Dimond, Dennis; Ishaque, Abdullah; Chenji, Sneha; Mah, Dennell; Chen, Zhang; Seres, Peter; Beaulieu, Christian; Kalra, Sanjay
2017-03-01
Research in amyotrophic lateral sclerosis (ALS) suggests that executive dysfunction, a prevalent cognitive feature of the disease, is associated with abnormal structural connectivity and white matter integrity. In this exploratory study, we investigated the white matter constructs of executive dysfunction, and attempted to detect structural abnormalities specific to cognitively impaired ALS patients. Eighteen ALS patients and 22 age and education matched healthy controls underwent magnetic resonance imaging on a 4.7 Tesla scanner and completed neuropsychometric testing. ALS patients were categorized into ALS cognitively impaired (ALSci, n = 9) and ALS cognitively competent (ALScc, n = 5) groups. Tract-based spatial statistics and connectomics were used to compare white matter integrity and structural connectivity of ALSci and ALScc patients. Executive function performance was correlated with white matter FA and network metrics within the ALS group. Executive function performance in the ALS group correlated with global and local network properties, as well as FA, in regions throughout the brain, with a high predilection for the frontal lobe. ALSci patients displayed altered local connectivity and structural integrity in these same frontal regions that correlated with executive dysfunction. Our results suggest that executive dysfunction in ALS is related to frontal network disconnectivity, which potentially mediates domain-specific, or generalized cognitive impairment, depending on the degree of global network disruption. Furthermore, reported co-localization of decreased network connectivity and diminished white matter integrity suggests white matter pathology underlies this topological disruption. We conclude that executive dysfunction in ALSci is associated with frontal and global network disconnectivity, underlined by diminished white matter integrity. Hum Brain Mapp 38:1249-1268, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chang, Yu-Tzu; Hsu, Shih-Wei; Tsai, Shih-Jen; Chang, Ya-Ting; Huang, Chi-Wei; Liu, Mu-En; Chen, Nai-Ching; Chang, Wen-Neng; Hsu, Jung-Lung; Lee, Chen-Chang; Chang, Chiung-Chih
2017-06-01
The 677 C to T transition in the MTHFR gene is a genetic determinant for hyperhomocysteinemia. We investigated whether this polymorphism modulates gray matter (GM) structural covariance networks independently of white-matter integrity in patients with Alzheimer's disease (AD). GM structural covariance networks were constructed by 3D T1-magnetic resonance imaging and seed-based analysis. The patients were divided into two genotype groups: C homozygotes (n = 73) and T carriers (n = 62). Using diffusion tensor imaging and white-matter parcellation, 11 fiber bundle integrities were compared between the two genotype groups. Cognitive test scores were the major outcome factors. The T carriers had higher homocysteine levels, lower posterior cingulate cortex GM volume, and more clusters in the dorsal medial lobe subsystem showing stronger covariance strength. Both posterior cingulate cortex seed and interconnected peak cluster volumes predicted cognitive test scores, especially in the T carriers. There were no between-group differences in fiber tract diffusion parameters. The MTHFR 677T polymorphism modulates posterior cingulate cortex-anchored structural covariance strength independently of white matter integrities. Hum Brain Mapp 38:3039-3051, 2017. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published Wiley by Periodicals, Inc.
Tryptophan Metabolism and White Matter Integrity in Schizophrenia
Chiappelli, Joshua; Postolache, Teodor T; Kochunov, Peter; Rowland, Laura M; Wijtenburg, S Andrea; Shukla, Dinesh K; Tagamets, Malle; Du, Xiaoming; Savransky, Anya; Lowry, Christopher A; Can, Adem; Fuchs, Dietmar; Hong, L Elliot
2016-01-01
Schizophrenia is associated with abnormalities in the structure and functioning of white matter, but the underlying neuropathology is unclear. We hypothesized that increased tryptophan degradation in the kynurenine pathway could be associated with white matter microstructure and biochemistry, potentially contributing to white matter abnormalities in schizophrenia. To test this, fasting plasma samples were obtained from 37 schizophrenia patients and 38 healthy controls and levels of total tryptophan and its metabolite kynurenine were assessed. The ratio of kynurenine to tryptophan was used as an index of tryptophan catabolic activity in this pathway. White matter structure and function were assessed by diffusion tensor imaging (DTI) and 1H magnetic resonance spectroscopy (MRS). Tryptophan levels were significantly lower (p<0.001), and kynurenine/tryptophan ratios were correspondingly higher (p=0.018) in patients compared with controls. In patients, lower plasma tryptophan levels corresponded to lower structural integrity (DTI fractional anisotropy) (r=0.347, p=0.038). In both patients and controls, the kynurenine/tryptophan ratio was inversely correlated with frontal white matter glutamate level (r=−0.391 and −0.350 respectively, p=0.024 and 0.036). These results provide initial evidence implicating abnormal tryptophan/kynurenine pathway activity in changes to white matter integrity and white matter glutamate in schizophrenia. PMID:27143602
Samanez-Larkin, Gregory R; Levens, Sara M; Perry, Lee M; Dougherty, Robert F; Knutson, Brian
2012-04-11
Frontostriatal circuits have been implicated in reward learning, and emerging findings suggest that frontal white matter structural integrity and probabilistic reward learning are reduced in older age. This cross-sectional study examined whether age differences in frontostriatal white matter integrity could account for age differences in reward learning in a community life span sample of human adults. By combining diffusion tensor imaging with a probabilistic reward learning task, we found that older age was associated with decreased reward learning and decreased white matter integrity in specific pathways running from the thalamus to the medial prefrontal cortex and from the medial prefrontal cortex to the ventral striatum. Further, white matter integrity in these thalamocorticostriatal paths could statistically account for age differences in learning. These findings suggest that the integrity of frontostriatal white matter pathways critically supports reward learning. The findings also raise the possibility that interventions that bolster frontostriatal integrity might improve reward learning and decision making.
Early grey matter changes in structural covariance networks in Huntington's disease.
Coppen, Emma M; van der Grond, Jeroen; Hafkemeijer, Anne; Rombouts, Serge A R B; Roos, Raymund A C
2016-01-01
Progressive subcortical changes are known to occur in Huntington's disease (HD), a hereditary neurodegenerative disorder. Less is known about the occurrence and cohesion of whole brain grey matter changes in HD. We aimed to detect network integrity changes in grey matter structural covariance networks and examined relationships with clinical assessments. Structural magnetic resonance imaging data of premanifest HD ( n = 30), HD patients (n = 30) and controls (n = 30) was used to identify ten structural covariance networks based on a novel technique using the co-variation of grey matter with independent component analysis in FSL. Group differences were studied controlling for age and gender. To explore whether our approach is effective in examining grey matter changes, regional voxel-based analysis was additionally performed. Premanifest HD and HD patients showed decreased network integrity in two networks compared to controls. One network included the caudate nucleus, precuneous and anterior cingulate cortex (in HD p < 0.001, in pre-HD p = 0.003). One other network contained the hippocampus, premotor, sensorimotor, and insular cortices (in HD p < 0.001, in pre-HD p = 0.023). Additionally, in HD patients only, decreased network integrity was observed in a network including the lingual gyrus, intracalcarine, cuneal, and lateral occipital cortices ( p = 0.032). Changes in network integrity were significantly associated with scores of motor and neuropsychological assessments. In premanifest HD, voxel-based analyses showed pronounced volume loss in the basal ganglia, but less prominent in cortical regions. Our results suggest that structural covariance might be a sensitive approach to reveal early grey matter changes, especially for premanifest HD.
Alterations in White Matter Integrity in Young Adults with Smartphone Dependence
Hu, Yuanming; Long, Xiaojing; Lyu, Hanqing; Zhou, Yangyang; Chen, Jianxiang
2017-01-01
Smartphone dependence (SPD) is increasingly regarded as a psychological problem, however, the underlying neural substrates of SPD is still not clear. High resolution magnetic resonance imaging provides a useful tool to help understand and manage the disorder. In this study, a tract-based spatial statistics (TBSS) analysis on diffusion tensor imaging (DTI) was used to measure white matter integrity in young adults with SPD. A total of 49 subjects were recruited and categorized into SPD and control group based on their clinical behavioral tests. To localize regions with abnormal white matter integrity in SPD, the voxel-wise analysis of fractional anisotropy (FA) and mean diffusivity (MD) on the whole brain was performed by TBSS. The correlation between the quantitative variables of brain structures and the behavior measures were performed. Our result demonstrated that SPD had significantly lower white matter integrity than controls in superior longitudinal fasciculus (SLF), superior corona radiata (SCR), internal capsule, external capsule, sagittal stratum, fornix/stria terminalis and midbrain structures. Correlation analysis showed that the observed abnormalities in internal capsule and stria terminalis were correlated with the severity of dependence and behavioral assessments. Our finding facilitated a primary understanding of white matter characteristics in SPD and indicated that the structural deficits might link to behavioral impairments. PMID:29163108
White matter integrity in highly traumatized adults with and without post-traumatic stress disorder.
Fani, Negar; King, Tricia Z; Jovanovic, Tanja; Glover, Ebony M; Bradley, Bekh; Choi, Kisueng; Ely, Timothy; Gutman, David A; Ressler, Kerry J
2012-11-01
Prior structural imaging studies of post-traumatic stress disorder (PTSD) have observed smaller volumes of the hippocampus and cingulate cortex, yet little is known about the integrity of white matter connections between these structures in PTSD samples. The few published studies using diffusion tensor imaging (DTI) to measure white matter integrity in PTSD have described individuals with focal trauma rather than chronically stressed individuals, which limits generalization of findings to this population; in addition, these studies have lacked traumatized comparison groups without PTSD. The present DTI study examined microstructural integrity of white matter tracts in a sample of highly traumatized African-American women with (n=25) and without (n=26) PTSD using a tract-based spatial statistical approach, with threshold-free cluster enhancement. Our findings indicated that, relative to comparably traumatized controls, decreased integrity (measured by fractional anisotropy) of the posterior cingulum was observed in participants with PTSD (p<0.05). These findings indicate that reduced microarchitectural integrity of the cingulum, a white matter fiber that connects the entorhinal and cingulate cortices, appears to be associated with PTSD symptomatology. The role of this pathway in problems that characterize PTSD, such as inadequate extinction of learned fear, as well as attention and explicit memory functions, are discussed.
Rutten-Jacobs, Loes C A; Tozer, Daniel J; Duering, Marco; Malik, Rainer; Dichgans, Martin; Markus, Hugh S; Traylor, Matthew
2018-06-01
Structural integrity of the white matter is a marker of cerebral small vessel disease, which is the major cause of vascular dementia and a quarter of all strokes. Genetic studies provide a way to obtain novel insights in the disease mechanism underlying cerebral small vessel disease. The aim was to identify common variants associated with microstructural integrity of the white matter and to elucidate the relationships of white matter structural integrity with stroke, major depressive disorder, and Alzheimer disease. This genome-wide association analysis included 8448 individuals from UK Biobank-a population-based cohort study that recruited individuals from across the United Kingdom between 2006 and 2010, aged 40 to 69 years. Microstructural integrity was measured as fractional anisotropy- (FA) and mean diffusivity (MD)-derived parameters on diffusion tensor images. White matter hyperintensity volumes (WMHV) were assessed on T2-weighted fluid-attenuated inversion recovery images. We identified 1 novel locus at genome-wide significance ( VCAN [versican]: rs13164785; P =3.7×10 -18 for MD and rs67827860; P =1.3×10 -14 for FA). LD score regression showed a significant genome-wide correlation between FA, MD, and WMHV (FA-WMHV rG 0.39 [SE, 0.15]; MD-WMHV rG 0.56 [SE, 0.19]). In polygenic risk score analysis, FA, MD, and WMHV were significantly associated with lacunar stroke, MD with major depressive disorder, and WMHV with Alzheimer disease. Genetic variants within the VCAN gene may play a role in the mechanisms underlying microstructural integrity of the white matter in the brain measured as FA and MD. Mechanisms underlying white matter alterations are shared with cerebrovascular disease, and inherited differences in white matter microstructure impact on Alzheimer disease and major depressive disorder. © 2018 The Authors.
White matter integrity deficits in prefrontal-amygdala pathways in Williams syndrome.
Avery, Suzanne N; Thornton-Wells, Tricia A; Anderson, Adam W; Blackford, Jennifer Urbano
2012-01-16
Williams syndrome is a neurodevelopmental disorder associated with significant non-social fears. Consistent with this elevated non-social fear, individuals with Williams syndrome have an abnormally elevated amygdala response when viewing threatening non-social stimuli. In typically-developing individuals, amygdala activity is inhibited through dense, reciprocal white matter connections with the prefrontal cortex. Neuroimaging studies suggest a functional uncoupling of normal prefrontal-amygdala inhibition in individuals with Williams syndrome, which might underlie both the extreme amygdala activity and non-social fears. This functional uncoupling might be caused by structural deficits in underlying white matter pathways; however, prefrontal-amygdala white matter deficits have yet to be explored in Williams syndrome. We used diffusion tensor imaging to investigate prefrontal-amygdala white matter integrity differences in individuals with Williams syndrome and typically-developing controls with high levels of non-social fear. White matter pathways between the amygdala and several prefrontal regions were isolated using probabilistic tractography. Within each pathway, we tested for between-group differences in three measures of white matter integrity: fractional anisotropy (FA), radial diffusivity (RD), and parallel diffusivity (λ(1)). Individuals with Williams syndrome had lower FA, compared to controls, in several of the prefrontal-amygdala pathways investigated, indicating a reduction in white matter integrity. Lower FA in Williams syndrome was explained by significantly higher RD, with no differences in λ(1), suggestive of lower fiber density or axon myelination in prefrontal-amygdala pathways. These results suggest that deficits in the structural integrity of prefrontal-amygdala white matter pathways might underlie the increased amygdala activity and extreme non-social fears observed in Williams syndrome. Copyright © 2011 Elsevier Inc. All rights reserved.
Otte, Willem M; van der Marel, Kajo; van Meer, Maurits P A; van Rijen, Peter C; Gosselaar, Peter H; Braun, Kees P J; Dijkhuizen, Rick M
2015-08-01
Hemispherectomy is often followed by remarkable recovery of cognitive and motor functions. This reflects plastic capacities of the remaining hemisphere, involving large-scale structural and functional adaptations. Better understanding of these adaptations may (1) provide new insights in the neuronal configuration and rewiring that underlies sensorimotor outcome restoration, and (2) guide development of rehabilitation strategies to enhance recovery after hemispheric lesioning. We assessed brain structure and function in a hemispherectomy model. With MRI we mapped changes in white matter structural integrity and gray matter functional connectivity in eight hemispherectomized rats, compared with 12 controls. Behavioral testing involved sensorimotor performance scoring. Diffusion tensor imaging and resting-state functional magnetic resonance imaging were acquired 7 and 49 days post surgery. Hemispherectomy caused significant sensorimotor deficits that largely recovered within 2 weeks. During the recovery period, fractional anisotropy was maintained and white matter volume and axial diffusivity increased in the contralateral cerebral peduncle, suggestive of preserved or improved white matter integrity despite overall reduced white matter volume. This was accompanied by functional adaptations in the contralateral sensorimotor network. The observed white matter modifications and reorganization of functional network regions may provide handles for rehabilitation strategies improving functional recovery following large lesions.
Disconnected aging: cerebral white matter integrity and age-related differences in cognition.
Bennett, I J; Madden, D J
2014-09-12
Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Disconnected Aging: Cerebral White Matter Integrity and Age-Related Differences in Cognition
Bennett, Ilana J.; Madden, David J.
2013-01-01
Cognition arises as a result of coordinated processing among distributed brain regions and disruptions to communication within these neural networks can result in cognitive dysfunction. Cortical disconnection may thus contribute to the declines in some aspects of cognitive functioning observed in healthy aging. Diffusion tensor imaging (DTI) is ideally suited for the study of cortical disconnection as it provides indices of structural integrity within interconnected neural networks. The current review summarizes results of previous DTI aging research with the aim of identifying consistent patterns of age-related differences in white matter integrity, and of relationships between measures of white matter integrity and behavioral performance as a function of adult age. We outline a number of future directions that will broaden our current understanding of these brain-behavior relationships in aging. Specifically, future research should aim to (1) investigate multiple models of age-brain-behavior relationships; (2) determine the tract-specificity versus global effect of aging on white matter integrity; (3) assess the relative contribution of normal variation in white matter integrity versus white matter lesions to age-related differences in cognition; (4) improve the definition of specific aspects of cognitive functioning related to age-related differences in white matter integrity using information processing tasks; and (5) combine multiple imaging modalities (e.g., resting-state and task-related functional magnetic resonance imaging; fMRI) with DTI to clarify the role of cerebral white matter integrity in cognitive aging. PMID:24280637
Effects of amyloid and small vessel disease on white matter network disruption.
Kim, Hee Jin; Im, Kiho; Kwon, Hunki; Lee, Jong Min; Ye, Byoung Seok; Kim, Yeo Jin; Cho, Hanna; Choe, Yearn Seong; Lee, Kyung Han; Kim, Sung Tae; Kim, Jae Seung; Lee, Jae Hong; Na, Duk L; Seo, Sang Won
2015-01-01
There is growing evidence that the human brain is a large scale complex network. The structural network is reported to be disrupted in cognitively impaired patients. However, there have been few studies evaluating the effects of amyloid and small vessel disease (SVD) markers, the common causes of cognitive impairment, on structural networks. Thus, we evaluated the association between amyloid and SVD burdens and structural networks using diffusion tensor imaging (DTI). Furthermore, we determined if network parameters predict cognitive impairments. Graph theoretical analysis was applied to DTI data from 232 cognitively impaired patients with varying degrees of amyloid and SVD burdens. All patients underwent Pittsburgh compound-B (PiB) PET to detect amyloid burden, MRI to detect markers of SVD, including the volume of white matter hyperintensities and the number of lacunes, and detailed neuropsychological testing. The whole-brain network was assessed by network parameters of integration (shortest path length, global efficiency) and segregation (clustering coefficient, transitivity, modularity). PiB retention ratio was not associated with any white matter network parameters. Greater white matter hyperintensity volumes or lacunae numbers were significantly associated with decreased network integration (increased shortest path length, decreased global efficiency) and increased network segregation (increased clustering coefficient, increased transitivity, increased modularity). Decreased network integration or increased network segregation were associated with poor performances in attention, language, visuospatial, memory, and frontal-executive functions. Our results suggest that SVD alters white matter network integration and segregation, which further predicts cognitive dysfunction.
Penke, Lars; Deary, Ian J
2010-09-01
Charlton et al. (2008) (Charlton, R.A., Landua, S., Schiavone, F., Barrick, T.R., Clark, C.A., Markus, H.S., Morris, R.G.A., 2008. Structural equation modelling investigation of age-related variance in executive function and DTI-measured white matter change. Neurobiol. Aging 29, 1547-1555) presented a model that suggests a specific age-related effect of white matter integrity on working memory. We illustrate potential pitfalls of structural equation modelling by criticizing their model for (a) its neglect of latent variables, (b) its complexity, (c) its questionable causal assumptions, (d) the use of empirical model reduction, (e) the mix-up of theoretical perspectives, and (f) the failure to compare alternative models. We show that a more parsimonious model, based solely on the well-established general factor of cognitive ability, fits their data at least as well. Importantly, when modelled this way there is no support for a role of white matter integrity in cognitive aging in this sample, indicating that their conclusion is strongly dependent on how the data are analysed. We suggest that evidence from more conclusive study designs is needed. Copyright 2009 Elsevier Inc. All rights reserved.
Gray and white matter correlates of the Big Five personality traits.
Privado, Jesús; Román, Francisco J; Saénz-Urturi, Carlota; Burgaleta, Miguel; Colom, Roberto
2017-05-04
Personality neuroscience defines the scientific study of the neurobiological basis of personality. This field assumes that individual differences in personality traits are related with structural and functional variations of the human brain. Gray and white matters are structural properties considered separately in previous research. Available findings in this regard are largely disparate. Here we analyze the relationships between gray matter (cortical thickness (CT), cortical surface area (CSA), and cortical volume) and integrity scores obtained after several white matter tracts connecting different brain regions, with individual differences in the personality traits comprised by the Five-Factor Model (extraversion, agreeableness, conscientiousness, neuroticism, and openness to experience). These psychological and biological data were obtained from young healthy women. The main findings showed statistically significant associations between occipital CSA variations and extraversion, as well as between parietal CT variations and neuroticism. Regarding white matter integrity, openness showed positive correlations with tracts connecting posterior and anterior brain regions. Therefore, variations in discrete gray matter clusters were associated with temperamental traits (extraversion and neuroticism), whereas long-distance structural connections were related with the dimension of personality that has been associated with high-level cognitive processes (openness). Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
White Matter Changes in Tinnitus: Is It All Age and Hearing Loss?
Yoo, Hye Bin; De Ridder, Dirk; Vanneste, Sven
2016-02-01
Tinnitus is a condition characterized by the perception of auditory phantom sounds. It is known as the result of complex interactions between auditory and nonauditory regions. However, previous structural imaging studies on tinnitus patients showed evidence of significant white matter changes caused by hearing loss that are positively correlated with aging. Current study focused on which aspects of tinnitus pathologies affect the white matter integrity the most. We used the diffusion tensor imaging technique to acquire images that have higher contrast in brain white matter to analyze how white matter is influenced by tinnitus-related factors using voxel-based methods, region of interest analysis, and deterministic tractography. As a result, white matter integrity in chronic tinnitus patients was both directly affected by age and also mediated by the hearing loss. The most important changes in white matter regions were found bilaterally in the anterior corona radiata, anterior corpus callosum, and bilateral sagittal strata. In the tractography analysis, the white matter integrity values in tracts of right parahippocampus were correlated with the subjective tinnitus loudness.
Cognitive and brain structural changes in a lung cancer population.
Simó, Marta; Root, James C; Vaquero, Lucía; Ripollés, Pablo; Jové, Josep; Ahles, Tim; Navarro, Arturo; Cardenal, Felipe; Bruna, Jordi; Rodríguez-Fornells, Antoni
2015-01-01
No study has examined structural brain changes specifically associated with chemotherapy in a lung cancer population. The aim of this cross-sectional study was to assess differences in brain structure between small-cell lung cancer patients (C+) following chemotherapy, non-small-cell lung cancer patients (C-) before chemotherapy and healthy controls (HC). Twenty-eight small-cell lung cancer patients underwent a neuropsychological assessment and a structural magnetic resonance imaging, including T1-weighted and diffusion tensor imaging to examine gray matter density and white matter (WM) integrity, respectively, 1 month following completion of platinum-based chemotherapy. This group was compared with 20 age and education-matched non-small-cell lung cancer patients before receiving chemotherapy and 20 HC. Both C+ and C- groups exhibited cognitive impairment compared with the HC group. The C+ group performed significantly worse than HC in verbal fluency and visuospatial subtests; C- performed significantly worse than both C+ and HC in verbal memory. Voxel-based morphometry analysis revealed lower gray matter density in the insula and parahippocampal gyrus bilaterally, and left anterior cingulate cortex in C+ compared with HC. Diffusion tensor imaging indices showed focal decreased WM integrity in left cingulum and bilateral inferior longitudinal fasciculus in the C+ group and more widespread decreased integrity in the C- group compared with the HC group. This study demonstrates that lung cancer patients exhibit cognitive impairment before and after chemotherapy. Before the treatment, C- showed verbal memory deficits as well as a widespread WM damage. Following treatment, the C+ group performed exhibited lower visuospatial and verbal fluency abilities, together with structural gray matter and WM differences in bilateral regions integrating the paralimbic system.
Coxon, James P; Van Impe, Annouchka; Wenderoth, Nicole; Swinnen, Stephan P
2012-06-13
Diffusion weighted imaging (DWI) studies in humans have shown that seniors exhibit reduced white matter integrity compared with young adults, with the most pronounced change occurring in frontal white matter. It is generally assumed that this structural deterioration underlies inhibitory control deficits in old age, but specific evidence from a structural neuroscience perspective is lacking. Cognitive action control is thought to rely on an interconnected network consisting of right inferior frontal cortex (r-IFC), pre-supplementary motor area (preSMA), and the subthalamic nucleus (STN). Here we performed probabilistic DWI tractography to delineate this cognitive control network and had the same individuals (20 young, 20 older adults) perform a task probing both response inhibition and action reprogramming. We hypothesized that structural integrity (fractional anisotropy) and connection strength within this network would be predictive of individual and age-related differences in task performance. We show that the integrity of r-IFC white matter is an age-independent predictor of stop-signal reaction time (SSRT). We further provide evidence that the integrity of white matter projecting to STN predicts both outright stopping (SSRT) and transient braking of response initiation to buy time for action reprogramming (stopping interference effects). These associations remain even after controlling for Go task performance, demonstrating specificity to the Stop component of this task. Finally, a multiple regression analysis reveals bilateral preSMA-STN tract strength as a significant predictor of SSRT in older adults. Our data link age-related decline in inhibitory control with structural decline of STN projections.
2017-10-01
Neuroimaging 2006 Reviewer, Journal of Abnormal Psychology 2006 Reviewer, Psychopharmacology 2006 Reviewer, Developmental Science 2006 Reviewer...This study will address this problem by collecting measures of white matter integrity and concomitant neuropsychological status at five time points...hypothesize that structural white matter tract disintegrity will underlie abnormalities in functional connectivity, neurocognitive performance and
Schaeffer, David J; Rodrigue, Amanda L; Burton, Courtney R; Pierce, Jordan E; Murphy, Megan N; Clementz, Brett A; McDowell, Jennifer E
2017-12-01
Recent diffusion tensor imaging (DTI) studies suggest that altered white matter fiber integrity is a pathophysiological feature of schizophrenia. Lower white matter integrity is associated with poor cognitive control, a characteristic of schizophrenia that can be measured using antisaccade tasks. Although the functional neural correlates of poor antisaccade performance have been well documented, fewer studies have investigated the extent to which white matter fibers connecting the functional nodes of this network contribute to antisaccade performance. The aim of the present study was to assess the white matter structural integrity of fibers connecting two functional nodes (putamen and medial frontal eye fields) of the saccadic eye movement network implicated in poor antisaccade performance in schizophrenia. To evaluate white matter integrity, DTI was acquired on subjects with schizophrenia and two comparison groups: (a) behaviorally matched healthy comparison subjects with low levels of cognitive control (LCC group), and (b) healthy subjects with high levels of cognitive control (HCC group). White matter fibers were tracked between functional regions of interest generated from antisaccade fMRI activation maps, and measures of diffusivity were quantified. The results demonstrated lower white matter integrity in the schizophrenia group than in the HCC group, but not the LCC group who showed similarly poor cognitive control performance. Overall, the results suggest that these alterations are not specific to the disease process of schizophrenia, but may rather be a function of uncontrolled cognitive factors that are concomitant with the disease but also observed in some healthy people. © 2017 Society for Psychophysiological Research.
Structural white matter differences underlying heterogeneous learning abilities after TBI.
Chiou, Kathy S; Genova, Helen M; Chiaravalloti, Nancy D
2016-12-01
The existence of learning deficits after traumatic brain injury (TBI) is generally accepted; however, our understanding of the structural brain mechanisms underlying learning impairment after TBI is limited. Furthermore, our understanding of learning after TBI is often at risk for overgeneralization, as research often overlooks within sample heterogeneity in learning abilities. The present study examined differences in white matter integrity in a sample of adults with moderate to severe TBI who differed in learning abilities. Adults with moderate to severe TBI were grouped into learners and non-learners based upon achievement of the learning criterion of the open-trial Selective Reminding Test (SRT). Diffusion tensor imaging (DTI) was used to identify white matter differences between the learners and non-learners. Adults with TBI who were able to meet the learning criterion had greater white matter integrity (as indicated by higher fractional anisotropy [FA] values) in the right anterior thalamic radiation, forceps minor, inferior fronto-occipital fasciculus, and forceps minor than non-learners. The results of the study suggest that differences in white matter integrity may explain the observed heterogeneity in learning ability after moderate to severe TBI. This also supports emerging evidence for the involvement of the thalamus in higher order cognition, and the role of thalamo-cortical tracts in connecting functional networks associated with learning.
Numerical Convergence in the Dark Matter Halos Properties Using Cosmological Simulations
NASA Astrophysics Data System (ADS)
Mosquera-Escobar, X. E.; Muñoz-Cuartas, J. C.
2017-07-01
Nowadays, the accepted cosmological model is the so called -Cold Dark Matter (CDM). In such model, the universe is considered to be homogeneous and isotropic, composed of diverse components as the dark matter and dark energy, where the latter is the most abundant one. Dark matter plays an important role because it is responsible for the generation of gravitational potential wells, commonly called dark matter halos. At the end, dark matter halos are characterized by a set of parameters (mass, radius, concentration, spin parameter), these parameters provide valuable information for different studies, such as galaxy formation, gravitational lensing, etc. In this work we use the publicly available code Gadget2 to perform cosmological simulations to find to what extent the numerical parameters of the simu- lations, such as gravitational softening, integration time step and force calculation accuracy affect the physical properties of the dark matter halos. We ran a suite of simulations where these parameters were varied in a systematic way in order to explore accurately their impact on the structural parameters of dark matter halos. We show that the variations on the numerical parameters affect the structural pa- rameters of dark matter halos, such as concentration, virial radius, and concentration. We show that these modifications emerged when structures become non- linear (at redshift 2) for the scale of our simulations, such that these variations affected the formation and evolution structure of halos mainly at later cosmic times. As a quantitative result, we propose which would be the most appropriate values for the numerical parameters of the simulations, such that they do not affect the halo properties that are formed. For force calculation accuracy we suggest values smaller or equal to 0.0001, integration time step smaller o equal to 0.005 and for gravitational softening we propose equal to 1/60th of the mean interparticle distance, these values, correspond to the smaller values in the numerical parameters variations. This is an important numerical exercise, since for instance, it is believed that galaxy structural parameters are strongly dependent on dark matter halo structural parameters.
Spaceflight Effect on White Matter Structural Integrity
NASA Technical Reports Server (NTRS)
Lee, Jessica K.; Kopplemans, Vincent; Paternack, Ofer; Bloomberg, Jacob J.; Mulavara, Ajitkumar P.; Seidler, Rachael D.
2017-01-01
Recent reports of elevated brain white matter hyperintensity (WMH) counts and volume in postflight astronaut MRIs suggest that further examination of spaceflight's impact on the microstructure of brain white matter is warranted. To this end, retrospective longitudinal diffusion-weighted MRI scans obtained from 15 astronauts were evaluated. In light of the recent reports of microgravity-induced cephalad fluid shift and gray matter atrophy seen in astronauts, we applied a technique to estimate diffusion tensor imaging (DTI) metrics corrected for free water contamination. This approach enabled the analysis of white matter tissue-specific alterations that are unrelated to fluid shifts, occurring from before spaceflight to after landing. After spaceflight, decreased fractional anisotropy (FA) values were detected in an area encompassing the superior and inferior longitudinal fasciculi and the inferior fronto-occipital fasciculus. Increased radial diffusivity (RD) and decreased axial diffusivity (AD) were also detected within overlapping regions. In addition, FA values in the corticospinal tract decreased and RD measures in the precentral gyrus white matter increased from before to after flight. The results show disrupted structural connectivity of white matter in tracts involved in visuospatial processing, vestibular function, and movement control as a result of spaceflight. The findings may help us understand the structural underpinnings of the extensive spaceflight-induced sensorimotor remodeling. Prospective longitudinal assessment of the white matter integrity in astronauts is needed to characterize the evolution of white matter microstructural changes associated with spaceflight, their behavioral consequences, and the time course of recovery. Supported by a grant from the National Space Biomedical Research Institute, NASA NCC 9-58.
Clewett, David; Bachman, Shelby; Mather, Mara
2014-01-01
Objective A current neuroanatomical model of anxiety posits that greater structural connectivity between the amygdala and ventral prefrontal cortex (vPFC) facilitates regulatory control over the amygdala and helps reduce anxiety. However, some neuroimaging studies have reported contradictory findings, demonstrating a positive rather than negative association between trait anxiety and amygdala-vPFC white matter integrity. To help reconcile these findings, we tested the regulatory hypothesis of anxiety circuitry using aging as a model of white matter decline in the amygdala-vPFC pathway. Methods We used probabilistic tractography to trace connections between the amygdala and vPFC in 21 younger, 18 middle-aged, and 15 healthy older adults. The resulting tract estimates were used to extract three indices of white-matter integrity: fractional anisotropy (FA), radial diffusivity (RD) and axial diffusivity (AD). The relationship between these amygdala-vPFC structural connectivity measures and age and State-Trait Anxiety Inventory (STAI) scores were assessed. Results The tractography results revealed age-related decline in the FA (p = .005) and radial diffusivity (p = .002) of the amygdala-vPFC pathway. Contrary to the regulatory hypothesis, we found a positive rather than negative association between trait anxiety and right amygdala-vPFC FA (p = .01). Conclusion These findings argue against the notion that greater amygdala-vPFC structural integrity facilitates better anxiety outcomes in healthy adults. Instead, our results suggest that white matter degeneration in this network relates to lower anxiety in older adults. PMID:24635708
White matter changes and word finding failures with increasing age.
Stamatakis, Emmanuel A; Shafto, Meredith A; Williams, Guy; Tam, Phyllis; Tyler, Lorraine K
2011-01-07
Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age. We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus. The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age.
Structural correlates of impaired working memory in hippocampal sclerosis.
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-07-01
Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Structural correlates of impaired working memory in hippocampal sclerosis
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-01-01
Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Significance: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. PMID:23614459
NASA Astrophysics Data System (ADS)
Tang, Zhenchao; Liu, Zhenyu; Li, Ruili; Cui, Xinwei; Li, Hongjun; Dong, Enqing; Tian, Jie
2017-03-01
It's widely known that HIV infection would cause white matter integrity impairments. Nevertheless, it is still unclear that how the white matter anatomical structural connections are affected by HIV infection. In the current study, we employed a multivariate pattern analysis to explore the HIV-related white matter connections alterations. Forty antiretroviraltherapy- naïve HIV patients and thirty healthy controls were enrolled. Firstly, an Automatic Anatomical Label (AAL) atlas based white matter structural network, a 90 × 90 FA-weighted matrix, was constructed for each subject. Then, the white matter connections deprived from the structural network were entered into a lasso-logistic regression model to perform HIV-control group classification. Using leave one out cross validation, a classification accuracy (ACC) of 90% (P=0.002) and areas under the receiver operating characteristic curve (AUC) of 0.96 was obtained by the classification model. This result indicated that the white matter anatomical structural connections contributed greatly to HIV-control group classification, providing solid evidence that the white matter connections were affected by HIV infection. Specially, 11 white matter connections were selected in the classification model, mainly crossing the regions of frontal lobe, Cingulum, Hippocampus, and Thalamus, which were reported to be damaged in previous HIV studies. This might suggest that the white matter connections adjacent to the HIV-related impaired regions were prone to be damaged.
Rizio, Avery A; Diaz, Michele T
2016-06-15
Previous research has documented change in white matter tract integrity with increasing age. Both interhemispheric and intrahemispheric tracts that underlie language processing are susceptible to these age-related changes. The aim of the current study was to explore age and white matter integrity in language-related tracts as predictors of cognitive task performance in younger and older adults. To this end, we carried out principal component analyses of white matter tracts and confirmatory factor analysis of neuropsychological measures. We next carried out a series of regression analyses that used white matter components to predict scores on each of the neuropsychological components. For both younger and older adults, age was a significant predictor of processing speed and working memory. However, white matter integrity did not contribute independently toward these models. In older adults only, both age and a white matter component that included the bilateral frontal aslant tract and left superior longitudinal fasciculus were significant predictors of working memory. Taken together, these results extend our understanding of the contributions of language-related white matter structure to cognitive processing and highlight the effects of age-related differences in both frontal and dorsal tracts.
Huang, Chi-Wei; Hsu, Shih-Wei; Tsai, Shih-Jen; Chen, Nai-Ching; Liu, Mu-En; Lee, Chen-Chang; Huang, Shu-Hua; Chang, Weng-Neng; Chang, Ya-Ting; Tsai, Wan-Chen; Chang, Chiung-Chih
2017-01-18
Inflammatory processes play a pivotal role in the degenerative process of Alzheimer's disease. In humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study, we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer's disease. We enrolled a total of 135 patients with Alzheimer's disease (65 males, 70 females), and investigated their gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups: C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem, salience network and executive control network. Neurobehavioral scores were used as the major outcome factors for clinical correlations. There were no differences between the two genotype groups in the cognitive test scores, seed, or peak cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly predicted the cognitive test scores. Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the anterior brain network and entorhinal-interconnected network which were independent of the white matter tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the cognitive tests.
A probabilistic atlas of the cerebellar white matter.
van Baarsen, K M; Kleinnijenhuis, M; Jbabdi, S; Sotiropoulos, S N; Grotenhuis, J A; van Cappellen van Walsum, A M
2016-01-01
Imaging of the cerebellar cortex, deep cerebellar nuclei and their connectivity are gaining attraction, due to the important role the cerebellum plays in cognition and motor control. Atlases of the cerebellar cortex and nuclei are used to locate regions of interest in clinical and neuroscience studies. However, the white matter that connects these relay stations is of at least similar functional importance. Damage to these cerebellar white matter tracts may lead to serious language, cognitive and emotional disturbances, although the pathophysiological mechanism behind it is still debated. Differences in white matter integrity between patients and controls might shed light on structure-function correlations. A probabilistic parcellation atlas of the cerebellar white matter would help these studies by facilitating automatic segmentation of the cerebellar peduncles, the localization of lesions and the comparison of white matter integrity between patients and controls. In this work a digital three-dimensional probabilistic atlas of the cerebellar white matter is presented, based on high quality 3T, 1.25mm resolution diffusion MRI data from 90 subjects participating in the Human Connectome Project. The white matter tracts were estimated using probabilistic tractography. Results over 90 subjects were symmetrical and trajectories of superior, middle and inferior cerebellar peduncles resembled the anatomy as known from anatomical studies. This atlas will contribute to a better understanding of cerebellar white matter architecture. It may eventually aid in defining structure-function correlations in patients with cerebellar disorders. Copyright © 2015 Elsevier Inc. All rights reserved.
Childhood maltreatment moderates the effect of combat exposure on cingulum structural integrity
BANIHASHEMI, LAYLA; WALLACE, MEREDITH L.; SHEU, LEI K.; LEE, MICHAEL C.; GIANAROS, PETER J.; MACKENZIE, ROBERT P.; INSANA, SALVATORE P.; GERMAIN, ANNE; HERRINGA, RYAN J.
2017-01-01
Limbic white matter pathways link emotion, cognition, and behavior and are potentially malleable to the influences of traumatic events throughout development. However, the impact of interactions between childhood and later life trauma on limbic white matter pathways has yet to be examined. Here, we examined whether childhood maltreatment moderated the effect of combat exposure on diffusion tensor imaging measures within a sample of military veterans (N = 28). We examined five limbic tracts of interest: two components of the cingulum (cingulum, cingulate gyrus, and cingulum hippocampus [CGH]), the uncinate fasciculus, the fornix/stria terminalis, and the anterior limb of the internal capsule. Using effect sizes, clinically meaningful moderator effects were found only within the CGH. Greater combat exposure was associated with decreased CGH fractional anisotropy (overall structural integrity) and increased CGH radial diffusivity (perpendicular water diffusivity) among individuals with more severe childhood maltreatment. Our findings provide preliminary evidence of the moderating effect of childhood maltreatment on the relationship between combat exposure and CGH structural integrity. These differences in CGH structural integrity could have maladaptive implications for emotion and memory, as well as provide a potential mechanism by which childhood maltreatment induces vulnerability to later life trauma exposure. PMID:29162178
Blom, Rianne M; van Wingen, Guido A; van der Wal, Sija J; Luigjes, Judy; van Dijk, Milenna T; Scholte, H Steven; Denys, Damiaan
2016-01-01
Body Integrity Identity Disorder (BIID) is a condition in which individuals perceive a mismatch between their internal body scheme and physical body shape, resulting in an absolute desire to be either amputated or paralyzed. The condition is hypothesized to be of congenital nature, but evidence for a neuro-anatomical basis is sparse. We collected T1-weighted structural magnetic resonance imaging scans on a 3T scanner in eight individuals with BIID and 24 matched healthy controls, and analyzed the data using voxel-based morphometry. The results showed reduced grey matter volume in the left dorsal and ventral premotor cortices and larger grey matter volume in the cerebellum (lobule VIIa) in individuals with BIID compared to controls. The premotor cortex and cerebellum are thought to be crucial for the experience of body-ownership and the integration of multisensory information. Our results suggest that BIID is associated with structural brain anomalies and might result from a dysfunction in the integration of multisensory information, leading to the feeling of disunity between the mental and physical body shape.
Effects of Surgery and Proton Therapy on Cerebral White Matter of Craniopharyngioma Patients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uh, Jinsoo, E-mail: jinsoo.uh@stjude.org; Merchant, Thomas E.; Li, Yimei
Purpose: The purpose of this study was to determine radiation dose effect on the structural integrity of cerebral white matter in craniopharyngioma patients receiving surgery and proton therapy. Methods and Materials: Fifty-one patients (2.1-19.3 years of age) with craniopharyngioma underwent surgery and proton therapy in a prospective therapeutic trial. Anatomical magnetic resonance images acquired after surgery but before proton therapy were inspected to identify white matter structures intersected by surgical corridors and catheter tracks. Longitudinal diffusion tensor imaging (DTI) was performed to measure microstructural integrity changes in cerebral white matter. Fractional anisotropy (FA) derived from DTI was statistically analyzed for 51more » atlas-based white matter structures of the brain to determine radiation dose effect. FA in surgery-affected regions in the corpus callosum was compared to that in its intact counterpart to determine whether surgical defects affect radiation dose effect. Results: Surgical defects were seen most frequently in the corpus callosum because of transcallosal resection of tumors and insertion of ventricular or cyst catheters. Longitudinal DTI data indicated reductions in FA 3 months after therapy, which was followed by a recovery in most white matter structures. A greater FA reduction was correlated with a higher radiation dose in 20 white matter structures, indicating a radiation dose effect. The average FA in the surgery-affected regions before proton therapy was smaller (P=.0001) than that in their non–surgery-affected counterparts with more intensified subsequent reduction of FA (P=.0083) after therapy, suggesting that surgery accentuated the radiation dose effect. Conclusions: DTI data suggest that mild radiation dose effects occur in patients with craniopharyngioma receiving surgery and proton therapy. Surgical defects present at the time of proton therapy appear to accentuate the radiation dose effect longitudinally. This study supports consideration of pre-existing surgical defects and their locations in proton therapy planning and studies of treatment effect.« less
Deep grey matter growth predicts neurodevelopmental outcomes in very preterm children.
Young, Julia M; Powell, Tamara L; Morgan, Benjamin R; Card, Dallas; Lee, Wayne; Smith, Mary Lou; Sled, John G; Taylor, Margot J
2015-05-01
We evaluated whether the volume and growth rate of critical brain structures measured by MRI in the first weeks of life following very preterm (<32/40 weeks) birth could predict subsequent neurodevelopmental outcomes at 4 years of age. A significant proportion of children born very prematurely have cognitive deficits, but these problems are often only detected at early school age. Structural T2-weighted magnetic resonance images were acquired in 96 very preterm neonates scanned within 2 weeks of birth and 70 of these at term-equivalent age. An automated 3D image analysis procedure was used to measure the volume of selected brain structures across all scans and time points. At 4 years of age, 53 children returned for neuropsychological assessments evaluating IQ, language and visual motor integration. Associations with maternal education and perinatal measures were also explored. Multiple regression analyses revealed that growth of the caudate and globus pallidus between preterm birth and term-equivalent age predicted visual motor integration scores after controlling for sex and gestational age. Further associations were found between caudate and putamen growth with IQ and language scores. Analyses at either preterm or term-equivalent age only found associations between normalized deep grey matter growth and visual motor integration scores at term-equivalent age. Maternal education levels were associated with measures of IQ and language, but not visual motor integration. Thalamic growth was additionally linked with perinatal measures and presence of white matter lesions. These results highlight deep grey matter growth rates as promising biomarkers of long-term outcomes following very preterm birth, and contribute to our understanding of the brain-behaviour relations in these children. Copyright © 2015 Elsevier Inc. All rights reserved.
Tinaz, Sule; Lauro, Peter M; Ghosh, Pritha; Lungu, Codrin; Horovitz, Silvina G
2017-01-01
Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional "disconnection" in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome.
Structural Changes after Videogame Practice Related to a Brain Network Associated with Intelligence
ERIC Educational Resources Information Center
Colom, Roberto; Quiroga, Ma. Angeles; Solana, Ana Beatriz; Burgaleta, Miguel; Roman, Francisco J.; Privado, Jesus; Escorial, Sergio; Martinez, Kenia; Alvarez-Linera, Juan; Alfayate, Eva; Garcia, Felipe; Lepage, Claude; Hernandez-Tamames, Juan Antonio; Karama, Sherif
2012-01-01
Here gray and white matter changes after four weeks of videogame practice were analyzed using optimized voxel-based morphometry (VBM), cortical surface and cortical thickness indices, and white matter integrity computed from several projection, commissural, and association tracts relevant to cognition. Beginning with a sample of one hundred young…
Subject-Matter Determines Method.
ERIC Educational Resources Information Center
Guth, Hans P.
Only the approach that integrates a study of both the "what" and the "how" of a discipline will be relevant to the practicing English teacher. Missing between the two extremes of specialized subject matter research and conventional educational research is research into the structure of a particular discipline, exploring it as a body of knowledge,…
Eng, Goi Khia; Sim, Kang; Chen, Shen-Hsing Annabel
2015-05-01
Obsessive-compulsive disorder (OCD) is a debilitating disorder. However, existing neuroimaging findings involving executive function and structural abnormalities in OCD have been mixed. Here we conducted meta-analyses to investigate differences in OCD samples and controls in: Study 1 - grey matter structure; Study 2 - executive function task-related activations during (i) response inhibition, (ii) interference, and (iii) switching tasks; and Study 3 - white matter diffusivity. Results showed grey matter differences in the frontal, striatal, thalamus, parietal and cerebellar regions; task domain-specific neural differences in similar regions; and abnormal diffusivity in major white matter regions in OCD samples compared to controls. Our results reported concurrence of abnormal white matter diffusivity with corresponding abnormalities in grey matter and task-related functional activations. Our findings suggested the involvement of other brain regions not included in the cortico-striato-thalamo-cortical network, such as the cerebellum and parietal cortex, and questioned the involvement of the orbitofrontal region in OCD pathophysiology. Future research is needed to clarify the roles of these brain regions in the disorder. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mander, Bryce A; Zhu, Alyssa H; Lindquist, John R; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Saletin, Jared M; Ancoli-Israel, Sonia; Jagust, William J; Walker, Matthew P
2017-11-29
Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical-cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of degeneration determines whether sleep spindles can promote motor memory consolidation. Therefore, white matter integrity in the human brain, more than age per se, determines the magnitude of decline in sleep spindles in later life and, with it, the success (or lack thereof) of sleep-dependent motor memory consolidation in older adults. Copyright © 2017 the authors 0270-6474/17/3711675-13$15.00/0.
Zhu, Alyssa H.; Lindquist, John R.; Villeneuve, Sylvia; Rao, Vikram; Lu, Brandon; Ancoli-Israel, Sonia
2017-01-01
Sleep spindles promote the consolidation of motor skill memory in young adults. Older adults, however, exhibit impoverished sleep-dependent motor memory consolidation. The underlying pathophysiological mechanism(s) explaining why motor memory consolidation in older adults fails to benefit from sleep remains unclear. Here, we demonstrate that male and female older adults show impoverished overnight motor skill memory consolidation relative to young adults, with the extent of impairment being associated with the degree of reduced frontal fast sleep spindle density. The magnitude of the loss of frontal fast sleep spindles in older adults was predicted by the degree of reduced white matter integrity throughout multiple white matter tracts known to connect subcortical and cortical brain regions. We further demonstrate that the structural integrity of selective white matter fiber tracts, specifically within right posterior corona radiata, right tapetum, and bilateral corpus callosum, statistically moderates whether sleep spindles promoted overnight consolidation of motor skill memory. Therefore, white matter integrity within tracts known to connect cortical sensorimotor control regions dictates the functional influence of sleep spindles on motor skill memory consolidation in the elderly. The deterioration of white matter fiber tracts associated with human brain aging thus appears to be one pathophysiological mechanism influencing subcortical–cortical propagation of sleep spindles and their related memory benefits. SIGNIFICANCE STATEMENT Numerous studies have shown that sleep spindle expression is reduced and sleep-dependent motor memory is impaired in older adults. However, the mechanisms underlying these alterations have remained unknown. The present study reveals that age-related degeneration of white matter within select fiber tracts is associated with reduced sleep spindles in older adults. We further demonstrate that, within these same fiber tracts, the degree of degeneration determines whether sleep spindles can promote motor memory consolidation. Therefore, white matter integrity in the human brain, more than age per se, determines the magnitude of decline in sleep spindles in later life and, with it, the success (or lack thereof) of sleep-dependent motor memory consolidation in older adults. PMID:29084867
NASA Astrophysics Data System (ADS)
Caffini, Matteo; Bergsland, Niels; LaganÃ, Marcella; Tavazzi, Eleonora; Tortorella, Paola; Rovaris, Marco; Baselli, Giuseppe
2014-03-01
Despite advances in the application of nonconventional MRI techniques in furthering the understanding of multiple sclerosis pathogenic mechanisms, there are still many unanswered questions, such as the relationship between gray and white matter damage. We applied a combination of advanced surface-based reconstruction and diffusion tensor imaging techniques to address this issue. We found significant relationships between white matter tract integrity indices and corresponding cortical structures. Our results suggest a direct link between damage in white and gray matter and contribute to the notion of gray matter loss relating to clinical disability.
Medial frontal white and gray matter contributions to general intelligence.
Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Saito, Yukiko; Hosokawa, Taiga; Kubicki, Marek
2014-01-01
The medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) are part of a wider neural network that plays an important role in general intelligence and executive function. We used structural brain imaging to quantify magnetic resonance gray matter volume and diffusion tensor white matter integrity of the mOFC-rACC network in 26 healthy participants who also completed neuropsychological tests of intellectual abilities and executive function. Stochastic tractography, the most effective Diffusion Tensor Imaging method for examining white matter connections between adjacent gray matter regions, was employed to assess the integrity of mOFC-rACC pathways. Fractional anisotropy (FA), which reflects the integrity of white matter connections, was calculated. Results indicated that higher intelligence correlated with greater gray matter volumes for both mOFC and rACC, as well as with increased FA for left posterior mOFC-rACC connectivity. Hierarchical regression analyses revealed that DTI-derived FA of left posterior mOFC-rACC uniquely accounted for 29%-34% of the variance in IQ, in comparison to 11%-16% uniquely explained by gray matter volume of the left rACC. Together, left rACC gray matter volume and white matter connectivity between left posterior mOFC and rACC accounted for up to 50% of the variance in general intelligence. This study is to our knowledge the first to examine white matter connectivity between OFC and ACC, two gray matter regions of interests that are very close in physical proximity, and underscores the important independent contributions of variations in rACC gray matter volume and mOFC-rACC white matter connectivity to individual differences in general intelligence.
From SHAPE Signatures to 3-D Structures | Center for Cancer Research
RNAs undergo extensive folding to form sophisticated based-paired secondary structures that are, in part, indicators of more complex three-dimensional structures. These 3-D shapes are an integral part of the cellular gene-expression machinery. Deconstructing these structures is no small matter, yet it is critical to understanding their function.
Military blast exposure, ageing and white matter integrity
Trotter, Benjamin B.; Robinson, Meghan E.; Milberg, William P.; McGlinchey, Regina E.
2015-01-01
Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure—one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan—is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a ‘dose-response’ relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group, suggesting a specific influence of time since exposure on tissue structure, and this effect was also independent of post-traumatic stress symptoms. Overall, these data suggest that blast exposure may negatively affect brain-ageing trajectories at the microstructural tissue level. Additional work examining longitudinal changes in brain tissue integrity in individuals exposed to military blast forces will be an important future direction to the initial findings presented here. PMID:26033970
Walker, Keenan A; Windham, B Gwen; Power, Melinda C; Hoogeveen, Ron C; Folsom, Aaron R; Ballantyne, Christie M; Knopman, David S; Selvin, Elizabeth; Jack, Clifford R; Gottesman, Rebecca F
2018-08-01
We examined whether the pattern of middle- to late-life systemic inflammation was associated with white matter (WM) structural abnormalities in older adults. A total of 1532 participants (age = 76.5; standard deviations = 5.4) underwent 3T brain magnetic resonance imaging to quantify white matter hyperintensity volume and whole-brain WM microstructural integrity (fractional anisotropy, mean diffusivity). High-sensitivity C-reactive protein (CRP), a marker of systemic inflammation, was measured at 3 visits (21 and 14 years before, and concurrent with, neuroimaging). Participants were categorized into 1 of 6 groups based on their 21-year pattern of low (<3 mg/L) versus elevated (≥3 mg/L) CRP. Compared to the group with low CRP at all 3 visits, the group that transitioned from low to elevated CRP during midlife demonstrated greatest white matter hyperintensity volume and poorest WM microstructural integrity, after adjusting for demographic variables and cardiovascular risk factors. Participants with high CRP at all visits also demonstrated greater WM structural abnormalities, but only after accounting for differential attrition. These results suggest that increasing and persistent inflammation in the decades spanning middle-to late-life may promote WM disease in older adults. Copyright © 2018 Elsevier Inc. All rights reserved.
Grey matter abnormalities in social anxiety disorder: a pilot study.
Syal, Supriya; Hattingh, Coenraad J; Fouché, Jean-Paul; Spottiswoode, Bruce; Carey, Paul D; Lochner, Christine; Stein, Dan J
2012-09-01
While a number of studies have explored the functional neuroanatomy of social anxiety disorder (SAD), data on grey matter integrity are lacking. We conducted structural MRI scans to examine the cortical thickness of grey matter in individuals with SAD. 13 unmedicated adult patients with a primary diagnosis of generalized social anxiety disorder and 13 demographically (age, gender and education) matched healthy controls underwent 3T structural magnetic resonance imaging. Cortical thickness and subcortical volumes were estimated using an automated algorithm (Freesurfer Version 4.5). Compared to controls, social anxiety disorder patients showed significant bilateral cortical thinning in the fusiform and post central regions. Additionally, right hemisphere specific thinning was found in the frontal, temporal, parietal and insular cortices of individuals with social anxiety disorder. Although uncorrected cortical grey matter volumes were significantly lower in individuals with SAD, we did not detect volumetric differences in corrected amygdala, hippocampal or cortical grey matter volumes across study groups. Structural differences in grey matter thickness between SAD patients and controls highlight the diffuse neuroanatomical networks involved in both social anxiety and social behavior. Additional work is needed to investigate the causal mechanisms involved in such structural abnormalities in SAD.
Johnston, Jennifer A Y; Wang, Fei; Liu, Jie; Blond, Benjamin N; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T; Purves, Kirstin L; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A; Blumberg, Hilary P
2017-07-01
Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.
Johnston, Jennifer A. Y.; Wang, Fei; Liu, Jie; Blond, Benjamin N.; Wallace, Amanda; Liu, Jiacheng; Spencer, Linda; Cox Lippard, Elizabeth T.; Purves, Kirstin L.; Landeros-Weisenberger, Angeli; Hermes, Eric; Pittman, Brian; Zhang, Sheng; King, Robert; Martin, Andrés; Oquendo, Maria A.; Blumberg, Hilary P.
2018-01-01
Objective Bipolar disorder is associated with high risk for suicide behavior that often develops in adolescence/young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents/young adults with bipolar disorder with and without history of suicide attempts combines structural, diffusion tensor and functional magnetic resonance imaging methods to investigate implicated abnormalities in structural and functional connectivity within fronto-limbic systems. Method Participants with bipolar disorder included 26 with a prior suicide attempt and 42 without attempts. Regional gray matter volume, white matter integrity and functional connectivity during processing of emotional stimuli were compared between groups and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. Results Compared to the non-attempter group, the attempter group showed reductions in gray matter volume in orbitofrontal cortex, hippocampus and cerebellum; white matter integrity in uncinate fasciculus, ventral frontal and right cerebellum regions; and amygdala functional connectivity to left ventral and right rostral prefrontal cortex (p<0.05, corrected). In exploratory analyses, among attempters, right rostral prefrontal connectivity was negatively correlated with suicidal ideation (p<0.05), and left ventral prefrontal connectivity was negatively correlated with attempt lethality (p<0.05). Conclusions Adolescent/young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral fronto-limbic neural system subserving emotion regulation. Among suicide attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicide ideation and attempt lethality. PMID:28135845
King, Tricia Z; Wang, Liya; Mao, Hui
2015-01-01
Although chemotherapy and radiation treatment have contributed to increased survivorship, treatment-induced brain injury has been a concern when examining long-term intellectual outcomes of survivors. Specifically, disruption of brain white matter integrity and its relationship to intellectual outcomes in adult survivors of childhood brain tumors needs to be better understood. Fifty-four participants underwent diffusion tensor imaging in addition to structural MRI and an intelligence test (IQ). Voxel-wise group comparisons of fractional anisotropy calculated from DTI data were performed using Tract Based Spatial Statistics (TBSS) on 27 survivors (14 treated with radiation with and without chemotherapy and 13 treated without radiation treatment on average over 13 years since diagnosis) and 27 healthy comparison participants. Whole brain white matter fractional anisotropy (FA) differences were explored between each group. The relationships between IQ and FA in the regions where statistically lower FA values were found in survivors were examined, as well as the role of cumulative neurological factors. The group of survivors treated with radiation with and without chemotherapy had lower IQ relative to the group of survivors without radiation treatment and the healthy comparison group. TBSS identified white matter regions with significantly different mean fractional anisotropy between the three different groups. A lower level of white matter integrity was found in the radiation with or without chemotherapy treated group compared to the group without radiation treatment and also the healthy control group. The group without radiation treatment had a lower mean FA relative to healthy controls. The white matter disruption of the radiation with or without chemotherapy treated survivors was positively correlated with IQ and cumulative neurological factors. Lower long-term intellectual outcomes of childhood brain tumor survivors are associated with lower white matter integrity. Radiation and adjunct chemotherapy treatment may play a role in greater white matter disruption. The relationships between white matter integrity and IQ, as well as cumulative neurological risk factors exist in young adult survivors of childhood brain tumors.
Pathways to Seeing Music: Enhanced Structural Connectivity in Colored-Music Synesthesia
Zamm, Anna; Schlaug, Gottfried; Eagleman, David M.; Loui, Psyche
2013-01-01
Synesthesia, a condition in which a stimulus in one sensory modality consistently and automatically triggers concurrent percepts in another modality, provides a window into the neural correlates of cross-modal associations. While research on grapheme-color synesthesia has provided evidence for both hyperconnectivity/hyperbinding and disinhibited feedback as possible underlying mechanisms, less research has explored the neuroanatomical basis of other forms of synesthesia. In the current study we investigated the white matter correlates of colored-music synesthesia. As these synesthetes report seeing colors upon hearing musical sounds, we hypothesized they might show different patterns of connectivity between visual and auditory association areas. We used diffusion tensor imaging to trace the white matter tracts in temporal and occipital lobe regions in 10 synesthetes and 10 matched non-synesthete controls. Results showed that synesthetes possessed different hemispheric patterns of fractional anisotropy, an index of white matter integrity, in the inferior fronto-occipital fasciculus (IFOF), a major white matter pathway that connects visual and auditory association areas to frontal regions. Specifically, white matter integrity within the right IFOF was significantly greater in synesthetes than controls. Furthermore, white matter integrity in synesthetes was correlated with scores on audiovisual tests of the Synesthesia Battery, especially in white matter underlying the right fusiform gyrus. Our findings provide the first evidence of a white matter substrate of colored-music synesthesia, and suggest that enhanced white matter connectivity is involved in enhanced cross-modal associations. PMID:23454047
ERIC Educational Resources Information Center
Pardini, Matteo; Elia, Maurizio; Garaci, Francesco G.; Guida, Silvia; Coniglione, Filadelfo; Krueger, Frank; Benassi, Francesca; Gialloreti, Leonardo Emberti
2012-01-01
Recent evidence points to white-matter abnormalities as a key factor in autism physiopathology. Using Diffusion Tensor Imaging, we studied white-matter structural properties in a convenience sample of twenty-two subjects with low-functioning autism exposed to long-term augmentative and alternative communication, combined with sessions of cognitive…
Sheikh, Haroon I; Joanisse, Marc F; Mackrell, Sarah M; Kryski, Katie R; Smith, Heather J; Singh, Shiva M; Hayden, Elizabeth P
2014-01-01
Activity of the hypothalamic-pituitary-adrenal axis (measured via cortisol reactivity) may be a biological marker of risk for depression and anxiety, possibly even early in development. However, the structural neural correlates of early cortisol reactivity are not well known, although these would potentially inform broader models of mechanisms of risk, especially if the early environment further shapes these relationships. Therefore, we examined links between white matter architecture and young girls' cortisol reactivity and whether early caregiving moderated these links. We recruited 45 6-year-old girls based on whether they had previously shown high or low cortisol reactivity to a stress task at age 3. White matter integrity was assessed by calculating fractional anisotropy (FA) of diffusion-weighted magnetic resonance imaging scans. Parenting styles were measured via a standardized parent-child interaction task. Significant associations were found between FA in white matter regions adjacent to the left thalamus, the right anterior cingulate cortex, and the right superior frontal gyrus (all ps < .001). Further, positive early caregiving moderated the effect of high cortisol reactivity on white matter FA (all ps ≤ .05), with high stress reactive girls who received greater parent positive affect showing white matter structure more similar to that of low stress reactive girls. Results show associations between white matter integrity of various limbic regions of the brain and early cortisol reactivity to stress and provide preliminary support for the notion that parenting may moderate associations.
Lockhart, Samuel N.; Mayda, Adriane B. V.; Roach, Alexandra E.; Fletcher, Evan; Carmichael, Owen; Maillard, Pauline; Schwarz, Christopher G.; Yonelinas, Andrew P.; Ranganath, Charan; DeCarli, Charles
2011-01-01
Previous neuroimaging research indicates that white matter injury and integrity, measured respectively by white matter hyperintensities (WMH) and fractional anisotropy (FA) obtained from diffusion tensor imaging (DTI), differ with aging and cerebrovascular disease (CVD) and are associated with episodic memory deficits in cognitively normal older adults. However, knowledge about tract-specific relationships between WMH, FA, and episodic memory in aging remains limited. We hypothesized that white matter connections between frontal cortex and subcortical structures as well as connections between frontal and temporo-parietal cortex would be most affected. In the current study, we examined relationships between WMH, FA and episodic memory in 15 young adults, 13 elders with minimal WMH and 15 elders with extensive WMH, using an episodic recognition memory test for object-color associations. Voxel-based statistics were used to identify voxel clusters where white matter measures were specifically associated with variations in episodic memory performance, and white matter tracts intersecting these clusters were analyzed to examine white matter-memory relationships. White matter injury and integrity measures were significantly associated with episodic memory in extensive regions of white matter, located predominantly in frontal, parietal, and subcortical regions. Template based tractography indicated that white matter injury, as measured by WMH, in the uncinate and inferior longitudinal fasciculi were significantly negatively associated with episodic memory performance. Other tracts such as thalamo-frontal projections, superior longitudinal fasciculus, and dorsal cingulum bundle demonstrated strong negative associations as well. The results suggest that white matter injury to multiple pathways, including connections of frontal and temporal cortex and frontal-subcortical white matter tracts, plays a critical role in memory differences seen in older individuals. PMID:22438841
Zhu, Zude; Yang, Fengjun; Li, Dongning; Zhou, Lianjun; Liu, Ying; Zhang, Ying; Chen, Xuezhi
2017-01-01
While aging is associated with increased knowledge, it is also associated with decreased semantic integration. To investigate brain activation changes during semantic integration, a sample of forty-eight 25-75 year-old adults read sentences with high cloze (HC) and low cloze (LC) probability while functional magnetic resonance imaging was conducted. Significant age-related reduction of cloze effect (LC vs. HC) was found in several regions, especially the left middle frontal gyrus (MFG) and right inferior frontal gyrus (IFG), which play an important role in semantic integration. Moreover, when accounting for global gray matter volume reduction, the age-cloze correlation in the left MFG and right IFG was absent. The results suggest that brain structural atrophy may disrupt brain response in aging brains, which then show less brain engagement in semantic integration.
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit
2014-01-01
Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351
Nugent, Katie L; Chiappelli, Joshua; Sampath, Hemalatha; Rowland, Laura M; Thangavelu, Kavita; Davis, Beshaun; Du, Xiaoming; Muellerklein, Florian; Daughters, Stacey; Kochunov, Peter; Hong, L Elliot
2015-09-01
Although acute hypothalamic-pituitary-adrenal axis response to stress is often adaptive, prolonged responses may have detrimental effects. Many components of white matter structures are sensitive to prolonged cortisol exposure. We aimed to identify a behavioral laboratory assay for cortisol response related to brain pathophysiology in schizophrenia. We hypothesized that an abnormally prolonged cortisol response to stress may be linked to abnormal white matter integrity in patients with schizophrenia. Acute and prolonged salivary cortisol response was measured outside the scanner at pretest and then at 0, 20, and 40 minutes after a psychological stress task in patients with schizophrenia (n = 45) and controls (n = 53). Tract-averaged white matter was measured by 64-direction diffusion tensor imaging in a subset of patients (n = 30) and controls (n = 33). Patients who did not tolerate the psychological stress task and quit had greater acute (t = 2.52 [p = .016] and t = 3.51 [p = .001] at 0 and 20 minutes) and prolonged (t = 3.62 [p = .001] at 40 minutes) cortisol reactivity compared with patients who finished the task. Abnormally prolonged cortisol reactivity in patients was significantly associated with reduced white matter integrity (r = -0.468, p = .009). Regardless of task completion status, acute cortisol response was not related to the white matter measures in patients or controls. This paradigm was successful at identifying a subset of patients whose cortisol response was associated with brain pathophysiology. Abnormal cortisol response may adversely affect white matter integrity, partly explaining this pathology observed in schizophrenia. Prolonged stress responses may be targeted for intervention to test for protective effects against white matter damages.
Lee, Young-Min; Ha, Ji-Kyung; Park, Je-Min; Lee, Byung-Dae; Moon, EunSoo; Chung, Young-In; Kim, Ji-Hoon; Kim, Hak-Jin; Mun, Chi-Woong; Kim, Tae-Hyung; Kim, Young-Hoon
2016-01-01
The aim of this study is to compare gray matter (GM) volume and white matter (WM) integrity in Apolipoprotein E4 (ApoE ε4) carriers with that of ApoE ε4 noncarriers using the voxel-based morphometry and diffusion tensor imaging (DTI) to investigate the effect of the ApoE ε4 on brain structures in subjective memory impairment (SMI) without white matter hyperintensities (WMH). Altogether, 26 participants with SMI without WMH were finally recruited from the Memory impairment clinics of Pusan National University Hospital in Korea. All participants were ApoE genotyped (ApoE ε4 carriers: n = 13, matched ApoE ε4 noncarriers: n = 13) and underwent 3-tesla magnetic resonance imaging (MRI) including 3-dimensional volumetric images for GM volume and DTI for WM integrity. ApoE ε4 carriers compared with noncarriers in SMI without WMH showed the atrophy of GM in inferior temporal gyrus, inferior parietal lobule, anterior cingulum, middle frontal gyrus, and precentral gyrus and significantly lower fractional anisotropy WM values in the splenium of corpus callosum and anterior corona radiate. Our findings suggest that the ApoE ε4 is associated with both atrophy of GM volume and disruption of WM integrity in SMI without WMH. Copyright © 2015 by the American Society of Neuroimaging.
Parvaz, Muhammad A; Moeller, Scott J; d'Oleire Uquillas, Federico; Pflumm, Amanda; Maloney, Tom; Alia-Klein, Nelly; Goldstein, Rita Z
2017-09-01
Deficits in prefrontal cortical (PFC) function have been consistently reported in individuals with cocaine use disorders (iCUD), and have separately been shown to improve with longer-term abstinence. However, it is less clear whether the PFC structural integrity possibly underlying these deficits is also modulated by sustained reduction in drug use in iCUD. Here, T1-weighted magnetic resonance imaging scans were acquired, and performance on a neuropsychological test battery was assessed, in 19 initially abstinent treatment-seeking iCUD, first at baseline and then after six months of significantly reduced or no drug use (follow-up). A comparison cohort of 12 healthy controls was also scanned twice with a similar inter-scan interval. The iCUD showed increased gray matter volume in the left inferior frontal gyrus and bilaterally in the ventromedial prefrontal cortex at follow-up compared to baseline; healthy controls, as expected, showed no changes over this same time period. The iCUD also showed improved decision making and cognitive flexibility, with the latter correlated significantly with the gray matter volume increases in the inferior frontal gyrus. Given its association with improved cognitive function, the longitudinal recovery in cortical gray matter volume, particularly in regions where structure and function are adversely affected by chronic drug use, reflects a quantifiable positive impact of significantly reduced drug use on cortical structural integrity. © 2016 Society for the Study of Addiction.
Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J.; Walther, Sebastian
2012-01-01
Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD. PMID:23284950
Bracht, Tobias; Federspiel, Andrea; Schnell, Susanne; Horn, Helge; Höfle, Oliver; Wiest, Roland; Dierks, Thomas; Strik, Werner; Müller, Thomas J; Walther, Sebastian
2012-01-01
Alterations of brain structure and function have been associated with psychomotor retardation in major depressive disorder (MDD). However, the association of motor behaviour and white matter integrity of motor pathways in MDD is unclear. The aim of the present study was to first investigate structural connectivity of white matter motor pathways in MDD. Second, we explore the relation of objectively measured motor activity and white matter integrity of motor pathways in MDD. Therefore, 21 patients with MDD and 21 healthy controls matched for age, gender, education and body mass index underwent diffusion tensor imaging and 24 hour actigraphy (measure of the activity level) the same day. Applying a probabilistic fibre tracking approach we extracted connection pathways between the dorsolateral prefrontal cortex (dlPFC), the rostral anterior cingulate cortex (rACC), the pre-supplementary motor area (pre-SMA), the SMA-proper, the primary motor cortex (M1), the caudate nucleus, the putamen, the pallidum and the thalamus. Patients had lower activity levels and demonstrated increased mean diffusivity (MD) in pathways linking left pre-SMA and SMA-proper, and right SMA-proper and M1. Exploratory analyses point to a positive association of activity level and mean-fractional anisotropy in the right rACC-pre-SMA connection in MDD. Only MDD patients with low activity levels had a negative linear association of activity level and mean-MD in the left dlPFC-pre-SMA connection. Our results point to structural alterations of cortico-cortical white matter motor pathways in MDD. Altered white matter organisation of rACC-pre-SMA and dlPFC-pre-SMA pathways may contribute to movement initiation in MDD.
Prillwitz, Conrad; Rüber, Theodor; Reuter, Martin; Montag, Christian; Weber, Bernd; Elger, Christian E; Markett, Sebastian
2018-04-28
A prevailing topic in personality neuroscience is the question how personality traits are reflected in the brain. Functional and structural networks have been examined by functional and structural magnetic resonance imaging, however, the structural correlates of functionally defined networks have not been investigated in a personality context. By using the Temperament and Character Inventory (TCI) and Diffusion Tensor Imaging (DTI), the present study assesses in a sample of 116 healthy participants how personality traits proposed in the framework of the biopsychosocial theory on personality relate to white matter pathways delineated by functional network imaging. We show that the character trait self-directedness relates to the overall microstructural integrity of white matter tracts constituting the salience network as indicated by DTI-derived measures. Self-directedness has been proposed as the executive control component of personality and describes the tendency to stay focused on the attainment of long-term goals. The present finding corroborates the view of the salience network as an executive control network that serves maintenance of rules and task-sets to guide ongoing behavior. Copyright © 2018. Published by Elsevier B.V.
Dark matter admixed strange quark stars in the Starobinsky model
NASA Astrophysics Data System (ADS)
Lopes, Ilídio; Panotopoulos, Grigoris
2018-01-01
We compute the mass-to-radius profiles for dark matter admixed strange quark stars in the Starobinsky model of modified gravity. For quark matter, we assume the MIT bag model, while self-interacting dark matter inside the star is modeled as a Bose-Einstein condensate with a polytropic equation of state. We numerically integrate the structure equations in the Einstein frame, adopting the two-fluid formalism, and we treat the curvature correction term nonperturbatively. The effects on the properties of the stars of the amount of dark matter as well as the higher curvature term are investigated. We find that strange quark stars (in agreement with current observational constraints) with the highest masses are equally affected by dark matter and modified gravity.
Integrated information theory of consciousness: an updated account.
Tononi, G
2012-12-01
This article presents an updated account of integrated information theory of consciousness (liT) and some of its implications. /IT stems from thought experiments that lead to phenomenological axioms (existence, compositionality, information, integration, exclusion) and corresponding ontological postulates. The information axiom asserts that every experience is spec~fic - it is what it is by differing in its particular way from a large repertoire of alternatives. The integration axiom asserts that each experience is unified- it cannot be reduced to independent components. The exclusion axiom asserts that every experience is definite - it is limited to particular things and not others and flows at a particular speed and resolution. /IT formalizes these intuitions with postulates. The information postulate states that only "differences that make a difference" from the intrinsic perpective of a system matter: a mechanism generates cause-effect information if its present state has selective past causes and selective future effects within a system. The integration postulate states that only information that is irreducible matters: mechanisms generate integrated information only to the extent that the information they generate cannot be partitioned into that generated within independent components. The exclusion postulate states that only maxima of integrated information matter: a mechanism specifies only one maximally irreducible set of past causes and future effects - a concept. A complex is a set of elements specifying a maximally irreducible constellation of concepts, where the maximum is evaluated over elements and at the optimal spatiatemporal scale. Its concepts specify a maximally integrated conceptual information structure or quale, which is identical with an experience. Finally, changes in information integration upon exposure to the environment reflect a system's ability to match the causal structure of the world. After introducing an updated definition of information integration and related quantities, the article presents some theoretical considerations about the relationship between information and causation and about the relational structure of concepts within a qua/e. It also explores the relationship between the temporal grain size of information integration and the dynamic of metastable states in the corticothalamic complex. Finally, it summarizes how liT accounts for empirical findings about the neural substrate of consciousness, and how various aspects of phenomenology may in principle be addressed in terms of the geometry of information integration.
Alfaro, Freddy J; Gavrieli, Anna; Saade-Lemus, Patricia; Lioutas, Vasileios-Arsenios; Upadhyay, Jagriti; Novak, Vera
2018-01-01
Metabolic syndrome is a cluster of cardiovascular risk factors defined by the presence of abdominal obesity, glucose intolerance, hypertension and/or dyslipidemia. It is a major public health epidemic worldwide, and a known risk factor for the development of cognitive dysfunction and dementia. Several studies have demonstrated a positive association between the presence of metabolic syndrome and worse cognitive outcomes, however, evidence of brain structure pathology is limited. Diffusion tensor imaging has offered new opportunities to detect microstructural white matter changes in metabolic syndrome, and a possibility to detect associations between functional and structural abnormalities. This review analyzes the impact of metabolic syndrome on white matter microstructural integrity, brain structure abnormalities and their relationship to cognitive function. Each of the metabolic syndrome components exerts a specific signature of white matter microstructural abnormalities. Metabolic syndrome and its components exert both additive/synergistic, as well as, independent effects on brain microstructure thus accelerating brain aging and cognitive decline. Copyright © 2017 Elsevier Inc. All rights reserved.
Deterministic Integration of Biological and Soft Materials onto 3D Microscale Cellular Frameworks
McCracken, Joselle M.; Xu, Sheng; Badea, Adina; Jang, Kyung-In; Yan, Zheng; Wetzel, David J.; Nan, Kewang; Lin, Qing; Han, Mengdi; Anderson, Mikayla A.; Lee, Jung Woo; Wei, Zijun; Pharr, Matt; Wang, Renhan; Su, Jessica; Rubakhin, Stanislav S.; Sweedler, Jonathan V.
2018-01-01
Complex 3D organizations of materials represent ubiquitous structural motifs found in the most sophisticated forms of matter, the most notable of which are in life-sustaining hierarchical structures found in biology, but where simpler examples also exist as dense multilayered constructs in high-performance electronics. Each class of system evinces specific enabling forms of assembly to establish their functional organization at length scales not dissimilar to tissue-level constructs. This study describes materials and means of assembly that extend and join these disparate systems—schemes for the functional integration of soft and biological materials with synthetic 3D microscale, open frameworks that can leverage the most advanced forms of multilayer electronic technologies, including device-grade semiconductors such as monocrystalline silicon. Cellular migration behaviors, temporal dependencies of their growth, and contact guidance cues provided by the nonplanarity of these frameworks illustrate design criteria useful for their functional integration with living matter (e.g., NIH 3T3 fibroblast and primary rat dorsal root ganglion cell cultures). PMID:29552634
Gu, Yian; Vorburger, Robert; Scarmeas, Nikolaos; Luchsinger, José A; Manly, Jennifer J; Schupf, Nicole; Mayeux, Richard; Brickman, Adam M
2017-10-01
The aim of this investigation was to determine whether circulating inflammatory biomarkers c-reactive protein (CRP), interleukin-6 (IL6), and alpha 1-antichymotrypsin (ACT) were related to structural brain measures assessed by magnetic resonance imaging (MRI). High-resolution structural MRI was collected on 680 non-demented elderly (mean age 80.1years) participants of a community-based, multiethnic cohort. Approximately three quarters of these participants also had peripheral inflammatory biomarkers (CRP, IL6, and ACT) measured using ELISA. Structural measures including brain volumes and cortical thickness (with both global and regional measures) were derived from MRI scans, and repeated MRI measures were obtained after 4.5years. Mean fractional anisotropy was used as the indicator of white matter integrity assessed with diffusion tensor imaging. We examined the association of inflammatory biomarkers with brain volume, cortical thickness, and white matter integrity using regression models adjusted for age, gender, ethnicity, education, APOE genotype, and intracranial volume. A doubling in CRP (b=-2.48, p=0.002) was associated with a smaller total gray matter volume, equivalent to approximately 1.5years of aging. A doubling in IL6 was associated with smaller total brain volume (b=-14.96, p<0.0001), equivalent to approximately 9years of aging. Higher IL6 was also associated with smaller gray matter (b=-6.52, p=0.002) and white matter volumes (b=-7.47, p=0.004). The volumes of most cortical regions including frontal, occipital, parietal, temporal, as well as subcortical regions including pallidum and thalamus were associated with IL6. In a model additionally adjusted for depression, vascular factors, BMI, and smoking status, the association between IL6 and brain volumes remained, and a doubling in ACT was marginally associated with 0.054 (p=0.001) millimeter thinner mean cortical thickness, equivalent to that of approximately 2.7years of aging. None of the biomarkers was associated with mean fractional anisotropy or longitudinal change of brain volumes and thickness. Among older adults, increased circulating inflammatory biomarkers were associated with smaller brain volume and cortical thickness but not the white matter tract integrity. Our preliminary findings suggest that peripheral inflammatory processes may be involved in the brain atrophy in the elderly. Copyright © 2017 Elsevier Inc. All rights reserved.
Gold, Brian T.; Johnson, Nathan F.; Powell, David K.
2013-01-01
Recent evidence suggests that lifelong bilingualism may contribute to cognitive reserve (CR) in normal aging. However, there is currently no neuroimaging evidence to suggest that lifelong bilinguals can retain normal cognitive functioning in the face of age-related neurodegeneration. Here we explored this issue by comparing white matter (WM) integrity and gray matter (GM) volumetric patterns of older adult lifelong bilinguals (N = 20) and monolinguals (N = 20). The groups were matched on a range of relevant cognitive test scores and on the established CR variables of education, socioeconomic status and intelligence. Participants underwent high-resolution structural imaging for assessment of GM volume and diffusion tensor imaging (DTI) for assessment of WM integrity. Results indicated significantly lower microstructural integrity in the bilingual group in several WM tracts. In particular, compared to their monolingual peers, the bilingual group showed lower fractional anisotropy and/or higher radial diffusivity in the inferior longitudinal fasciculus/inferior fronto-occipital fasciculus bilaterally, the fornix, and multiple portions of the corpus callosum. There were no group differences in GM volume. Our results suggest that lifelong bilingualism contributes to CR against WM integrity declines in aging. PMID:24103400
Racial Differences in Gray Matter Integrity by Diffusion Tensor in Black and White Octogenarians.
Liu, Ge; Allen, Ben; Lopez, Oscar; Aizenstein, Howard; Boudreau, Robert; Newman, Anne; Yaffe, Kristine; Kritchevsky, Stephen; Launer, Lenore; Satterfield, Suzanne; Simonsick, Eleanor; Rosano, Caterina
2015-01-01
To quantify racial differences in brain structural characteristics in white and black octogenarians, and to examine whether these characteristics contribute to cognition. Cross-sectional study of 283 adults 79-89 years old (59.4% white;42.0% women) with data on gray matter integrity via diffusion tensor imaging (mean diffusivity), gray matter atrophy (GMA), white matter hyperintensities (WMH), literacy, smoking, drinking, income, hypertension and diabetes. Participants were recruited from an ongoing epidemiological study of older adults living in the community with a range of chronic conditions, physical and cognitive function. Standardized betas (sβ) of neuroimaging markers predicting Digit Symbol Substitution Test (DSST) and Modified Mini-Mental State Examination (3MS) scores were computed in multivariable regression models stratified by race. Compared to whites, blacks had lower DSST (p=0.001) and lower 3MS (p=0.006), but also lower mean diffusivity (i.e. higher gray matter microstructural integrity, p=0.032), independent of gender, income, literacy, body mass index, diabetes and drinking habits. Racial differences were not significant for WMH (p=0.062) or GMA (p=0.4). Among blacks, mean diffusivity and WMH were associated with DSST (sβ=-.209, p=0.037 and -.211, p=.038, respectively) independent of each other and other covariates; among whites, mean diffusivity, but not WMH, was significantly associated with DSST and 3MS (sβ =-.277, p=.002 and -.250, p=0.029, respectively). In this cohort of octogenarians living in the community, blacks appeared to have higher microstructural integrity of gray matter as compared to whites. This neuroimaging marker was related to higher cognition even in the presence of WMH and other cardiovascular conditions. If confirmed, these findings suggest microstructural gray matter integrity may be a target to improve cognition, especially among blacks who survive to very old age with a range of chronic cardiovascular conditions.
Integrated information theory of consciousness: an updated account.
Tononi, G
2012-01-01
This article presents an updated account of integrated information theory of consciousness (IIT) and some of its implications. IIT stems from thought experiments that lead to phenomenological axioms and ontological postulates. The information axiom asserts that every experience is one out of many, i.e. specific - it is what it is by differing in its particular way from a large repertoire of alternatives. The integration axiom asserts that each experience is one, i.e. unified - it cannot be reduced to independent components. The exclusion axiom asserts that every experience is definite - it is limited to particular things and not others and flows at a particular speed and resolution. IIT formalizes these intuitions with three postulates. The information postulate states that only "differences that make a difference" from the intrinsic perspective of a system matter: a mechanism generates cause-effect information if its present state has specific past causes and specific future effects within a system. The integration postulate states that only information that is irreducible matters: mechanisms generate integrated information only to the extent that the information they generate cannot be partitioned into that generated within independent components. The exclusion postulate states that only maxima of integrated information matter: a mechanism specifies only one maximally irreducible set of past causes and future effects - a concept. A complex is a set of elements specifying a maximally irreducible constellation of concepts, where the maximum is evaluated at the optimal spatio-temporal scale. Its concepts specify a maximally integrated conceptual information structure or quale, which is identical with an experience. Finally, changes in information integration upon exposure to the environment reflect a system's ability to match the causal structure of the world. After introducing an updated definition of information integration and related quantities, the article presents some theoretical considerations about the relationship between information and causation and about the relational structure of concepts within a quale. It also explores the relationship between the temporal grain size of information integration and the dynamic of metastable states in the corticothalamic complex. Finally, it summarizes how IIT accounts for empirical findings about the neural substrate of consciousness, and how various aspects of phenomenology may in principle be addressed in terms of the geometry of information integration.
Small vessel disease is linked to disrupted structural network covariance in Alzheimer's disease.
Nestor, Sean M; Mišić, Bratislav; Ramirez, Joel; Zhao, Jiali; Graham, Simon J; Verhoeff, Nicolaas P L G; Stuss, Donald T; Masellis, Mario; Black, Sandra E
2017-07-01
Cerebral small vessel disease (SVD) is thought to contribute to Alzheimer's disease (AD) through abnormalities in white matter networks. Gray matter (GM) hub covariance networks share only partial overlap with white matter connectivity, and their relationship with SVD has not been examined in AD. We developed a multivariate analytical pipeline to elucidate the cortical GM thickness systems that covary with major network hubs and assessed whether SVD and neurodegenerative pathologic markers were associated with attenuated covariance network integrity in mild AD and normal elderly control subjects. SVD burden was associated with reduced posterior cingulate corticocortical GM network integrity and subneocorticocortical hub network integrity in AD. These findings provide evidence that SVD is linked to the selective disruption of cortical hub GM networks in AD brains and point to the need to consider GM hub covariance networks when assessing network disruption in mixed disease. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
The structural and functional brain networks that support human social networks.
Noonan, M P; Mars, R B; Sallet, J; Dunbar, R I M; Fellows, L K
2018-02-20
Social skills rely on a specific set of cognitive processes, raising the possibility that individual differences in social networks are related to differences in specific brain structural and functional networks. Here, we tested this hypothesis with multimodality neuroimaging. With diffusion MRI (DMRI), we showed that differences in structural integrity of particular white matter (WM) tracts, including cingulum bundle, extreme capsule and arcuate fasciculus were associated with an individual's social network size (SNS). A voxel-based morphology analysis demonstrated correlations between gray matter (GM) volume and SNS in limbic and temporal lobe regions. These structural changes co-occured with functional network differences. As a function of SNS, dorsomedial and dorsolateral prefrontal cortex showed altered resting-state functional connectivity with the default mode network (DMN). Finally, we integrated these three complementary methods, interrogating the relationship between social GM clusters and specific WM and resting-state networks (RSNs). Probabilistic tractography seeded in these GM nodes utilized the SNS-related WM pathways. Further, the spatial and functional overlap between the social GM clusters and the DMN was significantly closer than other control RSNs. These integrative analyses provide convergent evidence of the role of specific circuits in SNS, likely supporting the adaptive behavior necessary for success in extensive social environments. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Prediction of brain-computer interface aptitude from individual brain structure.
Halder, S; Varkuti, B; Bogdan, M; Kübler, A; Rosenstiel, W; Sitaram, R; Birbaumer, N
2013-01-01
Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. This confirms that structural brain traits contribute to individual performance in BCI use.
Prediction of brain-computer interface aptitude from individual brain structure
Halder, S.; Varkuti, B.; Bogdan, M.; Kübler, A.; Rosenstiel, W.; Sitaram, R.; Birbaumer, N.
2013-01-01
Objective: Brain-computer interface (BCI) provide a non-muscular communication channel for patients with impairments of the motor system. A significant number of BCI users is unable to obtain voluntary control of a BCI-system in proper time. This makes methods that can be used to determine the aptitude of a user necessary. Methods: We hypothesized that integrity and connectivity of involved white matter connections may serve as a predictor of individual BCI-performance. Therefore, we analyzed structural data from anatomical scans and DTI of motor imagery BCI-users differentiated into high and low BCI-aptitude groups based on their overall performance. Results: Using a machine learning classification method we identified discriminating structural brain trait features and correlated the best features with a continuous measure of individual BCI-performance. Prediction of the aptitude group of each participant was possible with near perfect accuracy (one error). Conclusions: Tissue volumetric analysis yielded only poor classification results. In contrast, the structural integrity and myelination quality of deep white matter structures such as the Corpus Callosum, Cingulum, and Superior Fronto-Occipital Fascicle were positively correlated with individual BCI-performance. Significance: This confirms that structural brain traits contribute to individual performance in BCI use. PMID:23565083
Prefrontal gray matter volume mediates genetic risks for obesity.
Opel, N; Redlich, R; Kaehler, C; Grotegerd, D; Dohm, K; Heindel, W; Kugel, H; Thalamuthu, A; Koutsouleris, N; Arolt, V; Teuber, A; Wersching, H; Baune, B T; Berger, K; Dannlowski, U
2017-05-01
Genetic and neuroimaging research has identified neurobiological correlates of obesity. However, evidence for an integrated model of genetic risk and brain structural alterations in the pathophysiology of obesity is still absent. Here we investigated the relationship between polygenic risk for obesity, gray matter structure and body mass index (BMI) by the use of univariate and multivariate analyses in two large, independent cohorts (n=330 and n=347). Higher BMI and higher polygenic risk for obesity were significantly associated with medial prefrontal gray matter decrease, and prefrontal gray matter was further shown to significantly mediate the effect of polygenic risk for obesity on BMI in both samples. Building on this, the successful individualized prediction of BMI by means of multivariate pattern classification algorithms trained on whole-brain imaging data and external validations in the second cohort points to potential clinical applications of this imaging trait marker.
Fukushima, Makoto; Betzel, Richard F; He, Ye; van den Heuvel, Martijn P; Zuo, Xi-Nian; Sporns, Olaf
2018-04-01
Structural white matter connections are thought to facilitate integration of neural information across functionally segregated systems. Recent studies have demonstrated that changes in the balance between segregation and integration in brain networks can be tracked by time-resolved functional connectivity derived from resting-state functional magnetic resonance imaging (rs-fMRI) data and that fluctuations between segregated and integrated network states are related to human behavior. However, how these network states relate to structural connectivity is largely unknown. To obtain a better understanding of structural substrates for these network states, we investigated how the relationship between structural connectivity, derived from diffusion tractography, and functional connectivity, as measured by rs-fMRI, changes with fluctuations between segregated and integrated states in the human brain. We found that the similarity of edge weights between structural and functional connectivity was greater in the integrated state, especially at edges connecting the default mode and the dorsal attention networks. We also demonstrated that the similarity of network partitions, evaluated between structural and functional connectivity, increased and the density of direct structural connections within modules in functional networks was elevated during the integrated state. These results suggest that, when functional connectivity exhibited an integrated network topology, structural connectivity and functional connectivity were more closely linked to each other and direct structural connections mediated a larger proportion of neural communication within functional modules. Our findings point out the possibility of significant contributions of structural connections to integrative neural processes underlying human behavior.
Han, Zaizhu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Bi, Yanchao
2016-01-01
In speech production, an important step before motor programming is the retrieval and encoding of the phonological elements of target words. It has been proposed that phonological encoding is supported by multiple regions in the left frontal, temporal and parietal regions and their underlying white matter, especially the left arcuate fasciculus (AF) or superior longitudinal fasciculus (SLF). It is unclear, however, whether the effects of AF/SLF are indeed related to phonological encoding for output and whether there are other white matter tracts that also contribute to this process. We comprehensively investigated the anatomical connectivity supporting phonological encoding in production by studying the relationship between the integrity of all major white matter tracts across the entire brain and phonological encoding deficits in a group of 69 patients with brain damage. The integrity of each white matter tract was measured both by the percentage of damaged voxels (structural imaging) and the mean fractional anisotropy value (diffusion tensor imaging). The phonological encoding deficits were assessed by various measures in two oral production tasks that involve phonological encoding: the percentage of nonword (phonological) errors in oral picture naming and the accuracy of word reading aloud with word comprehension ability regressed out. We found that the integrity of the left SLF in both the structural and diffusion tensor imaging measures consistently predicted the severity of phonological encoding impairment in the two phonological production tasks. Such effects of the left SLF on phonological production remained significant when a range of potential confounding factors were considered through partial correlation, including total lesion volume, demographic factors, lesions on phonological-relevant grey matter regions, or effects originating from the phonological perception or semantic processes. Our results therefore conclusively demonstrate the central role of the left SLF in phonological encoding in speech production.
Moberget, T; Andersson, S; Lundar, T; Due-Tønnessen, B J; Heldal, A; Endestad, T; Westlye, L T
2015-03-01
The cerebellum is connected to extensive regions of the cerebrum, and cognitive deficits following cerebellar lesions may thus be related to disrupted cerebello-cerebral connectivity. Moreover, early cerebellar lesions could affect distal brain development, effectively inducing long-term changes in brain structure and cognitive function. Here, we characterize supratentorial brain structure and cognitive function in 20 adult patients treated for cerebellar tumours in childhood (mean age at surgery: 7.1 years) and 26 matched controls. Relative to controls, patients showed reduced cognitive function and increased grey matter density in bilateral cingulum, left orbitofrontal cortex and the left hippocampus. Within the patient group, increased grey matter density in these regions was associated with decreased performance on tests of processing speed and executive function. Further, diffusion tensor imaging revealed widespread alterations in white matter microstructure in patients. While current ventricle volume (an index of previous hydrocephalus severity it patients) was associated with grey matter density and white matter microstructure in patients, this could only partially account for the observed group differences in brain structure and cognitive function. In conclusion, our results show distal effects of cerebellar lesions on cerebral integrity and wiring, likely caused by a combination of neurodegenerative processes and perturbed neurodevelopment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Abnormalities in white matter microstructure associated with chronic ketamine use.
Edward Roberts, R; Curran, H Valerie; Friston, Karl J; Morgan, Celia J A
2014-01-01
Ketamine is an N-methyl-D-aspartate (NMDA) receptor antagonist that has been found to induce schizophrenia-type symptoms in humans and is a potent and fast-acting antidepressant. It is also a relatively widespread drug of abuse, particularly in China and the UK. Acute administration has been well characterized, but the effect of extended periods of ketamine use-on brain structure in humans-remains poorly understood. We measured indices of white matter microstructural integrity and connectivity in the brain of 16 ketamine users and 16 poly-drug-using controls, and we used probabilistic tractography to quantify changes in corticosubcortical connectivity associated with ketamine use. We found a reduction in the axial diffusivity profile of white matter in a right hemisphere network of white matter regions in ketamine users compared with controls. Within the ketamine-user group, we found a significant positive association between the connectivity profile between the caudate nucleus and the lateral prefrontal cortex and dissociative experiences. These findings suggest that chronic ketamine use may be associated with widespread disruption of white matter integrity, and white matter pathways between subcortical and prefrontal cortical areas may in part predict individual differences in dissociative experiences due to ketamine use.
Hydrodynamic Hull Damping (Phase 1)
1987-06-01
Administration Mr. Alexander Malakhoff Mr. Thomas W. Allen Director, Structural Integrity Engineering Officer (N7) Subgroup ( SEA 55Y) MR" Sealift Command...Shipping U. S. Coast Guard CONTRACTING OFFICER TECHNICAL REPRESENTATIVES Mr. William J. Siekierka Mr. Greg D. Woods SEA 55Y3 SEA 55Y3 Naval Sea Systems...Command Naval Sea Systems Command SHIP STRUCTURE SUBCOMMITTEE The SHIP STRUCTURE SUBCOMMITTEE acts for the Ship Structure Committee on technical matters
Global and Targeted Pathway Impact of Gliomas on White Matter Integrity Based on Lobar Localization.
Ormond, David R; D'Souza, Shawn; Thompson, John A
2017-09-07
Primary brain tumors comprise 28% of all tumors and 80% of malignant tumors. Pathophysiology of high-grade gliomas includes significant distortion of white matter architecture, necrosis, the breakdown of the blood brain barrier, and increased intracranial pressure. Diffusion tensor imaging (DTI), a diffusion weighted imaging technique, can be used to assess white matter architecture. Use of DTI as a non-invasive pathophysiological tool to analyze glioma impact on white matter microstructure has yet to be fully explored. Preliminary assessment of DTI tractography was done as a measure of intracranial tumor impact on white matter architecture. Specifically, we addressed three questions: 1) whether glioma differentially affects local white matter structure compared to metastasis, 2) whether glioma affects tract integrity of major white matter bundles, 3) whether glioma lobe localization affects tract integrity of different white matter bundles. In this study, we retrospectively investigated preoperative DTI scans from 24 patients undergoing tumor resection. Fiber tractography was estimated using a deterministic fiber tracking algorithm in DSI (diffusion spectrum imaging) Studio. The automatic anatomical labeling (AAL) atlas was used to define the left and right (L/R) hemisphere regions of interest (ROI). In addition, the John Hopkins University (JHU) White Matter Atlas was used to auto-segment major white matter bundle ROIs. For all tracts derived from ROI seed targets, we computed the following parameters: tract number, tract length, fractional anisotropy (FA), axial diffusivity (AD), mean diffusivity (MD), and radial diffusivity (RD). The DTI tractography analysis revealed that white matter integrity in the hemisphere ipsilateral to intracranial tumor was significantly compromised compared to the control contralateral hemisphere. No differences were observed between high vs low-grade gliomas, however, gliomas induced significantly greater white matter degradation than metastases. In addition, targeted analysis of major white matter bundles important for sensory/motor function (i.e., corticospinal tract and superior longitudinal fasciculus) revealed tract-parameter specific susceptibility due to the presence of the tumor. Finally, major tract bundles were differentially affected based on lobar localization of the glioma. These DTI-based tractographic analyses complement findings from gross histopathological examination of glioma impact on neural tissue. Global and focal white matter architecture, ipsilateral to glioma, shows higher rates of degradation or edema - based on DTI tractographic metrics - in comparison to normal brain or metastases. Gliomas, which arise in the parietal lobe, also have a higher negative impact (potentially due to increased edema) on white matter integrity of the superior longitudinal fasciculus(SLF) than those which arise in the frontal lobe. Future studies will focus on using preoperative and postoperative tractography to predict functional deficits following resective surgery.
Bauer, Corinna M.; Hirsch, Gabriella V.; Zajac, Lauren; Koo, Bang-Bon; Collignon, Olivier
2017-01-01
In the setting of profound ocular blindness, numerous lines of evidence demonstrate the existence of dramatic anatomical and functional changes within the brain. However, previous studies based on a variety of distinct measures have often provided inconsistent findings. To help reconcile this issue, we used a multimodal magnetic resonance (MR)-based imaging approach to provide complementary structural and functional information regarding this neuroplastic reorganization. This included gray matter structural morphometry, high angular resolution diffusion imaging (HARDI) of white matter connectivity and integrity, and resting state functional connectivity MRI (rsfcMRI) analysis. When comparing the brains of early blind individuals to sighted controls, we found evidence of co-occurring decreases in cortical volume and cortical thickness within visual processing areas of the occipital and temporal cortices respectively. Increases in cortical volume in the early blind were evident within regions of parietal cortex. Investigating white matter connections using HARDI revealed patterns of increased and decreased connectivity when comparing both groups. In the blind, increased white matter connectivity (indexed by increased fiber number) was predominantly left-lateralized, including between frontal and temporal areas implicated with language processing. Decreases in structural connectivity were evident involving frontal and somatosensory regions as well as between occipital and cingulate cortices. Differences in white matter integrity (as indexed by quantitative anisotropy, or QA) were also in general agreement with observed pattern changes in the number of white matter fibers. Analysis of resting state sequences showed evidence of both increased and decreased functional connectivity in the blind compared to sighted controls. Specifically, increased connectivity was evident between temporal and inferior frontal areas. Decreases in functional connectivity were observed between occipital and frontal and somatosensory-motor areas and between temporal (mainly fusiform and parahippocampus) and parietal, frontal, and other temporal areas. Correlations in white matter connectivity and functional connectivity observed between early blind and sighted controls showed an overall high degree of association. However, comparing the relative changes in white matter and functional connectivity between early blind and sighted controls did not show a significant correlation. In summary, these findings provide complimentary evidence, as well as highlight potential contradictions, regarding the nature of regional and large scale neuroplastic reorganization resulting from early onset blindness. PMID:28328939
Yu, Chunshui; Li, Jun; Liu, Yong; Qin, Wen; Li, Yonghui; Shu, Ni; Jiang, Tianzi; Li, Kuncheng
2008-05-01
It is well known that brain structures correlate with intelligence but the association between the integrity of brain white matter tracts and intelligence in patients with mental retardation (MR) and healthy adults remains unknown. The aims of this study are to investigate whether the integrity of corpus callosum (CC), cingulum, uncinate fasciculus (UF), optic radiation (OR) and corticospinal tract (CST) are damaged in patients with MR, and to determine the correlations between the integrity of these tracts and full scale intelligence quotient (FSIQ) in both patients and controls. Fifteen MR patients and 79 healthy controls underwent intelligence tests and diffusion tensor imaging examinations. According to the FSIQ, all healthy controls were divided into general intelligence (GI: FSIQ<120; n=42) and high intelligence (HI: FSIQ> or =120; n=37) groups. Intelligence was assessed by Chinese Revised Wechsler Adult Intelligence Scale, and white matter tract integrity was assessed by fractional anisotropy (FA). MR patients showed significantly lower FA than healthy controls in the CC, UF, OR and CST. However, GI subjects only demonstrated lower FA than HI subjects in the right UF. Partial correlation analysis controlling for age and sex showed that FSIQ scores were significantly correlated with the FA of the bilateral UF, genu and truncus of CC, bilateral OR and left CST. While FSIQ scores were only significantly correlated with the FA of the right UF when further controlling for group. This study indicate that MR patients show extensive damage in the integrity of the brain white matter tracts, and the right UF is an important neural basis of human intelligence.
Cai, Suping; Jiang, Yuanyuan; Wang, Yubo; Wu, Xiaoming; Ren, Junchan; Lee, Min Seob; Lee, Sunghoon; Huang, Liyu
2017-03-30
Apolipoprotein E (APOE) ε4 allele is the genetic risk factor with the most established evidence for sporadic Alzheimer's disease. Previous neuroimaging studies have demonstrated insufficiently consistent functional and structural changes among healthy APOE ε4 carriers when compared to non-carriers. Here, in a cognitively intact elderly group (a total of 110: 45 APOE ε4 carriers, 65 non-carriers), we aimed to investigate the potential role of APOE ε4 in the modulation of grey matter activity, white matter integrity, and brain morphology before the development of clinically significant symptoms and signs, by methods of: amplitude of low frequency fluctuations and regional homogeneity analysis based on resting state fMRI, and fiber tractography approach based on diffusion tensor imaging. Our results revealed that compared to non-carriers, APOE ε4 carriers showed: (1) an inconsistent pattern of activity change in the default mode network, including increased gray matter activity in anterior cingulate cortex and medial prefrontal cortex and decreased activity in precuneus; (2) lower mean diffusivity (MD) in fibers of corona radiata and corpus callosum, and lower axial diffusivity in genu of corpus callosum; and (3) significant positive correlation between the MD value of the right superior corona radiate and gross white matter volume; significant negative correlation between the MD value of the right superior corona radiate and Mini-Mental State Examination (MMSE) score. Our results suggested that APOE ε4 gene can modulate gray matter activity and white matter integrity in cognitive and memory related regions, even before any clinical or neuropsychic symtoms or signs of imminent disease. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bubuianu, Laurenţiu; Vacaru, Sergiu I.
2018-05-01
We elaborate on the anholonomic frame deformation method, AFDM, for constructing exact solutions with quasiperiodic structure in modified gravity theories, MGTs, and general relativity, GR. Such solutions are described by generic off-diagonal metrics, nonlinear and linear connections and (effective) matter sources with coefficients depending on all spacetime coordinates via corresponding classes of generation and integration functions and (effective) matter sources. There are studied effective free energy functionals and nonlinear evolution equations for generating off-diagonal quasiperiodic deformations of black hole and/or homogeneous cosmological metrics. The physical data for such functionals are stated by different values of constants and prescribed symmetries for defining quasiperiodic structures at cosmological scales, or astrophysical objects in nontrivial gravitational backgrounds some similar forms as in condensed matter physics. It is shown how quasiperiodic structures determined by general nonlinear, or additive, functionals for generating functions and (effective) sources may transform black hole like configurations into cosmological metrics and inversely. We speculate on possible implications of quasiperiodic solutions in dark energy and dark matter physics. Finally, it is concluded that geometric methods for constructing exact solutions consist an important alternative tool to numerical relativity for investigating nonlinear effects in astrophysics and cosmology.
In Vivo Evidence of Reduced Integrity of the Gray-White Matter Boundary in Autism Spectrum Disorder.
Andrews, Derek Sayre; Avino, Thomas A; Gudbrandsen, Maria; Daly, Eileen; Marquand, Andre; Murphy, Clodagh M; Lai, Meng-Chuan; Lombardo, Michael V; Ruigrok, Amber N V; Williams, Steven C; Bullmore, Edward T; The Mrc Aims Consortium; Suckling, John; Baron-Cohen, Simon; Craig, Michael C; Murphy, Declan G M; Ecker, Christine
2017-02-01
Atypical cortical organization and reduced integrity of the gray-white matter boundary have been reported by postmortem studies in individuals with autism spectrum disorder (ASD). However, there are no in vivo studies that examine these particular features of cortical organization in ASD. Hence, we used structural magnetic resonance imaging to examine differences in tissue contrast between gray and white matter in 98 adults with ASD and 98 typically developing controls, to test the hypothesis that individuals with ASD have significantly reduced tissue contrast. More specifically, we examined contrast as a percentage between gray and white matter tissue signal intensities (GWPC) sampled at the gray-white matter boundary, and across different cortical layers. We found that individuals with ASD had significantly reduced GWPC in several clusters throughout the cortex (cluster, P < 0.05). As expected, these reductions were greatest when tissue intensities were sampled close to gray-white matter interface, which indicates a less distinct gray-white matter boundary in ASD. Our in vivo findings of reduced GWPC in ASD are therefore consistent with prior postmortem findings of a less well-defined gray-white matter boundary in ASD. Taken together, these results indicate that GWPC might be utilized as an in vivo proxy measure of atypical cortical microstructural organization in future studies. © The Author 2017. Published by Oxford University Press.
Gauthier, Lynne V; Taub, Edward; Mark, Victor W; Barghi, Ameen; Uswatte, Gitendra
2012-02-01
Although the motor deficit after stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to constraint-induced movement therapy in patients with chronic stroke may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Voxel-based morphometry analysis was performed on MRI scans from 80 patients with chronic stroke to investigate whether variations in gray matter density were correlated with extent of residual motor impairment or with constraint-induced movement therapy-induced motor recovery. Decreased gray matter density in noninfarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced gray matter density in multiple remote brain regions predicted a lesser extent of motor improvement from constraint-induced movement therapy. Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke.
Gauthier, Lynne V.; Taub, Edward; Mark, Victor W.; Barghi, Ameen; Uswatte, Gitendra
2011-01-01
Background and Purpose Although the motor deficit following stroke is clearly due to the structural brain damage that has been sustained, this relationship is attenuated from the acute to chronic phases. We investigated the possibility that motor impairment and response to Constraint-Induced Movement therapy (CI therapy) in chronic stroke patients may relate more strongly to the structural integrity of brain structures remote from the lesion than to measures of overt tissue damage. Methods Voxel-based morphometry (VBM) analysis was performed on MRI scans from 80 chronic stroke patients to investigate whether variations in grey matter density were correlated with extent of residual motor impairment or with CI therapy-induced motor recovery. Results Decreased grey matter density in non-infarcted motor regions was significantly correlated with magnitude of residual motor deficit. In addition, reduced grey matter density in multiple remote brain regions predicted a lesser extent of motor improvement from CI therapy. Conclusions Atrophy in seemingly healthy parts of the brain that are distant from the infarct accounts for at least a portion of the sustained motor deficit in chronic stroke. PMID:22096036
Cardiorespiratory fitness, cognition and brain structure after TIA or minor ischemic stroke.
Boss, H Myrthe; Van Schaik, Sander M; Witkamp, Theo D; Geerlings, Mirjam I; Weinstein, Henry C; Van den Berg-Vos, Renske M
2017-10-01
Background It is not known whether cardiorespiratory fitness is associated with better cognitive performance and brain structure in patients with a TIA or minor ischemic stroke. Aims To examine the association between cardiorespiratory fitness, cognition and brain structure in patients with a TIA and minor stroke. Methods The study population consisted of patients with a TIA or minor stroke with a baseline measurement of the peak oxygen consumption, a MRI scan of brain and neuropsychological assessment. Composite z-scores were calculated for the cognitive domains attention, memory and executive functioning. White matter hyperintensities, microbleeds and lacunes were rated visually. The mean apparent diffusion coefficient was measured in regions of interest in frontal and occipital white matter and in the centrum semiovale as a marker of white matter structure. Normalized brain volumes were estimated by use of Statistical Parametric Mapping. Results In 84 included patients, linear regression analysis adjusted for age, sex and education showed that a higher peak oxygen consumption was associated with higher cognitive z-scores, a larger grey matter volume (B = 0.15 (95% CI 0.05; 0.26)) and a lower mean apparent diffusion coefficient (B = -.004 (95% CI -.007; -.001)). We found no association between the peak oxygen consumption and severe white matter hyperintensities, microbleeds, lacunes and total brain volume. Conclusions These data suggest that cardiorespiratory fitness is associated with better cognitive performance, greater grey matter volume and greater integrity of the white matter in patients with a TIA or minor ischemic stroke. Further prospective trials are necessary to define the effect of cardiorespiratory fitness on cognition and brain structure in patients with TIA or minor stroke.
Effects of exercise on capillaries in the white matter of transgenic AD mice
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-01-01
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478
Effects of exercise on capillaries in the white matter of transgenic AD mice.
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-09-12
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.
Bailey, Jennifer Anne; Zatorre, Robert J; Penhune, Virginia B
2014-04-01
Evidence in animals and humans indicates that there are sensitive periods during development, times when experience or stimulation has a greater influence on behavior and brain structure. Sensitive periods are the result of an interaction between maturational processes and experience-dependent plasticity mechanisms. Previous work from our laboratory has shown that adult musicians who begin training before the age of 7 show enhancements in behavior and white matter structure compared with those who begin later. Plastic changes in white matter and gray matter are hypothesized to co-occur; therefore, the current study investigated possible differences in gray matter structure between early-trained (ET; <7) and late-trained (LT; >7) musicians, matched for years of experience. Gray matter structure was assessed using voxel-wise analysis techniques (optimized voxel-based morphometry, traditional voxel-based morphometry, and deformation-based morphometry) and surface-based measures (cortical thickness, surface area and mean curvature). Deformation-based morphometry analyses identified group differences between ET and LT musicians in right ventral premotor cortex (vPMC), which correlated with performance on an auditory motor synchronization task and with age of onset of musical training. In addition, cortical surface area in vPMC was greater for ET musicians. These results are consistent with evidence that premotor cortex shows greatest maturational change between the ages of 6-9 years and that this region is important for integrating auditory and motor information. We propose that the auditory and motor interactions required by musical practice drive plasticity in vPMC and that this plasticity is greatest when maturation is near its peak.
Disrupted white matter structural connectivity in heroin abusers.
Sun, Yan; Wang, Gui-Bin; Lin, Qi-Xiang; Lu, Lin; Shu, Ni; Meng, Shi-Qiu; Wang, Jun; Han, Hong-Bin; He, Yong; Shi, Jie
2017-01-01
Neurocognitive impairment is one of the factors that put heroin abusers at greater risk for relapse, and deficits in related functional brain connections have been found. However, the alterations in structural brain connections that may underlie these functional and neurocognitive impairments remain largely unknown. In the present study, we investigated topological organization alterations in the structural network of white matter in heroin abusers and examined the relationships between the network changes and clinical measures. We acquired diffusion tensor imaging datasets from 76 heroin abusers and 78 healthy controls. Network-based statistic was applied to identify alterations in interregional white matter connectivity, and graph theory methods were used to analyze the properties of global networks. The participants also completed a battery of neurocognitive measures. One increased subnetwork characterizing widespread abnormalities in structural connectivity was present in heroin users, which mainly composed of default-mode, attentional and visual systems. The connection strength was positively correlated with increases in fractional anisotropy in heroin abusers. Intriguingly, the changes in within-frontal and within-temporal connections in heroin abusers were significantly correlated with daily heroin dosage and impulsivity scores, respectively. These findings suggest that heroin abusers have extensive abnormal white matter connectivity, which may mediate the relationship between heroin dependence and clinical measures. The increase in white matter connectivity may be attributable to the inefficient microstructure integrity of white matter. The present findings extend our understanding of cerebral structural disruptions that underlie neurocognitive and functional deficits in heroin addiction and provide circuit-level markers for this chronic disorder. © 2015 Society for the Study of Addiction.
Shared genetic variance between obesity and white matter integrity in Mexican Americans.
Spieker, Elena A; Kochunov, Peter; Rowland, Laura M; Sprooten, Emma; Winkler, Anderson M; Olvera, Rene L; Almasy, Laura; Duggirala, Ravi; Fox, Peter T; Blangero, John; Glahn, David C; Curran, Joanne E
2015-01-01
Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18-81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m(2)) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h (2) = 0.58), WC (h (2) = 0.57), and FA (h (2) = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = -0.25), body (ρG = -0.30), and splenium (ρG = -0.26) of the corpus callosum, internal capsule (ρG = -0.29), and thalamic radiation (ρG = -0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = -0.39, p = 0.020; ρG = -0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors.
Beyond Traditional Outcome-Based Education.
ERIC Educational Resources Information Center
Spady, William G.; Marshall, Kit J.
1991-01-01
Transitional outcome-based education lies in the twilight zone between traditional subject matter curriculum structures and planning processes and the future-role priorities inherent in transformational OBE. Districts go through incorporation, integration, and redefinition stages in implementing transitional OBE. Transformational OBE's guiding…
Microstructure abnormalities in adolescents with internet addiction disorder.
Yuan, Kai; Qin, Wei; Wang, Guihong; Zeng, Fang; Zhao, Liyan; Yang, Xuejuan; Liu, Peng; Liu, Jixin; Sun, Jinbo; von Deneen, Karen M; Gong, Qiyong; Liu, Yijun; Tian, Jie
2011-01-01
Recent studies suggest that internet addiction disorder (IAD) is associated with structural abnormalities in brain gray matter. However, few studies have investigated the effects of internet addiction on the microstructural integrity of major neuronal fiber pathways, and almost no studies have assessed the microstructural changes with the duration of internet addiction. We investigated the morphology of the brain in adolescents with IAD (N = 18) using an optimized voxel-based morphometry (VBM) technique, and studied the white matter fractional anisotropy (FA) changes using the diffusion tensor imaging (DTI) method, linking these brain structural measures to the duration of IAD. We provided evidences demonstrating the multiple structural changes of the brain in IAD subjects. VBM results indicated the decreased gray matter volume in the bilateral dorsolateral prefrontal cortex (DLPFC), the supplementary motor area (SMA), the orbitofrontal cortex (OFC), the cerebellum and the left rostral ACC (rACC). DTI analysis revealed the enhanced FA value of the left posterior limb of the internal capsule (PLIC) and reduced FA value in the white matter within the right parahippocampal gyrus (PHG). Gray matter volumes of the DLPFC, rACC, SMA, and white matter FA changes of the PLIC were significantly correlated with the duration of internet addiction in the adolescents with IAD. Our results suggested that long-term internet addiction would result in brain structural alterations, which probably contributed to chronic dysfunction in subjects with IAD. The current study may shed further light on the potential brain effects of IAD.
Complementary aspects of diffusion imaging and fMRI; I: structure and function.
Mulkern, Robert V; Davis, Peter E; Haker, Steven J; Estepar, Raul San Jose; Panych, Lawrence P; Maier, Stephan E; Rivkin, Michael J
2006-05-01
Studying the intersection of brain structure and function is an important aspect of modern neuroscience. The development of magnetic resonance imaging (MRI) over the last 25 years has provided new and powerful tools for the study of brain structure and function. Two tools in particular, diffusion imaging and functional MRI (fMRI), are playing increasingly important roles in elucidating the complementary aspects of brain structure and function. In this work, we review basic technical features of diffusion imaging and fMRI for studying the integrity of white matter structural components and for determining the location and extent of cortical activation in gray matter, respectively. We then review a growing body of literature in which the complementary aspects of diffusion imaging and fMRI, applied as separate examinations but analyzed in tandem, have been exploited to enhance our knowledge of brain structure and function.
Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring
Parvaz, Muhammad A.; Maloney, Thomas; Moeller, Scott J.; Malaker, Pias; Konova, Anna B.; Alia-Klein, Nelly; Goldstein, Rita Z.
2014-01-01
Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC–N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations. PMID:24918068
Multimodal evidence of regional midcingulate gray matter volume underlying conflict monitoring.
Parvaz, Muhammad A; Maloney, Thomas; Moeller, Scott J; Malaker, Pias; Konova, Anna B; Alia-Klein, Nelly; Goldstein, Rita Z
2014-01-01
Functional neuroimaging studies have long implicated the mid-cingulate cortex (MCC) in conflict monitoring, but it is not clear whether its structural integrity (i.e., the gray matter volume) influences its conflict monitoring function. In this multimodal study, we used T1-weighted MRI scans as well as event-related potentials (ERPs) to test whether the MCC gray matter volume is associated with the electrocortical marker (i.e., No-go N200 ERP component) of conflict monitoring in healthy individuals. The specificity of such a relationship in health was determined in two ways: by (A) acquiring the same data from individuals with cocaine use disorder (CUD), known to have deficits in executive function including behavioral monitoring; and (B) acquiring the P300 ERP component that is linked with attention allocation and not specifically with conflict monitoring. Twenty-five (39.1 ± 8.4 years; 8 females) healthy individuals and 25 (42.7 ± 5.9 years; 6 females) individuals with CUD underwent a rewarded Go/No-go task during which the ERP data was collected, and they also underwent a structural MRI scan. The whole brain regression analysis showed a significant correlation between MCC structural integrity and the well-known ERP measure of conflict monitoring (N200, but not the P300) in healthy individuals, which was absent in CUD who were characterized by reduced MCC gray matter volume, N200 abnormalities as well as reduced task accuracy. In individuals with CUD instead, the N200 amplitude was associated with drug addiction symptomatology. These results show that the integrity of MCC volume is directly associated with the electrocortical correlates of conflict monitoring in healthy individuals, and such an association breaks down in psychopathologies that impact these brain processes. Taken together, this MCC-N200 association may serve as a biomarker of improved behavioral monitoring processes in diseased populations.
Resende, Elisa de Paula França; Tovar-Moll, Fernanda Freire; Ferreira, Fernanda Meireles; Bramati, Ivanei; de Souza, Leonardo Cruz; Carmona, Karoline Carvalho; Guimarães, Henrique Cerqueira; Carvalho, Viviane Amaral; Barbosa, Maira Tonidandel; Caramelli, Paulo
2017-11-01
The low-educated elderly are a vulnerable population in whom studying the role of white matter integrity on memory may provide insights for understanding how memory declines with aging and disease. Thirty-one participants (22 women), 23 cognitively healthy and eight with cognitive impairment-no dementia, aged 80.4 ± 3.8 years, with 2.2 ± 1.9 years of education, underwent an MRI scan with diffusion tensor imaging (DTI) acquisition. We verified if there were correlations between the performance on the Brief Cognitive Screening Battery (BCSB) and the Rey Auditory Verbal Learning Test (RAVLT) with DTI parameters. The BCSB delayed recall task correlated with frontotemporoparietal connection bundles, with the hippocampal part of the cingulum bilaterally and with the right superior longitudinal fasciculus. The RAVLT learning and delayed recall scores also correlated with the hippocampal part of the cingulum bilaterally. Although preliminary, our study suggests that the integrity of white matter frontotemporoparietal fasciculi seems to play a role in episodic memory performance in the low-educated elderly. This finding opens opportunities to study potential targets for memory decline prevention in vulnerable populations.
van de Vijver, Irene; Ridderinkhof, K Richard; Harsay, Helga; Reneman, Liesbeth; Cavanagh, James F; Buitenweg, Jessika I V; Cohen, Michael X
2016-10-01
Reinforcement learning (RL) is supported by a network of striatal and frontal cortical structures that are connected through white-matter fiber bundles. With age, the integrity of these white-matter connections declines. The role of structural frontostriatal connectivity in individual and age-related differences in RL is unclear, although local white-matter density and diffusivity have been linked to individual differences in RL. Here we show that frontostriatal tract counts in young human adults (aged 18-28), as assessed noninvasively with diffusion-weighted magnetic resonance imaging and probabilistic tractography, positively predicted individual differences in RL when learning was difficult (70% valid feedback). In older adults (aged 63-87), in contrast, learning under both easy (90% valid feedback) and difficult conditions was predicted by tract counts in the same frontostriatal network. Furthermore, network-level analyses showed a double dissociation between the task-relevant networks in young and older adults, suggesting that older adults relied on different frontostriatal networks than young adults to obtain the same task performance. These results highlight the importance of successful information integration across striatal and frontal regions during RL, especially with variable outcomes. Copyright © 2016 Elsevier Inc. All rights reserved.
Structural integrity of frontostriatal connections predicts longitudinal changes in self-esteem.
Chavez, Robert S; Heatherton, Todd F
2017-06-01
Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem 8 months after initial scanning in a sample of 30 young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions, including depression and anxiety.
Structural Integrity of Frontostriatal Connections Predicts Longitudinal Changes in Self-esteem
Chavez, Robert S.; Heatherton, Todd F.
2016-01-01
Diverse neurological and psychiatric conditions are marked by a diminished sense of positive self-regard, and reductions in self-esteem are associated with risk for these disorders. Recent evidence has shown that the connectivity of frontostriatal circuitry reflects individual differences in self-esteem. However, it remains an open question as to whether the integrity of these connections can predict self-esteem changes over larger timescales. Using diffusion magnetic resonance imaging and probabilistic tractography, we demonstrate that the integrity of white matter pathways linking the medial prefrontal cortex to the ventral striatum predicts changes in self-esteem eight months after initial scanning in sample of thirty young adults. Individuals with greater integrity of this pathway during the scanning session at Time 1 showed increased levels of self-esteem at follow-up, whereas individuals with lower integrity showed stifled or decreased levels of self-esteem. These results provide evidence that frontostriatal white matter integrity predicts the trajectory of self-esteem development in early adulthood, which may contribute to blunted levels of positive self-regard seen in multiple psychiatric conditions including depression and anxiety. PMID:26966986
Tewarie, Prejaas; Steenwijk, Martijn D; Brookes, Matthew J; Uitdehaag, Bernard M J; Geurts, Jeroen J G; Stam, Cornelis J; Schoonheim, Menno M
2018-06-01
To understand the heterogeneity of functional connectivity results reported in the literature, we analyzed the separate effects of grey and white matter damage on functional connectivity and networks in multiple sclerosis. For this, we employed a biophysical thalamo-cortical model consisting of interconnected cortical and thalamic neuronal populations, informed and amended by empirical diffusion MRI tractography data, to simulate functional data that mimic neurophysiological signals. Grey matter degeneration was simulated by decreasing within population connections and white matter degeneration by lowering between population connections, based on lesion predilection sites in multiple sclerosis. For all simulations, functional connectivity and functional network organization are quantified by phase synchronization and network integration, respectively. Modeling results showed that both cortical and thalamic grey matter damage induced a global increase in functional connectivity, whereas white matter damage induced an initially increased connectivity followed by a global decrease. Both white and especially grey matter damage, however, induced a decrease in network integration. These empirically informed simulations show that specific topology and timing of structural damage are nontrivial aspects in explaining functional abnormalities in MS. Insufficient attention to these aspects likely explains contradictory findings in multiple sclerosis functional imaging studies so far. © 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Willi, Taylor S; Barr, Alasdair M; Gicas, Kristina; Lang, Donna J; Vila-Rodriguez, Fidel; Su, Wayne; Thornton, Allen E; Leonova, Olga; Giesbrecht, Chantelle J; Procyshyn, Ric M; Rauscher, Alexander; MacEwan, William G; Honer, William G; Panenka, William J
2017-05-01
With sufficient drug exposure, some individuals develop transient psychotic symptoms referred to as 'substance-induced psychosis' (SIP), which closely resemble the symptoms observed in schizophrenia spectrum disorders. The comparability in psychotic presentation between SIP and the schizophrenias suggests that similar underlying neural deficits may contribute to the emergence of psychosis across these disorders. Only a small number of studies have investigated structural alterations in SIP, and all have been limited to volumetric imaging methods, with none controlling for the effects of chronic drug exposure. To investigate white matter abnormalities associated with SIP, diffusion tensor imaging was employed in a group of individuals with cocaine-associated psychosis (CAP; n = 24) and a cocaine-dependent non-psychotic (CDN) group (n = 43). Tract-based spatial statistics was used to investigate group differences in white matter diffusion parameters. The CAP group showed significantly lower fractional anisotropy values than the CDN group (p < 0.05) in voxels within white matter tracts of fronto-temporal, fronto-thalamic and interhemispheric pathways. The greatest differences in white matter integrity were present in the corpus callosum, corona radiata, bilateral superior longitudinal fasciculi and bilateral inferior longitudinal fasciculi. Additionally, the CAP group had voxels of significantly higher radial diffusivity in a subset of the previously mentioned pathways. These results are the first description of white matter integrity abnormalities in a SIP sample and indicate that differences in these pathways may be a shared factor in the expression of different forms of psychosis. © 2016 Society for the Study of Addiction.
Memory binding and white matter integrity in familial Alzheimer’s disease
Saarimäki, Heini; Bastin, Mark E.; Londoño, Ana C.; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon
2015-01-01
Binding information in short-term and long-term memory are functions sensitive to Alzheimer’s disease. They have been found to be affected in patients who meet criteria for familial Alzheimer’s disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer’s disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer’s disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer’s disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer’s disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer’s disease. PMID:25762465
Memory binding and white matter integrity in familial Alzheimer's disease.
Parra, Mario A; Saarimäki, Heini; Bastin, Mark E; Londoño, Ana C; Pettit, Lewis; Lopera, Francisco; Della Sala, Sergio; Abrahams, Sharon
2015-05-01
Binding information in short-term and long-term memory are functions sensitive to Alzheimer's disease. They have been found to be affected in patients who meet criteria for familial Alzheimer's disease due to the mutation E280A of the PSEN1 gene. However, only short-term memory binding has been found to be affected in asymptomatic carriers of this mutation. The neural correlates of this dissociation are poorly understood. The present study used diffusion tensor magnetic resonance imaging to investigate whether the integrity of white matter structures could offer an account. A sample of 19 patients with familial Alzheimer's disease, 18 asymptomatic carriers and 21 non-carrier controls underwent diffusion tensor magnetic resonance imaging, neuropsychological and memory binding assessment. The short-term memory binding task required participants to detect changes across two consecutive screens displaying arrays of shapes, colours, or shape-colour bindings. The long-term memory binding task was a Paired Associates Learning Test. Performance on these tasks were entered into regression models. Relative to controls, patients with familial Alzheimer's disease performed poorly on both memory binding tasks. Asymptomatic carriers differed from controls only in the short-term memory binding task. White matter integrity explained poor memory binding performance only in patients with familial Alzheimer's disease. White matter water diffusion metrics from the frontal lobe accounted for poor performance on both memory binding tasks. Dissociations were found in the genu of corpus callosum which accounted for short-term memory binding impairments and in the hippocampal part of cingulum bundle which accounted for long-term memory binding deficits. The results indicate that white matter structures in the frontal and temporal lobes are vulnerable to the early stages of familial Alzheimer's disease and their damage is associated with impairments in two memory binding functions known to be markers for Alzheimer's disease. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The timing of language learning shapes brain structure associated with articulation.
Berken, Jonathan A; Gracco, Vincent L; Chen, Jen-Kai; Klein, Denise
2016-09-01
We compared the brain structure of highly proficient simultaneous (two languages from birth) and sequential (second language after age 5) bilinguals, who differed only in their degree of native-like accent, to determine how the brain develops when a skill is acquired from birth versus later in life. For the simultaneous bilinguals, gray matter density was increased in the left putamen, as well as in the left posterior insula, right dorsolateral prefrontal cortex, and left and right occipital cortex. For the sequential bilinguals, gray matter density was increased in the bilateral premotor cortex. Sequential bilinguals with better accents also showed greater gray matter density in the left putamen, and in several additional brain regions important for sensorimotor integration and speech-motor control. Our findings suggest that second language learning results in enhanced brain structure of specific brain areas, which depends on whether two languages are learned simultaneously or sequentially, and on the extent to which native-like proficiency is acquired.
The Fornix in Mild Cognitive Impairment and Alzheimer’s Disease
Nowrangi, Milap A.; Rosenberg, Paul B.
2015-01-01
The fornix is an integral white matter bundle located in the medial diencephalon and is part of the limbic structures. It serves a vital role in memory functions and as such has become the subject of recent research emphasis in Alzheimer’s disease (AD) and mild cognitive impairment (MCI). As the characteristic pathological processes of AD progress, structural and functional changes to the medial temporal lobes and other regions become evident years before clinical symptoms are present. Though gray matter atrophy has been the most studied, degradation of white matter structures especially the fornix may precede these and has become detectable with use of diffusion tensor imaging (DTI) and other complimentary imaging techniques. Recent research utilizing DTI measurement of the fornix has shown good discriminability of diagnostic groups, particularly early and preclinical, as well as predictive power for incident MCI and AD. Stimulating and modulating fornix function by the way of DBS has been an exciting new area as pharmacological therapeutics has been slow to develop. PMID:25653617
Madden, David J.; Parks, Emily L.; Tallman, Catherine W.; Boylan, Maria A.; Hoagey, David A.; Cocjin, Sally B.; Packard, Lauren E.; Johnson, Micah A.; Chou, Ying-hui; Potter, Guy G.; Chen, Nan-kuei; Siciliano, Rachel E.; Monge, Zachary A.; Honig, Jesse A.; Diaz, Michele T.
2017-01-01
Age-related decline in fluid cognition can be characterized as a disconnection among specific brain structures, leading to a decline in functional efficiency. The potential sources of disconnection, however, are unclear. We investigated imaging measures of cerebral white matter integrity, resting-state functional connectivity, and white matter hyperintensity (WMH) volume as mediators of the relation between age and fluid cognition, in 145 healthy, community-dwelling adults 19–79 years of age. At a general level of analysis, with a single composite measure of fluid cognition and single measures of each of the three imaging modalities, age exhibited an independent influence on the cognitive and imaging measures, and the imaging variables did not mediate the age-cognition relation. At a more specific level of analysis, resting-state functional connectivity of sensorimotor networks was a significant mediator of the age-related decline in executive function. These findings suggest that different levels of analysis lead to different models of neurocognitive disconnection, and that resting-state functional connectivity, in particular, may contribute to age-related decline in executive function. PMID:28389085
ERIC Educational Resources Information Center
Hestenes, David
2013-01-01
Radical reform in science and mathematics education is needed to prepare citizens for challenges of the emerging knowledge-based global economy. We consider definite proposals to establish: (1) "Standards of science and math literacy" for all students. (2) "Integration of the science curriculum" with structure of matter,…
Rae, Charlotte L; Davies, Geoff; Garfinkel, Sarah N; Gabel, Matt C; Dowell, Nicholas G; Cercignani, Mara; Seth, Anil K; Greenwood, Kathryn E; Medford, Nick; Critchley, Hugo D
2017-11-15
Structural abnormalities across multiple white matter tracts are recognized in people with early psychosis, consistent with dysconnectivity as a neuropathological account of symptom expression. We applied advanced neuroimaging techniques to characterize microstructural white matter abnormalities for a deeper understanding of the developmental etiology of psychosis. Thirty-five first-episode psychosis patients, and 19 healthy controls, participated in a quantitative neuroimaging study using neurite orientation dispersion and density imaging, a multishell diffusion-weighted magnetic resonance imaging technique that distinguishes white matter fiber arrangement and geometry from changes in neurite density. Fractional anisotropy (FA) and mean diffusivity images were also derived. Tract-based spatial statistics compared white matter structure between patients and control subjects and tested associations with age, symptom severity, and medication. Patients with first-episode psychosis had lower regional FA in multiple commissural, corticospinal, and association tracts. These abnormalities predominantly colocalized with regions of reduced neurite density, rather than aberrant fiber bundle arrangement (orientation dispersion index). There was no direct relationship with active symptoms. FA decreased and orientation dispersion index increased with age in patients, but not control subjects, suggesting accelerated effects of white matter geometry change. Deficits in neurite density appear fundamental to abnormalities in white matter integrity in early psychosis. In the first application of neurite orientation dispersion and density imaging in psychosis, we found that processes compromising axonal fiber number, density, and myelination, rather than processes leading to spatial disruption of fiber organization, are implicated in the etiology of psychosis. This accords with a neurodevelopmental origin of aberrant brain-wide structural connectivity predisposing individuals to psychosis. Copyright © 2017 Society of Biological Psychiatry. All rights reserved.
Shared genetic variance between obesity and white matter integrity in Mexican Americans
Spieker, Elena A.; Kochunov, Peter; Rowland, Laura M.; Sprooten, Emma; Winkler, Anderson M.; Olvera, Rene L.; Almasy, Laura; Duggirala, Ravi; Fox, Peter T.; Blangero, John; Glahn, David C.; Curran, Joanne E.
2015-01-01
Obesity is a chronic metabolic disorder that may also lead to reduced white matter integrity, potentially due to shared genetic risk factors. Genetic correlation analyses were conducted in a large cohort of Mexican American families in San Antonio (N = 761, 58% females, ages 18–81 years; 41.3 ± 14.5) from the Genetics of Brain Structure and Function Study. Shared genetic variance was calculated between measures of adiposity [(body mass index (BMI; kg/m2) and waist circumference (WC; in)] and whole-brain and regional measurements of cerebral white matter integrity (fractional anisotropy). Whole-brain average and regional fractional anisotropy values for 10 major white matter tracts were calculated from high angular resolution diffusion tensor imaging data (DTI; 1.7 × 1.7 × 3 mm; 55 directions). Additive genetic factors explained intersubject variance in BMI (heritability, h2 = 0.58), WC (h2 = 0.57), and FA (h2 = 0.49). FA shared significant portions of genetic variance with BMI in the genu (ρG = −0.25), body (ρG = −0.30), and splenium (ρG = −0.26) of the corpus callosum, internal capsule (ρG = −0.29), and thalamic radiation (ρG = −0.31) (all p's = 0.043). The strongest evidence of shared variance was between BMI/WC and FA in the superior fronto-occipital fasciculus (ρG = −0.39, p = 0.020; ρG = −0.39, p = 0.030), which highlights region-specific variation in neural correlates of obesity. This may suggest that increase in obesity and reduced white matter integrity share common genetic risk factors. PMID:25763009
Lithium and GSK3-β Promoter Gene Variants Influence White Matter Microstructure in Bipolar Disorder
Benedetti, Francesco; Bollettini, Irene; Barberi, Ignazio; Radaelli, Daniele; Poletti, Sara; Locatelli, Clara; Pirovano, Adele; Lorenzi, Cristina; Falini, Andrea; Colombo, Cristina; Smeraldi, Enrico
2013-01-01
Lithium is the mainstay for the treatment of bipolar disorder (BD) and inhibits glycogen synthase kinase 3-β (GSK3-β). The less active GSK3-β promoter gene variants have been associated with less detrimental clinical features of BD. GSK3-β gene variants and lithium can influence brain gray matter structure in psychiatric conditions. Diffusion tensor imaging (DTI) measures of white matter (WM) integrity showed widespred disruption of WM structure in BD. In a sample of 70 patients affected by a major depressive episode in course of BD, we investigated the effect of ongoing long-term lithium treatment and GSK3-β promoter rs334558 polymorphism on WM microstructure, using DTI and tract-based spatial statistics with threshold-free cluster enhancement. We report that the less active GSK3-β rs334558*C gene-promoter variants, and the long-term administration of the GSK3-β inhibitor lithium, were associated with increases of DTI measures of axial diffusivity (AD) in several WM fiber tracts, including corpus callosum, forceps major, anterior and posterior cingulum bundle (bilaterally including its hippocampal part), left superior and inferior longitudinal fasciculus, left inferior fronto-occipital fasciculus, left posterior thalamic radiation, bilateral superior and posterior corona radiata, and bilateral corticospinal tract. AD reflects the integrity of axons and myelin sheaths. We suggest that GSK3-β inhibition and lithium could counteract the detrimental influences of BD on WM structure, with specific benefits resulting from effects on specific WM tracts contributing to the functional integrity of the brain and involving interhemispheric, limbic, and large frontal, parietal, and fronto-occipital connections. PMID:22990942
CLUMPY: A code for γ-ray signals from dark matter structures
NASA Astrophysics Data System (ADS)
Charbonnier, Aldée; Combet, Céline; Maurin, David
2012-03-01
We present the first public code for semi-analytical calculation of the γ-ray flux astrophysical J-factor from dark matter annihilation/decay in the Galaxy, including dark matter substructures. The core of the code is the calculation of the line of sight integral of the dark matter density squared (for annihilations) or density (for decaying dark matter). The code can be used in three modes: i) to draw skymaps from the Galactic smooth component and/or the substructure contributions, ii) to calculate the flux from a specific halo (that is not the Galactic halo, e.g. dwarf spheroidal galaxies) or iii) to perform simple statistical operations from a list of allowed DM profiles for a given object. Extragalactic contributions and other tracers of DM annihilation (e.g. positrons, anti-protons) will be included in a second release.
Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni
2015-10-01
Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age. © 2015 Wiley Periodicals, Inc.
FAST-PT: a novel algorithm to calculate convolution integrals in cosmological perturbation theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEwen, Joseph E.; Fang, Xiao; Hirata, Christopher M.
2016-09-01
We present a novel algorithm, FAST-PT, for performing convolution or mode-coupling integrals that appear in nonlinear cosmological perturbation theory. The algorithm uses several properties of gravitational structure formation—the locality of the dark matter equations and the scale invariance of the problem—as well as Fast Fourier Transforms to describe the input power spectrum as a superposition of power laws. This yields extremely fast performance, enabling mode-coupling integral computations fast enough to embed in Monte Carlo Markov Chain parameter estimation. We describe the algorithm and demonstrate its application to calculating nonlinear corrections to the matter power spectrum, including one-loop standard perturbation theorymore » and the renormalization group approach. We also describe our public code (in Python) to implement this algorithm. The code, along with a user manual and example implementations, is available at https://github.com/JoeMcEwen/FAST-PT.« less
Ross, Lars A; Del Bene, Victor A; Molholm, Sophie; Jae Woo, Young; Andrade, Gizely N; Abrahams, Brett S; Foxe, John J
2017-11-01
Three lines of evidence motivated this study. 1) CNTNAP2 variation is associated with autism risk and speech-language development. 2) CNTNAP2 variations are associated with differences in white matter (WM) tracts comprising the speech-language circuitry. 3) Children with autism show impairment in multisensory speech perception. Here, we asked whether an autism risk-associated CNTNAP2 single nucleotide polymorphism in neurotypical adults was associated with multisensory speech perception performance, and whether such a genotype-phenotype association was mediated through white matter tract integrity in speech-language circuitry. Risk genotype at rs7794745 was associated with decreased benefit from visual speech and lower fractional anisotropy (FA) in several WM tracts (right precentral gyrus, left anterior corona radiata, right retrolenticular internal capsule). These structural connectivity differences were found to mediate the effect of genotype on audiovisual speech perception, shedding light on possible pathogenic pathways in autism and biological sources of inter-individual variation in audiovisual speech processing in neurotypicals. Copyright © 2017 Elsevier Inc. All rights reserved.
The semantic anatomical network: Evidence from healthy and brain-damaged patient populations.
Fang, Yuxing; Han, Zaizhu; Zhong, Suyu; Gong, Gaolang; Song, Luping; Liu, Fangsong; Huang, Ruiwang; Du, Xiaoxia; Sun, Rong; Wang, Qiang; He, Yong; Bi, Yanchao
2015-09-01
Semantic processing is central to cognition and is supported by widely distributed gray matter (GM) regions and white matter (WM) tracts. The exact manner in which GM regions are anatomically connected to process semantics remains unknown. We mapped the semantic anatomical network (connectome) by conducting diffusion imaging tractography in 48 healthy participants across 90 GM "nodes," and correlating the integrity of each obtained WM edge and semantic performance across 80 brain-damaged patients. Fifty-three WM edges were obtained whose lower integrity associated with semantic deficits and together with their linked GM nodes constitute a semantic WM network. Graph analyses of this network revealed three structurally segregated modules that point to distinct semantic processing components and identified network hubs and connectors that are central in the communication across the subnetworks. Together, our results provide an anatomical framework of human semantic network, advancing the understanding of the structural substrates supporting semantic processing. © 2015 Wiley Periodicals, Inc.
De Witte, Nele A J; Mueller, Sven C
2017-12-01
Anxiety and depression are associated with altered communication within global brain networks and between these networks and the amygdala. Functional connectivity studies demonstrate an effect of anxiety and depression on four critical brain networks involved in top-down attentional control (fronto-parietal network; FPN), salience detection and error monitoring (cingulo-opercular network; CON), bottom-up stimulus-driven attention (ventral attention network; VAN), and default mode (default mode network; DMN). However, structural evidence on the white matter (WM) connections within these networks and between these networks and the amygdala is lacking. The current study in a large healthy sample (n = 483) observed that higher trait anxiety-depression predicted lower WM integrity in the connections between amygdala and specific regions of the FPN, CON, VAN, and DMN. We discuss the possible consequences of these anatomical alterations for cognitive-affective functioning and underscore the need for further theory-driven research on individual differences in anxiety and depression on brain structure.
Three layer functional model and energy exchange concept of aging process
Mihajlovic, William
2006-01-01
Relying on a certain degree of abstraction, we can propose that no particular distinction exists between animate or living matter and inanimate matter. While focusing attention on some specifics, the dividing line between the two can be drawn. The most apparent distinction is in the level of structural and functional organization with the dissimilar streams of ‘energy flow’ between the observed entity and the surrounding environment. In essence, living matter is created from inanimate matter which is organized to contain internal intense energy processes and maintain lower intensity energy exchange processes with the environment. Taking internal and external energy processes into account, we contend in this paper that living matter can be referred to as matter of dissipative structure, with this structure assumed to be a common quality of all living creatures and living matter in general. Interruption of internal energy conversion processes and terminating the controlled energy exchange with the environment leads to degeneration of dissipative structure and reduction of the same to inanimate matter, (gas, liquid and/or solid inanimate substances), and ultimately what can be called ‘death.’ This concept of what we call dissipative nature can be extended from living organisms to social groups of animals, to mankind. An analogy based on the organization of matter provides a basis for a functional model of living entities. The models relies on the parallels among the three central structures of any cell (nucleus, cytoplasm and outer membrane) and the human body (central organs, body fluids along with the connective tissues, and external skin integument). This three-part structural organization may be observed almost universally in nature. It can be observed from the atomic structure to the planetary and intergalactic organizations. This similarity is corroborated by the membrane theory applied to living organisms. According to the energy nature of living matter and the proposed functional model, the decreased integrity of a human body's external envelope membrane is a first cause of the structural degradation and aging of the entire organism. The aging process than progresses externally to internally, as in single cell organisms, suggesting that much of the efforts towards the restoration and maintenance of the mechanisms responsible for structural development should be focused accordingly, on the membrane, i.e., the skin. Numerous reports indicate that all parts of the human body, like: bones, blood with blood vessels, muscles, skin, and so on, have some ability for restoration. Therefore, actual revival of not only aging tissue of the human body's membrane, but the entire human body enclosed within, with all internal organs, might be expected. We assess several aging theories within the context of our model and provide suggestions on how to activate the body's own anti-aging mechanisms and increase longevity. This paper presents some analogies and some distinctions that exist between the living dissipative structure matter and inanimate matter, discusses the aging process and proposes certain aging reversal solutions. PMID:23598683
Concurrent white matter bundles and grey matter networks using independent component analysis.
O'Muircheartaigh, Jonathan; Jbabdi, Saad
2018-04-15
Developments in non-invasive diffusion MRI tractography techniques have permitted the investigation of both the anatomy of white matter pathways connecting grey matter regions and their structural integrity. In parallel, there has been an expansion in automated techniques aimed at parcellating grey matter into distinct regions based on functional imaging. Here we apply independent component analysis to whole-brain tractography data to automatically extract brain networks based on their associated white matter pathways. This method decomposes the tractography data into components that consist of paired grey matter 'nodes' and white matter 'edges', and automatically separates major white matter bundles, including known cortico-cortical and cortico-subcortical tracts. We show how this framework can be used to investigate individual variations in brain networks (in terms of both nodes and edges) as well as their associations with individual differences in behaviour and anatomy. Finally, we investigate correspondences between tractography-based brain components and several canonical resting-state networks derived from functional MRI. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Pfefferbaum, Adolf; Adalsteinsson, Elfar; Sullivan, Edith V
2006-07-01
Chronic alcohol abuse is a ubiquitous health and societal problem, with a growing prevalence in the older population. Alcoholism is a source of substantial deterioration in brain tissue and has been consistently observed in vivo and postmortem in white matter. To quantify the potential compounded effect of age and alcoholism, we used conventional structural MRI and diffusion tensor imaging (DTI) to examine the macrostructural and microstructural integrity of the corpus callosum, one of the most prominent white matter structures of the brain, in 131 adults, age 27-75 years. Compared with the 74 controls, the 40 alcoholic men and 17 alcoholic women, who were abstinent from alcohol for an average of 3 months, showed similar patterns and extents of callosal shrinkage, which was greatest in the genu and body and less prominent in the splenium. Microstructural integrity was measured with DTI as fractional anisotropy, an index of intravoxel orientational coherence of white matter fibers, and bulk mean diffusivity, an index of the amount of intravoxel water motility. The macrostructural shrinkage was accompanied by abnormalities in anisotropy and diffusivity of the microstructural environment of these callosal regions, indicative of disruption of structural constituents of local brain white matter. Correlational analyses revealed an age-alcohol interaction, where older alcoholics had smaller genu and splenium and higher diffusivity in these regions than younger alcoholics. Significant correlations between regional MRI and DTI measures and performance on working memory, visuospatial ability, and gait and balance provided evidence for the functional ramifications of the callosal abnormalities in the alcoholics. Thus, despite abstinence from alcohol, the interaction of age and recent alcoholism history exerted a compounded untoward effect on callosal macrostructure and microstructure.
The social neuroscience and the theory of integrative levels.
Bello-Morales, Raquel; Delgado-García, José María
2015-01-01
The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not.
The social neuroscience and the theory of integrative levels
Bello-Morales, Raquel; Delgado-García, José María
2015-01-01
The theory of integrative levels provides a general description of the evolution of matter through successive orders of complexity and integration. Along its development, material forms pass through different levels of organization, such as physical, chemical, biological or sociological. The appearance of novel structures and dynamics during this process of development of matter in complex systems has been called emergence. Social neuroscience (SN), an interdisciplinary field that aims to investigate the biological mechanisms that underlie social structures, processes, and behavior and the influences between social and biological levels of organization, has affirmed the necessity for including social context as an essential element to understand the human behavior. To do this, SN proposes a multilevel integrative approach by means of three principles: multiple determinism, nonadditive determinism and reciprocal determinism. These theoretical principles seem to share the basic tenets of the theory of integrative levels but, in this paper, we aim to reveal the differences among both doctrines. First, SN asserts that combination of neural and social variables can produce emergent phenomena that would not be predictable from a neuroscientific or social psychological analysis alone; SN also suggests that to achieve a complete understanding of social structures we should use an integrative analysis that encompasses levels of organization ranging from the genetic level to the social one; finally, SN establishes that there can be mutual influences between biological and social factors in determining behavior, accepting, therefore, a double influence, upward from biology to social level, and downward, from social level to biology. In contrast, following the theory of integrative levels, emergent phenomena are not produced by the combination of variables from two levels, but by the increment of complexity at one level. In addition, the social behavior and structures might be contemplated not as the result of mixing or summing social and biological influences, but as emergent phenomena that should be described with its own laws. Finally, following the integrative levels view, influences upward, from biology to social level, and downward, from social level to biology, might not be equivalent, since the bottom-up processes are emergent and the downward causation (DC) is not. PMID:26578909
Ziegler, G; Ridgway, G R; Dahnke, R; Gaser, C
2014-08-15
Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18-94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Ziegler, G.; Ridgway, G.R.; Dahnke, R.; Gaser, C.
2014-01-01
Structural imaging based on MRI is an integral component of the clinical assessment of patients with potential dementia. We here propose an individualized Gaussian process-based inference scheme for clinical decision support in healthy and pathological aging elderly subjects using MRI. The approach aims at quantitative and transparent support for clinicians who aim to detect structural abnormalities in patients at risk of Alzheimer's disease or other types of dementia. Firstly, we introduce a generative model incorporating our knowledge about normative decline of local and global gray matter volume across the brain in elderly. By supposing smooth structural trajectories the models account for the general course of age-related structural decline as well as late-life accelerated loss. Considering healthy subjects' demography and global brain parameters as informative about normal brain aging variability affords individualized predictions in single cases. Using Gaussian process models as a normative reference, we predict new subjects' brain scans and quantify the local gray matter abnormalities in terms of Normative Probability Maps (NPM) and global z-scores. By integrating the observed expectation error and the predictive uncertainty, the local maps and global scores exploit the advantages of Bayesian inference for clinical decisions and provide a valuable extension of diagnostic information about pathological aging. We validate the approach in simulated data and real MRI data. We train the GP framework using 1238 healthy subjects with ages 18–94 years, and predict in 415 independent test subjects diagnosed as healthy controls, Mild Cognitive Impairment and Alzheimer's disease. PMID:24742919
Fling, Brett W.; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H.; Horak, Fay B.
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere’s proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system. PMID:25368564
Fling, Brett W; Dutta, Geetanjali Gera; Schlueter, Heather; Cameron, Michelle H; Horak, Fay B
2014-01-01
Mobility and balance impairments are a hallmark of multiple sclerosis (MS), affecting nearly half of patients at presentation and resulting in decreased activity and participation, falls, injuries, and reduced quality of life. A growing body of work suggests that balance impairments in people with mild MS are primarily the result of deficits in proprioception, the ability to determine body position in space in the absence of vision. A better understanding of the pathophysiology of balance disturbances in MS is needed to develop evidence-based rehabilitation approaches. The purpose of the current study was to (1) map the cortical proprioceptive pathway in vivo using diffusion-weighted imaging and (2) assess associations between proprioceptive pathway white matter microstructural integrity and performance on clinical and behavioral balance tasks. We hypothesized that people with MS (PwMS) would have reduced integrity of cerebral proprioceptive pathways, and that reduced white matter microstructure within these tracts would be strongly related to proprioceptive-based balance deficits. We found poorer balance control on proprioceptive-based tasks and reduced white matter microstructural integrity of the cortical proprioceptive tracts in PwMS compared with age-matched healthy controls (HC). Microstructural integrity of this pathway in the right hemisphere was also strongly associated with proprioceptive-based balance control in PwMS and controls. Conversely, while white matter integrity of the right hemisphere's proprioceptive pathway was significantly correlated with overall balance performance in HC, there was no such relationship in PwMS. These results augment existing literature suggesting that balance control in PwMS may become more dependent upon (1) cerebellar-regulated proprioceptive control, (2) the vestibular system, and/or (3) the visual system.
Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging
Madden, David J.; Bennett, Ilana J.; Song, Allen W.
2009-01-01
The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281
2012-12-14
structure to take on intelligence collection and fusion, the State Department has historically not been a collector of intelligence as a matter of...Government, specifically the CIA and NSA, but their mission, structure and capability will not be addressed in this thesis. It is understood, though...provided firsthand accounts of aspects of DoD and State Department coordination or provided the necessary information about current structure and
Integrating DNA strand-displacement circuitry with DNA tile self-assembly
Zhang, David Yu; Hariadi, Rizal F.; Choi, Harry M.T.; Winfree, Erik
2013-01-01
DNA nanotechnology has emerged as a reliable and programmable way of controlling matter at the nanoscale through the specificity of Watson–Crick base pairing, allowing both complex self-assembled structures with nanometer precision and complex reaction networks implementing digital and analog behaviors. Here we show how two well-developed frameworks, DNA tile self-assembly and DNA strand-displacement circuits, can be systematically integrated to provide programmable kinetic control of self-assembly. We demonstrate the triggered and catalytic isothermal self-assembly of DNA nanotubes over 10 μm long from precursor DNA double-crossover tiles activated by an upstream DNA catalyst network. Integrating more sophisticated control circuits and tile systems could enable precise spatial and temporal organization of dynamic molecular structures. PMID:23756381
Loss of integrity and atrophy in cingulate structural covariance networks in Parkinson's disease.
de Schipper, Laura J; van der Grond, Jeroen; Marinus, Johan; Henselmans, Johanna M L; van Hilten, Jacobus J
2017-01-01
In Parkinson's disease (PD), the relation between cortical brain atrophy on MRI and clinical progression is not straightforward. Determination of changes in structural covariance networks - patterns of covariance in grey matter density - has shown to be a valuable technique to detect subtle grey matter variations. We evaluated how structural network integrity in PD is related to clinical data. 3 Tesla MRI was performed in 159 PD patients. We used nine standardized structural covariance networks identified in 370 healthy subjects as a template in the analysis of the PD data. Clinical assessment comprised motor features (Movement Disorder Society-Unified Parkinson's Disease Rating Scale; MDS-UPDRS motor scale) and predominantly non-dopaminergic features (SEverity of Non-dopaminergic Symptoms in Parkinson's Disease; SENS-PD scale: postural instability and gait difficulty, psychotic symptoms, excessive daytime sleepiness, autonomic dysfunction, cognitive impairment and depressive symptoms). Voxel-based analyses were performed within networks significantly associated with PD. The anterior and posterior cingulate network showed decreased integrity, associated with the SENS-PD score, p = 0.001 (β = - 0.265, η p 2 = 0.070) and p = 0.001 (β = - 0.264, η p 2 = 0.074), respectively. Of the components of the SENS-PD score, cognitive impairment and excessive daytime sleepiness were associated with atrophy within both networks. We identified loss of integrity and atrophy in the anterior and posterior cingulate networks in PD patients. Abnormalities of both networks were associated with predominantly non-dopaminergic features, specifically cognition and excessive daytime sleepiness. Our findings suggest that (components of) the cingulate networks display a specific vulnerability to the pathobiology of PD and may operate as interfaces between networks involved in cognition and alertness.
White Matter Correlates of Auditory Comprehension Outcomes in Chronic Post-Stroke Aphasia
Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Zeng, Jinsheng; Turkeltaub, Peter E.
2017-01-01
Neuroimaging studies have shown that speech comprehension involves a number of widely distributed regions within the frontal and temporal lobes. We aimed to examine the differential contributions of white matter connectivity to auditory word and sentence comprehension in chronic post-stroke aphasia. Structural and diffusion MRI data were acquired on 40 patients with chronic post-stroke aphasia. A battery of auditory word and sentence comprehension tests were administered to all the patients. Tract-based spatial statistics were used to identify areas in which white matter integrity related to specific comprehension deficits. Relevant tracts were reconstructed using probabilistic tractography in healthy older participants, and the mean values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the entire tracts were examined in relation to comprehension scores. Anterior temporal white matter integrity loss and involvement of the uncinate fasciculus related to word-level comprehension deficits (RFA = 0.408, P = 0.012; RMD = −0.429, P = 0.008; RAD = −0.424, P = 0.009; RRD = −0.439, P = 0.007). Posterior temporal white matter integrity loss and involvement of the inferior longitudinal fasciculus related to sentence-level comprehension deficits (RFA = 0.382, P = 0.02; RMD = −0.461, P = 0.004; RAD = −0.457, P = 0.004; RRD = −0.453, P = 0.005). Loss of white matter integrity in the inferior fronto-occipital fasciculus related to both word- and sentence-level comprehension (word-level scores: RFA = 0.41, P = 0.012; RMD = −0.447, P = 0.006; RAD = −0.489, P = 0.002; RRD = −0.432, P = 0.008; sentence-level scores: RFA = 0.409, P = 0.012; RMD = −0.413, P = 0.011; RAD = −0.408, P = 0.012; RRD = −0.413, P = 0.011). Lesion overlap, but not white matter integrity, in the arcuate fasciculus related to sentence-level comprehension deficits. These findings suggest that word-level comprehension outcomes in chronic post-stroke aphasia rely primarily on anterior temporal lobe pathways, whereas sentence-level comprehension relies on more widespread pathways including the posterior temporal lobe. PMID:28275366
Lyall, Amanda E; Savadjiev, Peter; Del Re, Elisabetta C; Seitz, Johanna; O'Donnell, Lauren J; Westin, Carl-Fredrik; Mesholam-Gately, Raquelle I; Petryshen, Tracey; Wojcik, Joanne D; Nestor, Paul; Niznikiewicz, Margaret; Goldstein, Jill; Seidman, Larry J; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek
2018-04-03
Schizophrenia has been characterized as a neurodevelopmental disorder, with structural brain abnormalities reported at all stages. However, at present, it remains unclear whether gray and white matter abnormalities represent related or independent pathologies in schizophrenia. In this study, we present findings from an integrative analysis exploring the morphological relationship between gray and white matter in 45 schizophrenia participants and 49 healthy controls. We utilized mutual information (MI), a measure of how much information two variables share, to assess the morphological dependence between gray and white matter in three segments of the corpus callsoum, and the gray matter regions these segments connect: (1) the genu and the left and right rostral middle frontal gyrus (rMFG), (2) the isthmus and the left and right superior temporal gyrus (STG), (3) the splenium and the left and right lateral occipital gyrus (LOG). We report significantly reduced MI between white matter tract dispersion of the right hemispheric callosal connections to the STG and both cortical thickness and area in the right STG in schizophrenia patients, despite a lack of group differences in cortical thickness, surface area, or dispersion. We believe that this reduction in morphological dependence between gray and white matter may reflect a possible decoupling of the developmental processes that shape morphological features of white and gray matter early in life. The present study also demonstrates the importance of studying the relationship between gray and white matter measures, as opposed to restricting analyses to gray and white matter measures independently.
Lyall, D M; Harris, S E; Bastin, M E; Muñoz Maniega, S; Murray, C; Lutz, M W; Saunders, A M; Roses, A D; Valdés Hernández, M del C; Royle, N A; Starr, J M; Porteous, D J; Wardlaw, J M; Deary, I J
2014-09-23
Genetic polymorphisms in the APOE ɛ and TOMM40 '523' poly-T repeat gene loci have been associated with significantly increased risk of Alzheimer's disease. This study investigated the independent effects of these polymorphisms on human cognitive ageing, and the extent to which nominally significant associations with cognitive ageing were mediated by previously reported genetic associations with brain white matter tract integrity in this sample. Most participants in the Lothian Birth Cohort 1936 completed a reasoning-type intelligence test at age 11 years, and detailed cognitive/physical assessments and structural diffusion tensor brain magnetic resonance imaging at a mean age of 72.70 years (s.d.=0.74). Participants were genotyped for APOE ɛ2/ɛ3/ɛ4 status and TOMM40 523 poly-T repeat length. Data were available from 758-814 subjects for cognitive analysis, and 522-543 for mediation analysis with brain imaging data. APOE genotype was significantly associated with performance on several different tests of cognitive ability, including general factors of intelligence, information processing speed and memory (raw P-values all<0.05), independently of childhood IQ and vascular disease history. Formal tests of mediation showed that several significant APOE-cognitive ageing associations--particularly those related to tests of information processing speed--were partially mediated by white matter tract integrity. TOMM40 523 genotype was not associated with cognitive ageing. A range of brain phenotypes are likely to form the anatomical basis for significant associations between APOE genotype and cognitive ageing, including white matter tract microstructural integrity.
Lyall, D M; Harris, S E; Bastin, M E; Muñoz Maniega, S; Murray, C; Lutz, M W; Saunders, A M; Roses, A D; Valdés Hernández, M del C; Royle, N A; Starr, J M; Porteous, D J; Wardlaw, J M; Deary, I J
2014-01-01
Genetic polymorphisms in the APOE ɛ and TOMM40 ‘523' poly-T repeat gene loci have been associated with significantly increased risk of Alzheimer's disease. This study investigated the independent effects of these polymorphisms on human cognitive ageing, and the extent to which nominally significant associations with cognitive ageing were mediated by previously reported genetic associations with brain white matter tract integrity in this sample. Most participants in the Lothian Birth Cohort 1936 completed a reasoning-type intelligence test at age 11 years, and detailed cognitive/physical assessments and structural diffusion tensor brain magnetic resonance imaging at a mean age of 72.70 years (s.d.=0.74). Participants were genotyped for APOE ɛ2/ɛ3/ɛ4 status and TOMM40 523 poly-T repeat length. Data were available from 758–814 subjects for cognitive analysis, and 522–543 for mediation analysis with brain imaging data. APOE genotype was significantly associated with performance on several different tests of cognitive ability, including general factors of intelligence, information processing speed and memory (raw P-values all<0.05), independently of childhood IQ and vascular disease history. Formal tests of mediation showed that several significant APOE-cognitive ageing associations—particularly those related to tests of information processing speed—were partially mediated by white matter tract integrity. TOMM40 523 genotype was not associated with cognitive ageing. A range of brain phenotypes are likely to form the anatomical basis for significant associations between APOE genotype and cognitive ageing, including white matter tract microstructural integrity. PMID:25247594
Qi, Shun; Mu, Yun-Feng; Cui, Long-Biao; Li, Rong; Shi, Mei; Liu, Ying; Xu, Jun-Qing; Zhang, Jian; Yang, Jian; Yin, Hong
2016-02-01
Previous studies have indicated regional abnormalities of both gray and white matter in amblyopia. However, alterations of cortical thickness associated with changes in white matter integrity have rarely been reported. In this study, structural magnetic resonance imaging and diffusion tensor imaging (DTI) data were obtained from 15 children with anisometropic amblyopia and 15 age- and gender-matched children with normal sight. Combining DTI and surface-based morphometry, we examined a potential linkage between disrupted white matter integrity and altered cortical thickness. The fractional anisotropy (FA) values in the optic radiations (ORs) of children with anisometropic amblyopia were lower than in controls (P < 0.05). The cortical thickness in amblyopic children was lower than controls in the following subregions: lingual cortex, lateral occipitotemporal gyrus, cuneus, occipital lobe, inferior parietal lobe, and temporal lobe (P < 0.05, corrected), but was higher in the calcarine gyrus (P < 0.05, corrected). Node-by-node correlation analysis of changes in cortical thickness revealed a significant association between a lower FA value in the OR and diminished cortical thickness in the following subregions: medial lingual cortex, lateral occipitotemporal gyrus, lateral, superior, and medial occipital cortex, and lunate cortex. We also found a relationship between changes of cortical thickness and white matter OR integrity in amblyopia. These findings indicate that developmental changes occur simultaneously in the OR and visual cortex in amblyopia, and provide key information on complex damage of brain networks in anisometropic amblyopia. Our results also support the hypothesis that the pathogenesis of anisometropic amblyopia is neurodevelopmental.
2013-01-01
Objective: The present study investigates associations between brain white matter tract integrity and cognitive abilities in community-dwelling older people (N = 655). We explored two potential confounds of white matter tract−cognition associations in later life: (a) whether the associations between tracts and specific cognitive abilities are accounted for by general cognitive ability (g); and (b) how the presence of atrophy and white matter lesions affect these associations. Method: Tract integrity was determined using quantitative diffusion magnetic resonance imaging tractography (tract-averaged fractional anisotropy [FA]). Using confirmatory factor analysis, we compared first-order and bifactor models to investigate whether specific tract-ability associations were accounted for by g. Results: Significant associations were found between g and FA in bilateral anterior thalamic radiations (r range: .16−.18, p < .01), uncinate (r range: .19−.26, p < .001), arcuate fasciculi (r range: .11−.12, p < .05), and the splenium of corpus callosum (r = .14, p < .01). After controlling for g within the bifactor model, some significant specific cognitive domain associations remained. Results also suggest that the primary effects of controlling for whole brain integrity were on g associations, not specific abilities. Conclusion: Results suggest that g accounts for most of, but not all, the tract−cognition associations in the current data. When controlling for age-related overall brain structural changes, only minor attenuations of the tract−cognition associations were found, and these were primarily with g. In totality, the results highlight the importance of controlling for g when investigating associations between specific cognitive abilities and neuropsychology variables. PMID:23937481
Callosal Function in Pediatric Traumatic Brain Injury Linked to Disrupted White Matter Integrity
Dennis, Emily L.; Ellis, Monica U.; Marion, Sarah D.; Jin, Yan; Moran, Lisa; Olsen, Alexander; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Asarnow, Robert F.
2015-01-01
Traumatic brain injury (TBI) often results in traumatic axonal injury and white matter (WM) damage, particularly to the corpus callosum (CC). Damage to the CC can lead to impaired performance on neurocognitive tasks, but there is a high degree of heterogeneity in impairment following TBI. Here we examined the relation between CC microstructure and function in pediatric TBI. We used high angular resolution diffusion-weighted imaging (DWI) to evaluate the structural integrity of the CC in humans following brain injury in a sample of 32 children (23 males and 9 females) with moderate-to-severe TBI (msTBI) at 1–5 months postinjury, compared with well matched healthy control children. We assessed CC function through interhemispheric transfer time (IHTT) as measured using event-related potentials (ERPs), and related this to DWI measures of WM integrity. Finally, the relation between DWI and IHTT results was supported by additional results of neurocognitive performance assessed using a single composite performance scale. Half of the msTBI participants (16 participants) had significantly slower IHTTs than the control group. This slow IHTT group demonstrated lower CC integrity (lower fractional anisotropy and higher mean diffusivity) and poorer neurocognitive functioning than both the control group and the msTBI group with normal IHTTs. Lower fractional anisotropy—a common sign of impaired WM—and slower IHTTs also predicted poor neurocognitive function. This study reveals that there is a subset of pediatric msTBI patients during the post-acute phase of injury who have markedly impaired CC functioning and structural integrity that is associated with poor neurocognitive functioning. SIGNIFICANCE STATEMENT Traumatic brain injury (TBI) is the primary cause of death and disability in children and adolescents. There is considerable heterogeneity in postinjury outcome, which is only partially explained by injury severity. Imaging biomarkers may help explain some of this variance, as diffusion weighted imaging is sensitive to the white matter disruption that is common after injury. The corpus callosum (CC) is one of the most commonly reported areas of disruption. In this multimodal study, we discovered a divergence within our pediatric moderate-to-severe TBI sample 1–5 months postinjury. A subset of the TBI sample showed significant impairment in CC function, which is supported by additional results showing deficits in CC structural integrity. This subset also had poorer neurocognitive functioning. Our research sheds light on postinjury heterogeneity. PMID:26180196
Integral equation model for warm and hot dense mixtures.
Starrett, C E; Saumon, D; Daligault, J; Hamel, S
2014-09-01
In a previous work [C. E. Starrett and D. Saumon, Phys. Rev. E 87, 013104 (2013)] a model for the calculation of electronic and ionic structures of warm and hot dense matter was described and validated. In that model the electronic structure of one atom in a plasma is determined using a density-functional-theory-based average-atom (AA) model and the ionic structure is determined by coupling the AA model to integral equations governing the fluid structure. That model was for plasmas with one nuclear species only. Here we extend it to treat plasmas with many nuclear species, i.e., mixtures, and apply it to a carbon-hydrogen mixture relevant to inertial confinement fusion experiments. Comparison of the predicted electronic and ionic structures with orbital-free and Kohn-Sham molecular dynamics simulations reveals excellent agreement wherever chemical bonding is not significant.
Kang, Dongdong; Dai, Jiayu
2018-02-21
The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.
NASA Astrophysics Data System (ADS)
Kang, Dongdong; Dai, Jiayu
2018-02-01
The structural, thermodynamic and transport properties of warm dense matter (WDM) are crucial to the fields of astrophysics and planet science, as well as inertial confinement fusion. WDM refers to the states of matter in a regime of temperature and density between cold condensed matter and hot ideal plasmas, where the density is from near-solid up to ten times solid density, and the temperature between 0.1 and 100 eV. In the WDM regime, matter exhibits moderately or strongly coupled, partially degenerate properties. Therefore, the methods used to deal with condensed matter and isolated atoms need to be properly validated for WDM. It is therefore a big challenge to understand WDM within a unified theoretical description with reliable accuracy. Here, we review the progress in the theoretical study of WDM with state-of-the-art simulations, i.e. quantum Langevin molecular dynamics and first principles path integral molecular dynamics. The related applications for WDM are also included.
Yang, Junyi; Tian, Xue; Wei, Dongtao; Liu, Huijuan; Zhang, Qinglin; Wang, Kangcheng; Chen, Qunlin; Qiu, Jiang
2016-06-01
Individual differences in self-monitoring, which are the capability to adjust behavior to adapt to social situations, influence a wide range of social behaviors. However, understanding of focal differences in brain structures related to individual self-monitoring is minimal, particularly when micro and macro structures are considered simultaneously. The present study investigates the relationship between self-monitoring and brain structure in a relatively large sample of young adults. Voxel-based morphometry (VBM) revealed a significant positive correlation between self-monitoring and gray matter volume in the dorsal cingulate anterior cortex (dACC), dorsal lateral prefrontal cortex (DLPFC), and bilateral ventral striatum (VS). Further analysis revealed a significant negative correlation between self-monitoring and white matter (WM) integrity, as indexed by fractional anisotropy (FA) in the anterior cingulum (ACG) bundle. Moreover, there was a significant positive correlation between self-monitoring and mean radius diffusion (RD). These results shed light on the structural neural basis of variation in self-monitoring.
The effects of bilingualism on the white matter structure of the brain
Pliatsikas, Christos; Moschopoulou, Elisavet; Saddy, James Douglas
2015-01-01
Recent studies suggest that learning and using a second language (L2) can affect brain structure, including the structure of white matter (WM) tracts. This observation comes from research looking at early and older bilingual individuals who have been using both their first and second languages on an everyday basis for many years. This study investigated whether young, highly immersed late bilinguals would also show structural effects in the WM that can be attributed to everyday L2 use, irrespective of critical periods or the length of L2 learning. Our Tract-Based Spatial Statistics analysis revealed higher fractional anisotropy values for bilinguals vs. monolinguals in several WM tracts that have been linked to language processing and in a pattern closely resembling the results reported for older and early bilinguals. We propose that learning and actively using an L2 after childhood can have rapid dynamic effects on WM structure, which in turn may assist in preserving WM integrity in older age. PMID:25583505
Mapping population-based structural connectomes.
Zhang, Zhengwu; Descoteaux, Maxime; Zhang, Jingwen; Girard, Gabriel; Chamberland, Maxime; Dunson, David; Srivastava, Anuj; Zhu, Hongtu
2018-05-15
Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects. Copyright © 2018 Elsevier Inc. All rights reserved.
Methamphetamine-induced increases in putamen gray matter associate with inhibitory control.
Groman, Stephanie M; Morales, Angelica M; Lee, Buyean; London, Edythe D; Jentsch, James David
2013-10-01
Problematic drug use is associated with difficulty in exerting self-control over behaviors, and this difficulty may be a consequence of atypical morphometric characteristics that are exhibited by drug-experienced individuals. The extent to which these structural abnormalities result from drug use or reflect neurobiological risk factors that predate drug use, however, is unknown. The purpose of this study is to determine how methamphetamine affects corticostriatal structure and how drug-induced changes relate to alterations in inhibitory control. Structural magnetic resonance images and positron emission tomography (PET) scans, assessing dopamine D₂-like receptor and transporter availability, were acquired in monkeys trained to acquire, retain, and reverse three-choice visual discrimination problems before and after exposure to an escalating dose regimen of methamphetamine (or saline, as a control). Voxel-based morphometry was used to compare changes in corticostriatal gray matter between methamphetamine- and saline-exposed monkeys. The change in gray matter before and after the dosing regimen was compared to the change in the behavioral performance and in dopaminergic markers measured with PET. Methamphetamine exposure, compared to saline, increased gray matter within the right putamen. These changes were positively correlated with changes in performance of methamphetamine-exposed monkeys in the reversal phase, and were negatively correlated with alterations in D₂-like receptor and DAT availability. The results provide the first evidence that exposure to a methamphetamine dosing regimen that resembles human use alters the structural integrity of the striatum and that gray-matter abnormalities detected in human methamphetamine users are due, at least in part, to the pharmacological effects of drug experience.
Methamphetamine-induced increases in putamen gray matter associate with inhibitory control
Groman, Stephanie M.; Morales, Angelica M.; Lee, Buyean; London, Edythe D.; Jentsch, James David
2013-01-01
Rationale Problematic drug use is associated with difficulty in exerting self-control over behaviors, and this difficulty may be a consequence of atypical morphometric characteristics that are exhibited by drug-experienced individuals. The extent to which these structural abnormalities result from drug use or reflect neurobiological-risk factors that predate drug use, however, is unknown. Objectives To determine how methamphetamine affects corticostriatal structure and how drug-induced changes relate to alterations in inhibitory control. Methods Structural magnetic resonance images and positron emission tomography (PET) scans, assessing dopamine D2-like receptor and transporter availability, were acquired in monkeys trained to acquire, retain and reverse three-choice visual discrimination problems before and after exposure to an escalating dose regimen of methamphetamine (or saline, as a control). Voxel-based morphometry was used to compare changes in corticostriatal gray matter between methamphetamine and saline exposed monkeys. The change in gray matter before and after the dosing regimen was compared to the change in the behavioral performance and in dopaminergic markers measured with PET. Results Methamphetamine exposure, compared to saline, increased gray matter within the right putamen. These changes were positively correlated with changes in performance of methamphetamine-exposed monkeys in the reversal phase, and were negatively correlated with alterations in D2-like receptor and DAT availability. Conclusions The results provide the first evidence that exposure to a methamphetamine dosing regimen that resembles human use alters the structural integrity of the striatum and that gray-matter abnormalities detected in human methamphetamine users are due, at least in part, to the pharmacological effects of drug experience. PMID:23748383
Effects of sensitivity to life stress on uncinate fasciculus segments in early adolescence
King, Lucy S.; Leong, Josiah K.; Colich, Natalie L.; Humphreys, Kathryn L.; Ordaz, Sarah J.; Gotlib, Ian H.
2017-01-01
Abstract Previous research suggests that exposure to early life stress (ELS) affects the structural integrity of the uncinate fasciculus (UF), a frontolimbic white matter tract that undergoes protracted development throughout adolescence. Adolescence is an important transitional period characterized by the emergence of internalizing psychopathology such as anxiety, particularly in individuals with high levels of stress sensitivity. We examined the relations among sensitivity to ELS, structural integrity of the UF, and anxiety symptoms in 104 early adolescents. We conducted structured interviews to assess exposure to ELS and obtained subjective and objective ratings of stress severity, from which we derived an index of ELS sensitivity. We also acquired diffusion MRI and conducted deterministic tractography to visualize UF trajectories and to compute measures of structural integrity from three distinct segments of the UF: frontal, insular, temporal. We found that higher sensitivity to ELS predicted both reduced fractional anisotropy in right frontal UF and higher levels of anxiety symptoms. These findings suggest that fibers in frontal UF, which are still developing throughout adolescence, are most vulnerable to the effects of heightened sensitivity to ELS, and that reduced structural integrity of frontal UF may underlie the relation between early stress and subsequent internalizing psychopathology. PMID:28460088
Faber, J; Wilde, E A; Hanten, G; Ewing-Cobbs, L; Aitken, M E; Yallampalli, R; MacLeod, M C; Mullins, S H; Chu, Z D; Li, X; Hunter, J V; Noble-Haeusslein, L; Levin, H S
2016-01-01
The long-term effects of TBI on verbal fluency and related structures, as well as the relation between cognition and structural integrity, were evaluated. It was hypothesized that the group with TBI would evidence poorer performance on cognitive measures and a decrease in structural integrity. Between a paediatric group with TBI and a group of typically-developing children, the long-term effects of traumatic brain injury were investigated in relation to both structural integrity and cognition. Common metrics for diffusion tensor imaging (DTI) were used as indicators of white matter integrity. Using DTI, this study examined ventral striatum (VS) integrity in 21 patients aged 10-18 years sustaining moderate-to-severe traumatic brain injury (TBI) 5-15 years earlier and 16 demographically comparable subjects. All participants completed Delis-Kaplan Executive Functioning System (D-KEFS) sub-tests. The group with TBI exhibited lower fractional anisotropy (FA) and executive functioning performance and higher apparent diffusion coefficient (ADC). DTI metrics correlated with D-KEFS performance (right VS FA with Inhibition errors, right VS ADC with Letter Fluency, left VS FA and ADC with Category Switching). TBI affects VS integrity, even in a chronic phase, and may contribute to executive functioning deficits.
Early life stress-induced alterations in rat brain structures measured with high resolution MRI.
Sarabdjitsingh, R Angela; Loi, Manila; Joëls, Marian; Dijkhuizen, Rick M; van der Toorn, Annette
2017-01-01
Adverse experiences early in life impair cognitive function both in rodents and humans. In humans this increases the vulnerability to develop mental illnesses while in the rodent brain early life stress (ELS) abnormalities are associated with changes in synaptic plasticity, excitability and microstructure. Detailed information on the effects of ELS on rodent brain structural integrity at large and connectivity within the brain is currently lacking; this information is highly relevant for understanding the mechanism by which early life stress predisposes to mental illnesses. Here, we exposed rats to 24 hours of maternal deprivation (MD) at postnatal day 3, a paradigm known to increase corticosterone levels and thereby activate glucocorticoid receptors in the brain. Using structural magnetic resonance imaging we examined: i) volumetric changes and white/grey matter properties of the whole cerebrum and of specific brain areas; and ii) whether potential alterations could be normalized by blocking glucocorticoid receptors with mifepristone during the critical developmental window of early adolescence, i.e. between postnatal days 26 and 28. The results show that MD caused a volumetric reduction of the prefrontal cortex, particularly the ventromedial part, and the orbitofrontal cortex. Within the whole cerebrum, white (relative to grey) matter volume was decreased and region-specifically in prefrontal cortex and dorsomedial striatum following MD. A trend was found for the hippocampus. Grey matter fractions were not affected. Treatment with mifepristone did not normalize these changes. This study indicates that early life stress in rodents has long lasting consequences for the volume and structural integrity of the brain. However, changes were relatively modest and-unlike behavior- not mitigated by blockade of glucocorticoid receptors during a critical developmental period.
Samson, Andrea C.; Kirsch, Valerie; Blautzik, Janusch; Grothe, Michel; Erat, Okan; Hegenloh, Michael; Coates, Ute; Reiser, Maximilian F.; Hennig-Fast, Kristina; Meindl, Thomas
2013-01-01
Brain tissue changes in autism spectrum disorders seem to be rather subtle and widespread than anatomically distinct. Therefore a multimodal, whole brain imaging technique appears to be an appropriate approach to investigate whether alterations in white and gray matter integrity relate to consistent changes in functional resting state connectivity in individuals with high functioning autism (HFA). We applied diffusion tensor imaging (DTI), voxel-based morphometry (VBM) and resting state functional connectivity magnetic resonance imaging (fcMRI) to assess differences in brain structure and function between 12 individuals with HFA (mean age 35.5, SD 11.4, 9 male) and 12 healthy controls (mean age 33.3, SD 9.0, 8 male). Psychological measures of empathy and emotionality were obtained and correlated with the most significant DTI, VBM and fcMRI findings. We found three regions of convergent structural and functional differences between HFA participants and controls. The right temporo-parietal junction area and the left frontal lobe showed decreased fractional anisotropy (FA) values along with decreased functional connectivity and a trend towards decreased gray matter volume. The bilateral superior temporal gyrus displayed significantly decreased functional connectivity that was accompanied by the strongest trend of gray matter volume decrease in the temporal lobe of HFA individuals. FA decrease in the right temporo-parietal region was correlated with psychological measurements of decreased emotionality. In conclusion, our results indicate common sites of structural and functional alterations in higher order association cortex areas and may therefore provide multimodal imaging support to the long-standing hypothesis of autism as a disorder of impaired higher-order multisensory integration. PMID:23825652
Etherton, Mark R; Wu, Ona; Cougo, Pedro; Giese, Anne-Katrin; Cloonan, Lisa; Fitzpatrick, Kaitlin M; Kanakis, Allison S; Boulouis, Gregoire; Karadeli, Hasan H; Lauer, Arne; Rosand, Jonathan; Furie, Karen L; Rost, Natalia S
2017-12-01
Women have worse poststroke outcomes than men. We evaluated sex-specific clinical and neuroimaging characteristics of white matter in association with functional recovery after acute ischemic stroke. We performed a retrospective analysis of acute ischemic stroke patients with admission brain MRI and 3- to 6-month modified Rankin Scale score. White matter hyperintensity and acute infarct volume were quantified on fluid-attenuated inversion recovery and diffusion tensor imaging MRI, respectively. Diffusivity anisotropy metrics were calculated in normal appearing white matter contralateral to the acute ischemia. Among 319 patients with acute ischemic stroke, women were older (68.0 versus 62.7 years; P =0.004), had increased incidence of atrial fibrillation (21.4% versus 12.2%; P =0.04), and lower rate of tobacco use (21.1% versus 35.9%; P =0.03). There was no sex-specific difference in white matter hyperintensity volume, acute infarct volume, National Institutes of Health Stroke Scale, prestroke modified Rankin Scale score, or normal appearing white matter diffusivity anisotropy metrics. However, women were less likely to have an excellent outcome (modified Rankin Scale score <2: 49.6% versus 67.0%; P =0.005). In logistic regression analysis, female sex and the interaction of sex with fractional anisotropy, radial diffusivity, and axial diffusivity were independent predictors of functional outcome. Female sex is associated with decreased likelihood of excellent outcome after acute ischemic stroke. The correlation between markers of white matter integrity and functional outcomes in women, but not men, suggests a potential sex-specific mechanism. © 2017 American Heart Association, Inc.
High-mobility group box-1 as an autocrine trophic factor in white matter stroke.
Choi, Jun Young; Cui, Yuexian; Chowdhury, Samma Tasneem; Kim, Byung Gon
2017-06-20
Maintenance of white matter integrity in health and disease is critical for a variety of neural functions. Ischemic stroke in the white matter frequently results in degeneration of oligodendrocytes (OLs) and myelin. Previously, we found that toll-like receptor 2 (TLR2) expressed in OLs provides cell-autonomous protective effects on ischemic OL death and demyelination in white matter stroke. Here, we identified high-mobility group box-1 (HMGB1) as an endogenous TLR2 ligand that promotes survival of OLs under ischemic stress. HMGB1 rapidly accumulated in the culture medium of OLs exposed to oxygen-glucose deprivation (OGD). This conditioned medium exhibited a protective activity against ischemic OL death that was completely abolished by immunodepletion of HMGB1. Knockdown of HMGB1 or application of glycyrrhizin, a specific HMGB1 inhibitor, aggravated OGD-induced OL death, and recombinant HMGB1 application reduced the extent of OL death in a TLR2-dependent manner. We confirmed that cytosolic translocation of HMGB1 and activation of TLR2-mediated signaling pathways occurred in a focal white matter stroke model induced by endothelin-1 injection. Animals with glycyrrhizin coinjection showed an expansion of the demyelinating lesion in a TLR2-dependent manner, accompanied by aggravation of sensorimotor behavioral deficits. These results indicate that HMGB1/TLR2 activates an autocrine trophic signaling pathways in OLs and myelin to maintain structural and functional integrity of the white matter under ischemic conditions.
McDonald, Skye; Dalton, Katie I; Rushby, Jacqueline A; Landin-Romero, Ramon
2018-06-14
Adults with severe traumatic brain injury (TBI) often suffer poor social cognition. Social cognition is complex, requiring verbal, non-verbal, auditory, visual and affective input and integration. While damage to focal temporal and frontal areas has been implicated in disorders of social cognition after TBI, the role of white matter pathology has not been examined. In this study 17 adults with chronic, severe TBI and 17 control participants underwent structural MRI scans and Diffusion Tensor Imaging. The Awareness of Social Inference Test (TASIT) was used to assess their ability to understand emotional states, thoughts, intentions and conversational meaning in everyday exchanges. Track-based spatial statistics were used to perform voxelwise analysis of Fractional Anisotropy (FA) and Mean Diffusivity (MD) of white matter tracts associated with poor social cognitive performance. FA suggested a wide range of tracts were implicated in poor TASIT performance including tracts known to mediate, auditory localisation (planum temporale) communication between nonverbal and verbal processes in general (corpus callosum) and in memory in particular (fornix) as well as tracts and structures associated with semantics and verbal recall (left temporal lobe and hippocampus), multimodal processing and integration (thalamus, external capsule, cerebellum) and with social cognition (orbitofrontal cortex, frontopolar cortex, right temporal lobe). Even when controlling for non-social cognition, the corpus callosum, fornix, bilateral thalamus, right external capsule and right temporal lobe remained significant contributors to social cognitive performance. This study highlights the importance of loss of white matter connectivity in producing complex social information processing deficits after TBI.
Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T
2016-01-01
A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.
Zamroziewicz, Marta K; Paul, Erick J; Zwilling, Chris E; Barbey, Aron K
2017-07-01
Recent evidence demonstrates that age and disease-related decline in cognition depends not only upon degeneration in brain structure and function, but also on dietary intake and nutritional status. Memory, a potential preclinical marker of Alzheimer's disease, is supported by white matter integrity in the brain and dietary patterns high in omega-3 and omega-6 polyunsaturated fatty acids. However, the extent to which memory is supported by specific omega-3 and omega-6 polyunsaturated fatty acids, and the degree to which this relationship is reliant upon microstructure of particular white matter regions is not known. This study therefore examined the cross-sectional relationship between empirically-derived patterns of omega-3 and omega-6 polyunsaturated fatty acids (represented by nutrient biomarker patterns), memory, and regional white matter microstructure in healthy, older adults. We measured thirteen plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids, memory, and regional white matter microstructure in 94 cognitively intact older adults (65 to 75 years old). A three-step mediation analysis was implemented using multivariate linear regressions, adjusted for age, gender, education, income, depression status, and body mass index. The mediation analysis revealed that a mixture of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids is linked to memory and that white matter microstructure of the fornix fully mediates the relationship between this pattern of plasma phospholipid polyunsaturated fatty acids and memory. These results suggest that memory may be optimally supported by a balance of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acids through the preservation of fornix white matter microstructure in cognitively intact older adults. This report provides novel evidence for the benefits of plasma phospholipid omega-3 and omega-6 polyunsaturated fatty acid balance on memory and underlying white matter microstructure.
Conventional isolation of humic materials from natural
matrixes includes demineralization by treatment with HF/HCl. The possible effect of this on the structural integrity of
humic acid (HA) was investigated by comparing the
interactions of two aqueous HAs, one produc...
ERIC Educational Resources Information Center
Vandermosten, Maaike; Boets, Bart; Poelmans, Hanne; Sunaert, Stefan; Wouters, Jan; Ghesquiere, Pol
2012-01-01
Diffusion tensor imaging tractography is a structural magnetic resonance imaging technique allowing reconstruction and assessment of the integrity of three dimensional white matter tracts, as indexed by their fractional anisotropy. It is assumed that the left arcuate fasciculus plays a crucial role for reading development, as it connects two…
Novel Plasmonic Materials and Nanodevices for Integrated Quantum Photonics
NASA Astrophysics Data System (ADS)
Shalaginov, Mikhail Y.
Light-matter interaction is the foundation for numerous important quantum optical phenomena, which may be harnessed to build practical devices with higher efficiency and unprecedented functionality. Nanoscale engineering is seen as a fruitful avenue to significantly strengthen light-matter interaction and also make quantum optical systems ultra-compact, scalable, and energy efficient. This research focuses on color centers in diamond that share quantum properties with single atoms. These systems promise a path for the realization of practical quantum devices such as nanoscale sensors, single-photon sources, and quantum memories. In particular, we explored an intriguing methodology of utilizing nanophotonic structures, such as hyperbolic metamaterials, nanoantennae, and plasmonic waveguides, to improve the color centers performance. We observed enhancement in the color center's spontaneous emission rate, emission directionality, and cooperativity over a broad optical frequency range. Additionally, we studied the effect of plasmonic environments on the spin-readout sensitivity of color centers. The use of CMOS-compatible epitaxially grown plasmonic materials in the design of these nanophotonic structures promises a new level of performance for a variety of integrated room-temperature quantum devices based on diamond color centers.
van Norden, Anouk Gw; de Laat, Karlijn F; Gons, Rob Ar; van Uden, Inge Wm; van Dijk, Ewoud J; van Oudheusden, Lucas Jb; Esselink, Rianne Aj; Bloem, Bastiaan R; van Engelen, Baziel Gm; Zwarts, Machiel J; Tendolkar, Indira; Olde-Rikkert, Marcel G; van der Vlugt, Maureen J; Zwiers, Marcel P; Norris, David G; de Leeuw, Frank-Erik
2011-02-28
Cerebral small vessel disease (SVD) is a frequent finding on CT and MRI scans of elderly people and is related to vascular risk factors and cognitive and motor impairment, ultimately leading to dementia or parkinsonism in some. In general, the relations are weak, and not all subjects with SVD become demented or get parkinsonism. This might be explained by the diversity of underlying pathology of both white matter lesions (WML) and the normal appearing white matter (NAWM). Both cannot be properly appreciated with conventional MRI. Diffusion tensor imaging (DTI) provides alternative information on microstructural white matter integrity. The association between SVD, its microstructural integrity, and incident dementia and parkinsonism has never been investigated. The RUN DMC study is a prospective cohort study on the risk factors and cognitive and motor consequences of brain changes among 503 non-demented elderly, aged between 50-85 years, with cerebral SVD. First follow up is being prepared for July 2011. Participants alive will be included and invited to the research centre to undergo a structured questionnaire on demographics and vascular risk factors, and a cognitive, and motor, assessment, followed by a MRI protocol including conventional MRI, DTI and resting state fMRI. The follow up of the RUN DMC study has the potential to further unravel the causes and possibly better predict the consequences of changes in white matter integrity in elderly with SVD by using relatively new imaging techniques. When proven, these changes might function as a surrogate endpoint for cognitive and motor function in future therapeutic trials. Our data could furthermore provide a better understanding of the pathophysiology of cognitive and motor disturbances in elderly with SVD. The execution and completion of the follow up of our study might ultimately unravel the role of SVD on the microstructural integrity of the white matter in the transition from "normal" aging to cognitive and motor decline and impairment and eventually to incident dementia and parkinsonism.
Distinct white matter abnormalities in different idiopathic generalized epilepsy syndromes.
Liu, Min; Concha, Luis; Beaulieu, Christian; Gross, Donald W
2011-12-01
By definition idiopathic generalized epilepsy (IGE) is not associated with structural abnormalities on conventional magnetic resonance imaging (MRI). However, recent quantitative studies suggest white and gray matter alterations in IGE. The purpose of this study was to investigate whether there are white and/or gray matter structural differences between controls and two subsets of IGE, namely juvenile myoclonic epilepsy (JME) and IGE with generalized tonic-clonic seizures only (IGE-GTC). We assessed white matter integrity and gray matter volume using diffusion tensor tractography-based analysis of fractional anisotropy and voxel-based morphometry, respectively, in 25 patients with IGE, all of whom had experienced generalized tonic-clonic convulsions. Specifically, 15 patients with JME and 10 patients with IGE-GTC were compared to two groups of similarly matched controls separately. Correlations between total lifetime generalized tonic-clonic seizures and fractional anisotropy were investigated for both groups. Tractography revealed lower fractional anisotropy in specific tracts including the crus of the fornix, body of corpus callosum, uncinate fasciculi, superior longitudinal fasciculi, anterior limb of internal capsule, and corticospinal tracts in JME with respect to controls, whereas there were no fractional anisotropy differences in IGE-GTC. No correlation was found between fractional anisotropy and total lifetime generalized tonic-clonic seizures for either JME or IGE-GTC. Although false discovery rate-corrected voxel-based morphometry (VBM) showed no gray matter volume differences between patient and control groups, spatial extent cluster-corrected VBM analysis suggested a trend of gray matter volume reduction in frontal and central regions in both patient groups, more lateral in JME and more medial in IGE-GTC. The findings support the idea that the clinical syndromes of JME and IGE-GTC have unique anatomic substrates. The fact that the primary clinical difference between JME and IGE-GTC is the occurrence of myoclonus in the former raises the possibility that disruption of white matter integrity may be the underlying mechanism responsible for myoclonus in JME. The cross-sectional study design and relatively small number of subjects limits the conclusions that can be drawn here; however, the absence of a correlation between fractional anisotropy and lifetime seizures is suggestive that the white matter abnormalities observed in JME may not be secondary to seizures. Wiley Periodicals, Inc. © 2011 International League Against Epilepsy.
Cerebral White Matter Integrity Mediates Adult Age Differences in Cognitive Performance
ERIC Educational Resources Information Center
Madden, David J.; Spaniol, Julia; Costello, Matthew C.; Bucur, Barbara; White, Leonard E.; Cabeza, Roberto; Davis, Simon W.; Dennis, Nancy A.; Provenzale, James M.; Huettel, Scott A.
2009-01-01
Previous research has established that age-related decline occurs in measures of cerebral white matter integrity, but the role of this decline in age-related cognitive changes is not clear. To conclude that white matter integrity has a mediating (causal) contribution, it is necessary to demonstrate that statistical control of the white…
White matter microstructure integrity in relation to reading proficiency☆.
Nikki Arrington, C; Kulesz, Paulina A; Juranek, Jenifer; Cirino, Paul T; Fletcher, Jack M
2017-11-01
Components of reading proficiency such asaccuracy, fluency, and comprehension require the successful coordination of numerous, yet distinct, cortical regions. Underlying white matter tracts allow for communication among these regions. This study utilized unique residualized tract - based spatial statistics methodology to identify the relations of white matter microstructure integrity to three components of reading proficiency in 49 school - aged children with typically developing phonological decoding skills and 27 readers with poor decoders. Results indicated that measures of white matter integrity were differentially associated with components of reading proficiency. In both typical and poor decoders, reading comprehension correlated with measures of integrity of the right uncinate fasciculus; reading comprehension was also related to the left inferior longitudinal fasciculus in poor decoders. Also in poor decoders, word reading fluency was related to the right uncinate and left inferior fronto - occipital fasciculi. Word reading was unrelated to white matter integrity in either group. These findings expand our knowledge of the association between white matter integrity and different elements of reading proficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtis, J.B.; Faure, G.
1997-03-01
We used geochemical data to examine the origin and preservation of organic matter contained in the lower part of the Huron Member of the Ohio Shale formation and the Rhinestreet Shale Member of the West Falls Formation (Devonian) in Kentucky, Ohio, West Virginia, and Virginia. The thermal history of the organic matter was determined by relating relative temperatures experienced by the organic matter to the geologic setting. The organic matter in these formations is predominantly marine in origin and was most probably derived largely from algal organisms. Although the rate of production of marine organic matter may have been uniformmore » within the basin, its preservation apparently was controlled by the existence of a set of fault-bounded anoxic subbasins associated with the Rome trough, a Cambrian structural complex. These subbasins apparently were anoxic because they limited oxygen recharge by circulating waters. Preservation of organic matter was also enhanced by periodic blooms of the alga Tasmanites and similar organisms in the waters above the subbasins during both early Huron and Rhinestreet deposition. A significant negative correlation was identified between the vitrinite reflectance peak temperature, and integrated measure of the thermal history of a rock, and the hydrogen index, a measure of the remaining hydrocarbon-generation potential of kerogen. Although peak temperatures were controlled by burial depth, excess heating occurred locally, perhaps by hot brines rising from depth through fractures associated with major structures in the study area.« less
Mancke, Falk; Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C; Schmahl, Christian
2017-12-13
There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions.
Jakabek, David; Yücel, Murat; Lorenzetti, Valentina; Solowij, Nadia
2016-10-01
Conflicting evidence exists on the effects of cannabis use on brain white matter integrity. The extant literature has exclusively focused on younger cannabis users, with no studies sampling older cannabis users. We recruited a sample with a broad age range to examine the integrity of major white matter tracts in association with cannabis use parameters and neurodevelopmental stage. Regular cannabis users (n = 56) and non-users (n = 20) with a mean age of 32 (range 18-55 years) underwent structural and diffusion MRI scans. White matter was examined using voxel-based statistics and via probabilistic tract reconstruction. The integrity of tracts was assessed using average fractional anisotropy, axial diffusivity and radial diffusivity. Diffusion measures were compared between users and non-users and as group-by-age interactions. Correlations between diffusion measures and age of onset, duration, frequency and dose of current cannabis use were examined. Cannabis users overall had lower fractional anisotropy than healthy non-users in the forceps minor tract only (p = .015, partial eta = 0.07), with no voxel-wise differences observed. Younger users showed predominantly reduced axial diffusivity, whereas older users had higher radial diffusivity in widespread tracts. Higher axial diffusivity was associated with duration of cannabis use in the cingulum angular bundle (beta = 5.00 × 10(-5), p = .003). Isolated higher AD in older cannabis users was also observed. The findings suggest that exogenous cannabinoids alter normal brain maturation, with differing effects at various neurodevelopmental stages of life. These age-related differences are posited to account for the disparate results described in the literature.
van der Werff, Steven J A; Andela, Cornelie D; Nienke Pannekoek, J; Meijer, Onno C; van Buchem, Mark A; Rombouts, Serge A R B; van der Mast, Roos C; Biermasz, Nienke R; Pereira, Alberto M; van der Wee, Nic J A
2014-01-01
Hypercortisolism leads to various physical, psychological and cognitive symptoms, which may partly persist after the treatment of Cushing's disease. The aim of the present study was to investigate abnormalities in white matter integrity in patients with long-term remission of Cushing's disease, and their relation with psychological symptoms, cognitive impairment and clinical characteristics. In patients with long-term remission of Cushing's disease (n = 22) and matched healthy controls (n = 22) we examined fractional anisotropy (FA) values of white matter in a region-of-interest (ROI; bilateral cingulate cingulum, bilateral hippocampal cingulum, bilateral uncinate fasciculus and corpus callosum) and the whole brain, using 3 T diffusion tensor imaging (DTI) and a tract-based spatial statistics (TBSS) approach. Psychological and cognitive functioning were assessed with validated questionnaires and clinical severity was assessed using the Cushing's syndrome Severity Index. The ROI analysis showed FA reductions in all of the hypothesized regions, with the exception of the bilateral hippocampal cingulum, in patients when compared to controls. The exploratory whole brain analysis showed multiple regions with lower FA values throughout the brain. Patients reported more apathy (p = .003) and more depressive symptoms (p < .001), whereas depression symptom severity in the patient group was negatively associated with FA in the left uncinate fasciculus (p < 0.05). Post-hoc analyses showed increased radial and mean diffusivity in the patient group. Patients with a history of endogenous hypercortisolism in present remission show widespread changes of white matter integrity in the brain, with abnormalities in the integrity of the uncinate fasciculus being related to the severity of depressive symptoms, suggesting persistent structural effects of hypercortisolism.
van der Werff, Steven J.A.; Andela, Cornelie D.; Nienke Pannekoek, J.; Meijer, Onno C.; van Buchem, Mark A.; Rombouts, Serge A.R.B.; van der Mast, Roos C.; Biermasz, Nienke R.; Pereira, Alberto M.; van der Wee, Nic J.A.
2014-01-01
Background Hypercortisolism leads to various physical, psychological and cognitive symptoms, which may partly persist after the treatment of Cushing's disease. The aim of the present study was to investigate abnormalities in white matter integrity in patients with long-term remission of Cushing's disease, and their relation with psychological symptoms, cognitive impairment and clinical characteristics. Methods In patients with long-term remission of Cushing's disease (n = 22) and matched healthy controls (n = 22) we examined fractional anisotropy (FA) values of white matter in a region-of-interest (ROI; bilateral cingulate cingulum, bilateral hippocampal cingulum, bilateral uncinate fasciculus and corpus callosum) and the whole brain, using 3 T diffusion tensor imaging (DTI) and a tract-based spatial statistics (TBSS) approach. Psychological and cognitive functioning were assessed with validated questionnaires and clinical severity was assessed using the Cushing's syndrome Severity Index. Results The ROI analysis showed FA reductions in all of the hypothesized regions, with the exception of the bilateral hippocampal cingulum, in patients when compared to controls. The exploratory whole brain analysis showed multiple regions with lower FA values throughout the brain. Patients reported more apathy (p = .003) and more depressive symptoms (p < .001), whereas depression symptom severity in the patient group was negatively associated with FA in the left uncinate fasciculus (p < 0.05). Post-hoc analyses showed increased radial and mean diffusivity in the patient group. Conclusion Patients with a history of endogenous hypercortisolism in present remission show widespread changes of white matter integrity in the brain, with abnormalities in the integrity of the uncinate fasciculus being related to the severity of depressive symptoms, suggesting persistent structural effects of hypercortisolism. PMID:24936417
Gulati, Gaurav; Jones, Jordan T; Lee, Gregory; Altaye, Mekibib; Beebe, Dean W; Meyers-Eaton, Jamie; Wiley, Kasha; Brunner, Hermine I; DiFrancesco, Mark W
2017-02-01
To evaluate a safe, noninvasive magnetic resonance imaging (MRI) method to measure regional blood-brain barrier integrity and investigate its relationship with neurocognitive function and regional gray matter volume in juvenile-onset systemic lupus erythematosus (SLE). In this cross-sectional, case-control study, capillary permeability was measured as a marker of blood-brain barrier integrity in juvenile SLE patients and matched healthy controls, using a combination of arterial spin labeling and diffusion-weighted brain MRI. Regional gray matter volume was measured by voxel-based morphometry. Correlation analysis was done to investigate the relationship between regional capillary permeability and regional gray matter volume. Formal neurocognitive testing was completed (measuring attention, visuoconstructional ability, working memory, and psychomotor speed), and scores were regressed against regional blood-brain barrier integrity among juvenile SLE patients. Formal cognitive testing confirmed normal cognitive ability in all juvenile SLE subjects (n = 11) included in the analysis. Regional capillary permeability was negatively associated (P = 0.026) with neurocognitive performance concerning psychomotor speed in the juvenile SLE cohort. Compared with controls (n = 11), juvenile SLE patients had significantly greater capillary permeability involving Brodmann's areas 19, 28, 36, and 37 and caudate structures (P < 0.05 for all). There is imaging evidence of increased regional capillary permeability in juvenile SLE patients with normal cognitive performance using a novel noninvasive MRI technique. These blood-brain barrier outcomes appear consistent with functional neuronal network alterations and gray matter volume loss previously observed in juvenile SLE patients with overt neurocognitive deficits, supporting the notion that blood-brain barrier integrity loss precedes the loss of cognitive ability in juvenile SLE. Longitudinal studies are needed to confirm the findings of this pilot study. © 2016, American College of Rheumatology.
NASA Astrophysics Data System (ADS)
Amaral, Marcelo M.; Aschheim, Raymond; Bubuianu, Laurenţiu; Irwin, Klee; Vacaru, Sergiu I.; Woolridge, Daniel
2017-09-01
The goal of this work is to elaborate on new geometric methods of constructing exact and parametric quasiperiodic solutions for anamorphic cosmology models in modified gravity theories, MGTs, and general relativity, GR. There exist previously studied generic off-diagonal and diagonalizable cosmological metrics encoding gravitational and matter fields with quasicrystal like structures, QC, and holonomy corrections from loop quantum gravity, LQG. We apply the anholonomic frame deformation method, AFDM, in order to decouple the (modified) gravitational and matter field equations in general form. This allows us to find integral varieties of cosmological solutions determined by generating functions, effective sources, integration functions and constants. The coefficients of metrics and connections for such cosmological configurations depend, in general, on all spacetime coordinates and can be chosen to generate observable (quasi)-periodic/aperiodic/fractal/stochastic/(super) cluster/filament/polymer like (continuous, stochastic, fractal and/or discrete structures) in MGTs and/or GR. In this work, we study new classes of solutions for anamorphic cosmology with LQG holonomy corrections. Such solutions are characterized by nonlinear symmetries of generating functions for generic off-diagonal cosmological metrics and generalized connections, with possible nonholonomic constraints to Levi-Civita configurations and diagonalizable metrics depending only on a time like coordinate. We argue that anamorphic quasiperiodic cosmological models integrate the concept of quantum discrete spacetime, with certain gravitational QC-like vacuum and nonvacuum structures. And, that of a contracting universe that homogenizes, isotropizes and flattens without introducing initial conditions or multiverse problems.
White matter correlates of psychopathic traits in a female community sample
Budhiraja, Meenal; Westerman, Johan; Savic, Ivanka; Jokinen, Jussi; Tiihonen, Jari; Hodgins, Sheilagh
2017-01-01
Abstract Psychopathy comprises interpersonal, affective, lifestyle and antisocial facets that vary dimensionally in the population and are associated with criminal offending and adverse psychosocial outcomes. Evidence associating these facets with white matter microstructure of the uncinate fasciculus and the cingulum tracts is inconsistent and derives principally from studies of male offenders. In a sample of 99 young women presenting a range of scores on the Psychopathy Checklist: Screening Version, we used Diffusion Tensor Imaging, tractography and Tract-Based Spatial Statistics to investigate microstructure across the brain and of the uncinate fasciculus and cingulum. Right uncinate fasciculus microstructure was negatively associated with the interpersonal facet, while cingulum integrity was not associated with any facet of psychopathy. Whole-brain analyses revealed that both affective and lifestyle facets were negatively correlated with white matter microstructure adjacent to the fusiform gyrus, and the interpersonal facet correlated negatively with the integrity of the fornix. Findings survived adjustment for the other facet scores, and age, verbal and performance IQ. A similar negative association between the interpersonal facet and uncinate fasciculus integrity was previously observed in male offenders. Thus, previous evidence showing that psychopathic traits are associated with functional and structural abnormalities within limbic networks may also apply to females. PMID:28992269
Worbe, Yulia; Marrakchi-Kacem, Linda; Lecomte, Sophie; Valabregue, Romain; Poupon, Fabrice; Guevara, Pamela; Tucholka, Alan; Mangin, Jean-François; Vidailhet, Marie; Lehericy, Stephane; Hartmann, Andreas; Poupon, Cyril
2015-02-01
Gilles de la Tourette syndrome is a childhood-onset syndrome characterized by the presence and persistence of motor and vocal tics. A dysfunction of cortico-striato-pallido-thalamo-cortical networks in this syndrome has been supported by convergent data from neuro-pathological, electrophysiological as well as structural and functional neuroimaging studies. Here, we addressed the question of structural integration of cortico-striato-pallido-thalamo-cortical networks in Gilles de la Tourette syndrome. We specifically tested the hypothesis that deviant brain development in Gilles de la Tourette syndrome could affect structural connectivity within the input and output basal ganglia structures and thalamus. To this aim, we acquired data on 49 adult patients and 28 gender and age-matched control subjects on a 3 T magnetic resonance imaging scanner. We used and further implemented streamline probabilistic tractography algorithms that allowed us to quantify the structural integration of cortico-striato-pallido-thalamo-cortical networks. To further investigate the microstructure of white matter in patients with Gilles de la Tourette syndrome, we also evaluated fractional anisotropy and radial diffusivity in these pathways, which are both sensitive to axonal package and to myelin ensheathment. In patients with Gilles de la Tourette syndrome compared to control subjects, we found white matter abnormalities in neuronal pathways connecting the cerebral cortex, the basal ganglia and the thalamus. Specifically, striatum and thalamus had abnormally enhanced structural connectivity with primary motor and sensory cortices, as well as paracentral lobule, supplementary motor area and parietal cortices. This enhanced connectivity of motor cortex positively correlated with severity of tics measured by the Yale Global Tics Severity Scale and was not influenced by current medication status, age or gender of patients. Independently of the severity of tics, lateral and medial orbito-frontal cortex, inferior frontal, temporo-parietal junction, medial temporal and frontal pole also had enhanced structural connectivity with the striatum and thalamus in patients with Gilles de la Tourette syndrome. In addition, the cortico-striatal pathways were characterized by elevated fractional anisotropy and diminished radial diffusivity, suggesting microstructural axonal abnormalities of white matter in Gilles de la Tourette syndrome. These changes were more prominent in females with Gilles de la Tourette syndrome compared to males and were not related to the current medication status. Taken together, our data showed widespread structural abnormalities in cortico-striato-pallido-thalamic white matter pathways in patients with Gilles de la Tourette, which likely result from abnormal brain development in this syndrome. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain.
High Fidelity Additive Manufacturing of Optically Transparent Glass Structures
NASA Astrophysics Data System (ADS)
Inamura, Chikara
Glass has been an integral part of human civilization with expressions across scales and disciplines: from the microscope to the telescope, from fiber optics to mobile interface, and from the petri dish to a building envelope. Such a diverse range of applications is enabled by the inherent material properties including mechanical strength, optical transparency and chemical inertness. Additive manufacturing provides opportunities for integrating the unique properties of glass to engineer novel structures that are functionary graded through precise spatiotemporal deposition of molten glass. This talk presents the Mediated Matter Group's latest development of a novel additive manufacturing platform, and related processes, for 3D Printing optically transparent glass for architectural scale applications.
Phenotype- and Genotype-Specific Structural Alterations in Spasmodic Dysphonia
Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F.; Frucht, Steven J.; Blitzer, Andrew; Ozelius, Laurie J.; Simonyan, Kristina
2017-01-01
Background Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Methods Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Results Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Conclusions Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. PMID:28186656
NASA Astrophysics Data System (ADS)
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.
Progress of the Enhanced Hanford Single Shell Tank (SST) Integrity Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venetz, Theodore J.; Washenfelder, Dennis J.; Boomer, Kayle D.
2015-01-07
To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. In late 2010, seventeen of these recommendations were used to develop the basis for the M-45-10-1 Changemore » Package for the Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement.« less
White matter integrity as a predictor of response to treatment in first episode psychosis.
Reis Marques, Tiago; Taylor, Heather; Chaddock, Chris; Dell'acqua, Flavio; Handley, Rowena; Reinders, A A T Simone; Mondelli, Valeria; Bonaccorso, Stefania; Diforti, Marta; Simmons, Andrew; David, Anthony S; Murray, Robin M; Pariante, Carmine M; Kapur, Shitij; Dazzan, Paola
2014-01-01
The integrity of brain white matter connections is central to a patient's ability to respond to pharmacological interventions. This study tested this hypothesis using a specific measure of white matter integrity, and examining its relationship to treatment response using a prospective design in patients within their first episode of psychosis. Diffusion tensor imaging data were acquired in 63 patients with first episode psychosis and 52 healthy control subjects (baseline). Response was assessed after 12 weeks and patients were classified as responders or non-responders according to treatment outcome. At this second time-point, they also underwent a second diffusion tensor imaging scan. Tract-based spatial statistics were used to assess fractional anisotropy as a marker of white matter integrity. At baseline, non-responders showed lower fractional anisotropy than both responders and healthy control subjects (P < 0.05; family-wise error-corrected), mainly in the uncinate, cingulum and corpus callosum, whereas responders were indistinguishable from healthy control subjects. After 12 weeks, there was an increase in fractional anisotropy in both responders and non-responders, positively correlated with antipsychotic exposure. This represents one of the largest, controlled investigations of white matter integrity and response to antipsychotic treatment early in psychosis. These data, together with earlier findings on cortical grey matter, suggest that grey and white matter integrity at the start of treatment is an important moderator of response to antipsychotics. These findings can inform patient stratification to anticipate care needs, and raise the possibility that antipsychotics may restore white matter integrity as part of the therapeutic response.
Alcohol Use and Cerebral White Matter Compromise in Adolescence
Elofson, Jonathan; Gongvatana, Win; Carey, Kate B.
2013-01-01
Alcohol use is typically initiated during adolescence, a period known to be critical in neurodevelopment. The adolescent brain may be particularly susceptible to the harmful effects of alcohol. While the cognitive deficits associated with alcohol use during adolescence have been well-documented, the neural substrates underlying these effects remain inadequately understood. Cerebral white matter has been suggested as a primary site of alcohol-related damage and diffusion tensor imaging (DTI) allows for the quantification of white matter integrity in vivo. This review summarizes results from both cross-sectional and longitudinal studies employing DTI that indicate that white matter tracts, particularly those thought to be involved in executive functioning, continue to develop throughout adolescence and into adulthood. Numerous DTI studies reveal a positive correlation between white matter integrity and neurocognitive performance and, in adults, the detrimental effects of prolonged alcohol-dependence on white matter integrity. We provide a comprehensive review of the DTI studies exploring the relationship between alcohol use and white matter integrity in adolescents. Results from most of these studies suggest that alcohol use is associated with reduced white matter integrity, particularly in the superior longitudinal fasciculus (SLF), and some evidence suggests that this relationship may be influenced by sex. We conclude by highlighting confounds and limitations of the available research and suggesting directions for future research. PMID:23583835
Gebauer, D.; Fink, A.; Filippini, N.; Johansen-Berg, H.; Reishofer, G.; Koschutnig, K.; Kargl, R.; Purgstaller, C.; Fazekas, F.; Enzinger, C.
2013-01-01
While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme- based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research. PMID:22198594
Gebauer, D; Fink, A; Filippini, N; Johansen-Berg, H; Reishofer, G; Koschutnig, K; Kargl, R; Purgstaller, C; Fazekas, F; Enzinger, C
2012-07-01
While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.
Spottiswoode, B.S.; Meintjes, E.M.; Anderson, A.W.; Molteno, C.D.; Stanton, M.E.; Dodge, N.C.; Gore, J.C.; Peterson, B.S.; Jacobson, J.L.; Jacobson, S.W.
2011-01-01
Background Prenatal alcohol exposure is related to a wide range of neurocognitive effects. Eyeblink conditioning (EBC), which involves temporal pairing of a conditioned with an unconditioned stimulus, has been shown to be a potential biomarker of fetal alcohol exposure. A growing body of evidence suggests that white matter may be a specific target of alcohol teratogenesis, and the neural circuitry underlying EBC is known to involve the cerebellar peduncles. Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique which has proven useful for assessing central nervous system white matter integrity. This study used DTI to examine the degree to which the fetal alcohol-related deficit in EBC may be mediated by structural impairment in the cerebellar peduncles. Methods 13 children with fetal alcohol spectrum disorder (FASD) and 12 matched controls were scanned using DTI and structural MRI sequences. The DTI data were processed using a voxelwise technique, and the structural data were used for volumetric analyses. Prenatal alcohol exposure group and EBC performance were examined in relation to brain volumes and outputs from the DTI analysis. Results FA and perpendicular diffusivity group differences between alcohol-exposed and nonexposed children were identified in the left middle cerebellar peduncle. Alcohol exposure correlated with lower fractional anisotropy (FA) and greater perpendicular diffusivity in this region, and these correlations remained significant even after controlling for total brain and cerebellar volume. Conversely, trace conditioning performance was related to higher FA and lower perpendicular diffusivity in the left middle peduncle. The effect of prenatal alcohol exposure on trace conditioning was partially mediated by lower FA in this region. Conclusions This study extends recent findings that have used DTI to reveal microstructural deficits in white matter in children with FASD. This is the first DTI study to demonstrate mediation of a fetal alcohol-related effect on neuropsychological function by deficits in white matter integrity. PMID:21790667
NASA Astrophysics Data System (ADS)
Duncan, Elizabeth C.; Reddick, Wilburn E.; Glass, John O.; Hyun, Jung Won; Ji, Qing; Li, Yimei; Gajjar, Amar
2016-03-01
We applied a modified probabilistic fiber-tracking method for the extraction of fiber pathways to quantify decreased white matter integrity as a surrogate of structural loss in connectivity due to cranial radiation therapy (CRT) as treatment for pediatric medulloblastoma. Thirty subjects were examined (n=8 average-risk, n=22 high-risk) and the groups did not differ significantly in age at examination. The pathway analysis created a structural connectome focused on sub-networks within the central executive network (CEN) for comparison between baseline and post-CRT scans and for comparison between standard and high dose CRT. A paired-wise comparison of the connectivity between baseline and post-CRT scans showed the irradiation did have a significant detrimental impact on white matter integrity (decreased fractional anisotropy (FA) and decreased axial diffusivity (AX)) in most of the CEN sub-networks. Group comparisons of the change in the connectivity revealed that patients receiving high dose CRT experienced significant AX decreases in all sub-networks while the patients receiving standard dose CRT had relatively stable AX measures across time. This study on pediatric patients with medulloblastoma demonstrated the utility of this method to identify specific sub-networks within the developing brain affected by CRT.
White matter hyperintensities and normal-appearing white matter integrity in the aging brain.
Maniega, Susana Muñoz; Valdés Hernández, Maria C; Clayden, Jonathan D; Royle, Natalie A; Murray, Catherine; Morris, Zoe; Aribisala, Benjamin S; Gow, Alan J; Starr, John M; Bastin, Mark E; Deary, Ian J; Wardlaw, Joanna M
2015-02-01
White matter hyperintensities (WMH) of presumed vascular origin are a common finding in brain magnetic resonance imaging of older individuals and contribute to cognitive and functional decline. It is unknown how WMH form, although white matter degeneration is characterized pathologically by demyelination, axonal loss, and rarefaction, often attributed to ischemia. Changes within normal-appearing white matter (NAWM) in subjects with WMH have also been reported but have not yet been fully characterized. Here, we describe the in vivo imaging signatures of both NAWM and WMH in a large group of community-dwelling older people of similar age using biomarkers derived from magnetic resonance imaging that collectively reflect white matter integrity, myelination, and brain water content. Fractional anisotropy (FA) and magnetization transfer ratio (MTR) were significantly lower, whereas mean diffusivity (MD) and longitudinal relaxation time (T1) were significantly higher, in WMH than NAWM (p < 0.0001), with MD providing the largest difference between NAWM and WMH. Receiver operating characteristic analysis on each biomarker showed that MD differentiated best between NAWM and WMH, identifying 94.6% of the lesions using a threshold of 0.747 × 10(-9) m(2)s(-1) (area under curve, 0.982; 95% CI, 0.975-0.989). Furthermore, the level of deterioration of NAWM was strongly associated with the severity of WMH, with MD and T1 increasing and FA and MTR decreasing in NAWM with increasing WMH score, a relationship that was sustained regardless of distance from the WMH. These multimodal imaging data indicate that WMH have reduced structural integrity compared with surrounding NAWM, and MD provides the best discriminator between the 2 tissue classes even within the mild range of WMH severity, whereas FA, MTR, and T1 only start reflecting significant changes in tissue microstructure as WMH become more severe. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Vijayakumar, Nandita; Bartholomeusz, Cali; Whitford, Thomas; Hermens, Daniel F; Nelson, Barnaby; Rice, Simon; Whittle, Sarah; Pantelis, Christos; McGorry, Patrick; Schäfer, Miriam R; Amminger, G Paul
2016-08-11
Schizophrenia is thought to be a neurodevelopmental disorder with pathophysiological processes beginning in the brain prior to the emergence of clinical symptoms. Recent evidence from neuroimaging studies using techniques such as diffusion tensor imaging has identified white matter abnormalities that are suggestive of disrupted brain myelination and neuronal connectivity. Identifying whether such effects exist in individuals at high risk for developing psychosis may help with prevention and early intervention strategies. In addition, there is preliminary evidence for a role of lipid biology in the onset of psychosis, along with well-established evidence of its role in myelination of white matter tracts. As such, this article synthesises the literature on polyunsaturated fatty acids (PUFAs) in myelination and schizophrenia, hypothesizing that white matter abnormalities may potentially mediate the relationship between PUFAs and schizophrenia. Diffusion tensor imaging studies were identified through a systematic search of existing literature. Studies examined white matter integrity in ultra-high risk (UHR) samples, as assessed using structured diagnostic interviews. Data was extracted and summarised as a narrative review. Twelve studies met inclusion criteria, and findings identified reduced fractional anisotropy and higher diffusivity. Although the exact location of abnormalities remains uncertain, fronto-temporal and fronto-limbic connections, including the superior longitudinal and uncinate fasiculus, cingulum, and corpus callosum appear to be implicated. Because of preliminary evidence suggesting lipid biology may be relevant for the onset of psychosis, a discussion is provided of the role of polyunsaturated fatty acids (PUFAs) in myelination and risk for psychosis. While the function of PUFAs in myelination is well-established, there is growing evidence of reduced PUFA concentration in UHR samples, highlighting the need for research to examine the relationship between PUFA and white matter integrity in high-risk samples and age-matched healthy controls. Such investigations will help to better understand the pathophysiology of the disorder, and potentially assist in the development of novel treatment and early intervention strategies.
Xu, Man; Tan, Xiangliang; Zhang, Xinyuan; Guo, Yihao; Mei, Yingjie; Feng, Qianjin; Xu, Yikai; Feng, Yanqiu
2017-01-01
Systemic lupus erythematosus (SLE) is a chronic inflammatory female-predominant autoimmune disease that can affect the central nervous system and exhibit neuropsychiatric symptoms. In SLE patients without neuropsychiatric symptoms (non-NPSLE), recent diffusion tensor imaging studies showed white matter abnormalities in their brains. The present study investigated the entire brain white matter structural connectivity in non-NPSLE patients by using probabilistic tractography and connectivity-based analyses. Whole-brain structural networks of 29 non-NPSLE patients and 29 healthy controls (HCs) were examined. The structural networks were constructed with interregional probabilistic connectivity. Graph theory analysis was performed to investigate the topological properties, and network-based statistic was employed to assess the alterations of the interregional connections among non-NPSLE patients and controls. Compared with HCs, non-NPSLE patients demonstrated significantly decreased global and local network efficiencies and showed increased characteristic path length. This finding suggests that the global integration and local specialization were impaired. Moreover, the regional properties (nodal efficiency and degree) in the frontal, occipital, and cingulum regions of the non-NPSLE patients were significantly changed and negatively correlated with the disease activity index. The distribution pattern of the hubs measured by nodal degree was altered in the patient group. Finally, the non-NPSLE group exhibited decreased structural connectivity in the left median cingulate-centered component and increased connectivity in the left precuneus-centered component and right middle temporal lobe-centered component. This study reveals an altered topological organization of white matter networks in non-NPSLE patients. Furthermore, this research provides new insights into the structural disruptions underlying the functional and neurocognitive deficits in non-NPSLE patients.
Bernard, Jessica A.; Orr, Joseph M.; Mittal, Vijay A.
2015-01-01
While our understanding of cerebellar structural development through adolescence and young adulthood has expanded, we still lack knowledge of the developmental patterns of cerebellar networks during this critical portion of the lifespan. Volume in lateral posterior cerebellar regions associated with cognition and the prefrontal cortex develops more slowly, reaching their peak volume in adulthood, particularly as compared to motor Lobule V. We predicted that resting state functional connectivity of the lateral posterior regions would show a similar pattern of development during adolescence and young adulthood. That is, we expected to see changes over time in Crus I and Crus II connectivity with the cortex, but no changes in Lobule V connectivity. Additionally, we were interested in how structural connectivity changes in cerebello-thalamo-cortical white matter are related to changes in functional connectivity. A sample of 23 individuals between 12 and 21 years old underwent neuroimaging scans at baseline and 12-months later. Functional networks of Crus I and Crus II showed significant connectivity decreases over 12-months, though there were no differences in Lobule V. Furthermore, these functional connectivity changes were correlated with increases in white matter structural integrity in the corresponding cerebello-thalamo-cortical white matter tract. We suggest that these functional network changes are due to both later pruning in the prefrontal cortex as well as further development of the white matter tracts linking these brain regions. PMID:26391125
Gold, Brian T.; Jiang, Yang; Powell, David K.; Smith, Charles D.
2012-01-01
White matter (WM) microstructural declines have been demonstrated in Alzheimer’s disease and amnestic mild cognitive impairment (aMCI). However, the pattern of WM microstructural changes in aMCI after controlling for WM atrophy is unknown. Here, we address this issue through joint consideration of aMCI alterations in fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity, as well as macrostructural volume in WM and gray matter compartments. Participants were 18 individuals with aMCI and 24 healthy seniors. Voxelwise analyses of diffusion tensor imaging data was carried out using tract-based spatial statistics (TBSS) and voxelwise analyses of high-resolution structural data was conducted using voxel based morphometry. After controlling for WM atrophy, the main pattern of TBSS findings indicated reduced fractional anisotropy with only small alterations in mean diffusivity/radial diffusivity/axial diffusivity. These WM microstructural declines bordered and/or were connected to gray matter structures showing volumetric declines. However, none of the potential relationships between WM integrity and volume in connected gray matter structures was significant, and adding fractional anisotropy information improved the classificatory accuracy of aMCI compared to the use of hippocampal atrophy alone. These results suggest that WM microstructural declines provide unique information not captured by atrophy measures that may aid the magnetic resonance imaging contribution to aMCI detection. PMID:22460327
Reneman, Liesbeth; Schagen, Sanne B; Mulder, Michel; Mutsaerts, Henri J; Hageman, Gerard; de Ruiter, Michiel B
2016-06-01
Cabin air in airplanes can be contaminated with engine oil contaminants. These contaminations may contain organophosphates (OPs) which are known neurotoxins to brain white matter. However, it is currently unknown if brain white matter in aircrew is affected. We investigated whether we could objectify cognitive complaints in aircrew and whether we could find a neurobiological substrate for their complaints. After medical ethical approval from the local institutional review board, informed consent was obtained from 12 aircrew (2 females, on average aged 44.4 years, 8,130 flying hours) with cognitive complaints and 11 well matched control subjects (2 females, 43.4 years, 233 flying hours). Depressive symptoms and self-reported cognitive symptoms were assessed, in addition to a neuropsychological test battery. State of the art Magnetic Resonance Imaging (MRI) techniques were administered that assess structural and functional changes, with a focus on white matter integrity. In aircrew we found significantly more self-reported cognitive complaints and depressive symptoms, and a higher number of tests scored in the impaired range compared to the control group. We observed small clusters in the brain in which white matter microstructure was affected. Also, we observed higher cerebral perfusion values in the left occipital cortex, and reduced brain activation on a functional MRI executive function task. The extent of cognitive impairment was strongly associated with white matter integrity, but extent of estimated number of flight hours was not associated with cognitive impairment nor with reductions in white matter microstructure. Defects in brain white matter microstructure and cerebral perfusion are potential neurobiological substrates for cognitive impairments and mood deficits reported in aircrew.
Altered Integration of Structural Covariance Networks in Young Children With Type 1 Diabetes.
Hosseini, S M Hadi; Mazaika, Paul; Mauras, Nelly; Buckingham, Bruce; Weinzimer, Stuart A; Tsalikian, Eva; White, Neil H; Reiss, Allan L
2016-11-01
Type 1 diabetes mellitus (T1D), one of the most frequent chronic diseases in children, is associated with glucose dysregulation that contributes to an increased risk for neurocognitive deficits. While there is a bulk of evidence regarding neurocognitive deficits in adults with T1D, little is known about how early-onset T1D affects neural networks in young children. Recent data demonstrated widespread alterations in regional gray matter and white matter associated with T1D in young children. These widespread neuroanatomical changes might impact the organization of large-scale brain networks. In the present study, we applied graph-theoretical analysis to test whether the organization of structural covariance networks in the brain for a cohort of young children with T1D (N = 141) is altered compared to healthy controls (HC; N = 69). While the networks in both groups followed a small world organization-an architecture that is simultaneously highly segregated and integrated-the T1D network showed significantly longer path length compared with HC, suggesting reduced global integration of brain networks in young children with T1D. In addition, network robustness analysis revealed that the T1D network model showed more vulnerability to neural insult compared with HC. These results suggest that early-onset T1D negatively impacts the global organization of structural covariance networks and influences the trajectory of brain development in childhood. This is the first study to examine structural covariance networks in young children with T1D. Improving glycemic control for young children with T1D might help prevent alterations in brain networks in this population. Hum Brain Mapp 37:4034-4046, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Chew, Li-Jin; Fusar-Poli, Paolo; Schmitz, Thomas
2015-01-01
Schizophrenia is a chronic and debilitating mental illness characterized by a broad range of abnormal behaviors, including delusions and hallucinations, impaired cognitive function, as well as mood disturbances and social withdrawal. Due to the heterogeneous nature of the disease, the causes of schizophrenia are very complex; its etiology is believed to involve multiple brain regions and the connections between them, and includes alterations in both gray and white matter regions. The onset of symptoms varies with age and severity, and there is some debate over a degenerative or developmental etiology. Longitudinal magnetic resonance imaging studies have detected progressive gray matter loss in the first years of disease, suggesting neurodegeneration; but there is also increasing recognition of a temporal association between clinical complications at birth and disease onset that supports a neurodevelopmental origin. Presently, neuronal abnormalities in schizophrenia are better understood than alterations in myelin-producing cells of the brain, the oligodendrocytes, which are the predominant constituents of white matter structures. Proper white matter development and its structural integrity critically impacts brain connectivity, which affects sensorimotor coordination and cognitive ability. Evidence of defective white matter growth and compromised white matter integrity has been found in individuals at high risk of psychosis, and decreased numbers of mature oligodendrocytes are detected in schizophrenia patients. Inflammatory markers, including proinflammatory cytokines and chemokines, are also associated with psychosis. A relationship between risk of psychosis, white matter defects and prenatal inflammation is being established. Animal models of perinatal brain injury are successful in producing white matter damage in the brain, typified by hypomyelination and/or dysmyelination, impaired motor coordination and prepulse inhibition of the acoustic startle reflex, recapitulating structural and functional characteristics observed in schizophrenia. In addition, elevated expression of inflammation-related genes in brain tissue and increased production of cytokines by blood cells from patients with schizophrenia indicate immunological dysfunction and abnormal inflammatory responses, which are also important underlying features in experimental models. Microglia, resident immune defenders of the central nervous system, play important roles in the development and protection of neural cells, but can contribute to injury under pathological conditions. This article discusses oligodendroglial changes in schizophrenia and focuses on microglial activity in the context of the disease, in neonatal brain injury and in various experimental models of white matter damage. These include disorders associated with premature birth, and animal models of perinatal bacterial and viral infection, oxygen deprivation (hypoxia) and excess (hyperoxia), and elevated systemic proinflammatory cytokine levels. We briefly review the effects of treatment with antipsychotic and anti-inflammatory agents in models of perinatal brain injury, and comment on the therapeutic potential of these strategies. By understanding the neurobiological basis of oligodendroglial abnormalities in schizophrenia, it is hoped that patients will benefit from the availability of targeted and more efficacious treatment options. PMID:23446060
Unterrainer, H F; Hiebler, M; Ragger, K; Froehlich, L; Koschutnig, K; Schoeggl, H; Kapfhammer, H P; Papousek, I; Weiss, E M; Fink, A
2016-12-01
The relationship between substance use disorders (SUD) and brain deficits has been studied extensively. However, there is still a lack of research focusing on the structural neural connectivity in long-term polydrug use disorder (PUD). Since a deficiency in white matter integrity has been reported as being related to various parameters of increased psychopathology, it might be considered an aggravating factor in the treatment of SUD. In this study we compared two groups of PUD inpatients (abstinent: n = 18, in maintenance treatment: n = 15) to healthy controls (n = 16) with respect to neural connectivity in white matter, and their relation to behavioral parameters of personality factors/organization and attachment styles. Diffusion Tensor Imaging was used to investigate white matter structure. Compared with healthy controls, the PUD patients showed reduced fractional anisotropy (FA) and increased radial diffusivity (RD) mainly in the superior fasciculus longitudinalis and the superior corona radiata. These findings suggest diminished neural connectivity as a result of myelin pathology in PUD patients. In line with our assumptions, we observed FA in the biggest cluster as negatively correlated with anxious attachment (r = 0.36, p < 0.05), personality dysfunctioning (r = -0.41; p < 0.01) as well positively correlated with personality factors Openness (r = 0.34; p < 0.05) and Agreeableness (r = 0.28; p < 0.05). Correspondingly these findings were inversely mirrored by RD. Further research employing enhanced samples and addressing longitudinally neuronal plastic effects of SUD treatment in relation to changes in personality and attachment is recommended.
Liu, Jixin; Ma, Shaohui; Mu, Junya; Chen, Tao; Xu, Qing; Dun, Wanghuan; Tian, Jie; Zhang, Ming
2017-10-01
Individual differences of brain changes of neural communication and integration in the modular architecture of the human brain network exist for the repeated migraine attack and physical or psychological stressors. However, whether the interindividual variability in the migraine brain connectome predicts placebo response to placebo treatment is still unclear. Using DTI and graph theory approaches, we systematically investigated the topological organization of white matter networks in 71 patients with migraine without aura (MO) and 50 matched healthy controls at three levels: global network measure, nodal efficiency, and nodal intramodule/intermodule efficiency. All patients participated in an 8-week sham acupuncture treatment to induce analgesia. In our results, 30% (n = 21) of patients had 50% change in migraine days from baseline after placebo treatment. At baseline, abnormal increased network integration was found in MO patients as compared with the HC group, and the increased global efficiency before starting clinical treatment was associated with their following placebo response. For nodal efficiency, significantly increased within-subnetwork nodal efficiency and intersubnetwork connectivity of the hippocampus and middle frontal gyrus in patients' white matter network were correlated with the responses of follow-up placebo treatment. Our findings suggested that the trait-like individual differences in pain-related maladaptive stress interfered with and diminished the capacity of chronic pain modulation differently, and the placebo response for treatment could be predicted from a prior white matter network modular structure in migraineurs. Hum Brain Mapp 38:5250-5259, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Schmitt, Ruth; Winter, Dorina; Niedtfeld, Inga; Herpertz, Sabine C.; Schmahl, Christian
2018-01-01
Background There is increasing evidence that psychotherapy can alter the function of the brain of patients with borderline personality disorder (BPD). However, it is not known whether psychotherapy can also modify the brain structure of patients with BPD. Methods We used structural MRI data of female patients with BPD before and after participation in 12 weeks of residential dialectical behavioural therapy (DBT) and compared them to data from female patients with BPD who received treatment as usual (TAU). We applied voxel-based morphometry to study voxel-wise changes in grey matter volume over time. Results We included 31 patients in the DBT group and 17 in the TAU group. Patients receiving DBT showed an increase of grey matter volume in the anterior cingulate cortex, inferior frontal gyrus and superior temporal gyrus together with an alteration of grey matter volume in the angular gyrus and supramarginal gyrus compared with patients receiving TAU. Furthermore, therapy response correlated with increase of grey matter volume in the angular gyrus. Limitations Only women were investigated, and groups differed in size, medication (controlled for) and intensity of the treatment condition. Conclusion We found that DBT increased grey matter volume of brain regions that are critically implicated in emotion regulation and higher-order functions, such as mentalizing. The role of the angular gyrus for treatment response may reside in its cross-modal integrative function. These findings enhance our understanding of psychotherapy mechanisms of change and may foster the development of neurobiologically informed therapeutic interventions. PMID:29688873
Kasper, Elisabeth; Schuster, Christina; Machts, Judith; Kaufmann, Joern; Bittner, Daniel; Vielhaber, Stefan; Benecke, Reiner; Teipel, Stefan; Prudlo, Johannes
2014-01-01
Background A relevant fraction of patients with amyotrophic lateral sclerosis (ALS) exhibit a fronto-temporal pattern of cognitive and behavioural disturbances with pronounced deficits in executive functioning and cognitive control of behaviour. Structural imaging shows a decline in fronto-temporal brain areas, but most brain imaging studies did not evaluate cognitive status. We investigated microstructural white matter changes underlying cognitive impairment using diffusion tensor imaging (DTI) in a large cohort of ALS patients. Methods We assessed 72 non-demented ALS patients and 65 matched healthy control subjects using a comprehensive neuropsychological test battery and DTI. We compared DTI measures of fiber tract integrity using tract-based spatial statistics among ALS patients with and without cognitive impairment and healthy controls. Neuropsychological performance and behavioural measures were correlated with DTI measures. Results Patients without cognitive impairment demonstrated white matter changes predominantly in motor tracts, including the corticospinal tract and the body of corpus callosum. Those with impairments (ca. 30%) additionally presented significant white matter alterations in extra-motor regions, particularly the frontal lobe. Executive and memory performance and behavioural measures were correlated with fiber tract integrity in large association tracts. Conclusion In non-demented cognitively impaired ALS patients, white matter changes measured by DTI are related to disturbances of executive and memory functions, including prefrontal and temporal regions. In a group comparison, DTI is able to observe differences between cognitively unimpaired and impaired ALS patients. PMID:25501028
Rigon, Arianna; Voss, Michelle W.; Turkstra, Lyn S.; Mutlu, Bilge; Duff, Melissa C.
2018-01-01
Objectives Although it has been well documented that traumatic brain injury (TBI) can result in communication impairment, little work to date has examined the relationship between social communication skills and structural brain integrity in patients with TBI. The aim of the current study was to investigate the association between self- and other-perceived communication problems and white matter integrity in patients with mild to severe TBI. Methods Forty-four individuals (TBI = 24) and people with whom they frequently communicate, as well as demographically matched normal healthy comparisons (NC) and their frequent communication partners, were administered, respectively, the La-Trobe Communication Questionnaire Self form (LCQ-SELF) and Other form (LCQ-OTHER). In addition, diffusion tensor imaging data were collected, and fractional anisotropy (FA) measures were extracted for each lobe in both hemispheres. Results Within the TBI group, but not within the NC group, participants who were perceived by their close others as having more communication problems had lower FA in the left frontal and temporal lobes (p < .01), but not in other brain regions. Conclusions Frontotemporal white matter microstructural integrity is associated with social communication abilities in adults with TBI. This finding contributes to our understanding of the mechanisms leading to communication impairment following TBI and can inform the development of new neuromodulation therapies as well as diagnostic tools. PMID:27405965
Dupont, Sara M; De Leener, Benjamin; Taso, Manuel; Le Troter, Arnaud; Nadeau, Sylvie; Stikov, Nikola; Callot, Virginie; Cohen-Adad, Julien
2017-04-15
The spinal cord white and gray matter can be affected by various pathologies such as multiple sclerosis, amyotrophic lateral sclerosis or trauma. Being able to precisely segment the white and gray matter could help with MR image analysis and hence be useful in further understanding these pathologies, and helping with diagnosis/prognosis and drug development. Up to date, white/gray matter segmentation has mostly been done manually, which is time consuming, induces a bias related to the rater and prevents large-scale multi-center studies. Recently, few methods have been proposed to automatically segment the spinal cord white and gray matter. However, no single method exists that combines the following criteria: (i) fully automatic, (ii) works on various MRI contrasts, (iii) robust towards pathology and (iv) freely available and open source. In this study we propose a multi-atlas based method for the segmentation of the spinal cord white and gray matter that addresses the previous limitations. Moreover, to study the spinal cord morphology, atlas-based approaches are increasingly used. These approaches rely on the registration of a spinal cord template to an MR image, however the registration usually doesn't take into account the spinal cord internal structure and thus lacks accuracy. In this study, we propose a new template registration framework that integrates the white and gray matter segmentation to account for the specific gray matter shape of each individual subject. Validation of segmentation was performed in 24 healthy subjects using T 2 * -weighted images, in 8 healthy subjects using diffusion weighted images (exhibiting inverted white-to-gray matter contrast compared to T 2 *-weighted), and in 5 patients with spinal cord injury. The template registration was validated in 24 subjects using T 2 *-weighted data. Results of automatic segmentation on T 2 *-weighted images was in close correspondence with the manual segmentation (Dice coefficient in the white/gray matter of 0.91/0.71 respectively). Similarly, good results were obtained in data with inverted contrast (diffusion-weighted image) and in patients. When compared to the classical template registration framework, the proposed framework that accounts for gray matter shape significantly improved the quality of the registration (comparing Dice coefficient in gray matter: p=9.5×10 -6 ). While further validation is needed to show the benefits of the new registration framework in large cohorts and in a variety of patients, this study provides a fully-integrated tool for quantitative assessment of white/gray matter morphometry and template-based analysis. All the proposed methods are implemented in the Spinal Cord Toolbox (SCT), an open-source software for processing spinal cord multi-parametric MRI data. Copyright © 2017 Elsevier Inc. All rights reserved.
Hou, Yi-Cheng; Yang, Shwu-Huey; Wu, Yu-Te; Lai, Chien-Han
2016-06-01
To assess the existence of alterations in the micro-integrity of the fasciculus in prediabetic subjects. The issue of micro-integrity in white matter tracts has not been adequately addressed in prediabetes. Sixty-four prediabetic subjects and 54 controls were enrolled. All participants completed 24-hour diet records and 3-day diet records and received diffusion tensor imaging at 3T. The data for white matter micro-integrity were analyzed and compared between prediabetic subjects and controls with age and gender as covariates. In addition, voxel-wise regression between white matter micro-integrity, diet, and preprandial glucose levels were used to explore the relationship between white matter micro-integrity and diet or serum glucose levels. We found that prediabetic subjects had significant reductions in the micro-integrity of bilateral anterior thalamic radiation, left inferior longitudinal fasciculus, and left superior longitudinal fasciculus (corrected P < 0.05). In addition, total carbohydrate intake amount and preprandial serum glucose levels were negatively correlated with the micro-integrity in the left inferior longitudinal fasciculus and left anterior thalamic radiation (r: -0.47, corrected P < 0.05). Restrictive alterations in the white matter micro-integrity of the anterior thalamic radiation and inferior and superior longitudinal fasciculi might represent the initial "hot spots" for white matter tract alterations, which might play a role in the development of prediabetes. J. Magn. Reson. Imaging 2016;43:1500-1506. © 2016 Wiley Periodicals, Inc.
Stoeckel, Luke E.; Chai, Xiaoqian J.; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A. Eden
2015-01-01
Rationale While nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. Objectives (1) To evaluate grey matter density and functional connectivity of the anterior insula in cigarette smokers and never-smokers and (2) characterize how differences in these measures related to smoking behavior. Methods We compared structural MRI (grey matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never-smokers. Results Compared to controls, smokers had lower grey matter density in left anterior insula extending into inferior frontal and temporal cortex. Grey matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lateral prefrontal cortex) and semantic processing / emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. Conclusions There were differences in the anterior insula, a central region in the brain’s salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, was also associated with an aspect of smoking behavior (daily cigarettes smoked). PMID:25990865
Stoeckel, Luke E; Chai, Xiaoqian J; Zhang, Jiahe; Whitfield-Gabrieli, Susan; Evins, A Eden
2016-07-01
Although nicotine addiction is characterized by both structural and functional abnormalities in brain networks involved in salience and cognitive control, few studies have integrated these data to understand how these abnormalities may support addiction. This study aimed to (1) evaluate gray matter density and functional connectivity of the anterior insula in cigarette smokers and never smokers and (2) characterize how differences in these measures were related to smoking behavior. We compared structural magnetic resonance imaging (MRI) (gray matter density via voxel-based morphometry) and seed-based functional connectivity MRI data in 16 minimally deprived smokers and 16 matched never smokers. Compared with controls, smokers had lower gray matter density in left anterior insula extending into inferior frontal and temporal cortex. Gray matter density in this region was inversely correlated with cigarettes smoked per day. Smokers exhibited negative functional connectivity (anti-correlation) between the anterior insula and regions involved in cognitive control (left lPFC) and semantic processing/emotion regulation (lateral temporal cortex), whereas controls exhibited positive connectivity between these regions. There were differences in the anterior insula, a central region in the brain's salience network, when comparing both volumetric and functional connectivity data between cigarette smokers and never smokers. Volumetric data, but not the functional connectivity data, were also associated with an aspect of smoking behavior (daily cigarettes smoked). © 2015 Society for the Study of Addiction.
Probabilistic diffusion tractography reveals improvement of structural network in musicians.
Li, Jianfu; Luo, Cheng; Peng, Yueheng; Xie, Qiankun; Gong, Jinnan; Dong, Li; Lai, Yongxiu; Li, Hong; Yao, Dezhong
2014-01-01
Musicians experience a large amount of information transfer and integration of complex sensory, motor, and auditory processes when training and playing musical instruments. Therefore, musicians are a useful model in which to investigate neural adaptations in the brain. Here, based on diffusion-weighted imaging, probabilistic tractography was used to determine the architecture of white matter anatomical networks in musicians and non-musicians. Furthermore, the features of the white matter networks were analyzed using graph theory. Small-world properties of the white matter network were observed in both groups. Compared with non-musicians, the musicians exhibited significantly increased connectivity strength in the left and right supplementary motor areas, the left calcarine fissure and surrounding cortex and the right caudate nucleus, as well as a significantly larger weighted clustering coefficient in the right olfactory cortex, the left medial superior frontal gyrus, the right gyrus rectus, the left lingual gyrus, the left supramarginal gyrus, and the right pallidum. Furthermore, there were differences in the node betweenness centrality in several regions. However, no significant differences in topological properties were observed at a global level. We illustrated preliminary findings to extend the network level understanding of white matter plasticity in musicians who have had long-term musical training. These structural, network-based findings may indicate that musicians have enhanced information transmission efficiencies in local white matter networks that are related to musical training.
Fishman, Inna; Datko, Michael; Cabrera, Yuliana; Carper, Ruth A; Müller, Ralph-Axel
2015-12-01
Converging evidence indicates that brain abnormalities in autism spectrum disorder (ASD) involve atypical network connectivity, but few studies have integrated functional with structural connectivity measures. This multimodal investigation examined functional and structural connectivity of the imitation network in children and adolescents with ASD, and its links with clinical symptoms. Resting state functional magnetic resonance imaging and diffusion-weighted imaging were performed in 35 participants with ASD and 35 typically developing controls, aged 8 to 17 years, matched for age, gender, intelligence quotient, and head motion. Within-network analyses revealed overall reduced functional connectivity (FC) between distributed imitation regions in the ASD group. Whole brain analyses showed that underconnectivity in ASD occurred exclusively in regions belonging to the imitation network, whereas overconnectivity was observed between imitation nodes and extraneous regions. Structurally, reduced fractional anisotropy and increased mean diffusivity were found in white matter tracts directly connecting key imitation regions with atypical FC in ASD. These differences in microstructural organization of white matter correlated with weaker FC and greater ASD symptomatology. Findings demonstrate atypical connectivity of the brain network supporting imitation in ASD, characterized by a highly specific pattern. This pattern of underconnectivity within, but overconnectivity outside the functional network is in contrast with typical development and suggests reduced network integration and differentiation in ASD. Our findings also indicate that atypical connectivity of the imitation network may contribute to ASD clinical symptoms, highlighting the role of this fundamental social cognition ability in the pathophysiology of ASD. © 2015 American Neurological Association.
Salience network integrity predicts default mode network function after traumatic brain injury
Bonnelle, Valerie; Ham, Timothy E.; Leech, Robert; Kinnunen, Kirsi M.; Mehta, Mitul A.; Greenwood, Richard J.; Sharp, David J.
2012-01-01
Efficient behavior involves the coordinated activity of large-scale brain networks, but the way in which these networks interact is uncertain. One theory is that the salience network (SN)—which includes the anterior cingulate cortex, presupplementary motor area, and anterior insulae—regulates dynamic changes in other networks. If this is the case, then damage to the structural connectivity of the SN should disrupt the regulation of associated networks. To investigate this hypothesis, we studied a group of 57 patients with cognitive impairments following traumatic brain injury (TBI) and 25 control subjects using the stop-signal task. The pattern of brain activity associated with stop-signal task performance was studied by using functional MRI, and the structural integrity of network connections was quantified by using diffusion tensor imaging. Efficient inhibitory control was associated with rapid deactivation within parts of the default mode network (DMN), including the precuneus and posterior cingulate cortex. TBI patients showed a failure of DMN deactivation, which was associated with an impairment of inhibitory control. TBI frequently results in traumatic axonal injury, which can disconnect brain networks by damaging white matter tracts. The abnormality of DMN function was specifically predicted by the amount of white matter damage in the SN tract connecting the right anterior insulae to the presupplementary motor area and dorsal anterior cingulate cortex. The results provide evidence that structural integrity of the SN is necessary for the efficient regulation of activity in the DMN, and that a failure of this regulation leads to inefficient cognitive control. PMID:22393019
Multispectral brain morphometry in Tourette syndrome persisting into adulthood
Martino, Davide; Cavanna, Andrea E.; Hutton, Chloe; Orth, Michael; Robertson, Mary M.; Critchley, Hugo D.; Frackowiak, Richard S.
2010-01-01
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change. PMID:21071387
White matter abnormalities of microstructure and physiological noise in schizophrenia.
Cheng, Hu; Newman, Sharlene D; Kent, Jerillyn S; Bolbecker, Amanda; Klaunig, Mallory J; O'Donnell, Brian F; Puce, Aina; Hetrick, William P
2015-12-01
White matter abnormalities in schizophrenia have been revealed by many imaging techniques and analysis methods. One of the findings by diffusion tensor imaging is a decrease in fractional anisotropy (FA), which is an indicator of white matter integrity. On the other hand, elevation of metabolic rate in white matter was observed from positron emission tomography (PET) studies. In this report, we aim to compare the two structural and functional effects on the same subjects. Our comparison is based on the hypothesis that signal fluctuation in white matter is associated with white matter functional activity. We examined the variance of the signal in resting state fMRI and found significant differences between individuals with schizophrenia and non-psychiatric controls specifically in white matter tissue. Controls showed higher temporal signal-to-noise ratios clustered in regions including temporal, frontal, and parietal lobes, cerebellum, corpus callosum, superior longitudinal fasciculus, and other major white matter tracts. These regions with higher temporal signal-to-noise ratio agree well with those showing higher metabolic activity reported by studies using PET. The results suggest that individuals with schizophrenia tend to have higher functional activity in white matter in certain brain regions relative to healthy controls. Despite some overlaps, the distinct regions for physiological noise are different from those for FA derived from diffusion tensor imaging, and therefore provide a unique angle to explore potential mechanisms to white matter abnormality.
Neuroticism, depressive symptoms and white-matter integrity in the Lothian Birth Cohort 1936.
McIntosh, A M; Bastin, M E; Luciano, M; Maniega, S Muñoz; Del C Valdés Hernández, M; Royle, N A; Hall, J; Murray, C; Lawrie, S M; Starr, J M; Wardlaw, J M; Deary, I J
2013-06-01
Clinical depression is associated with reductions in white-matter integrity in several long tracts of the brain. The extent to which these findings are localized or related to depressive symptoms or personality traits linked to disease risk remains unclear. Method Members of the Lothian Birth Cohort 1936 (LBC936) were assessed in two waves at mean ages of 70 and 73 years. At wave 1, they underwent assessments of depressive symptoms and the personality traits of neuroticism and extraversion. Brain diffusion magnetic resonance imaging (MRI) data were obtained at the second wave and mood assessments were repeated. We tested whether depressive symptoms were related to reduced white-matter tract fractional anisotropy (FA), a measure of integrity, and then examined whether high neuroticism or low extraversion mediated this relationship. Six hundred and sixty-eight participants provided useable data. Bilateral uncinate fasciculus FA was significantly negatively associated with depressive symptoms at both waves (standardized β=0.12-0.16). Higher neuroticism and lower extraversion were also significantly associated with lower uncinate FA bilaterally (standardized β=0.09-0.15) and significantly mediated the relationship between FA and depressive symptoms. Trait liability to depression and depressive symptoms are associated with reduced structural connectivity in tracts connecting the prefrontal cortex with the amygdala and anterior temporal cortex. These effects suggest that frontotemporal disconnection is linked to the etiology of depression, in part through personality trait differences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, K.; Itow, Y.; Rott, C., E-mail: koun@stelab.nagoya-u.ac.jp, E-mail: rott@skku.edu, E-mail: itow@stelab.nagoya-u.ac.jp
Dark matter could be captured in the Sun and self-annihilate, giving rise to an observable neutrino flux. Indirect searches for dark matter looking for this signal with neutrino telescopes have resulted in tight constraints on the interaction cross-section of dark matter with ordinary matter. We investigate how robust limits are against astro-physical uncertainties. We study the effect of the velocity distribution of dark matter in our Galaxy on capture rates in the Sun. We investigate four sources of uncertainties: orbital speed of the Sun, escape velocity of dark matter from the halo, dark matter velocity distribution functions and existence ofmore » a dark disc. We find that even extreme cases currently discussed do not decrease the sensitivity of indirect detection significantly because the capture is achieved over a broad range of the velocity distribution by integration over the velocity distribution. The effect of the uncertainty in the high-velocity tail of dark matter halo is very marginal as the capture process is rather inefficient at this region. The difference in capture rate in the Sun for various scenarios is compared to the expected change in event rates for direct detection. The possibility of co-rotating structure with the Sun can largely boost the signal and hence makes the interpretation of indirect detection conservative compared to direct detection.« less
Fibromyalgia interacts with age to change the brain☆☆☆
Ceko, Marta; Bushnell, M. Catherine; Fitzcharles, Mary-Ann; Schweinhardt, Petra
2013-01-01
Although brain plasticity in the form of gray matter increases and decreases has been observed in chronic pain, factors determining the patterns of directionality are largely unknown. Here we tested the hypothesis that fibromyalgia interacts with age to produce distinct patterns of gray matter differences, specifically increases in younger and decreases in older patients, when compared to age-matched healthy controls. The relative contribution of pain duration was also investigated. Regional gray matter was measured in younger (n = 14, mean age 43, range 29–49) and older (n = 14; mean age 55, range 51–60) female fibromyalgia patients and matched controls using voxel-based morphometry and cortical thickness analysis of T1-weighted magnetic resonance images. To examine their functional significance, gray matter differences were compared with experimental pain sensitivity. Diffusion-tensor imaging was used to assess whether white matter changed in parallel with gray matter, and resting-state fMRI was acquired to examine whether pain-related gray matter changes are associated with altered functional connectivity. Older patients showed exclusively decreased gray matter, accompanied by compromised white matter integrity. In contrast, younger patients showed exclusively gray matter increases, namely in the basal ganglia and insula, which were independent of pain duration. Associated white matter changes in younger patients were compatible with gray matter hypertrophy. In both age groups, structural brain alterations were associated with experimental pain sensitivity, which was increased in older patients but normal in younger patients. Whereas more pronounced gray matter decreases in the posterior cingulate cortex were related to increased experimental pain sensitivity in older patients, insular gray matter increases in younger patients correlated with lower pain sensitivity, possibly indicating the recruitment of endogenous pain modulatory mechanisms. This is supported by the finding that the insula in younger patients showed functional decoupling from an important pain-processing region, the dorsal anterior cingulate cortex. These results suggest that brain structure and function shift from being adaptive in younger to being maladaptive in older patients, which might have important treatment implications. PMID:24273710
Modelo empirico integral de una plantacion de Eucalyptus grandis en Concordia, Entre Rios
Jorge Frangi; Carolina Perez; Juan Goya; Natalia Teson; Marcelo Barrera; Marcelo Arturi
2016-01-01
The Argentinian Mesopotamia is the core of fast-growing tree species plantations of the country. Eucalyptus grandis plantations constitute 90 % of the forested area with Eucalyptus spp. in NE Entre Rios. Based on previous studies on structural and functional features, a comprehensive model is here proposed on emergence of new properties linked to matter and ecosystem...
ERIC Educational Resources Information Center
Tyler, Lorraine K.; Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.
2011-01-01
For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left…
Budé, Luc; van de Wiel, Margaretha W J; Imbos, Tjaart; Berger, Martijn P F
2011-06-01
Education is aimed at students reaching conceptual understanding of the subject matter, because this leads to better performance and application of knowledge. Conceptual understanding depends on coherent and error-free knowledge structures. The construction of such knowledge structures can only be accomplished through active learning and when new knowledge can be integrated into prior knowledge. The intervention in this study was directed at both the activation of students as well as the integration of knowledge. Undergraduate university students from an introductory statistics course, in an authentic problem-based learning (PBL) environment, were randomly assigned to conditions and measurement time points. In the PBL tutorial meetings, half of the tutors guided the discussions of the students in a traditional way. The other half guided the discussions more actively by asking directive and activating questions. To gauge conceptual understanding, the students answered open-ended questions asking them to explain and relate important statistical concepts. Results of the quantitative analysis show that providing directive tutor guidance improved understanding. Qualitative data of students' misconceptions seem to support this finding. Long-term retention of the subject matter seemed to be inadequate. ©2010 The British Psychological Society.
Phenotype- and genotype-specific structural alterations in spasmodic dysphonia.
Bianchi, Serena; Battistella, Giovanni; Huddleston, Hailey; Scharf, Rebecca; Fleysher, Lazar; Rumbach, Anna F; Frucht, Steven J; Blitzer, Andrew; Ozelius, Laurie J; Simonyan, Kristina
2017-04-01
Spasmodic dysphonia is a focal dystonia characterized by involuntary spasms in the laryngeal muscles that occur selectively during speaking. Although hereditary trends have been reported in up to 16% of patients, the causative etiology of spasmodic dysphonia is unclear, and the influences of various phenotypes and genotypes on disorder pathophysiology are poorly understood. In this study, we examined structural alterations in cortical gray matter and white matter integrity in relationship to different phenotypes and putative genotypes of spasmodic dysphonia to elucidate the structural component of its complex pathophysiology. Eighty-nine patients with spasmodic dysphonia underwent high-resolution magnetic resonance imaging and diffusion-weighted imaging to examine cortical thickness and white matter fractional anisotropy in adductor versus abductor forms (distinct phenotypes) and in sporadic versus familial cases (distinct genotypes). Phenotype-specific abnormalities were localized in the left sensorimotor cortex and angular gyrus and the white matter bundle of the right superior corona radiata. Genotype-specific alterations were found in the left superior temporal gyrus, supplementary motor area, and the arcuate portion of the left superior longitudinal fasciculus. Our findings suggest that phenotypic differences in spasmodic dysphonia arise at the level of the primary and associative areas of motor control, whereas genotype-related pathophysiological mechanisms may be associated with dysfunction of regions regulating phonological and sensory processing. Identification of structural alterations specific to disorder phenotype and putative genotype provides an important step toward future delineation of imaging markers and potential targets for novel therapeutic interventions for spasmodic dysphonia. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Detection of white matter injury in concussion using high-definition fiber tractography.
Shin, Samuel S; Pathak, Sudhir; Presson, Nora; Bird, William; Wagener, Lauren; Schneider, Walter; Okonkwo, David O; Fernandez-Miranda, Juan C
2014-01-01
Over the last few decades, structural imaging techniques of the human brain have undergone significant strides. High resolution provided by recent developments in magnetic resonance imaging (MRI) allows improved detection of injured regions in patients with moderate-to-severe traumatic brain injury (TBI). In addition, diffusion imaging techniques such as diffusion tensor imaging (DTI) has gained much interest recently due to its possible utility in detecting structural integrity of white matter pathways in mild TBI (mTBI) cases. However, the results from recent DTI studies in mTBI patients remain equivocal. Also, there are important shortcomings for DTI such as limited resolution in areas of multiple crossings and false tract formation. The detection of white matter damage in concussion remains challenging, and development of imaging biomarkers for mTBI is still in great need. In this chapter, we discuss our experience with high-definition fiber tracking (HDFT), a diffusion spectrum imaging-based technique. We also discuss ongoing developments and specific advantages HDFT may offer concussion patients. © 2014 S. Karger AG, Basel.
Integrated coherent matter wave circuits
Ryu, C.; Boshier, M. G.
2015-09-21
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
White Matter Integrity, Substance Use, and Risk Taking in Adolescence
Jacobus, Joanna; Thayer, Rachel E.; Trim, Ryan S.; Bava, Sunita; Frank, Lawrence R.; Tapert, Susan F.
2012-01-01
White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n=47) and demographically similar non-users (n=49) received diffusion tensor imaging at baseline (ages 16–19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17–20). Brain regions of interest were: fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance using youth (n=47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 =10–12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic system fibers and future substance use frequency. Subcortical white matter coherence along with an imbalance between the maturation levels in cognitive control and reward systems may disadvantage the resistance to engage in risk taking behaviors during adolescence. PMID:22564204
White matter integrity, substance use, and risk taking in adolescence.
Jacobus, Joanna; Thayer, Rachel E; Trim, Ryan S; Bava, Sunita; Frank, Lawrence R; Tapert, Susan F
2013-06-01
White matter development is important for efficient communication between brain regions, higher order cognitive functioning, and complex behaviors. Adolescents have a higher propensity for engaging in risky behaviors, yet few studies have explored associations between white matter integrity and risk taking directly. Altered white matter integrity in mid-adolescence was hypothesized to predict subsequent risk taking behaviors 1.5 years later. Adolescent substance users (predominantly alcohol and marijuana, n = 47) and demographically similar nonusers (n = 49) received diffusion tensor imaging at baseline (ages 16-19), and risk taking measures at both baseline and an 18-month follow-up (i.e., at ages 17-20). Brain regions of interest were the fornix, superior corona radiata, superior longitudinal fasciculus, and superior fronto-occipital fasciculus. In substance-using youth (n = 47), lower white matter integrity at baseline in the fornix and superior corona radiata predicted follow-up substance use (ΔR2 = 10-12%, ps < .01), and baseline fornix integrity predicted follow-up delinquent behaviors (ΔR2 = 10%, p < .01) 1.5 years later. Poorer fronto-limbic white matter integrity was linked to a greater propensity for future risk taking behaviors among youth who initiated heavy substance use by mid-adolescence. Most notable were relationships between projection and limbic-system fibers and future substance-use frequency. Subcortical white matter coherence, along with an imbalance between the maturation levels in cognitive control and reward systems, may disadvantage the resistance to engage in risk taking behaviors during adolescence. 2013 APA, all rights reserved
Novel white matter tract integrity metrics sensitive to Alzheimer disease progression.
Fieremans, E; Benitez, A; Jensen, J H; Falangola, M F; Tabesh, A; Deardorff, R L; Spampinato, M V S; Babb, J S; Novikov, D S; Ferris, S H; Helpern, J A
2013-01-01
Along with cortical abnormalities, white matter microstructural changes such as axonal loss and myelin breakdown are implicated in the pathogenesis of Alzheimer disease. Recently, a white matter model was introduced that relates non-Gaussian diffusional kurtosis imaging metrics to characteristics of white matter tract integrity, including the axonal water fraction, the intra-axonal diffusivity, and the extra-axonal axial and radial diffusivities. This study reports these white matter tract integrity metrics in subjects with amnestic mild cognitive impairment (n = 12), Alzheimer disease (n = 14), and age-matched healthy controls (n = 15) in an effort to investigate their sensitivity, diagnostic accuracy, and associations with white matter changes through the course of Alzheimer disease. With tract-based spatial statistics and region-of-interest analyses, increased diffusivity in the extra-axonal space (extra-axonal axial and radial diffusivities) in several white matter tracts sensitively and accurately discriminated healthy controls from those with amnestic mild cognitive impairment (area under the receiver operating characteristic curve = 0.82-0.95), while widespread decreased axonal water fraction discriminated amnestic mild cognitive impairment from Alzheimer disease (area under the receiver operating characteristic curve = 0.84). Additionally, these white matter tract integrity metrics in the body of the corpus callosum were strongly correlated with processing speed in amnestic mild cognitive impairment (r = |0.80-0.82|, P < .001). These findings have implications for the course and spatial progression of white matter degeneration in Alzheimer disease, suggest the mechanisms by which these changes occur, and demonstrate the viability of these white matter tract integrity metrics as potential neuroimaging biomarkers of the earliest stages of Alzheimer disease and disease progression.
Visual White Matter Integrity in Schizophrenia
Butler, Pamela D.; Hoptman, Matthew J.; Nierenberg, Jay; Foxe, John J.; Javitt, Daniel C.; Lim, Kelvin O.
2007-01-01
Objective Patients with schizophrenia have visual-processing deficits. This study examines visual white matter integrity as a potential mechanism for these deficits. Method Diffusion tensor imaging was used to examine white matter integrity at four levels of the visual system in 17 patients with schizophrenia and 21 comparison subjects. The levels examined were the optic radiations, the striate cortex, the inferior parietal lobule, and the fusiform gyrus. Results Schizophrenia patients showed a significant decrease in fractional anisotropy in the optic radiations but not in any other region. Conclusions This finding indicates that white matter integrity is more impaired at initial input, rather than at higher levels of the visual system, and supports the hypothesis that visual-processing deficits occur at the early stages of processing. PMID:17074957
Neuroplasticity as a function of second language learning: anatomical changes in the human brain.
Li, Ping; Legault, Jennifer; Litcofsky, Kaitlyn A
2014-09-01
The brain has an extraordinary ability to functionally and physically change or reconfigure its structure in response to environmental stimulus, cognitive demand, or behavioral experience. This property, known as neuroplasticity, has been examined extensively in many domains. But how does neuroplasticity occur in the brain as a function of an individual's experience with a second language? It is not until recently that we have gained some understanding of this question by examining the anatomical changes as well as functional neural patterns that are induced by the learning and use of multiple languages. In this article we review emerging evidence regarding how structural neuroplasticity occurs in the brain as a result of one's bilingual experience. Our review aims at identifying the processes and mechanisms that drive experience-dependent anatomical changes, and integrating structural imaging evidence with current knowledge of functional neural plasticity of language and other cognitive skills. The evidence reviewed so far portrays a picture that is highly consistent with structural neuroplasticity observed for other domains: second language experience-induced brain changes, including increased gray matter (GM) density and white matter (WM) integrity, can be found in children, young adults, and the elderly; can occur rapidly with short-term language learning or training; and are sensitive to age, age of acquisition, proficiency or performance level, language-specific characteristics, and individual differences. We conclude with a theoretical perspective on neuroplasticity in language and bilingualism, and point to future directions for research. Copyright © 2014 Elsevier Ltd. All rights reserved.
White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism
ERIC Educational Resources Information Center
Sahyoun, Cherif P.; Belliveau, John W.; Mody, Maria
2010-01-01
The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups' response…
25 years of neuroimaging in amyotrophic lateral sclerosis.
Foerster, Bradley R; Welsh, Robert C; Feldman, Eva L
2013-09-01
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.
25 years of neuroimaging in amyotrophic lateral sclerosis
Foerster, Bradley R.; Welsh, Robert C.; Feldman, Eva L.
2014-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques—such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy—allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development. PMID:23917850
Statistical Analysis of Large-Scale Structure of Universe
NASA Astrophysics Data System (ADS)
Tugay, A. V.
While galaxy cluster catalogs were compiled many decades ago, other structural elements of cosmic web are detected at definite level only in the newest works. For example, extragalactic filaments were described by velocity field and SDSS galaxy distribution during the last years. Large-scale structure of the Universe could be also mapped in the future using ATHENA observations in X-rays and SKA in radio band. Until detailed observations are not available for the most volume of Universe, some integral statistical parameters can be used for its description. Such methods as galaxy correlation function, power spectrum, statistical moments and peak statistics are commonly used with this aim. The parameters of power spectrum and other statistics are important for constraining the models of dark matter, dark energy, inflation and brane cosmology. In the present work we describe the growth of large-scale density fluctuations in one- and three-dimensional case with Fourier harmonics of hydrodynamical parameters. In result we get power-law relation for the matter power spectrum.
Ohtani, Toshiyuki; Nestor, Paul G; Bouix, Sylvain; Newell, Dominick; Melonakos, Eric D; McCarley, Robert W; Shenton, Martha E; Kubicki, Marek
2017-01-26
We combined diffusion tension imaging (DTI) of prefrontal white matter integrity and neuropsychological measures to examine the functional neuroanatomy of human intelligence. Healthy participants completed the Wechsler Adult Intelligence Scale-Third Edition (WAIS-III) along with neuropsychological tests of attention and executive control, as measured by Trail Making Test (TMT) and Wisconsin Card Sorting Test (WCST). Stochastic tractography, considered the most effective DTI method, quantified white matter integrity of the medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC) circuitry. Based on prior studies, we hypothesized that posterior mOFC-rACC connections may play a key structural role linking attentional control processes and intelligence. Behavioral results provided strong support for this hypothesis, specifically linking attentional control processes, measured by Trails B and WCST perseverative errors, to intelligent quotient (IQ). Hierarchical regression results indicated left posterior mOFC-rACC fractional anisotropy (FA) and Trails B performance time, but not WCST perseverative errors, each contributed significantly to IQ, accounting for approximately 33.95-51.60% of the variance in IQ scores. These findings suggested that left posterior mOFC-rACC white matter connections may play a key role in supporting the relationship of executive functions of attentional control and general intelligence in healthy cognition. Copyright © 2016. Published by Elsevier Ltd.
Using operational and defined fractions to assess soil organic matter stabilization and structure
NASA Astrophysics Data System (ADS)
Horwath, W. R.
2015-12-01
Studies on soil organic matter (SOM) began with alkaline solvents revealing a dark colored substance that could be isolated under low pH. Further studies revealed fulvic and humic acids and humin fractions leading to theories on functional groups and metal-clay bridging mechanisms. The fate of isotopes in these fractions revealed soil carbon pools with varying turnover rates with half the soil carbon (C) in humin and acid hydrolyzed fractions over 1000 years old. These results are the basis of the three pool conceptual framework used in many biogeochemical models. Theories on the role of functional groups and compound classes further elaborated concepts on physical (aggregates) and chemical mechanisms of C stabilization. With the advance of analytical instrumentation, the operational fractions were further defined to the compound and molecular levels. These studies confirmed the majority of soil C is microbially derived. Our observation that all microbial groups contributed nonselectively to soil C maintenance independent of mineralogy suggests that compound characteristics within integrated structures are more important than the source of individual compounds for stabilizing soil C. In dissolved organic C floccing studies using Near Edge X-ray Fine Structure analysis, we found that aromatic compounds interacted first with Fe, however, the majority of direct bonds to Fe were polysaccharides, reinforcing that an integrative chemical structure rather than direct bonds imparted stability in organo-metal interactions. Using a novel differential scanning calorimeter coupled to an isotope ratio mass spectrometer setup, we confirmed that the presence of clays (independent of clay type) increased the microbial utilization of calcium stabilized high versus low temperature compounds, asserting that higher temperature compounds (i.e., phenolics) are likely less tightly bound by clay minerals. The integration of operational and defined fractions of SOM remains a legitimate approach to examine SOM structure and stabilization across scales of soil development and management.
Mills, Brian; Lai, Janie; Brown, Timothy T.; Erhart, Matthew; Halgren, Eric; Reilly, Judy; Dale, Anders; Appelbaum, Mark; Moses, Pamela
2013-01-01
This study investigated the relationship between white matter microstructure and the development of morphosyntax in a spoken narrative in typically developing children (TD) and in children with high functioning autism (HFA). Autism is characterized by language and communication impairments, yet the relationship between morphosyntactic development in spontaneous discourse contexts and neural development is not well understood in either this population or typical development. Diffusion tensor imaging (DTI) was used to assess multiple parameters of diffusivity as indicators of white matter tract integrity in language-related tracts in children between 6 and 13 years of age. Children were asked to spontaneously tell a story about at time when someone made them sad, mad, or angry. The story was evaluated for morphological accuracy and syntactic complexity. Analysis of the relationship between white matter microstructure and language performance in TD children showed that diffusivity correlated with morphosyntax production in the superior longitudinal fasciculus (SLF), a fiber tract traditionally associated with language. At the anatomical level, the HFA group showed abnormal diffusivity in the right inferior longitudinal fasciculus (ILF) relative to the TD group. Within the HFA group, children with greater white matter integrity in the right ILF displayed greater morphological accuracy during their spoken narrative. Overall, the current study shows an association between white matter structure in a traditional language pathway and narrative performance in TD children. In the autism group, associations were only found in the ILF, suggesting that during real world language use, children with HFA rely less on typical pathways and instead rely on alternative ventral pathways that possibly mediate visual elements of language. PMID:23810972
Brain structural connectivity and context-dependent extinction memory.
Hermann, Andrea; Stark, Rudolf; Blecker, Carlo R; Milad, Mohammed R; Merz, Christian J
2017-08-01
Extinction of conditioned fear represents an important mechanism in the treatment of anxiety disorders. Return of fear after successful extinction or exposure therapy in patients with anxiety disorders might be linked to poor temporal or contextual generalization of extinction due to individual differences in brain structural connectivity. The goal of this magnetic resonance imaging study was therefore to investigate the association of context-dependent extinction recall with brain structural connectivity. Diffusion-tensor imaging was used to determine the fractional anisotropy as a measure of white matter structural integrity of fiber tracts connecting central brain regions of the fear and extinction circuit (uncinate fasciculus, cingulum). Forty-five healthy men participated in a two-day fear conditioning experiment with fear acquisition in context A and extinction learning in context B on the first day. Extinction recall in the extinction context as well as renewal in the acquisition context and a novel context C took place one day later. Renewal of conditioned fear (skin conductance responses) in the acquisition context was associated with higher structural integrity of the hippocampal part of the cingulum. Enhanced structural integrity of the cingulum might be related to stronger hippocampal modulation of the dorsal anterior cingulate cortex, a region important for modulating conditioned fear output by excitatory projections to the amygdala. This finding underpins the crucial role of individual differences in the structural integrity of relevant fiber tracts for context-dependent extinction recall and return of fear after exposure therapy in anxiety disorders. © 2017 Wiley Periodicals, Inc.
Relationships between cortical myeloarchitecture and electrophysiological networks
Hunt, Benjamin A. E.; Tewarie, Prejaas K.; Mougin, Olivier E.; Geades, Nicolas; Singh, Krish D.; Morris, Peter G.; Gowland, Penny A.; Brookes, Matthew J.
2016-01-01
The human brain relies upon the dynamic formation and dissolution of a hierarchy of functional networks to support ongoing cognition. However, how functional connectivities underlying such networks are supported by cortical microstructure remains poorly understood. Recent animal work has demonstrated that electrical activity promotes myelination. Inspired by this, we test a hypothesis that gray-matter myelin is related to electrophysiological connectivity. Using ultra-high field MRI and the principle of structural covariance, we derive a structural network showing how myelin density differs across cortical regions and how separate regions can exhibit similar myeloarchitecture. Building upon recent evidence that neural oscillations mediate connectivity, we use magnetoencephalography to elucidate networks that represent the major electrophysiological pathways of communication in the brain. Finally, we show that a significant relationship exists between our functional and structural networks; this relationship differs as a function of neural oscillatory frequency and becomes stronger when integrating oscillations over frequency bands. Our study sheds light on the way in which cortical microstructure supports functional networks. Further, it paves the way for future investigations of the gray-matter structure/function relationship and its breakdown in pathology. PMID:27830650
Nuclear Pasta at Finite Temperature with the Time-Dependent Hartree-Fock Approach
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Klatt, M. A.; Iida, K.; Maruhn, J. A.; Mecke, K.; Reinhard, P.-G.
2016-01-01
We present simulations of neutron-rich matter at sub-nuclear densities, like supernova matter. With the time-dependent Hartree-Fock approximation we can study the evolution of the system at temperatures of several MeV employing a full Skyrme interaction in a periodic three-dimensional grid [1]. The initial state consists of α particles randomly distributed in space that have a Maxwell-Boltzmann distribution in momentum space. Adding a neutron background initialized with Fermi distributed plane waves the calculations reflect a reasonable approximation of astrophysical matter. The matter evolves into spherical, rod-like, connected rod-like and slab-like shapes. Further we observe gyroid-like structures, discussed e.g. in [2], which are formed spontaneously choosing a certain value of the simulation box length. The ρ-T-map of pasta shapes is basically consistent with the phase diagrams obtained from QMD calculations [3]. By an improved topological analysis based on Minkowski functionals [4], all observed pasta shapes can be uniquely identified by only two valuations, namely the Euler characteristic and the integral mean curvature. In addition we propose the variance in the cell-density distribution as a measure to distinguish pasta matter from uniform matter.
Self-organizing biochemical cycle in dynamic feedback with soil structure
NASA Astrophysics Data System (ADS)
Vasilyeva, Nadezda; Vladimirov, Artem; Smirnov, Alexander; Matveev, Sergey; Tyrtyshnikov, Evgeniy; Yudina, Anna; Milanovskiy, Evgeniy; Shein, Evgeniy
2016-04-01
In the present study we perform bifurcation analysis of a physically-based mathematical model of self-organized structures in soil (Vasilyeva et al., 2015). The state variables in this model included microbial biomass, two organic matter types, oxygen, carbon dioxide, water content and capillary pore size. According to our previous experimental studies, organic matter affinity to water is an important property affecting soil structure. Therefore, organic matter wettability was taken as principle distinction between organic matter types in this model. It considers general known biological feedbacks with soil physical properties formulated as a system of parabolic type non-linear partial differential equations with elements of discrete modeling for water and pore formation. The model shows complex behavior, involving emergence of temporal and spatial irregular auto-oscillations from initially homogeneous distributions. The energy of external impact on a system was defined by a constant oxygen level on the boundary. Non-linear as opposed to linear oxygen diffusion gives possibility of modeling anaerobic micro-zones formation (organic matter conservation mechanism). For the current study we also introduced population competition of three different types of microorganisms according to their mobility/feeding (diffusive, moving and fungal growth). The strongly non-linear system was solved and parameterized by time-optimized algorithm combining explicit and implicit (matrix form of Thomas algorithm) methods considering the time for execution of the evaluated time-step according to accuracy control. The integral flux of the CO2 state variable was used as a macroscopic parameter to describe system as a whole and validation was carried out on temperature series of moisture dependence for soil heterotrophic respiration data. Thus, soil heterotrophic respiration can be naturally modeled as an integral result of complex dynamics on microscale, arising from biological processes formulated as a sum of state variables products, with no need to introduce any saturation functions, such as Mikhaelis-Menten type kinetics, inside the model. Analyzed dynamic soil model is being further developed to describe soil structure formation and its effect on organic matter decomposition at macro-scale, to predict changes with external perturbations. To link micro- and macro-scales we additionally model soil particles aggregation process. The results from local biochemical soil organic matter cycle serve as inputs to aggregation process, while the output aggregate size distributions define physical properties in the soil profile, these in turn serve as dynamic parameters in local biochemical cycles. The additional formulation is a system of non-linear ordinary differential equations, including Smoluchowski-type equations for aggregation and reaction kinetics equations for coagulation/adsorption/adhesion processes. Vasilyeva N.A., Ingtem J.G., Silaev D.A. Nonlinear dynamical model of microbial growth in soil medium. Computational Mathematics and Modeling, vol. 49, p.31-44, 2015 (in Russian). English version is expected in corresponding vol.27, issue 2, 2016.
Rieckmann, Anna; Hedden, Trey; Younger, Alayna P; Sperling, Reisa A; Johnson, Keith A; Buckner, Randy L
2016-02-01
Aging-related differences in white matter integrity, the presence of amyloid plaques, and density of biomarkers indicative of dopamine functions can be detected and quantified with in vivo human imaging. The primary aim of the present study was to investigate whether these imaging-based measures constitute independent imaging biomarkers in older adults, which would speak to the hypothesis that the aging brain is characterized by multiple independent neurobiological cascades. We assessed MRI-based markers of white matter integrity and PET-based marker of dopamine transporter density and amyloid deposition in the same set of 53 clinically normal individuals (age 65-87). A multiple regression analysis demonstrated that dopamine transporter availability is predicted by white matter integrity, which was detectable even after controlling for chronological age. Further post-hoc exploration revealed that dopamine transporter availability was further associated with systolic blood pressure, mirroring the established association between cardiovascular health and white matter integrity. Dopamine transporter availability was not associated with the presence of amyloid burden. Neurobiological correlates of dopamine transporter measures in aging are therefore likely unrelated to Alzheimer's disease but are aligned with white matter integrity and cardiovascular risk. More generally, these results suggest that two common imaging markers of the aging brain that are typically investigated separately do not reflect independent neurobiological processes. Hum Brain Mapp 37:621-631, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Epigenetic Age Acceleration Assessed with Human White-Matter Images.
Hodgson, Karen; Carless, Melanie A; Kulkarni, Hemant; Curran, Joanne E; Sprooten, Emma; Knowles, Emma E; Mathias, Samuel; Göring, Harald H H; Yao, Nailin; Olvera, Rene L; Fox, Peter T; Almasy, Laura; Duggirala, Ravi; Blangero, John; Glahn, David C
2017-05-03
The accurate estimation of age using methylation data has proved a useful and heritable biomarker, with acceleration in epigenetic age predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are also heritable and highly sensitive to both normal and pathological aging processes across adulthood. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity in humans. Our goal was to investigate processes that underlie interindividual variability in age-related changes in the brain. Using blood taken from a Mexican-American extended pedigree sample ( n = 628; age = 23.28-93.11 years), epigenetic age was estimated using the method developed by Horvath (2013). For n = 376 individuals, diffusion tensor imaging scans were also available. The interrelationship between epigenetic age acceleration and global white matter integrity was investigated with variance decomposition methods. To test for neuroanatomical specificity, 16 specific tracts were additionally considered. We observed negative phenotypic correlations between epigenetic age acceleration and global white matter tract integrity (ρ pheno = -0.119, p = 0.028), with evidence of shared genetic (ρ gene = -0.463, p = 0.013) but not environmental influences. Negative phenotypic and genetic correlations with age acceleration were also seen for a number of specific white matter tracts, along with additional negative phenotypic correlations between granulocyte abundance and white matter integrity. These findings (i.e., increased acceleration in epigenetic age in peripheral blood correlates with reduced white matter integrity in the brain and shares common genetic influences) provide a window into the neurobiology of aging processes within the brain and a potential biomarker of normal and pathological brain aging. SIGNIFICANCE STATEMENT Epigenetic measures can be used to predict age with a high degree of accuracy and so capture acceleration in biological age, relative to chronological age. The white matter tracts within the brain are also highly sensitive to aging processes. We show that increased biological aging (measured using epigenetic data from blood samples) is correlated with reduced integrity of white matter tracts within the human brain (measured using diffusion tensor imaging) with data from a large sample of Mexican-American families. Given the family design of the sample, we are also able to demonstrate that epigenetic aging and white matter tract integrity also share common genetic influences. Therefore, epigenetic age may be a potential, and accessible, biomarker of brain aging. Copyright © 2017 the authors 0270-6474/17/374735-09$15.00/0.
Field tests of a participatory ergonomics toolkit for Total Worker Health
Kernan, Laura; Plaku-Alakbarova, Bora; Robertson, Michelle; Warren, Nicholas; Henning, Robert
2018-01-01
Growing interest in Total Worker Health® (TWH) programs to advance worker safety, health and well-being motivated development of a toolkit to guide their implementation. Iterative design of a program toolkit occurred in which participatory ergonomics (PE) served as the primary basis to plan integrated TWH interventions in four diverse organizations. The toolkit provided start-up guides for committee formation and training, and a structured PE process for generating integrated TWH interventions. Process data from program facilitators and participants throughout program implementation were used for iterative toolkit design. Program success depended on organizational commitment to regular design team meetings with a trained facilitator, the availability of subject matter experts on ergonomics and health to support the design process, and retraining whenever committee turnover occurred. A two committee structure (employee Design Team, management Steering Committee) provided advantages over a single, multilevel committee structure, and enhanced the planning, communication, and team-work skills of participants. PMID:28166897
Bloemen, Oswald J N; Deeley, Quinton; Sundram, Fred; Daly, Eileen M; Barker, Gareth J; Jones, Derek K; van Amelsvoort, Therese A M J; Schmitz, Nicole; Robertson, Dene; Murphy, Kieran C; Murphy, Declan G M
2010-10-01
Autistic Spectrum Disorder (ASD), including Asperger syndrome and autism, is a highly genetic neurodevelopmental disorder. There is a consensus that ASD has a biological basis, and it has been proposed that it is a "connectivity" disorder. Diffusion Tensor Magnetic Resonance Imaging (DT-MRI) allows measurement of the microstructural integrity of white matter (a proxy measure of "connectivity"). However, nobody has investigated the microstructural integrity of whole brain white matter in people with Asperger syndrome. We measured the fractional anisotropy (FA), mean diffusivity (MD) and radial diffusivity (RD) of white matter, using DT-MRI, in 13 adults with Asperger syndrome and 13 controls. The groups did not differ significantly in overall intelligence and age. FA, MD and RD were assessed using whole brain voxel-based techniques. Adults with Asperger syndrome had a significantly lower FA than controls in 13 clusters. These were largely bilateral and included white matter in the internal capsule, frontal, temporal, parietal and occipital lobes, cingulum and corpus callosum. Adults with Asperger syndrome have widespread significant differences from controls in white matter microstructural integrity.
Age-related white matter integrity differences in oldest-old without dementia.
Bennett, Ilana J; Greenia, Dana E; Maillard, Pauline; Sajjadi, S Ahmad; DeCarli, Charles; Corrada, Maria M; Kawas, Claudia H
2017-08-01
Aging is known to have deleterious effects on cerebral white matter, yet little is known about these white matter alterations in advanced age. In this study, 94 oldest-old adults without dementia (90-103 years) underwent diffusion tensor imaging to assess relationships between chronological age and multiple measures of integrity in 18 white matter regions across the brain. Results revealed significant age-related declines in integrity in regions previously identified as being sensitive to aging in younger-old adults (corpus callosum, fornix, cingulum, external capsule). For the corpus callosum, the effect of age on genu fractional anisotropy was significantly weaker than the relationship between age and splenium fractional anisotropy. Importantly, age-related declines in white matter integrity did not differ in cognitively normal and cognitively impaired not demented oldest-old, suggesting that they were not solely driven by cognitive dysfunction or preclinical dementia in this advanced age group. Instead, white matter in these regions appears to remain vulnerable to normal aging processes through the 10th decade of life. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d’Oleire Uquillas, Federico; Huang, Xiting
2016-01-01
Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders. PMID:27199831
Wang, Yongming; Zou, Zhiling; Song, Hongwen; Xu, Xiaodan; Wang, Huijun; d'Oleire Uquillas, Federico; Huang, Xiting
2016-01-01
Mobile phone dependence (MPD) is a behavioral addiction that has become an increasing public mental health issue. While previous research has explored some of the factors that may predict MPD, the underlying neural mechanisms of MPD have not been investigated yet. The current study aimed to explore the microstructural variations associated with MPD as measured with functional Magnetic Resonance Imaging (fMRI). Gray matter volume (GMV) and white matter (WM) integrity [four indices: fractional anisotropy (FA); mean diffusivity (MD); axial diffusivity (AD); and radial diffusivity (RD)] were calculated via voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) analysis, respectively. Sixty-eight college students (42 female) were enrolled and separated into two groups [MPD group, N = 34; control group (CG), N = 34] based on Mobile Phone Addiction Index (MPAI) scale score. Trait impulsivity was also measured using the Barratt Impulsiveness Scale (BIS-11). In light of underlying trait impulsivity, results revealed decreased GMV in the MPD group relative to controls in regions such as the right superior frontal gyrus (sFG), right inferior frontal gyrus (iFG), and bilateral thalamus (Thal). In the MPD group, GMV in the above mentioned regions was negatively correlated with scores on the MPAI. Results also showed significantly less FA and AD measures of WM integrity in the MPD group relative to controls in bilateral hippocampal cingulum bundle fibers (CgH). Additionally, in the MPD group, FA of the CgH was also negatively correlated with scores on the MPAI. These findings provide the first morphological evidence of altered brain structure with mobile phone overuse, and may help to better understand the neural mechanisms of MPD in relation to other behavioral and substance addiction disorders.
Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis.
Kumar, Kuldeep; Desrosiers, Christian; Siddiqi, Kaleem; Colliot, Olivier; Toews, Matthew
2017-09-01
White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets. Copyright © 2017 Elsevier Inc. All rights reserved.
Schlichting, Margaret L.; Preston, Alison R.
2015-01-01
Learning occurs in the context of existing memories. Encountering new information that relates to prior knowledge may trigger integration, whereby established memories are updated to incorporate new content. Here, we provide a critical test of recent theories suggesting hippocampal (HPC) and medial prefrontal (MPFC) involvement in integration, both during and immediately following encoding. Human participants with established memories for a set of initial (AB) associations underwent fMRI scanning during passive rest and encoding of new related (BC) and unrelated (XY) pairs. We show that HPC-MPFC functional coupling during learning was more predictive of trial-by-trial memory for associations related to prior knowledge relative to unrelated associations. Moreover, the degree to which HPC-MPFC functional coupling was enhanced following overlapping encoding was related to memory integration behavior across participants. We observed a dissociation between anterior and posterior MPFC, with integration signatures during post-encoding rest specifically in the posterior subregion. These results highlight the persistence of integration signatures into post-encoding periods, indicating continued processing of interrelated memories during rest. We also interrogated the coherence of white matter tracts to assess the hypothesis that integration behavior would be related to the integrity of the underlying anatomical pathways. Consistent with our predictions, more coherent HPC-MPFC white matter structure was associated with better performance across participants. This HPC-MPFC circuit also interacted with content-sensitive visual cortex during learning and rest, consistent with reinstatement of prior knowledge to enable updating. These results show that the HPC-MPFC circuit supports on- and offline integration of new content into memory. PMID:26608407
Vermeij, Anouk; Kempes, Maaike M; Cima, Maaike J; Mars, Rogier B; Brazil, Inti A
2018-04-26
Psychopathy is a personality disorder typified by lack of empathy and impulsive antisocial behavior. Psychopathic traits may partly relate to disrupted connections between brain regions. The aim of the present study was to link abnormalities in microstructural integrity of white-matter tracts to the severity of different psychopathic traits in 15 male offenders with impulse control problems and 10 without impulse control problems. Psychopathic traits were assessed using the Psychopathy Checklist-revised (PCL-R). Diffusion-weighted MRI was used to examine white-matter tracts. Fractional anisotropy (FA), an index of white-matter integrity, was calculated for each voxel. Clusters of voxels showing a significant relationship with psychopathy severity were submitted to probabilistic tractography. No significant correlations between psychopathy severity and FA were present in the whole group of impulsive and nonimpulsive offenders. In impulsive offenders, interpersonal-affective traits (PCL-R Factor 1) were negatively correlated with FA in the anterior and posterior temporal lobe and orbitofrontal area. Further analyses indicated that elevated affective traits (PCL-R Facet 2) were specifically related to reduced FA in the right temporal lobe. Our findings suggest that white-matter abnormalities in temporal and frontotemporal tracts may be linked to the interpersonal-affective deficits of psychopathy in offenders with relatively severe impulse control problems. Our study offers novel insights into the relationships between the four facets of psychopathy and disrupted structural connectivity, and may provide new leads for further characterization of different subtypes of antisocial populations. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The role of white matter microstructure in inhibitory deficits in patients with schizophrenia.
Du, Xiaoming; Kochunov, Peter; Summerfelt, Ann; Chiappelli, Joshua; Choa, Fow-Sen; Hong, L Elliot
Inhibitory-excitatory (I-E) imbalance has increasingly been proposed as a fundamental mechanism giving rise to many schizophrenia-related pathophysiology. The integrity of I-E functions should require precise and rapid electrical signal transmission. We hypothesized that part of the I-E abnormality in schizophrenia may originate from their known abnormal white matter connectivity that may interfere the I-E functions. We test this using short-interval intracortical inhibition (SICI) vs. intracortical facilitation (ICF) which is a non-invasive measurement of I-E signaling. SICI-ICF from left motor cortex and white matter microstructure were assessed in schizophrenia patients and healthy controls. Schizophrenia patients showed significantly reduced SICI but not ICF. White matter microstructure as measured by fraction anisotropy (FA) in diffusion tensor imaging had a significant effect on SICI in patients, such that weaker SICI was associated with lower FA in several white matter tracts, most strongly with left corona radiata (r = -0.68, p = 0.0002) that contains the fibers connecting with left motor cortex. Left corticospinal tract, which carries the motor fibers to peripheral muscular output, also showed significant correlation with SICI (r = -0.54, p = 0.005). Mediation analysis revealed that much of the schizophrenia disease effect on SICI can be accounted for by mediation through left corona radiata. SICI was also significantly associated with the performance of processing speed in patients. This study demonstrated the importance of structural circuitry integrity in inhibitory signaling in schizophrenia, and encouraged modeling the I-E dysfunction in schizophrenia from a circuitry perspective. Published by Elsevier Inc.
Morozova, Maria; Koschutnig, Karl; Klein, Elise; Wood, Guilherme
2016-01-15
Non-linear effects of age on white matter integrity are ubiquitous in the brain and indicate that these effects are more pronounced in certain brain regions at specific ages. Box-Cox analysis is a technique to increase the log-likelihood of linear relationships between variables by means of monotonic non-linear transformations. Here we employ Box-Cox transformations to flexibly and parsimoniously determine the degree of non-linearity of age-related effects on white matter integrity by means of model comparisons using a voxel-wise approach. Analysis of white matter integrity in a sample of adults between 20 and 89years of age (n=88) revealed that considerable portions of the white matter in the corpus callosum, cerebellum, pallidum, brainstem, superior occipito-frontal fascicle and optic radiation show non-linear effects of age. Global analyses revealed an increase in the average non-linearity from fractional anisotropy to radial diffusivity, axial diffusivity, and mean diffusivity. These results suggest that Box-Cox transformations are a useful and flexible tool to investigate more complex non-linear effects of age on white matter integrity and extend the functionality of the Box-Cox analysis in neuroimaging. Copyright © 2015 Elsevier Inc. All rights reserved.
Impaired empathic abilities and reduced white matter integrity in schizophrenia.
Fujino, Junya; Takahashi, Hidehiko; Miyata, Jun; Sugihara, Genichi; Kubota, Manabu; Sasamoto, Akihiko; Fujiwara, Hironobu; Aso, Toshihiko; Fukuyama, Hidenao; Murai, Toshiya
2014-01-03
Empathic abilities are impaired in schizophrenia. Although the pathology of schizophrenia is thought to involve disrupted white matter integrity, the relationship between empathic disabilities and altered white matter in the disorder remains unclear. The present study tested associations between empathic disabilities and white matter integrity in order to investigate the neural basis of impaired empathy in schizophrenia. Sixty-nine patients with schizophrenia and 69 age-, gender-, handedness-, education- and IQ level-matched healthy controls underwent diffusion-weighted imaging. Empathic abilities were assessed using the Interpersonal Reactivity Index (IRI). Using tract-based spatial statistics (TBSS), the associations between empathic abilities and white matter fractional anisotropy (FA), a measure of white matter integrity, were examined in the patient group within brain areas that showed a significant FA reduction compared with the controls. The patients with schizophrenia reported lower perspective taking and higher personal distress according to the IRI. The patients showed a significant FA reduction in bilateral deep white matter in the frontal, temporal, parietal and occipital lobes, a large portion of the corpus callosum, and the corona radiata. In schizophrenia patients, fantasy subscales positively correlated with FA in the left inferior fronto-occipital fasciculi and anterior thalamic radiation, and personal distress subscales negatively correlated with FA in the splenium of the corpus callosum. These results suggest that disrupted white matter integrity in these regions constitutes a pathology underpinning specific components of empathic disabilities in schizophrenia, highlighting that different aspects of empathic impairments in the disorder would have, at least partially, distinct neuropathological bases. © 2013.
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Erdeniz, B.; DeDios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. The microgravity environment is an important causal factor for spaceflight induced sensorimotor changes. Whether these sensorimotor changes are solely related to peripheral changes from reduced vestibular stimulation, body unloading, body fluid shifts or that they may be related to structural and functional brain changes is yet unknown. However, a recent study reported associations between microgravity and flattening of the posterior eye globe and protrusion of the optic nerve [1] possibly as the result of increased intracranial pressure due to microgravity induced bodily fluid shifts [3]. Moreover, elevated intracranial pressure has been related to white matter microstructural damage [2]. Thus, it is possible that spaceflight may affect brain structure and thereby cognitive functioning. Long duration head down tilt bed rest has been suggested as an exclusionary analog to study microgravity effects on the sensorimotor system [4]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. In consideration of the health and performance of crewmembers both in- and post-flight, we are conducting a prospective longitudinal 70-day bed rest study as an analog to investigate the effects of microgravity on brain structure [5]. Here we present results of the first six subjects. Six subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility in UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Longitudinal processing in VBM8 includes linear registration of each scan to the mean of the subject and subsequently transforming all scans in to MNI space by applying the warp from the mean subject to MNI to the individual gray matter segmentations. Modulation was applied so that all images represented the volume of the original structure in native space. Voxel wise analysis was carried out on the gray matter images after smoothing, using a flexible factorial design with family wise error correction. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. For each subject, for each DTI metric (i.e. fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD)), the maximum value in a line perpendicular to the skeleton tract is projected to the skeleton. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate (see Figure) from 'pre to in bed rest'. Over the same time period, there was an increase in gray matter density in the cerebellum, occipital-, and parietal cortex, including the precuneus (see Figure). The majority of these changes did not recover from 'during to post bed rest'. TBSS analysis did not reveal significant changes in white matter microstructural integrity after correction for multiple comparisons. Uncorrected analyses (p<.015) revealed an increase in RD in the cerebellum and brainstem from pre bed rest to the first week in bed rest that did not recover post bed rest. Extended bed rest, which is an analog for microgravity, can result in gray matter changes and potentially in microstructural white matter changes in areas that are important for neuro motor behavior and cognition. These changes did not recover at two weeks post bed rest. Whether the effects of bed rest wear off at longer times post bed rest, and if they are associated with behavior are important questions that warrant further research.
Arnoldussen, Ilse A C; Zerbi, Valerio; Wiesmann, Maximilian; Noordman, Rikko H J; Bolijn, Simone; Mutsaers, Martina P C; Dederen, Pieter J W C; Kleemann, Robert; Kooistra, Teake; van Tol, Eric A F; Gross, Gabriele; Schoemaker, Marieke H; Heerschap, Arend; Wielinga, Peter Y; Kiliaan, Amanda J
2016-04-01
Worldwide, the incidence of obesity is increasing at an alarming rate, and the number of children with obesity is especially worrisome. These developments raise concerns about the physical, psychosocial and cognitive consequences of obesity. It was shown that early dietary intake of arachidonic acid (ARA) and docosahexaenoic acid (DHA) can reduce the detrimental effects of later obesogenic feeding on lipid metabolism and adipogenesis in an animal model of mild obesity. In the present study, the effects of early dietary ARA and DHA on cognition and brain structure were examined in mildly obesogenic ApoE*3Leiden mouse model. We used cognitive tests and neuroimaging during early and later life. During their early development after weaning (4-13weeks of age), mice were fed a chow diet or ARA and DHA diet for 8 weeks and then switched to a high-fat and high-carbohydrate (HFHC) diet for 12weeks (14-26weeks of age). An HFHC-diet led to increased energy storage in white adipose tissue, increased cholesterol levels, decreased triglycerides levels, increased cerebral blood flow and decreased functional connectivity between brain regions as well as cerebrovascular and gray matter integrity. ARA and DHA intake reduced the HFHC-diet-induced increase in body weight, attenuated plasma triglycerides levels and improved cerebrovasculature, gray matter integrity and functional connectivity in later life. In conclusion, an HFHC diet causes adverse structural brain and metabolic adaptations, most of which can be averted by dietary ARA and DHA intake early in life supporting metabolic flexibility and cerebral integrity later in life. Copyright © 2016 Elsevier Inc. All rights reserved.
Callous-unemotional traits drive reduced white-matter integrity in youths with conduct problems.
Breeden, A L; Cardinale, E M; Lozier, L M; VanMeter, J W; Marsh, A A
2015-10-01
Callous-unemotional (CU) traits represent a significant risk factor for severe and persistent conduct problems in children and adolescents. Extensive neuroimaging research links CU traits to structural and functional abnormalities in the amygdala and ventromedial prefrontal cortex. In addition, adults with psychopathy (a disorder for which CU traits are a developmental precursor) exhibit reduced integrity in uncinate fasciculus, a white-matter (WM) tract that connects prefrontal and temporal regions. However, research in adolescents has not yet yielded similarly consistent findings. We simultaneously modeled CU traits and externalizing behaviors as continuous traits, while controlling for age and IQ, in order to identify the unique relationship of each variable with WM microstructural integrity, assessed using diffusion tensor imaging. We used tract-based spatial statistics to evaluate fractional anisotropy, an index of WM integrity, in uncinate fasciculus and stria terminalis in 47 youths aged 10-17 years, of whom 26 exhibited conduct problems and varying levels of CU traits. Whereas both CU traits and externalizing behaviors were negatively correlated with WM integrity in bilateral uncinate fasciculus and stria terminalis/fornix, simultaneously modeling both variables revealed that these effects were driven by CU traits; the severity of externalizing behavior was not related to WM integrity after controlling for CU traits. These results indicate that WM abnormalities similar to those observed in adult populations with psychopathy may emerge in late childhood or early adolescence, and may be critical to understanding the social and affective deficits observed in this population.
Sleep Variability in Adolescence is Associated with Altered Brain Development
Telzer, Eva H.; Goldenberg, Diane; Fuligni, Andrew J.; Lieberman, Matthew D.; Galvan, Adriana
2015-01-01
Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. PMID:26093368
Aortic stiffness is associated with white matter integrity in patients with type 1 diabetes.
Tjeerdema, Nathanja; Van Schinkel, Linda D; Westenberg, Jos J; Van Elderen, Saskia G; Van Buchem, Mark A; Smit, Johannes W; Van der Grond, Jeroen; De Roos, Albert
2014-09-01
To assess the association between aortic pulse wave velocity (PWV) as a marker of arterial stiffness and diffusion tensor imaging of brain white matter integrity in patients with type 1 diabetes using advanced magnetic resonance imaging (MRI) technology. Forty-one patients with type 1 diabetes (23 men, mean age 44 ± 12 years, mean diabetes duration 24 ± 13 years) were included. Aortic PWV was assessed using through-plane velocity-encoded MRI. Brain diffusion tensor imaging (DTI) measurements were performed on 3-T MRI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated for white and grey matter integrity. Pearson correlation and multivariable linear regression analyses including cardiovascular risk factors as covariates were assessed. Multivariable linear regression analyses revealed that aortic PWV is independently associated with white matter integrity FA (β = -0.777, p = 0.008) in patients with type 1 diabetes. This effect was independent of age, gender, mean arterial pressure, body mass index, smoking, duration of diabetes and glycated haemoglobin levels. Aortic PWV was not significantly related to grey matter integrity. Our data suggest that aortic stiffness is independently associated with reduced white matter integrity in patients with type 1 diabetes. Aortic stiffness is associated with brain injury. Aortic stiffness exposes small vessels to high pressure fluctuations and flow. Aortic stiffness is associated with microvascular brain injury in diabetes. This suggests a vascular contribution to early subtle microstructural deficits.
The two and three-loop matter bispectrum in perturbation theories
NASA Astrophysics Data System (ADS)
Lazanu, Andrei; Liguori, Michele
2018-04-01
We evaluate for the first time the dark matter bispectrum of large-scale structure at two loops in the Standard Perturbation Theory and at three loops in the Renormalised Perturbation Theory (MPTBREEZE formalism), removing in each case the leading divergences in the integrals in order to make them infrared-safe. We show that the Standard Perturbation Theory at two loops can be employed to model the matter bispectrum further into the quasi-nonlinear regime compared to the one loop, up to kmax ~ 0.1 h/Mpc at z = 0, but without reaching a high level of accuracy. In the case of the MPTBREEZE method, we show that its bispectra decay at smaller and smaller scales with increasing loop order, but with smaller improvements decreases with loop order. At three loops, this model predicts the bispectrum accurately up to scales kmax ~ 0.17 h/Mpc at z = 0 and kmax ~ 0.24 h/Mpc at z = 1.
Neural correlates of cognitive processing in monolinguals and bilinguals
Grundy, John G.; Anderson, John A.E.; Bialystok, Ellen
2017-01-01
Here we review the neural correlates of cognitive control associated with bilingualism. We demonstrate that lifelong practice managing two languages orchestrates global changes to both the structure and function of the brain. Compared with monolinguals, bilinguals generally show greater gray matter volume, especially in perceptual/motor regions, greater white matter integrity, and greater functional connectivity between gray matter regions. These changes complement electroencephalography findings showing that bilinguals devote neural resources earlier than monolinguals. Parallel functional findings emerge from the functional magnetic resonance imaging literature: bilinguals show reduced frontal activity, suggesting that they do not need to rely on top-down mechanisms to the same extent as monolinguals. This shift for bilinguals to rely more on subcortical/posterior regions, which we term the bilingual anterior-to-posterior and subcortical shift (BAPSS), fits with results from cognitive aging studies and helps to explain why bilinguals experience cognitive decline at later stages of development than monolinguals. PMID:28415142
Dissociating Normal Aging from Alzheimer’s Disease: A View from Cognitive Neuroscience
Toepper, Max
2017-01-01
Both normal aging and Alzheimer’s disease (AD) are associated with changes in cognition, grey and white matter volume, white matter integrity, neural activation, functional connectivity, and neurotransmission. Obviously, all of these changes are more pronounced in AD and proceed faster providing the basis for an AD diagnosis. Since these differences are quantitative, however, it was hypothesized that AD might simply reflect an accelerated aging process. The present article highlights the different neurocognitive changes associated with normal aging and AD and shows that, next to quantitative differences, there are multiple qualitative differences as well. These differences comprise different neurocognitive dissociations as different cognitive deficit profiles, different weights of grey and white matter atrophy, and different gradients of structural decline. These qualitative differences clearly indicate that AD cannot be simply described as accelerated aging process but on the contrary represents a solid entity. PMID:28269778
van Timmeren, Tim; Jansen, Jochem M; Caan, Matthan W A; Goudriaan, Anna E; van Holst, Ruth J
2017-11-01
Pathological gambling (PG) is a behavioral addiction characterized by an inability to stop gambling despite the negative consequences, which may be mediated by cognitive flexibility deficits. Indeed, impaired cognitive flexibility has previously been linked to PG and also to reduced integrity of white matter connections between the basal ganglia and the prefrontal cortex. It remains unclear, however, how white matter integrity problems relate to cognitive inflexibility seen in PG. We used a cognitive switch paradigm during functional magnetic resonance imaging in pathological gamblers (PGs; n = 26) and healthy controls (HCs; n = 26). Cognitive flexibility performance was measured behaviorally by accuracy and reaction time on the switch task, while brain activity was measured in terms of blood oxygen level-dependent responses. We also used diffusion tensor imaging on a subset of data (PGs = 21; HCs = 21) in combination with tract-based spatial statistics and probabilistic fiber tracking to assess white matter integrity between the basal ganglia and the dorsolateral prefrontal cortex. Although there were no significant group differences in either task performance, related neural activity or tract-based spatial statistics, PGs did show decreased white matter integrity between the left basal ganglia and prefrontal cortex. Our results complement and expand similar findings from a previous study in alcohol-dependent patients. Although we found no association between white matter integrity and task performance here, decreased white matter connections may contribute to a diminished ability to recruit prefrontal networks needed for regulating behavior in PG. Hence, our findings could resonate an underlying risk factor for PG, and we speculate that these findings may extend to addiction in general. © 2016 Society for the Study of Addiction.
Cortico-Cerebellar Structural Connectivity Is Related to Residual Motor Output in Chronic Stroke.
Schulz, Robert; Frey, Benedikt M; Koch, Philipp; Zimerman, Maximo; Bönstrup, Marlene; Feldheim, Jan; Timmermann, Jan E; Schön, Gerhard; Cheng, Bastian; Thomalla, Götz; Gerloff, Christian; Hummel, Friedhelm C
2017-01-01
Functional imaging studies have argued that interactions between cortical motor areas and the cerebellum are relevant for motor output and recovery processes after stroke. However, the impact of the underlying structural connections is poorly understood. To investigate this, diffusion-weighted brain imaging was conducted in 26 well-characterized chronic stroke patients (aged 63 ± 1.9 years, 18 males) with supratentorial ischemic lesions and 26 healthy participants. Probabilistic tractography was used to reconstruct reciprocal cortico-cerebellar tracts and to relate their microstructural integrity to residual motor functioning applying linear regression modeling. The main finding was a significant association between cortico-cerebellar structural connectivity and residual motor function, independent from the level of damage to the cortico-spinal tract. Specifically, white matter integrity of the cerebellar outflow tract, the dentato-thalamo-cortical tract, was positively related to both general motor output and fine motor skills. Additionally, the integrity of the descending cortico-ponto-cerebellar tract contributed to rather fine motor skills. A comparable structure-function relationship was not evident in the controls. The present study provides first tract-related structural data demonstrating a critical importance of distinct cortico-cerebellar connections for motor output after stroke. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
[Priority research agendas: a strategic resource for health in Latin America].
Becerra-Posada, Francisco; de Snyder, Nelly Salgado; Cuervo, Luis Gabriel; Montorzi, Gabriela
2014-12-01
Understand and analyze procedures used to create national integrated research agendas from 2007 to 2011 in Argentina, Guatemala, Mexico, Panama, and Paraguay. Descriptive, cross-sectional study using an online survey of agenda preparation processes; specifically, development, integration, implementation, and use and dissemination of the agenda. The 45 respondents reported following specific methodologies for agenda construction and had a good opinion of organizational aspects with regard to prior information provided and balance among disciplines and stakeholders. Some 60% considered the coordinators impartial, although 25% mentioned biases favoring some subject; 42% received technical support from consultants, reading matter, and methodological guidelines; 40% engaged in subject-matter priority-setting; and 55% confirmed dissemination and communication of the agenda. However, only 22% reported inclusion of agenda topics in national calls for research proposals. In the countries studied, development of the health research agenda was characterized by prior planning and appropriate organization to achieve - consensus-based outcomes. Nevertheless, the agendas were not used in national calls for research proposals, reflecting lack of coordination in national health research systems and lack of connection between funders and researchers. It is recommended that stakeholders strengthen integration and advocacy efforts to modify processes and structures of agenda-based calls for research proposals.
Overarching Goals, Values, and Assumptions of Integrated Curriculum Design
ERIC Educational Resources Information Center
Anderson, Denise M.
2013-01-01
The integration of one's curriculum is an approach to education that ignores subject-matter lines of delineation, thus allowing faculty to bring together the separate pieces of a curriculum into a coherent whole that facilitates meaningful associations across subject matter. Before taking on the challenge of curriculum integration, faculty…
78 FR 21634 - Order of Suspension of Trading; in the Matter of Integrity Bancshares, Inc.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-11
... SECURITIES AND EXCHANGE COMMISSION [File No. 500-1] Order of Suspension of Trading; in the Matter of Integrity Bancshares, Inc. April 9, 2013. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information concerning the securities of Integrity...
NASA Astrophysics Data System (ADS)
Saghafi, Behrouz; Murugesan, Gowtham; Davenport, Elizabeth; Wagner, Ben; Urban, Jillian; Kelley, Mireille; Jones, Derek; Powers, Alexander; Whitlow, Christopher; Stitzel, Joel; Maldjian, Joseph; Montillo, Albert
2018-02-01
The effect of subconcussive head impact exposure during contact sports, including American football, on brain health is poorly understood particularly in young and adolescent players, who may be more vulnerable to brain injury during periods of rapid brain maturation. This study aims to quantify the association between cumulative effects of head impact exposure from a single season of football on white matter (WM) integrity as measured with diffusion MRI. The study targets football players aged 9-18 years old. All players were imaged pre- and post-season with structural MRI and diffusion tensor MRI (DTI). Fractional Anisotropy (FA) maps, shown to be closely correlated with WM integrity, were computed for each subject, co-registered and subtracted to compute the change in FA per subject. Biomechanical metrics were collected at every practice and game using helmet mounted accelerometers. Each head impact was converted into a risk of concussion, and the risk of concussion-weighted cumulative exposure (RWE) was computed for each player for the season. Athletes with high and low RWE were selected for a two-category classification task. This task was addressed by developing a 3D Convolutional Neural Network (CNN) to automatically classify players into high and low impact exposure groups from the change in FA maps. Using the proposed model, high classification performance, including ROC Area Under Curve score of 85.71% and F1 score of 83.33% was achieved. This work adds to the growing body of evidence for the presence of detectable neuroimaging brain changes in white matter integrity from a single season of contact sports play, even in the absence of a clinically diagnosed concussion.
Tardif, Christine L; Devenyi, Gabriel A; Amaral, Robert S C; Pelleieux, Sandra; Poirier, Judes; Rosa-Neto, Pedro; Breitner, John; Chakravarty, M Mallar
2018-02-01
Neuropathological and in vivo brain imaging studies agree that the cornu ammonis 1 and subiculum subfields of the hippocampus are most vulnerable to atrophy in the prodromal phases of Alzheimer's disease (AD). However, there has been limited investigation of the structural integrity of the components of the hippocampal circuit, including subfields and extra-hippocampal white matter structure, in relation to the progression of well-accepted cerebrospinal fluid (CSF) biomarkers of AD, amyloid-β 1-42 (Aβ) and total-tau (tau). We investigated these relationships in 88 aging asymptomatic individuals with a parental or multiple-sibling familial history of AD. Apolipoprotein (APOE) ɛ4 risk allele carriers were identified, and all participants underwent cognitive testing, structural magnetic resonance imaging, and lumbar puncture for CSF assays of tau, phosphorylated-tau (p-tau) and Aβ. Individuals with a reduction in CSF Aβ levels (an indicator of amyloid accretion into neuritic plaques) as well as evident tau pathology (believed to be linked to neurodegeneration) exhibited lower subiculum volume, lower fornix microstructural integrity, and a trend towards lower cognitive score than individuals who showed only reduction in CSF Aβ. In contrast, persons with normal levels of tau showed an increase in structural MR markers in relation to declining levels of CSF Aβ. These results suggest that hippocampal subfield volume and extra-hippocampal white matter microstructure demonstrate a complex pattern where an initial volume increase is followed by decline among asymptomatic individuals who, in some instances, may be a decade or more away from onset of cognitive or functional impairment. © 2017 Wiley Periodicals, Inc.
Quantum Photonic in Hybrid Cavity Systems with Strong Matter-Light Couplings
2015-08-24
properties. [Ref 1, 6] 2. Confinement and coupling of microcavity polaritons were readily implemented by design of the photonic crystal in the new...cavity structure, allowing flexible device design and integration of the polariton system. Zero-dimensional polariton systems were created by reducing...the area of the photonic crystal, coupling between multiple zero-dimensional polariton systems was controlled by design of the boundaries of the
Sato, Tatsuhiko; Watanabe, Ritsuko; Sihver, Lembit; Niita, Koji
2012-01-01
Microdosimetric quantities such as lineal energy are generally considered to be better indices than linear energy transfer (LET) for expressing the relative biological effectiveness (RBE) of high charge and energy particles. To calculate their probability densities (PD) in macroscopic matter, it is necessary to integrate microdosimetric tools such as track-structure simulation codes with macroscopic particle transport simulation codes. As an integration approach, the mathematical model for calculating the PD of microdosimetric quantities developed based on track-structure simulations was incorporated into the macroscopic particle transport simulation code PHITS (Particle and Heavy Ion Transport code System). The improved PHITS enables the PD in macroscopic matter to be calculated within a reasonable computation time, while taking their stochastic nature into account. The microdosimetric function of PHITS was applied to biological dose estimation for charged-particle therapy and risk estimation for astronauts. The former application was performed in combination with the microdosimetric kinetic model, while the latter employed the radiation quality factor expressed as a function of lineal energy. Owing to the unique features of the microdosimetric function, the improved PHITS has the potential to establish more sophisticated systems for radiological protection in space as well as for the treatment planning of charged-particle therapy.
Multani, Namita; Galantucci, Sebastiano; Wilson, Stephen M; Shany-Ur, Tal; Poorzand, Pardis; Growdon, Matthew E; Jang, Jung Yun; Kramer, Joel H; Miller, Bruce L; Rankin, Katherine P; Gorno-Tempini, Maria Luisa; Tartaglia, Maria Carmela
2017-01-01
Non-cognitive features including personality changes are increasingly recognized in the three PPA variants (semantic-svPPA, non fluent-nfvPPA, and logopenic-lvPPA). However, differences in emotion processing among the PPA variants and its association with white matter tracts are unknown. We compared emotion detection across the three PPA variants and healthy controls (HC), and related them to white matter tract integrity and cortical degeneration. Personality traits in the PPA group were also examined in relation to white matter tracts. Thirty-three patients with svPPA, nfvPPA, lvPPA, and 32 HC underwent neuropsychological assessment, emotion evaluation task (EET), and MRI scan. Patients' study partners were interviewed on the Clinical Dementia Rating Scale (CDR) and completed an interpersonal traits assessment, the Interpersonal Adjective Scale (IAS). Diffusion tensor imaging of uncinate fasciculus (UF), superior longitudinal fasciculus (SLF) and inferior longitudinal fasciculus (ILF), and voxel-based morphometry to derive gray matter volumes for orbitofrontal cortex (OFC), anterior temporal lobe (ATL) regions were performed. In addition, gray matter volumes of white matter tract-associated regions were also calculated: inferior frontal gyrus (IFG), posterior temporal lobe (PTL), inferior parietal lobe (IPL) and occipital lobe (OL). ANCOVA was used to compare EET performance. Partial correlation and multivariate linear regression were conducted to examine association between EET and neuroanatomical regions affected in PPA. All three variants of PPA performed significantly worse than HC on EET, and the svPPA group was least accurate at recognizing emotions. Performance on EET was related to the right UF, SLF, and ILF integrity. Regression analysis revealed EET performance primarily relates to the right UF integrity. The IAS subdomain, cold-hearted, was also associated with right UF integrity. Disease-specific emotion recognition and personality changes occur in the three PPA variants and are likely associated with disease-specific neuroanatomical changes. Loss of white matter integrity contributes as significantly as focal atrophy in behavioral changes in PPA.
Kuchtova, Barbora; Wurst, Zdenek; Mrzilkova, Jana; Ibrahim, Ibrahim; Tintera, Jaroslav; Bartos, Ales; Musil, Vladimir; Kieslich, Karel; Zach, Petr
2018-01-01
Alzheimer disease is traditionally conceptualized as a disease of brain gray matter, however, studies with diffusion tensor imaging have demonstrated that Alzheimer disease also involves alterations in white matter integrity. We measured number of tracts, tracts length, tract volume, quantitative anisotropy and general fractional anisotropy of neuronal tracts in subcallosal area, paraterminal gyrus and fornix in patients with Alzheimer disease and healthy age-matched controls. Our hypothesis was that patients with Alzheimer disease should exhibit decrease in the integrity of these white matter structures that are crucial for semantic memory function. For our study were selected 24 patients with confirmed Alzheimer disease diagnosis and 24 healthy controls (AD center, Department of Neurology, Charles University, Prague, Czech Republic). Statistically significant differences between the patients with Alzheimer disease and the control group were found both on the left and right fornices but only concerning the tract numbers and tract length. The subcallosal area and paraterminal gyrus showed statistically significant differences between the patients with Alzheimer disease and the control group, but only on the left side and only associated with the tract volume and quantitative anisotropy. Our explanation for these findings lies in the severe hippocampal atrophy (and subsequent loss of function) with compensatory hypertrophy of the subcallosal area and paraterminal gyrus neuronal fibers that occurs in Alzheimer's disease, as an adaptation to the loss of projection from the hippocampal formation via fornix. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Hidese, Shinsuke; Ota, Miho; Matsuo, Junko; Ishida, Ikki; Hiraishi, Moeko; Yoshida, Sumiko; Noda, Takamasa; Sato, Noriko; Teraishi, Toshiya; Hattori, Kotaro; Kunugi, Hiroshi
2018-01-01
Obesity has been implicated in the pathophysiology of major depressive disorder (MDD), which prompted us to examine the possible association of obesity with cognitive function and brain structure in patients with MDD. Three hundred and seven patients with MDD and 294 healthy participants, matched for age, sex, ethnicity (Japanese), and handedness (right) were recruited for the study. Cognitive function was assessed using the Brief Assessment of Cognition in Schizophrenia (BACS). Gray and white matter structures were analyzed using voxel-based morphometry and diffusion tensor imaging in a subsample of patients (n = 114) whose magnetic resonance imaging (MRI) data were obtained using a 1.5 T MRI system. Verbal memory, working memory, motor speed, attention, executive function, and BACS composite scores were lower for the MDD patients than for the healthy participants (p < 0.05). Among the patient group, working memory, motor speed, executive function, and BACS composite scores were lower in obese patients (body mass index ≥ 30, n = 17) than in non-obese patients (n = 290, p < 0.05, corrected). MRI determined frontal, temporal, thalamic, and hippocampal volumes, and white matter fractional anisotropy values in the internal capsule and left optic radiation were reduced in obese patients (n = 7) compared with non-obese patients (n = 107, p < 0.05, corrected). Sample size for obese population was not very large. Obesity is associated with decreased cognitive function, reduced gray matter volume, and impaired white matter integrity in cognition-related brain areas in patients with MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Liu, Haihong; Li, Lin; Hao, Yihui; Cao, Dong; Xu, Lin; Rohrbaugh, Robert; Xue, Zhimin; Hao, Wei; Shan, Baoci; Liu, Zhening
2008-01-01
Fractional anisotropy (FA) via diffusion tensor imaging (DTI) can quantify the white matter integrity. Exposure to addictive drugs, such as alcohol, cocaine, methamphetamine, marijuana, and nicotine has been shown to alter FA. White matter abnormalities have been shown, but it remains unclear whether the white matter FA is altered in heroin dependence. Utilizing DTI, we investigated the FA difference between heroin-dependent and control subjects by a voxel-based strategy. The FA values of the identified regions were calculated from the FA image of each subject and were correlated with clinical features including months of heroin use, age, education, and dose of methadone. Reduced FA among 16 heroin dependent subjects was located in the bilateral frontal sub-gyral regions, right precentral and left cingulate gyrus. FA in the right frontal sub-gyral was negatively correlated with duration of heroin use. The disrupted white matter integrity in right frontal white matter may occur in continuous heroin abuse.
Using joint ICA to link function and structure using MEG and DTI in schizophrenia
Stephen, JM; Coffman, BA; Jung, RE; Bustillo, JR; Aine, CJ; Calhoun, VD
2013-01-01
In this study we employed joint independent component analysis (jICA) to perform a novel multivariate integration of magnetoencephalography (MEG) and diffusion tensor imaging (DTI) data to investigate the link between function and structure. This model-free approach allows one to identify covariation across modalities with different temporal and spatial scales [temporal variation in MEG and spatial variation in fractional anisotropy (FA) maps]. Healthy controls (HC) and patients with schizophrenia (SP) participated in an auditory/visual multisensory integration paradigm to probe cortical connectivity in schizophrenia. To allow direct comparisons across participants and groups, the MEG data were registered to an average head position and regional waveforms were obtained by calculating the local field power of the planar gradiometers. Diffusion tensor images obtained in the same individuals were preprocessed to provide FA maps for each participant. The MEG/FA data were then integrated using the jICA software (http://mialab.mrn.org/software/fit). We identified MEG/FA components that demonstrated significantly different (p < 0.05) covariation in MEG/FA data between diagnostic groups (SP vs. HC) and three components that captured the predominant sensory responses in the MEG data. Lower FA values in bilateral posterior parietal regions, which include anterior/posterior association tracts, were associated with reduced MEG amplitude (120-170 ms) of the visual response in occipital sensors in SP relative to HC. Additionally, increased FA in a right medial frontal region was linked with larger amplitude late MEG activity (300-400 ms) in bilateral central channels for SP relative to HC. Step-wise linear regression provided evidence that right temporal, occipital and late central components were significant predictors of reaction time and cognitive performance based on the Measurement and Treatment Research to Improve Cognition in Schizophrenia (MATRICS) cognitive assessment battery. These results point to dysfunction in a posterior visual processing network in schizophrenia, with reduced MEG amplitude, reduced FA and poorer overall performance on the MATRICS. Interestingly, the spatial location of the MEG activity and the associated FA regions are spatially consistent with white matter regions that subserve these brain areas. This novel approach provides evidence for significant pairing between function (electrophysiology) and structure (white matter integrity) and demonstrates the sensitivity of this multivariate, multimodal integration technique to group differences in function and structure. PMID:23777757
Sleep variability in adolescence is associated with altered brain development.
Telzer, Eva H; Goldenberg, Diane; Fuligni, Andrew J; Lieberman, Matthew D; Gálvan, Adriana
2015-08-01
Despite the known importance of sleep for brain development, and the sharp increase in poor sleep during adolescence, we know relatively little about how sleep impacts the developing brain. We present the first longitudinal study to examine how sleep during adolescence is associated with white matter integrity. We find that greater variability in sleep duration one year prior to a DTI scan is associated with lower white matter integrity above and beyond the effects of sleep duration, and variability in bedtime, whereas sleep variability a few months prior to the scan is not associated with white matter integrity. Thus, variability in sleep duration during adolescence may have long-term impairments on the developing brain. White matter integrity should be increasing during adolescence, and so sleep variability is directly at odds with normative developmental trends. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
A watershed model of individual differences in fluid intelligence.
Kievit, Rogier A; Davis, Simon W; Griffiths, John; Correia, Marta M; Cam-Can; Henson, Richard N
2016-10-01
Fluid intelligence is a crucial cognitive ability that predicts key life outcomes across the lifespan. Strong empirical links exist between fluid intelligence and processing speed on the one hand, and white matter integrity and processing speed on the other. We propose a watershed model that integrates these three explanatory levels in a principled manner in a single statistical model, with processing speed and white matter figuring as intermediate endophenotypes. We fit this model in a large (N=555) adult lifespan cohort from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) using multiple measures of processing speed, white matter health and fluid intelligence. The model fit the data well, outperforming competing models and providing evidence for a many-to-one mapping between white matter integrity, processing speed and fluid intelligence. The model can be naturally extended to integrate other cognitive domains, endophenotypes and genotypes. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Submicron bidirectional all-optical plasmonic switches
Chen, Jianjun; Li, Zhi; Zhang, Xiang; Xiao, Jinghua; Gong, Qihuang
2013-01-01
Ultra-small all-optical switches are of importance in highly integrated optical communication and computing networks. However, the weak nonlinear light-matter interactions in natural materials present an enormous challenge to realize efficiently switching for the ultra-short interaction lengths. Here, we experimentally demonstrate a submicron bidirectional all-optical plasmonic switch with an asymmetric T-shape single slit. Sharp asymmetric spectra as well as significant field enhancements (about 18 times that in the conventional slit case) occur in the symmetry-breaking structure. Consequently, both of the surface plasmon polaritons propagating in the opposite directions on the metal surface are all-optically controlled inversely at the same time with the on/off switching ratios of >6 dB for the device lateral dimension of <1 μm. Moreover, in such a submicron structure, the coupling of free-space light and the on-chip bidirectional switching are integrated together. This submicron bidirectional all-optical switch may find important applications in the highly integrated plasmonic circuits. PMID:23486232
Financial literacy is associated with white matter integrity in old age.
Han, S Duke; Boyle, Patricia A; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D; Bennett, David A
2016-04-15
Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Financial Literacy is Associated with White Matter Integrity in Old Age
Han, S. Duke; Boyle, Patricia A.; Arfanakis, Konstantinos; Fleischman, Debra; Yu, Lei; James, Bryan D.; Bennett, David A.
2016-01-01
Financial literacy, the ability to understand, access, and utilize information in ways that contribute to optimal financial outcomes, is important for independence and wellbeing in old age. We previously reported that financial literacy is associated with greater functional connectivity between brain regions in old age. Here, we tested the hypothesis that higher financial literacy would be associated with greater white matter integrity in old age. Participants included 346 persons without dementia (mean age=81.36, mean education=15.39, male/female=79/267, mean MMSE=28.52) from the Rush Memory and Aging Project. Financial literacy was assessed using a series of questions imbedded as part of an ongoing decision making study. White matter integrity was assessed with diffusion anisotropy measured with diffusion tensor magnetic resonance imaging (DTI). We tested the hypothesis that higher financial literacy is associated with higher diffusion anisotropy in white matter, adjusting for the effects of age, education, sex, and white matter hyperintense lesions. We then repeated the analysis also adjusting for cognitive function. Analyses revealed regions with significant positive associations between financial literacy and diffusion anisotropy, and many remained significant after accounting for cognitive function. White matter tracts connecting right hemisphere temporal-parietal brain regions were particularly implicated. Greater financial literacy is associated with higher diffusion anisotropy in white matter of nondemented older adults after adjusting for important covariates. These results suggest that financial literacy is positively associated with white matter integrity in old age. PMID:26899784
Goddard, Marcia N; van Rijn, Sophie; Rombouts, Serge A R B; Swaab, Hanna
2016-12-01
Klinefelter syndrome (47,XXY) is associated with physical, behavioral, and cognitive consequences. Deviations in brain structure and function have been reported, but structural characteristics of white matter have barely been assessed. This exploratory diffusion tensor imaging study assessed white matter microstructure in boys with 47,XXY compared with non-clinical, male controls. Additionally, both similarities and differences between 47,XXY and autism spectrum disorders (ASD) have been reported in cognition, behavior and neural architecture. To further investigate these brain-behavior pathways, white matter microstructure in boys with 47,XXY was compared to that of boys with ASD. Fractional anisotropy (FA), radial diffusivity (Dr), axial diffusivity (Da), and mean diffusivity (MD) were assessed in 47,XXY (n = 9), ASD (n = 18), and controls (n = 14), using tract-based spatial statistics. Compared with controls, boys with 47,XXY have reduced FA, coupled with reduced Da, in the corpus callosum. Boys with 47,XXY also have reduced Dr. in the left anterior corona radiata and sagittal striatum compared with controls. Compared with boys with ASD, boys with 47,XXY show reduced Da in the right inferior fronto-occipital fasciculus. Although this study is preliminary considering the small sample size, reduced white matter integrity in the corpus callosum may be a contributing factor in the cognitive and behavioral problems associated with 47,XXY. In addition, the differences in white matter microstructure between 47,XXY and ASD may be important for our understanding of the mechanisms that are fundamental to behavioral outcome in social dysfunction, and may be targeted through intervention.
Pomares, Florence B; Funck, Thomas; Feier, Natasha A; Roy, Steven; Daigle-Martel, Alexandre; Ceko, Marta; Narayanan, Sridar; Araujo, David; Thiel, Alexander; Stikov, Nikola; Fitzcharles, Mary-Ann; Schweinhardt, Petra
2017-02-01
Chronic pain patients present with cortical gray matter alterations, observed with anatomical magnetic resonance (MR) imaging. Reduced regional gray matter volumes are often interpreted to reflect neurodegeneration, but studies investigating the cellular origin of gray matter changes are lacking. We used multimodal imaging to compare 26 postmenopausal women with fibromyalgia with 25 healthy controls (age range: 50-75 years) to test whether regional gray matter volume decreases in chronic pain are associated with compromised neuronal integrity. Regional gray matter decreases were largely explained by T1 relaxation times in gray matter, a surrogate measure of water content, and not to any substantial degree by GABA A receptor concentration, an indirect marker of neuronal integrity measured with [ 18 F] flumazenil PET. In addition, the MR spectroscopy marker of neuronal viability, N-acetylaspartate, did not differ between patients and controls. These findings suggest that decreased gray matter volumes are not explained by compromised neuronal integrity. Alternatively, a decrease in neuronal matter could be compensated for by an upregulation of GABA A receptors. The relation between regional gray matter and T1 relaxation times suggests decreased tissue water content underlying regional gray matter decreases. In contrast, regional gray matter increases were explained by GABA A receptor concentration in addition to T1 relaxation times, indicating perhaps increased neuronal matter or GABA A receptor upregulation and inflammatory edema. By providing information on the histological origins of cerebral gray matter alterations in fibromyalgia, this study advances the understanding of the neurobiology of chronic widespread pain. Regional gray matter alterations in chronic pain, as detected with voxel-based morphometry of anatomical magnetic resonance images, are commonly interpreted to reflect neurodegeneration, but this assumption has not been tested. We found decreased gray matter in fibromyalgia to be associated with T1 relaxation times, a surrogate marker of water content, but not with GABA A receptor concentration, a surrogate of neuronal integrity. In contrast, regional gray matter increases were partly explained by GABA A receptor concentration, indicating some form of neuronal plasticity. The study emphasizes that voxel-based morphometry is an exploratory measure, demonstrating the need to investigate the histological origin of gray matter alterations for every distinct clinical entity, and advances the understanding of the neurobiology of chronic (widespread) pain. Copyright © 2017 the authors 0270-6474/17/371091-12$15.00/0.
Chen, Wei; Liu, Xiao-Yang; Yu, Han-Qing
2017-03-01
Temperature variation caused by climate change, seasonal variation and geographic locations affects the physicochemical compositions of chromophoric dissolved organic matter (CDOM), resulting in difference in the fates of CDOM-related environmental pollutants. Exploration into the thermal induced structural transition of CDOM can help to better understand their environmental impacts, but information on this aspect is still lacking. Through integrating fluorescence excitation-emission matrix coupled parallel factor analysis with synchronous fluorescence two-dimensional correlation spectroscopy, this study provides an in-depth insight into the temperature-dependent conformational transitions of CDOM and their impact on its hydrophobic interaction with persistent organic pollutants (with phenanthrene as an example) in water. The fluorescence components in CDOM change linearly to water temperature with different extents and different temperature regions. The thermal induced transition priority in CDOM is protein-like component → fulvic-like component → humic-like component. Furthermore, the impact of thermal-induced conformational transition of CDOM on its hydrophobic interaction with phenanthrene is observed and explored. The fluorescence-based analytic results reveal that the conjugation degree of the aromatic groups in the fulvic- and humic-like substances, and the unfolding of the secondary structure in the protein-like substances with aromatic structure, contribute to the conformation variation. This integrated approach jointly enhances the characterization of temperature-dependent conformational variation of CDOM, and provides a promising way to elucidate the environmental behaviours of CDOM. Copyright © 2017 Elsevier Ltd. All rights reserved.
Increased integrity of white matter pathways after dual n-back training.
Salminen, Tiina; Mårtensson, Johan; Schubert, Torsten; Kühn, Simone
2016-06-01
Dual n-back WM training has been shown to produce broad transfer effects to different untrained cognitive functions. The task is demanding to the cognitive system because it includes a bi-modal (auditory and visual) dual-task component. A previous WM training study showed increased white matter integrity in the parietal lobe as well as the anterior part of the corpus callosum after visual n-back training. We investigated dual n-back training-related changes in white matter pathways. We anticipated dual n-back training to increase white matter integrity in pathways that connect brain regions related to WM processes. Additionally, we hypothesized that dual n-back training would produce more brain-wide white matter changes than single n-back training because of the involvement of two modalities and the additional dual-task coordination component of the task. The dual n-back training group showed increased white matter integrity (reflected as increased fractional anisotropy, FA) after training. The effects were mostly left lateralized as compared with changes from pretest to posttest in the passive and active control groups. Additionally, significant effects were observed in the anterior part of the corpus callosum, when the training group was compared with the passive control group. There were no changes in pretest to posttest FA changes between the passive and active control groups. The results therefore show that dual n-back training produces increased integrity in white matter pathways connecting different brain regions. The results are discussed in reference to the bi-modal dual-task component of the training task. Copyright © 2016 Elsevier Inc. All rights reserved.
Genetic and Diagnostic Biomarker Development in ASD Toddlers Using Resting State Functional MRI
2017-11-01
Integration Theory of intelligence (Jung and Haier, Behave Brain Sci, 2007...predicting a number of age-related phenotypes. Measures of white matter integrity in the brain are heritable and highly sensitive to both normal and...pathological aging processes. We consider the phenotypic and genetic interrelationships between epigenetic age acceleration and white matter integrity
Fusing DTI and FMRI Data: A Survey of Methods and Applications
Zhu, Dajiang; Zhang, Tuo; Jiang, Xi; Hu, Xintao; Chen, Hanbo; Yang, Ning; Lv, Jinglei; Han, Junwei; Guo, Lei; Liu, Tianming
2014-01-01
The relationship between brain structure and function has been one of the centers of research in neuroimaging for decades. In recent years, diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) techniques have been widely available and popular in cognitive and clinical neurosciences for examining the brain’s white matter (WM) micro-structures and gray matter (GM) functions, respectively. Given the intrinsic integration of WM/GM and the complementary information embedded in DTI/fMRI data, it is natural and well-justified to combine these two neuroimaging modalities together to investigate brain structure and function and their relationships simultaneously. In the past decade, there have been remarkable achievements of DTI/fMRI fusion methods and applications in neuroimaging and human brain mapping community. This survey paper aims to review recent advancements on methodologies and applications in incorporating multimodal DTI and fMRI data, and offer our perspectives on future research directions. We envision that effective fusion of DTI/fMRI techniques will play increasingly important roles in neuroimaging and brain sciences in the years to come. PMID:24103849
White matter correlates of sensory processing in autism spectrum disorders
Pryweller, Jennifer R.; Schauder, Kimberly B.; Anderson, Adam W.; Heacock, Jessica L.; Foss-Feig, Jennifer H.; Newsom, Cassandra R.; Loring, Whitney A.; Cascio, Carissa J.
2014-01-01
Autism spectrum disorder (ASD) has been characterized by atypical socio-communicative behavior, sensorimotor impairment and abnormal neurodevelopmental trajectories. DTI has been used to determine the presence and nature of abnormality in white matter integrity that may contribute to the behavioral phenomena that characterize ASD. Although atypical patterns of sensory responding in ASD are well documented in the behavioral literature, much less is known about the neural networks associated with aberrant sensory processing. To address the roles of basic sensory, sensory association and early attentional processes in sensory responsiveness in ASD, our investigation focused on five white matter fiber tracts known to be involved in these various stages of sensory processing: superior corona radiata, centrum semiovale, inferior longitudinal fasciculus, posterior limb of the internal capsule, and splenium. We acquired high angular resolution diffusion images from 32 children with ASD and 26 typically developing children between the ages of 5 and 8. We also administered sensory assessments to examine brain-behavior relationships between white matter integrity and sensory variables. Our findings suggest a modulatory role of the inferior longitudinal fasciculus and splenium in atypical sensorimotor and early attention processes in ASD. Increased tactile defensiveness was found to be related to reduced fractional anisotropy in the inferior longitudinal fasciculus, which may reflect an aberrant connection between limbic structures in the temporal lobe and the inferior parietal cortex. Our findings also corroborate the modulatory role of the splenium in attentional orienting, but suggest the possibility of a more diffuse or separable network for social orienting in ASD. Future investigation should consider the use of whole brain analyses for a more robust assessment of white matter microstructure. PMID:25379451
Shi, Changzheng; Miao, Guodong; Yang, Qiong; Gao, Wei; Wolff, Jason J.; Chan, Raymond C. K.; Shen, Dinggang
2014-01-01
Disrupted white matter integrity and abnormal cortical thickness are widely reported in the pathophysiology of obsessive-compulsive disorder (OCD). However, the relationship between alterations in white matter connectivity and cortical thickness in OCD is unclear. In addition, the heritability of this relationship is poorly understood. To investigate the relationship of white matter microstructure with cortical thickness, we measure fractional anisotropy (FA) of white matter in 30 OCD patients, 19 unaffected siblings and 30 matched healthy controls. Then, we take those regions of significantly altered FA in OCD patients compared with healthy controls to perform fiber tracking. Next, we calculate the fiber quantity in the same tracts. Lastly, we compare cortical thickness in the target regions of those tracts. Patients with OCD exhibited decreased FA in cingulum, arcuate fibers near the superior parietal lobule, inferior longitudinal fasciculus near the right superior temporal gyrus and uncinate fasciculus. Siblings showed reduced FA in arcuate fibers near the superior parietal lobule and anterior limb of internal capsule. Significant reductions in both fiber quantities and cortical thickness in OCD patients and their unaffected siblings were also observed in the projected brain areas when using the arcuate fibers near the left superior parietal lobule as the starting points. Reduced FA in the left superior parietal lobule was observed not only in patients with OCD but also in their unaffected siblings. Originated from the superior parietal lobule, the number of fibers was also found to be decreased and the corresponding cortical regions were thinner relative to controls. The linkage between disrupted white matter integrity and the abnormal cortical thickness may be a vulnerability marker for OCD. PMID:24489665
The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801.
Xiu, Yun; Kong, Xiang-ru; Zhang, Lei; Qiu, Xuan; Gao, Yuan; Huang, Chun-xia; Chao, Feng-lei; Wang, San-rong; Tang, Yong
2015-04-01
Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neuroimaging abnormalities in clade C HIV are independent of Tat genetic diversity.
Paul, Robert H; Phillips, Sarah; Hoare, Jacqueline; Laidlaw, David H; Cabeen, Ryan; Olbricht, Gayla R; Su, Yuqing; Stein, Dan J; Engelbrecht, Susan; Seedat, Soraya; Salminen, Lauren E; Baker, Laurie M; Heaps, Jodi; Joska, John
2017-04-01
Controversy remains regarding the neurotoxicity of clade C human immunodeficiency virus (HIV-C). When examined in preclinical studies, a cysteine to serine substitution in the C31 dicysteine motif of the HIV-C Tat protein (C31S) results in less severe brain injury compared to other viral clades. By contrast, patient cohort studies identify significant neuropsychological impairment among HIV-C individuals independent of Tat variability. The present study clarified this discrepancy by examining neuroimaging markers of brain integrity among HIV-C individuals with and without the Tat substitution. Thirty-seven HIV-C individuals with the Tat C31S substitution, 109 HIV-C individuals without the Tat substitution (C31C), and 34 HIV- controls underwent 3T structural magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Volumes were determined for the caudate, putamen, thalamus, corpus callosum, total gray matter, and total white matter. DTI metrics included fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Tracts of interest included the anterior thalamic radiation (ATR), cingulum bundle (CING), uncinate fasciculus (UNC), and corpus callosum (CC). HIV+ individuals exhibited smaller volumes in subcortical gray matter, total gray matter and total white matter compared to HIV- controls. HIV+ individuals also exhibited DTI abnormalities across multiple tracts compared to HIV- controls. By contrast, neither volumetric nor diffusion indices differed significantly between the Tat C31S and C31C groups. Tat C31S status is not a sufficient biomarker of HIV-related brain integrity in patient populations. Clinical attention directed at brain health is warranted for all HIV+ individuals, independent of Tat C31S or clade C status.
Mullins, Roger J.; Xu, Su; Pereira, Edna F.R.; Pescrille, Joseph D.; Todd, Spencer W.; Mamczarz, Jacek; Albuquerque, Edson X.; Gullapalli, Rao P.
2015-01-01
This study was designed to test the hypothesis that prenatal exposure of guinea pigs to the organophosphorus (OP) pesticide chlorpyrifos (CPF) disrupts the structural and functional integrity of the brain. Pregnant guinea pigs were injected with chlorpyrifos (20 mg/kg, s.c.) or vehicle (peanut oil) once per day for ten consecutive days, starting approximately on the 50th day of gestation. Cognitive behavior of female offspring was examined starting at 40–45 post-natal days (PND) using the Morris Water Maze (MWM), and brain structural integrity was analyzed at PND 70 using magnetic resonance imaging (MRI) methods, including T2-weighted anatomical scans and Diffusion Kurtosis Imaging (DKI). The offspring of exposed mothers had significantly decreased body weight and brain volume, particularly in the frontal regions of the brain including the striatum. Furthermore, the offspring demonstrated significant spatial learning deficits in MWM recall compared to the vehicle group. Diffusion measures revealed reduced white matter integrity within the striatum and amygdala that correlated with spatial learning performance. These findings reveal the lasting effect of pre-natal exposure to CPF as well as the danger of mother to child transmission of CPF in the environment. PMID:25704171
The Emerging Life Era: A Cosmological Imperative
NASA Astrophysics Data System (ADS)
Chaisson, Eric
Cosmic evolution is the study of the many varied changes in the assembly and composition of radiation, matter and life throughout the Universe. At one and the same time, cosmic evolution represents a search for our cosmic heritage, for a principle of cosmic selection that transcends neo-Darwinism, indeed for a holistic cosmology wherein life plays an integral role. This paper sketches the grand scenario of cosmic evolution by mathematically examining the temporal dependence of various energy densities in current cosmological models. The early Universe is shown to have been flooded with radiation whose energy density was so severe as to preclude the existence of any appreciable structures. As the Universe cooled and thinned, a preeminent phase change occurred about 100,000 years after creation, at which time matter's energy density overthrew the early primacy of radiation. Only with the emergence of technologically manipulative beings (on Earth and perhaps elsewhere) has the energy density contained within matter become locally exceeded by the flux of free energy density flowing through open organic structures. Using aspects of non-equilibrium thermodynamics, we argued that it is the contrasting temporal behavior of various energy densities that have given rise to galaxies, stars, planets, and life forms. We furthermore argue that a necessary (though perhaps not sufficient) condition--a veritable prime mover--for the emergence of such ordered structures is the expansion of the Universe itself.
Wedge Waveguides and Resonators for Quantum Plasmonics
2015-01-01
Plasmonic structures can provide deep-subwavelength electromagnetic fields that are useful for enhancing light–matter interactions. However, because these localized modes are also dissipative, structures that offer the best compromise between field confinement and loss have been sought. Metallic wedge waveguides were initially identified as an ideal candidate but have been largely abandoned because to date their experimental performance has been limited. We combine state-of-the-art metallic wedges with integrated reflectors and precisely placed colloidal quantum dots (down to the single-emitter level) and demonstrate quantum-plasmonic waveguides and resonators with performance approaching theoretical limits. By exploiting a nearly 10-fold improvement in wedge-plasmon propagation (19 μm at a vacuum wavelength, λvac, of 630 nm), efficient reflectors (93%), and effective coupling (estimated to be >70%) to highly emissive (∼90%) quantum dots, we obtain Ag plasmonic resonators at visible wavelengths with quality factors approaching 200 (3.3 nm line widths). As our structures offer modal volumes down to ∼0.004λvac3 in an exposed single-mode waveguide–resonator geometry, they provide advantages over both traditional photonic microcavities and localized-plasmonic resonators for enhancing light–matter interactions. Our results confirm the promise of wedges for creating plasmonic devices and for studying coherent quantum-plasmonic effects such as long-distance plasmon-mediated entanglement and strong plasmon–matter coupling. PMID:26284499
NASA Astrophysics Data System (ADS)
Velten, Hermano; Fazolo, Raquel Emy; von Marttens, Rodrigo; Gomes, Syrios
2018-05-01
As recently pointed out in [Phys. Rev. D 96, 083502 (2017), 10.1103/PhysRevD.96.083502] the evolution of the linear matter perturbations in nonadiabatic dynamical dark energy models is almost indistinguishable (quasidegenerated) to the standard Λ CDM scenario. In this work we extend this analysis to CMB observables in particular the integrated Sachs-Wolfe effect and its cross-correlation with large scale structure. We find that this feature persists for such CMB related observable reinforcing that new probes and analysis are necessary to reveal the nonadiabatic features in the dark energy sector.
Yang, Lawrence H; Chen, Fang-pei; Sia, Kathleen Janel; Lam, Jonathan; Lam, Katherine; Ngo, Hong; Lee, Sing; Kleinman, Arthur; Good, Byron
2014-02-01
To understand Chinese immigrants' experiences with mental illness stigma and mental health disparities, we integrate frameworks of 'structural vulnerability' and 'moral experience' to identify how interaction between structural discrimination and cultural engagements might shape stigma. Fifty Chinese immigrants, including 64% Fuzhounese immigrants who experienced particularly harsh socio-economical deprivation, from two Chinese bilingual psychiatric inpatient units in New York City were interviewed from 2006 to 2010 about their experiences of mental illness stigma. Interview questions were derived from 4 stigma measures, covering various life domains. Participants were asked to elaborate their rating of measure items, and thus provided open-ended, narrative data. Analysis of the narrative data followed a deductive approach, guided by frameworks of structural discrimination and "what matters most" - a cultural mechanism signifying meaningful participation in the community. After identifying initial coding classifications, analysis focused on the interface between the two main concepts. Results indicated that experiences with mental illness stigma were contingent on the degree to which immigrants were able to participate in work to achieve "what mattered most" in their cultural context, i.e., accumulation of financial resources. Structural vulnerability - being situated in an inferior position when facing structural discrimination - made access to affordable mental health services challenging. As such, structural discrimination increased healthcare spending and interfered with financial accumulation, often resulting in future treatment nonadherence and enforcing mental health disparities. Study participants' internalizing their structurally-vulnerable position further led to a depreciated sense of self, resulting in a reduced capacity to advocate for healthcare system changes. Paradoxically, the multi-layered structural marginalization experienced by Chinese immigrants with mental illness allowed those who maintained capacity to work to retain social status even while holding a mental illness status. Mental health providers may prioritize work participation to shift service users' positions within the hierarchy of structural vulnerability. Copyright © 2013 Elsevier Ltd. All rights reserved.
OVERVIEW OF HANFORD SINGLE SHELL TANK (SST) STRUCTURAL INTEGRITY - 12123
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAST RS; RINKER MW; WASHENFELDER DJ
2012-01-25
To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration. Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for the Hanfordmore » Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford SSTs. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford SSTs is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS{reg_sign} The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford SSTs has concluded that the tanks are structurally sound and meet current industry standards. Analyses of the remaining Hanford SSTs are scheduled for FY2013. Hanford SSTs are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tank domes, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford SSTs is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65-year-old tank is being tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar testing ongoing. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide continuing indication of Hanford SST structural integrity.« less
Overview of Hanford Single Shell Tank (SST) Structural Integrity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rast, Richard S.; Washenfelder, Dennis J.; Johnson, Jeremy M.
2013-11-14
To improve the understanding of the single-shell tanks (SSTs) integrity, Washington River Protection Solutions, LLC (WRPS), the USDOE Hanford Site tank contractor, developed an enhanced Single-Shell Tank Integrity Project (SSTIP) in 2009. An expert panel on SST integrity, consisting of various subject matters experts in industry and academia, was created to provide recommendations supporting the development of the project. This panel developed 33 recommendations in four main areas of interest: structural integrity, liner degradation, leak integrity and prevention, and mitigation of contamination migration, Seventeen of these recommendations were used to develop the basis for the M-45-10-1 Change Package for themore » Hanford Federal Agreement and Compliance Order, which is also known as the Tri-Party Agreement. The structural integrity of the tanks is a key element in completing the cleanup mission at the Hanford Site. There are eight primary recommendations related to the structural integrity of Hanford Single-Shell Tanks. Six recommendations are being implemented through current and planned activities. The structural integrity of the Hanford is being evaluated through analysis, monitoring, inspection, materials testing, and construction document review. Structural evaluation in the form of analysis is performed using modern finite element models generated in ANSYS. The analyses consider in-situ, thermal, operating loads and natural phenomena such as earthquakes. Structural analysis of 108 of 149 Hanford Single-Shell Tanks has concluded that the tanks are structurally sound and meet current industry standards. Analysis of the remaining Hanford Single-Shell Tanks is scheduled for FY2014. Hanford Single-Shell Tanks are monitored through a dome deflection program. The program looks for deflections of the tank dome greater than 1/4 inch. No such deflections have been recorded. The tanks are also subjected to visual inspection. Digital cameras record the interior surface of the concrete tanks, looking for cracks and other surface conditions that may indicate signs of structural distress. The condition of the concrete and rebar of the Hanford Single-Shell Tanks is currently being tested and planned for additional activities in the near future. Concrete and rebar removed from the dome of a 65 year old tank was tested for mechanics properties and condition. Results indicated stronger than designed concrete with additional Petrographic examination and rebar completed. Material properties determined from previous efforts combined with current testing and construction document review will help to generate a database that will provide indication of Hanford Single-Shell Tank structural integrity.« less
NASA Technical Reports Server (NTRS)
Messinger, Ross
2008-01-01
An assessment was performed to identify the applicability of composite material technologies to major structural elements of the NASA Constellation program. A qualitative technology assessment methodology was developed to document the relative benefit of 24 structural systems with respect to 33 major structural elements of Ares I, Orion, Ares V, and Altair. Technology maturity assessments and development plans were obtained from more than 30 Boeing subject matter experts for more than 100 technologies. These assessment results and technology plans were combined to generate a four-level hierarchy of recommendations. An overarching strategy is suggested, followed by a Constellation-wide development plan, three integrated technology demonstrations, and three focused projects for a task order follow-on.
Liu, W; Yan, B; An, D; Niu, R; Tang, Y; Tong, X; Gong, Q; Zhou, D
2017-12-01
This study aimed to assess the evolution of perinodular and contralateral white matter abnormalities in patients with periventricular nodular heterotopia (PNH) and epilepsy. Diffusion tensor imaging (DTI) (64 directions) and 3 T structural magnetic resonance imaging were performed in 29 PNH patients (mean age 27.3 years), and 16 patients underwent a second scan (average time between the two scans 1.1 years). Fractional anisotropy and mean diffusivity were measured within the perilesional and contralateral white matter. Longitudinal analysis showed that white matter located 10 mm from the focal nodule displayed characteristics intermediate to tissue 5 mm away, and normal-appearing white matter (NAWM) also established evolution profiles of perinodular white matter in different cortical lobes. Compared to 29 age- and sex-matched healthy controls, significant decreased fractional anisotropy and elevated mean diffusivity values were observed in regions 5 and 10 mm from nodules (P < 0.01), whilst DTI metrics of the remaining NAWM did not differ significantly from controls. Additionally, normal DTI metrics were shown in the contralateral region in patients with unilateral PNH. Periventricular nodular heterotopia is associated with microstructural abnormalities within the perilesional white matter and the extent decreases with increasing distance from the nodule. In the homologous contralateral region, white matter diffusion metrics were unchanged in unilateral PNH. These findings have clinical implications with respect to the medical and surgical interventions of PNH-related epilepsy. © 2017 EAN.
A Formal Integrity Framework with Application to a Secure Information ATM (SIATM)
2012-10-01
work on Integrity and resultant implementations seems to have focussed more on a matters related to source authentication and transmission assurance...to have focussed more on a matters related to source authentication and transmission assurance. However, the quality of data aspect is becoming more...implementations seems to have focussed more on matters related to source authentication and transmission assur- ance, for which there is a
Peper, Jiska S.; Mandl, René C.W.; Braams, Barbara R.; de Water, Erik; Heijboer, Annemieke C.; Koolschijn, P. Cédric M.P.; Crone, Eveline A.
2013-01-01
Delay discounting, a measure of impulsive choice, has been associated with decreased control of the prefrontal cortex over striatum responses. The anatomical connectivity between both brain regions in delaying gratification remains unknown. Here, we investigate whether the quality of frontostriatal (FS) white matter tracts can predict individual differences in delay-discounting behavior. We use tract-based diffusion tensor imaging and magnetization transfer imaging to measure the microstructural properties of FS fiber tracts in 40 healthy young adults (from 18 to 25 years). We additionally explored whether internal sex hormone levels affect the integrity of FS tracts, based on the hypothesis that sex hormones modulate axonal density within prefrontal dopaminergic circuits. We calculated fractional anisotropy (FA), mean diffusivity (MD), longitudinal diffusivity, radial diffusivity (RD), and magnetization transfer ratio (MTR), a putative measure of myelination, for the FS tract. Results showed that lower integrity within the FS tract (higher MD and RD and lower FA), predicts faster discounting in both sexes. MTR was unrelated to delay-discounting performance. In addition, testosterone levels in males were associated with a lower integrity (higher RD) within the FS tract. Our study provides support for the hypothesis that enhanced structural integrity of white matter fiber bundles between prefrontal and striatal brain areas is associated with better impulse control. PMID:22693341
White matter tract integrity predicts visual search performance in young and older adults.
Bennett, Ilana J; Motes, Michael A; Rao, Neena K; Rypma, Bart
2012-02-01
Functional imaging research has identified frontoparietal attention networks involved in visual search, with mixed evidence regarding whether different networks are engaged when the search target differs from distracters by a single (elementary) versus multiple (conjunction) features. Neural correlates of visual search, and their potential dissociation, were examined here using integrity of white matter connecting the frontoparietal networks. The effect of aging on these brain-behavior relationships was also of interest. Younger and older adults performed a visual search task and underwent diffusion tensor imaging (DTI) to reconstruct 2 frontoparietal (superior and inferior longitudinal fasciculus; SLF and ILF) and 2 midline (genu, splenium) white matter tracts. As expected, results revealed age-related declines in conjunction, but not elementary, search performance; and in ILF and genu tract integrity. Importantly, integrity of the superior longitudinal fasciculus, ILF, and genu tracts predicted search performance (conjunction and elementary), with no significant age group differences in these relationships. Thus, integrity of white matter tracts connecting frontoparietal attention networks contributes to search performance in younger and older adults. Copyright © 2012 Elsevier Inc. All rights reserved.
White Matter Tract Integrity Predicts Visual Search Performance in Young and Older Adults
Bennett, Ilana J.; Motes, Michael A.; Rao, Neena K.; Rypma, Bart
2011-01-01
Functional imaging research has identified fronto-parietal attention networks involved in visual search, with mixed evidence regarding whether different networks are engaged when the search target differs from distracters by a single (elementary) versus multiple (conjunction) features. Neural correlates of visual search, and their potential dissociation, were examined here using integrity of white matter connecting the fronto-parietal networks. The effect of aging on these brain-behavior relationships was also of interest. Younger and older adults performed a visual search task and underwent diffusion tensor imaging (DTI) to reconstruct two fronto-parietal (superior and inferior longitudinal fasciculus, SLF and ILF) and two midline (genu, splenium) white matter tracts. As expected, results revealed age-related declines in conjunction, but not elementary, search performance; and in ILF and genu tract integrity. Importantly, integrity of the SLF, ILF, and genu tracts predicted search performance (conjunction and elementary), with no significant age group differences in these relationships. Thus, integrity of white matter tracts connecting fronto-parietal attention networks contributes to search performance in younger and older adults. PMID:21402431
Field tests of a participatory ergonomics toolkit for Total Worker Health.
Nobrega, Suzanne; Kernan, Laura; Plaku-Alakbarova, Bora; Robertson, Michelle; Warren, Nicholas; Henning, Robert
2017-04-01
Growing interest in Total Worker Health ® (TWH) programs to advance worker safety, health and well-being motivated development of a toolkit to guide their implementation. Iterative design of a program toolkit occurred in which participatory ergonomics (PE) served as the primary basis to plan integrated TWH interventions in four diverse organizations. The toolkit provided start-up guides for committee formation and training, and a structured PE process for generating integrated TWH interventions. Process data from program facilitators and participants throughout program implementation were used for iterative toolkit design. Program success depended on organizational commitment to regular design team meetings with a trained facilitator, the availability of subject matter experts on ergonomics and health to support the design process, and retraining whenever committee turnover occurred. A two committee structure (employee Design Team, management Steering Committee) provided advantages over a single, multilevel committee structure, and enhanced the planning, communication, and teamwork skills of participants. Copyright © 2016 Elsevier Ltd. All rights reserved.
Tang, Victor M; Lang, Donna J; Giesbrecht, Chantelle J; Panenka, William J; Willi, Taylor; Procyshyn, Ric M; Vila-Rodriguez, Fidel; Jenkins, Willough; Lecomte, Tania; Boyda, Heidi N; Aleksic, Ana; MacEwan, G William; Honer, William G; Barr, Alasdair M
2015-09-30
Psychostimulant drug use is commonly associated with drug-related infection, including the human immunodeficiency virus (HIV). Both psychostimulant use and HIV infection are known to damage brain white matter and impair cognition. To date, no study has examined white matter integrity using magnetic resonance imaging (MRI) diffusion tensor imaging (DTI) in chronic psychostimulant users with comorbid HIV infection, and determined the relationship of white matter integrity to cognitive function. Twenty-one subjects (mean age 37.5 ± 9.0 years) with a history of heavy psychostimulant use and HIV infection (8.7 ± 4.3 years) and 22 matched controls were scanned on a 3T MRI. Fractional anisotropy (FA) values were calculated with DTI software. Four regions of interest were manually segmented, including the genu of the corpus callosum, left and right anterior limbs of the internal capsule, and the anterior commissure. Subjects also completed a neurocognitive battery and questionnaires about physical and mental health. The psychostimulant using, HIV positive group displayed decreased white matter integrity, with significantly lower FA values for all white matter tracts (p < 0.05). This group also exhibited decreased cognitive performance on tasks that assessed cognitive set-shifting, fine motor speed and verbal memory. FA values for the white matter tracts correlated with cognitive performance on many of the neurocognitive tests. White matter integrity was thus impaired in subjects with psychostimulant use and comorbid HIV infection, which predicted worsened cognitive performance on a range of tests. Further study on this medical comorbidity is required.
Calculating corner singularities by boundary integral equations.
Shi, Hualiang; Lu, Ya Yan; Du, Qiang
2017-06-01
Accurate numerical solutions for electromagnetic fields near sharp corners and edges are important for nanophotonics applications that rely on strong near fields to enhance light-matter interactions. For cylindrical structures, the singularity exponents of electromagnetic fields near sharp edges can be solved analytically, but in general the actual fields can only be calculated numerically. In this paper, we use a boundary integral equation method to compute electromagnetic fields near sharp edges, and construct the leading terms in asymptotic expansions based on numerical solutions. Our integral equations are formulated for rescaled unknown functions to avoid unbounded field components, and are discretized with a graded mesh and properly chosen quadrature schemes. The numerically found singularity exponents agree well with the exact values in all the test cases presented here, indicating that the numerical solutions are accurate.
Takiguchi, Kazuo; Uezato, Akihito; Itasaka, Michio; Atsuta, Hidenori; Narushima, Kenji; Yamamoto, Naoki; Kurumaji, Akeo; Tomita, Makoto; Oshima, Kazunari; Shoda, Kosaku; Tamaru, Mai; Nakataki, Masahito; Okazaki, Mitsutoshi; Ishiwata, Sayuri; Ishiwata, Yasuyoshi; Yasuhara, Masato; Arima, Kunimasa; Ohmori, Tetsuro; Nishikawa, Toru
2017-07-12
It has been reported that drugs which promote the N-Methyl-D-aspartate-type glutamate receptor function by stimulating the glycine modulatory site in the receptor improve negative symptoms and cognitive dysfunction in schizophrenia patients being treated with antipsychotic drugs. We performed a placebo-controlled double-blind crossover study involving 41 schizophrenia patients in which D-cycloserine 50 mg/day was added-on, and the influence of the onset age and association with white matter integrity on MR diffusion tensor imaging were investigated for the first time. The patients were evaluated using the Positive and Negative Syndrome Scale (PANSS), Scale for the Assessment of Negative Symptoms (SANS), Brief Assessment of Cognition in Schizophrenia (BACS), and other scales. D-cycloserine did not improve positive or negative symptoms or cognitive dysfunction in schizophrenia. The investigation in consideration of the onset age suggests that D-cycloserine may aggravate negative symptoms of early-onset schizophrenia. The better treatment effect of D-cycloserine on BACS was observed when the white matter integrity of the sagittal stratum/ cingulum/fornix stria terminalis/genu of corpus callosum/external capsule was higher, and the better treatment effect on PANSS general psychopathology (PANSS-G) was observed when the white matter integrity of the splenium of corpus callosum was higher. In contrast, the better treatment effect of D-cycloserine on PANSS-G and SANS-IV were observed when the white matter integrity of the posterior thalamic radiation (left) was lower. It was suggested that response to D-cycloserine is influenced by the onset age and white matter integrity. UMIN Clinical Trials Registry (number UMIN000000468 ). Registered 18 August 2006.
Strenziok, Maren; Greenwood, Pamela M; Santa Cruz, Sophia A; Thompson, James C; Parasuraman, Raja
2013-01-01
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions -episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity.
No evidence for systematic white matter correlates of dyslexia and dyscalculia.
Moreau, David; Wilson, Anna J; McKay, Nicole S; Nihill, Kasey; Waldie, Karen E
2018-01-01
Learning disabilities such as dyslexia, dyscalculia and their comorbid manifestation are prevalent, affecting as much as 15% of the population. Structural neuroimaging studies have indicated that these disorders can be related to differences in white matter integrity, although findings remain disparate. In this study, we used a unique design composed of individuals with dyslexia, dyscalculia, both disorders and controls, to systematically explore differences in fractional anisotropy across groups using diffusion tensor imaging. Specifically, we focused on the corona radiata and the arcuate fasciculus, two tracts associated with reading and mathematics in a number of previous studies. Using Bayesian hypothesis testing, we show that the present data favor the null model of no differences between groups for these particular tracts-a finding that seems to go against the current view but might be representative of the disparities within this field of research. Together, these findings suggest that structural differences associated with dyslexia and dyscalculia might not be as reliable as previously thought, with potential ramifications in terms of remediation.
White matter neuroanatomical differences in young children who stutter
Zhu, David C.; Choo, Ai Leen; Angstadt, Mike
2015-01-01
The ability to express thoughts through fluent speech production is a most human faculty, one that is often taken for granted. Stuttering, which disrupts the smooth flow of speech, affects 5% of preschool-age children and 1% of the general population, and can lead to significant communication difficulties and negative psychosocial consequences throughout one’s lifetime. Despite the fact that symptom onset typically occurs during early childhood, few studies have yet examined the possible neural bases of developmental stuttering during childhood. Here we present a diffusion tensor imaging study that examined white matter measures reflecting neuroanatomical connectivity (fractional anisotropy) in 77 children [40 controls (20 females), 37 who stutter (16 females)] between 3 and 10 years of age. We asked whether previously reported anomalous white matter measures in adults and older children who stutter that were found primarily in major left hemisphere tracts (e.g. superior longitudinal fasciculus) are also present in younger children who stutter. All children exhibited normal speech, language, and cognitive development as assessed through a battery of assessments. The two groups were matched in chronological age and socioeconomic status. Voxel-wise whole brain comparisons using tract-based spatial statistics and region of interest analyses of fractional anisotropy were conducted to examine white matter changes associated with stuttering status, age, sex, and stuttering severity. Children who stutter exhibited significantly reduced fractional anisotropy relative to controls in white matter tracts that interconnect auditory and motor structures, corpus callosum, and in tracts interconnecting cortical and subcortical areas. In contrast to control subjects, fractional anisotropy changes with age were either stagnant or showed dissociated development among major perisylvian brain areas in children who stutter. These results provide first glimpses into the neuroanatomical bases of early childhood stuttering, and possible white matter developmental changes that may lead to recovery versus persistent stuttering. The white matter changes point to possible structural connectivity deficits in children who stutter, in interrelated neural circuits that enable skilled movement control through efficient sensorimotor integration and timing of movements. PMID:25619509
Chien, Hsiang-Yun; Gau, Susan Shur-Fen; Hsu, Yung-Chin; Chen, Yu-Jen; Lo, Yu-Chun; Shih, Yao-Chia; Tseng, Wen-Yih Isaac
2015-12-01
Previous studies using neural activity recording and neuroimaging techniques have reported functional deficits in the mirror neuron system (MNS) for individuals with autism spectrum disorder (ASD). However, a few studies focusing on gray and white matter structures of the MNS have yielded inconsistent results. The current study recruited adolescents and young adults with ASD (aged 15-26 years) and age-matched typically developing (TD) controls (aged 14-25 years). The cortical thickness (CT) and microstructural integrity of the tracts connecting the regions forming the classical MNS were investigated. High-resolution T1-weighted imaging and diffusion spectrum imaging were performed to quantify the CT and tract integrity, respectively. The structural covariance of the CT of the MNS regions revealed a weaker coordination of the MNS network in ASD. A strong correlation was found between the integrity of the right frontoparietal tracts and the social communication subscores measured by the Chinese version of the Social Communication Questionnaire. The results showed that there were no significant mean differences in the CTs and tract integrity between the ASD and TD groups, but revealed a moderate or even reverse age effect on the frontal MNS structures in ASD. In conclusion, aberrant structural coordination may be an underlying factor affecting the function of the MNS in ASD patients. The association between the right frontoparietal tracts and social communication performance implies a neural correlate of communication processing in the autistic brain. This study provides evidence of abnormal MNS structures and their influence on social communication in individuals with ASD. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.
Sun, Xiaoyan; Salat, David; Upchurch, Kristen; Deason, Rebecca; Kowall, Neil; Budson, Andrew
2014-10-01
Accumulating evidence shows that gradual loss of white matter integrity plays an important role in the development of Alzheimer disease (AD). The aim of this research was to study the microstructural integrity of white matter in AD in vivo. Global fractional anisotropy, global axial diffusivity (AxD), and global radial diffusivity (RD) were analyzed in subjects with normal controls (NC), mild cognitive impairment (MCI), and AD using Alzheimer's Disease Neuroimaging Initiative data (total N = 210). We further compared specific white matter tracts among the 3 groups. Compared with the NC group, the MCI group had significantly increased global AxD and global RD. Compared with the NC and MCI groups, the AD group had significantly decreased global fractional anisotropy, increased global AxD, and increased global RD. With regard to specific white matter tracts, in the MCI group, we found increased AxD and increased RD in the external capsule, part of the lateral cholinergic pathway, in addition to the tracts connecting the limbic regions, predominantly in the left hemisphere. In the AD group, white matter abnormalities were widespread, including in the external capsule (cholinergic pathway) and limbic region tracts as well as tracts connecting anterior to posterior regions bilaterally. The radiographic manifestation of damaged white matter microstructural integrity in the cholinergic pathway in MCI patients may provide a rational basis for the use of cholinesterase inhibitor drugs in the MCI stage of AD.
Shah, Chandan; Liu, Jia; Lv, Peilin; Sun, Huaiqiang; Xiao, Yuan; Liu, Jieke; Zhao, Youjin; Zhang, Wenjing; Yao, Li; Gong, Qiyong; Lui, Su
2018-01-01
Introduction: There are still uncertainties about the true nature of age related changes in topological properties of the brain functional network and its structural connectivity during various developmental stages. In this cross- sectional study, we investigated the effects of age and its relationship with regional nodal properties of the functional brain network and white matter integrity. Method: DTI and fMRI data were acquired from 458 healthy Chinese participants ranging from age 8 to 81 years. Tractography was conducted on the DTI data using FSL. Graph Theory analyses were conducted on the functional data yielding topological properties of the functional network using SPM and GRETNA toolbox. Two multiple regressions were performed to investigate the effects of age on nodal topological properties of the functional brain network and white matter integrity. Result: For the functional studies, we observed that regional nodal characteristics such as node betweenness were decreased while node degree and node efficiency was increased in relation to increasing age. Perversely, we observed that the relationship between nodal topological properties and fasciculus structures were primarily positive for nodal betweenness but negative for nodal degree and nodal efficiency. Decrease in functional nodal betweenness was primarily located in superior frontal lobe, right occipital lobe and the global hubs. These brain regions also had both direct and indirect anatomical relationships with the 14 fiber bundles. A linear age related decreases in the Fractional anisotropy (FA) value was found in the callosum forceps minor. Conclusion: These results suggests that age related differences were more pronounced in the functional than in structural measure indicating these measures do not have direct one-to-one mapping. Our study also indicates that the fiber bundles with longer fibers exhibited a more pronounced effect on the properties of functional network.
Wu, Chinglin; Zhong, Suyu; Chen, Hsuehchih
2016-01-01
Remote association is a core ability that influences creative output. In contrast to close association, remote association is commonly agreed to be connected with more original and unique concepts. However, although existing studies have discovered that creativity is closely related to the white-matter structure of the brain, there are no studies that examine the relevance between the connectivity efficiencies and creativity of the brain regions from the perspective of networks. Consequently, this study constructed a brain white matter network structure that consisted of cerebral tissues and nerve fibers and used graph theory to analyze the connection efficiencies among the network nodes, further illuminating the differences between remote and close association in relation to the connectivity of the brain network. Researchers analyzed correlations between the scores of 35 healthy adults with regard to remote and close associations and the connectivity efficiencies of the white-matter network of the brain. Controlling for gender, age, and verbal intelligence, the remote association positively correlated with the global efficiency and negatively correlated with the levels of small-world. A close association negatively correlated with the global efficiency. Notably, the node efficiency in the middle temporal gyrus (MTG) positively correlated with remote association and negatively correlated with close association. To summarize, remote and close associations work differently as patterns in the brain network. Remote association requires efficient and convenient mutual connections between different brain regions, while close association emphasizes the limited connections that exist in a local region. These results are consistent with previous results, which indicate that creativity is based on the efficient integration and connection between different regions of the brain and that temporal lobes are the key regions for discriminating remote and close associations. PMID:27760177
Müller, Hans-Peter; Agosta, Federica; Riva, Nilo; Spinelli, Edoardo G; Comi, Giancarlo; Ludolph, Albert C; Filippi, Massimo; Kassubek, Jan
2018-01-01
The criteria for assessing upper motor neuron pathology in pure lower motor neuron disease (LMND) still remain a major issue of debate with respect to the clinical classification as an amyotrophic lateral sclerosis (ALS) variant. The study was designed to investigate white matter damage by a hypothesis-guided tract-of-interest-based approach in patients with LMND compared with healthy controls and ´classical´ ALS patients in order to identify in vivo brain structural changes according to the neuropathologically defined ALS affectation pattern. Data were pooled from two previous studies at two different study sites (Ulm, Germany and Milano, Italy). DTI-based white matter integrity mapping was performed by voxelwise statistical comparison and by a tractwise analysis of fractional anisotropy (FA) maps according to the ALS-staging pattern for 65 LMND patients (clinically differentiated in fast and slow progressors) vs. 92 matched controls and 101 ALS patients with a 'classical' phenotype to identify white matter structural alterations. The analysis of white matter structural connectivity by regional FA reductions demonstrated the characteristic alteration patterns along the CST and also in frontal and prefrontal brain areas in LMND patients compared to controls and ALS. Fast progressing LMND showed substantial involvement, like in ALS, while slow progressors showed less severe alterations. In the tract-specific analysis according to the ALS-staging pattern, fast progressing LMND showed significant alterations of ALS-related tract systems as compared to slow progressors and controls. This study showed an affectation pattern for corticoefferent fibers in LMND with fast disease progression as defined for ALS, that way confirming the hypothesis that fast progressing LMND is a phenotypical variant of ALS.
FADTTS: functional analysis of diffusion tensor tract statistics.
Zhu, Hongtu; Kong, Linglong; Li, Runze; Styner, Martin; Gerig, Guido; Lin, Weili; Gilmore, John H
2011-06-01
The aim of this paper is to present a functional analysis of a diffusion tensor tract statistics (FADTTS) pipeline for delineating the association between multiple diffusion properties along major white matter fiber bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these white matter tract properties in various diffusion tensor imaging studies. The FADTTS integrates five statistical tools: (i) a multivariate varying coefficient model for allowing the varying coefficient functions in terms of arc length to characterize the varying associations between fiber bundle diffusion properties and a set of covariates, (ii) a weighted least squares estimation of the varying coefficient functions, (iii) a functional principal component analysis to delineate the structure of the variability in fiber bundle diffusion properties, (iv) a global test statistic to test hypotheses of interest, and (v) a simultaneous confidence band to quantify the uncertainty in the estimated coefficient functions. Simulated data are used to evaluate the finite sample performance of FADTTS. We apply FADTTS to investigate the development of white matter diffusivities along the splenium of the corpus callosum tract and the right internal capsule tract in a clinical study of neurodevelopment. FADTTS can be used to facilitate the understanding of normal brain development, the neural bases of neuropsychiatric disorders, and the joint effects of environmental and genetic factors on white matter fiber bundles. The advantages of FADTTS compared with the other existing approaches are that they are capable of modeling the structured inter-subject variability, testing the joint effects, and constructing their simultaneous confidence bands. However, FADTTS is not crucial for estimation and reduces to the functional analysis method for the single measure. Copyright © 2011 Elsevier Inc. All rights reserved.
Fan, Jia; Meintjes, Ernesta M.; Molteno, Christopher D.; Spottiswoode, Bruce S.; Dodge, Neil C.; Alhamud, Alkathafi A.; Stanton, Mark E.; Peterson, Bradley S.; Jacobson, Joseph L.; Jacobson, Sandra W.
2015-01-01
Fetal alcohol spectrum disorders (FASD) are characterized by a range of neurodevelopmental deficits that result from prenatal exposure to alcohol. These can include cognitive, behavioural, and neurological impairment, as well as structural and functional brain damage. Eyeblink conditioning (EBC) is among the most sensitive endpoints affected in FASD. The cerebellar peduncles, large bundles of myelinated nerve fibers that connect the cerebellum to the brainstem, constitute the principal white matter element of the EBC circuit. Diffusion tensor imaging (DTI) is used to assess white matter integrity in fibre pathways linking brain regions. DTI scans of 54 children with FASD and 23 healthy controls, mean age 10.1±1.0 yrs, from the Cape Town Longitudinal Cohort were processed using voxelwise group comparisons. Prenatal alcohol exposure was related to lower fractional anisotropy (FA) bilaterally in the superior cerebellar peduncles and higher mean diffusivity (MD) in the left middle peduncle, effects that remained significant after controlling for potential confounding variables. Lower FA and higher MD in these regions were associated with poorer EBC performance. Moreover, effects of alcohol exposure on EBC decreased significantly after inclusion of these DTI measures in regression models, suggesting that these white matter deficits partially mediate the relation of prenatal alcohol exposure to EBC. The associations of greater alcohol consumption with these DTI measures are largely attributable to greater radial diffusivity, possibly indicating poorer myelination. Thus, these data suggest that fetal alcohol-related deficits in EBC are attributable, in part, to poorer myelination in key regions of the cerebellar peduncles. PMID:25783559
Narcissism is associated with weakened frontostriatal connectivity: a DTI study
Lynam, Donald R.; Powell, David K.; DeWall, C. Nathan
2016-01-01
Narcissism is characterized by the search for affirmation and admiration from others. Might this motivation to find external sources of acclaim exist to compensate for neurostructural deficits that link the self with reward? Greater structural connectivity between brain areas that process self-relevant stimuli (i.e. the medial prefrontal cortex) and reward (i.e. the ventral striatum) is associated with fundamentally positive self-views. We predicted that narcissism would be associated with less integrity of this frontostriatal pathway. We used diffusion tensor imaging to assess the frontostriatal structural connectivity among 50 healthy undergraduates (32 females, 18 males) who also completed a measure of grandiose narcissism. White matter integrity in the frontostriatal pathway was negatively associated with narcissism. Our findings, while purely correlational, suggest that narcissism arises, in part, from a neural disconnect between the self and reward. The exhibitionism and immodesty of narcissists may then be a regulatory strategy to compensate for this neural deficit. PMID:26048178
Ferreiro, Diego U.; Komives, Elizabeth A.; Wolynes, Peter G.
2014-01-01
Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with a finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and how biomolecular structure connects to function. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how a large part of the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. We hope to illustrate how Frustration is a fundamental concept in relating function to structural biology. PMID:25225856
Presson, Nora; Krishnaswamy, Deepa; Wagener, Lauren; Bird, William; Jarbo, Kevin; Pathak, Sudhir; Puccio, Ava M; Borasso, Allison; Benso, Steven; Okonkwo, David O; Schneider, Walter
2015-03-01
There is an urgent, unmet demand for definitive biological diagnosis of traumatic brain injury (TBI) to pinpoint the location and extent of damage. We have developed High-Definition Fiber Tracking, a 3 T magnetic resonance imaging-based diffusion spectrum imaging and tractography analysis protocol, to quantify axonal injury in military and civilian TBI patients. A novel analytical methodology quantified white matter integrity in patients with TBI and healthy controls. Forty-one subjects (23 TBI, 18 controls) were scanned with the High-Definition Fiber Tracking diffusion spectrum imaging protocol. After reconstruction, segmentation was used to isolate bilateral hemisphere homologues of eight major tracts. Integrity of segmented tracts was estimated by calculating homologue correlation and tract coverage. Both groups showed high correlations for all tracts. TBI patients showed reduced homologue correlation and tract spread and increased outlier count (correlations>2.32 SD below control mean). On average, 6.5% of tracts in the TBI group were outliers with substantial variability among patients. Number and summed deviation of outlying tracts correlated with initial Glasgow Coma Scale score and 6-month Glasgow Outcome Scale-Extended score. The correlation metric used here can detect heterogeneous damage affecting a low proportion of tracts, presenting a potential mechanism for advancing TBI diagnosis. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
Integrated Science Assessment (ISA) for Particulate Matter (Final Report, Dec 2009)
EPA announced the availability of the final report, Integrated Science Assessment (ISA) for Particulate Matter (PM). This report is EPA’s latest evaluation of the scientific literature on the potential human health and welfare effects associated with ambient exposures to p...
Hyperintense White Matter Lesions in 50 High-Altitude Pilots with Neurologic Decompression Sickness
2012-12-01
Environ Med 2004 ; 75 : 969 – 72 . 4. Bartzokis G, Tishler TA, Shin IS, Lu PH, Cummings JL . Brain ferritin iron as a risk factor for...Coyle T, Lancaster J, et al. Can structural MRI indices of cerebral integrity track cognitive trends in executive control function during normal...Digital brain atlases . Trends Neurosci 1995 ; 18 : 210 – 1 . 28. Miura K, Soyama Y, Morikawa Y, Nishijo M, Nakanishi Y, et al
2016-10-01
players : the NCAA Concussion Study . JAMA, 2003. 290(19): p. 2556-63. 3. Bogdanova, Y. and M. Verfaellie, Cognitive sequelae of blast-induced traumatic...football players : the NCAA concussion study , JAMA 290 (2003) 2556–2563. [22] L.C. Morey, Personality Assessment Inventory, Psychological Assessment...assessment. This study will address this problem by collecting measures of white matter integrity and concomitant neuropsychological status at five time points
Chronic cigarette smoking and the microstructural integrity of white matter in healthy adults
Paul, Robert H.; Grieve, Stuart M.; Niaura, Raymond; David, Sean P.; Laidlaw, David H.; Cohen, Ronald; Sweet, Lawrence; Taylor, George; Clark, C. Richard; Pogun, Sakire; Gordon, Evian
2008-01-01
Results from recent studies suggest that chronic cigarette smoking is associated with increased white matter volume in the brain as determined by in vivo neuroimaging. We used diffusion tensor imaging to examine the microstructural integrity of the white matter in 10 chronic smokers and 10 nonsmokers. All individuals were healthy, without histories of medical or psychiatric illness. Fractional anisotropy (FA) and trace were measured in the genu, body, and splenium of the corpus callosum. FA provides a measure of directional versus nondirectional water diffusion, whereas trace provides a measure of nondirectional water diffusion. Lower FA and higher trace values are considered to reflect less brain integrity. Voxel-based morphometry was used to define volumes in each of these regions of the corpus callosum. Chronic smokers exhibited significantly higher FA in the body and whole corpus callosum and a strong trend for higher FA in the splenium compared with nonsmokers. FA did not differ between groups in the genu, and neither trace nor white matter volumes differed between groups in any of the regions of interest. When subdivided by Fagerström score (low vs. high), the low Fagerström group exhibited significantly higher FA in the body of the corpus callosum compared with the high Fagerström group and the nonsmokers. These results suggest that, among healthy adults, lower exposure to cigarette smoking is associated with increased microstructural integrity of the white matter compared with either no exposure or higher exposure. Additional studies are needed to further explore differences in white matter integrity between smokers and nonsmokers. PMID:18188754
In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.
Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A
2010-10-01
Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.
How CMB and large-scale structure constrain chameleon interacting dark energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boriero, Daniel; Das, Subinoy; Wong, Yvonne Y.Y., E-mail: boriero@physik.uni-bielefeld.de, E-mail: subinoy@iiap.res.in, E-mail: yvonne.y.wong@unsw.edu.au
2015-07-01
We explore a chameleon type of interacting dark matter-dark energy scenario in which a scalar field adiabatically traces the minimum of an effective potential sourced by the dark matter density. We discuss extensively the effect of this coupling on cosmological observables, especially the parameter degeneracies expected to arise between the model parameters and other cosmological parameters, and then test the model against observations of the cosmic microwave background (CMB) anisotropies and other cosmological probes. We find that the chameleon parameters α and β, which determine respectively the slope of the scalar field potential and the dark matter-dark energy coupling strength,more » can be constrained to α < 0.17 and β < 0.19 using CMB data and measurements of baryon acoustic oscillations. The latter parameter in particular is constrained only by the late Integrated Sachs-Wolfe effect. Adding measurements of the local Hubble expansion rate H{sub 0} tightens the bound on α by a factor of two, although this apparent improvement is arguably an artefact of the tension between the local measurement and the H{sub 0} value inferred from Planck data in the minimal ΛCDM model. The same argument also precludes chameleon models from mimicking a dark radiation component, despite a passing similarity between the two scenarios in that they both delay the epoch of matter-radiation equality. Based on the derived parameter constraints, we discuss possible signatures of the model for ongoing and future large-scale structure surveys.« less
Cooke, Gillian E.; Wetter, Nathan C.; Banducci, Sarah E.; Mackenzie, Michael J.; Zuniga, Krystle E.; Awick, Elizabeth A.; Roberts, Sarah A.; Sutton, Brad P.; McAuley, Edward; Kramer, Arthur F.
2016-01-01
Increased survival rates among breast cancer patients have drawn significant attention to consequences of both the presence of cancer, and the subsequent treatment-related impact on the brain. The incidence of breast cancer and the effects of treatment often result in alterations in the microstructure of white matter and impaired cognitive functioning. However, physical activity is proving to be a successful modifiable lifestyle factor in many studies that could prove beneficial to breast cancer survivors. This study investigates the link between white matter lesion volume, moderate physical activity, and cognition in breast cancer survivors following treatment compared to non-cancer age-matched controls. Results revealed that brain structure significantly predicted cognitive function via mediation of physical activity in breast cancer survivors. Overall, the study provided preliminary evidence suggesting moderate physical activity may help reduce the treatment related risks associated with breast cancer, including changes to WM integrity and cognitive impairment. PMID:26915025
Cooke, Gillian E; Wetter, Nathan C; Banducci, Sarah E; Mackenzie, Michael J; Zuniga, Krystle E; Awick, Elizabeth A; Roberts, Sarah A; Sutton, Brad P; McAuley, Edward; Kramer, Arthur F
2016-01-01
Increased survival rates among breast cancer patients have drawn significant attention to consequences of both the presence of cancer, and the subsequent treatment-related impact on the brain. The incidence of breast cancer and the effects of treatment often result in alterations in the microstructure of white matter and impaired cognitive functioning. However, physical activity is proving to be a successful modifiable lifestyle factor in many studies that could prove beneficial to breast cancer survivors. This study investigates the link between white matter lesion volume, moderate physical activity, and cognition in breast cancer survivors following treatment compared to non-cancer age-matched controls. Results revealed that brain structure significantly predicted cognitive function via mediation of physical activity in breast cancer survivors. Overall, the study provided preliminary evidence suggesting moderate physical activity may help reduce the treatment related risks associated with breast cancer, including changes to WM integrity and cognitive impairment.
Connectome Signatures of Neurocognitive Abnormalities in Euthymic Bipolar I Disorder
Ajilore, Olusola; Vizueta, Nathalie; Walshaw, Patricia; Zhan, Liang; Leow, Alex; Altshuler, Lori L.
2015-01-01
Objectives Connectomics have allowed researchers to study integrative patterns of neural connectivity in humans. Yet, it is unclear how connectomics may elucidate structure-function relationships in bipolar I disorder (BPI). Expanding on our previous structural connectome study, here we used an overlapping sample with additional psychometric and fMRI data to relate structural connectome properties to both fMRI signals and cognitive performance. Methods 42 subjects completed a neuropsychological (NP) battery covering domains of processing speed, verbal memory, working memory, and cognitive flexibility. 32 subjects also had fMRI data performing a Go/NoGo task. Results Bipolar participants had lower NP performance across all domains, but only working memory reached statistical significance. In BPI participants, processing speed was significantly associated with both white matter integrity (WMI) in the corpus callosum and interhemispheric network integration. Mediation models further revealed that the relationship between interhemispheric integration and processing speed was mediated by WMI, and processing speed mediated the relationship between WMI and working memory. Bipolar subjects had significantly decreased BA47 activation during NoGo vs. Go. Significant predictors of BA47 fMRI activations during the Go/NoGo task were its nodal path length (left hemisphere) and its nodal clustering coefficient (right hemisphere). Conclusions This study suggests that structural connectome changes underlie abnormalities in fMRI activation and cognitive performance in euthymic BPI subjects. Results support that BA47 structural connectome changes may be a trait marker for BPI. Future studies are needed to determine if these “connectome signatures” may also confer a biological risk and/or serve as predictors of relapse. PMID:26228398
The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA)
NASA Astrophysics Data System (ADS)
Moustakas, Leonidas A.; Bolton, Adam J.; Booth, Jeffrey T.; Bullock, James S.; Cheng, Edward; Coe, Dan; Fassnacht, Christopher D.; Gorjian, Varoujan; Heneghan, Cate; Keeton, Charles R.; Kochanek, Christopher S.; Lawrence, Charles R.; Marshall, Philip J.; Metcalf, R. Benton; Natarajan, Priyamvada; Nikzad, Shouleh; Peterson, Bradley M.; Wambsganss, Joachim
2008-07-01
Dark matter in a universe dominated by a cosmological constant seeds the formation of structure and is the scaffolding for galaxy formation. The nature of dark matter remains one of the fundamental unsolved problems in astrophysics and physics even though it represents 85% of the mass in the universe, and nearly one quarter of its total mass-energy budget. The mass function of dark matter "substructure" on sub-galactic scales may be enormously sensitive to the mass and properties of the dark matter particle. On astrophysical scales, especially at cosmological distances, dark matter substructure may only be detected through its gravitational influence on light from distant varying sources. Specifically, these are largely active galactic nuclei (AGN), which are accreting super-massive black holes in the centers of galaxies, some of the most extreme objects ever found. With enough measurements of the flux from AGN at different wavelengths, and their variability over time, the detailed structure around AGN, and even the mass of the super-massive black hole can be measured. The Observatory for Multi-Epoch Gravitational Lens Astrophysics (OMEGA) is a mission concept for a 1.5-m near-UV through near-IR space observatory that will be dedicated to frequent imaging and spectroscopic monitoring of ~100 multiply-imaged active galactic nuclei over the whole sky. Using wavelength-tailored dichroics with extremely high transmittance, efficient imaging in six channels will be done simultaneously during each visit to each target. The separate spectroscopic mode, engaged through a flip-in mirror, uses an image slicer spectrograph. After a period of many visits to all targets, the resulting multidimensional movies can then be analyzed to a) measure the mass function of dark matter substructure; b) measure precise masses of the accreting black holes as well as the structure of their accretion disks and their environments over several decades of physical scale; and c) measure a combination of Hubble's local expansion constant and cosmological distances to unprecedented precision. We present the novel OMEGA instrumentation suite, and how its integrated design is ideal for opening the time domain of known cosmologically-distant variable sources, to achieve the stated scientific goals.
Riphagen, Joost M; Gronenschild, Ed H B M; Salat, David H; Freeze, Whitney M; Ivanov, Dimo; Clerx, Lies; Verhey, Frans R J; Aalten, Pauline; Jacobs, Heidi I L
2018-08-01
The underlying pathology of white matter signal abnormalities (WMSAs) is heterogeneous and may vary dependent on the magnetic resonance imaging contrast used to define them. We investigated differences in white matter diffusivity as an indicator for white matter integrity underlying WMSA based on T1-weighted and fluid-attenuated inversion recovery (FLAIR) imaging contrast. In addition, we investigated which white matter region of interest (ROI) could predict clinical diagnosis best using diffusion metrics. One hundred three older individuals with varying cognitive impairment levels were included and underwent neuroimaging. Diffusion metrics were extracted from WMSA areas based on T1 and FLAIR contrast and from their overlapping areas, the border surrounding the WMSA and the normal-appearing white matter (NAWM). Regional diffusivity differences were calculated with linear mixed effects models. Multinomial logistic regression determined which ROI diffusion values classified individuals best into clinically defined diagnostic groups. T1-based WMSA showed lower white matter integrity compared to FLAIR WMSA-defined regions. Diffusion values of NAWM predicted diagnostic group best compared to other ROI's. To conclude, T1- or FLAIR-defined WMSA provides distinct information on the underlying white matter integrity associated with cognitive decline. Importantly, not the "diseased" but the NAWM is a potentially sensitive indicator for cognitive brain health status. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Ota, Miho; Noda, Takamasa; Sato, Noriko; Hattori, Kotaro; Hori, Hiroaki; Sasayama, Daimei; Teraishi, Toshiya; Nagashima, Anna; Obu, Satoko; Higuchi, Teruhiko; Kunugi, Hiroshi
2015-06-01
The DSM-IV recognizes some subtypes of major depressive disorder (MDD). It is known that the effectiveness of antidepressants differs among the MDD subtypes, and thus the differentiation of the subtypes is important. However, little is known as to structural brain changes in MDD with atypical features (aMDD) in comparison with MDD with melancholic features (mMDD), which prompted us to examine possible differences in white matter integrity assessed with diffusion tensor imaging (DTI) between these two subtypes. Subjects were 21 patients with mMDD, 24 with aMDD, and 37 age- and sex-matched healthy volunteers whose DTI data were obtained by 1.5 tesla magnetic resonance imaging. We compared fractional anisotropy and mean diffusivity value derived from DTI data on a voxel-by-voxel basis among the two diagnostic groups and healthy subjects. There were significant decreases of fractional anisotropy and increases of mean diffusivity in patients with MDD compared with healthy subjects in the corpus callosum, inferior fronto-occipital fasciculus, and left superior longitudinal fasciculus. However, we detected no significant difference in any brain region between mMDD and aMDD. Our results suggest that patients with MDD had reduced white matter integrity in some regions; however, there was no major difference between aMDD and mMDD. © 2014 The Authors. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.
Windisch, Ricarda; de Savigny, Don; Onadja, Geneviève; Somda, Antoine; Wyss, Kaspar; Sié, Ali; Kouyaté, Bocar
2011-11-01
Organizational changes, increased funding and the demands of HIV antiretroviral (ARV) treatment create particular challenges for governance in the health sector. We assess resource allocation, policy making and integration of the national responses to ARV provision and reproductive health in Burkina Faso, using national and district budgets related to disease burden, policy documents, organizational structures, and coordination and implementation processes. ARV provision represents the concept of a "crisis scenario", in which reforms are pushed due to a perception of urgent need, whereas the national reproductive health programme, which is older and more integrated, represents a "politics-as-usual scenario". Findings show that the early years of the national response to HIV and AIDS were characterized by new institutions with overlapping functions, and failure to integrate with and strengthen existing structures. National and district budget allocations for HIV compared to other interventions were disproportionately high when assessed against burden of disease. Strategic documents for ARV provision were relatively less developed and referred to, compared to those of the Ministry of Health Directorates for HIV and for Family Health and district health planning teams for reproductive health services. Imbalances and new structures potentially trigger important adverse effects which are difficult to remedy and likely to increase due to the dynamics they create. It therefore becomes crucial, from the outset, to integrate HIV/AIDS funding and responses into health systems. Copyright © 2011 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Integrated Science Assessment (ISA) for Particulate Matter (First External Review Draft, Dec 2008)
EPA has announced that the First External Review Draft of the Integrated Science Assessment (ISA) for Particulate Matter and related Annexes have been made available for independent peer review and public review. This draft ISA document represents a concise synthesis and e...
Integrated Science Assessment (ISA) for Particulate Matter (Second External Review Draft, Jul 2009)
EPA has announced that the Second External Review Draft of the Integrated Science Assessment (ISA) for Particulate Matter (PM) have been made available for independent peer review and public review. The ISA reflects the latest scientific knowledge useful in indicating the kind...
Strengthening Integrity and Fighting Corruption in Education: Serbia
ERIC Educational Resources Information Center
OECD Publishing (NJ3), 2012
2012-01-01
Education matters. It is a gateway to prosperity of individuals and economies alike. Integrity in education matters too. Corruption hinders prosperity, causes long-term damage to societies, and diminishes the efficiency of investment in their human potential. Driven by the insight that corruption in education can undermine even the best of…
An Integrated Higgs Force Theory
NASA Astrophysics Data System (ADS)
Colella, Antonio
2016-03-01
An Integrated Higgs force theory (IHFT) was based on 2 key requirement amplifications: a matter particle/Higgs force was one and inseparable; a matter particle/Higgs force bidirectionally condensed/evaporated from/to super force. These were basis of 5 theories: particle creation, baryogenesis, superpartner/quark decays, spontaneous symmetry breaking, and stellar black holes. Our universe's 129 matter/force particles contained 64 supersymmetric Higgs particles; 9 transient matter particles/Higgs forces decayed to 8 permanent matter particles/Higgs forces; mass was given to a matter particle by its Higgs force and gravitons; and sum of 8 Higgs force energies of 8 permanent matter particles was dark energy. An IHFT's essence is the intimate physical relationships between 8 theories. These theories are independent because physicists in one theory worked independently of physicists in the other seven. An IHFT's premise is without sacrificing their integrities, 8 independent existing theories are replaced by 8 interrelated amplified theories. Requirement amplifications provide interfaces between the 8 theories. Intimate relationships between 8 theories including the above 5 and string, Higgs forces, and Super Universe are described. The sorting category selected was F. PARTICLES AND FIELDS (e.g., F1 Higgs Physics, F10 Alternative Beyond the Standard Model Physics, F11 Dark Sector Theories and Searches, and F12 Particle Cosmology).
Lower Orbital Frontal White Matter Integrity in Adolescents with Bipolar I Disorder
ERIC Educational Resources Information Center
Kafantaris, Vivian; Kingsley, Peter; Ardekani, Babak; Saito, Ema; Lencz, Todd; Lim, Kelvin; Szeszko, Philip
2009-01-01
Patients with bipolar I disorder demonstrated white matter abnormalities in white matter regions as seen through the use of diffusion tensor imaging. The findings suggest that white matter abnormalities in pediatric bipolar disorder may be useful in constructing neurobiological models of the disorder.
Relationship between grey matter integrity and executive abilities in aging.
Manard, Marine; Bahri, Mohamed Ali; Salmon, Eric; Collette, Fabienne
2016-07-01
This cross-sectional study was designed to investigate grey matter changes that occur in healthy aging and the relationship between grey matter characteristics and executive functioning. Thirty-six young adults (18-30 years old) and 43 seniors (60-75 years old) were included. A general executive score was derived from a large battery of neuropsychological tests assessing three major aspects of executive functioning (inhibition, updating and shifting). Age-related grey matter changes were investigated by comparing young and older adults using voxel-based morphometry and voxel-based cortical thickness methods. A widespread difference in grey matter volume was found across many brain regions, whereas cortical thinning was mainly restricted to central areas. Multivariate analyses showed age-related changes in relatively similar brain regions to the respective univariate analyses but appeared more limited. Finally, in the older adult sample, a significant relationship between global executive performance and decreased grey matter volume in anterior (i.e. frontal, insular and cingulate cortex) but also some posterior brain areas (i.e. temporal and parietal cortices) as well as subcortical structures was observed. Results of this study highlight the distribution of age-related effects on grey matter volume and show that cortical atrophy does not appear primarily in "frontal" brain regions. From a cognitive viewpoint, age-related executive functioning seems to be related to grey matter volume but not to cortical thickness. Therefore, our results also highlight the influence of methodological aspects (from preprocessing to statistical analysis) on the pattern of results, which could explain the lack of consensus in literature. Copyright © 2016 Elsevier B.V. All rights reserved.
Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon
2013-11-01
Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation, uncinate fasciculus and hippocampal portion of the cingulum bundles. Significant differences also emerged in the anterior corona radiata as well as in white matter underlying the superior, medial and inferior frontal gyri and the temporal gyri. Dual-task performance significantly correlated with fractional anisotropy measures in the middle frontal gyrus white matter and anterior corona radiata. Letter fluency indices significantly correlated with fractional anisotropy measures of the inferior frontal gyrus white matter and corpus callosum in addition to the corticospinal tracts and mean diffusivity measures in the white matter of the superior frontal gyrus. The current study demonstrates that cognitive impairment in amyotrophic lateral sclerosis is not due to generic slowing of processing speed. Moreover, different executive deficits are related to distinct prefrontal tract involvement in amyotrophic lateral sclerosis with dual-task impairment associating with dorsolateral prefrontal dysfunction and letter fluency showing greater dependence on inferolateral prefrontal dysfunction.
Integrating Condensed Matter Physics into a Liberal Arts Physics Curriculum
NASA Astrophysics Data System (ADS)
Collett, Jeffrey
2008-03-01
The emergence of nanoscale science into the popular consciousness presents an opportunity to attract and retain future condensed matter scientists. We inject nanoscale physics into recruiting activities and into the introductory and the core portions of the curriculum. Laboratory involvement and research opportunity play important roles in maintaining student engagement. We use inexpensive scanning tunneling (STM) and atomic force (AFM) microscopes to introduce students to nanoscale structure early in their college careers. Although the physics of tip-surface interactions is sophisticated, the resulting images can be interpreted intuitively. We use the STM in introductory modern physics to explore quantum tunneling and the properties of electrons at surfaces. An interdisciplinary course in nanoscience and nanotechnology course team-taught with chemists looks at nanoscale phenomena in physics, chemistry, and biology. Core quantum and statistical physics courses look at effects of quantum mechanics and quantum statistics in degenerate systems. An upper level solid-state physics course takes up traditional condensed matter topics from a structural perspective by beginning with a study of both elastic and inelastic scattering of x-rays from crystalline solids and liquid crystals. Students encounter reciprocal space concepts through the analysis of laboratory scattering data and by the development of the scattering theory. The course then examines the importance of scattering processes in band structure and in electrical and thermal conduction. A segment of the course is devoted to surface physics and nanostructures where we explore the effects of restricting particles to two-dimensional surfaces, one-dimensional wires, and zero-dimensional quantum dots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rueckriegel, Stefan Mark, E-mail: stefan.rueckriegel@charite.d; Driever, Pablo Hernaiz; Blankenburg, Friederike
2010-03-01
Purpose: To elucidate morphologic correlates of brain dysfunction in pediatric survivors of posterior fossa tumors by using magnetic resonance diffusion tensor imaging (DTI) to examine neuroaxonal integrity in white matter. Patients and Methods: Seventeen medulloblastoma (MB) patients who had received surgery and adjuvant treatment, 13 pilocytic astrocytoma (PA) patients who had been treated only with surgery, and age-matched healthy control subjects underwent magnetic resonance imaging on a 3-Tesla system. High-resolution conventional T1- and T2-weighted magnetic resonance imaging and DTI data sets were obtained. Fractional anisotropy (FA) maps were analyzed using tract-based spatial statistics, a part of the Functional MRI ofmore » the Brain Software Library. Results: Compared with control subjects, FA values of MB patients were significantly decreased in the cerebellar midline structures, in the frontal lobes, and in the callosal body. Fractional anisotropy values of the PA patients were not only decreased in cerebellar hemispheric structures as expected, but also in supratentorial parts of the brain, with a distribution similar to that in MB patients. However, the amount of significantly decreased FA was greater in MB than in PA patients, underscoring the aggravating neurotoxic effect of the adjuvant treatment. Conclusions: Neurotoxic mechanisms that are present in PA patients (e.g., internal hydrocephalus and damaged cerebellar structures affecting neuronal circuits) contribute significantly to the alteration of supratentorial white matter in pediatric posterior fossa tumor patients.« less
Mincic, Adina M
2015-10-01
Two central traits present in the most influential models of personality characterize the response to positive and, respectively, negative emotional events. Negative emotionality (NE)-related traits are linked to vulnerability to mood and anxiety disorders; this has fuelled a special interest in examining stable differences in brain morphology associated to these traits. Structural imaging methods including voxel-based morphometry, cortical thickness analysis and diffusion tensor imaging (DTI) have yielded inconclusive and sometimes contradictory results. This review summarizes the findings reported to date through these methods and discusses them in relation to the functional imaging results. To detect topographic convergence between studies showing positive and, respectively, negative grey matter associations with NE-traits, activation likelihood estimation (ALE) meta-analyses of VBM studies were performed. Individuals scoring high on NE-related traits show consistent morphological differences in a left-lateralized circuit: higher grey matter volume (GMV) in amygdala and anterior parahippocampal gyrus and lower GMV in the orbitofrontal cortex extending into perigenual anterior cingulate cortex. Most DTI studies indicate reduced white matter integrity in various brain regions and tracts, particularly in the uncinate fasciculus and in cingulum bundle. These results show that the behavioural phenotype associated to NE traits is reflected in structural differences within the cortico-limbic system, suggesting alterations in information processing and transmission. The results are discussed from the perspective of neuron-glia interactions. Future directions are outlined based on recent developments in structural imaging techniques. Copyright © 2015 Elsevier Ltd. All rights reserved.
Levitt, James J; Nestor, Paul G; Levin, Laura; Pelavin, Paula; Lin, Pan; Kubicki, Marek; McCarley, Robert W; Shenton, Martha E; Rathi, Yogesh
2017-11-01
The striatum receives segregated and integrative white matter tracts from the cortex facilitating information processing in the cortico-basal ganglia network. The authors examined both types of input tracts in the striatal associative loop in chronic schizophrenia patients and healthy control subjects. Structural and diffusion MRI scans were acquired on a 3-T system from 26 chronic schizophrenia patients and 26 matched healthy control subjects. Using FreeSurfer, the associative cortex was parcellated into ventrolateral prefrontal cortex and dorsolateral prefrontal cortex subregions. The striatum was manually parcellated into its associative and sensorimotor functional subregions. Fractional anisotropy and normalized streamlines, an estimate of fiber counts, were assessed in four frontostriatal tracts (dorsolateral prefrontal cortex-associative striatum, dorsolateral prefrontal cortex-sensorimotor striatum, ventrolateral prefrontal cortex-associative striatum, and ventrolateral prefrontal cortex-sensorimotor striatum). Furthermore, these measures were correlated with a measure of cognitive control, the Trail-Making Test, Part B. Results showed reduced fractional anisotropy and fewer streamlines in chronic schizophrenia patients for all four tracts, both segregated and integrative. Post hoc t tests showed reduced fractional anisotropy in the left ventrolateral prefrontal cortex-associative striatum and left ventrolateral prefrontal cortex-sensorimotor striatum and fewer normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum and in the left and right ventrolateral prefrontal cortex-sensorimotor striatum in chronic schizophrenia patients. Furthermore, normalized streamlines in the right dorsolateral prefrontal cortex-sensorimotor striatum negatively correlated with Trail-Making Test, Part B, time spent in healthy control subjects but not in chronic schizophrenia patients. These findings demonstrated that structural connectivity is reduced in both segregated and integrative tracts in the striatal associative loop in chronic schizophrenia and that reduced normalized streamlines in the right-hemisphere dorsolateral prefrontal cortex-sensorimotor striatum predicted worse cognitive control in healthy control subjects but not in chronic schizophrenia patients, suggesting a loss of a "normal" brain-behavior correlation in chronic schizophrenia.
GENETICS OF WHITE MATTER DEVELOPMENT: A DTI STUDY OF 705 TWINS AND THEIR SIBLINGS AGED 12 TO 29
Chiang, Ming-Chang; McMahon, Katie L.; de Zubicaray, Greig I.; Martin, Nicholas G.; Hickie, Ian; Toga, Arthur W.; Wright, Margaret J.; Thompson, Paul M.
2011-01-01
White matter microstructure is under strong genetic control, yet it is largely unknown how genetic influences change from childhood into adulthood. In one of the largest brain mapping studies ever performed, we determined whether the genetic control over white matter architecture depends on age, sex, socioeconomic status (SES), and intelligence quotient (IQ). We assessed white matter integrity voxelwise using diffusion tensor imaging at high magnetic field (4-Tesla), in 705 twins and their siblings (age range 12–29; 290 M/415 F). White matter integrity was quantified using a widely accepted measure, fractional anisotropy (FA). We fitted gene-environment interaction models pointwise, to visualize brain regions where age, sex, SES and IQ modulate heritability of fiber integrity. We hypothesized that environmental factors would start to outweigh genetic factors during late childhood and adolescence. Genetic influences were greater in adolescence versus adulthood, and greater in males than in females. Socioeconomic status significantly interacted with genes that affect fiber integrity: heritability was higher in those with higher SES. In people with above-average IQ, genetic factors explained over 800% of the observed FA variability in the thalamus, genu, posterior internal capsule, and superior corona radiata. In those with below-average IQ, however, only around 40% FA variability in the same regions was attributable to genetic factors. Genes affect fiber integrity, but their effects vary with age, sex, SES and IQ. Gene-environment interactions are vital to consider in the search for specific genetic polymorphisms that affect brain integrity and connectivity. PMID:20950689
MR Diffusion Tensor Imaging: A Window into White Matter Integrity of the Working Brain
Chanraud, Sandra; Zahr, Natalie; Pfefferbaum, Adolf
2010-01-01
As Norman Geschwind asserted in 1965, syndromes resulting from white matter lesions could produce deficits in higher-order functions and “disconnexion” or the interruption of connection between gray matter regions could be as disruptive as trauma to those regions per se. The advent of in vivo diffusion tensor imaging, which allows quantitative characterization of white matter fiber integrity in health and disease, has served to strengthen Geschwind's proposal. Here we present an overview of the principles of diffusion tensor imaging (DTI) and its contribution to progress in our current understanding of normal and pathological brain function. PMID:20422451
Reduced caudate volume and enhanced striatal-DMN integration in chess experts.
Duan, Xujun; He, Sheng; Liao, Wei; Liang, Dongmei; Qiu, Lihua; Wei, Luqing; Li, Yuan; Liu, Chengyi; Gong, Qiyong; Chen, Huafu
2012-04-02
The superior capability of chess experts largely depends on quick automatic processing skills which are considered to be mediated by the caudate nucleus. We asked whether continued practice or rehearsal of the skill over a long period of time can lead to structural changes in this region. We found that, comparing to novice controls, grandmaster and master level Chinese chess players (GM/Ms), who had a mean period of over 10years of tournament and training practice, exhibited significant smaller gray-matter volume in the bilateral caudate nuclei. When these regions were used as seeds in functional connectivity analysis in resting-state fMRI, significantly enhanced integration was found in GM/Ms between the caudate and the default mode network (DMN), a constellation of brain areas important for goal-directed cognitive performance and theory of mind. These findings demonstrate the structural changes in the caudate nucleus in response to its extensive engagement in chess problem solving, and its enhanced functional integration with widely distributed circuitry to better support high-level cognitive control of behavior. Copyright © 2012 Elsevier Inc. All rights reserved.
Long-term effects of marijuana use on the brain
Filbey, Francesca M.; Aslan, Sina; Calhoun, Vince D.; Spence, Jeffrey S.; Damaraju, Eswar; Caprihan, Arvind; Segall, Judith
2014-01-01
Questions surrounding the effects of chronic marijuana use on brain structure continue to increase. To date, however, findings remain inconclusive. In this comprehensive study that aimed to characterize brain alterations associated with chronic marijuana use, we measured gray matter (GM) volume via structural MRI across the whole brain by using voxel-based morphology, synchrony among abnormal GM regions during resting state via functional connectivity MRI, and white matter integrity (i.e., structural connectivity) between the abnormal GM regions via diffusion tensor imaging in 48 marijuana users and 62 age- and sex-matched nonusing controls. The results showed that compared with controls, marijuana users had significantly less bilateral orbitofrontal gyri volume, higher functional connectivity in the orbitofrontal cortex (OFC) network, and higher structural connectivity in tracts that innervate the OFC (forceps minor) as measured by fractional anisotropy (FA). Increased OFC functional connectivity in marijuana users was associated with earlier age of onset. Lastly, a quadratic trend was observed suggesting that the FA of the forceps minor tract initially increased following regular marijuana use but decreased with protracted regular use. This pattern may indicate differential effects of initial and chronic marijuana use that may reflect complex neuroadaptive processes in response to marijuana use. Despite the observed age of onset effects, longitudinal studies are needed to determine causality of these effects. PMID:25385625
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, C.; Boshier, M. G.
An integrated coherent matter wave circuit is a single device, analogous to an integrated optical circuit, in which coherent de Broglie waves are created and then launched into waveguides where they can be switched, divided, recombined, and detected as they propagate. Applications of such circuits include guided atom interferometers, atomtronic circuits, and precisely controlled delivery of atoms. We report experiments demonstrating integrated circuits for guided coherent matter waves. The circuit elements are created with the painted potential technique, a form of time-averaged optical dipole potential in which a rapidly moving, tightly focused laser beam exerts forces on atoms through theirmore » electric polarizability. Moreover, the source of coherent matter waves is a Bose–Einstein condensate (BEC). Finally, we launch BECs into painted waveguides that guide them around bends and form switches, phase coherent beamsplitters, and closed circuits. These are the basic elements that are needed to engineer arbitrarily complex matter wave circuitry.« less
Mechanical properties of the in vivo adolescent human brain.
McIlvain, Grace; Schwarb, Hillary; Cohen, Neal J; Telzer, Eva H; Johnson, Curtis L
2018-06-10
Viscoelastic mechanical properties of the in vivo human brain, measured noninvasively with magnetic resonance elastography (MRE), have recently been shown to be affected by aging and neurological disease, as well as relate to performance on cognitive tasks in adults. The demonstrated sensitivity of brain mechanical properties to neural tissue integrity make them an attractive target for examining the developing brain; however, to date, MRE studies on children are lacking. In this work, we characterized global and regional brain stiffness and damping ratio in a sample of 40 adolescents aged 12-14 years, including the lobes of the cerebrum and subcortical gray matter structures. We also compared the properties of the adolescent brain to the healthy adult brain. Temporal and parietal cerebral lobes were softer in adolescents compared to adults. We found that of subcortical gray matter structures, the caudate and the putamen were significantly stiffer in adolescents, and that the hippocampus and amygdala were significantly less stiff than all other subcortical structures. This study provides the first detailed characterization of adolescent brain viscoelasticity and provides baseline data to be used in studying development and pathophysiology. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Asymmetrical flow field-flow fractionation of white wine chromophoric colloidal matter.
Coelho, Christian; Parot, Jérémie; Gonsior, Michael; Nikolantonaki, Maria; Schmitt-Kopplin, Philippe; Parlanti, Edith; Gougeon, Régis D
2017-04-01
Two analytical separation methods-size-exclusion chromatography and asymmetrical flow field-flow fractionation-were implemented to evaluate the integrity of the colloidal composition of Chardonnay white wine and the impact of pressing and fermentations on the final macromolecular composition. Wine chromophoric colloidal matter, representing UV-visible-absorbing wine macromolecules, was evaluated by optical and structural measurements combined with the description of elution profiles obtained by both separative techniques. The objective of this study was to apply these two types of fractionation on a typical Chardonnay white wine produced in Burgundy and to evaluate how each of them impacted the determination of the macromolecular chromophoric content of wine. UV-visible and fluorescence measurements of collected fractions were successfully applied. An additional proteomic study revealed that grape and microorganism proteins largely impacted the composition of chromophoric colloidal matter of Chardonnay wines. Asymmetrical flow field-flow fractionation appeared to be more reliable and less invasive with respect to the native chemical environment of chromophoric wine macromolecules, and hence is recommended as a tool to fractionate chromophoric colloidal matter in white wines. Graphical Abstract An innovative macromolecular separation method based on Asymmetrical Flow Field-Flow Fractionation was developed to better control colloidal dynamics across Chardonnay white winemaking.
NASA Astrophysics Data System (ADS)
Andrews, Sarah Elizabeth
Part I of this dissertation describes two research projects I undertook to understand how structure influences function in freshwater wetlands. In the first study I tested the hypothesis that wetland structure (created versus natural) would influence function (methane cycling). Created wetlands had reduced rates of potential methane production and potential methane oxidation compared to natural wetlands; this was most likely explained by differences in edaphic factors that characterized each wetland, particularly soil moisture and soil organic matter. In the second study (Andrews et al. 2013), I tested the hypothesis that plant community structure (functional group composition, richness, presence/absence) would influence function (methane and iron cycling) in wetland mesocosms. Plant functional group richness was less important than the type of vegetation present: the presence of perennial vegetation (reeds or tussocks) led to increased rates of potential iron reduction compared to when only annual vegetation was present. Part II of this dissertation describes research I undertook to understand how structure influences function in an undergraduate soil science course. In the first study I tested the hypothesis that course structure (traditional versus studio) would influence function (student performance) in the course. Students in the studio course outperformed students in the traditional course; there was also a decrease in the fail rate. In the second study I looked at students' perspectives on their learning and experiences (function) in the studio course and asked whether students' epistemological development influenced this function. Interviews with students revealed that active learning, the integrated nature of the course, community, and variety of learning and assessment methods helped student learning. Students' epistemological development (interpreted from the Measure of Epistemological Reflection) permeated much of what they spoke about during the interviews. There was also evidence that the studio structure may help promote epistemological growth via "sneaky learning" and an expanded role of peers. The studies in Part I show that differences in structure affect function in freshwater wetland systems and the studies in Part II show that structure affects function in an undergraduate introductory soil science course. Thus, system structure matters whether you are in a wetland or a college classroom.
ERIC Educational Resources Information Center
Jakeman, Rick C.; Henderson, Markesha M.; Howard, Lionel C.
2017-01-01
This article presents a critical reflection on how we, instructors of a graduate-level course in higher education administration, sought to integrate theoretical and subject-matter content and research methodology. Our reflection, guided by autoethnography and teacher reflection, challenged both our assumptions about curriculum design and our…
Clark, Alexandra L; Bangen, Katherine J; Sorg, Scott F; Schiehser, Dawn M; Evangelista, Nicole D; McKenna, Benjamin; Liu, Thomas T; Delano-Wood, Lisa
2017-01-01
Cerebral blood flow (CBF) plays a critical role in the maintenance of neuronal integrity, and CBF alterations have been linked to deleterious white matter changes. Although both CBF and white matter microstructural alterations have been observed within the context of traumatic brain injury (TBI), the degree to which these pathological changes relate to one another and whether this association is altered by time since injury have not been examined. The current study therefore sought to clarify associations between resting CBF and white matter microstructure post-TBI. 37 veterans with history of mild or moderate TBI (mmTBI) underwent neuroimaging and completed health and psychiatric symptom questionnaires. Resting CBF was measured with multiphase pseudocontinuous arterial spin labeling (MPPCASL), and white matter microstructural integrity was measured with diffusion tensor imaging (DTI). The cingulate cortex and cingulum bundle were selected as a priori regions of interest for the ASL and DTI data, respectively, given the known vulnerability of these regions to TBI. Regression analyses controlling for age, sex, and posttraumatic stress disorder (PTSD) symptoms revealed a significant time since injury × resting CBF interaction for the left cingulum ( p < 0.005). Decreased CBF was significantly associated with reduced cingulum fractional anisotropy (FA) in the chronic phase; however, no such association was observed for participants with less remote TBI. Our results showed that reduced CBF was associated with poorer white matter integrity in those who were further removed from their brain injury. Findings provide preliminary evidence of a possible dynamic association between CBF and white matter microstructure that warrants additional consideration within the context of the negative long-term clinical outcomes frequently observed in those with history of TBI. Additional cross-disciplinary studies integrating multiple imaging modalities (e.g., DTI, ASL) and refined neuropsychiatric assessment are needed to better understand the nature, temporal course, and dynamic association between brain changes and clinical outcomes post-injury.
Tran, Linh T; Roos, Annerine; Fouche, Jean-Paul; Koen, Nastassja; Woods, Roger P; Zar, Heather J; Narr, Katherine L; Stein, Dan J; Donald, Kirsten A
2016-01-01
The successful implementation of prevention programs for mother-to-child human immunodeficiency virus (HIV) transmission has dramatically reduced the prevalence of infants infected with HIV while increasing that of HIV-exposed uninfected (HEU) children. Neuropsychological assessments indicate that HEU children may exhibit differences in neurodevelopment compared to unexposed children (HUU). Pathological mechanisms leading to such neurodevelopmental delays are not clear. In this observational birth cohort study we explored the integrity of regional white matter microstructure in HEU infants, shortly after birth. Microstructural changes in white matter associated with prenatal HIV exposure were evaluated in HEU infants (n = 15) and matched controls (n = 22) using diffusion tensor imaging and tract-based spatial statistics. Additionally, diffusion values were extracted and compared for white matter tracts of interest, and associations with clinical outcomes from the Dubowitz neonatal neurobehavioral tool were investigated. Higher fractional anisotropy in the middle cerebellar peduncles of HEU compared to HUU neonates was found after correction for age and gender. Scores on the Dubowitz abnormal neurological signs subscale were positively correlated with FA (r = 0.58, P = 0.038) in the left uncinate fasciculus in HEU infants. This is the first study to present data suggesting that prenatal HIV exposure without infection is associated with altered white matter microstructural integrity in the neonatal period. Longitudinal studies of HEU infants as their brains mature are necessary to understand further the significance of prenatal HIV and antiretroviral treatment exposure on white matter integrity and neurodevelopmental outcomes.
Muñoz Maniega, Susana; Chappell, Francesca M; Valdés Hernández, Maria C; Armitage, Paul A; Makin, Stephen D; Heye, Anna K; Thrippleton, Michael J; Sakka, Eleni; Shuler, Kirsten; Dennis, Martin S; Wardlaw, Joanna M
2017-02-01
White matter hyperintensities accumulate with age and occur in patients with stroke, but their pathogenesis is poorly understood. We measured multiple magnetic resonance imaging biomarkers of tissue integrity in normal-appearing white matter and white matter hyperintensities in patients with mild stroke, to improve understanding of white matter hyperintensities origins. We classified white matter into white matter hyperintensities and normal-appearing white matter and measured fractional anisotropy, mean diffusivity, water content (T1-relaxation time) and blood-brain barrier leakage (signal enhancement slope from dynamic contrast-enhanced magnetic resonance imaging). We studied the effects of age, white matter hyperintensities burden (Fazekas score) and vascular risk factors on each biomarker, in normal-appearing white matter and white matter hyperintensities, and performed receiver-operator characteristic curve analysis. Amongst 204 patients (34.3-90.9 years), all biomarkers differed between normal-appearing white matter and white matter hyperintensities ( P < 0.001). In normal-appearing white matter and white matter hyperintensities, mean diffusivity and T1 increased with age ( P < 0.001), all biomarkers varied with white matter hyperintensities burden ( P < 0.001; P = 0.02 signal enhancement slope), but only signal enhancement slope increased with hypertension ( P = 0.028). Fractional anisotropy showed complex age-white matter hyperintensities-tissue interactions; enhancement slope showed white matter hyperintensities-tissue interactions. Mean diffusivity distinguished white matter hyperintensities from normal-appearing white matter best at all ages. Blood-brain barrier leakage increases with hypertension and white matter hyperintensities burden at all ages in normal-appearing white matter and white matter hyperintensities, whereas water mobility and content increase as tissue damage accrues, suggesting that blood-brain barrier leakage mediates small vessel disease-related brain damage.
Strenziok, Maren; Greenwood, Pamela M.; Santa Cruz, Sophia A.; Thompson, James C.; Parasuraman, Raja
2013-01-01
Prefrontal cortex mediates cognitive control by means of circuitry organized along dorso-ventral and rostro-caudal axes. Along the dorso-ventral axis, ventrolateral PFC controls semantic information, whereas dorsolateral PFC encodes task rules. Along the rostro-caudal axis, anterior prefrontal cortex encodes complex rules and relationships between stimuli, whereas posterior prefrontal cortex encodes simple relationships between stimuli and behavior. Evidence of these gradients of prefrontal cortex organization has been well documented in fMRI studies, but their functional correlates have not been examined with regard to integrity of underlying white matter tracts. We hypothesized that (a) the integrity of specific white matter tracts is related to cognitive functioning in a manner consistent with the dorso-ventral and rostro-caudal organization of the prefrontal cortex, and (b) this would be particularly evident in healthy older adults. We assessed three cognitive processes that recruit the prefrontal cortex and can distinguish white matter tracts along the dorso-ventral and rostro-caudal dimensions –episodic memory, working memory, and reasoning. Correlations between cognition and fractional anisotropy as well as fiber tractography revealed: (a) Episodic memory was related to ventral prefrontal cortex-thalamo-hippocampal fiber integrity; (b) Working memory was related to integrity of corpus callosum body fibers subserving dorsolateral prefrontal cortex; and (c) Reasoning was related to integrity of corpus callosum body fibers subserving rostral and caudal dorsolateral prefrontal cortex. These findings confirm the ventrolateral prefrontal cortex's role in semantic control and the dorsolateral prefrontal cortex's role in rule-based processing, in accordance with the dorso-ventral prefrontal cortex gradient. Reasoning-related rostral and caudal superior frontal white matter may facilitate different levels of task rule complexity. This study is the first to demonstrate dorso-ventral and rostro-caudal prefrontal cortex processing gradients in white matter integrity. PMID:24312550
An Integrated Theory of Everything (TOE)
NASA Astrophysics Data System (ADS)
Colella, Antonio
2014-03-01
An Integrated TOE unifies all known physical phenomena from the Planck cube to the Super Universe (multiverse). Each matter/force particle is represented by a Planck cube string. Any Super Universe object is a volume of contiguous Planck cubes. Super force Planck cube string singularities existed at the start of all universes. An Integrated TOE foundations are twenty independent existing theories and without sacrificing their integrities, are replaced by twenty interrelated amplified theories. Amplifications of Higgs force theory are key to an Integrated TOE and include: 64 supersymmetric Higgs particles; super force condensations to 17 matter particles/associated Higgs forces; spontaneous symmetry breaking is bidirectional; and the sum of 8 permanent Higgs force energies is dark energy. Stellar black hole theory was amplified to include a quark star (matter) with mass, volume, near zero temperature, and maximum entropy. A black hole (energy) has energy, minimal volume (singularity), near infinite temperature, and minimum entropy. Our precursor universe's super supermassive quark star (matter) evaporated to a super supermassive black hole (energy). This transferred total conserved energy/mass and transformed entropy from maximum to minimum. Integrated Theory of Everything Book Video: https://www.youtube.com/watch?v=4a1c9IvdoGY Research Article Video: http://www.youtube.com/watch?v=CD-QoLeVbSY Research Article: http://toncolella.files.wordpress.com/2012/07/m080112.pdf.
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability.
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability.
de Haan, Bianca; Karnath, Hans-Otto
2017-12-01
Nowadays, different anatomical atlases exist for the anatomical interpretation of the results from neuroimaging and lesion analysis studies that investigate the contribution of white matter fiber tract integrity to cognitive (dys)function. A major problem with the use of different atlases in different studies, however, is that the anatomical interpretation of neuroimaging and lesion analysis results might vary as a function of the atlas used. This issue might be particularly prominent in studies that investigate the contribution of white matter fiber tract integrity to cognitive (dys)function. We used a single large-sample dataset of right brain damaged stroke patients with and without cognitive deficit (here: spatial neglect) to systematically compare the influence of three different, widely-used white matter fiber tract atlases (1 histology-based atlas and 2 DTI tractography-based atlases) on conclusions concerning the involvement of white matter fiber tracts in the pathogenesis of cognitive dysfunction. We both calculated the overlap between the statistical lesion analysis results and each long association fiber tract (topological analyses) and performed logistic regressions on the extent of fiber tract damage in each individual for each long association white matter fiber tract (hodological analyses). For the topological analyses, our results suggest that studies that use tractography-based atlases are more likely to conclude that white matter integrity is critical for a cognitive (dys)function than studies that use a histology-based atlas. The DTI tractography-based atlases classified approximately 10 times as many voxels of the statistical map as being located in a long association white matter fiber tract than the histology-based atlas. For hodological analyses on the other hand, we observed that the conclusions concerning the overall importance of long association fiber tract integrity to cognitive function do not necessarily depend on the white matter atlas used, but conclusions may vary as a function of atlas used at the level of individual fiber tracts. Moreover, these analyses revealed that hodological studies that express the individual extent of injury to each fiber tract as a binomial variable are more likely to conclude that white matter integrity is critical for a cognitive function than studies that express the individual extent of injury to each fiber tract as a continuous variable. Copyright © 2017 Elsevier Inc. All rights reserved.
Brain anatomy differences in childhood stuttering.
Chang, Soo-Eun; Erickson, Kirk I; Ambrose, Nicoline G; Hasegawa-Johnson, Mark A; Ludlow, Christy L
2008-02-01
Stuttering is a developmental speech disorder that occurs in 5% of children with spontaneous remission in approximately 70% of cases. Previous imaging studies in adults with persistent stuttering found left white matter deficiencies and reversed right-left asymmetries compared to fluent controls. We hypothesized that similar differences might be present indicating brain development differences in children at risk of stuttering. Optimized voxel-based morphometry compared gray matter volume (GMV) and diffusion tensor imaging measured fractional anisotropy (FA) in white matter tracts in 3 groups: children with persistent stuttering, children recovered from stuttering, and fluent peers. Both the persistent stuttering and recovered groups had reduced GMV from normal in speech-relevant regions: the left inferior frontal gyrus and bilateral temporal regions. Reduced FA was found in the left white matter tracts underlying the motor regions for face and larynx in the persistent stuttering group. Contrary to previous findings in adults who stutter, no increases were found in the right hemisphere speech regions in stuttering or recovered children and no differences in right-left asymmetries. Instead, a risk for childhood stuttering was associated with deficiencies in left gray matter volume while reduced white matter integrity in the left hemisphere speech system was associated with persistent stuttering. Anatomical increases in right hemisphere structures previously found in adults who stutter may have resulted from a lifetime of stuttering. These findings point to the importance of considering the role of neuroplasticity during development when studying persistent forms of developmental disorders in adults.
Brain Anatomy Differences in Childhood Stuttering
Chang, Soo-Eun; Erickson, Kirk I.; Ambrose, Nicoline G.; Hasegawa-Johnson, Mark A.; Ludlow, Christy L.
2009-01-01
Stuttering is a developmental speech disorder that occurs in 5% of children with spontaneous remission in approximately 70% of cases. Previous imaging studies in adults with persistent stuttering found left white matter deficiencies and reversed right-left asymmetries compared to fluent controls. We hypothesized that similar differences might be present indicating brain development differences in children at risk of stuttering. Optimized voxel-based morphometry compared gray matter volume (GMV) and diffusion tensor imaging measured fractional anisotropy (FA) in white matter tracts in 3 groups: children with persistent stuttering, children recovered from stuttering, and fluent peers. Both the persistent stuttering and recovered groups had reduced GMV from normal in speech-relevant regions: the left inferior frontal gyrus, and bilateral temporal regions. Reduced FA was found in the left white matter tracts underlying the motor regions for face and larynx in the persistent stuttering group. Contrary to previous findings in adults who stutter, no increases were found in the right hemisphere speech regions in stuttering or recovered children and no differences in right-left asymmetries. Instead, a risk for childhood stuttering was associated with deficiencies in left gray matter volume while reduced white matter integrity in the left hemisphere speech system was associated with persistent stuttering. Anatomical increases in right hemisphere structures previously found in adults who stutter may have resulted from a life-time of stuttering. These findings point to the importance of considering the role of neuroplasticity during development when studying persistent forms of developmental disorders in adults. PMID:18023366
Farrar, Danielle C; Mian, Asim Z; Budson, Andrew E; Moss, Mark B; Koo, Bang Bon; Killiany, Ronald J
2018-01-01
To describe structural network differences in individuals with mild cognitive impairment (MCI) with high versus low executive abilities, as reflected by measures of white matter connectivity using diffusion tensor imaging (DTI). This was a retrospective, cross-sectional study. Of the 128 participants from the Alzheimer's Disease Neuroimaging Initiative database who had both a DTI scan as well as a diagnosis of MCI, we used an executive function score to classify the top 15 scoring patients as high executive ability, and the bottom-scoring 16 patients as low executive ability. Using a regions-of-interest-based analysis, we constructed networks and calculated graph theory measures on the constructed networks. We used automated tractography in order to compare differences in major white matter tracts. The high executive ability group yielded greater network size, density and clustering coefficient. The high executive ability group reflected greater fractional anisotropy bilaterally in the inferior and superior longitudinal fasciculi. The network measures of the high executive ability group demonstrated greater white matter integrity. This suggests that white matter reserve may confer greater protection of executive abilities. Loss of this reserve may lead to greater impairment in the progression to Alzheimer's disease dementia. • The MCI high executive ability group yielded a larger network. • The MCI high executive ability group had greater FA in numerous tracts. • White matter reserve may confer greater protection of executive abilities. • Loss of executive reserve may lead to greater impairment in AD dementia.
Nicolau, Rudy; Leloup, Maud; Lachassagne, Delphine; Pinault, Emilie; Feuillade-Cathalifaud, Geneviève
2015-05-01
This work is focused on the development of an analytical procedure for the improvement of the Organic Matter structure characterization, particularly the algal matter. Two fractions of algal organic matter from laboratory cultures of algae (Euglena gracilis) and cyanobacteria (Microcystis aeruginosa) were extracted with XAD resins. The fractions were studied using laser desorption ionization (LDI) and Matrix-Assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF). A comparison with the natural organic matter characteristics from commercial humic acids and fulvic acids extracted from Suwannee River was performed. Results show that algal and natural organic matters have unique quasi-polymeric structures. Significant repeating patterns were identified. Different fractions extracted from organic matter with common origin had common structures. Thus, 44, 114 and 169Da peaks separation for fractions from E. gracilis organic matter and 28, 58 and 100Da for M. aeruginosa ones were clearly observed. Using the developed protocol, a structural scheme and organic matter composition were obtained. The range 600-2000Da contained more architectural composition differences than the range 100-600Da, suggesting that organic matter is composed of an assembly of common small molecules. Associated to specific monomers, particular patterns were common to all samples but assembly and resulting structure were unique for each organic matter. Thus, XAD fractionation coupled to mass spectroscopy allowed determining a specific fingerprint for each organic matter. Copyright © 2015 Elsevier B.V. All rights reserved.
Fermi liquid, clustering, and structure factor in dilute warm nuclear matter
NASA Astrophysics Data System (ADS)
Röpke, G.; Voskresensky, D. N.; Kryukov, I. A.; Blaschke, D.
2018-02-01
Properties of nuclear systems at subsaturation densities can be obtained from different approaches. We demonstrate the use of the density autocorrelation function which is related to the isothermal compressibility and, after integration, to the equation of state. This way we connect the Landau Fermi liquid theory well elaborated in nuclear physics with the approaches to dilute nuclear matter describing cluster formation. A quantum statistical approach is presented, based on the cluster decomposition of the polarization function. The fundamental quantity to be calculated is the dynamic structure factor. Comparing with the Landau Fermi liquid theory which is reproduced in lowest approximation, the account of bound state formation and continuum correlations gives the correct low-density result as described by the second virial coefficient and by the mass action law (nuclear statistical equilibrium). Going to higher densities, the inclusion of medium effects is more involved compared with other quantum statistical approaches, but the relation to the Landau Fermi liquid theory gives a promising approach to describe not only thermodynamic but also collective excitations and non-equilibrium properties of nuclear systems in a wide region of the phase diagram.
Wiłkość, Monika; Izdebski, Paweł; Żurawski, Bogdan
2017-01-01
Chemotherapy-induced cognitive deficits in patients with breast cancer, predominantly in attention and verbal memory, have been observed in numerous studies. These neuropsychological findings are corroborated by the results of neuroimaging studies. The aim of this paper was to survey the reports on cerebral structural and functional alterations in women with breast cancer treated with chemotherapy (CTx). First, we discuss the host-related and disease-related mechanisms underlying cognitive impairment after CTx. We point out the direct and indirect neurotoxic effect of cytostatics, which may cause: a damage to neurons or glial cells, changes in neurotransmitter levels, deregulation of the immune system and/or cytokine release. Second, we focus on the results of neuroimaging studies on brain structure and function that revealed decreased: density of grey matter, integrity of white matter and volume of multiple brain regions, as well as their lower activation during cognitive task performance. Finally, we concentrate on compensatory mechanisms, which activate additional brain areas or neural connection to reach the premorbid cognitive efficiency. PMID:28435392
INTEGRAL and Light Dark Matter
NASA Astrophysics Data System (ADS)
Cassé, M.; Fayet, P.; Schanne, S.; Cordier, B.; Paul, J.
2004-10-01
The nature of Dark Matter remains one of the outstanding questions of modern astrophysics. The success of the Cold Dark Matter cosmological model argues strongly in favor of a major component of the dark matter being in the form of elementary particles, not yet discovered. Based on earlier theoretical considerations, a possible link between the recent SPI/INTEGRAL measurement of an intense and extended emission of 511 keV photons (the hallmark of positron annihilation) from the central Galaxy, and this mysterious component of the Universe, has been established advocating the existence of a light dark matter (LDM) particle (at variance with the neutralino, in general considered as very heavy). We show that it can explain the 511 keV emission mapped with SPI/INTEGRAL without overproducing undesirable signals like high energy gamma-rays arising from π? decays, and radio synchrotron photons emitted by high energy positrons circulating in magnetic fields. Combining the annihilation line constraint with the cosmological one (i.e. that the relic LDM energy density reaches about 23% of the density of the Universe), one can restrict the main properties of the light dark matter particle. Its mass should lie between ≈ 1 and 100 MeV, and the required annihilation cross section, velocity dependent, should be significantly larger than for weak interactions, and may be induced by the virtual production of a new light neutral spin 1 boson U. On astrophysical grounds, the best target to validate the LDM proposal seems to be the observation by SPI/INTEGRAL and future gamma ray telescopes of the annihilation line from the Sagittarius dwarf galaxy and the Palomar-13 globular cluster, thought to be dominated by dark matter. Key words: Galaxy center; dark matter; gamma rays. 0Corresponding author: m.casse@cea.fr 3 Institut d'Astrophysique de Paris, 98 bis Boulevard Arago, 75014 Paris, France 4 Fédération de Recherche Astroparticule et Cosmologie, Coll`ege de France, 11 Place Marcellin Berthelot, 75231 Paris, France
Coughlin, Jennifer M; Wang, Yuchuan; Minn, Il; Bienko, Nicholas; Ambinder, Emily B; Xu, Xin; Peters, Matthew E; Dougherty, John W; Vranesic, Melin; Koo, Soo Min; Ahn, Hye-Hyun; Lee, Merton; Cottrell, Chris; Sair, Haris I; Sawa, Akira; Munro, Cynthia A; Nowinski, Christopher J; Dannals, Robert F; Lyketsos, Constantine G; Kassiou, Michael; Smith, Gwenn; Caffo, Brian; Mori, Susumu; Guilarte, Tomas R; Pomper, Martin G
2017-01-01
Microglia, the resident immune cells of the central nervous system, play an important role in the brain's response to injury and neurodegenerative processes. It has been proposed that prolonged microglial activation occurs after single and repeated traumatic brain injury, possibly through sports-related concussive and subconcussive injuries. Limited in vivo brain imaging studies months to years after individuals experience a single moderate to severe traumatic brain injury suggest widespread persistent microglial activation, but there has been little study of persistent glial cell activity in brains of athletes with sports-related traumatic brain injury. To measure translocator protein 18 kDa (TSPO), a marker of activated glial cell response, in a cohort of National Football League (NFL) players and control participants, and to report measures of white matter integrity. This cross-sectional, case-control study included young active (n = 4) or former (n = 10) NFL players recruited from across the United States, and 16 age-, sex-, highest educational level-, and body mass index-matched control participants. This study was conducted at an academic research institution in Baltimore, Maryland, from January 29, 2015, to February 18, 2016. Positron emission tomography-based regional measures of TSPO using [11C]DPA-713, diffusion tensor imaging measures of regional white matter integrity, regional volumes on structural magnetic resonance imaging, and neuropsychological performance. The mean (SD) ages of the 14 NFL participants and 16 control participants were 31.3 (6.1) years and 27.6 (4.9) years, respectively. Players reported a mean (SD) of 7.0 (6.4) years (range, 1-21 years) since the last self-reported concussion. Using [11C]DPA-713 positron emission tomographic data from 12 active or former NFL players and 11 matched control participants, the NFL players showed higher total distribution volume in 8 of the 12 brain regions examined (P < .004). We also observed limited change in white matter fractional anisotropy and mean diffusivity in 13 players compared with 15 control participants. In contrast, these young players did not differ from control participants in regional brain volumes or in neuropsychological performance. The results suggest that localized brain injury and repair, indicated by higher TSPO signal and white matter changes, may be associated with NFL play. Further study is needed to confirm these findings and to determine whether TSPO signal and white matter changes in young NFL athletes are related to later onset of neuropsychiatric symptoms.
Salami, Alireza; Eriksson, Johan; Nilsson, Lars-Göran; Nyberg, Lars
2012-03-01
Aging is associated with declining cognitive performance as well as structural changes in brain gray and white matter (WM). The WM deterioration contributes to a disconnection among distributed brain networks and may thus mediate age-related cognitive decline. The present diffusion tensor imaging (DTI) study investigated age-related differences in WM microstructure and their relation to cognition (episodic memory, visuospatial processing, fluency, and speed) in a large group of healthy subjects (n=287) covering 6 decades of the human life span. Age related decreases in fractional anisotropy (FA) and increases in mean diffusivity (MD) were observed across the entire WM skeleton as well as in specific WM tracts, supporting the WM degeneration hypothesis. The anterior section of the corpus callosum was more susceptible to aging compared to the posterior section, lending support to the anterior-posterior gradient of WM integrity in the corpus callosum. Finally, and of critical interest, WM integrity differences were found to mediate age-related reductions in processing speed but no significant mediation was found for episodic memory, visuospatial ability, or fluency. These findings suggest that compromised WM integrity is not a major contributing factor to declining cognitive performance in normal aging. This article is part of a Special Issue entitled: Imaging Brain Aging and Neurodegenerative disease. Copyright © 2011 Elsevier B.V. All rights reserved.
Svatkova, Alena; Mandl, René C.W.; Scheewe, Thomas W.; Cahn, Wiepke; Kahn, René S.; Hulshoff Pol, Hilleke E.
2015-01-01
It has been shown that learning a new skill leads to structural changes in the brain. However, it is unclear whether it is the acquisition or continuous practicing of the skill that causes this effect and whether brain connectivity of patients with schizophrenia can benefit from such practice. We examined the effect of 6 months exercise on a stationary bicycle on the brain in patients with schizophrenia and healthy controls. Biking is an endemic skill in the Netherlands and thus offers an ideal situation to disentangle the effects of learning vs practice. The 33 participating patients with schizophrenia and 48 healthy individuals were assigned to either one of two conditions, ie, physical exercise or life-as-usual, balanced for diagnosis. Diffusion tensor imaging brain scans were made prior to and after intervention. We demonstrate that irrespective of diagnosis regular physical exercise of an overlearned skill, such as bicycling, significantly increases the integrity, especially of motor functioning related, white matter fiber tracts whereas life-as-usual leads to a decrease in fiber integrity. Our findings imply that exercise of an overlearned physical skill improves brain connectivity in patients and healthy individuals. This has important implications for understanding the effect of fitness programs on the brain in both healthy subjects and patients with schizophrenia. Moreover, the outcome may even apply to the nonphysical realm. PMID:25829377
Gurung, R; Prata, D P
2015-01-01
The powerful genome-wide association studies (GWAS) revealed common mutations that increase susceptibility for schizophrenia (SZ) and bipolar disorder (BD), but the vast majority were not known to be functional or associated with these illnesses. To help fill this gap, their impact on human brain structure and function has been examined. We systematically discuss this output to facilitate its timely integration in the psychosis research field; and encourage reflection for future research. Irrespective of imaging modality, studies addressing the effect of SZ/BD GWAS risk genes (ANK3, CACNA1C, MHC, TCF4, NRGN, DGKH, PBRM1, NCAN and ZNF804A) were included. Most GWAS risk variations were reported to affect neuroimaging phenotypes implicated in SZ/BD: white-matter integrity (ANK3 and ZNF804A), volume (CACNA1C and ZNF804A) and density (ZNF804A); grey-matter (CACNA1C, NRGN, TCF4 and ZNF804A) and ventricular (TCF4) volume; cortical folding (NCAN) and thickness (ZNF804A); regional activation during executive tasks (ANK3, CACNA1C, DGKH, NRGN and ZNF804A) and functional connectivity during executive tasks (CACNA1C and ZNF804A), facial affect recognition (CACNA1C and ZNF804A) and theory-of-mind (ZNF804A); but inconsistencies and non-replications also exist. Further efforts such as standardizing reporting and exploring complementary designs, are warranted to test the reproducibility of these early findings.
Brain Structural Changes in Obstructive Sleep Apnea
Macey, Paul M.; Kumar, Rajesh; Woo, Mary A.; Valladares, Edwin M.; Yan-Go, Frisca L.; Harper, Ronald M.
2008-01-01
Study Objectives: Determine whether obstructive sleep apnea (OSA) subjects show indications of axonal injury. Design: We assessed fiber integrity in OSA and control subjects with diffusion tensor imaging (DTI). We acquired four whole-brain DTI series from each subject. The four series were realigned, and the diffusion tensor calculated at each voxel. Fractional anisotropy (FA), a measure of fiber integrity, was derived from the diffusion tensor, resulting in a whole brain FA “map.” The FA maps were spatially normalized, smoothed, and compared using voxel-based statistics to determine differences between OSA and control groups, with age as a covariate (P < 0.05, corrected for multiple comparisons). Setting: University medical center. Subjects: We studied 41 patients with untreated OSA (mean age ± SD: 46.3 ± 8.9 years; female/male: 7/34) with apnea-hypopnea index 15 to 101 (mean ± SD: 35.7 ± 18.1 events/hour), and 69 control subjects (mean age ± SD: 47.5 ± 8.79 years; female/male: 25/44). Measurements and Results: Multiple regions of lower FA appeared within white matter in the OSA group, and included fibers of the anterior corpus callosum, anterior and posterior cingulate cortex and cingulum bundle, right column of the fornix, portions of the frontal, ventral prefrontal, parietal and insular cortices, bilateral internal capsule, left cerebral peduncle, middle cerebellar peduncle and corticospinal tract, and deep cerebellar nuclei. Conclusions: White matter is extensively affected in OSA patients; the alterations include axons linking major structures within the limbic system, pons, frontal, temporal and parietal cortices, and projections to and from the cerebellum. Citation: Macey PM; Kumar R; Woo MA; Valladares EM; Yan-Go FL; Harper RM. Brain structural changes in obstructive sleep apnea. SLEEP 2008;31(7):967-977. PMID:18652092
The white matter structural network underlying human tool use and tool understanding.
Bi, Yanchao; Han, Zaizhu; Zhong, Suyu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Fang, Yuxing; He, Yong; Caramazza, Alfonso
2015-04-29
The ability to recognize, create, and use complex tools is a milestone in human evolution. Widely distributed brain regions in parietal, frontal, and temporal cortices have been implicated in using and understanding tools, but the roles of their anatomical connections in supporting tool use and tool conceptual behaviors are unclear. Using deterministic fiber tracking in healthy participants, we first examined how 14 cortical regions that are consistently activated by tool processing are connected by white matter (WM) tracts. The relationship between the integrity of each of the 33 obtained tracts and tool processing deficits across 86 brain-damaged patients was investigated. WM tract integrity was measured with both lesion percentage (structural imaging) and mean fractional anisotropy (FA) values (diffusion imaging). Behavioral abilities were assessed by a tool use task, a range of conceptual tasks, and control tasks. We found that three left hemisphere tracts connecting frontoparietal and intrafrontal areas overlapping with left superior longitudinal fasciculus are crucial for tool use such that larger lesion and lower mean FA values on these tracts were associated with more severe tool use deficits. These tracts and five additional left hemisphere tracts connecting frontal and temporal/parietal regions, mainly overlapping with left superior longitudinal fasciculus, inferior frontooccipital fasciculus, uncinate fasciculus, and anterior thalamic radiation, are crucial for tool concept processing. Largely consistent results were also obtained using voxel-based symptom mapping analyses. Our results revealed the WM structural networks that support the use and conceptual understanding of tools, providing evidence for the anatomical skeleton of the tool knowledge network. Copyright © 2015 the authors 0270-6474/15/356822-14$15.00/0.
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A.; Dean, Douglas; Little, Deborah; Deoni, Sean C
2013-01-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. While DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. PMID:24080382
Bagga, Deepika; Sharma, Aakansha; Kumari, Archana; Kaur, Prabhjot; Bhattacharya, Debajyoti; Garg, Mohan Lal; Khushu, Subash; Singh, Namita
2014-02-01
Chronic alcohol abuse is characterized by impaired cognitive abilities with a more severe deficit in visual than in verbal functions. Neuropathologically, it is associated with widespread brain structural compromise marked by gray matter shrinkage, ventricular enlargement, and white matter degradation. The present study sought to increase current understanding of the impairment of visual processing abilities in alcohol-dependent subjects, and its correlation with white matter microstructural alterations, using diffusion tensor imaging (DTI). To that end, a DTI study was carried out on 35 alcohol-dependent subjects and 30 healthy male control subjects. Neuropsychological tests were assessed for visual processing skills and deficits were reported as raw dysfunction scores (rDyS). Reduced FA (fractional anisotropy) and increased MD (mean diffusivity) were observed bilaterally in inferior and superior fronto-occipital fasciculus (FOF) fiber bundles. A significant inverse correlation in rDyS and FA values was observed in these fiber tracts whereas a positive correlation of these scores was found with the MD values. Our results suggest that FOF fiber bundles linking the frontal lobe to occipital lobe might be related to visual processing skills. This is the first report of an alteration of the white matter microstructure of FOF fiber bundles that might have functional consequences for visual processing in alcohol-dependent subjects who exhibit no neurological complications. Copyright © 2014 Elsevier Inc. All rights reserved.
Improving communication among nurses and patients.
Unluturk, Mehmet S; Ozcanhan, Mehmet H; Dalkilic, Gokhan
2015-07-01
Patients use nurse call systems to signal nurses for medical help. Traditional push button-flashing lamp call systems are not integrated with other hospital automation systems. Therefore, nurse response time becomes a matter of personal discretion. The improvement obtained by integrating a pager system into the nurse call systems does not increase care efficiency, because unnecessary visits are still not eliminated. To obtain an immediate response and a purposeful visit by a nurse; regardless of the location of nurse in hospital, traditional systems have to be improved by intelligent telephone system integration. The results of the developed Nurse Call System Software (NCSS), the Wireless Phone System Software (WPSS), the Location System Software (LSS) and the communication protocol are provided, together with detailed XML message structures. The benefits of the proposed system are also discussed and the direction of future work is presented. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Network specific change in white matter integrity in mesial temporal lobe epilepsy.
Imamura, Hisaji; Matsumoto, Riki; Takaya, Shigetoshi; Nakagawa, Tomokazu; Shimotake, Akihiro; Kikuchi, Takayuki; Sawamoto, Nobukatsu; Kunieda, Takeharu; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio
2016-02-01
To identify the specific change of white matter integrity that occurs in the brain network related to epileptic activity in patients with mesial temporal lobe epilepsy (MTLE). We recruited 18 patients with MTLE and 18 healthy subjects. In MTLE patients, the remote functional-deficit zone was delineated using fluorodeoxyglucose positron emission tomography as an extratemporal region showing glucose hypometabolism. Using diffusion magnetic resonance imaging tractography, we defined a seizure propagation tract (PT) as a white matter pathway that connects the focus with a remote functional deficit zone. We also used the corticospinal tract (CST) and inferior longitudinal fasciculus (ILF) as control tracts in the hemisphere ipsilateral to the focus. Fractional anisotropy (FA), mean diffusivity (MD), and volume of the tracts were compared among PT, CST, and ILF. Tractographic analysis identified the uncinate fasciculus, arcuate fasciculus, and fornix as PTs. A decrease in FA was found in MTLE patients compared with healthy subjects in all tracts, but PTs showed a more significant decrease in FA than did the two control tracts. Although the change in MD was also found in MTLE patients compared with healthy controls, a tract-specific change was not observed. Although white-matter damage was observed in all candidate tracts examined, the integrity of white matter was most significantly decreased in PTs in MTLE. The change in white matter integrity occurs specifically in the pathways that connect the focus and remote functional deficit zones in patients with MTLE, i.e., the pathways that are assume to be associated with seizure propagation. Copyright © 2015 Elsevier B.V. All rights reserved.
Neuropsychiatry and White Matter Microstructure in Huntington's Disease.
Gregory, Sarah; Scahill, Rachael I; Seunarine, Kiran K; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A C; Langbehn, Douglas R; Long, Jeffrey D; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J; Craufurd, David
2015-01-01
Neuropsychiatric symptoms in Huntington's disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation.
Verbal Memory in Parkinson’s Disease: A Combined DTI and fMRI Study
Lucas-Jiménez, Olaia; Díez-Cirarda, María; Ojeda, Natalia; Peña, Javier; Cabrera-Zubizarreta, Alberto; Ibarretxe-Bilbao, Naroa
2015-01-01
Background: While significant progress has been made to determine the functional role of specific gray matter areas underlying verbal memory in Parkinson’s disease (PD), very little is known about the relationship between these regions and their underlying white matter structures. Objective: The objectives of this study were (1) to investigate verbal memory, fractional anisotropy and brain activation differences between PD patients and healthy controls (HC), (2) to explore the neuroanatomical and neurofunctional correlates of verbal memory in PD, and (3) to investigate the relationship between these neuroanatomical and neurofunctional verbal memory correlates in PD. Methods: Functional magnetic resonance imaging (fMRI) while performing a verbal memory paradigm and diffusion tensor imaging data (DTI), were acquired in 37 PD patients and 15 age-, sex-, and education-matched HC. Results: PD patients showed verbal recognition memory impairment, lower fractional anisotropy in the anterior cingulate tract, and lower brain activation in the inferior orbitofrontal cortex compared to HC. Brain activation in the inferior orbitofrontal cortex correlated significantly with verbal recognition memory impairment in PD patients. In addition, a relationship between brain activation in the inferior orbitofrontal cortex and fractional anisotropy of the uncinate fasciculus was found in PD. Conclusions: These results reveal that deficits in verbal memory in PD are accompanied by functional brain activation changes, but also have specific structural correlates related to white matter microstructural integrity. PMID:27070003
Grey-matter network disintegration as predictor of cognitive and motor function with aging.
Koini, Marisa; Duering, Marco; Gesierich, Benno G; Rombouts, Serge A R B; Ropele, Stefan; Wagner, Fabian; Enzinger, Christian; Schmidt, Reinhold
2018-06-01
Loss of grey-matter volume with advancing age affects the entire cortex. It has been suggested that atrophy occurs in a network-dependent manner with advancing age rather than in independent brain areas. The relationship between networks of structural covariance (SCN) disintegration and cognitive functioning during normal aging is not fully explored. We, therefore, aimed to (1) identify networks that lose GM integrity with advancing age, (2) investigate if age-related impairment of integrity in GM networks associates with cognitive function and decreasing fine motor skills (FMS), and (3) examine if GM disintegration is a mediator between age and cognition and FMS. T1-weighted scans of n = 257 participants (age range: 20-87) were used to identify GM networks using independent component analysis. Random forest analysis was implemented to examine the importance of network integrity as predictors of memory, executive functions, and FMS. The associations between GM disintegration, age and cognitive performance, and FMS were assessed using mediation analyses. Advancing age was associated with decreasing cognitive performance and FMS. Fourteen of 20 GM networks showed integrity changes with advancing age. Next to age and education, eight networks (fronto-parietal, fronto-occipital, temporal, limbic, secondary somatosensory, cuneal, sensorimotor network, and a cerebellar network) showed an association with cognition and FMS (up to 15.08%). GM networks partially mediated the effect between age and cognition and age and FMS. We confirm an age-related decline in cognitive functioning and FMS in non-demented community-dwelling subjects and showed that aging selectively affects the integrity of GM networks. The negative effect of age on cognition and FMS is associated with distinct GM networks and is partly mediated by their disintegration.
ERIC Educational Resources Information Center
Govender, Nadaraj
2015-01-01
This case study explored the development of two pre-service teachers' subject matter knowledge (SMK) of electromagnetism while integrating the use of concept maps (CM) and collaborative learning (CL) strategies. The study aimed at capturing how these pre-service teachers' SMK in electromagnetism was enhanced after having been taught SMK in a…
Sex-specific association between infant diet and white matter integrity in 8-y-old children
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to evaluate brain white matter integrity in 8-year-old children who had predominant breast milk feeding or formula feeding as infants. Fifty-six healthy children were included in this study, including 22 breast-fed (BF, 12 females, 10 males) and 34 formula-fed (FF, 18 f...
White-matter microstructure and language lateralization in left-handers: a whole-brain MRI analysis.
Perlaki, Gabor; Horvath, Reka; Orsi, Gergely; Aradi, Mihaly; Auer, Tibor; Varga, Eszter; Kantor, Gyongyi; Altbäcker, Anna; John, Flora; Doczi, Tamas; Komoly, Samuel; Kovacs, Norbert; Schwarcz, Attila; Janszky, Jozsef
2013-08-01
Most people are left-hemisphere dominant for language. However the neuroanatomy of language lateralization is not fully understood. By combining functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), we studied whether language lateralization is associated with cerebral white-matter (WM) microstructure. Sixteen healthy, left-handed women aged 20-25 were included in the study. Left-handers were targeted in order to increase the chances of involving subjects with atypical language lateralization. Language lateralization was determined by fMRI using a verbal fluency paradigm. Tract-based spatial statistics analysis of DTI data was applied to test for WM microstructural correlates of language lateralization across the whole brain. Fractional anisotropy and mean diffusivity were used as indicators of WM microstructural organization. Right-hemispheric language dominance was associated with reduced microstructural integrity of the left superior longitudinal fasciculus and left-sided parietal lobe WM. In left-handed women, reduced integrity of the left-sided language related tracts may be closely linked to the development of right hemispheric language dominance. Our results may offer new insights into language lateralization and structure-function relationships in human language system. Copyright © 2013 Elsevier Inc. All rights reserved.
Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory
Das, T. K.; Abeyasinghe, P. M.; Crone, J. S.; Sosnowski, A.; Laureys, S.; Owen, A. M.; Soddu, A.
2014-01-01
With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772
Taylor, J M; Law, N
1998-10-30
We investigate the importance of the assumed covariance structure for longitudinal modelling of CD4 counts. We examine how individual predictions of future CD4 counts are affected by the covariance structure. We consider four covariance structures: one based on an integrated Ornstein-Uhlenbeck stochastic process; one based on Brownian motion, and two derived from standard linear and quadratic random-effects models. Using data from the Multicenter AIDS Cohort Study and from a simulation study, we show that there is a noticeable deterioration in the coverage rate of confidence intervals if we assume the wrong covariance. There is also a loss in efficiency. The quadratic random-effects model is found to be the best in terms of correctly calibrated prediction intervals, but is substantially less efficient than the others. Incorrectly specifying the covariance structure as linear random effects gives too narrow prediction intervals with poor coverage rates. Fitting using the model based on the integrated Ornstein-Uhlenbeck stochastic process is the preferred one of the four considered because of its efficiency and robustness properties. We also use the difference between the future predicted and observed CD4 counts to assess an appropriate transformation of CD4 counts; a fourth root, cube root and square root all appear reasonable choices.
ERIC Educational Resources Information Center
Yakmaci-Guzel, Buket; Adadan, Emine
2013-01-01
The purpose of this study was to examine the changes in 19 preservice chemistry teachers' understandings of the structure of matter, including the aspects of the physical states of matter, the physical composition of matter, and the chemical composition of matter, before, immediately after, and months after they received a specific instruction.…
Mishra, Arima
2014-01-01
A comprehensive and integrated approach to strengthen primary health care has been the major thrust of the National Rural Health Mission (NRHM) that was launched in 2005 to revamp India's rural public health system. Though the logic of horizontal and integrated health care to strengthen health systems has long been acknowledged at policy level, empirical evidence on how such integration operates is rare. Based on recent (2011-2012) ethnographic fieldwork in Odisha, India, this article discusses community health workers' experiences in integrated service delivery through village-level outreach sessions within the NRHM. It shows that for health workers, the notion of integration goes well beyond a technical lens of mixing different health services. Crucially, they perceive 'teamwork' and 'building trust with the community' (beyond trust in health services) to be critical components of their practice. However, the comprehensive NRHM primary health care ideology - which the health workers espouse - is in constant tension with the exigencies of narrow indicators of health system performance. Our ethnography shows how monitoring mechanisms, the institutionalised privileging of statistical evidence over field-based knowledge and the highly hierarchical health bureaucratic structure that rests on top-down communications mitigate efforts towards sustainable health system integration.
Enlightening Students about Dark Matter
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen; Barr, Alex; Eidelman, Dave
2018-01-01
Dark matter pervades the universe. While it is invisible to us, we can detect its influence on matter we can see. To illuminate this concept, we have created an interactive javascript program illustrating predictions made by six different models for dark matter distributions in galaxies. Students are able to match the predicted data with actual experimental results, drawn from several astronomy papers discussing dark matter’s impact on galactic rotation curves. Programming each new model requires integration of density equations with parameters determined by nonlinear curve-fitting using MATLAB scripts we developed. Using our javascript simulation, students can determine the most plausible dark matter models as well as the average percentage of dark matter lurking in galaxies, areas where the scientific community is still continuing to research. In that light, we strive to use the most up-to-date and accepted concepts: two of our dark matter models are the pseudo-isothermal halo and Navarro-Frenk-White, and we integrate out to each galaxy’s virial radius. Currently, our simulation includes NGC3198, NGC2403, and our own Milky Way.
White Matter Integrity Deficit Associated with Betel Quid Dependence.
Yuan, Fulai; Zhu, Xueling; Kong, Lingyu; Shen, Huaizhen; Liao, Weihua; Jiang, Canhua
2017-01-01
Betel quid (BQ) is a commonly consumed psychoactive substance, which has been regarded as a human carcinogen. Long-term BQ chewing may cause Diagnostic and Statistical Manual of Mental Disorders-IV dependence symptoms, which can lead to decreased cognitive functions, such as attention and inhibition control. Although betel quid dependence (BQD) individuals have been reported with altered brain structure and function, there is little evidence showing white matter microstructure alternation in BQD individuals. The present study aimed to investigate altered white matter microstructure in BQD individuals using diffusion tensor imaging. Tract-based spatial statistics was used to analyze the data. Compared with healthy controls, BQD individuals exhibited higher mean diffusivity (MD) in anterior thalamic radiation (ATR). Further analysis revealed that the ATR in BQD individuals showed less fractional anisotropy (FA) than that in healthy controls. Correlation analysis showed that both the increase of MD and reduction of FA in BQD individuals were associated with severity of BQ dependence. These results suggested that BQD would disrupt the balance between prefrontal cortex and subcortical areas, causing declined inhibition control.
Accelerated White Matter Aging in Schizophrenia: Role of White Matter Blood Perfusion
Chiappelli, Joshua; McMahon, Robert; Muellerklein, Florian; Wijtenburg, S. Andrea; White, Michael G.; Rowland, Laura M.; Hong, L. Elliot
2014-01-01
Elevated rate of age-related decline in white matter integrity, indexed by fractional anisotropy (FA) from diffusion tensor imaging, was reported in patients with schizophrenia. Its etiology is unknown. We hypothesized that a decline of blood perfusion to the white matter may underlie the accelerated age-related reduction in FA in schizophrenia. Resting white matter perfusion and FA were collected using pseudo-continuous arterial spin labeling and high-angular-resolution diffusion tensor imaging, respectively, in 50 schizophrenia patients and 70 controls (age=18-63 years). Main outcome measures were the diagnosis-by-age interaction on whole-brain white matter perfusion, and FA. Significant age-related decline in brain white matter perfusion and FA were present in both groups. Age-by-diagnosis interaction was significant for FA (p<0.001) but not white matter perfusion. Age-by-diagnosis interaction for FA values remained significant even after accounting for age-related decline in perfusion. Therefore, we replicated the finding of an increased rate of age-related white matter FA decline in schizophrenia, and observed a significant age-related decline in white matter blood perfusion, although the latter did not contribute to the accelerated age-related decline in FA. The results suggest that factors other than reduced perfusion account for the accelerated age-related decline in white matter integrity in schizophrenia. PMID:24680326
NASA Astrophysics Data System (ADS)
Chouvelon, T.; Schaal, G.; Grall, J.; Pernet, F.; Perdriau, M.; A-Pernet, E. J.; Le Bris, H.
2015-11-01
Anthropogenic activities and land-based inputs into the sea may influence the trophic structure and functioning of coastal and continental shelf ecosystems, despite the numerous opportunities and services the latter offer to humans and wildlife. In addition, hydrological structures and physical dynamics potentially influence the sources of organic matter (e.g., terrestrial versus marine, or fresh material versus detrital material) entering marine food webs. Understanding the significance of the processes that influence marine food webs and ecosystems (e.g., terrestrial inputs, physical dynamics) is crucially important because trophic dynamics are a vital part of ecosystem integrity. This can be achieved by identifying organic matter sources that enter food webs along inshore-offshore transects. We hypothesised that regional hydrological structures over wide continental shelves directly control the benthic trophic functioning across the shelf. We investigated this issue along two transects in the northern ecosystem of the Bay of Biscay (north-eastern Atlantic). Carbon and nitrogen stable isotope analysis (SIA) and fatty acid analysis (FAA) were conducted on different complementary ecosystem compartments that include suspended particulate organic matter (POM), sedimentary organic matter (SOM), and benthic consumers such as bivalves, large crustaceans and demersal fish. Samples were collected from inshore shallow waters (at ∼1 m in depth) to more than 200 m in depth on the offshore shelf break. Results indicated strong discrepancies in stable isotope (SI) and fatty acid (FA) compositions in the sampled compartments between inshore and offshore areas, although nitrogen SI (δ15N) and FA trends were similar along both transects. Offshore the influence of a permanently stratified area (described previously as a ;cold pool;) was evident in both transects. The influence of this hydrological structure on benthic trophic functioning (i.e., on the food sources available for consumers) was especially apparent across the northern transect, due to unusual carbon isotope compositions (δ13C) in the compartments. At stations under the cold pool, SI and FA organism compositions indicated benthic trophic functioning based on a microbial food web, including a significant contribution of heterotrophic planktonic organisms and/or of SOM, notably in stations under the cold pool. On the contrary, inshore and shelf break areas were characterised by a microalgae-based food web (at least in part for the shelf break area, due to slope current and upwelling that can favour fresh primary production sinking on site). SIA and FAA were relevant and complementary tools, and consumers better medium- to long-term system integrators than POM samples, for depicting the trophic functioning and dynamics along inshore-offshore transects over continental shelves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwasa, Takeshi, E-mail: tiwasa@mail.sci.hokudai.ac.jp; Takenaka, Masato; Taketsugu, Tetsuya
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems.more » The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.« less
Iwasa, Takeshi; Takenaka, Masato; Taketsugu, Tetsuya
2016-03-28
A theoretical method to compute infrared absorption spectra when a molecule is interacting with an arbitrary nonuniform electric field such as near-fields is developed and numerically applied to simple model systems. The method is based on the multipolar Hamiltonian where the light-matter interaction is described by a spatial integral of the inner product of the molecular polarization and applied electric field. The computation scheme is developed under the harmonic approximation for the molecular vibrations and the framework of modern electronic structure calculations such as the density functional theory. Infrared reflection absorption and near-field infrared absorption are considered as model systems. The obtained IR spectra successfully reflect the spatial structure of the applied electric field and corresponding vibrational modes, demonstrating applicability of the present method to analyze modern nanovibrational spectroscopy using near-fields. The present method can use arbitral electric fields and thus can integrate two fields such as computational chemistry and electromagnetics.
Narcissism is associated with weakened frontostriatal connectivity: a DTI study.
Chester, David S; Lynam, Donald R; Powell, David K; DeWall, C Nathan
2016-07-01
Narcissism is characterized by the search for affirmation and admiration from others. Might this motivation to find external sources of acclaim exist to compensate for neurostructural deficits that link the self with reward? Greater structural connectivity between brain areas that process self-relevant stimuli (i.e. the medial prefrontal cortex) and reward (i.e. the ventral striatum) is associated with fundamentally positive self-views. We predicted that narcissism would be associated with less integrity of this frontostriatal pathway. We used diffusion tensor imaging to assess the frontostriatal structural connectivity among 50 healthy undergraduates (32 females, 18 males) who also completed a measure of grandiose narcissism. White matter integrity in the frontostriatal pathway was negatively associated with narcissism. Our findings, while purely correlational, suggest that narcissism arises, in part, from a neural disconnect between the self and reward. The exhibitionism and immodesty of narcissists may then be a regulatory strategy to compensate for this neural deficit. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Semiconductor activated terahertz metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Hou-Tong
Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less
Semiconductor activated terahertz metamaterials
Chen, Hou-Tong
2014-08-01
Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less
Lopez, Katherine C; Leary, Jacob B; Pham, Dzung L; Chou, Yi-Yu; Dsurney, John; Chan, Leighton
2017-01-01
Post-traumatic stress disorder (PTSD) is commonly associated with mild traumatic brain injury (mTBI). To better understand their relationship, we examined neuroanatomical structures and neuropsychological performance in a sample of individuals with mTBI, with and without PTSD symptoms. Thirty-nine subjects with mTBI were dichotomized into those with (n = 12) and without (n = 27) significant PTSD symptoms based on scores on the PTSD Checklist. Using a region-of-interest approach, fronto-temporal volumes, fiber bundles obtained by diffusion tensor imaging, and neuropsychological scores were compared between the two groups. After controlling for total intracranial volume and age, subjects with mTBI and PTSD symptoms exhibited volumetric differences in the entorhinal cortex, an area associated with memory networks, relative to mTBI-only patients (F = 4.28; p = 0.046). Additionally, subjects with PTSD symptoms showed reduced white matter integrity in the right cingulum bundle (axial diffusivity, F = 6.04; p = 0.020). Accompanying these structural alterations, mTBI and PTSD subjects also showed impaired performance in encoding (F = 5.98; p = 0.019) and retrieval (F = 7.32; p = 0.010) phases of list learning and in tests of processing speed (Wechsler Adult Intelligence Scale Processing Speed Index, F = 12.23; p = 0.001; Trail Making Test A, F = 5.56; p = 0.024). Increased volume and white matter disruptions in these areas, commonly associated with memory functions, may be related to functional disturbances during cognitively demanding tasks. Differences in brain volume and white matter integrity between mTBI subjects and those with mTBI and co-morbid PTSD symptoms point to neuroanatomical differences that may underlie poorer recovery of mTBI subjects who experience PTSD symptoms. These findings support theoretical models of PTSD and its relationship to learning deficits.
This dataset is generated to both qualitatively and quantitatively examine the interactions between nano-TiO2 and natural organic matter (NOM). This integrated dataset assemble all data generated in this project through a series of experiments. This dataset is associated with the following publication:Li , S., H. Ma, L. Wallis, M. Etterson , B. Riley , D. Hoff , and S. Diamond. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles. SCIENCE OF THE TOTAL ENVIRONMENT. Elsevier BV, AMSTERDAM, NETHERLANDS, 542: 324-333, (2016).
Chirumamilla, Venkata Chaitanya; Koirala, Nabin; Paktas, Burcu; Deuschl, Günther; Zeuner, Kirsten E.; Groppa, Sergiu
2016-01-01
Objective Benign Essential Blepharospasm (BEB) and hemifacial spasm (HFS) are the most common hyperkinetic movement disorders of facial muscles. Although similar in clinical presentation different pathophysiological mechanisms are assumed. Botulinum Neurotoxin (BoNT) is a standard evidence-based treatment for both conditions. In this study we aimed to assess grey matter microstructural differences between these two groups of patients and compared them with healthy controls. In patients we furthermore tracked the longitudinal morphometric changes associated with BoNT therapy. We hypothesized microstructural differences between the groups at the time point of maximum symptoms representation and distinct longitudinal grey matter dynamics with symptom improvement. Methods Cross-sectional and longitudinal analyses of 3T 3D-T1 MRI images from BEB, HFS patients prior to and one month after BoNT therapy and from a group of age and sex matched healthy controls. Cortical thickness as extracted from Freesurfer was assessed as parameter of microstructural integrity. Results BoNT therapy markedly improved motor symptoms in patients with BEB and HFS. Significant differences of grey matter integrity have been found between the two patients groups. The BEB group showed lower cortical thickness at baseline in the frontal-rostral, supramarginal and temporal regions compared to patients with HFS. In this group BoNT treatment was associated with a cortical thinning in the primary motor cortex and the pre-supplementary motor area (pre-SMA). Contrary patients with HFS showed no longitudinal CT changes. A decreased cortical thickness was attested bilaterally in the temporal poles and in the right superior frontal region in BEB patients in comparison to HC. Patients in the HFS group presented a decreased CT in the left lingual gyrus and temporal pole. Conclusions Although patients with BEB and HFS present clinically with involuntary movements of facial muscles, they exhibited differences in cortical thickness. While BoNT therapy was equally effective in both groups, widespread changes of cortical morphology occurred only in BEB patients. We demonstrated specific disease- and therapy-dependent structural changes induced by BoNT in the studied hyperkinetic conditions. PMID:27992533
Is the vast polar structure of dwarf galaxies a serious problem for Λ cold dark matter?
NASA Astrophysics Data System (ADS)
Lipnicky, Andrew; Chakrabarti, Sukanya
2017-06-01
The dwarf galaxies around the Milky Way are distributed in a so-called vast polar structure (VPOS) that may be in conflict with Λ cold dark matter (ΛCDM) simulations. Here, we seek to determine if the VPOS poses a serious challenge to the ΛCDM paradigm on galactic scales. Specifically, we investigate if the VPOS remains coherent as a function of time. Using the measured Hubble Space Telescope (HST) proper motions and associated uncertainties, we integrate the orbits of the classical Milky Way satellites backwards in time and find that the structure disperses well before a dynamical time. We also examine, in particular, Leo I and Leo II using their most recent proper motion data, both of which have extreme kinematic properties, but these satellites do not appear to drive the polar fit that is seen at the present day. We have studied the effect of the uncertainties on the HST proper motions on the coherence of the VPOS as a function of time. We find that 8 of the 11 classical dwarfs have reliable proper motions; for these eight, the VPOS also loses significance in less than a dynamical time, indicating that the VPOS is not a dynamically stable structure. Obtaining more accurate proper motion measurements of Ursa Minor, Sculptor and Carina would bolster these conclusions.
ERIC Educational Resources Information Center
Portland Project Committee, OR.
This student guide is divided into two sections, "Chemistry of Living Matter" and "Energy Capture and Growth," constituting parts three and four of the third year of the Portland Project, a three-year high school integrated science curriculum. The underlying intention of the third year is to study energy and its importance to…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-06
... SECURITIES AND EXCHANGE COMMISSION File No. 500-1 In the Matter of Circuit Systems, Inc., Global Energy Group, Inc., Integrated Medical Resources, Inc., iNTELEFILM Corp., and Lot$off Corp.; Order of Suspension of Trading April 4, 2011. It appears to the Securities and Exchange Commission that there is a lack of current and accurate information...
Nanotechnology Presentation Agenda
NASA Technical Reports Server (NTRS)
2005-01-01
Working at the atomic, molecular and supra-molecular levels, in the length scale of approximately 1 - 100 nm range, in order to understand, create and use materials, devices and systems with fundamentally new properties and functions because of their small structure. NNI definition encourages new contributions that were not possible.before. Novel phenomena, properties and functions at nanoscale,which are non scalable outside of the nm domain. The ability to measure / control / manipulate matter at the nanoscale in order to change those properties and functions. Integration along length scales, and fields of application.
Bi, Yanzhi; Yuan, Kai; Yu, Dahua; Wang, Ruonan; Li, Min; Li, Yangding; Zhai, Jinquan; Lin, Wei; Tian, Jie
2017-12-01
The attentional bias to smoking cues contributes to smoking cue reactivity and cognitive declines underlines smoking behaviors, which were probably associated with the central executive network (CEN). However, little is known about the implication of the structural connectivity of the CEN in smoking cue reactivity and cognitive control impairments in smokers. In the present study, the white matter structural connectivity of the CEN was quantified in 35 smokers and 26 non-smokers using the diffusion tensor imaging and deterministic fiber tractography methods. Smoking cue reactivity was evaluated using cue exposure tasks, and cognitive control performance was assessed by the Stroop task. Relative to non-smokers, smokers showed increased fractional anisotropy (FA) values of the bilateral CEN fiber tracts. The FA values of left CEN positively correlated with the smoking cue-induced activation of the dorsolateral prefrontal cortex and right middle occipital cortex in smokers. Meanwhile, the FA values of left CEN positively correlated with the incongruent errors during Stroop task in smokers. Collectively, the present study highlighted the role of the structural connectivity of the CEN in smoking cue reactivity and cognitive control performance, which may underpin the attentional bias to smoking cues and cognitive deficits in smokers. The multimodal imaging method by forging links from brain structure to brain function extended the notion that structural connections can modulate the brain activity in specific projection target regions. Hum Brain Mapp 38:6239-6249, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
van Hartevelt, Tim J; Cabral, Joana; Møller, Arne; FitzGerald, James J; Green, Alexander L; Aziz, Tipu Z; Deco, Gustavo; Kringelbach, Morten L
2015-01-01
It is unclear whether Hebbian-like learning occurs at the level of long-range white matter connections in humans, i.e., where measurable changes in structural connectivity (SC) are correlated with changes in functional connectivity. However, the behavioral changes observed after deep brain stimulation (DBS) suggest the existence of such Hebbian-like mechanisms occurring at the structural level with functional consequences. In this rare case study, we obtained the full network of white matter connections of one patient with Parkinson's disease (PD) before and after long-term DBS and combined it with a computational model of ongoing activity to investigate the effects of DBS-induced long-term structural changes. The results show that the long-term effects of DBS on resting-state functional connectivity is best obtained in the computational model by changing the structural weights from the subthalamic nucleus (STN) to the putamen and the thalamus in a Hebbian-like manner. Moreover, long-term DBS also significantly changed the SC towards normality in terms of model-based measures of segregation and integration of information processing, two key concepts of brain organization. This novel approach using computational models to model the effects of Hebbian-like changes in SC allowed us to causally identify the possible underlying neural mechanisms of long-term DBS using rare case study data. In time, this could help predict the efficacy of individual DBS targeting and identify novel DBS targets.
van der Wilt, Gert Jan; Gerhardus, Ansgar; Oortwijn, Wija
2017-01-01
A comprehensive health technology assessment (HTA) enables a patient-centered assessment of the effectiveness, economic, ethical, socio-cultural, and legal issues of health technologies that takes context and implementation into account. A question is whether these various pieces of evidence need to be integrated, and if so, how that might be achieved. The objective of our study is to discuss the meaning of integration in the context of HTA and suggest how it may be achieved in a more structured way. An analysis of the concept of integration in the context of HTA and a review of approaches that were adopted in the INTEGRATE-HTA project that may support integration. Current approaches to integration in HTA are mainly methods of commensuration, which are not optimally geared to support public deliberation. In contrast, articulating evaluative frameworks could be an important means of integration which allows for exploring how facts and values can be brought to bear on each other. Integration is not something that only needs to be addressed at the end, but rather throughout an HTA, right from the start. Integration can be conceived as a matter of accounting for the relevance of empirical evidence in view of a commitment to a set of potentially conflicting values. Various elements of the INTEGRATE-HTA project, such as scoping and the development of logic models, can help to achieve integration in HTA.
Structure of the alexithymic brain: A parametric coordinate-based meta-analysis.
Xu, Pengfei; Opmeer, Esther M; van Tol, Marie-José; Goerlich, Katharina S; Aleman, André
2018-04-01
Alexithymia refers to deficiencies in identifying and expressing emotions. This might be related to changes in structural brain volumes, but its neuroanatomical basis remains uncertain as studies have shown heterogeneous findings. Therefore, we conducted a parametric coordinate-based meta-analysis. We identified seventeen structural neuroimaging studies (including a total of 2586 individuals with different levels of alexithymia) investigating the association between gray matter volume and alexithymia. Volumes of the left insula, left amygdala, orbital frontal cortex and striatum were consistently smaller in people with high levels of alexithymia. These areas are important for emotion perception and emotional experience. Smaller volumes in these areas might lead to deficiencies in appropriately identifying and expressing emotions. These findings provide the first quantitative integration of results pertaining to the structural neuroanatomical basis of alexithymia. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Microstructural Abnormalities of Short-Distance White Matter Tracts in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Shukla, Dinesh K.; Keehn, Brandon; Smylie, Daren M.; Muller, Ralph-Axel
2011-01-01
Recent functional connectivity magnetic resonance imaging and diffusion tensor imaging (DTI) studies have suggested atypical functional connectivity and reduced integrity of long-distance white matter fibers in autism spectrum disorder (ASD). However, evidence for short-distance white matter fibers is still limited, despite some speculation of…
Lamar, Melissa; Zhou, Xiaohong Joe; Charlton, Rebecca A; Dean, Douglas; Little, Deborah; Deoni, Sean C
2014-02-01
Human brain imaging has seen many advances in the quantification of white matter in vivo. For example, these advances have revealed the association between white matter damage and vascular disease as well as their impact on risk for and development of dementia and depression in an aging population. Current neuroimaging methods to quantify white matter damage provide a foundation for understanding such age-related neuropathology; however, these methods are not as adept at determining the underlying microstructural abnormalities signaling at risk tissue or driving white matter damage in the aging brain. This review will begin with a brief overview of the use of diffusion tensor imaging (DTI) in understanding white matter alterations in aging before focusing in more detail on select advances in both diffusion-based methods and multi-component relaxometry techniques for imaging white matter microstructural integrity within myelin sheaths and the axons they encase. Although DTI greatly extended the field of white matter interrogation, these more recent technological advances will add clarity to the underlying microstructural mechanisms that contribute to white matter damage. More specifically, the methods highlighted in this review may prove more sensitive (and specific) for determining the contribution of myelin versus axonal integrity to the aging of white matter in brain. Copyright © 2014 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Structural Covariance of the Prefrontal-Amygdala Pathways Associated with Heart Rate Variability
Wei, Luqing; Chen, Hong; Wu, Guo-Rong
2018-01-01
The neurovisceral integration model has shown a key role of the amygdala in neural circuits underlying heart rate variability (HRV) modulation, and suggested that reciprocal connections from amygdala to brain regions centered on the central autonomic network (CAN) are associated with HRV. To provide neuroanatomical evidence for these theoretical perspectives, the current study used covariance analysis of MRI-based gray matter volume (GMV) to map structural covariance network of the amygdala, and then determined whether the interregional structural correlations related to individual differences in HRV. The results showed that covariance patterns of the amygdala encompassed large portions of cortical (e.g., prefrontal, cingulate, and insula) and subcortical (e.g., striatum, hippocampus, and midbrain) regions, lending evidence from structural covariance analysis to the notion that the amygdala was a pivotal node in neural pathways for HRV modulation. Importantly, participants with higher resting HRV showed increased covariance of amygdala to dorsal medial prefrontal cortex and anterior cingulate cortex (dmPFC/dACC) extending into adjacent medial motor regions [i.e., pre-supplementary motor area (pre-SMA)/SMA], demonstrating structural covariance of the prefrontal-amygdala pathways implicated in HRV, and also implying that resting HRV may reflect the function of neural circuits underlying cognitive regulation of emotion as well as facilitation of adaptive behaviors to emotion. Our results, thus, provide anatomical substrates for the neurovisceral integration model that resting HRV may index an integrative neural network which effectively organizes emotional, cognitive, physiological and behavioral responses in the service of goal-directed behavior and adaptability. PMID:29545744
Squarcina, L; Houenou, J; Altamura, A C; Soares, J; Brambilla, P
2017-10-15
Diffusion tensor imaging (DTI) studies, which allow the in-vivo investigation of brain tissue integrity, have shown that bipolar disorder (BD) patients present signs of white matter dysconnectivity. In parallel, genome-wide association studies (GWAS) identified several risk genetic variants for BD. In this mini-review, we summarized DTI studies coupling tract-based spatial statistics (TBSS), a reliable technique exploring white matter axon bundles, and genetics in BD. We performed a bibliographic search on PUBMED, using the search terms "TBSS", "genetics", "genome", "genes", "polymorphism", "bipolar disorder". Ten studies met these inclusion criteria. ANK3 and ZNF804A polymorphisms have shown the most consistent results, with the risk alleles showing abnormal white matter integrity in patients with BD. Current studies are limited by the investigation of single SNPs in small and chronically treated samples. Most considered TBSS-DTI studies found associations between decreased white matter integrity and genetic risk variants. These results suggest an involvement of dysmyelination in the pathogenesis of BD. The combination of TBSS with genotyping can be powerful to unveil the role of white matter in BD, in conjunction with risk genes. Future DTI studies should combine TBSS and GWAS in large populations of drug-free or minimally treated patients with BD at the onset of the disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Paquola, Casey; Bennett, Maxwell; Lagopoulos, Jim
2018-05-15
Structural covariance networks (SCNs) may offer unique insights into the developmental impact of childhood maltreatment because they are thought to reflect coordinated maturation of distinct grey matter regions. T1-weighted magnetic resonance images were acquired from 121 young people with emerging mental illness. Diffusion weighted and resting state functional imaging was also acquired from a random subset of the participants (n=62). Ten study-specific SCNs were identified using a whole brain grey matter independent component analysis. The effects of childhood maltreatment and age on average grey matter density and the expression of each SCN were calculated. Childhood maltreatment was linked to age-related decreases in grey matter density across a SCN that overlapped with the default mode and fronto-parietal networks. Resting state functional connectivity and structural connectivity were calculated in the study-specific SCN and across the whole brain. Grey matter covariance was significantly correlated with rsFC across the SCN, and rsFC fully mediated the relationship between grey matter covariance and structural connectivity in the non-maltreated group. A unique association of grey matter covariance with structural connectivity was detected amongst individuals with a history of childhood maltreatment. Perturbation of grey matter development across the default mode and fronto-parietal networks following childhood maltreatment may have significant implications for mental well-being, given the networks' roles in self-referential activity. Cross-modal comparisons suggest reduced grey matter following childhood maltreatment could arise from deficient functional activity earlier in life.
Meoded, Avner; Kwan, Justin Y.; Peters, Tracy L.; Huey, Edward D.; Danielian, Laura E.; Wiggs, Edythe; Morrissette, Arthur; Wu, Tianxia; Russell, James W.; Bayat, Elham; Grafman, Jordan; Floeter, Mary Kay
2013-01-01
Introduction Executive dysfunction occurs in many patients with amyotrophic lateral sclerosis (ALS), but it has not been well studied in primary lateral sclerosis (PLS). The aims of this study were to (1) compare cognitive function in PLS to that in ALS patients, (2) explore the relationship between performance on specific cognitive tests and diffusion tensor imaging (DTI) metrics of white matter tracts and gray matter volumes, and (3) compare DTI metrics in patients with and without cognitive and behavioral changes. Methods The Delis-Kaplan Executive Function System (D-KEFS), the Mattis Dementia Rating Scale (DRS-2), and other behavior and mood scales were administered to 25 ALS patients and 25 PLS patients. Seventeen of the PLS patients, 13 of the ALS patients, and 17 healthy controls underwent structural magnetic resonance imaging (MRI) and DTI. Atlas-based analysis using MRI Studio software was used to measure fractional anisotropy, and axial and radial diffusivity of selected white matter tracts. Voxel-based morphometry was used to assess gray matter volumes. The relationship between diffusion properties of selected association and commissural white matter and performance on executive function and memory tests was explored using a linear regression model. Results More ALS than PLS patients had abnormal scores on the DRS-2. DRS-2 and D-KEFS scores were related to DTI metrics in several long association tracts and the callosum. Reduced gray matter volumes in motor and perirolandic areas were not associated with cognitive scores. Conclusion The changes in diffusion metrics of white matter long association tracts suggest that the loss of integrity of the networks connecting fronto-temporal areas to parietal and occipital areas contributes to cognitive impairment. PMID:24052798
Franco, Alexandre R; Ling, Josef; Caprihan, Arvind; Calhoun, Vince D; Jung, Rex E; Heileman, Gregory L; Mayer, Andrew R
2008-12-01
The human brain functions as an efficient system where signals arising from gray matter are transported via white matter tracts to other regions of the brain to facilitate human behavior. However, with a few exceptions, functional and structural neuroimaging data are typically optimized to maximize the quantification of signals arising from a single source. For example, functional magnetic resonance imaging (FMRI) is typically used as an index of gray matter functioning whereas diffusion tensor imaging (DTI) is typically used to determine white matter properties. While it is likely that these signals arising from different tissue sources contain complementary information, the signal processing algorithms necessary for the fusion of neuroimaging data across imaging modalities are still in a nascent stage. In the current paper we present a data-driven method for combining measures of functional connectivity arising from gray matter sources (FMRI resting state data) with different measures of white matter connectivity (DTI). Specifically, a joint independent component analysis (J-ICA) was used to combine these measures of functional connectivity following intensive signal processing and feature extraction within each of the individual modalities. Our results indicate that one of the most predominantly used measures of functional connectivity (activity in the default mode network) is highly dependent on the integrity of white matter connections between the two hemispheres (corpus callosum) and within the cingulate bundles. Importantly, the discovery of this complex relationship of connectivity was entirely facilitated by the signal processing and fusion techniques presented herein and could not have been revealed through separate analyses of both data types as is typically performed in the majority of neuroimaging experiments. We conclude by discussing future applications of this technique to other areas of neuroimaging and examining potential limitations of the methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Xiao; Blazek, Jonathan A.; McEwen, Joseph E.
Cosmological perturbation theory is a powerful tool to predict the statistics of large-scale structure in the weakly non-linear regime, but even at 1-loop order it results in computationally expensive mode-coupling integrals. Here we present a fast algorithm for computing 1-loop power spectra of quantities that depend on the observer's orientation, thereby generalizing the FAST-PT framework (McEwen et al., 2016) that was originally developed for scalars such as the matter density. This algorithm works for an arbitrary input power spectrum and substantially reduces the time required for numerical evaluation. We apply the algorithm to four examples: intrinsic alignments of galaxies inmore » the tidal torque model; the Ostriker-Vishniac effect; the secondary CMB polarization due to baryon flows; and the 1-loop matter power spectrum in redshift space. Code implementing this algorithm and these applications is publicly available at https://github.com/JoeMcEwen/FAST-PT.« less
Shock implosion of a small homogeneous pellet
NASA Astrophysics Data System (ADS)
Fujimoto, Yasuichi; Mishkin, Eli A.; Alejaldre, Carlos
1985-10-01
A small spherical, or cylindrical, pellet is imploded by an intensive, evenly distributed, short energy pulse. At the surface of the pellet the matter ionizes, its temperature and pressure rapidly rise, and the ablated plasma, by reaction, implodes the inner nucleus of the pellet. The involved structure of the energy absorbing zone is idealized and a sharp deflagration front is considered. With an almost square energy pulse, slightly dropping with time, the solution of the mass, momentum, and energy conservation equations of the compressed matter, is self-similar. The differential equation of the nondimensional position of the deflagration front, its integral, and the magnitude and shape of the outside energy pulse are derived. The process of ablation is shown to depend solely on the nondimensional velocity of the gas just ahead of the deflagration front, minus the speed of sound, or the ratio of the gas densities across the deflagration front.
The Ising model coupled to 2d orders
NASA Astrophysics Data System (ADS)
Glaser, Lisa
2018-04-01
In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.
A numerical relativity scheme for cosmological simulations
NASA Astrophysics Data System (ADS)
Daverio, David; Dirian, Yves; Mitsou, Ermis
2017-12-01
Cosmological simulations involving the fully covariant gravitational dynamics may prove relevant in understanding relativistic/non-linear features and, therefore, in taking better advantage of the upcoming large scale structure survey data. We propose a new 3 + 1 integration scheme for general relativity in the case where the matter sector contains a minimally-coupled perfect fluid field. The original feature is that we completely eliminate the fluid components through the constraint equations, thus remaining with a set of unconstrained evolution equations for the rest of the fields. This procedure does not constrain the lapse function and shift vector, so it holds in arbitrary gauge and also works for arbitrary equation of state. An important advantage of this scheme is that it allows one to define and pass an adaptation of the robustness test to the cosmological context, at least in the case of pressureless perfect fluid matter, which is the relevant one for late-time cosmology.
Ground Vibration Testing Options for Space Launch Vehicles
NASA Technical Reports Server (NTRS)
Patterson, Alan; Smith, Robert K.; Goggin, David; Newsom, Jerry
2011-01-01
New NASA launch vehicles will require development of robust systems in a fiscally-constrained environment. NASA, Department of Defense (DoD), and commercial space companies routinely conduct ground vibration tests as an essential part of math model validation and launch vehicle certification. Although ground vibration testing must be a part of the integrated test planning process, more affordable approaches must also be considered. A study evaluated several ground vibration test options for the NASA Constellation Program flight test vehicles, Orion-1 and Orion-2, which concluded that more affordable ground vibration test options are available. The motivation for ground vibration testing is supported by historical examples from NASA and DoD. The approach used in the present study employed surveys of ground vibration test subject-matter experts that provided data to qualitatively rank six test options. Twenty-five experts from NASA, DoD, and industry provided scoring and comments for this study. The current study determined that both element-level modal tests and integrated vehicle modal tests have technical merits. Both have been successful in validating structural dynamic math models of launch vehicles. However, element-level testing has less overall cost and schedule risk as compared to integrated vehicle testing. Future NASA launch vehicle development programs should anticipate that some structural dynamics testing will be necessary. Analysis alone will be inadequate to certify a crew-capable launch vehicle. At a minimum, component and element structural dynamic tests are recommended for new vehicle elements. Three viable structural dynamic test options were identified. Modal testing of the new vehicle elements and an integrated vehicle test on the mobile launcher provided the optimal trade between technical, cost, and schedule.
Figley, Teresa D.; Bhullar, Navdeep; Courtney, Susan M.; Figley, Chase R.
2015-01-01
Diffusion tensor imaging (DTI) is a powerful MRI technique that can be used to estimate both the microstructural integrity and the trajectories of white matter pathways throughout the central nervous system. This fiber tracking (aka, “tractography”) approach is often carried out using anatomically-defined seed points to identify white matter tracts that pass through one or more structures, but can also be performed using functionally-defined regions of interest (ROIs) that have been determined using functional MRI (fMRI) or other methods. In this study, we performed fMRI-guided DTI tractography between all of the previously defined nodes within each of six common resting-state brain networks, including the: dorsal Default Mode Network (dDMN), ventral Default Mode Network (vDMN), left Executive Control Network (lECN), right Executive Control Network (rECN), anterior Salience Network (aSN), and posterior Salience Network (pSN). By normalizing the data from 32 healthy control subjects to a standard template—using high-dimensional, non-linear warping methods—we were able to create probabilistic white matter atlases for each tract in stereotaxic coordinates. By investigating all 198 ROI-to-ROI combinations within the aforementioned resting-state networks (for a total of 6336 independent DTI tractography analyses), the resulting probabilistic atlases represent a comprehensive cohort of functionally-defined white matter regions that can be used in future brain imaging studies to: (1) ascribe DTI or other white matter changes to particular functional brain networks, and (2) compliment resting state fMRI or other functional connectivity analyses. PMID:26578930
Hong, Soon-Beom; Zalesky, Andrew; Fornito, Alex; Park, Subin; Yang, Young-Hui; Park, Min-Hyeon; Song, In-Chan; Sohn, Chul-Ho; Shin, Min-Sup; Kim, Bung-Nyun; Cho, Soo-Churl; Han, Doug Hyun; Cheong, Jae Hoon; Kim, Jae-Won
2014-10-15
Few studies have sought to identify, in a regionally unbiased way, the precise cortical and subcortical regions that are affected by white matter abnormalities in attention-deficit/hyperactivity disorder (ADHD). This study aimed to derive a comprehensive, whole-brain characterization of connectomic disturbances in ADHD. Using diffusion tensor imaging, whole-brain tractography, and an imaging connectomics approach, we characterized altered white matter connectivity in 71 children and adolescents with ADHD compared with 26 healthy control subjects. White matter differences were further delineated between patients with (n = 40) and without (n = 26) the predominantly hyperactive/impulsive subtype of ADHD. A significant network comprising 25 distinct fiber bundles linking 23 different brain regions spanning frontal, striatal, and cerebellar brain regions showed altered white matter structure in ADHD patients (p < .05, family-wise error-corrected). Moreover, fractional anisotropy in some of these fiber bundles correlated with attentional disturbances. Attention-deficit/hyperactivity disorder subtypes were differentiated by a right-lateralized network (p < .05, family-wise error-corrected) predominantly linking frontal, cingulate, and supplementary motor areas. Fractional anisotropy in this network was also correlated with continuous performance test scores. Using an unbiased, whole-brain, data-driven approach, we demonstrated abnormal white matter connectivity in ADHD. The correlations observed with measures of attentional performance underscore the functional importance of these connectomic disturbances for the clinical phenotype of ADHD. A distributed pattern of white matter microstructural integrity separately involving frontal, striatal, and cerebellar brain regions, rather than direct frontostriatal connectivity, appears to be disrupted in children and adolescents with ADHD. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Lederman, Norman G.; Gess-Newsome, Julie; Latz, Mark S.
The purpose of this study was to assess the development and changes in preservice science teachers' subject matter and pedagogy knowledge structures as they proceeded through a professional teacher education program. Twelve secondary preservice science teachers were asked to create representations of their subject matter and pedagogy knowledge structures periodically (four times spanning the entirety of their subject-specific teacher education program) and participate in a videotaped interview concerning the eight knowledge structure representations immediately following student teaching. Qualitative analyses of knowledge structure representations and transcribed interviews within and between subjects were performed by one of the researchers and blindly corroborated by the other two researchers. Initial knowledge structure representations were typically linear and lacked coherence. Both types of knowledge structure representations were highly susceptible to change as a consequence of the act of teaching. Although there was some overlap between subject matter and pedagogy knowledge structures, they were reported to exert separate influences on classroom practice, with the pedagogy knowledge structure having primary influence on instructional decisions. Furthermore, the complexity of one's subject matter structure appeared to be a critical factor in determining whether the structure directly influences classroom practice.Received: 5 February 1993; Revised: 28 July 1993;
Guo, X; Fu, B; Ma, K; Chen, L
2000-08-01
Geostatistics combined with GIS was applied to analyze the spatial variability of soil nutrients in topsoil (0-20 cm) in Zunghua City of Hebei Province. GIS can integrate attribute data with geographical data of system variables, which makes the application of geostatistics technique for large spatial scale more convenient. Soil nutrient data in this study included available N (alkaline hydrolyzing nitrogen), total N, available K, available P and organic matter. The results showed that the semivariograms of soil nutrients were best described by spherical model, except for that of available K, which was best fitted by complex structure of exponential model and linear with sill model. The spatial variability of available K was mainly produced by structural factor, while that of available N, total N, available P and organic matter was primarily caused by random factor. However, their spatial heterogeneity degree was different: the degree of total N and organic matter was higher, and that of available P and available N was lower. The results also indicated that the spatial correlation of the five tested soil nutrients at this large scale was moderately dependent. The ranges of available N and available P were almost same, which were 5 km and 5.5 km, respectively. The range of total N was up to 18 km, and that of organic matter was 8.5 km. For available K, the spatial variability scale primarily expressed exponential model between 0-3.5 km, but linear with sill model between 3.5-25.5 km. In addition, five soil nutrients exhibited different isotropic ranges. Available N and available P were isotropic through the whole research range (0-28 km). The isotropic range of available K was 0-8 km, and that of total N and organic matter was 0-10 km.
Sours, Chandler; Raghavan, Prashant; Medina, Alexandre E.; Roys, Steven; Jiang, Li; Zhuo, Jiachen
2017-01-01
Abstract Severe and moderate traumatic brain injury (sTBI) often results in long-term cognitive deficits such as reduced processing speed and attention. The intraparietal sulcus (IPS) is a neocortical structure that plays a crucial role in the deeply interrelated processes of multi-sensory processing and top down attention. Therefore, we hypothesized that disruptions in the functional and structural connections of the IPS may play a role in the development of such deficits. To examine these connections, we used resting state magnetic resonance imaging (rsfMRI and diffusion kurtosis imaging (DKI) in a cohort of 27 patients with sTBI (29.3 ± 8.9 years) and 27 control participants (29.8 ± 10.3 years). Participants were prospectively recruited and received rsfMRI and neuropsychological assessments including the Automated Neuropsychological Assessment Metrics (ANAM) at greater than 6 months post-injury. A subset of participants received a DKI scan. Results suggest that patients with sTBI performed worse than control participants on multiple subtests of the ANAM suggesting reduced cognitive performance. Reduced resting state functional connectivity between the IPS and cortical regions associated with multi-sensory processing and the dorsal attention network was observed in the patients with sTBI. The patients also showed reduced structural integrity of the superior longitudinal fasciculus (SLF), a key white matter tract connecting the IPS to anterior frontal areas, as measured by reduced mean kurtosis (MK) and fractional anisotropy (FA) and increased mean diffusivity (MD). Further, this reduced structural integrity of the SLF was associated with a reduction in overall cognitive performance. These findings suggest that disruptions in the structural and functional connectivity of the IPS may contribute to chronic cognitive deficits experienced by these patients. PMID:27931179
Sours, Chandler; Raghavan, Prashant; Medina, Alexandre E; Roys, Steven; Jiang, Li; Zhuo, Jiachen; Gullapalli, Rao P
2017-04-01
Severe and moderate traumatic brain injury (sTBI) often results in long-term cognitive deficits such as reduced processing speed and attention. The intraparietal sulcus (IPS) is a neocortical structure that plays a crucial role in the deeply interrelated processes of multi-sensory processing and top down attention. Therefore, we hypothesized that disruptions in the functional and structural connections of the IPS may play a role in the development of such deficits. To examine these connections, we used resting state magnetic resonance imaging (rsfMRI and diffusion kurtosis imaging (DKI) in a cohort of 27 patients with sTBI (29.3 ± 8.9 years) and 27 control participants (29.8 ± 10.3 years). Participants were prospectively recruited and received rsfMRI and neuropsychological assessments including the Automated Neuropsychological Assessment Metrics (ANAM) at greater than 6 months post-injury. A subset of participants received a DKI scan. Results suggest that patients with sTBI performed worse than control participants on multiple subtests of the ANAM suggesting reduced cognitive performance. Reduced resting state functional connectivity between the IPS and cortical regions associated with multi-sensory processing and the dorsal attention network was observed in the patients with sTBI. The patients also showed reduced structural integrity of the superior longitudinal fasciculus (SLF), a key white matter tract connecting the IPS to anterior frontal areas, as measured by reduced mean kurtosis (MK) and fractional anisotropy (FA) and increased mean diffusivity (MD). Further, this reduced structural integrity of the SLF was associated with a reduction in overall cognitive performance. These findings suggest that disruptions in the structural and functional connectivity of the IPS may contribute to chronic cognitive deficits experienced by these patients.
Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang
2017-05-01
Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex. Copyright © 2017 Elsevier Ltd. All rights reserved.
Atomic resolution of structural changes in elastic crystals of copper(II) acetylacetonate
NASA Astrophysics Data System (ADS)
Worthy, Anna; Grosjean, Arnaud; Pfrunder, Michael C.; Xu, Yanan; Yan, Cheng; Edwards, Grant; Clegg, Jack K.; McMurtrie, John C.
2018-01-01
Single crystals are typically brittle, inelastic materials. Such mechanical responses limit their use in practical applications, particularly in flexible electronics and optical devices. Here we describe single crystals of a well-known coordination compound—copper(II) acetylacetonate—that are flexible enough to be reversibly tied into a knot. Mechanical measurements indicate that the crystals exhibit an elasticity similar to that of soft materials such as nylon, and thus display properties normally associated with both hard and soft matter. Using microfocused synchrotron radiation, we mapped the changes in crystal structure that occur on bending, and determined the mechanism that allows this flexibility with atomic precision. We show that, under strain, the molecules in the crystal reversibly rotate, and thus reorganize to allow the mechanical compression and expansion required for elasticity and still maintain the integrity of the crystal structure.
Fourier imaging of non-linear structure formation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk
We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less
Voxel-wise grey matter asymmetry analysis in left- and right-handers.
Ocklenburg, Sebastian; Friedrich, Patrick; Güntürkün, Onur; Genç, Erhan
2016-10-28
Handedness is thought to originate in the brain, but identifying its structural correlates in the cortex has yielded surprisingly incoherent results. One idea proclaimed by several authors is that structural grey matter asymmetries might underlie handedness. While some authors have found significant associations with handedness in different brain areas (e.g. in the central sulcus and precentral sulcus), others have failed to identify such associations. One method used by many researchers to determine structural grey matter asymmetries is voxel based morphometry (VBM). However, it has recently been suggested that the standard VBM protocol might not be ideal to assess structural grey matter asymmetries, as it establishes accurate voxel-wise correspondence across individuals but not across both hemispheres. This could potentially lead to biased and incoherent results. Recently, a new toolbox specifically geared at assessing structural asymmetries and involving accurate voxel-wise correspondence across hemispheres has been published [F. Kurth, C. Gaser, E. Luders. A 12-step user guide for analyzing voxel-wise gray matter asymmetries in statistical parametric mapping (SPM), Nat Protoc 10 (2015), 293-304]. Here, we used this new toolbox to re-assess grey matter asymmetry differences in left- vs. right-handers and linked them to quantitative measures of hand preference and hand skill. While we identified several significant left-right asymmetries in the overall sample, no difference between left- and right-handers reached significance after correction for multiple comparisons. These findings indicate that the structural brain correlates of handedness are unlikely to be rooted in macroscopic grey matter area differences that can be assessed with VBM. Future studies should focus on other potential structural correlates of handedness, e.g. structural white matter asymmetries. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
The structural neural substrate of subjective happiness
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi
2015-01-01
Happiness is a subjective experience that is an ultimate goal for humans. Psychological studies have shown that subjective happiness can be measured reliably and consists of emotional and cognitive components. However, the neural substrates of subjective happiness remain unclear. To investigate this issue, we used structural magnetic resonance imaging and questionnaires that assessed subjective happiness, the intensity of positive and negative emotional experiences, and purpose in life. We found a positive relationship between the subjective happiness score and gray matter volume in the right precuneus. Moreover, the same region showed an association with the combined positive and negative emotional intensity and purpose in life scores. Our findings suggest that the precuneus mediates subjective happiness by integrating the emotional and cognitive components of happiness. PMID:26586449
The structural neural substrate of subjective happiness.
Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Kubota, Yasutaka; Sawada, Reiko; Yoshimura, Sayaka; Toichi, Motomi
2015-11-20
Happiness is a subjective experience that is an ultimate goal for humans. Psychological studies have shown that subjective happiness can be measured reliably and consists of emotional and cognitive components. However, the neural substrates of subjective happiness remain unclear. To investigate this issue, we used structural magnetic resonance imaging and questionnaires that assessed subjective happiness, the intensity of positive and negative emotional experiences, and purpose in life. We found a positive relationship between the subjective happiness score and gray matter volume in the right precuneus. Moreover, the same region showed an association with the combined positive and negative emotional intensity and purpose in life scores. Our findings suggest that the precuneus mediates subjective happiness by integrating the emotional and cognitive components of happiness.
Liu, Xiaoyan; Li, Jiao; Zhang, Yiming; Huang, Jianguo
2015-05-11
A bioinspired nanocomposite composed of platinum nanoparticles and nanotubular titania was fabricated in which the titania matter was templated by natural cellulose substance. The composite possesses three- dimensional hierarchical structures, and ultrafine metallic platinum particles with sizes of ca. 2 nm were immobilized uniformly on the surfaces of the titania nanotubes. Such a nanocomposite with 1.06 wt % of platinum content shows the optimal photocatalytic hydrogen production activity from water splitting of 16.44 mmol h(-1) g(-1) , and excessive loading of platinum results in poorer photocatalytic performance. The structural integrity of the nanocomposite upon cyclic water-splitting processes results in its sufficient photocatalytic stability. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
How does the Structure of Spherical Dark Matter Halos Affect the Types of Orbits in Disk Galaxies?
NASA Astrophysics Data System (ADS)
Zotos, Euaggelos E.
The main objective of this work is to determine the character of orbits of stars moving in the meridional (R,z) plane of an axially symmetric time-independent disk galaxy model with a central massive nucleus and an additional spherical dark matter halo component. In particular, we try to reveal the influence of the scale length of the dark matter halo on the different families of orbits of stars, by monitoring how the percentage of chaotic orbits, as well as the percentages of orbits of the main regular resonant families evolve when this parameter varies. The smaller alignment index (SALI) was computed by numerically integrating the equations of motion as well as the variational equations to extensive samples of orbits in order to distinguish safely bet ween ordered and chaotic motion. In addition, a method based on the concept of spectral dynamics that utilizes the Fourier transform of the time series of each coordinate is used to identify the various families of regular orbits and also to recognize the secondary resonances that bifurcate from them. Our numerical computations reveal that when the dark matter halo is highly concentrated, that is when the scale length has low values the vast majority of star orbits move in regular orbits, while on the oth er hand in less concentrated dark matter halos the percentage of chaos increases significantly. We also compared our results with early related work.
Zhao, Jianhua; Jin, Zhijun; Hu, Qinhong; Jin, Zhenkui; Barber, Troy J; Zhang, Yuxiang; Bleuel, Markus
2017-11-13
An integration of small-angle neutron scattering (SANS), low-pressure N 2 physisorption (LPNP), and mercury injection capillary pressure (MICP) methods was employed to study the pore structure of four oil shale samples from leading Niobrara, Wolfcamp, Bakken, and Utica Formations in USA. Porosity values obtained from SANS are higher than those from two fluid-invasion methods, due to the ability of neutrons to probe pore spaces inaccessible to N 2 and mercury. However, SANS and LPNP methods exhibit a similar pore-size distribution, and both methods (in measuring total pore volume) show different results of porosity and pore-size distribution obtained from the MICP method (quantifying pore throats). Multi-scale (five pore-diameter intervals) inaccessible porosity to N 2 was determined using SANS and LPNP data. Overall, a large value of inaccessible porosity occurs at pore diameters <10 nm, which we attribute to low connectivity of organic matter-hosted and clay-associated pores in these shales. While each method probes a unique aspect of complex pore structure of shale, the discrepancy between pore structure results from different methods is explained with respect to their difference in measurable ranges of pore diameter, pore space, pore type, sample size and associated pore connectivity, as well as theoretical base and interpretation.
NASA Astrophysics Data System (ADS)
Syamsuri, B. S.; Anwar, S.; Sumarna, O.
2017-09-01
This research aims to develop oxidation-reduction reactions (redox) teaching material used the Four Steps Teaching Material Development (4S TMD) method consists of four steps: selection, structuring, characterization and didactical reduction. This paper is the first part of the development of teaching material that includes selection and structuring steps. At the selection step, the development of teaching material begins with the development concept of redox based on curriculum demands, then the development of fundamental concepts sourced from the international textbook, and last is the development of values or skills can be integrated with redox concepts. The results of this selection step are the subject matter of the redox concept and values can be integrated with it. In the structuring step was developed concept map that provide on the relationship between redox concepts; Macro structure that guide systematic on the writing of teaching material; And multiple representations which are the development of teaching material that connection between macroscopic, submicroscopic, and symbolic level representations. The result of the two steps in this first part of the study produced a draft of teaching material. Evaluation of the draft of teaching material is done by an expert lecturer in the field of chemical education to assess the feasibility of teaching material.
Limbic grey matter changes in early Parkinson's disease.
Li, Xingfeng; Xing, Yue; Schwarz, Stefan T; Auer, Dorothee P
2017-05-02
The purpose of this study was to investigate local and network-related changes of limbic grey matter in early Parkinson's disease (PD) and their inter-relation with non-motor symptom severity. We applied voxel-based morphometric methods in 538 T1 MRI images retrieved from the Parkinson's Progression Markers Initiative website. Grey matter densities and cross-sectional estimates of age-related grey matter change were compared between subjects with early PD (n = 366) and age-matched healthy controls (n = 172) within a regression model, and associations of grey matter density with symptoms were investigated. Structural brain networks were obtained using covariance analysis seeded in regions showing grey matter abnormalities in PD subject group. Patients displayed focally reduced grey matter density in the right amygdala, which was present from the earliest stages of the disease without further advance in mild-moderate disease stages. Right amygdala grey matter density showed negative correlation with autonomic dysfunction and positive with cognitive performance in patients, but no significant interrelations were found with anxiety scores. Patients with PD also demonstrated right amygdala structural disconnection with less structural connectivity of the right amygdala with the cerebellum and thalamus but increased covariance with bilateral temporal cortices compared with controls. Age-related grey matter change was also increased in PD preferentially in the limbic system. In conclusion, detailed brain morphometry in a large group of early PD highlights predominant limbic grey matter deficits with stronger age associations compared with controls and associated altered structural connectivity pattern. This provides in vivo evidence for early limbic grey matter pathology and structural network changes that may reflect extranigral disease spread in PD. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Evers, J B; Vos, J; Yin, X; Romero, P; van der Putten, P E L; Struik, P C
2010-05-01
Intimate relationships exist between form and function of plants, determining many processes governing their growth and development. However, in most crop simulation models that have been created to simulate plant growth and, for example, predict biomass production, plant structure has been neglected. In this study, a detailed simulation model of growth and development of spring wheat (Triticum aestivum) is presented, which integrates degree of tillering and canopy architecture with organ-level light interception, photosynthesis, and dry-matter partitioning. An existing spatially explicit 3D architectural model of wheat development was extended with routines for organ-level microclimate, photosynthesis, assimilate distribution within the plant structure according to organ demands, and organ growth and development. Outgrowth of tiller buds was made dependent on the ratio between assimilate supply and demand of the plants. Organ-level photosynthesis, biomass production, and bud outgrowth were simulated satisfactorily. However, to improve crop simulation results more efforts are needed mechanistically to model other major plant physiological processes such as nitrogen uptake and distribution, tiller death, and leaf senescence. Nevertheless, the work presented here is a significant step forwards towards a mechanistic functional-structural plant model, which integrates plant architecture with key plant processes.
Xie, Yunyan; Cui, Zaixu; Zhang, Zhongmin; Sun, Yu; Sheng, Can; Li, Kuncheng; Gong, Gaolang; Han, Ying; Jia, Jianping
2015-01-01
Identifying amnestic mild cognitive impairment (aMCI) is of great clinical importance because aMCI is a putative prodromal stage of Alzheimer's disease. The present study aimed to explore the feasibility of accurately identifying aMCI with a magnetic resonance imaging (MRI) biomarker. We integrated measures of both gray matter (GM) abnormalities derived from structural MRI and white matter (WM) alterations acquired from diffusion tensor imaging at the voxel level across the entire brain. In particular, multi-modal brain features, including GM volume, WM fractional anisotropy, and mean diffusivity, were extracted from a relatively large sample of 64 Han Chinese aMCI patients and 64 matched controls. Then, support vector machine classifiers for GM volume, FA, and MD were fused to distinguish the aMCI patients from the controls. The fused classifier was evaluated with the leave-one-out and the 10-fold cross-validations, and the classifier had an accuracy of 83.59% and an area under the curve of 0.862. The most discriminative regions of GM were mainly located in the medial temporal lobe, temporal lobe, precuneus, cingulate gyrus, parietal lobe, and frontal lobe, whereas the most discriminative regions of WM were mainly located in the corpus callosum, cingulum, corona radiata, frontal lobe, and parietal lobe. Our findings suggest that aMCI is characterized by a distributed pattern of GM abnormalities and WM alterations that represent discriminative power and reflect relevant pathological changes in the brain, and these changes further highlight the advantage of multi-modal feature integration for identifying aMCI.
Brain structure and verbal function across adulthood while controlling for cerebrovascular risks.
Sanfratello, L; Lundy, S L; Qualls, C; Knoefel, J E; Adair, J C; Caprihan, A; Stephen, J M; Aine, C J
2017-04-08
The development and decline of brain structure and function throughout adulthood is a complex issue, with cognitive aging trajectories influenced by a host of factors including cerebrovascular risk. Neuroimaging studies of age-related cognitive decline typically reveal a linear decrease in gray matter (GM) volume/density in frontal regions across adulthood. However, white matter (WM) tracts mature later than GM, particularly in regions necessary for executive functions and memory. Therefore, it was predicted that a middle-aged group (MC: 35-45 years) would perform best on a verbal working memory task and reveal greater regional WM integrity, compared with both young (YC: 18-25 years) and elder groups (EC: 60+ years). Diffusion tensor imaging (DTI) and magnetoencephalography (MEG) were obtained from 80 healthy participants. Objective measures of cerebrovascular risk and cognition were also obtained. As predicted, MC revealed best verbal working memory accuracy overall indicating some maturation of brain function between YC and MC. However, contrary to the prediction fractional anisotropy values (FA), a measure of WM integrity, were not greater in MC (i.e., there were no significant differences in FA between YC and MC but both groups showed greater FA than EC). An overall multivariate model for MEG ROIs showed greater peak amplitudes for MC and YC, compared with EC. Subclinical cerebrovascular risk factors (systolic blood pressure and blood glucose) were negatively associated with FA in frontal callosal, limbic, and thalamic radiation regions which correlated with executive dysfunction and slower processing speed, suggesting their contribution to age-related cognitive decline. Hum Brain Mapp, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Oertel-Knöchel, Viola; Reinke, Britta; Feddern, Richard; Knake, Annika; Knöchel, Christian; Prvulovic, David; Pantel, Johannes; Linden, David E J
2014-12-01
We combined multimodal functional magnetic resonance imaging (fMRI) and structural magnetic resonance imaging to probe abnormalities in brain circuits underpinning episodic memory performance deficits in patients with bipolar disorder (BD). We acquired whole-brain fMRI data in 21 patients with BD and a matched group of 20 healthy controls during a non-verbal episodic memory task, using abstract shapes. We also examined density of gray matter, using voxel-based morphometry (VBM), and integrity of connecting fiber tracts, using diffusion tensor imaging (DTI) and tract-based spatial statistics, for areas with significant activation differences. Patients with BD remembered less well than controls which shapes they had seen and had lower activation levels during the encoding stage of the task in the anterior cingulate gyrus, the precuneus/cuneus bilaterally, and the left lingual gyrus, and higher activation levels during the retrieval stage in the left temporo-parietal junction. Patients with BD showed reduced gray matter volumes in the left anterior cingulate, the precuneus/cuneus bilaterally, and the left temporo-parietal region in comparison with controls. DTI revealed increased radial, axial, and mean diffusivity in the left superior longitudinal fascicle in patients with BD compared with controls. Changes in task-related activation in frontal and parietal areas were associated with poorer episodic memory in patients with BD. Compared with data from single imaging modalities, integration of multimodal neuroimaging data enables the building of more complete neuropsychological models of mental disorders. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Griffiths, K R; Grieve, S M; Kohn, M R; Clarke, S; Williams, L M; Korgaonkar, M S
2016-01-01
Although multiple studies have reported structural deficits in multiple brain regions in attention-deficit hyperactivity disorder (ADHD), we do not yet know if these deficits reflect a more systematic disruption to the anatomical organization of large-scale brain networks. Here we used a graph theoretical approach to quantify anatomical organization in children and adolescents with ADHD. We generated anatomical networks based on covariance of gray matter volumes from 92 regions across the brain in children and adolescents with ADHD (n=34) and age- and sex-matched healthy controls (n=28). Using graph theory, we computed metrics that characterize both the global organization of anatomical networks (interconnectivity (clustering), integration (path length) and balance of global integration and localized segregation (small-worldness)) and their local nodal measures (participation (degree) and interaction (betweenness) within a network). Relative to Controls, ADHD participants exhibited altered global organization reflected in more clustering or network segregation. Locally, nodal degree and betweenness were increased in the subcortical amygdalae in ADHD, but reduced in cortical nodes in the anterior cingulate, posterior cingulate, mid temporal pole and rolandic operculum. In ADHD, anatomical networks were disrupted and reflected an emphasis on subcortical local connections centered around the amygdala, at the expense of cortical organization. Brains of children and adolescents with ADHD may be anatomically configured to respond impulsively to the automatic significance of stimulus input without having the neural organization to regulate and inhibit these responses. These findings provide a novel addition to our current understanding of the ADHD connectome. PMID:27824356
AggModel: A soil organic matter model with measurable pools for use in incubation studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segoli, Moran; De Gryze, S.; Dou, Fugen
2013-01-01
Current soil organic matter (SOM) models are empirical in nature by employing few conceptual SOM pools that have a specific turnover time, but that are not measurable and have no direct relationship with soil structural properties. Most soil particles are held together in aggregates and the number, size and stability of these aggregates significantly affect the size and amount of organic matter contained in these aggregates, and its susceptibility to decomposition. While it has been shown that soil aggregates and their dynamics can be measured directly in the laboratory and in the field, the impact of soil aggregate dynamics onmore » SOM decomposition has not been explicitly incorporated in ecosystem models. Here, we present AggModel, a conceptual and simulation model that integrates soil aggregate and SOM dynamics. In AggModel, we consider unaggregated and microaggregated soil that can exist within or external to macroaggregated soil. Each of the four aggregate size classes contains particulate organic matter and mineral-associated organic matter fractions. We used published data from laboratory incubations to calibrate and validate the biological and environmental effects on the rate of formation and breakdown of macroaggregates and microaggregates, and the organic matter dynamics within these different aggregate fractions. After calibration, AggModel explained more than 70% of the variation in aggregate masses and over 90% of the variation in aggregate-associated carbon. The model estimated the turnover time of macroaggregates as 32 days and 166 days for microaggregates. Sensitivity analysis of AggModel parameterization supported the notion that macroaggregate turnover rate has a strong control over microaggregate masses and, hence, carbon sequestration. In addition to AggModel being a proof-of-concept, the advantage of a model that is based on measurable SOM fractions is that its internal structure and dynamics can be directly calibrated and validated by using experimental data. In conclusion, AggModel successfully incorporates the explicit representation for the turnover of soil aggregates and their influence on SOM dynamics and can form the basis for new SOM modules within existing ecosystem models.« less
White matter network alterations in patients with depersonalization/derealization disorder.
Sierk, Anika; Daniels, Judith K; Manthey, Antje; Kok, Jelmer G; Leemans, Alexander; Gaebler, Michael; Lamke, Jan-Peter; Kruschwitz, Johann; Walter, Henrik
2018-06-06
Depersonalization/derealization disorder (DPD) is a chronic and distressing condition characterized by detachment from oneself and/or the external world. Neuroimaging studies have associated DPD with structural and functional alterations in a variety of distinct brain regions. Such local neuronal changes might be mediated by altered interregional white matter connections. However, to our knowledge, no research on network characteristics in this patient population exists to date. We explored the structural connectome in 23 individuals with DPD and 23 matched, healthy controls by applying graph theory to diffusion tensor imaging data. Mean interregional fractional anisotropy (FA) was used to define the network weights. Group differences were assessed using network-based statistics and a link-based controlling procedure. Our main finding refers to lower FA values within left temporal and right temporoparietal regions in individuals with DPD than in healthy controls when using a link-based controlling procedure. These links were also associated with dissociative symptom severity and could not be explained by anxiety or depression scores. Using network-based statistics, no significant results emerged. However, we found a trend for 1 subnetwork that may support the model of frontolimbic dysbalance suggested to underlie DPD symptomatology. To ensure ecological validity, patients with certain comorbidities or psychotropic medication were included in the study. Confirmatory replications are necessary to corroborate the results of this explorative investigation. In patients with DPD, the structural connectivity between brain regions crucial for multimodal integration and emotion regulation may be altered. Aberrations in fibre tract communication seem to be not solely a secondary effect of local grey matter volume loss, but may present a primary pathophysiology in patients with DPD.
Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi
2017-05-01
Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction. © 2016 Society for the Study of Addiction.
Perivier, Maximilien; Delion, Matthieu; Chinier, Eva; Loustau, Sebastien; Nguyen, Sylvie; Ter Minassian, Aram; Richard, Isabelle; Dinomais, Mickael
2016-05-01
Cerebral Palsy (CP) is a group of permanent motor disorders due to non-progressive damage to the developing brain. Poor tactile discrimination is common in children with unilateral CP. Previous findings suggest the crucial role of structural integrity of the primary (S1) and secondary (S2) somatosensory areas located in the ipsilesional hemisphere for somatosensory function processing. However, no focus on the relationship between structural characteristics of ipsilesional S1 and S2 and tactile discrimination function in paretic hands has been proposed. Using structural MRI and a two-point discrimination assessment (2 PD), we explore this potential link in a group of 21 children (mean age 13 years and 7 months) with unilateral CP secondary to a periventricular white matter injury (PWMI) or middle cerebral artery infarct (MCA). For our whole sample there was a significant negative correlation between the 2 PD and the gray matter volume in the ipsilesional S2 (rho = -0.50 95% confidence interval [-0.76, -0.08], one-tailed p-value = 0.0109) and in the ipsilesional S1 (rho = -0.57, 95% confidence interval [-0.81, -0.19], one-tailed p-value = 0.0032). When studying these relationships with regard to the lesion types, we found these correlations were non-significant in the patients with PWMI but stronger in patients with MCA. According to our results, the degree of sensory impairment is related to the spared gray matter volume in ipsilesional S1 and S2 and is marked after an MCA stroke. Our work contributes to a better understanding of why some patients with CP have variable somatosensory deficit following an early brain lesion. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Focal Gray Matter Plasticity as a Function of Long Duration Bedrest: Preliminary Results
NASA Technical Reports Server (NTRS)
Koppelmans, V.; Erdeniz, B.; De Dios, Y. E.; Wood, S. J.; Reuter-Lorenz, P. A.; Kofman, I.; Bloomberg, J. J.; Mulavara, A. P.; Seidler, R. D.
2014-01-01
Long duration spaceflight (i.e., 22 days or longer) has been associated with changes in sensorimotor systems, resulting in difficulties that astronauts experience with posture control, locomotion, and manual control. It is unknown whether and how spaceflight impacts sensorimotor brain structure and function, and whether such changes may potentially underlie behavioral effects. Long duration head down tilt bed rest has been used repeatedly as an exclusionary analog to study microgravity effects on the sensorimotor system [1]. Bed rest mimics microgravity in body unloading and bodily fluid shifts. We are currently testing sensorimotor function, brain structure, and brain function pre and post a 70-day bed rest period. We will acquire the same measures on NASA crewmembers starting in 2014. Here we present the results of the first eight bed rest subjects. Subjects were assessed at 12 and 7 days before-, at 7, 30, and 70 days in-, and at 8 and 12 days post 70 days of bed rest at the NASA bed rest facility, UTMB, Galveston, TX, USA. At each time point structural MRI scans (i.e., high resolution T1-weighted imaging and Diffusion Tensor Imaging (DTI)) were obtained using a 3T Siemens scanner. Focal changes over time in gray matter density were assessed using the voxel based morphometry 8 (VBM8) toolbox under SPM. Focal changes in white matter microstructural integrity were assessed using tract based spatial statistics (TBSS) as part of the FMRIB software library (FSL). TBSS registers all DTI scans to standard space. It subsequently creates a study specific white matter skeleton of the major white matter tracts. Non-parametric permutation based t-tests and ANOVA's were used for voxel-wise comparison of the skeletons. For both VBM and TBSS, comparison of the two pre bed rest measurements did not show significant differences. VBM analysis revealed decreased gray matter density in bilateral areas including the frontal medial cortex, the insular cortex and the caudate nucleus from pre to in bed rest. Over the same time period, there was an increase in gray matter density in the cerebellum, occipital, and parietal cortices. The majority of these changes did not recover from during to post bed rest. TBSS analyses will also be presented. Extended bed rest, which is an analog for microgravity, can result in gray matter changes and potentially in microstructural white matter changes in areas that are important for neuromotor behavior and cognition. These changes did not recover at two weeks post bed rest. These results have significant public health implications, and will also aid in interpretation of our future data obtained pre and post spaceflight. Whether the effects of bed rest wear off at longer times post bed rest, and if they are associated with behavior are important questions that warrant further research.
Audio-visual integration through the parallel visual pathways.
Kaposvári, Péter; Csete, Gergő; Bognár, Anna; Csibri, Péter; Tóth, Eszter; Szabó, Nikoletta; Vécsei, László; Sáry, Gyula; Tamás Kincses, Zsigmond
2015-10-22
Audio-visual integration has been shown to be present in a wide range of different conditions, some of which are processed through the dorsal, and others through the ventral visual pathway. Whereas neuroimaging studies have revealed integration-related activity in the brain, there has been no imaging study of the possible role of segregated visual streams in audio-visual integration. We set out to determine how the different visual pathways participate in this communication. We investigated how audio-visual integration can be supported through the dorsal and ventral visual pathways during the double flash illusion. Low-contrast and chromatic isoluminant stimuli were used to drive preferably the dorsal and ventral pathways, respectively. In order to identify the anatomical substrates of the audio-visual interaction in the two conditions, the psychophysical results were correlated with the white matter integrity as measured by diffusion tensor imaging.The psychophysiological data revealed a robust double flash illusion in both conditions. A correlation between the psychophysical results and local fractional anisotropy was found in the occipito-parietal white matter in the low-contrast condition, while a similar correlation was found in the infero-temporal white matter in the chromatic isoluminant condition. Our results indicate that both of the parallel visual pathways may play a role in the audio-visual interaction. Copyright © 2015. Published by Elsevier B.V.
Tract-based analysis of white matter integrity in psychotic and nonpsychotic bipolar disorder.
Ji, Andrew; Godwin, Douglass; Rutlin, Jerrel; Kandala, Sridhar; Shimony, Joshua S; Mamah, Daniel
2017-02-01
At least 50% of individuals with bipolar disorder (BD) present with psychosis during their lifetime. Psychotic symptoms have sometimes been linked to specific genetic and phenotypic markers. This study aims to explore potential differences between bipolar disorder subtypes by measuring white matter integrity of the brain and relationships with clinical measures. Diffusion tensor imaging and clinical measures were acquired from 102 participants, grouped as psychotic bipolar disorder (PBD) (n=48), non-psychotic bipolar disorder (NBD) (n=24), and healthy controls (n=30). We utilized a powerful, automated tool (TRACULA: Tracts Constrained by Underlying Anatomy) to analyze the fractional anisotropy (FA) and mean diffusivity (MD) of 18 white matter tracts. Decreased FA in numerous tracts was observed in bipolar disorder groups compared to healthy controls: bilateral cingulum-cingulate gyrus bundles, corticospinal tracts, and superior longitudinal fasciculi as well as the right hemisphere cingulum-angular bundle. Only left uncinate fasciculus FA differed between PBD and NPBD groups. We found no group differences in MD. Positive symptoms correlated with FA in the superior (inversely) and inferior (directly) longitudinal fasciculi. Negative symptoms directly correlated with mean FA of the corticospinal tract and cingulum-angular bundle. Neurotropic, mood-stabilizing medication prescribed for individuals with BD may interact with measures of white matter integrity in our BD participants. Our results indicate decreased white matter coherence in BD. Minimal differences in white matter FA between PBD and NPBD participants suggest related underlying neurobiology. Copyright © 2016 Elsevier B.V. All rights reserved.
Neuropsychiatry and White Matter Microstructure in Huntington’s Disease
Gregory, Sarah; Scahill, Rachael I.; Seunarine, Kiran K.; Stopford, Cheryl; Zhang, Hui; Zhang, Jiaying; Orth, Michael; Durr, Alexandra; Roos, Raymund A.C.; Langbehn, Douglas R.; Long, Jeffrey D.; Johnson, Hans; Rees, Geraint; Tabrizi, Sarah J.; Craufurd, David
2015-01-01
Abstract Background: Neuropsychiatric symptoms in Huntington’s disease (HD) are often evident prior to clinical diagnosis. Apathy is highly correlated with disease progression, while depression and irritability occur at different stages of the disease, both before and after clinical onset. Little is understood about the neural bases of these neuropsychiatric symptoms and to what extent those neural bases are analogous to neuropsychiatric disorders in the general population. Objective: We used Diffusion Tensor Imaging (DTI) to investigate structural connectivity between brain regions and any putative microstructural changes associated with depression, apathy and irritability in HD. Methods: DTI data were collected from 39 premanifest and 45 early-HD participants in the Track-HD study and analysed using whole-brain Tract-Based Spatial Statistics. We used regression analyses to identify white matter tracts whose structural integrity (as measured by fractional anisotropy, FA) was correlated with HADS-depression, PBA-apathy or PBA-irritability scores in gene-carriers and related to cumulative probability to onset (CPO). Results: For those with the highest CPO, we found significant correlations between depression scores and reduced FA in the splenium of the corpus callosum. In contrast, those with lowest CPO demonstrated significant correlations between irritability scores and widespread FA reductions. There was no significant relationship between apathy and FA throughout the whole brain. Conclusions: We demonstrate that white matter changes associated with both depression and irritability in HD occur at different stages of disease progression concomitant with their clinical presentation. PMID:26443926
Development of a Human Brain Diffusion Tensor Template
Peng, Huiling; Orlichenko, Anton; Dawe, Robert J.; Agam, Gady; Zhang, Shengwei; Arfanakis, Konstantinos
2009-01-01
The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the development of a white matter atlas. Previous efforts to produce a DTI brain template have been compromised by factors related to image quality, the effectiveness of the image registration approach, the appropriateness of subject inclusion criteria, the completeness and accuracy of the information summarized in the final template. The purpose of this work was to develop a DTI human brain template using techniques that address the shortcomings of previous efforts. Therefore, data containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-group with relatively similar diffusion characteristics (20–40 years of age), using an appropriate DTI acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional anisotropy images was employed. DTI brain templates containing median and mean tensors were produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is characterized by higher image sharpness, provides the ability to distinguish smaller white matter fiber structures, contains fewer image artifacts, than previously developed templates, and to our knowledge, is one of only two templates produced based on a relatively large number of subjects. Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group level than mean tensors. Finally, white matter fiber tractography was applied on the template and several fiber-bundles were traced. PMID:19341801
Development of a human brain diffusion tensor template.
Peng, Huiling; Orlichenko, Anton; Dawe, Robert J; Agam, Gady; Zhang, Shengwei; Arfanakis, Konstantinos
2009-07-15
The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the development of a white matter atlas. Previous efforts to produce a DTI brain template have been compromised by factors related to image quality, the effectiveness of the image registration approach, the appropriateness of subject inclusion criteria, and the completeness and accuracy of the information summarized in the final template. The purpose of this work was to develop a DTI human brain template using techniques that address the shortcomings of previous efforts. Therefore, data containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-group with relatively similar diffusion characteristics (20-40 years of age), using an appropriate DTI acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional anisotropy images was employed. DTI brain templates containing median and mean tensors were produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is characterized by higher image sharpness, provides the ability to distinguish smaller white matter fiber structures, contains fewer image artifacts, than previously developed templates, and to our knowledge, is one of only two templates produced based on a relatively large number of subjects. Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group level than mean tensors. Finally, white matter fiber tractography was applied on the template and several fiber-bundles were traced.
Bick, Johanna; Zhu, Tong; Stamoulis, Catherine; Fox, Nathan A; Zeanah, Charles; Nelson, Charles A
2015-03-01
Severe neglect in early life is associated with compromises in brain development and associated behavioral functioning. Although early intervention has been shown to support more normative trajectories of brain development, specific improvements in the white matter pathways that underlie emotional and cognitive development are unknown. To examine associations among neglect in early life, early intervention, and the microstructural integrity of white matter pathways in middle childhood. The Bucharest Early Intervention Project is a randomized clinical trial of high-quality foster care as an intervention for institutionally reared children in Bucharest, Romania, from 2000 through the present. During infancy, children were randomly selected to remain in an institution or to be placed in foster care. Those who remained in institutions experienced neglect, including social, emotional, linguistic, and cognitive impoverishment. Developmental trajectories of these children were compared with a group of sociodemographically matched children reared in biological families at baseline and several points throughout development. At approximately 8 years of age, 69 of the original 136 children underwent structural magnetic resonance imaging scans. Four estimates of white matter integrity (fractional anisotropy [FA] and mean [MD], radial [RD], and axial [AD] diffusivity) for 48 white matter tracts throughout the brain were obtained through diffusion tensor imaging. Significant associations emerged between neglect in early life and microstructural integrity of the body of the corpus callosum (FA, β = 0.01 [P = .01]; RD, β = -0.02 [P = .005]; MD, β = -0.01 [P = .02]) and tracts involved in limbic circuitry (fornix crus [AD, β = 0.02 (P = .046)] and cingulum [RD, β = -0.01 (P = .02); MD, β = -0.01 (P = .049)]), frontostriatal circuitry (anterior [AD, β = -0.01 (P = .02)] and superior [AD, β = -0.02 (P = .02); MD, β = -0.01 (P = .03)] corona radiata and external capsule [right FA, β = 0.01 (P = .03); left FA, β = 0.01 (P = .03); RD, β = -0.01 (P = .01); MD, β = -0.01 (P = .03)]), and sensory processing (medial lemniscus [AD, β = -0.02 (P = .045); MD, β = -0.01 (P = .04)] and retrolenticular internal capsule [FA, β = -0.01 (P = .002); RD, β = 0.01 (P = .003); MD, β = 0.01 (P = .04)]). Follow-up analyses revealed that early intervention promoted more normative white matter development among previously neglected children who entered foster care. Results suggest that removal from conditions of neglect in early life and entry into a high-quality family environment can support more normative trajectories of white matter growth. Our findings have implications for public health and policy efforts designed to promote normative brain development among vulnerable children. clinicaltrials.gov Identifier: NCT00747396.
Multimodal imaging of mild traumatic brain injury and persistent postconcussion syndrome.
Dean, Philip Ja; Sato, Joao R; Vieira, Gilson; McNamara, Adam; Sterr, Annette
2015-01-01
Persistent postconcussion syndrome (PCS) occurs in around 5-10% of individuals after mild traumatic brain injury (mTBI), but research into the underlying biology of these ongoing symptoms is limited and inconsistent. One reason for this could be the heterogeneity inherent to mTBI, with individualized injury mechanisms and psychological factors. A multimodal imaging study may be able to characterize the injury better. To look at the relationship between functional (fMRI), structural (diffusion tensor imaging), and metabolic (magnetic resonance spectroscopy) data in the same participants in the long term (>1 year) after injury. It was hypothesized that only those mTBI participants with persistent PCS would show functional changes, and that these changes would be related to reduced structural integrity and altered metabolite concentrations. Functional changes associated with persistent PCS after mTBI (>1 year postinjury) were investigated in participants with and without PCS (both n = 8) and non-head injured participants (n = 9) during performance of working memory and attention/processing speed tasks. Correlation analyses were performed to look at the relationship between the functional data and structural and metabolic alterations in the same participants. There were no behavioral differences between the groups, but participants with greater PCS symptoms exhibited greater activation in attention-related areas (anterior cingulate), along with reduced activation in temporal, default mode network, and working memory areas (left prefrontal) as cognitive load was increased from the easiest to the most difficult task. Functional changes in these areas correlated with reduced structural integrity in corpus callosum and anterior white matter, and reduced creatine concentration in right dorsolateral prefrontal cortex. These data suggest that the top-down attentional regulation and deactivation of task-irrelevant areas may be compensating for the reduction in working memory capacity and variation in white matter transmission caused by the structural and metabolic changes after injury. This may in turn be contributing to secondary PCS symptoms such as fatigue and headache. Further research is required using multimodal data to investigate the mechanisms of injury after mTBI, but also to aid individualized diagnosis and prognosis.
Willem, Annick; Gemmel, Paul
2013-06-24
Health care networks are widely used and accepted as an organizational form that enables integrated care as well as dealing with complex matters in health care. However, research on the governance of health care networks lags behind. The research aim of our study is to explore the type and importance of governance structure and governance mechanisms for network effectiveness. The study has a multiple case study design and covers 22 health care networks. Using a configuration view, combinations of network governance and other network characteristics were studied on the level of the network. Based on interview and questionnaire data, network characteristics were identified and patterns in the data looked for. Neither a dominant (or optimal) governance structure or mechanism nor a perfect fit among governance and other characteristics were revealed, but a number of characteristics that need further study might be related to effective networks such as the role of governmental agencies, legitimacy, and relational, hierarchical, and contractual governance mechanisms as complementary factors. Although the results emphasize the situational character of network governance and effectiveness, they give practitioners in the health care sector indications of which factors might be more or less crucial for network effectiveness.
Longitudinal association between hippocampus atrophy and episodic-memory decline.
Gorbach, Tetiana; Pudas, Sara; Lundquist, Anders; Orädd, Greger; Josefsson, Maria; Salami, Alireza; de Luna, Xavier; Nyberg, Lars
2017-03-01
There is marked variability in both onset and rate of episodic-memory decline in aging. Structural magnetic resonance imaging studies have revealed that the extent of age-related brain changes varies markedly across individuals. Past studies of whether regional atrophy accounts for episodic-memory decline in aging have yielded inconclusive findings. Here we related 15-year changes in episodic memory to 4-year changes in cortical and subcortical gray matter volume and in white-matter connectivity and lesions. In addition, changes in word fluency, fluid IQ (Block Design), and processing speed were estimated and related to structural brain changes. Significant negative change over time was observed for all cognitive and brain measures. A robust brain-cognition change-change association was observed for episodic-memory decline and atrophy in the hippocampus. This association was significant for older (65-80 years) but not middle-aged (55-60 years) participants and not sensitive to the assumption of ignorable attrition. Thus, these longitudinal findings highlight medial-temporal lobe system integrity as particularly crucial for maintaining episodic-memory functioning in older age. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
ERIC Educational Resources Information Center
Shukla, Dinesh K.; Keehn, Brandon; Lincoln, Alan J.; Muller, Ralph-Axel
2010-01-01
Objective: Autism spectrum disorder (ASD) is increasingly viewed as a disorder of functional networks, highlighting the importance of investigating white matter and interregional connectivity. We used diffusion tensor imaging (DTI) to examine white matter integrity for the whole brain and for corpus callosum, internal capsule, and middle…
Assessment of soil health and fertility indicators with mobile phone imagery
NASA Astrophysics Data System (ADS)
Aitkenhead, Matt; Gwatkin, Richard; Coull, Malcolm; Donnelly, David
2015-04-01
Work on rapid soil assessment in the field has led to many hand-held sensors for soil monitoring (e.g. NIR, FTIR, XRF). Recent work by a research team at the James Hutton Institute has led to an integrated framework of mobile phones, apps and server-side processing. One example of this is the SOCIT app for estimating soil organic matter and carbon using geolocated mobile phone camera imagery. The SOCIT app is only applicable for agricultural soils in Scotland, and our intention is to expand this work both geographically and in functional ability. Ongoing work for the development of a prototype app for estimating soil characteristics across Europe using mobile phone imagery and the JRC LUCAS dataset will be described. Additionally, we will demonstrate recent work in estimating a number of soil health indicators from more detailed analysis of soil photographs. Accuracy levels achieved for estimating soil organic matter and organic carbon content, pH, structure, cation exchange capacity and texture vary and are not as good as those achieved with laboratory analysis, but are suitable for rapid field-based assessment. Issues relating to this work include colour stabilisation and calibration, integration with data on site characteristics, data processing, model development and the ethical use of data captured by others, and each of these topics will also be discussed.
A Dietary Treatment Improves Cerebral Blood Flow and Brain Connectivity in Aging apoE4 Mice
Wiesmann, Maximilian; Zerbi, Valerio; Jansen, Diane; Haast, Roy; Lütjohann, Dieter; Broersen, Laus M.; Heerschap, Arend
2016-01-01
APOE ε4 (apoE4) polymorphism is the main genetic determinant of sporadic Alzheimer's disease (AD). A dietary approach (Fortasyn) including docosahexaenoic acid, eicosapentaenoic acid, uridine, choline, phospholipids, folic acid, vitamins B12, B6, C, and E, and selenium has been proposed for dietary management of AD. We hypothesize that the diet could inhibit AD-like pathologies in apoE4 mice, specifically cerebrovascular and connectivity impairment. Moreover, we evaluated the diet effect on cerebral blood flow (CBF), functional connectivity (FC), gray/white matter integrity, and postsynaptic density in aging apoE4 mice. At 10–12 months, apoE4 mice did not display prominent pathological differences compared to wild-type (WT) mice. However, 16–18-month-old apoE4 mice revealed reduced CBF and accelerated synaptic loss. The diet increased cortical CBF and amount of synapses and improved white matter integrity and FC in both aging apoE4 and WT mice. We demonstrated that protective mechanisms on vascular and synapse health are enhanced by Fortasyn, independent of apoE genotype. We further showed the efficacy of a multimodal translational approach, including advanced MR neuroimaging, to study dietary intervention on brain structure and function in aging. PMID:27034849
Wirth, Miranka; Pichet Binette, Alexa; Brunecker, Peter; Köbe, Theresa; Witte, A Veronica; Flöel, Agnes
2017-03-01
Reductions of cerebral blood flow and gray matter structure have been implicated in early pathogenesis of Alzheimer's disease, potentially providing complementary information. The present study evaluated regional patterns of cerebral hypoperfusion and atrophy in patients with mild cognitive impairment and healthy older adults. In each participant, cerebral perfusion and gray matter structure were extracted within selected brain regions vulnerable to Alzheimer's disease using magnetic resonance imaging. Measures were compared between diagnostic groups with/without adjustment for covariates. In mild cognitive impairment patients, cerebral blood flow was significantly reduced in comparison with healthy controls in temporo-parietal regions and the basal ganglia in the absence of local gray matter atrophy. By contrast, gray matter structure was significantly reduced in the hippocampus in the absence of local hypoperfusion. Both, cerebral perfusion and gray matter structure were significantly reduced in the entorhinal and isthmus cingulate cortex in mild cognitive impairment patients compared with healthy older adults. Our results demonstrated partly divergent patterns of temporo-parietal hypoperfusion and medial-temporal atrophy in mild cognitive impairment patients, potentially indicating biomarker sensitivity to dissociable pathological mechanisms. The findings support applicability of cerebral perfusion and gray matter structure as complementary magnetic resonance imaging-based biomarkers in early Alzheimer's disease detection, a hypothesis to be further evaluated in longitudinal studies.
Pfefferbaum, Adolf; Rohlfing, Torsten; Pohl, Kilian M; Lane, Barton; Chu, Weiwei; Kwon, Dongjin; Nolan Nichols, B; Brown, Sandra A; Tapert, Susan F; Cummins, Kevin; Thompson, Wesley K; Brumback, Ty; Meloy, M J; Jernigan, Terry L; Dale, Anders; Colrain, Ian M; Baker, Fiona C; Prouty, Devin; De Bellis, Michael D; Voyvodic, James T; Clark, Duncan B; Luna, Beatriz; Chung, Tammy; Nagel, Bonnie J; Sullivan, Edith V
2016-10-01
Brain structural development continues throughout adolescence, when experimentation with alcohol is often initiated. To parse contributions from biological and environmental factors on neurodevelopment, this study used baseline National Consortium on Alcohol and NeuroDevelopment in Adolescence (NCANDA) magnetic resonance imaging (MRI) data, acquired in 674 adolescents meeting no/low alcohol or drug use criteria and 134 adolescents exceeding criteria. Spatial integrity of images across the 5 recruitment sites was assured by morphological scaling using Alzheimer's disease neuroimaging initiative phantom-derived volume scalar metrics. Clinical MRI readings identified structural anomalies in 11.4%. Cortical volume and thickness were smaller and white matter volumes were larger in older than in younger adolescents. Effects of sex (male > female) and ethnicity (majority > minority) were significant for volume and surface but minimal for cortical thickness. Adjusting volume and area for supratentorial volume attenuated or removed sex and ethnicity effects. That cortical thickness showed age-related decline and was unrelated to supratentorial volume is consistent with the radial unit hypothesis, suggesting a universal neural development characteristic robust to sex and ethnicity. Comparison of NCANDA with PING data revealed similar but flatter, age-related declines in cortical volumes and thickness. Smaller, thinner frontal, and temporal cortices in the exceeds-criteria than no/low-drinking group suggested untoward effects of excessive alcohol consumption on brain structural development. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Farrar, Danielle; Budson, Andrew E
2017-04-01
While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.
NASA Astrophysics Data System (ADS)
Sari, Anggi Ristiyana Puspita; Suyanta, LFX, Endang Widjajanti; Rohaeti, Eli
2017-05-01
Recognizing the importance of the development of critical thinking and science process skills, the instrument should give attention to the characteristics of chemistry. Therefore, constructing an accurate instrument for measuring those skills is important. However, the integrated instrument assessment is limited in number. The purpose of this study is to validate an integrated assessment instrument for measuring students' critical thinking and science process skills on acid base matter. The development model of the test instrument adapted McIntire model. The sample consisted of 392 second grade high school students in the academic year of 2015/2016 in Yogyakarta. Exploratory Factor Analysis (EFA) was conducted to explore construct validity, whereas content validity was substantiated by Aiken's formula. The result shows that the KMO test is 0.714 which indicates sufficient items for each factor and the Bartlett test is significant (a significance value of less than 0.05). Furthermore, content validity coefficient which is based on 8 experts is obtained at 0.85. The findings support the integrated assessment instrument to measure critical thinking and science process skills on acid base matter.
Sexual dimorphism of Broca's region: More gray matter in female brains in Brodmann areas 44 and 45.
Kurth, Florian; Jancke, Lutz; Luders, Eileen
2017-01-02
Although a sexual dimorphism in brain structure is generally well established, evidence for sex differences in Brodmann areas (BA) 44 and 45 is inconclusive. This may be due to the difficulty of accurately defining BA 44 and BA 45 in magnetic resonance images, given that these regions are variable in their location and extent and that they do not match well with macroanatomic landmarks. Here we set out to test for possible sex differences in the local gray matter of BA 44/45 by integrating imaging-based signal intensities with cytoarchitectonically defined tissue probabilities in a sample of 50 male and 50 female subjects. In addition to testing for sex differences with respect to left- and right-hemispheric measures of BA 44/45, we also assessed possible sex differences in BA 44/45 asymmetry. Our analyses revealed significantly larger gray matter volumes in females compared with males for BA 44 and BA 45 bilaterally. However, there was a lack of significant sex differences in BA 44/45 asymmetry. These results corroborate reports of a language-related female superiority, particularly with respect to verbal fluency and verbal memory tasks. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
White matter changes linked to visual recovery after nerve decompression
Paul, David A.; Gaffin-Cahn, Elon; Hintz, Eric B.; Adeclat, Giscard J.; Zhu, Tong; Williams, Zoë R.; Vates, G. Edward; Mahon, Bradford Z.
2015-01-01
The relationship between the integrity of white matter tracts and cortical function in the human brain remains poorly understood. Here we use a model of reversible white matter injury, compression of the optic chiasm by tumors of the pituitary gland, to study the structural and functional changes that attend spontaneous recovery of cortical function and visual abilities after surgical tumor removal and subsequent decompression of the nerves. We show that compression of the optic chiasm leads to demyelination of the optic tracts, which reverses as quickly as 4 weeks after nerve decompression. Furthermore, variability across patients in the severity of demyelination in the optic tracts predicts visual ability and functional activity in early cortical visual areas, and pre-operative measurements of myelination in the optic tracts predicts the magnitude of visual recovery after surgery. These data indicate that rapid regeneration of myelin in the human brain is a significant component of the normalization of cortical activity, and ultimately the recovery of sensory and cognitive function, after nerve decompression. More generally, our findings demonstrate the utility of diffusion tensor imaging as an in vivo measure of myelination in the human brain. PMID:25504884
Resilience, integrated development and family planning: building long-term solutions.
De Souza, Roger-Mark
2014-05-01
For the many individuals and communities experiencing natural disasters and environmental degradation, building resilience means becoming more proficient at anticipating, preventing, recovering, and rebuilding following negative shocks and stresses. Development practitioners have been working to build this proficiency in vulnerable communities around the world for several decades. This article first examines the meaning of resilience as a component of responding to disasters and some of the key components of building resilience. It then summarises approaches to resilience developed by the Rockefeller and Packard Foundations, the Intergovernmental Panel on Climate Change, USAID and DFID, which show how family planning services can contribute to resilience. Next, it gives some examples of how family planning has been integrated into some current environment and development programmes. Finally, it describes how these integrated programmes have succeeded in helping communities to diversify livelihoods, bolster community engagement and resilience, build new governance structures, and position women as agents of change. Copyright © 2014 Reproductive Health Matters. Published by Elsevier Ltd. All rights reserved.
Ferreiro, Diego U; Komives, Elizabeth A; Wolynes, Peter G
2014-11-01
Biomolecules are the prime information processing elements of living matter. Most of these inanimate systems are polymers that compute their own structures and dynamics using as input seemingly random character strings of their sequence, following which they coalesce and perform integrated cellular functions. In large computational systems with finite interaction-codes, the appearance of conflicting goals is inevitable. Simple conflicting forces can lead to quite complex structures and behaviors, leading to the concept of frustration in condensed matter. We present here some basic ideas about frustration in biomolecules and how the frustration concept leads to a better appreciation of many aspects of the architecture of biomolecules, and especially how biomolecular structure connects to function by means of localized frustration. These ideas are simultaneously both seductively simple and perilously subtle to grasp completely. The energy landscape theory of protein folding provides a framework for quantifying frustration in large systems and has been implemented at many levels of description. We first review the notion of frustration from the areas of abstract logic and its uses in simple condensed matter systems. We discuss then how the frustration concept applies specifically to heteropolymers, testing folding landscape theory in computer simulations of protein models and in experimentally accessible systems. Studying the aspects of frustration averaged over many proteins provides ways to infer energy functions useful for reliable structure prediction. We discuss how frustration affects folding mechanisms. We review here how the biological functions of proteins are related to subtle local physical frustration effects and how frustration influences the appearance of metastable states, the nature of binding processes, catalysis and allosteric transitions. In this review, we also emphasize that frustration, far from being always a bad thing, is an essential feature of biomolecules that allows dynamics to be harnessed for function. In this way, we hope to illustrate how Frustration is a fundamental concept in molecular biology.
Buckalew, Neilly; Haut, Marc W.; Aizenstein, Howard; Morrow, Lisa; Perera, Subashan; Kuwabara, Hiroto; Weiner, Debra K.
2010-01-01
Objective The primary aim of this pilot study was to identify structural and functional brain differences in older adults with self-reported disabling chronic low back pain (CLBP) compared with those who reported non-disabling CLBP. Design Cross-sectional. Participants Sixteen cognitively intact older adults, eight with disabling CLBP and eight with non-disabling. Exclusions were psychiatric or neurological disorders, substance abuse, opioid use, or diabetes mellitus. Methods Participants underwent: structural and functional brain MRI; neuropsychological assessment using the Repeatable Battery for the Assessment of Neuropsychological Status, Trail Making Tests A and B; and physical performance assessment using the Short Physical Performance Battery. Results In the disabled group there was significantly lower white matter (WM) integrity (P < 0.05) of the splenium of the corpus callosum. This group also demonstrated activation of the right medial prefrontal cortex at rest whereas the non-disabled demonstrated activation of the left lateral prefrontal cortex. Combined groups analysis revealed a strong positive correlation (rs = 0.80, P < 0.0002) between WM integrity of the left centrum semiovale with gait-speed. Secondary analysis revealed a strong negative correlation between total months of CLBP and WM integrity of the SCC (rs = −0.59, P < 0.02). Conclusions Brain structure and function is different in older adults with disabling CLBP compared to those with non-disabling CLBP. Deficits in brain morphology combining groups are associated with pain duration and poor physical function. Our findings suggest brain structure and function may play a key role in chronic-pain-related-disability and may be important treatment targets. PMID:20609128
Differentiating between bipolar and unipolar depression in functional and structural MRI studies.
Han, Kyu-Man; De Berardis, Domenico; Fornaro, Michele; Kim, Yong-Ku
2018-03-28
Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification. Copyright © 2018 Elsevier Inc. All rights reserved.
Carbon-Based Honeycomb Monoliths for Environmental Gas-Phase Applications
Moreno-Castilla, Carlos; Pérez-Cadenas, Agustín F.
2010-01-01
Honeycomb monoliths consist of a large number of parallel channels that provide high contact efficiencies between the monolith and gas flow streams. These structures are used as adsorbents or supports for catalysts when large gas volumes are treated, because they offer very low pressure drop, short diffusion lengths and no obstruction by particulate matter. Carbon-based honeycomb monoliths can be integral or carbon-coated ceramic monoliths, and they take advantage of the versatility of the surface area, pore texture and surface chemistry of carbon materials. Here, we review the preparation methods of these monoliths, their characteristics and environmental applications.
White Matter Integrity and Pictorial Reasoning in High-Functioning Children with Autism
Sahyoun, Chérif P.; Belliveau, John W.; Mody, Maria
2010-01-01
The current study investigated the neurobiological role of white matter in visuospatial versus linguistic processing abilities in autism using diffusion tensor imaging. We examined differences in white matter integrity between high-functioning children with autism (HFA) and typically developing controls (CTRL), in relation to the groups’ response times (RT) on a pictorial reasoning task under three conditions: visuospatial, V, semantic, S, and V+S, a hybrid condition allowing language use to facilitate visuospatial transformations. Diffusion-weighted images were collected from HFA and CTRL participants, matched on age and IQ, and significance maps were computed for group differences in fractional anisotropy (FA) and in RT-FA association for each condition. Typically developing children showed increased FA within frontal white matter and the superior longitudinal fasciculus (SLF). HFA showed increased FA within peripheral white matter, including the ventral temporal lobe. Additionally, RT-FA relationships in the semantic condition (S) implicated white matter near the STG and in the SLF within the temporal and frontal lobes to a greater extent in CTRL. Performance in visuospatial reasoning (V, V+S), in comparison, was related to peripheral parietal and superior precentral white matter in HFA, but to the SLF, callosal, and frontal white matter in CTRL. Our results appear to support a preferential use of linguistically-mediated pathways in reasoning by typically-developing children, whereas autistic cognition may rely more on visuospatial processing networks. PMID:20542370
Ultrafast electron microscopy integrated with a direct electron detection camera.
Lee, Young Min; Kim, Young Jae; Kim, Ye-Jin; Kwon, Oh-Hoon
2017-07-01
In the past decade, we have witnessed the rapid growth of the field of ultrafast electron microscopy (UEM), which provides intuitive means to watch atomic and molecular motions of matter. Yet, because of the limited current of the pulsed electron beam resulting from space-charge effects, observations have been mainly made to periodic motions of the crystalline structure of hundreds of nanometers or higher by stroboscopic imaging at high repetition rates. Here, we develop an advanced UEM with robust capabilities for circumventing the present limitations by integrating a direct electron detection camera for the first time which allows for imaging at low repetition rates. This approach is expected to promote UEM to a more powerful platform to visualize molecular and collective motions and dissect fundamental physical, chemical, and materials phenomena in space and time.
White Matter Changes and Confrontation Naming in Retired Aging National Football League Athletes.
Strain, Jeremy F; Didehbani, Nyaz; Spence, Jeffrey; Conover, Heather; Bartz, Elizabeth K; Mansinghani, Sethesh; Jeroudi, Myrtle K; Rao, Neena K; Fields, Lindy M; Kraut, Michael A; Cullum, C Munro; Hart, John; Womack, Kyle B
2017-01-15
Using diffusion tensor imaging (DTI), we assessed the relationship of white matter integrity and performance on the Boston Naming Test (BNT) in a group of retired professional football players and a control group. We examined correlations between fractional anisotropy (FA) and mean diffusivity (MD) with BNT T-scores in an unbiased voxelwise analysis processed with tract-based spatial statistics (TBSS). We also analyzed the DTI data by grouping voxels together as white matter tracts and testing each tract's association with BNT T-scores. Significant voxelwise correlations between FA and BNT performance were only seen in the retired football players (p < 0.02). Two tracts had mean FA values that significantly correlated with BNT performance: forceps minor and forceps major. White matter integrity is important for distributed cognitive processes, and disruption correlates with diminished performance in athletes exposed to concussive and subconcussive brain injuries, but not in controls without such exposure.
Testosterone affects language areas of the adult human brain
Hahn, Andreas; Kranz, Georg S.; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F.
2016-01-01
Abstract Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high‐dose hormone application in adult female‐to‐male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel‐based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting‐state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone‐dependent neuroplastic adaptations in adulthood within language‐specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738–1748, 2016. © 2016 Wiley Periodicals, Inc. PMID:26876303
Testosterone affects language areas of the adult human brain.
Hahn, Andreas; Kranz, Georg S; Sladky, Ronald; Kaufmann, Ulrike; Ganger, Sebastian; Hummer, Allan; Seiger, Rene; Spies, Marie; Vanicek, Thomas; Winkler, Dietmar; Kasper, Siegfried; Windischberger, Christian; Swaab, Dick F; Lanzenberger, Rupert
2016-05-01
Although the sex steroid hormone testosterone is integrally involved in the development of language processing, ethical considerations mostly limit investigations to single hormone administrations. To circumvent this issue we assessed the influence of continuous high-dose hormone application in adult female-to-male transsexuals. Subjects underwent magnetic resonance imaging before and after 4 weeks of testosterone treatment, with each scan including structural, diffusion weighted and functional imaging. Voxel-based morphometry analysis showed decreased gray matter volume with increasing levels of bioavailable testosterone exclusively in Broca's and Wernicke's areas. Particularly, this may link known sex differences in language performance to the influence of testosterone on relevant brain regions. Using probabilistic tractography, we further observed that longitudinal changes in testosterone negatively predicted changes in mean diffusivity of the corresponding structural connection passing through the extreme capsule. Considering a related increase in myelin staining in rodents, this potentially reflects a strengthening of the fiber tract particularly involved in language comprehension. Finally, functional images at resting-state were evaluated, showing increased functional connectivity between the two brain regions with increasing testosterone levels. These findings suggest testosterone-dependent neuroplastic adaptations in adulthood within language-specific brain regions and connections. Importantly, deteriorations in gray matter volume seem to be compensated by enhancement of corresponding structural and functional connectivity. Hum Brain Mapp 37:1738-1748, 2016. © 2016 Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Constraints and spandrels of interareal connectomes
Rubinov, Mikail
2016-01-01
Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls. PMID:27924867
Constraints and spandrels of interareal connectomes.
Rubinov, Mikail
2016-12-07
Interareal connectomes are whole-brain wiring diagrams of white-matter pathways. Recent studies have identified modules, hubs, module hierarchies and rich clubs as structural hallmarks of these wiring diagrams. An influential current theory postulates that connectome modules are adequately explained by evolutionary pressures for wiring economy, but that the other hallmarks are not explained by such pressures and are therefore less trivial. Here, we use constraint network models to test these postulates in current gold-standard vertebrate and invertebrate interareal-connectome reconstructions. We show that empirical wiring-cost constraints inadequately explain connectome module organization, and that simultaneous module and hub constraints induce the structural byproducts of hierarchies and rich clubs. These byproducts, known as spandrels in evolutionary biology, include the structural substrate of the default-mode network. Our results imply that currently standard connectome characterizations are based on circular analyses or double dipping, and we emphasize an integrative approach to future connectome analyses for avoiding such pitfalls.
ERIC Educational Resources Information Center
Arnts, Hisse; Kleinnijenhuis, Michiel; Kooloos, Jan G. M.; Schepens-Franke, Annelieke N.; van Cappellen van Walsum, Anne-Marie
2014-01-01
In recent years, there has been a growing interest in white matter anatomy of the human brain. With advances in brain imaging techniques, the significance of white matter integrity for brain function has been demonstrated in various neurological and psychiatric disorders. As the demand for interpretation of clinical and imaging data on white…
Shollenbarger, Skyler G; Price, Jenessa; Wieser, Jon; Lisdahl, Krista
2015-01-01
The heaviest period of cannabis use coincides with ongoing white matter (WM) maturation. Further, cannabis-related changes may be moderated by FAAH genotype (rs324420). We examined the association between cannabis use and FAAH genotype on frontolimbic WM integrity in adolescents and emerging adults. We then tested whether observed WM abnormalities were linked with depressive or apathy symptoms. Participants included 37 cannabis users and 37 healthy controls (33 female; ages 18-25). Multiple regressions examined the independent and interactive effects of variables on WM integrity. Regular cannabis users demonstrated reduced WM integrity in the bilateral uncinate fasciculus (UNC) (MD, right: p = .009 and left: p = .009; FA, right: p = .04 and left: p = .03) and forceps minor (fMinor) (MD, p = .03) compared to healthy controls. Marginally reduced WM integrity in the cannabis users was found in the left anterior thalamic radiation (ATR) (FA, p = .08). Cannabis group ∗ FAAH genotype interaction predicted WM integrity in bilateral ATR (FA, right: p = .05 and left: p = .001) and fMinor (FA, p = .02). In cannabis users, poorer WM integrity was correlated with increased symptoms of depression and apathy in bilateral ATR and UNC. Consistent with prior findings, cannabis use was associated with reduced frontolimbic WM integrity. WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying controls had reduced WM integrity compared to control C/C carriers. Observed frontolimbic white matter abnormalities were linked with increased depressive and apathy symptoms in the cannabis users.
Shollenbarger, Skyler G.; Price, Jenessa; Wieser, Jon; Lisdahl, Krista
2015-01-01
Background The heaviest period of cannabis use coincides with ongoing white matter (WM) maturation. Further, cannabis-related changes may be moderated by FAAH genotype (rs324420). We examined the association between cannabis use and FAAH genotype on frontolimbic WM integrity in adolescents and emerging adults. We then tested whether observed WM abnormalities were linked with depressive or apathy symptoms. Methods Participants included 37 cannabis users and 37 healthy controls (33 female; ages 18–25). Multiple regressions examined the independent and interactive effects of variables on WM integrity. Results Regular cannabis users demonstrated reduced WM integrity in the bilateral uncinate fasciculus (UNC) (MD, right: p = .009 and left: p = .009; FA, right: p = .04 and left: p = .03) and forceps minor (fMinor) (MD, p = .03) compared to healthy controls. Marginally reduced WM integrity in the cannabis users was found in the left anterior thalamic radiation (ATR) (FA, p = .08). Cannabis group ∗ FAAH genotype interaction predicted WM integrity in bilateral ATR (FA, right: p = .05 and left: p = .001) and fMinor (FA, p = .02). In cannabis users, poorer WM integrity was correlated with increased symptoms of depression and apathy in bilateral ATR and UNC. Conclusions Consistent with prior findings, cannabis use was associated with reduced frontolimbic WM integrity. WM integrity was also moderated by FAAH genotype, in that cannabis-using FAAH C/C carriers and A carrying controls had reduced WM integrity compared to control C/C carriers. Observed frontolimbic white matter abnormalities were linked with increased depressive and apathy symptoms in the cannabis users. PMID:26106535
Longitudinal changes in white matter integrity among adolescent substance users.
Bava, Sunita; Jacobus, Joanna; Thayer, Rachel E; Tapert, Susan F
2013-01-01
The influence of repeated substance use during adolescent neurodevelopment remains unclear as there have been few prospective investigations. The aims of this study were to identify longitudinal changes in fiber tract integrity associated with alcohol- and marijuana-use severity over the course of 1.5 years. Adolescents with extensive marijuana- and alcohol-use histories by mid-adolescence (n = 41) and youth with consistently minimal if any substance use (n = 51) were followed over 18 months. Teens received diffusion tensor imaging and detailed substance-use assessments with toxicology screening at baseline and 18-month follow-ups (i.e., 182 scans in all), as well as interim substance-use interviews each 6 months. At an 18-month follow-up, substance users showed poorer white matter integrity in 7 tracts: (i) right superior longitudinal fasciculus, (ii) left superior longitudinal fasciculus, (iii) right posterior thalamic radiations, (iv) right prefrontal thalamic fibers, (v) right superior temporal gyrus white matter, (vi) right inferior longitudinal fasciculus, and (vii) left posterior corona radiata (ps < 0.01). More alcohol use during the interscan interval predicted higher mean diffusivity (i.e., worsened integrity) in right (p < 0.05) and left (p = 0.06) superior longitudinal fasciculi, above and beyond baseline values in these bundles. Marijuana use during the interscan interval did not predict change over time. More externalizing behaviors at Time 1 predicted lower fractional anisotropy and higher radial diffusivity (i.e., poorer integrity) of the right prefrontal thalamic fibers (p < 0.025). Findings add to previous cross-sectional studies reporting white matter disadvantages in youth with substance-use histories. In particular, alcohol use during adolescent neurodevelopment may be linked to reductions in white matter quality in association fiber tracts with frontal connections. In contrast, youth who engage in a variety of risk-taking behaviors may have unique neurodevelopmental trajectories characterized by truncated development in fronto-thalamic tracts, which could have functional and clinical consequences in young adulthood. Copyright © 2012 by the Research Society on Alcoholism.
Monge, Zachary A.; Greenwood, Pamela M.; Parasuraman, Raja; Strenziok, Maren
2016-01-01
Objective Although reasoning and attention are two cognitive processes necessary for ensuring the efficiency of many everyday activities in older adults, the role of white matter integrity in these processes has been little studied. This is an important question due to the role of white matter integrity as a neural substrate of cognitive aging. Here, we sought to examine the white matter tracts subserving reasoning and visuospatial attention in healthy older adults. Method Sixty-one adults aged 60 and older completed a battery of cognitive tests to assess reasoning and visuospatial attention. In addition, diffusion tensor images were collected to assess Fractional Anisotropy (FA) – a measure of white matter integrity. A principle component analysis of the test scores yielded two components: reasoning and visuospatial attention. Whole-brain correlations between FA and the cognitive components were submitted to probabilistic tractography analyses for visualization of cortical targets of tracts. Results For reasoning, bilateral thalamo-anterior prefrontal, anterior corpus callosum, and corpus callosum body tracts interconnecting the superior frontal cortices and right cingulum bundle were found. For visuospatial attention, a right inferior fronto-parietal tract, and bilateral parietal and temporal connections were found. Conclusions We conclude that in older adults, prefrontal cortex white matter tracts and interhemispheric communication are important in higher order cognitive functioning. On the other hand, right-sided fronto-parietal tracts appear to be critical for supporting control of cognitive processes, such as redirecting attention. Researchers may use our results to develop neuroscience-based interventions for older adults targeting brain mechanisms involved in cognitive plasticity. PMID:26986750
Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong
2013-06-26
Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in patients with ADHD.
Kemeny, M Elizabeth; Mabry, J Beth
2017-01-01
Well-intentioned policy governing the training of direct care workers (DCWs) who serve older persons, in practice, may become merely a compliance issue for organizations rather than a meaningful way to improve quality of care. This study investigates the relationships between best practices in DCW training and the structure and culture of long term support service (LTSS) organizations. Using a mixed-methods approach to analyzing data from 328 licensed LTSS organizations in Pennsylvania, the findings suggest that public policy should address methods of training, not just content, and consider organizational variations in size, training evaluation practices, DCW integration, and DCW input into care planning. Effective training also incorporates support for organizations and supervisors as key aspects of DCWs' learning and working environment.
Large scale structure formation of the normal branch in the DGP brane world model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Yong-Seon
2008-06-15
In this paper, we study the large scale structure formation of the normal branch in the DGP model (Dvail, Gabadadze, and Porrati brane world model) by applying the scaling method developed by Sawicki, Song, and Hu for solving the coupled perturbed equations of motion of on-brane and off-brane. There is a detectable departure of perturbed gravitational potential from the cold dark matter model with vacuum energy even at the minimal deviation of the effective equation of state w{sub eff} below -1. The modified perturbed gravitational potential weakens the integrated Sachs-Wolfe effect which is strengthened in the self-accelerating branch DGP model.more » Additionally, we discuss the validity of the scaling solution in the de Sitter limit at late times.« less
Lyall, Donald M.; Harris, Sarah E.; Bastin, Mark E.; Muñoz Maniega, Susana; Murray, Catherine; Lutz, Michael W.; Saunders, Ann M.; Roses, Allen D.; Valdés Hernández, Maria del C.; Royle, Natalie A.; Starr, John M.; Porteous, David. J.; Wardlaw, Joanna M.; Deary, Ian J.
2014-01-01
Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 (“523”) variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640–650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 “risk” allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 “short” allele showed lower white matter integrity when compared with carriers of the “long” and “very-long” alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older population are more specific and restricted compared with those reported in previous studies, and the effects of TOMM40 on white matter integrity appear to be novel, although replication is required in large independent samples. PMID:24508314
Lyall, Donald M; Harris, Sarah E; Bastin, Mark E; Muñoz Maniega, Susana; Murray, Catherine; Lutz, Michael W; Saunders, Ann M; Roses, Allen D; Valdés Hernández, Maria del C; Royle, Natalie A; Starr, John M; Porteous, David J; Wardlaw, Joanna M; Deary, Ian J
2014-06-01
Apolipoprotein E (APOE) ε genotype has previously been significantly associated with cognitive, brain imaging, and Alzheimer's disease-related phenotypes (e.g., age of onset). In the TOMM40 gene, the rs10524523 ("523") variable length poly-T repeat polymorphism has more recently been associated with similar ph/enotypes, although the allelic directions of these associations have varied between initial reports. Using diffusion magnetic resonance imaging tractography, the present study aimed to investigate whether there are independent effects of apolipoprotein E (APOE) and TOMM40 genotypes on human brain white matter integrity in a community-dwelling sample of older adults, the Lothian Birth Cohort 1936 (mean age = 72.70 years, standard deviation = 0.74, N approximately = 640-650; for most analyses). Some nominally significant effects were observed (i.e., covariate-adjusted differences between genotype groups at p < 0.05). For APOE, deleterious effects of ε4 "risk" allele presence (vs. absence) were found in the right ventral cingulum and left inferior longitudinal fasciculus. To test for biologically independent effects of the TOMM40 523 repeat, participants were stratified into APOE genotype subgroups, so that any significant effects could not be attributed to APOE variation. In participants with the APOE ε3/ε4 genotype, effects of TOMM40 523 status were found in the left uncinate fasciculus, left rostral cingulum, left ventral cingulum, and a general factor of white matter integrity. In all 4 of these tractography measures, carriers of the TOMM40 523 "short" allele showed lower white matter integrity when compared with carriers of the "long" and "very-long" alleles. Most of these effects survived correction for childhood intelligence test scores and vascular disease history, though only the effect of TOMM40 523 on the left ventral cingulum integrity survived correction for false discovery rate. The effects of APOE in this older population are more specific and restricted compared with those reported in previous studies, and the effects of TOMM40 on white matter integrity appear to be novel, although replication is required in large independent samples. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Limitations of Western Medicine and Models of Integration Between Medical Systems.
Attena, Francesco
2016-05-01
This article analyzes two major limitations of Western medicine: maturity and incompleteness. From this viewpoint, Western medicine is considered an incomplete system for the explanation of living matter. Therefore, through appropriate integration with other medical systems, in particular nonconventional approaches, its knowledge base and interpretations may be widened. This article presents possible models of integration of Western medicine with homeopathy, the latter being viewed as representative of all complementary and alternative medicine. To compare the two, a medical system was classified into three levels through which it is possible to distinguish between different medical systems: epistemological (first level), theoretical (second level), and operational (third level). These levels are based on the characterization of any medical system according to, respectively, a reference paradigm, a theory on the functioning of living matter, and clinical practice. The three levels are consistent and closely consequential in the sense that from epistemology derives theory, and from theory derives clinical practice. Within operational integration, four models were identified: contemporary, alternative, sequential, and opportunistic. Theoretical integration involves an explanation of living systems covering simultaneously the molecular and physical mechanisms of functioning living matter. Epistemological integration provides a more thorough and comprehensive explanation of the epistemic concepts of indeterminism, holism, and vitalism to complement the reductionist approach of Western medicine; concepts much discussed by Western medicine while lacking the epistemologic basis for their emplacement. Epistemologic integration could be reached with or without a true paradigm shift and, in the latter, through a model of fusion or subsumption.
NASA Astrophysics Data System (ADS)
Gattringer, Christof; Göschl, Daniel; Marchis, Carlotta
2018-03-01
We discuss recent developments for exact reformulations of lattice field theories in terms of worldlines and worldsheets. In particular we focus on a strategy which is applicable also to non-abelian theories: traces and matrix/vector products are written as explicit sums over color indices and a dual variable is introduced for each individual term. These dual variables correspond to fluxes in both, space-time and color for matter fields (Abelian color fluxes), or to fluxes in color space around space-time plaquettes for gauge fields (Abelian color cycles). Subsequently all original degrees of freedom, i.e., matter fields and gauge links, can be integrated out. Integrating over complex phases of matter fields gives rise to constraints that enforce conservation of matter flux on all sites. Integrating out phases of gauge fields enforces vanishing combined flux of matter-and gauge degrees of freedom. The constraints give rise to a system of worldlines and worldsheets. Integrating over the factors that are not phases (e.g., radial degrees of freedom or contributions from the Haar measure) generates additional weight factors that together with the constraints implement the full symmetry of the conventional formulation, now in the language of worldlines and worldsheets. We discuss the Abelian color flux and Abelian color cycle strategies for three examples: the SU(2) principal chiral model with chemical potential coupled to two of the Noether charges, SU(2) lattice gauge theory coupled to staggered fermions, as well as full lattice QCD with staggered fermions. For the principal chiral model we present some simulation results that illustrate properties of the worldline dynamics at finite chemical potentials.
Big History or the 13800 million years from the Big Bang to the Human Brain
NASA Astrophysics Data System (ADS)
Gústafsson, Ludvik E.
2017-04-01
Big History is the integrated history of the Cosmos, Earth, Life, and Humanity. It is an attempt to understand our existence as a continuous unfolding of processes leading to ever more complex structures. Three major steps in the development of the Universe can be distinguished, the first being the creation of matter/energy and forces in the context of an expanding universe, while the second and third steps were reached when completely new qualities of matter came into existence. 1. Matter comes out of nothing Quantum fluctuations and the inflation event are thought to be responsible for the creation of stable matter particles in what is called the Big Bang. Along with simple particles the universe is formed. Later larger particles like atoms and the most simple chemical elements hydrogen and helium evolved. Gravitational contraction of hydrogen and helium formed the first stars und later on the first galaxies. Massive stars ended their lives in violent explosions releasing heavier elements like carbon, oxygen, nitrogen, sulfur and iron into the universe. Subsequent star formation led to star systems with bodies containing these heavier elements. 2. Matter starts to live About 9200 million years after the Big Bang a rather inconspicous star of middle size formed in one of a billion galaxies. The leftovers of the star formation clumped into bodies rotating around the central star. In some of them elements like silicon, oxygen, iron and many other became the dominant matter. On the third of these bodies from the central star much of the surface was covered with an already very common chemical compound in the universe, water. Fluid water and plenty of various elements, especially carbon, were the ingredients of very complex chemical compounds that made up even more complex structures. These were able to replicate themselves. Life had appeared, the only occasion that we human beings know of. Life evolved subsequently leading eventually to the formation of multicellular structures like plants, animals and fungi. 3. Matter starts to think A comet or an asteroid crashed into Earth about 66 million years ago, ending the dominance of dinosaurs. Small animals giving birth to living offspring were now able to evolve into a multitude of species, among them the primates. A group of primates migrated from Africa to other continents less than 100000 years ago. Their brain developed a special quality, self-conscience. This ability to reflect about oneself boosted their survival considerably. Man (Homo sapiens) had entered the scene, becoming one of the dominant species of this planet. Due to his immense ability today to handle matter and energy he has become something of a caretaker of planet Earth. Man is responsible for sustainable development for the good of his society and of the whole biosphere. If there is a fourth step in the history of the universe, discoveries in astrobiology may provide us with some clues in the next decades.
Concentrated dark matter: Enhanced small-scale structure from codecaying dark matter
NASA Astrophysics Data System (ADS)
Dror, Jeff A.; Kuflik, Eric; Melcher, Brandon; Watson, Scott
2018-03-01
We study the cosmological consequences of codecaying dark matter—a recently proposed mechanism for depleting the density of dark matter through the decay of nearly degenerate particles. A generic prediction of this framework is an early dark matter dominated phase in the history of the Universe, that results in the enhanced growth of dark matter perturbations on small scales. We compute the duration of the early matter dominated phase and show that the perturbations are robust against washout from free streaming. The enhanced small-scale structure is expected to survive today in the form of compact microhalos and can lead to significant boost factors for indirect-detection experiments, such as FERMI, where dark matter would appear as point sources.
Onnink, A Marten H; Zwiers, Marcel P; Hoogman, Martine; Mostert, Jeanette C; Dammers, Janneke; Kan, Cornelis C; Vasquez, Alejandro Arias; Schene, Aart H; Buitelaar, Jan; Franke, Barbara
2015-12-03
Attention-deficit/hyperactivity disorder (ADHD) in childhood is characterized by gray and white matter abnormalities in several brain areas. Considerably less is known about white matter microstructure in adults with ADHD and its relation with clinical symptoms and cognitive performance. In 107 adult ADHD patients and 109 gender-, age- and IQ-matched controls, we used diffusion tensor imaging (DTI) with tract-based spatial statistics (TBSS) to investigate whole-skeleton changes of fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). Additionally, we studied the relation of FA and MD values with symptom severity and cognitive performance on tasks measuring working memory, attention, inhibition, and delay discounting. In comparison to controls, participants with ADHD showed reduced FA in corpus callosum, bilateral corona radiata, and thalamic radiation. Higher MD and RD were found in overlapping and even more widespread areas in both hemispheres, also encompassing internal and external capsule, sagittal stratum, fornix, and superior lateral fasciculus. Values of FA and MD were not associated with symptom severity. However, within some white matter clusters that distinguished patients from controls, worse inhibition performance was associated with reduced FA and more impulsive decision making was associated with increased MD. This study shows widespread differences in white matter integrity between adults with persistent ADHD and healthy individuals. Changes in RD suggest aberrant myelination as a pathophysiological factor in persistent ADHD. The microstructural differences in adult ADHD may contribute to poor inhibition and greater impulsivity but appear to be independent of disease severity. Copyright © 2015. Published by Elsevier Inc.
Gonzales, Mitzi M; Tarumi, Takashi; Kaur, Sonya; Nualnim, Nantinee; Fallow, Bennett A; Pyron, Martha; Tanaka, Hirofumi; Haley, Andreana P
2013-01-01
Engagement in regular aerobic exercise is associated with cognitive benefits, but information on the mechanisms governing these changes in humans is limited. The goal of the current study was to compare neurometabolite concentrations relating to cellular metabolism, structure, and viability in endurance-trained and sedentary middle-aged adults. Twenty-eight endurance-trained and 27 sedentary adults, aged 40-65 years, underwent general health assessment, cardiorespiratory fitness measurement, neuropsychological testing, and proton magnetic resonance spectroscopy ((1)H MRS). (1)H MRS was used to examine N-acetyl-aspartate (NAA), creatine (Cr), myo-inositol (mI), choline (Cho), and glutamate (Glu) concentrations in frontal and occipitoparietal grey matter. Group differences in concentrations of NAA, Cho, mI, and Glu, calculated as ratios over Cr, were explored using ANOVA. There were no significant differences in global cognitive function, memory, and executive function performance between the groups. In comparison to sedentary adults, the endurance-trained group displayed significantly higher NAA/Cr in the frontal grey matter (F(1, 53) = 5.367, p = 0.024) and higher Cho/Cr in the occipitoparietal grey matter (F(1, 53) = 5.138, p = 0.028). Within our middle-aged sample, endurance-trained adults demonstrated higher levels of NAA/Cr in the frontal grey matter and higher Cho/Cr in the occipitoparietal grey matter. Higher levels of NAA may indicate greater neuronal integrity and higher cerebral metabolic efficiency in association with cardiorespiratory fitness, whereas increased Cho may represent increased phospholipid levels secondary to neural plasticity.
Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response.
Hubbard, Nicholas A; Turner, Monroe; Hutchison, Joanna L; Ouyang, Austin; Strain, Jeremy; Oasay, Larry; Sundaram, Saranya; Davis, Scott; Remington, Gina; Brigante, Ryan; Huang, Hao; Hart, John; Frohman, Teresa; Frohman, Elliot; Biswal, Bharat B; Rypma, Bart
2016-11-01
Multiple sclerosis (MS) results in inflammatory damage to white matter microstructure. Prior research using blood-oxygen-level dependent (BOLD) imaging indicates MS-related alterations to brain function. What is currently unknown is the extent to which white matter microstructural damage influences BOLD signal in MS. Here we assessed changes in parameters of the BOLD hemodynamic response function (HRF) in patients with relapsing-remitting MS compared to healthy controls. We also used diffusion tensor imaging to assess whether MS-related changes to the BOLD-HRF were affected by changes in white matter microstructural integrity. Our results showed MS-related reductions in BOLD-HRF peak amplitude. These MS-related amplitude decreases were influenced by individual differences in white matter microstructural integrity. Other MS-related factors including altered reaction time, limited spatial extent of BOLD activity, elevated lesion burden, or lesion proximity to regions of interest were not mediators of group differences in BOLD-HRF amplitude. Results are discussed in terms of functional hyperemic mechanisms and implications for analysis of BOLD signal differences. © The Author(s) 2015.
Quasimodular instanton partition function and the elliptic solution of Korteweg-de Vries equations
NASA Astrophysics Data System (ADS)
He, Wei
2015-02-01
The Gauge/Bethe correspondence relates Omega-deformed N = 2 supersymmetric gauge theories to some quantum integrable models, in simple cases the integrable models can be treated as solvable quantum mechanics models. For SU(2) gauge theory with an adjoint matter, or with 4 fundamental matters, the potential of corresponding quantum model is the elliptic function. If the mass of matter takes special value then the potential is an elliptic solution of KdV hierarchy. We show that the deformed prepotential of gauge theory can be obtained from the average densities of conserved charges of the classical KdV solution, the UV gauge coupling dependence is assembled into the Eisenstein series. The gauge theory with adjoint mass is taken as the example.
Tserevelakis, George J; Psycharakis, Stylianos; Resan, Bojan; Brunner, Felix; Gavgiotaki, Evagelia; Weingarten, Kurt; Filippidis, George
2012-02-01
Femtosecond laser assisted nanosurgery of microscopic biological specimens is a relatively new technique which allows the selective disruption of sub-cellular structures without causing any undesirable damage to the surrounding regions. The targeted structures have to be stained in order to be clearly visualized for the nanosurgery procedure. However, the validation of the final nanosurgery result is difficult, since the targeted structure could be simply photobleached rather than selectively destroyed. This fact comprises a main drawback of this technique. In our study we employed a multimodal system which integrates non-linear imaging modalities with nanosurgery capabilities, for the selective disruption of sub-cellular structures in HeLa cancer cells. Third Harmonic Generation (THG) imaging modality was used as a tool for the identification of structures that were subjected to nanosurgery experiments. No staining of the biological samples was required, since THG is an intrinsic property of matter. Furthermore, cells' viability after nanosurgery processing was verified via Two Photon Excitation Fluorescence (TPEF) measurements. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ishak, Mustapha; Peel, Austin
2012-04-01
This study belongs to a series devoted to using the Szekeres inhomogeneous models in order to develop a theoretical framework where cosmological observations can be investigated with a wider range of possible interpretations. While our previous work addressed the question of cosmological distances versus redshift in these models, the current study is a start at looking into the growth rate of large-scale structure. The Szekeres models are exact solutions to Einstein’s equations that were originally derived with no symmetries. We use here a formulation of the Szekeres models that is due to Goode and Wainwright, who considered the models as exact perturbations of a Friedmann-Lemaître-Robertson-Walker (FLRW) background. Using the Raychaudhuri equation we write, for the two classes of the models, exact growth equations in terms of the under/overdensity and measurable cosmological parameters. The new equations in the overdensity split into two informative parts. The first part, while exact, is identical to the growth equation in the usual linearly perturbed FLRW models, while the second part constitutes exact nonlinear perturbations. We integrate numerically the full exact growth rate equations for the flat and curved cases. We find that for the matter-dominated cosmic era, the Szekeres growth rate is up to a factor of three to five stronger than the usual linearly perturbed FLRW cases, reflecting the effect of exact Szekeres nonlinear perturbations. We also find that the Szekeres growth rate with an Einstein-de Sitter background is stronger than that of the well-known nonlinear spherical collapse model, and the difference between the two increases with time. This highlights the distinction when we use general inhomogeneous models where shear and a tidal gravitational field are present and contribute to the gravitational clustering. Additionally, it is worth observing that the enhancement of the growth found in the Szekeres models during the matter-dominated era could suggest a substitute to the argument that dark matter is needed when using FLRW models to explain the enhanced growth and resulting large-scale structures that we observe today.
Serum S100B Protein is Specifically Related to White Matter Changes in Schizophrenia
Milleit, Berko; Smesny, Stefan; Rothermundt, Matthias; Preul, Christoph; Schroeter, Matthias L.; von Eiff, Christof; Ponath, Gerald; Milleit, Christine; Sauer, Heinrich; Gaser, Christian
2016-01-01
Background: Schizophrenia can be conceptualized as a form of dysconnectivity between brain regions.To investigate the neurobiological foundation of dysconnectivity, one approach is to analyze white matter structures, such as the pathology of fiber tracks. S100B is considered a marker protein for glial cells, in particular oligodendrocytes and astroglia, that passes the blood brain barrier and is detectable in peripheral blood. Earlier Studies have consistently reported increased S100B levels in schizophrenia. In this study, we aim to investigate associations between S100B and structural white matter abnormalities. Methods: We analyzed data of 17 unmedicated schizophrenic patients (first and recurrent episode) and 22 controls. We used voxel based morphometry (VBM) to detect group differences of white matter structures as obtained from T1-weighted MR-images and considered S100B serum levels as a regressor in an age-corrected interaction analysis. Results: S100B was increased in both patient subgroups. Using VBM, we found clusters indicating significant differences of the association between S100B concentration and white matter. Involved anatomical structures are the posterior cingulate bundle and temporal white matter structures assigned to the superior longitudinal fasciculus. Conclusions: S100B-associated alterations of white matter are shown to be existent already at time of first manifestation of psychosis and are distinct from findings in recurrent episode patients. This suggests involvement of S100B in an ongoing and dynamic process associated with structural brain changes in schizophrenia. However, it remains elusive whether increased S100B serum concentrations in psychotic patients represent a protective response to a continuous pathogenic process or if elevated S100B levels are actively involved in promoting structural brain damage. PMID:27013967
Energy Systems Integration News | Energy Systems Integration Facility |
-matter experts to develop cyber-physical systems security testing methodologies and resilience best the Energy Systems Integration Facility as part of NREL's work with SolarCity and the Hawaiian Electric Companies. Photo by Amy Glickson, NREL Welcome to Energy Systems Integration News, NREL's monthly
Svatkova, Alena; Mandl, René C W; Scheewe, Thomas W; Cahn, Wiepke; Kahn, René S; Hulshoff Pol, Hilleke E
2015-07-01
It has been shown that learning a new skill leads to structural changes in the brain. However, it is unclear whether it is the acquisition or continuous practicing of the skill that causes this effect and whether brain connectivity of patients with schizophrenia can benefit from such practice. We examined the effect of 6 months exercise on a stationary bicycle on the brain in patients with schizophrenia and healthy controls. Biking is an endemic skill in the Netherlands and thus offers an ideal situation to disentangle the effects of learning vs practice. The 33 participating patients with schizophrenia and 48 healthy individuals were assigned to either one of two conditions, ie, physical exercise or life-as-usual, balanced for diagnosis. Diffusion tensor imaging brain scans were made prior to and after intervention. We demonstrate that irrespective of diagnosis regular physical exercise of an overlearned skill, such as bicycling, significantly increases the integrity, especially of motor functioning related, white matter fiber tracts whereas life-as-usual leads to a decrease in fiber integrity. Our findings imply that exercise of an overlearned physical skill improves brain connectivity in patients and healthy individuals. This has important implications for understanding the effect of fitness programs on the brain in both healthy subjects and patients with schizophrenia. Moreover, the outcome may even apply to the nonphysical realm. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas
2014-05-01
In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.
Path Integral Monte Carlo Simulations of Warm Dense Matter and Plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Militzer, Burkhard
2018-01-13
New path integral Monte Carlo simulation (PIMC) techniques will be developed and applied to derive the equation of state (EOS) for the regime of warm dense matter and dense plasmas where existing first-principles methods cannot be applied. While standard density functional theory has been used to accurately predict the structure of many solids and liquids up to temperatures on the order of 10,000 K, this method is not applicable at much higher temperature where electronic excitations become important because the number of partially occupied electronic orbitals reaches intractably large numbers and, more importantly, the use of zero-temperature exchange-correlation functionals introducesmore » an uncontrolled approximation. Here we focus on PIMC methods that become more and more efficient with increasing temperatures and still include all electronic correlation effects. In this approach, electronic excitations increase the efficiency rather than reduce it. While it has commonly been assumed such methods can only be applied to elements without core electrons like hydrogen and helium, we recently showed how to extend PIMC to heavier elements by performing the first PIMC simulations of carbon and water plasmas [Driver, Militzer, Phys. Rev. Lett. 108 (2012) 115502]. Here we propose to continue this important development to extend the reach of PIMC simulations to yet heavier elements and also lower temperatures. The goal is to provide a robust first-principles simulation method that can accurately and efficiently study materials with excited electrons at solid-state densities in order to access parts of the phase diagram such the regime of warm dense matter and plasmas where so far only more approximate, semi-analytical methods could be applied.« less
NASA Astrophysics Data System (ADS)
Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang
2018-07-01
Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.
Kaon Condensation and the Non-Uniform Nuclear Matter
NASA Astrophysics Data System (ADS)
Maruyama, Toshiki; Tatsumi, Toshitaka; Voskresensky, Dmitri N.; Tanigawa, Tomonori; Chiba, Satoshi
2004-04-01
Non-uniform structures of nuclear matter are studied in a wide density-range. Using the density functional theory with a relativistic mean-field model, we examine non-uniform structures at sub-nuclear densities (nuclear "pastas") and at high densities, where kaon condensate is expected. We try to give a unified view about the change of the matter structure as density increases, carefully taking into account the Coulomb screening effects from the viewpoint of first-order phase transition.
Dance and music share gray matter structural correlates.
Karpati, Falisha J; Giacosa, Chiara; Foster, Nicholas E V; Penhune, Virginia B; Hyde, Krista L
2017-02-15
Intensive practise of sensorimotor skills, such as music and dance, is associated with brain structural plasticity. While the neural correlates of music have been well-investigated, less is known about the neural correlates of dance. Additionally, the gray matter structural correlates of dance versus music training have not yet been directly compared. The objectives of the present study were to compare gray matter structure as measured by surface- and voxel-based morphometry between expert dancers, expert musicians and untrained controls, as well as to correlate gray matter structure with performance on dance- and music-related tasks. Dancers and musicians were found to have increased cortical thickness compared to controls in superior temporal regions. Gray matter structure in the superior temporal gyrus was also correlated with performance on dance imitation, rhythm synchronization and melody discrimination tasks. These results suggest that superior temporal regions are important in both dance- and music-related skills and may be affected similarly by both types of long-term intensive training. This work advances knowledge of the neural correlates of dance and music, as well as training-associated brain plasticity in general. Copyright © 2016 Elsevier B.V. All rights reserved.
Using Voronoi Tessellations to identify groups in N-body Simulation
NASA Astrophysics Data System (ADS)
Gonzalez, R. E.; Theuns, T.
Dark matter N-body simulations often use a friends-of-friends (FOF) group finder to link together particles above a specified density threshold. An over density of 200 picks-out objects that can be identified with virialised dark matter haloes, based on the spherical collapse model for the formation of structure. When the halo contains significant substructure, as is the case in very high resolution simulations, then FOF will simply link all substructure to the parent halo. Many cosmological simulations now also include gas and stars, and these are often distributed differently from the dark matter. It is then not clear whether the structures identified by FOF are very physical. Here we use Voronoi tesselations to identify structures in hydrodynamical cosmological simulations, that contain dark matter, gas and stars. This adaptive technique allows accurate estimates of densities, and density gradients, for a non-structured distribution of points. We discuss how these estimates allow us to identify structures in the dark matter that can be identified with haloes, and in the stars, to identify galaxies.
Kievit, Rogier A.; Davis, Simon W.; Mitchell, Daniel J.; Taylor, Jason R.; Duncan, John; Tyler, Lorraine K.; Brayne, Carol; Bullmore, Ed; Calder, Andrew; Cusack, Rhodri; Dalgleish, Tim; Matthews, Fiona; Marslen-Wilson, William; Rowe, James; Shafto, Meredith; Campbell, Karen; Cheung, Teresa; Geerligs, Linda; McCarrey, Anna; Tsvetanov, Kamen; Williams, Nitin; Bates, Lauren; Emery, Tina; Erzinçlioglu, Sharon; Gadie, Andrew; Gerbase, Sofia; Georgieva, Stanimira; Hanley, Claire; Parkin, Beth; Troy, David; Allen, Jodie; Amery, Gillian; Amunts, Liana; Barcroft, Anne; Castle, Amanda; Dias, Cheryl; Dowrick, Jonathan; Fair, Melissa; Fisher, Hayley; Goulding, Anna; Grewal, Adarsh; Hale, Geoff; Hilton, Andrew; Johnson, Frances; Johnston, Patricia; Kavanagh-Williamson, Thea; Kwasniewska, Magdalena; McMinn, Alison; Norman, Kim; Penrose, Jessica; Roby, Fiona; Rowland, Diane; Sargeant, John; Squire, Maggie; Stevens, Beth; Stoddart, Aldabra; Stone, Cheryl; Thompson, Tracy; Yazlik, Ozlem; Barnes, Dan; Dixon, Marie; Hillman, Jaya; Mitchell, Joanne; Villis, Laura; Henson, Richard N.A.
2014-01-01
Ageing is characterized by declines on a variety of cognitive measures. These declines are often attributed to a general, unitary underlying cause, such as a reduction in executive function owing to atrophy of the prefrontal cortex. However, age-related changes are likely multifactorial, and the relationship between neural changes and cognitive measures is not well-understood. Here we address this in a large (N=567), population-based sample drawn from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) data. We relate fluid intelligence and multitasking to multiple brain measures, including grey matter in various prefrontal regions and white matter integrity connecting those regions. We show that multitasking and fluid intelligence are separable cognitive abilities, with differential sensitivities to age, which are mediated by distinct neural subsystems that show different prediction in older versus younger individuals. These results suggest that prefrontal ageing is a manifold process demanding multifaceted models of neurocognitive ageing. PMID:25519467
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions. PMID:28588470
Peng, Bo; Lu, Jieru; Saxena, Aditya; Zhou, Zhiyong; Zhang, Tao; Wang, Suhong; Dai, Yakang
2017-01-01
Purpose: This study is to exam self-esteem related brain morphometry on brain magnetic resonance (MR) images using multilevel-features-based classification method. Method: The multilevel region of interest (ROI) features consist of two types of features: (i) ROI features, which include gray matter volume, white matter volume, cerebrospinal fluid volume, cortical thickness, and cortical surface area, and (ii) similarity features, which are based on similarity calculation of cortical thickness between ROIs. For each feature type, a hybrid feature selection method, comprising of filter-based and wrapper-based algorithms, is used to select the most discriminating features. ROI features and similarity features are integrated by using multi-kernel support vector machines (SVMs) with appropriate weighting factor. Results: The classification performance is improved by using multilevel ROI features with an accuracy of 96.66%, a specificity of 96.62%, and a sensitivity of 95.67%. The most discriminating ROI features that are related to self-esteem spread over occipital lobe, frontal lobe, parietal lobe, limbic lobe, temporal lobe, and central region, mainly involving white matter and cortical thickness. The most discriminating similarity features are distributed in both the right and left hemisphere, including frontal lobe, occipital lobe, limbic lobe, parietal lobe, and central region, which conveys information of structural connections between different brain regions. Conclusion: By using ROI features and similarity features to exam self-esteem related brain morphometry, this paper provides a pilot evidence that self-esteem is linked to specific ROIs and structural connections between different brain regions.