stratosphere (Eckermann and Preusse, 1999), and even the mesosphere (Smith et al., 2009). During the months of June and July 2014, a large-scale project named DEEPWAVE took place in New Zealand. This international program focused on investigating the generation and deep propagation of atmospheric gravity waves, especially over the mountain range of the Southern Alps. A series of instruments was operated at several ground-based locations and on-board the NSF Gulfstream V aircraft. 25 nighttime research flights were performed to explore possible wave sources and their effects on the middle and upper atmosphere. On 2 consecutive nights (29th and 30th June), research flights 12 and 13 were conducted over New Zealand South Island to compare the effects of 2 different wind forcing: strong during the first flight, then reduced on the following day. As the GV aircraft was repetitively flying over the Southern Alps, the mesospheric gravity wave field was measured using a series of newly developed instruments (Advanced Mesospheric Temperature Mapper, IR side cameras and lidars). This presentation will investigate the differences between the gravity waves observed during these 2 flights and the impact of distinct orographic forcing on the upper atmosphere.

  20. Indirect methods of retrieval of important mesospheric gas constituents from available measurements data

    NASA Astrophysics Data System (ADS)

    Kulikov, Mikhail; Nechaev, Anton; Belikovich, Mikhail; Ermakova, Tatiana; Feigin, Alexander

    2016-04-01

    Observation of minor gas constituents is traditionally considered as one of the fundamental problems in investigations of the Earth's mesosphere and mesopause region. Since direct and regular measurements are still rather scanty, indirect methods are a useful tool. Based on a priori assumptions about possible relationships between measured and retrieved characteristics (for example, photochemical models), they allow one to obtain additional information about the important constituents from available experimental data. In this presentation we discuss, firstly, the restrictions on the use of the ozone steady state equilibrium condition for the retrieval of atomic oxygen and hydrogen concentrations from O2 and OH airglow emissions ratios and O3 concentration measurements. Secondly, we present a statistical Bayesian procedure of retrieving the concentrations of important constituents in mesosphere from available satellite and ground based experimental data. The technique is based on the application of the so-called basic dynamic model of mesospheric photochemistry, which is simplified mathematically correctly in a special manner and describes the most significant reactions between components of the families of odd hydrogen and oxygen. The work was supported by the Russian Science Foundation (Contract No. 15-17-10024).

  1. Comparisons of Na densities, Fe densities, and temperature measured over south polar cap with model predictions

    NASA Astrophysics Data System (ADS)

    Chu, X.; Gardner, C. S.; Vondrak, T.; Murray, B.; Plane, J. M.; Roble, R. G.; Espy, P. J.; Kawahara, T.

    Mesospheric Na and Fe layer densities and temperatures were measured by lidar systems at the South Pole, Syowa (69S, 39E), and Rothera (67.5S, 68.0W) during the past several years. Comparison of the wintertime temperatures measured above these sites with TIME-GCM predictions, suggests that the model over-estimates the compressional heating associated with downwelling. When simulating the winter Na and Fe densities at the pole using the UEA 1-D chemistry models, a 2-D general circulation model SOCRATES was used to predict the meridional and downward vertical transportation of O, H, etc. from the sunlit lower latitude into the polar vortex. However, the simulation indicates that the circulation, especially downward transport into the polar vortex, is overestimated by the general circulation model. Thus, the wintertime Na layer nearly disappears in the chemistry model, which does not agree with the maximum Na abundance observed in winter. In summer, the model correctly predicts the observed depletion of the metal atoms below 90 km. This results from the uptake of the metals onto ice particles, which seem to be a persistent feature of the summertime upper mesosphere at high latitudes. This paper will show that the observed seasonal behavior of the metal layers provides a rigorous test of general circulation models in the upper mesosphere.

  2. An overview of NLC-91: A rocket/radar study of the polar summer mesophere

    NASA Technical Reports Server (NTRS)

    Goldberg, R. A.; Kopp, E.; Witt, G.; Swartz, W. E.

    1993-01-01

    In late July and early August of 1991, a major suborbital scientific campaign (NLC-91) involving scientists from eight countries was conducted at ESRANGE, Kiruna, Sweden and at Heiss Island, Russia. The purpose of the program was to investigate the chemical, dynamical, and electrodynamical properties of the polar summer mesosphere. Thirty one rocket flights were coordinated with two coherent radar facilities, European Incoherent Scatter (EISCAT) and Cornell Univesity Portable Radar Interferometer (CUPRI), and with other ground-based observatories and facilities. This permitted direct comparison between the in situ measurements and those obtained by remote sensing of the mesosphere via continuous ground-based monitoring. The primary objectives of the campaign were to study noctilucent clouds (NLCs) and polar mesospheric summer echoes (PMSEs), including their possible relationship to local aerosols and/or small scale turbulence. This overview describes the scientific program, discusses the geophysical conditions during launch activities, and reviews some of the preliminary results. More detailed results can be found in the papers which follow.

  3. An overview of NLC-91: A rocket/radar study of the polar summer mesophere

    NASA Astrophysics Data System (ADS)

    Goldberg, R. A.; Kopp, E.; Witt, G.; Swartz, W. E.

    1993-10-01

    In late July and early August of 1991, a major suborbital scientific campaign (NLC-91) involving scientists from eight countries was conducted at ESRANGE, Kiruna, Sweden and at Heiss Island, Russia. The purpose of the program was to investigate the chemical, dynamical, and electrodynamical properties of the polar summer mesosphere. Thirty one rocket flights were coordinated with two coherent radar facilities, European Incoherent Scatter (EISCAT) and Cornell Univesity Portable Radar Interferometer (CUPRI), and with other ground-based observatories and facilities. This permitted direct comparison between the in situ measurements and those obtained by remote sensing of the mesosphere via continuous ground-based monitoring. The primary objectives of the campaign were to study noctilucent clouds (NLCs) and polar mesospheric summer echoes (PMSEs), including their possible relationship to local aerosols and/or small scale turbulence. This overview describes the scientific program, discusses the geophysical conditions during launch activities, and reviews some of the preliminary results. More detailed results can be found in the papers which follow.

  4. Improving Laser-Guide Star AO Observations via Mesospheric Sodium Enhancement

    NASA Astrophysics Data System (ADS)

    Whiteley, R.; Yavorski, J.; Jelks, C.; Colburn, W.; Berner, K.

    The use of modern Adaptive Optics (AO) systems allows large telescopes to approach diffraction limited seeing. This technique can improve the imaging resolution of a large telescope by more than an order of magnitude. Such a capability provides real improvement in ground-based space situational awareness (SSA) observations. The drawback to current adaptive optics systems is that they only improve resolution over small imaging regions, sometimes as small as a few tens of arc seconds. Such small imaging regions limit the availability of suitable guide stars, which in turn limits the availability and duty cycle of an AO system. This limitation has led to the development of systems for producing artificial guide stars, which can be created along a line of sight coincident with that of the telescope. The most commonly used artificial guide stars are created by tuning a laser to the frequency of the Sodium D1/D2 line complex, and exciting sodium atoms in the Earth's mesosphere. The mesospheric sodium layer is exceptionally rarified, and has densities that vary diurnally, seasonally, and geographically. Our investigation centers on the use of sounding rockets to deliver substantial quantities of atomic sodium to the mesospheric layer. This direct enhancement of the sodium layer could increase the number of nights that laser-guide star AO observations could be performed, as well as increasing guide star brightness. These improvements should yield better AO wavefront correction and faster imaging frame rates. For the SSA application, these improvements will lead to more and better imaging opportunities. We will present a basic overview of the relevant mesospheric dynamics, with emphasis on sodium dwell times and replenishment rates. We will present several possible mechanisms for delivery and deployment of atomic sodium in the mesosphere, and demonstrate the trade-offs in their use. We will present a possible concept of operation for notional delivery systems. Finally, we

  5. Polarization Aberrations

    NASA Technical Reports Server (NTRS)

    Mcguire, James P., Jr.; Chipman, Russell A.

    1990-01-01

    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs.

  6. Polar Bear

    USGS Publications Warehouse

    Amstrup, S.D.; ,; Lentfer, J.W.

    1988-01-01

    Polar bears are long-lived, late-maturing carnivores that have relatively low rates of reproduction and natural mortality. Their populations are susceptible to disturbance from human activities, such as the exploration and development of mineral resources or hunting. Polar bear populations have been an important renewable resource available to coastal communities throughout the Arctic for thousands of years.

  7. Macrophage Polarization.

    PubMed

    Murray, Peter J

    2017-02-10

    Macrophage polarization refers to how macrophages have been activated at a given point in space and time. Polarization is not fixed, as macrophages are sufficiently plastic to integrate multiple signals, such as those from microbes, damaged tissues, and the normal tissue environment. Three broad pathways control polarization: epigenetic and cell survival pathways that prolong or shorten macrophage development and viability, the tissue microenvironment, and extrinsic factors, such as microbial products and cytokines released in inflammation. A plethora of advances have provided a framework for rationally purifying, describing, and manipulating macrophage polarization. Here, I assess the current state of knowledge about macrophage polarization and enumerate the major questions about how activated macrophages regulate the physiology of normal and damaged tissues.

  8. Polarized Light Microscopy

    NASA Technical Reports Server (NTRS)

    Frandsen, Athela F.

    2016-01-01

    Polarized light microscopy (PLM) is a technique which employs the use of polarizing filters to obtain substantial optical property information about the material which is being observed. This information can be combined with other microscopy techniques to confirm or elucidate the identity of an unknown material, determine whether a particular contaminant is present (as with asbestos analysis), or to provide important information that can be used to refine a manufacturing or chemical process. PLM was the major microscopy technique in use for identification of materials for nearly a century since its introduction in 1834 by William Fox Talbot, as other techniques such as SEM (Scanning Electron Microscopy), FTIR (Fourier Transform Infrared spectroscopy), XPD (X-ray Powder Diffraction), and TEM (Transmission Electron Microscopy) had not yet been developed. Today, it is still the only technique approved by the Environmental Protection Agency (EPA) for asbestos analysis, and is often the technique first applied for identification of unknown materials. PLM uses different configurations in order to determine different material properties. With each configuration additional clues can be gathered, leading to a conclusion of material identity. With no polarizing filter, the microscope can be used just as a stereo optical microscope, and view qualities such as morphology, size, and number of phases. With a single polarizing filter (single polars), additional properties can be established, such as pleochroism, individual refractive indices, and dispersion staining. With two polarizing filters (crossed polars), even more can be deduced: isotropy vs. anisotropy, extinction angle, birefringence/degree of birefringence, sign of elongation, and anomalous polarization colors, among others. With the use of PLM many of these properties can be determined in a matter of seconds, even for those who are not highly trained. McCrone, a leader in the field of polarized light microscopy, often

  9. Polar Glaciology

    NASA Technical Reports Server (NTRS)

    Robin, G. D.

    1984-01-01

    Two fields of research on polar ice sheets are likely to be of dominant interest during the 1990s. These are: the role of polar ice sheets in the hydrological cycle ocean-atmosphere-ice sheets-oceans, especially in relation to climate change; and the study and interpretation of material in deep ice cores to provide improved knowledge of past climates and of the varying levels of atmospheric constituents such as CO2, NOx, SO2, aerosols, etc., over the past 200,000 years. Both topics require a better knowledge of ice dynamics. Many of the studies that should be undertaken in polar regions by Earth Observing System require similar instruments and techniques to those used elsewhere over oceans and inland surfaces. However to study polar regions two special requirements need to be met: Earth Observing System satellite(s) need to be in a sufficiently high inclination orbit to cover most of the polar regions. Instruments must also be adapted, often by relatively limited changes, to give satisfactory data over polar ice. The observational requirements for polar ice sheets in the 1990s are summarized.

  10. Influence of gravity waves and tides on mesospheric temperature inversion layers: simultaneous Rayleigh lidar and MF radar observations

    NASA Astrophysics Data System (ADS)

    Sridharan, S.; Sathishkumar, S.; Gurubaran, S.

    2008-11-01

    Three nights of simultaneous Rayleigh lidar temperature measurements over Gadanki (13.5° N, 79.2° E) and medium frequency (MF) radar wind measurements over Tirunelveli (8.7° N, 77.8° E) have been analyzed to illustrate the possible effects due to tidal-gravity wave interactions on upper mesospheric inversion layers. The occurrence of tidal gravity wave interaction is investigated using MF radar wind measurements in the altitude region 86 90 km. Of the three nights, it is found that tidal gravity wave interaction occurred in two nights. In the third night, diurnal tidal amplitude is found to be significantly larger. As suggested in Sica et al. (2007), mesospheric temperature inversion seems to be a signature of wave saturation in the mesosphere, since the temperature inversion occurs at heights, when the lapse rate is less than half the dry adiabatic lapse rate.

  11. Lidar Probing of the Mesosphere: Simultaneous Observations of Sporadic Sodium and Iron Formations, Calcium Ion Layers, Neutral Temperature and Winds

    NASA Technical Reports Server (NTRS)

    Kane, Timothy J.; Qian, Jun; Scherrer, Daniel R.; Senft, Daniel C.; Pfenninger, W. Matthew; Papen, George C.; Gardner, Chester S.

    1992-01-01

    Meteoritic ablation in the upper atmosphere is the commonly accepted source of the mesospheric metals between 80 and 105 km. The vertical and temporal behavior of some of these metals can be probed with high accuracy and resolution using resonance fluorescence lidar techniques. Of considerable interest in recent years has been the sporadic and rapid formation of thin, dense enhancements in these metallic layers. Since late Mar. 1991, the UIUC CEDAR lidar system, located at the Urbana Atmospheric Observatory, has been routinely operating at the Fe resonance line of 372 nm in order to probe the mesospheric Fe layer. In Nov. 1991, the capability to investigate mesospheric Ca(+) at the resonance line of 393.4 nm was added. The lidar's eximer-pumped dye laser uses Exciton QUI laser dye dissolved in p-dioxane, which can lase at both the Fe and Ca(+) frequencies. Various aspects of this investigation are discussed.

  12. Retrieval of the vertical distribution of chemical components in the mesosphere from simultaneous measurements of ozone and hydroxyl distributions

    NASA Astrophysics Data System (ADS)

    Kulikov, M. Yu.; Feigin, A. M.; Sonnemann, G. R.

    2006-09-01

    We propose a method for retrieval of directly unmeasurable concentrations of minor gas constituents of the mesosphere from available experimental data using simplified models of atmospheric photochemical systems. The method is used for processing of the results of simultaneous measurements of ozone and hydroxyl concentrations within the framework of the CRISTA-MAHRSI satellite experiments. As a result, vertical distributions of concentrations of three more key chemical components of the mesosphere, namely, atomic oxygen, atomic hydrogen, and hydroperoxide, were retrieved. It is shown that a limiting altitude-dependent ratio between OH and O3 concentrations is valid in the mesosphere and lower thermosphere. It is found that CRISTA-MAHRSI data satisfy this ratio up to an altitude of 87 km, but a strong discrepancy between theory and experiment arises in the upper region.

  13. Inter-Hemispheric Coupling During Recent North Polar Summer Periods as Predicted by MaCWAVE/MIDAS Rocket Data and Traced by TIMED/SABER Measurements

    NASA Technical Reports Server (NTRS)

    Goldberg, Richard A.; Feofilov, Artem G.; Kutepov, Alexander A.; Pesnell, W. Dean; Schmidlin, Francis J.

    2011-01-01

    In July, 2002, the MaCWAVE-MIDAS Rocket Program was launched from And0ya Rocket Range (ARR) in Norway. Data from these flights demonstrated that the polar summer mesosphere during this period was unusual, at least above ARR. Theoretical studies have since been published that imply that the abnormal characteristics of this polar summer were generated by dynamical processes occurring in the southern polar winter hemisphere. We have used data from the SABER instrument aboard the NASA TIMED Satellite to study these characteristics and compare them with the features observed in the ensuing eight years. For background, the TIMED Satellite was launched on December 7, 2001 to study the dynamics and energy of the mesosphere and lower thermosphere. The SABER instrument is a limb scanning infrared radiometer designed to measure temperature of the region as well as a large number of minor constituents. In this study, we review the MaCWAVE rocket results. Next, we investigate the temperature characteristics of the polar mesosphere as a function of spatial and temporal considerations. We have used the most recent SABER dataset (1.07). Weekly averages are used to make comparisons between the winter and summer hemispheres. Furthermore, the data analysis agrees with recent theoretical studies showing that this behavior is a result of anomalous dynamical events in the southern hemisphere. The findings discussed here clearly show the value of scientific rocket flights used in a discovery mode.

  14. Response of the mesosphere to human-induced perturbations and solar variability calculated by a 2-D model

    NASA Astrophysics Data System (ADS)

    Khosravi, Rashid; Brasseur, Guy; Smith, Anne; Rusch, David; Walters, Stacy; Chabrillat, Simon; Kockarts, Gaston

    2002-09-01

    We have used the improved NCAR interactive 2-D model (SOCRATES) to investigate the chemical and thermal response of the mesosphere to composition changes from the preindustrial era (˜1850) to the present, to doubling the CO2 concentration, and to the 11-year solar flux variability. The calculations show that all regions in the model mesosphere have cooled relative to the preindustrial times. The mesopause region has cooled by ˜5 K and the winter pole by up to 9 K near 60 km. Ozone mixing ratio has decreased by about 5% in the lower mesosphere and by about 30% near the summer mesopause region (caused by a dramatic increase in [OH]). Doubling the CO2 abundance cools the whole mesosphere by about 4-16 K and has a complicated effect on O3, which exhibits an alternating increase/decrease behavior from the lower mesosphere up to the mesopause region. Similar results are obtained, in both magnitude and structure, for the O3 response to a decrease in solar UV flux. Similarities are also found in the response of T, OH, and H to these two perturbations. These results lead to the conclusion that the long-term increase in the well-mixed greenhouse gases, in particular CO2, alters the thermal structure and chemical composition of the mesosphere significantly and that these anthropogenic effects are of the same magnitude as the effects associated with the 11-year solar cycle. Thus, the difference in the timescales involved suggests that the anthropogenic signal over periods of typically 10 years is smaller than the signal generated by the 11-year solar variability. Finally, analysis of the results from a simulation of the combined perturbations (2 × CO2 + 11-year solar variability) shows that, for the most part, the solar variability does not interact with increasing CO2 and vice versa; that is, the two effects are additive.

  15. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  16. Mesospheric turbulence detection and characterization with AMISR-class radars under consistent meteorological conditions

    NASA Astrophysics Data System (ADS)

    Li, J.; Collins, R. L.; Newman, D.; Nicolls, M. J.; Varney, R. H.; Thurairajah, B.

    2015-12-01

    A recent study has shown the ability of the Advanced Modular Incoherent Scatter Radar (AMISR) at Poker Flat Research Range (PFRR, PFISR) to characterize turbulence in the mesosphere (D-Region) [Nicolls et. al, 2011]. We present case studies of AMISR measurements of turbulence where the meteorological conditions are defined by the presence of persistent Mesospheric Inversion Layers (MILs). We consider MILs that are detected by satellite over a day and are also detected by Rayleigh lidar at PFRR [Irving et. al, 2014]. MILs are a signature of large-scale planetary wave breaking in the upper atmosphere, where a region with a temperature inversion lies below a region with an adiabatic lapse rate. The region with the inversion allows small-scale waves to become unstable, break, and generate turbulence. The region with the adiabatic lapse rate is indicative of a well-mixed layer and the presence of turbulence. AMISR-class radars have a steerable narrow beam (1°) and high vertical resolution (750 m). We review the principles and practices of incoherent scatter radar with a focus on detection of D-region turbulence using radar spectra. We present the geometry of the turbulence and the radar, comparing the turbulent, plasma, and radar spatial scales. We develop a turbulence retrieval algorithm using a Voigt function spectral line. We fit the spectra to a Voigt function using the Levenberg-Marquardt method and use the Gaussian component of the Voigt spectra to calculate the RMS velocity, and hence the turbulent energy dissipation rate. With the environmental conditions characterized by satellite and lidar and the turbulence characterized by radar data, we can test the ability of PFISR to characterize mesospheric turbulence under consistent meteorological conditions and develop robust technique for turbulence measurements.

  17. Development of an Advanced Mesospheric Temperature Mapper (AMTM) for High-Latitude Research

    NASA Astrophysics Data System (ADS)

    Taylor, Michael J.; Pautet, Pierre-Dominique; Pendleton, William R., Jr.; Esplin, Roy; McLain, David

    The AMTM is a novel infrared imager that has recently been developed at Utah State Univer-sity to investigate mesospheric wave dynamics and temperature variability at high-latitudes. In particular, the imager is capable of high-quality measurements even in the presence of strong aurora (IBC 3 conditions). The AMTM design takes full advantage of new infrared sensor capabilities to significantly enhance our existing ability for precision, high temporal resolution mapping of mesospheric gravity waves. The new instrument employs a state-of-the-art InGaAs infrared array of high quantum efficiency, ˜80%, over the spectral range 900-1700 nm. A tele-centric optical arrangement was developed in-house at the Space Dynamics Laboratory (SDL) at USU and employs large format AR coated lenses resulting in a high optical throughput (AΩ) of ˜1.0 cm2 .sr. with minimal distortion over a wide-field of view (120° ). The InGaAs detector is thermoelectrically cooled to -50° C enabling low-noise, high-linearity image measurements of selected emission lines of the OH Meinel (3,1) and (4,2) band (around 1.5-1.65 µm) for precision (1-2 K), high-cadence temperature measurements. Two AMTM systems have been developed for high-latitude mesospheric measurements: one recently installed at Amundsen-Scott South Pole Station in Antarctica (90° S), and a second system for coordinated measurements at the ALOMAR Arctic Observatory (69° N) in northern Norway. This presentation focuses on the development of the AMTM instrument highlighting its capabilities using our first observations.

  18. Model Studies of Electrical Coupling Processes in Equatorial Mesosphere and Lower Ionosphere

    NASA Astrophysics Data System (ADS)

    Tonev, Peter; Velinov, Peter

    2016-07-01

    The quasi-electrostatic response of equatorial lower ionosphere and mesosphere to forcing from below by electrical sources located in the troposphere (e.g. thunderclouds) or at surface (e.g. related to earthquakes) is studied. Such sources generate quasi-static (QS) electric fields in the lower ionosphere and mesosphere which can be large enough in nighttime conditions to cause electron heating, modifications of conductivity and electron density, etc. We demonstrate that this response to the forcing from below highly depends on the geomagnetic latitude determining the magnetic field lines inclination, and thus, the tensor of anisotropic conductivity. Our previous results show that the QS electric fields in the lower nighttime ionosphere above tropospheric sources are much bigger and have larger horizontal extension than those generated at high latitudes by otherwise same conditions. Now we estimate by modeling the electric currents and fields generated at equatorial latitudes in lower ionosphere and mesosphere above electrical charges located in the troposphere or at ground which can have different horizontal dimensions during quiet periods and of their self-consistent effects to electron heating and conductivity. Specific configurations of electric currents and distributions of related electric fields are estimated first by constant (ambient) conductivity. Then, these are evaluated self-consistently with conductivity modification. The electric currents are re-oriented above ~85 km and flow in a narrow horizontal layer where they dense. Respectively, the electric fields and their effect on conductivity have much larger horizontal scale than at middle latitudes (few hundred of kilometers). Sources of large horizontal dimensions, such as mesoscale convective structures and complexes or earthquakes, cause enhancements of electric fields and their effects due to superposition of horizontally reoriented electric currents well above 70 km. In case of thunderstorms these

  19. Causative Mechanisms of Tropical (10°N-15°N) Mesospheric Inversion Layers

    NASA Astrophysics Data System (ADS)

    Ramesh, Karanam; Sundararajan, Sridharan; Vijaya Bhaskara Rao, S.

    2016-07-01

    The inversion of temperature gradient from negative to positive superimposed upon the characteristically decreasing mesospheric thermal structure is known as Mesospheric Inversion Layer (MIL). Gravity wave breaking, planetary wave critical level interaction and the chemical heating have been suggested as potential causative mechanisms for the occurrence of the MILs. Although the morphological characteristics of MIL have been studied in detail at different sites using various instrumental techniques, their causative mechanisms are still unknown. In the present study, nearly all these major causative mechanisms have been addressed through a few case studies observed from Rayleigh lidar and TIMED-SABER (Thermosphere Ionosphere Mesosphere Energetics and Dynamics - Sounding of Atmosphere by Broadband Emission Radiometry) nightly temperatures over a tropical site, Gadanki (13.5°N,79.2°E). A few large MILs are observed above ˜80 km with amplitude and thickness of ˜50 K and ˜5 km respectively in 2007 and 2011 which are found to be predominantly due to gravity wave breaking and large chemical heating rate (˜15 K/day) by the exothermic reaction, H+O _{3}->OH+O _{2} respectively. It is also found that the SABER shows larger ozone (O _{3}) mixing ratios at the inversion heights (˜80-85 km) during the MIL events in 2011. In another special case study, a triple layered MIL event with three inversion layers at ˜70 km (˜11 K), 80 km (˜44 K), 90 km (˜109 K) has been observed in September 2011 over Gadanki region. It is found that these three inversion layers are respectively due to planetary wave breaking, gravity wave tidal interaction and chemical heating by the reaction, O+O+M->O _{2}+M.

  20. Modeling Study of Planetary Waves in the Mesosphere Lower Thermosphere (MLT)

    NASA Technical Reports Server (NTRS)

    Mengel, J. G.; Mayr, H. g.; Drob, D.; Porter, H. S.; Hines, C. O.

    2003-01-01

    For comparison with measurements from the TIMED satellite and coordinated ground based observations, we present results from our Numerical Spectral Model (NSM) that incorporates the Doppler Spread Parameterization (Hines, 1997) for small-scale gravity waves (GWs). We discuss the planetary waves (PWs) that are purely generated by dynamical interactions, i.e., without explicitly specifying excitation sources related for example to tropospheric convection or topography. With tropospheric heating that reproduces the observed zonal jets near the tropopause and the accompanying reversal in the latitudinal temperature variation, which is conducive to baroclinic instability, long period PWs are produced that propagate up into the stratosphere to affect the wave driven equatorial oscillations (QBO and SAO) extending into the upper mesosphere. The PWs in the model that dominate higher up in the MLT region, however, are to a large extent produced by instabilities under the influence of the zonal circulation and temperature variations in the middle atmosphere and they are amplified by GW interactions. Three classes of PWs are generated there. (1) Rossby waves that slowly propagate westward but are carried by the zonal mean (m = 0) winds to produce eastward and westward propagating PWs respectively in the winter and summer hemispheres below 80 km. Depending on the zonal wave number and magnitudes of the zonal winds under the influence of the equatorial oscillations, the PWs typically have periods between 2 and 20 days and their horizontal wind amplitudes can exceed 40 m/s in the lower mesosphere. (2) Rossby gravity waves that propagate westward at low latitudes, having periods around 2 days for zonal wave numbers m = 2 to 4. (3) Eastward propagating equatorial Kelvin waves generated in the upper mesosphere with periods between 2 and 3 days for m = 1 & 2. The seasonal variations of the PWs reveal that the largest wind amplitudes tend to occur below 80 km in the winter hemisphere

  1. Causative mechanisms for the occurrence of a triple layered mesospheric inversion event over low latitudes

    NASA Astrophysics Data System (ADS)

    Ramesh, K.; Sridharan, S.; Vijaya Bhaskara Rao, S.

    2014-05-01

    The temperature profile obtained from the space borne instrument "Sounding of Atmosphere by Broadband Emission Radiometry" instrument onboard "Thermosphere Ionosphere Mesosphere Energetics and Dynamics" shows a triple layered mesospheric inversion event on the night of 23 September 2011, when there is an overpass near the low-latitude sites Gadanki (13.5°N, 79.2°E) and Tirunelveli (8.7°N, 77.8°E). The three mesospheric inversion layers (MILs) are formed in the height region around ~70 (lower), ~80 (middle), and ~90 km (upper) with amplitudes ~11, ~44, and ~109 K and thickness of 3.4, 4.9, and 6.6 km, respectively. The formation of the lower and middle MILs can only be observed in the Rayleigh lidar temperature profiles over Gadanki due to upper height limitation of the system. Nearly all the dominant causative mechanisms are examined for the occurrence of the MIL event. The lower MIL at ~70 km is inferred to be due to planetary wave dissipation, as there is a sudden decrease of planetary wave activity above 70 km. Further, it is demonstrated that the middle MIL at ~80 km is due to the turbulence generated by gravity wave breaking which is in turn due to gravity wave-semi-diurnal tidal interaction, though the height of the middle MIL descends at the rate of ~1 km/h, which is nearly the vertical phase speed of diurnal tide, whereas the upper MIL at above 90 km is due to the large chemical heating rate (~45 K/day) generated by the dominant exothermic reaction O + O + M → O2 + M.

  2. Polarizing cues.

    PubMed

    Nicholson, Stephen P

    2012-01-01

    People categorize themselves and others, creating ingroup and outgroup distinctions. In American politics, parties constitute the in- and outgroups, and party leaders hold sway in articulating party positions. A party leader's endorsement of a policy can be persuasive, inducing co-partisans to take the same position. In contrast, a party leader's endorsement may polarize opinion, inducing out-party identifiers to take a contrary position. Using survey experiments from the 2008 presidential election, I examine whether in- and out-party candidate cues—John McCain and Barack Obama—affected partisan opinion. The results indicate that in-party leader cues do not persuade but that out-party leader cues polarize. This finding holds in an experiment featuring President Bush in which his endorsement did not persuade Republicans but it polarized Democrats. Lastly, I compare the effect of party leader cues to party label cues. The results suggest that politicians, not parties, function as polarizing cues.

  3. Study of Vertical Ozone Distributions in the Stratosphere and Mesosphere at the Millimeter Wavelengths

    NASA Astrophysics Data System (ADS)

    Solomonov, S. V.; Kropotkina, E. P.; Rozanov, S. B.

    2003-08-01

    We present the results of stratospheric and mesospheric ozone observations at the millimeter wavelengths. It is shown that the microwave remote sensing methods are important for studying the physical and chemical processes which play a significant role in the ozone-layer depletion. Examples of the results of ozone observations at 142.2 GHz by the spectrometer of the P. N. Lebedev Physical Institute of the Russian Academy of Sciences (LPI RAS) illustrate the high efficiency of radiophysical techniques for atmospheric-ozone research.

  4. Venus mesosphere and thermosphere. III. Three-dimensional general circulation with coupled dynamics and composition

    SciTech Connect

    Bougher, S.W.; Roble, R.G.E.; Dickinson, R.E.; Ridley, E.C.

    1988-03-01

    The three-dimensional structure and circulation of Venus' upper mesosphere and thermosphere is examined by means of a modification of NCAR's earth thermosphere general circulation model, using the parameterizations from an earlier two-dimensional Venus model that included eddy diffusion and wave drag. Many of the observed Venus thermosphere features are found to be reproduced by the model, which thereby serves as a benchmark on which to incorporate additional minor constituents and test new self-consistent parameterizations for wave drag and superrotation. 36 references.

  5. Detection of wave disturbances in the mesosphere using a MF-HF radar

    NASA Astrophysics Data System (ADS)

    Panasenko, S. V.; Chernogor, L. F.

    2006-07-01

    Theoretical backgrounds of the active and passive methods for detecting the set of acoustic gravity waves in the upper mesosphere are presented. The observation and processing techniques based on the registration, statistical and spectral analysis of the envelopes of backscatter signals and radio noise are presented. It has been indicated that wave disturbances with periods of 5-120 min were observed during the entire observation period. The average relative amplitude of these disturbances was 2-4%. The dependences of the wave disturbance parameters on the time of day, season, and magnetic activity level have been studied.

  6. Measurements of the structure and circulation of the stratosphere and mesosphere, 1971-2

    NASA Technical Reports Server (NTRS)

    Smith, W. S.; Theon, J. S.; Wright, D. U., Jr.; Ramsdale, D. J.; Horvath, J. J.

    1974-01-01

    Complete data from a total of 43 meteorological rocket soundings of the stratosphere and mesosphere conducted from Barrow, Alaska; Churchill, Canada; Wallops Island Va.; and Kourou, French Guiana are presented. These data consist of temperature, pressure, density, and wind profiles from 35 acoustic grenade soundings that cover the 30 to 90 km altitude range, and temperature, pressure, and density profiles from 8 pitot probe soundings that cover the 25 to 120 km altitude range. Errors for each of the 35 acoustic grenade soundings are also included.

  7. Observations of Mesospheric Turbulence by Rocket Probe and VHF Radar, Part 2.4A

    NASA Technical Reports Server (NTRS)

    Royrvik, O.; Smith, L. G.

    1984-01-01

    Data from the Jicamarca VHF radar and from a Languir probe fine-structure on a Nike Orion rocket launched from Punto Lobos, Peru, have been compared. A single mesospheric scattering layer was observed by the radar. The Langmuir probe detected irregularities in the electron-density profile in a narrow region between 85.2 and 86.6 km. It appears from a comparison between these two data sets that turbulence in the neutral atmosphere is the mechanism generating the refractive index irregularities.

  8. Influence of sprite streamers in the mesospheric chemical and thermal balance

    NASA Astrophysics Data System (ADS)

    Parra-Rojas, Francisco C.; Luque, Alejandro; Gordillo-Vázquez, Francisco J.

    2015-04-01

    We present new results to contribute to the fundamental understanding of the chemistry of non-equilibrium plasmas produced by nighttime sprite streamers in the mesosphere and their influence on the chemical composition and thermal evolution of the upper atmosphere. This contribution describes the kinetic model used and the time evolution of the concentration of many important species for the sprite and its afterglow through an upgrade of previous TLE kinetic models [1], [2]. A one-dimensional self-consistent model has been developed to study the chemical and thermal effects of a single sprite streamer in the Earth mesosphere. We have used sprite streamer profiles with three different driving current durations (5 ms, 50 ms and 100 ms) between 50 and 80 km of altitude and considering a kinetic scheme of air with 20 chemical species. Our model predicts strong increases in practically all the concentrations of the species studied at the moment of the streamer head passage. Moreover, their densities remain high during the streamer afterglow phase. The electron concentration can reach values of up to 108 cm-3 in the three cases analyzed. The model also predicts an important enhancement, of several orders of magnitude above ambient values, of nitrogen oxides (NOx and N2O) and the considered metastables species (N2(A), O2(a), O2(b)). Metastables are capable of storing energy for relatively long time (hundreds of seconds). On the other hand, we found that the 4.26 μm IR emission brightness of CO2 can exceed in 4 orders of magnitude the threshold of visibility (1 MR) at low altitudes (< 65 km) for the cases of intermediate (50 ms) and long (100 ms) driving currents. These results suggest the possibility of detecting sprite IR emissions from space with the appropriate instrumentation. Moreover, according to our model, the Meinel emission brightness of N2+ could also reach the threshold of visibility below 50 km. Finally, we found that the thermal impact of sprites in the

  9. Measurements of stratospheric NO2 by the improved stratospheric and mesospheric sounder

    NASA Astrophysics Data System (ADS)

    Reburn, W. J.; Remedios, J. J.; Ballard, J.; Lawrence, B. N.; Taylor, F. W.

    1993-06-01

    Limb sounding measurements of infra-red emission at 6.2 μm from the Earth's atmosphere have been made by the Improved Stratospheric and Mesospheric Sounder (ISAMS). This provides a pressure modulated gas-correlation signal and a wideband signal from which NO2 and aerosol extinction at 6.2 μm are jointly retrieved between 100 mb and 0.3 mb. The retrieval scheme is discussed with reference to NO2 and a qualitative comparison made with LIMS data. The ISAMS Northern hemisphere NO2 data for January 9th 1992 are then examined and the importance of dynamical factors highlighted.

  10. Latitudinal Dependence of the Energy Input into the Mesosphere by High Energy Electrons

    NASA Technical Reports Server (NTRS)

    Wagner, C. U.; Nikutowski, B.; Ranta, H.

    1984-01-01

    Night-time ionspheric absorption measurements give the possibility to study the precipitation of high energy electrons into the mesosphere during and after magnetospheric storms. The uniform Finnish riometer network was used together with measurements from Kuhlungsborn and Collm (GDR) to investigate the night-time absorption as a function of latitude (L=6.5 to 2.5) and storm-time for seven storms. The common trends visible in all these events are summarized in a schematic average picture, showing the distribution of increased ionospheric absorption as a function of latitude (L value) and storm-time.

  11. Neutron Polarizers Based on Polarized 3He

    SciTech Connect

    William M. Snow

    2005-05-01

    The goal of this work, which is a collaborative effort between Indiana University, NIST, and Hamilton College, is to extend the technique of polarized neutron scattering into new domains by the development and application of polarized 3He-based neutron spin filters. After the IPNS experiment which measured Zeeman sp[litting in surface scattered neutrons using a polarized 3He cell as a polarization analyzer transporterd by car from Bloomington to Chicago, the Indiana work focused on technical developments to improve the 3He polarization of the Indiana compression system. The compression system was rebuilt with a new valve system which allows gas trapped in the dead volume of the compressors at the end of the piston stroke to be exhausted and conducted back to the optical pumping cell where it can be repolarized. We also incorporated a new intermediate storage volume made at NIST from 1720 glass which will reduce polarization losses between the compressors. Furthermore, we improved the stability of the 1083 nm laser by cooling the LMA rod. We achieved 60% 3he polarization in the optical pumping cell and 87% preservation of the polarization during compression. In parallel we built a magnetically-shielded transport solenoid for use on neutron scattering instruments such as POSY which achieves a fractional field uniformity of better than 10-3 per cm. The field was mapped using an automated 3D field mapping system for in-situ measurement of magnetic field gradients Diluted magnetic semiconductors offer many exciting opportunities for investigation of spintronic effects in solids and are certain to be one of the most active areas of condensed matter physics over then next several years. These materials can act as efficient spin injectors for devices that make use of spin-dependent transport phenomena. We just (late July 2002) finished a neutron reflectivity experiment at NIST on a GaMnAs trilayer film. This material is a ferromagnetic semiconductor which is of interest

  12. Hepatocyte Polarity

    PubMed Central

    Treyer, Aleksandr; Müsch, Anne

    2013-01-01

    Hepatocytes, like other epithelia, are situated at the interface between the organism’s exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell-cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single-spanning and glycosylphosphatidylinositol-anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase-related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell-cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes. PMID:23720287

  13. In-situ observations of mesospheric aerosol particles and their impact on the D-region charge balance: Highlights from the ECOMA sounding rocket program (2006 - 2010)

    NASA Astrophysics Data System (ADS)

    Rapp, M.; Friedrich, M.; Strelnikov, B.; Hoppe, U.; Plane, J. M.

    2012-12-01

    Over the years 2006 - 2010 a total of 9 sounding rockets was successfully launched in the scope of the Norwegian-German ECOMA (= Existence and Charge state Of Meteoric smoke particles in the middle Atmosphere) project. While the primary target of these observations was the characterization of the properties of meteoric smoke particles (MSP), both MSP and mesospheric ice particles in the vicinity of the cold polar summer mesopause were investigated. This presentation gives an overview of the major results of this project covering subjects such as the charging properties of MSP and ice particles, the impact of this charging process on the D-region charge balance, and the microphysical properties of the MSP. Concerning the latter, emphasis is spent on the most recent results from a campaign in December 2010 during which two sounding rockets were launched with improved particle detectors that were designed to provide constraints on the photoelectric work function of the particles. These experimental results are further discussed on the basis of quantum mechanical calculations of the electronic structure of cluster molecules which are likely candidates for MSP. These calculations allow a tentative interpretation of the observations in terms of MSP size and altitude variations as well as their photoelectric properties.

  14. When matter matters

    SciTech Connect

    Easson, Damien A.; Sawicki, Ignacy; Vikman, Alexander E-mail: ignacy.sawicki@uni-heidelberg.de

    2013-07-01

    We study a recently proposed scenario for the early universe:Subluminal Galilean Genesis. We prove that without any other matter present in the spatially flat Friedmann universe, the perturbations of the Galileon scalar field propagate with a speed at most equal to the speed of light. This proof applies to all cosmological solutions — to the whole phase space. However, in a more realistic situation, when one includes any matter which is not directly coupled to the Galileon, there always exists a region of phase space where these perturbations propagate superluminally, indeed with arbitrarily high speed. We illustrate our analytic proof with numerical computations. We discuss the implications of this result for the possible UV completion of the model.

  15. The double seismic zone in downgoing slabs and the viscosity of the mesosphere

    NASA Technical Reports Server (NTRS)

    Sleep, N. H.

    1979-01-01

    The seismic zone beneath several island arcs between about 100 and 200 km depth consists of an upper zone having down-dip compression and a lower zone having down-dip tension. Several numerical models of the Aleutian arc were computed to test the hypothesis that these double seismic zones are due to sagging of the slab under its own weight. This sagging occurs because the asthenosphere (between about 100 and 200 km) provides little support or resistance to the slab, which is supported from below by the more viscous mesosphere and from above by the lithosphere. The viscosity of the mesosphere was constrained to the interval between 0.25 x 10 to the 22nd and 0.5 x 10 to the 22nd P by noting that the slab would have mainly down-dip compression at higher viscosities and mainly down-dip tension at lower viscosities. The deviatoric stress in the slab and the fault plane between the slab and the island arc is about 200-300 bars (expressed as shear stress). The models were calibrated to the observed depth and gravity anomalies in the trench.

  16. Quantifying gravity wave momentum fluxes with Mesosphere Temperature Mappers and correlative instrumentation

    NASA Astrophysics Data System (ADS)

    Fritts, David C.; Pautet, P.-Dominique; Bossert, Katrina; Taylor, Michael J.; Williams, Bifford P.; Iimura, Hiroyuki; Yuan, Tao; Mitchell, Nicholas J.; Stober, Gunter

    2014-12-01

    An Advanced Mesosphere Temperature Mapper and other instruments at the Arctic Lidar Observatory for Middle Atmosphere Research in Norway (69.3°N) and at Logan and Bear Lake Observatory in Utah (42°N) are used to demonstrate a new method for quantifying gravity wave (GW) pseudo-momentum fluxes accompanying spatially and temporally localized GW packets. The method improves on previous airglow techniques by employing direct characterization of the GW temperature perturbations averaged over the OH airglow layer and correlative wind and temperature measurements to define the intrinsic GW properties with high confidence. These methods are applied to two events, each of which involves superpositions of GWs having various scales and character. In each case, small-scale GWs were found to achieve transient, but very large, momentum fluxes with magnitudes varying from ~60 to 940 m2 s-2, which are ~1-2 decades larger than mean values. Quantification of the spatial and temporal variations of GW amplitudes and pseudo-momentum fluxes may also enable assessments of the total pseudo-momentum accompanying individual GW packets and of the potential for secondary GW generation that arises from GW localization. We expect that the use of this method will yield key insights into the statistical forcing of the mesosphere and lower thermosphere by GWs, the importance of infrequent large-amplitude events, and their effects on GW spectral evolution with altitude.

  17. Imaging mesospheric winds using the Michelson interferometer for airglow dynamics imaging

    NASA Astrophysics Data System (ADS)

    Langille, Jeffery; Ward, William E.

    2016-07-01

    The first ground based images of mesospheric winds in airglow are presented and discussed in this paper. These were obtained with the Michelson Interferometer for Airglow Dynamics Imaging (MIADI)a ground based field widened Michelsoin interferometer designed to obtain two dimensional images of the line of sight Doppler wind and irradiance field in the mesosphere. The purpose of this instrument is to measure perturbations in line-of-sight wind and airglow irradiance associated with gravity waves. In its current configuration, the instrument observes an ~80 km x ~80 km region of the night sky in ~33 minutes using the O(1S) emission at 557.73 nm and the OH (6, 2) P1 (2) emission at 839.918 nm. The instrument was installed and tested at a field site outside Fredericton, NB (45.96 N, 66.65 W) during the summer of 2014. Successful measurements over a six hour period were obtained on July 31, 2014. Variations in the meridional and zonal wind were observed that are consistent with a semi-diurnal tide with an amplitude of ˜ 35 m/s. Small scale variations (< 10 m/s) were also observed that indicate the presence of gravity waves. In this paper, the instrument concept will be presented and the field measurements and their precision and accuracy discussed.

  18. Meteoric smoke and H2SO4 aerosols in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Hervig, Mark E.; Bardeen, Charles G.; Siskind, David E.; Mills, Michael J.; Stockwell, Robert

    2017-01-01

    Meteoric smoke has traditionally been understood as a passive tracer which follows the global mesospheric circulation. Smoke extinction measured by the Solar Occultation For Ice Experiment, however, shows that while this is true in the middle to upper mesosphere (pressure < 0.2 hPa), it is not true near the stratopause. Here the expected winter increase begins 3 months earlier than in models. We suggest that the autumn extinction increase is due to H2SO4 condensing above the nominal stratospheric aerosol layer ( 5 hPa). This is possible due to lowering of the H2SO4 saturation vapor pressure when the acid is neutralized through combination with meteoric metals. The appearance of neutralized H2SO4 aerosol in autumn is associated with the seasonal decrease in temperature. The combination of meteoric smoke and neutralized H2SO4 aerosols explains the observations and supports previous suggestions that H2SO4 could condense above the nominal stratospheric sulfate layer.

  19. Neutral Winds through the Mesosphere and Thermosphere derived from Incoherent Scatter Radar: Variability and Climatology

    NASA Astrophysics Data System (ADS)

    Nicolls, M. J.

    2014-12-01

    Incoherent Scatter Radar (ISR) measurements of ion drifts in the ionosphere are sensitive to neutral motions through ion-neutral collisions. At D-region / mesospheric altitudes, the plasma is collisional on scales of the radar wavelength and thus ion drifts can be used as a direct proxy for neutral motions. At E-region / lower-thermospheric altitudes, the ions undergo a transition whereby the mean free path approaches the scale of the Bragg-scattering wavelength. In the F-region / upper thermosphere, the ions are collisionless and drift at the ExB velocity. The sensing of ion motions is thus extremely useful for the assessment of ionospheric electrodynamics. We utilize case studies from the Poker Flat and Arecibo ISRs to illustrate the utility of this feature of ion motions by showing (a) examples of neutral wind measurements from the mesosphere through the thermosphere, (b) the impact of derived neutral winds on the interpretation of gravity wave dissipation and forcing, and (c) climatological variations of the lower thermospheric winds and the response of the high-latitude lower thermospheric winds to forcing.

  20. Mesospheric temperature estimation from meteor decay times during Geminids meteor shower

    NASA Astrophysics Data System (ADS)

    Kozlovsky, Alexander; Lukianova, Renata; Shalimov, Sergey; Lester, Mark

    2016-02-01

    Meteor radar observations at the Sodankylä Geophysical Observatory (67° 22'N, 26° 38'E, Finland) indicate that the mesospheric temperature derived from meteor decay times is systematically underestimated by 20-50 K during the Geminids meteor shower which has peak on 13 December. A very good coincidence of the minimum of routinely calculated temperature and maximum of meteor flux (the number of meteors detected per day) was observed regularly on that day in December 2008-2014. These observations are for a specific height-lifetime distribution of the Geminids meteor trails and indicate a larger percentage of overdense trails compared to that for sporadic meteors. A consequence of this is that the routine estimates of mesospheric temperature during the Geminids are in fact underestimates. The observations do, however, indicate unusual properties (e.g., mass, speed, or chemical composition) of the Geminids meteoroids. Similar properties were found also for Quadrantids in January 2009-2015, which like the Geminids has as a parent body an asteroid, but not for other meteor showers.

  1. Longterm Variability of the Mesosphere derived from Phase Height Measurements at Kuehlungsborn - Northern Germany

    NASA Astrophysics Data System (ADS)

    Peters, Dieter H. W.; Entzian, G.; Schneidereit, Andrea

    Long-term measurements of physical quantities in the mesosphere are rare. We use long radio wave signals to detect the altitude variation of a level of constant electron density between the transmitter station (162 kHz, Allouis, Haute Provence, France) and our receiver (Northern Germany). The indirect LF-phase height measurement at Kühlungsborn for an altitude of about 82 km was started in February 1959 and run over 50 years without any large breaks. We created a new homogenized data set of daily detrended phase heights from 1959-2009 taking into account a frequency change from 164 to 162 kHz in February 1986. The spectrum shows beside a strong annual and decadal cycle, three peak-periods: i) for about 5 years, ii) for about 3.4 years, and, iii) for about 30 months. To examine the dynamical link between atmospheric layers of the northern hemisphere we used combined Re-Analysis data of ECMWF (ERA-40 and ERA-Interim) for 50 years with an overlap of about 20 years to calculate v’T’ as indicator for planetary wave activity. In addition, for the quasi-biennial oscillation (QBO) like period we found a significant link with the QBO of the subtropical stratosphere, which implies a dynamical relationship to the extra-tropical mesosphere. Further the possible mechanisms of these dynamical relationships are presented and discussed.

  2. Resistance of stratospheric and mesospheric micro-organisms to extreme factors.

    PubMed

    Imshenetsky, A A; Lysenko, S V; Kasakov, G A; Ramkova, N V

    1977-01-01

    Studies of the stratosphere and mesosphere, by means of special analysers installed on meteorological rockets, have thrown more light on our knowledge of the upper boundary of the biosphere. The presence of the following micro-organisms was registered at heights of 49-77 km: Aspergillus niger, Penicillium notatum, Circinella muscae, Papulaspora anomala, Mycobacterium luteum and Micrococcus albus. The isolated micro-organisms were subjected to the action of gamma-irradiation, high vacuum and UV radiation in order to evaluate the quality of sterilization by gamma-rays (3.2-3.5 Mrad) prior to sampling and the resistance of these micro-organisms to physical factors of the stratosphere and mesosphere. No species with high radio-resistance were detected among the isolated cultures. The D10 index for fungal spores and bacterial vegetative cells, freeze-dried or suspended in a physiological solution, did not exceed 290 krad. These data confirm that sterilization of the analyser with gamma-rays assured the purity of biological experiments during sampling. The isolated micro-organisms were found to be very resistant to high vacuum (10(-9) mmHg) and UV radiation, with the exception of the pigmentless Micrococcus albus. This evidence shows that pigmented micro-organisms can survive in the earth's atmosphere at high altitudes.

  3. Simultaneous in-situ measurements of mesospheric temperature inversion layers and turbulence

    NASA Astrophysics Data System (ADS)

    Strelnikov, Boris; Rapp, Markus

    For several decades rocket borne ionization gauges have been used to obtain observations of mesospheric turbulence and temperature-profiles. The main advantage of these in-situ turbu-lence measurements is that they are made at very high spatial resolution and cover a wide range of spatial scales. This makes it possible to study the spectral content of the turbulent eddies in the range of spatial scales from tens of centimeters to some kilometers. Spectral analysis of these data yields turbulent energy dissipation rates at a spatial resolution of about 100 m. This reveals the highly patchy structure of MLT turbulence. Our measurements of-ten show adjacent regions with very strong turbulence and non-turbulent layers on vertical scales as short as some kilometers. Some observations even show turbulence layers which are only some hundreds of meters thick. Most of these turbulence measurements were accompa-nied by simultaneous common volume temperature measurements. Among those simultaneous measurements temperature inversion layers were often observed. In the present paper we analyze simultaneous in-situ measurements of mesospheric temperature inversion layers and turbulence measurements. This study includes about 30 sounding rocket flights launched at high northern latitudes. We compare morphology of the turbulence field with temperature profiles to gain a deeper insight how temperature inversions are related to local turbulence activity.

  4. Rocket measurements of ozone concentrations in the stratosphere and mesosphere over Thumba

    NASA Astrophysics Data System (ADS)

    Subbaraya, B. H.; Lal, Shyam

    1981-07-01

    A rocket-borne solar middle ultraviolet photometer has been developed at the Physical Research Laboratory, Ahmedabad for the measurement of ozone concentrations at stratospheric and mesospheric heights. The instrument has now been flown successfully several times from thumba and ozone concentrations determined over an altitude range of 15 to 80 km. This paper describes the instrumentation, data analysis technique as well as the laboratory calibration procedures. Also presented are the results from four successful rocket experiments conducted during equinoctial months under an Indo-USSR collaborative programme for strato-mesospheric studies. The results show that at Thumba peak ozone concentrations vary between 2·2 and 3·1×1012 molecules per cc and the peak altitude varies from 25 to 29 km from flight to flight. In the altitude region above about 40 km the ozone concentrations over Thumba are lower than the standard mid-latitude model values, by a factor lying between 1·5 and 2·5.

  5. Satellite-based observations of tsunami-induced mesosphere airglow perturbations

    NASA Astrophysics Data System (ADS)

    Yang, Yu-Ming; Verkhoglyadova, Olga; Mlynczak, Martin G.; Mannucci, Anthony J.; Meng, Xing; Langley, Richard B.; Hunt, Linda A.

    2017-01-01

    Tsunami-induced airglow emission perturbations were retrieved by using space-based measurements made by the Sounding of the Atmosphere using Broad-band Emission Radiometry (SABER) instrument on board the Thermosphere-Ionosphere-Mesosphere Energetics Dynamics spacecraft. At and after the time of the Tohoku-Oki earthquake on 11 March 2011, and the Chile earthquake on 16 September 2015, the spacecraft was performing scans over the Pacific Ocean. Significant ( 10% relative to the ambient emission profiles) and coherent nighttime airglow perturbations were observed in the mesosphere following Sounding of the Atmosphere using Broad-band Emission Radiometry limb scans intercepting tsunami-induced atmospheric gravity waves. Simulations of emission variations are consistent with the physical characteristics of the disturbances at the locations of the corresponding SABER scans. Airglow observations and model simulations suggest that atmospheric neutral density and temperature perturbations can lead to the observed amplitude variations and multipeak structures in the emission profiles. This is the first time that airglow emission rate perturbations associated with tsunamis have been detected with space-based measurements.

  6. Multi-instrument investigation of a mesospheric gravity wave event absorbed into background

    NASA Astrophysics Data System (ADS)

    Sivakandan, M.; Taori, A.; Sathishkumar, S.; Jayaraman, A.

    2015-04-01

    We investigate a gravity wave event exhibiting dissipation noted in the mesospheric O(1S) airglow emission image measurements, over Gadanki (13.5°N, 79.2°E), on 16 March 2012 (during 16:20-16:45 UT). These gravity waves were found to propagate from south-west to north-east directions at ~65° azimuth in OH as well as in O(1S) images. These waves had horizontal wavelength ~21.5 km with apparent horizontal phase speed ~49 m s-1 and period ~7.3 min. These waves were noted to fizzle out in turbulent patches within 15 min. To identify the causative mechanism of this event, we analyze the background wind and temperature data using the medium-frequency radar wind from Tirunelveli (8.7°N, 77.8°E), ground-based Rayleigh lidar temperature data with improved capability over Gadanki, and spaceborne Sounding of the Atmosphere using Broadband Emission Radiometry/Thermosphere Ionosphere Mesosphere Energetics and Dynamics temperature data (20:30 UT) for a latitude-longitude grid of 3-23°N, 60-100°E. Our analysis reveals that convective instability was responsible for the observed event.

  7. Mesospheric turbulence studies using over low latitude: campaign of July, 2004

    NASA Astrophysics Data System (ADS)

    Chandra, H.; Sinha, H. S.; Misra, R. N.; Das, S. R.; Kota, Uma; Datta, J.; Chakravarty, S. C.; Patra, A. K.; Rao, D. N.

    Details of the coordinated rocket and MST radar campaign for mesospheric turbulence studies carried out during July 19-27 2004 are presented One RH-300 MK II rocket instrumented with a Langmuir probe and spherical probe was launched from SHAR 13 7 N 80 2 E at 1142 h IST on July 23 2004 when strong mesospheric echoes were observed by the MST radar at Gadandki 13 5 N 79 2 E Also as a part of the campaign one RH-200 rocket was launched from SHAR within an hour of the RH-300 rocket flight for measurements of winds by radar tracking of metallic chaff The Langmuir probe detected electron density irregularities with scale sizes in the range of 1m to a few km in the altitude ranges of 67 5-71 km 74 9-78 km and 84-89 km during the rocket ascent MST radar detected strong echoes in the height region of 73-77 km and relatively weak ones around 68 km Winds obtained by chaff release experiment indicates strong shear in the zonal flow around 75 km The turbulence parameters obtained from rocket borne Langmuir probe and MST radar data are compared

  8. A rocket-borne mass analyzer for charged aerosol particles in the mesosphere

    SciTech Connect

    Knappmiller, Scott; Robertson, Scott; Sternovsky, Zoltan; Friedrich, Martin

    2008-10-15

    An electrostatic mass spectrometer for nanometer-sized charged aerosol particles in the mesosphere has been developed and tested. The analyzer is mounted on the forward end of a rocket and has a slit opening for admitting a continuous sample of air that is exhausted through ports at the sides. Within the instrument housing are two sets of four collection plates that are biased with positive and negative voltages for the collection of negative and positive aerosol particles, respectively. Each collection plate spans about an order of magnitude in mass which corresponds to a factor of 2 in radius. The number density of the charge is calculated from the current collected by the plates. The mean free path for molecular collisions in the mesosphere is comparable to the size of the instrument opening; thus, the analyzer performance is modeled by a Monte Carlo computer code that finds the aerosol particles trajectories within the instrument including both the electrostatic force and the forces from collisions of the aerosol particles with air molecules. Mass sensitivity curves obtained using the computer models are near to those obtained in the laboratory using an ion source. The first two flights of the instrument returned data showing the charge number densities of both positive and negative aerosol particles in four mass ranges.

  9. A method for estimating the height of a mesospheric density level using meteor radar

    NASA Astrophysics Data System (ADS)

    Younger, J. P.; Reid, I. M.; Vincent, R. A.; Murphy, D. J.

    2015-07-01

    A new technique for determining the height of a constant density surface at altitudes of 78-85 km is presented. The first results are derived from a decade of observations by a meteor radar located at Davis Station in Antarctica and are compared with observations from the Microwave Limb Sounder instrument aboard the Aura satellite. The density of the neutral atmosphere in the mesosphere/lower thermosphere region around 70-110 km is an essential parameter for interpreting airglow-derived atmospheric temperatures, planning atmospheric entry maneuvers of returning spacecraft, and understanding the response of climate to different stimuli. This region is not well characterized, however, due to inaccessibility combined with a lack of consistent strong atmospheric radar scattering mechanisms. Recent advances in the analysis of detection records from high-performance meteor radars provide new opportunities to obtain atmospheric density estimates at high time resolutions in the MLT region using the durations and heights of faint radar echoes from meteor trails. Previous studies have indicated that the expected increase in underdense meteor radar echo decay times with decreasing altitude is reversed in the lower part of the meteor ablation region due to the neutralization of meteor plasma. The height at which the gradient of meteor echo decay times reverses is found to occur at a fixed atmospheric density. Thus, the gradient reversal height of meteor radar diffusion coefficient profiles can be used to infer the height of a constant density level, enabling the observation of mesospheric density variations using meteor radar.

  10. A preliminary zonal mean climatology of water vapour in the stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Pumphrey, Hugh C.; Rind, D.; Russell, J. M.; Harries, J. E.

    The Microwave Limb Sounder on the UARS satellite measures water vapour concentration in the stratosphere and mesosphere. Water vapour profiles are retrieved from radiance measurements using a version of the optimal estimation algorithm. This requires an a priori profile which is obtained from a climatology. The MLS retrieval currently uses the standard UARS pre-launch climatology, which contains water vapour based on a 2-D model constrained to LIMS data in the stratosphere. This climatology has several defects which affect the ability of MLS to retrieve water vapour. This paper presents a new climatology constructed from the HALOE (HALogen Occultation Experiment) and SAGE II (Stratospheric Aerosol and Gas Experiment) data, which have become available recently. The new climatology is more realistic in several ways, particularly in the mesosphere and near the tropopause. It is proving to be an improvement as an a priori for MLS retrievals and might also have other uses. The paper will present the climatology, show how it was constructed, and compare it to the UARS pre-launch climatology and to various other data. As it stands, this climatology is not suitable for a reference atmosphere, but it is an improvement on CIRA part III in some way simply because it contains more accurate data and shows a number of new features. Suggestions are made for constructing an improved reference climatology for middle atmosphere water vapour.

  11. Mesospheric Non-Migrating Tides Generated With Planetary Waves: II Influence of Gravity Waves

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We demonstrated that, in our model, non-linear interactions between planetary waves (PW) and migrating tides could generate in the upper mesosphere non-migrating tides with amplitudes comparable to those observed. The Numerical Spectral Model (NSM) we employ incorporates Hines Doppler Spread Parameterization for small-scale gravity waves (GW), which affect in numerous ways the dynamics of the mesosphere. The latitudinal (seasonal) reversals in the temperature and zonal circulation, which are largely caused by GWs (Lindzen, 198l), filter the PWs and contribute to the instabilities that generate the PWs. The PWs in turn are amplified by the momentum deposition of upward propagating GWs, as are the migrating tides. The GWs thus affect significantly the migrating tides and PWs, the building blocks of non-migrating tides. In the present paper, we demonstrate that GW filtering also contributes to the non-linear coupling between PWs and tides. Two computer experiments are presented to make this point. In one, we simply turn off the GW source to show the effect. In the second case, we demonstrate the effect by selectively suppressing the momentum source for the m = 0 non-migrating tides.

  12. The dynamics of the mesosphere and lower thermosphere: a brief review

    NASA Astrophysics Data System (ADS)

    Vincent, Robert A.

    2015-12-01

    The dynamics of the mesosphere-lower thermosphere (MLT) (60 to 110 km) is dominated by waves and their effects. The basic structure of the MLT is determined by momentum deposition by small-scale gravity waves, which drives a summer-to-winter pole circulation at the mesopause. Atmospheric tides are also an important component of the dynamics of the MLT. Observations from extended ground-based networks, satellites as well as numerical modelling show that non-migrating tidal modes in the MLT are more important than previously thought, with evidence for directly coupling into the thermosphere/ionosphere. Major disturbances lower in the atmosphere, such as wintertime sudden stratospheric warmings, temporarily disrupt the circulation pattern and thermal structure of the MLT. In the equatorial mesosphere, gravity wave driving leads to oscillations in the zonal wind on semiannual time scales, although variability on quasi-biennial time scales is also apparent. Planetary-scale waves such as the quasi-two-day wave temporarily dominate the dynamics of the summertime MLT, especially in the southern hemisphere. Impacts may include short-term changes to the thermal structure and physics of the high-latitude MLT. Here, we briefly review the dynamics of the MLT, with a particular emphasis on developments in the past decade.

  13. Composite analysis of the temporal development of waves in the polar MLT region during stratospheric warmings

    NASA Astrophysics Data System (ADS)

    Matthias, Vivien; Hoffmann, Peter; Rapp, Markus; Baumgarten, Gerd

    2012-12-01

    During winter the wind field in the mesosphere/lower thermosphere (MLT) at middle and polar latitudes is characterized by a strong variability due to enhanced planetary wave activity and related stratospheric sudden warming (SSW) events. Such events are considered as distinct vertical coupling processes influencing the atmosphere below and above the stratosphere. In the last 12 years, an enhanced number of SSW, compared to the period from 1989 to 1998, has been observed in the northern hemisphere. Every SSW is connected with different effects in the MLT (strength and temporal development of wind reversals, temperature changes, wave activity, longitudinal dependence). To characterize the average behavior of the mesospheric response to strong SSWs, we combine high-resolution wind measurements from MF- and meteor radar at Andenes (69°N, 16°E) with global temperature observations from MLS aboard the Aura satellite for SSW events with a return to the middle atmosphere normal winter condition afterwards. Our aim is to identify characteristic wave patterns which are common to the majority of these events and to define the average characteristics of the SSW-related wave activity in the MLT. These will be compared to the relatively quiet winter 2011 with only a short minor warming without a wind reversal and to the wave activity in 2009 and 2010. The results show clear signatures of enhanced mesospheric planetary wave activity before and during the SSW and an earlier onset of the short term wind reversal in the mesosphere compared to wind and temperature changes in the stratosphere. The strong eastward winds at altitudes below 80 km after SSW are connected with an enhanced gravity wave activity caused by changed filter conditions. This provides evidence for a strong modulation of semidiurnal tidal amplitudes before and during SSW by planetary waves. However, no clear relation has been found in the temporal development of tides relative to the onset of the selected SSW

  14. Temperature minima in the average thermal structure of the middle mesosphere (70 - 80 km) from analysis of 40- to 92-km SME global temperature profiles

    NASA Technical Reports Server (NTRS)

    Clancy, R. Todd; Rusch, David W.; Callan, Michael T.

    1994-01-01

    Global temperatures have been derived for the upper stratosphere and mesosphere from analysis of Solar Mesosphere Explorer (SME) limb radiance profiles. The SME temperature represent fixed local time observations at 1400 - 1500 LT, with partial zonal coverage of 3 - 5 longitudes per day over the 1982-1986 period. These new SME temperatures are compared to the COSPAR International Ionosphere Reference Atmosphere 86 (CIRA 86) climatology (Fleming et al., 1990) as well as stratospheric and mesospheric sounder (SAMS); Barnett and Corney, 1984), National Meteorological Center (NMC); (Gelman et al., 1986), and individual lidar and rocket observations. Significant areas of disagreement between the SME and CIRA 86 mesospheric temperatures are 10 K warmer SME temperatures at altitudes above 80 km. The 1981-1982 SAMS temperatures are in much closer agreement with the SME temperatures between 40 and 75 km. Although much of the SME-CIRA 86 disagreement probably stems from the poor vertical resolution of the observations comprising the CIRA 86 modelm, some portion of the differences may reflect 5- to 10-year temporal variations in mesospheric temperatures. The CIRA 86 climatology is based on 1973-1978 measurements. Relatively large (1 K/yr) 5- to 10-year trends in temperatures as functions of longitude, latitude, and altitude have been observed for both the upper stratosphere (Clancy and Rusch, 1989a) and mesosphere (Clancy and Rusch, 1989b; Hauchecorne et al., 1991). The SME temperatures also exhibit enhanced amplitudes for the semiannual oscillation (SAO) of upper mesospheric temperatures at low latitudes, which are not evident in the CIRA 86 climatology. The so-called mesospheric `temperature inversions' at wintertime midlatitudes, which have been observed by ground-based lidar (Hauschecorne et al., 1987) and rocket in situ measurements (Schmidlin, 1976), are shown to be a climatological aspect of the mesosphere, based on the SME observations.

  15. Radar observations of high-latitude lower-thermospheric and upper-mesospheric winds and their response to geomagnetic activity

    SciTech Connect

    Johnson, R.M.

    1987-01-01

    Observations made by the Chatanika, Alaska, incoherent scatter radar during the summer months of 1976 to 1081 are analyzed to obtain high resolution lower-thermospheric neutral winds. Average winds and their tidal components are presented and compared to previous observational and model results. Upper-mesospheric neutral-wind observations obtained by the Poke Flat, Alaska Mesosphere-Stratosphere-Troposphere (MST) radar during the summer months of 1980 to 1982 are investigated statistically for evidence of variations due to geomagnetic activity. Observation of upper-mesospheric neutral winds made during two energetic Solar Proton Events (SPEs) by the Poker Flat, MST radar are presented. These results allow the low-altitude limits of magnetospheric coupling to the neutral atmosphere to be determined. Lower-thermospheric neutral winds are coupled to the ion convection driven by typical magnetospheric forcing above about 100 km. Coupling to lower atmospheric levels does not occur except during intervals of extreme disturbance of the magnetosphere-ionosphere-thermosphere system which are also accompanied by dramatically increased ionization in the high-latitude mesosphere, such as SPEs.

  16. The CSSL (combined sporadic structures and layers) payload: In situ observations of mesospheric sodium and related parameters

    NASA Technical Reports Server (NTRS)

    Machuga, David W.; Kane, Timothy J.; Wheeler, Timothy F.; Croskey, Charles L.; Mathews, John D.; Mitchell, John D.

    1997-01-01

    The objectives, design and results of the sensor systems for the combined sporadic structures and layers (CSSL) payload are analyzed. The CSSL main objectives were to: validate current models of mesospheric sodium chemistry; explore the relationship between turbulence and Na fluctuations; and to explore the relationship between high latitude electric fields and the formation of Na anomalies.

  17. A model study of the response of mesospheric ozone to short-term solar ultraviolet flux variations

    NASA Technical Reports Server (NTRS)

    Summers, M. E.; Bevilacqua, R. M.; Strobel, D. F.; Zhu, Xun; Deland, M. T.; Allen, M.; Keating, G. M.

    1990-01-01

    An investigation is conducted in order to determine the relative importance of several modeled processes in controlling the magnitude and phase of the mesospheric ozone response. A detailed one-dimensional modeling study of the mesospheric ozone response to solar UV flux variations is conducted to remove some of the deficiencies in previous studies. This study is also used to examine specifically the importance of solar zenith angle, self-consistent calculation of water vapor abundance, and temperature feedback with a nonlocal thermodynamic equilibrium radiation model. The photochemical model is described, and the assumptions made for the purpose of comparing model results with the observed ozone response obtained from a statistical analysis of Solar Mesosphere Explorer data (Keating et al., 1987) are discussed. The numerical results for the theoretical ozone response are presented. The results of selected time-dependent calculations are considered to illustrate the degree to which a relatively simple model of the mesosphere is able to capture the major characteristics of the observed response.

  18. Determination of the Trace-Gas Concentrations at the Altitudes of the Lower and Middle Mesosphere from the Time Series of Ozone Concentration

    NASA Astrophysics Data System (ADS)

    Nechaev, A. A.; Ermakova, T. S.; Kulikov, M. Yu.

    2016-12-01

    We present a statistical (Bayesian) approach to retrieving the concentrations of the most important mesospheric trace gases at altitudes of 50-75 km using the photochemical model based on the time series of ozone concentration, which are measured during the daylight hours in one day with the help of the ground-based passive microwave devices. Using the model noisy time series of ozone concentration with allowance for the realistic accuracy of its measurements in the mesosphere, which is ensured by the available ozonometers, the accuracy of retrieving the non-measurable mesospheric characteristics is studied as a function of the altitude and the time-series length.

  19. Polarized Campuses.

    ERIC Educational Resources Information Center

    Parr, Susan Resneck

    1991-01-01

    On college campuses, the climate is polarized because of intolerance and discrimination, censorship, factionalism, and anger among students and faculty. As a result, the campus is in danger of becoming dominated by political issues and discouraging the exchange of ideas characteristic of a true liberal arts education. (MSE)

  20. Polar Mesospheric Cloud Mass and the Ice Budget: 1. Quantitative Interpretation of Mid-UV Cloud Brightness Observations

    DTIC Science & Technology

    2007-04-20

    dashed green line) than r6 (dotted green line). Considera- tion of randomly oriented nonspherical particles yields similar results for which the...characteristic size and width of nonspherical particles [Mishchenko and Travis, 1998]. Figures 2b–2d are similar to Figure 2a, but assume randomly oriented ...et al., 2005] and ground based lidar observations [Baumgarten et al., 2002]. The lidar depolarization mea- surements show nonspherical particles with

  1. Tidally Induced Variations of Polar Mesospheric Cloud Altitudes and Ice Water Content using a Data Assimilation System

    DTIC Science & Technology

    2010-01-01

    based horizontal meteor winds observed at 69°N ( Andenes , Norway) and 85 km geometric altitude in Figure 5. In addition, we performed five short term...calculating winds and the Andenes data. 2.2. Ice Particle Trajectories and CARMA [22] As noted earlier, our approach is a two‐step process. We first use

  2. Turbulent kinetic energy dissipation rates in the polar mesosphere measured by a 3-MHz-Doppler radar

    NASA Astrophysics Data System (ADS)

    Latteck, R.; Singer, W.; Hocking, W. K.

    2005-08-01

    Turbulence produces changes in the spectral width of a backscattered radar signal which can be used to deduce turbulent energy dissipation rates at the region of the scatter. Since the radar signal spectrum is also influenced by the background wind field causing broadening effects of the spectrum, a system with a relative small beam width as well as corresponding methods to correct for the non-turbulent broadening of the spectrum are necessary for the estimation of reliable energy dissipation rates. The new narrow beam MF radar at Saura on Andøya island in northern Norway has got a Mills-Cross antenna with a minimum beam width of θ = 6.6° (Half-Power-Full-Width, one way) and a modular transceiver system which provides high flexibility in beam pointing as well as beam forming. An correction method for non-turbulent spectral broadening effects has been implemented for the estimation of turbulence intensities from the width of the observed signal spectra. The method requires the precise knowledge of the antenna radiation pattern and real-time measurements of the wind field. The critical steps of the estimation of the turbulent part of the signal spectrum are discussed. Turbulent kinetic energy dissipation rates based on the spectral width method are obtained with the Saura MF radar since September 2003. The radar results are compared with corresponding data from rocket measurements at Andenes under summer and winter conditions, as well as with the results from the Kühlungsborn Mechanistic Circulation Model (KMCM). The mean turbulent kinetic energy dissipation rates basing on these radar measurements are about 5 mW/kg at 60 km altitude and about 20 mW/kg at 80 km, in reasonable agreement with mean turbulence intensities obtained from previous rocket soundings at Andenes.

  3. Solar Energy Deposition Rates in the Mesosphere Derived from Airglow Measurements: Implications for the Ozone Model Deficit Problem

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.; Garcia, Rolando R.; Roble, Raymond G.; Hagan, Maura

    2000-01-01

    We derive rates of energy deposition in the mesosphere due to the absorption of solar ultraviolet radiation by ozone. The rates are derived directly from measurements of the 1.27-microns oxygen dayglow emission, independent of knowledge of the ozone abundance, the ozone absorption cross sections, and the ultraviolet solar irradiance in the ozone Hartley band. Fifty-six months of airglow data taken between 1982 and 1986 by the near-infrared spectrometer on the Solar-Mesosphere Explorer satellite are analyzed. The energy deposition rates exhibit altitude-dependent annual and semi-annual variations. We also find a positive correlation between temperatures and energy deposition rates near 90 km at low latitudes. This correlation is largely due to the semiannual oscillation in temperature and ozone and is consistent with model calculations. There is also a suggestion of possible tidal enhancement of this correlation based on recent theoretical and observational analyses. The airglow-derived rates of energy deposition are then compared with those computed by multidimensional numerical models. The observed and modeled deposition rates typically agree to within 20%. This agreement in energy deposition rates implies the same agreement exists between measured and modeled ozone volume mixing ratios in the mesosphere. Only in the upper mesosphere at midlatitudes during winter do we derive energy deposition rates (and hence ozone mixing ratios) consistently and significantly larger than the model calculations. This result is contrary to previous studies that have shown a large model deficit in the ozone abundance throughout the mesosphere. The climatology of solar energy deposition and heating presented in this paper is available to the community at the Middle Atmosphere Energy Budget Project web site at http://heat-budget.gats-inc.com.

  4. Large- and small-scale periodicities in the mesosphere as obtained from variations in O2 and OH nightglow emissions

    NASA Astrophysics Data System (ADS)

    Singh, Ravindra P.; Pallamraju, Duggirala

    2017-02-01

    Using 3 years (2013-2015) of O2(0-1) and OH(6-2) band nightglow emission intensities and corresponding rotational temperatures as tracers of mesospheric dynamics, we have investigated large- and small-timescale variations in the mesosphere over a low-latitude location, Gurushikhar, Mount Abu (24.6° N, 72.8° E), in India. Both O2 and OH intensities show variations similar to those of the number of sunspots and F10.7 cm radio flux with coherent periodicities of 150 ± 2.1, 195 ± 3.6, 270 ± 6.4, and 420 ± 14.8 days, indicating a strong solar influence on mesospheric dynamics. In addition, both mesospheric airglow intensities also showed periodicities of 84 ± 0.6, 95 ± 0.9, and 122 ± 1.3 days which are of atmospheric origin. With regard to the variability of the order of a few days, O2 and OH intensities were found to be correlated, in general, except when altitude-dependent atmospheric processes were operative. To understand mesospheric gravity wave behavior over the long term, we have carried out a statistical study using the periodicities derived from the nocturnal variations in all four parameters (O2 and OH intensities and their respective temperatures). It was found that the major wave periodicity of around 2 h duration is present in all the four parameters. Our analyses also reveal that the range of periods in O2 and OH intensities and temperatures is 11 to 24 and 20 to 60 min, respectively. Periods less than 15 min were not present in the temperatures but were prevalent in both emission intensities. No seasonal dependence was found in either the wave periodicities or the number of their occurrence.

  5. LIMS (Limb Infrared Monitor of the Stratosphere) observation of traveling planetary waves and potential vorticity advection in the stratosphere and mesosphere

    SciTech Connect

    Dunkerton, T.J. )

    1991-02-20

    Eastward and westward traveling waves were observed by the Nimbus 7 Limb Infrared Monitor of the Stratosphere (LIMS) during the northern winter 1978-1979. Eastward waves were prevalent in early winter and were involved in a minor Canadian warming in December 1978. A large westward traveling wave, as described by previous authors, was observed in January 1979 during a series of minor warmings. By comparing these two events, it is shown that in both cases the superposition of traveling and quasi-stationary waves led to constructive interference that was responsible for the warmings. However, there was significant asymmetry between eastward and westward traveling components. Eastward disturbances were confined mostly within the polar vortex, whereas quasi-stationary and westward traveling components propagated to the vortex periphery and beyond, into the tropics and mid-latitude mesosphere. This behavior is consistent with Rossby wave propagation and indicates that the location and magnitude of planetary wave breaking is sensitive to the frequency spectrum entering the middle atmosphere. However, this asymmetry is also a signature of the nonlinear critical layer as it projects onto the frequency spectrum. Both interpretations are shown to be valid during wave events observed by LIMS. A local Eulerian analysis of potential vorticity (PV) transport indicates that adiabatic, geostrophic advection by the resolvable scales of motion explains qualitatively (but not quantitatively) the observed potential vorticity tendencies in the LIMS northern hemisphere winter. In particular, calculated advection explains the eastward rotation of the main vortex, intrusion of low PV air into the polar cap, and formation of high PV filaments at the vortex periphery.

  6. Planetary-scale hydraulic jumps and transonic jet-streaks in the MACDA reanalysis of the Martian atmosphere: a comparison with Earth's lower mesosphere

    NASA Astrophysics Data System (ADS)

    Dowling, Timothy E.; Bradley, Mary Elizabeth; Lewis, Stephen R.; Read, Peter L.

    2016-10-01

    We have analyzed the Mars MACDA V1.0 global reanalysis on potential-temperature surfaces, θ, over the range θ = 400 to 900 K (~30 to ~60 km). The strongest seasonal wind, the northern-winter polar jet, exhibits two intriguing features: i) transonic jet streaks and ii) the juxtaposition of regions of shooting and tranquil flow, in the sense of Froude-number hydraulics, which suggests a planetary-scale hydraulic jump. Mesoscale bores have been studied on Mars, but to our knowledge the above two features have not been reported elsewhere. To characterize the basic state, we examine scatter plots of Ertel potential vorticity, Q, versus Bernoulli streamfunction, B, and fit the linear model Q/Q0 = 1 - μ0 (B-B0). In autumn, winter and spring, the nondimensionalized correlation parameter, μ'0 = (NH)2 μ0, in mid-latitudes is positive and nearly constant in time. Its value is close to unity at the bottom of the study region and gradually decreases with increasing θ (increasing altitude). In northern summer it swings negative. These attributes match Earth's lower mesosphere (θ = 2000 to 3000 K; ~48 to ~62 km). In southern summer, Ls ~ 270○, a hypsometric flaring of the θ layers, which is not seen in northern summer, is associated with the previously reported reduction of Q to approximately zero across the entire southern hemisphere and northern tropics. Between each winter polar jet and pole, especially in the north, there is a large spread of Q over a small domain of B, which is unlike Earth and may be related to the aforementioned hydraulic jump. We are currently examining 3D Lagrangian fluid trajectories to better characterize the rotating hydraulics of the system as a function of season.

  7. Upper limits for H 2SO 4 in the mesosphere of Venus

    NASA Astrophysics Data System (ADS)

    Sandor, Brad J.; Clancy, R. Todd; Moriarty-Schieven, Gerald

    2012-02-01

    Rapid temporal variability of SO 2 and SO in the Venus 85-100 km mesosphere ( Sandor, B.J., Clancy, R.T., Moriarty-Schieven G.H. [2007]. Bull. Am. Astron. Soc. 39, 503; Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49-60) requires in situ sources and sinks for these molecules. While many loss mechanisms are recognized, no process for in situ production is known. Observational investigations to find, or constrain other potential sulfur reservoirs offer one method toward understanding the applicable photochemistry. Here, we report upper limits for gas-phase H 2SO 4 (sulfuric acid) abundances in Venus' 85-100 km upper mesosphere, derived from 16 ground-based sub-mm spectroscopic observations in the period 2004-2008. Unlike the ubiquitous sulfuric acid solid/liquid aerosol, the gas phase would be photochemically active, potentially both source and sink for SO and SO 2. H 2SO 4 is retrieved from sub-mm lines located in the same bandpass as the SO 2 and SO lines described by Sandor et al. (Sandor, B.J., Clancy, R.T., Moriarty-Schieven, G.H., Mills, F.P. [2010]. Icarus 208, 49-60). H 2SO 4 upper limits reported here are thus simultaneous and spatially coincident with measurements of SO 2 and SO, providing for analysis of the three sulfur species collectively. The average H 2SO 4 abundance over 16 observations is 1 ± 2 ppb (i.e. <3 ppb). Upper limits for individual observations range from 3 to 44 ppb, where quality of the observing weather is the dominant constraint on measurement precision. The sum of H 2SO 4, SO 2 and SO varies widely. In one comparison, the sum [H 2SO 4 + SO 2 + SO] measured on one date differs by 10- σ from the sum measured 2 months later. We conclude that upper mesospheric sulfur atoms are not conserved among the three molecules, that H 2SO 4 is not a significant sulfur reservoir for balancing the observed variations of [SO 2 + SO], and is not relevant to the (still unknown) photochemistry responsible for

  8. Polar Diving

    NASA Technical Reports Server (NTRS)

    2006-01-01

    3 July 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows layers exposed by erosion in a trough within the north polar residual cap of Mars, diving beneath a younger covering of polar materials. The layers have, since the Mariner 9 mission in 1972, been interpreted to be composed of a combination of dust and ice in unknown proportions. In this scene, a layer of solid carbon dioxide, which was deposited during the previous autumn and winter, blankets the trough as well as the adjacent terrain. Throughout northern spring, the carbon dioxide will be removed; by summer, the layers will be frost-free.

    Location near: 81.4oN, 352.2oW Image width: 3 km (1.9 mi) Illumination from: lower left Season: Northern Spring

  9. Cell polarity

    PubMed Central

    Romereim, Sarah M

    2011-01-01

    Despite extensive genetic analysis of the dynamic multi-phase process that transforms a small population of lateral plate mesoderm into the mature limb skeleton, the mechanisms by which signaling pathways regulate cellular behaviors to generate morphogenetic forces are not known. Recently, a series of papers have offered the intriguing possibility that regulated cell polarity fine-tunes the morphogenetic process via orienting cell axes, division planes and cell movements. Wnt5a-mediated non-canonical signaling, which may include planar cell polarity, has emerged as a common thread in the otherwise distinct signaling networks that regulate morphogenesis in each phase of limb development. These findings position the limb as a key model to elucidate how global tissue patterning pathways direct local differences in cell behavior that, in turn, generate growth and form. PMID:22064549

  10. Efficient material treatment by axi-symmetrically polarized laser radiation

    NASA Astrophysics Data System (ADS)

    Makin, V. S.; Pestov, Yu I.; Makin, R. S.

    2016-08-01

    Recent years the increased interest is to the problem of interaction of nontraditionally polarized laser radiation with condensed media. The experiments with axisymmetrical polarization attract more attention. The peculiarities of interaction of axisymmetrical laser radiation with condensed matter are considered in framework of universal polariton model. It is shown that more effective is interaction of radially polarized laser radiation with surface active media. The optical schemes for efficient material treatment by radially polarized radiation are sketched.

  11. Diurnal Changes of The Ion Densities In The Undisturbed Mesosphere and Lower Thermosphere

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Kopp, E.; Chabrillat, S.; Bishop, J.

    Ions are produced in the undisturbed atmosphere by solar X-ray and EUV radiation and by Galactic Cosmic Rays. The production from cosmic rays is constant throughout the day, whereas the production from solar radiation depends on the solar zenith angle. In addition, direct sunlight interacts with the ions and affects the ion chemistry. At night, below approximately 80km, there is no significant contribution to the ion production from solar light. Above this level (up to approximately 160km), scattered solar Lyman- and - radiation is the main nighttime source for ions. We use the University of Bern Atmospheric Ion Model (UBAIM), fed with neutral data from the NCAR SOCRATES model, with solar flux data from the SOLAR2000 model, and with numerical nighttime Lyman- and - fluxes to investigate the diurnal changes of the ion densities in the undisturbed mesosphere and lower thermosphere (50-120km log-p altitude).

  12. Variations in Microwave Radiation of the Nighttime Mesospheric Ozone over Moscow

    NASA Astrophysics Data System (ADS)

    Rozanov, S. B.; Zavgorodniy, A. S.; Ignatyev, A. N.; Lukin, A. N.

    2017-01-01

    We consider the instrumentation and methods for the nighttime ground-based measurements of the atmospheric-ozone emission line at a frequency of 142.175 GHz. The ozone-radiation spectra were measured in Moscow in the 2014-2016 cold months with a time resolution of about 2 min. We performed a frequency-time analysis of variations in the differences of the brightness temperatures of the ozone-emission line for the frequency offsets 0-50, 50-150, and 150-250 kHz from the line center. Variations with periods from 6 min to 3 h, which can be related to the wave propagation in the mesosphere and the lower thermosphere, were revealed using the data windows with halfwidths of 10-60 min.

  13. Characteristics of Thunderstorms and Lightning Flashes Which Produce Mesospheric Transient Luminous Events

    NASA Technical Reports Server (NTRS)

    Lyons, W. A.; Nelson, T. E.; Armstrong, R. A.; Williams, E. R.; Suszcynsky, D. M.; Strabley, R.; Taylor, M.; Gardner, L.

    1999-01-01

    A six year record of optical observations of lightning-induced mesospheric transient luminous events (TLEs) is available from the Yucca Ridge Field Station (YRFS) near Ft. Collins, CO. Climatological analyses reveal sprites and elves occur in a variety of convective storm types, but principally mesoscale convective systems (MCSs) and squall lines. Severe supercell storms rarely produce TLEs, except during their dissipating stage. Few TLEs are observed during storms with radar echo areas <7,500 sq km. Above this size there is a modest correlation with radar areal coverage. A typical High Plains storm produces 45 TLEs over a 143 interval. Sprites and most elves are associated with +CGs. The probability of a TLE increases with peak current. In six storms, 5.1% of +CGs produced TLEs, the number increasing to 32% of +CGs with >75 kA and 52% of +CGs with >100 kA peak current.

  14. Mesoscale density variability in the mesosphere and thermosphere: Effects of vertical flow accelerations

    NASA Technical Reports Server (NTRS)

    Revelle, D. O.

    1987-01-01

    A mechanistic one dimensional numerical (iteration) model was developed which can be used to simulate specific types of mesoscale atmospheric density (and pressure) variability in the mesosphere and the thermosphere, namely those due to waves and those due to vertical flow accelerations. The model was developed with the idea that it could be used as a supplement to the TGCMs (thermospheric general circulation models) since such models have a very limited ability to model phenomena on small spatial scales. The simplest case to consider was the integration upward through a time averaged, height independent, horizontally divergent flow field. Vertical winds were initialized at the lower boundary using the Ekman pumping theory over flat terrain. The results of the computations are summarized.

  15. Properties of water vapor relevant to its measurement in the stratosphere and mesosphere

    NASA Technical Reports Server (NTRS)

    Longbothum, R. L.

    1974-01-01

    The literature on the concentrations of water vapor in the stratosphere and mesosphere was studied. It is estimated that the concentrations in these lie in the range from 0.1 ppm to 10 ppm. A survey was made of the scattering and radiative transfer properties of water vapor and the background constituents to determine the physical properties of importance to measurements of concentrations. It was determined that absorption and emission properties provide significant increases in sensitivity compared with the various scattering phenomena considered. Microwave absorption in the region of 22 GHz and 183 GHz and infrared absorption in the vibrational rotational band systems seem to be the most attractive techniques. Various experimental configurations are analyzed and compared.

  16. A global analysis of the ozone deficit in the upper stratosphere and lower mesosphere

    NASA Technical Reports Server (NTRS)

    Eluszkiewicz, Janusz; Allen, Mark

    1993-01-01

    The global measurements of temperature, ozone, water vapor, and nitrogen dioxide acquired by the Limb Infrared Monitor of the Stratosphere (LIMS), supplemented by a precomputed distribution of chlorine monoxide, are used to test the balance between odd oxygen production and loss in the upper stratosphere and lower mesosphere. An efficient photochemical equilibrium model, whose validity is ascertained by comparison with the results from a fully time-dependent one-dimensional model at selected latitudes, is used in the calculations. The computed ozone abundances are systematically lower than observations for May 1-7, 1979, which suggests, contrary to the conclusions of other recent studies, a real problem in model simulations of stratospheric ozone.

  17. Characterization of SO2 abundance in Venus' night-side mesosphere from SPICAV/VEX observations

    NASA Astrophysics Data System (ADS)

    Belyaev, Denis; Fedorova, Anna; Piccialli, Arianna; Marcq, Emmanuel; Montmessin, Franck; Bertaux, Jean-Loup; Evdokimova, Daria

    Sulfur dioxide (SO _{2}) is a key component of Venus’ atmosphere since the planet is totally covered by H _{2}SO _{4} droplets clouds at altitudes 50-70 km. Any significant change in the SO _{x} oxides above and within the clouds affects the photochemistry in the mesosphere (70-120 km). Recent continuous observations from the Venus Express orbiter (Belyaev et al., 2012; Marcq et al., 2013) and ground-based telescopes (Sandor et al., 2010; Krasnopolsky, 2010; Encrenaz et al., 2012) showed high variability of SO _{2} abundance with years, diurnal time and latitude on the day-side and terminators (commonly from 20 to 500 ppbv above the clouds). In the night-side mesosphere SO _{2} is not photo dissociative but, so far, its behavior has never been explored in details. In this paper we present first results from sulfur dioxide observations made by SPICAV UV spectrometer onboard Venus Express orbiter in regime of stellar occultation (Bertaux et al., 2007). In this mode the instrument observes night-side mesosphere and can register SO _{2} absorption bands in 190-220 nm and CO _{2} bands in 120-200 nm at altitudes from 85 to 110 km (spectral resolution is ˜2 nm). As a result, vertical distribution of SO _{2} and CO _{2} concentrations has been retrieved in observation period from June 2006 to April 2012, at latitude range 60(°) S-60(°) N and Venus local time 20:00-04:00. On the average, mixing ratio of sulfur dioxide fluctuates around ˜100 ppbv along altitude range 90-100 km. Our work is supported by the Program №22 of RAS and grant of the Russian Government to MIPT. References: Belyaev D. et al., 2012. Vertical profiling of SO _{2} and SO above Venus' clouds by SPICAV/SOIR solar occultations. Icarus 217, 740-751. Bertaux J.-L. et al., 2007. SPICAV on Venus Express: three spectrometers to study the global structure and composition of Venus atmosphere. Planet. Space Sci. 55, 1673-1700. Encrenaz T. et al., 2012. HDO and SO _{2} thermal mapping on Venus: evidence for

  18. Sources of SO and SO2 in the Mesosphere of Venus

    NASA Astrophysics Data System (ADS)

    Yung, Y. L.; Zhang, X.; Liang, M. C.; Mills, F. P.; Belyaev, D. A.

    2011-10-01

    Venus Express and ground-based measurements of an inversion layer with enhanced concentrations of SO and SO2 in the mesosphere of Venus (Belyaev et al., 2008; 2010; Clancy et al. 2008) suggests a new source of gaseous sulfur that was not included in the previous models of Venus (see, e.g., Mills et al. 2007). A one-dimensional photochemistry-transport model is used to simulate the whole chemical system including oxygen-, hydrogen-, chlorine-, sulfur-, and nitrogen-bearing species (see schematic in Figure 1). The evaporation of aerosols composed of sulfuric acid (model A) or polysulfur (model B) above 90 km could provide a new source of gaseous sulfur species (Zhang et al. 2010; 2011). The implications of the new model are discussed in light of recent measurements (Sandor et al. 2011). Future measurements are needed to confirm the model predictions.

  19. A Simple Stratosphere-Mesosphere Extension of the Held-Suarez Forcing for Dynamical Cores

    NASA Technical Reports Server (NTRS)

    Lin, S.-J.

    1999-01-01

    A simple extension of the Held-Suarez (H-S) forcing that is capable of producing a realistic general circulation not only in the troposphere but also the stratosphere and the mesosphere will be presented. Similar to the original H-S forcing, an annual-mean like radiative equilibrium temperature is used. This extension is an ideal test bed for gravity wave drag parameterizations. It is also an inexpensive test bed for studying the mechanism of the Quasi-Biannual oscillations (QBO) and the "age spectrum" of the dynamical core formulation. The "mean climate" as well as the natural variability of the middle atmosphere as simulated by the NASA Data Assimilation Office finite-volume dynamical core under this forcing will be shown.

  20. Density response of the mesospheric sodium layer to gravity wave perturbations

    NASA Technical Reports Server (NTRS)

    Shelton, J. D.; Gardner, C. S.; Sechrist, C. F., Jr.

    1980-01-01

    Lidar observations of the mesospheric sodium layer often reveal wavelike features moving through the layer. It is often assumed that these features are a layer density response to gravity waves. Chiu and Ching (1978) described the approximate form of the linear response of atmospheric layers to gravity waves. In this paper, their results are used to predict the response of the sodium layer to gravity waves. These simulations are compared with experimental observations and a good correlation is found between the two. Because of the thickness of the sodium layer and the density gradients found in it, a linear model of the layer response is not always adequate to describe gravity wave-sodium layer interactions. Inclusion of nonlinearities in the layer response is briefly discussed. Experimental data is seen to contain features consistent with the predicted nonlinearities.

  1. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on Atlas 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Dougani, H.; Swift, W.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory (ISO) on the ATLAS I mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v' = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of + 10%, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v' = 5 level is not observed although there is a suggestion of depletion in v' = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  2. Mesospheric nightglow spectral survey taken by the ISO spectral spatial imager on ATLAS 1

    NASA Technical Reports Server (NTRS)

    Owens, J. K.; Torr, D. G.; Torr, M. R.; Chang, T.; Fennelly, J. A.; Richards, P. G.; Morgan, M. F.; Baldridge, T. W.; Fellows, C. W.; Dougani, H.

    1993-01-01

    This paper reports the first comprehensive spectral survey of the mesospheric airglow between 260 and 832 nm taken by the Imaging Spectrometric Observatory on the ATLAS 1 mission. We select data taken in the spectral window between 275 and 300 nm to determine the variation with altitude of the Herzberg I bands originating from the vibrational levels v-prime = 3 to 8. These data provide the first spatially resolved spectral measurements of the system. The data are used to demonstrate that to within an uncertainty of +/- 10 percent, the vibrational distribution remains invariant with altitude. The deficit reported previously for the v-prime = 5 level is not observed although there is a suggestion of depletion in v-prime = 6. The data could be used to place tight constraints on the vibrational dependence of quenching rate coefficients, and on the abundance of atomic oxygen.

  3. Photo-chemical response of the night-time mesosphere to electric field heating

    NASA Astrophysics Data System (ADS)

    Kotovsky, D. A.; Moore, R. C.

    2015-12-01

    A zero-dimensional, photo-chemical model of the night-time mesosphere based upon the Mitra-Rowe scheme [Rowe et al., 1974] has been developed to examine the time dynamics of electron density changes produced by high-intensity, electric field heating. Additional negative- and positive-ion processes necessary to account for high electron temperatures (order of eV) have been included. Results of the model are compared to the time dynamics of lightning produced, early VLF scattering events. Among other results, we discuss co-operative mechanisms which lead to slow enhancements of electron densities (up to a few seconds) proceeding a single, shorter duration electric field heating pulse. Such mechanisms are capable of explaining all observations of early/slow VLF scattering events to date, including those associated with only a single observed radio atmospheric.

  4. Climatology of nitric oxide in the upper stratosphere, mesosphere, and thermosphere - 1979 through 1986

    NASA Technical Reports Server (NTRS)

    Mcpeters, R. D.

    1989-01-01

    The contents of NO in the upper stratosphere, mesosphere, and thermosphere were determined as a function of time and latitude, using spectral scan data for 1979 through 1986 from the solar backscattered UV instrument on Nimbus 7. In that period, the integrated column amount of NO near the equator decreased from 6.4 x 10 to the 14th molecules/sq cm to 3.3 x 10 to the 14th molecules/sq cm. The time dependence of the decrease in NO correlated with solar activity, following the decline in solar activity from a solar maximum in 1979 to solar minimum in 1985-86. At middle and high latitudes, on the other hand, the NO concentration was found to be maximal in 1982-1983, a few years after the solar cycle maximum, and declined thereafter.

  5. Ground-based microwave observations of ozone in the upper stratosphere and mesosphere

    NASA Astrophysics Data System (ADS)

    Connor, Brian J.; Siskind, David E.; Tsou, J. J.; Parrish, Alan; Remsberg, Ellis E.

    1994-08-01

    A 9-month-long series of measurements of ozone in the upper stratosphere and mesosphere is reported. The measurements are presented as monthly averages of profiles in blocks of roughly 20 min local time and as night-to-day ratios. An error analysis predicts accuracies of 5-26% for the monthly profiles and 2.5-9% for the ratios. The data are compared to historical data from SME and limb infrared monitor of the stratosphere (LIMS), and it is shown how to remove the effect of different vertical resolution from the comparisons. The microwave data typically agree to better than 10% with SME and nighttime LIMS ozone at all altitudes below the 0.1-mbar surface. Comparison of the microwave night-to-day ratio with the corresponding ratio from LIMS suggests that nonlocal thermodynamic equilibrium effects in the LIMS daytime data exceed 10% at all pressures less than or equal to 1 mbar.

  6. Thermosphere-ionosphere-mesosphere energetics and dynamics (TIMED). The TIMED mission and science program report of the science definition team. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1991-01-01

    A Science Definition Team was established in December 1990 by the Space Physics Division, NASA, to develop a satellite program to conduct research on the energetics, dynamics, and chemistry of the mesosphere and lower thermosphere/ionosphere. This two-volume publication describes the TIMED (Thermosphere-Ionosphere-Mesosphere, Energetics and Dynamics) mission and associated science program. The report outlines the scientific objectives of the mission, the program requirements, and the approach towards meeting these requirements.

  7. Mesospheric ozone destruction by high-energy electron precipitation associated with pulsating aurora

    NASA Astrophysics Data System (ADS)

    Turunen, Esa; Kero, Antti; Verronen, Pekka T.; Miyoshi, Yoshizumi; Oyama, Shin-Ichiro; Saito, Shinji

    2016-10-01

    Energetic particle precipitation into the upper atmosphere creates excess amounts of odd nitrogen and odd hydrogen. These destroy mesospheric and upper stratospheric ozone in catalytic reaction chains, either in situ at the altitude of the energy deposition or indirectly due to transport to other altitudes and latitudes. Recent statistical analysis of satellite data on mesospheric ozone reveals that the variations during energetic electron precipitation from Earth's radiation belts can be tens of percent. Here we report model calculations of ozone destruction due to a single event of pulsating aurora early in the morning on 17 November 2012. The presence of high-energy component in the precipitating electron flux (>200 keV) was detected as ionization down to 68 km altitude, by the VHF incoherent scatter radar of European Incoherent Scatter (EISCAT) Scientific Association (EISCAT VHF) in Tromsø, Norway. Observations by the Van Allen Probes satellite B showed the occurrence of rising tone lower band chorus waves, which cause the precipitation. We model the effect of high-energy electron precipitation on ozone concentration using a detailed coupled ion and neutral chemistry model. Due to a 30 min, recorded electron precipitation event we find 14% odd oxygen depletion at 75 km altitude. The uncertainty of the higher-energy electron fluxes leads to different possible energy deposition estimates during the pulsating aurora event. We find depletion of odd oxygen by several tens of percent, depending on the precipitation characteristics used in modeling. The effect is notably maximized at the sunset time following the occurrence of the precipitation.

  8. Retrieval of nitric oxide in the mesosphere from SCIAMACHY nominal limb spectra

    NASA Astrophysics Data System (ADS)

    Bender, Stefan; Sinnhuber, Miriam; Langowski, Martin; Burrows, John P.

    2017-01-01

    We present a retrieval algorithm for nitric oxide (NO) number densities from measurements from the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY, on Envisat) nominal limb mode (0-91 km). The NO number densities are derived from atmospheric emissions in the gamma bands in the range 230-300 nm, measured by the SCIAMACHY ultra-violet (UV) channel 1. The retrieval is adapted from the mesosphere and lower thermosphere mode (MLT, 50-150 km) NO retrieval (Bender et al., 2013), including the same 3-D ray tracing, 2-D retrieval grid, and regularisations with respect to altitude and latitude.Since the nominal mode limb scans extend only to about 91 km, we use NO densities in the lower thermosphere (above 92 km), derived from empirical models, as a priori input. The priors are the Nitric Oxide Empirical Model (NOEM; Marsh et al., 2004) and a regression model derived from the MLT NO data comparison (Bender et al., 2015). Our algorithm yields plausible NO number densities from 60 to 85 km from the SCIAMACHY nominal limb mode scans. Using a priori input substantially reduces the incorrect attribution of NO from the lower thermosphere, where no direct limb measurements are available. The vertical resolution lies between 5 and 10 km in the altitude range 65-80 km.Analysing all SCIAMACHY nominal limb scans provides almost 10 years (from August 2002 to April 2012) of daily NO measurements in this altitude range. This provides a unique data record of NO in the upper atmosphere and is invaluable for constraining NO in the mesosphere, in particular for testing and validating chemistry climate models during this period.

  9. Observations of Altitude Dependence and Temporal Variation of ClO in the Venus Mesosphere

    NASA Astrophysics Data System (ADS)

    Sandor, Brad J.; Clancy, R. Todd

    2015-11-01

    Analysis of the first observations of ClO in the Venus mesosphere indicate ClO is present above 85 +/-3 km altitude and not below. The retrieved nightside mean abundances show a factor of 2 decrease between observation dates Oct. 23 and Nov. 11, 2015, with change between the two dates evident at more than two sigma confidence. Abundances and altitude distributions are retrieved from submm spectroscopic observations of the 352.88 GHz line of 35ClO (made with the James Clerk Maxwell Telescope - JCMT - located an Mauna Kea, Hawaii).Detection of ClO in the Venus atmosphere confirms a theory put forward by Yung and DeMore (1982) that the Venus atmosphere is stabilized as CO2 due to chlorine catalytic recombination of CO and O. (Without some form of catalysis, the Venus atmosphere would have 10s of percent CO and O2, but it is in fact 97% CO2 and 3% N2, with only trace amounts of CO and O2.) Detailed retrieval of ClO abundances and altitude distributions (the focus of this talk) provides greater insight to the catalytic process, and to other aspects of Venus atmospheric chlorine chemistry. We compare findings of our quantitave retrieval with predictions of photochemical models, and discuss the implications for chlorine photochemisty of the Venus atmosphere. We also discuss retrieved ClO temporal variation with that of upper mesospheric HCl (Sandor and Clancy, 2012).[We acknowledge funding of this project by NASA grants NNX10AB33G, NNX12AI32G, and NNX14AK05G, as well as NSF grant AST-1312985.

  10. Characteristics of mesospheric gravity waves measured by an OH airglow imager at Qujing, China

    NASA Astrophysics Data System (ADS)

    Li, Qinzeng; Chen, Jinsong; Yuan, Wei; Yue, Jia; Liu, Xiao; Xu, Jiyao; Liu, Mohan

    An all-sky imager was installed at Qujing (25.6ºN, 103.7ºE) to investigate the characteristics of mesospheric gravity waves over the Yunnan-Guizhou Plateau. Using OH airglow images from November 2011 to October 2013, we detected 332 events of gravity waves. Along with the collocated meteor radar wind measurements and mean temperature data from SABER instrument onboard the TIMED satellite, the propagation condition (freely propagating, ducted, or evanescent) of these gravity waves was estimated. Most gravity waves exhibited ducted and evanescent behavior. About 20% of the events are freely propagating waves. We analyzed the sources in the lower atmosphere for these freely propagating gravity waves using ray tracing analysis. Statistical analysis shows a clear relation between mesospheric gravity wave activity and jet streams around Yunnan-Guizhou-Tibet Plateau. We also investigate the statistical features of all observed gravity waves. The propagation directions of the gravity waves show a strong northeastward preference in summer, while almost all gravity waves propagate southeastward in winter. The gravity waves propagation directions in winter are significantly different from other observations at northern middle latitudes, such as Xinglong(40.2ºN,117.4ºE), Shigaraki(34.9ºN,136.1 ºE), Urbana IL(40ºN, 80ºW). They all found the gravity waves presented southwestward propagation directions in winter. The horizontal wavelengths of observed gravity waves are typically from 10 to 35 km, the vertical wavelengths from 10 to 30 km, the observed periods from 4 to 8 min and the observed horizontal phase speeds of 30 to 90 m/s. The intrinsic periods are mainly in the range of 4-8 min. The intrinsic phase speeds are mainly in the range of 40-100 m/s. The wind filtering in the middle atmosphere plays a role in controlling the propagation directions of the gravity waves.

  11. The mesospheric sodium layer as a remotely, optically pumped magnetometer for investigation of Birkeland currents

    NASA Astrophysics Data System (ADS)

    Johnsen, Magnar G.; Matzka, Jürgen; Hoppe, Ulf-Peter

    2016-04-01

    By means of optical pumping, it is possible to use the naturally occurring sodium layer in the mesosphere to measure Earth's scalar magnetic field at ~90 km above ground. This is an altitude not accessible by other means than rockets, which only will provide point measurements of very short time scales. We are planning to modify the sodium lidar at ALOMAR in Northern Norway to be able, for the first time, to measure and monitor the magnetic field in situ in the high latitude mesosphere over longer time scales. The planned modifications to the lidar instrument will allow alternating between the new magnetometer mode and its present mode for atmospheric temperatures and winds. The technique, which has been proposed earlier for measurements at low or mid-latitudes for studies of Earth's internal magnetic field, will in our project be applied to high latitudes in the auroral zone. This opens for a completely new domain of measurements of externally generated geomagnetic variations related to currents in the magnetosphere-ionosphere system. In particular, we aim to measure the magnetic field variations in close vicinity to Birkeland currents associated with particle precipitation events penetrating to altitudes below 90 km and small-scale, discrete auroral arcs. It is, furthermore, anticipated that it will be possible to detect horizontal current structures in the E-layer on much smaller length scales than it is presently possible from ground observations alone. During the project we plan take advantage of the rich space science infrastructure located in northern Norway, including ALOMAR, EISCAT and the Tromsø Geophysical Observatory magnetometer network. If possible, we also aim to make measurements in conjunction with overpasses of the SWARM satellites.

  12. Mesospheric CO2 Clouds at Mars: Seven Martian Years Survey by OMEGA/MEX

    NASA Astrophysics Data System (ADS)

    Gondet, Brigitte; Bibring, Jean-Pierre

    2016-04-01

    Mesospheric clouds have been detected first from Earth (Bell et al 1996 [1]), then from Mars orbit (MGS/TES and MOC, Clancy et al 1998 [2]). Their composition (CO2) was inferred from temperature. Similar detection and temperature-inferred composition was then performed by Spicam and PFS on board Mars Express (Monmessin et al [3], Formisano et al [4]. 2006). The first direct detection and characterization (altitude, composition, velocity) was performed by OMEGA/ Mars Express (then coupled to HRSC/ Mars Express, and confirmed by CRISM/MRO (Montmessin et al. [5], 2007, Maattanen et al [6]. Scholten et al. [7], 2010, Vincendon et al [8], 2011). Omega is a very powerful tool for the study of CO2 clouds as it is able to unambiguously identify the CO2 composition of a cloud based on a near-IR spectral feature located at 4.26 μm [5] Therefore since the beginning of the Mars Express mission (2004) OMEGA as done a systematic survey of these mesospheric clouds. Thanks to the orbit of Mars Express, we can observe this clouds from different altitudes (from apocenter to pericenter) and at different local times. We will present the result of 7 Martians years of observations, point out a correlation with the dust activity and an irregular concentration of clouds from years to years. References [1] JF Bell. et al. JGR 1996; [2] RT Clancy et al., GRL 1998 [3] F. Montmessin et al. JGR 2006; [4] V. Formisano et al., Icarus 2006; [5] F. Montmessin et al JGR 2007 [6] A. Määttänen et al. Icarus 2010; [7] F. Scholten et al. PSS 2010; [8] M. Viencendon et al. JGR 2011

  13. Investigating Mesospheric Gravity Wave Dynamics Over McMurdo Station, Antarctica (77° S)

    NASA Astrophysics Data System (ADS)

    Pugmire, J. R.; Taylor, M. J.; Pautet, P. D.; Zhao, Y.

    2014-12-01

    The ANtarctic Gravity Wave Instrument Network (ANGWIN) is an NSF sponsored international program designed to develop and utilize a network of gravity wave observatories using existing and new instrumentation operated at several established research stations around the continent. The primary goal is to better understand and quantify large-scale gravity wave climatology and their effects on the upper atmosphere over Antarctica. ANGWIN currently comprises research measurements from five nations (U.S., U.K., Australia, Japan, and Brazil) at seven international stations. Utah State University's Atmospheric Imaging Lab operates an all-sky CCD, all-sky infrared imagers and an Advanced Mesospheric Temperature Mapper (AMTM) imager at several research stations (Davis, Halley, Rothera, McMurdo, and South Pole). In this poster we present new measurements, mainly focusing on short-period (< 1 hour) mesospheric gravity waves, imaged from McMurdo Station (77°S, 166°E) on Ross Island, Antarctica. The infrared camera has operated successfully from the NSF Arrival Heights Facility alongside the University of Colorado Fe Lidar during the past three winter seasons (March-September 2012-2014). Image data were recorded every ~10 seconds enabling detailed measurements of individual gravity wave events in the infrared OH emission layer (peak altitude ~87 km). Here we present example data illustrating the broad range of wave activity observed at this site and summarize novel measurements of the wave characteristics observed during the first two winter seasons. The results are contrasted with other emerging ANGWIN wave measurements from around the continent.

  14. Mesospheric temperatures estimated from the meteor radar observations at Mohe, China

    NASA Astrophysics Data System (ADS)

    Liu, Libo; Liu, Huixin; Le, Huijun; Chen, Yiding; Sun, Yang-Yi; Ning, Baiqi; Hu, Lianhuan; Wan, Weixing; Li, Na; Xiong, Jiangang

    2017-02-01

    In this work, we report the estimation of mesospheric temperatures at 90 km height from the observations of the VHF all-sky meteor radar operated at Mohe (53.5°N, 122.3°E), China, since August 2011. The kinetic temperature profiles retrieved from the observations of Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) on board the Thermosphere, Ionosphere, Mesosphere, Energetics, and Dynamics satellite are processed to provide the temperature (TSABER) and temperature gradient (dT/dh) at 90 km height. Based on the SABER temperature profile data an empirical dT/dh model is developed for the Mohe latitude. First, we derive the temperatures from the meteor decay times (Tmeteor) and the Mohe dT/dh model gives prior information of temperature gradients. Second, the full width at half maximum (FWHM) of the meteor height profiles is calculated and further used to deduce the temperatures (TFWHM) based on the strong linear relationship between FWHM and TSABER. The temperatures at 90 km deduced from the decay times (Tmeteor) and from the meteor height distributions (TFWHM) at Mohe are validated/calibrated with TSABER. The temperatures present a considerable annual variation, being maximum in winter and minimum in summer. Harmonic analyses reveal that the temperatures have an annual variation consistent with TSABER. Our work suggests that FWHM has a good performance in routine estimation of the temperatures. It should be pointed out that the slope of FWHM as a function of TSABER is 10.1 at Mohe, which is different from that of 15.71 at King Sejong (62.2°S, 58.8°E) station.

  15. Mesospheric, Thermospheric, and Ionospheric Responses to Acoustic and Gravity Waves Generated by Transient Forcing

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Zettergren, M. D.

    2014-12-01

    Strong acoustic waves with periods ~1-4 minutes have been confirmed to perturb the ionosphere following their generation by earthquakes [e.g., Garcia et al., GRL, 40(5), 2013] and volcanic eruption events [e.g., Heki, GRL, 33, L14303, 2006]. Clear acoustic and gravity wave signatures have also been reported in ionospheric data above strong tropospheric convection [Nishioka, GRL, 40(21), 2013], and prior modeling results suggest that convectively-generated acoustic waves with ~3-4 minute periods are readily detectable above their sources in TEC [Zettergren and Snively, GRL, 40(20), 2013]. These observations have provided quantitative insight into the coupling of processes occurring near Earth's surface with the upper atmosphere and ionosphere over short time-scales. Here, we investigate acoustic waves and short-period gravity waves generated by sources near ground level, and the observable responses of the mesosphere, lower-thermosphere, and ionosphere (MLTI) systems. Numerical simulations are performed using a nonlinear, compressible, atmospheric dynamics model, in cylindrically-axisymmetric coordinates, to investigate wave generation, upward propagation, steepening, and dissipation. Acoustic waves may produce observable signatures in the mesospheric hydroxyl airglow layer [e.g., Snively, GRL, 40(17), 2013], and can strongly perturb the lower-thermosphere and E- and F-region ionosphere, prior to the arrival of simultaneously-generated gravity waves. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for mid and low latitudes using a 2D dipole magnetic field coordinate system [Zettergren and Snively, GRL, 40(20), 2013], we investigate its response to realistic acoustic wave perturbations. In particular, we demonstrate that the MLT and ionospheric responses are significantly and nonlinearly determined by the acoustic wave source geometry, spectrum, and amplitude, in addition to the local ambient state of the

  16. An intercomparison of model ozone deficits in the upper stratosphere and mesosphere from two data sets

    NASA Astrophysics Data System (ADS)

    Siskind, David E.; Connor, Brian J.; Eckman, Richard S.; Remsberg, Ellis E.; Tsou, J. J.; Parrish, Alan

    1995-06-01

    We have compared a diurnal photochemical model of ozone with nighttime data from the limb infrared monitor of the stratosphere (LIMS) and ground-based microwave observations. Consistent with previous studies, the model underpredicts the observations by about 10-30%. This agreement is strong confirmation that the model ozone deficit is not simply an artifact of observational error since it is unlikely to occur for two completely different ozone data sets. We have also examined the seasonal, altitudinal, and diurnal morphology of the ozone deficit. Both comparisons show a deficit that peaks in the upper stratosphere (2-3 mbar) and goes through a minimum in the lower mesosphere from 1.0 to 0.4 mbar. At lower pressures (<0.2 mbar) the deficit appears to increase again. The seasonal variation of the deficit is less consistent. The deficit with respect to the LIMS data is least in winter while with respect to the microwave data, the deficit shows little seasonal variation. Finally, the night-to-day ratio in our model is in generally good agreement with that seen in the microwave experiment. Increasing the rate coefficient for the reaction O + O2 + M → O3 + M improves the fit, while a very large (50%) decrease in the HOx catalytic cycle is not consistent with our observations. Increasing the atomic oxygen recombination rate also improves the overall agreement with both data sets; however, a residual discrepancy still remains. There appears to be no single chemical parameter which, when modified, can simultaneously resolve both the stratospheric and mesospheric ozone deficits.

  17. Mesospheric Non-Migrating Tides Generated With Planetary Waves. 1; Characteristics

    NASA Technical Reports Server (NTRS)

    Mayr, H. G.; Mengel, J. G.; Talaat, E. L.; Porter, H. S.; Chan, K. L.

    2003-01-01

    We discuss results from a modeling study with our Numerical Spectral Model (NSM) that specifically deals with the non-migrating tides generated in the mesosphere. The NSM extends from the ground to the thermosphere, incorporates Hines' Doppler Spread Parameterization for small-scale gravity waves (GWs), and it describes the major dynamical features of the atmosphere including the wave driven equatorial oscillations (QBO and SAO), and the seasonal variations of tides and planetary waves. Accounting solely for the excitation sources of the solar migrating tides, the NSM generates through dynamical interactions also non-migrating tides in the mesosphere that are comparable in magnitude to those observed. Large non-migrating tides are produced in the diurnal and semi-diurnal oscillations for the zonal mean (m = 0) and in the semidiurnal oscillation for m = 1. In general, significant eastward and westward propagating tides are generated for all the zonal wave numbers m = 1 to 4. To identify the cause, the NSM is run without the solar heating for the zonal mean (m = 0), and the amplitudes of the resulting non-migrating tides are then negligibly small. In this case, the planetary waves are artificially suppressed, which are generated in the NSM through instabilities. This leads to the conclusion that the non-migrating tides are generated through non-linear interactions between planetary waves and migrating tides, as Forbes et al. and Talaat and Liberman had proposed. In an accompanying paper, we present results from numerical experiments, which indicate that gravity wave filtering contributes significantly to produce the non-linear coupling that is involved.

  18. Polarization changes in temporal imaging with pulses of random light.

    PubMed

    Voipio, Timo; Setälä, Tero; Friberg, Ari T

    2013-04-08

    We consider polarization changes of randomly fluctuating electromagnetic pulsed light in temporal imaging. The polarization properties of pulses formed by the time lens are formulated in terms of the Stokes parameters. For Gaussian Schell-model pulses we show that the degree and state of polarization of the time-imaged pulse can be tailored in versatile ways, depending on the temporal polarization and coherence of the input pulse and the system parameters. In particular, weakly polarized central region of the pulse may become fully polarized without energy absorption. The results have potential applications in optical communication, micromachining, and light-matter interactions.

  19. Effects of plasma particle trapping on dust-acoustic solitary waves in an opposite polarity dust-plasma medium

    SciTech Connect

    Ahmad, Zulfiqar; Mushtaq, A.; Mamun, A. A.

    2013-03-15

    Dust acoustic solitary waves in a dusty plasma containing dust of opposite polarity (adiabatic positive and negative dust), non-isothermal electrons and ions (following vortex like distribution) are theoretically investigated by employing pseudo-potential approach, which is valid for arbitrary amplitude structures. The propagation of small but finite amplitude solitary structures is also examined by using the reductive perturbation method. The basic properties of large (small) amplitude solitary structures are investigated by analyzing the energy integral (modified Korteweg-de Vries equation). It is shown that the effects of dust polarity, trapping of plasma particles (electrons and ions), and temperatures of dust fluids significantly modify the basic features of the dust-acoustic solitary structures that are found to exist in such an opposite polarity dust-plasma medium. The relevance of the work in opposite polarity dust-plasma, which may occur in cometary tails, upper mesosphere, Jupiter's magnetosphere, is briefly discussed.

  20. Polarization signatures of airborne particulates

    NASA Astrophysics Data System (ADS)

    Raman, Prashant; Fuller, Kirk A.; Gregory, Don A.

    2013-07-01

    Exploratory research has been conducted with the aim of completely determining the polarization signatures of selected particulates as a function of wavelength. This may lead to a better understanding of the interaction between electromagnetic radiation and such materials, perhaps leading to the point detection of bio-aerosols present in the atmosphere. To this end, a polarimeter capable of measuring the complete Mueller matrix of highly scattering samples in transmission and reflection (with good spectral resolution from 300 to 1100 nm) has been developed. The polarization properties of Bacillus subtilis (surrogate for anthrax spore) are compared to ambient particulate matter species such as pollen, dust, and soot. Differentiating features in the polarization signatures of these samples have been identified, thus demonstrating the potential applicability of this technique for the detection of bio-aerosol in the ambient atmosphere.

  1. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  2. A decrease in mesospheric water vapour detected in South-Korea in February 2008; from observation to interpretation.