Science.gov

Sample records for mature biofilm lifestyle

  1. [Management of biofilm-associated infections: what can we expect from recent research on biofilm lifestyles?].

    PubMed

    Lebeaux, David; Ghigo, Jean-Marc

    2012-01-01

    Biofilms are surface-associated microbial communities present in all environments. Although biofilms play important ecological roles, they also lead to negative or deleterious effects in industrial and medical settings. In the latter, high levels of antibiotic tolerance of bacterial biofilms developing on medical devices and during chronic infections determine the physiopathology of many healthcare-associated infections. Original approaches have been developed to avoid bacterial adhesion or biofilm development targetting specific mechanisms or pathways. We herein review recent data about biofilm lifestyle understanding and ways to fight against related infections.

  2. Involvement in Denitrification is Beneficial to the Biofilm Lifestyle of Comamonas testosteroni: A Mechanistic Study and Its Environmental Implications.

    PubMed

    Wu, Yichao; Shukal, Sudha; Mukherjee, Manisha; Cao, Bin

    2015-10-01

    Comamonas is one of the most abundant microorganisms in biofilm communities driving wastewater treatment. Little has been known about the role of this group of organisms and their biofilm mode of life. In this study, using Comamonas testosteroni as a model organism, we demonstrated the involvement of Comamonas biofilms in denitrification under bulk aerobic conditions and elucidated the influence of nitrate respiration on its biofilm lifestyle. Our results showed that C. testosteroni could use nitrate as the sole electron acceptor for anaerobic growth. Under bulk aerobic condition, biofilms of C. testosteroni were capable of reducing nitrate, and intriguingly, nitrate reduction significantly enhanced viability of the biofilm-cells and reduced cell detachment from the biofilms. Nitrate respiration was further shown to play an essential role in maintaining high cell viability in the biofilms. RNA-seq analysis, quantitative polymerase chain reaction, and liquid chromatography-mass spectrometry revealed a higher level of bis(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) in cells respiring on nitrate than those grown aerobically (1.3 × 10(-4) fmol/cell vs 7.9 × 10(-6) fmol/cell; P < 0.01). C-di-GMP is one universal signaling molecule that regulates the biofilm mode of life, and a higher c-di-GMP concentration reduces cell detachment from biofilms. Taking these factors together, this study reveals that nitrate reduction occurs in mature biofilms of C. testosteroni under bulk aerobic conditions, and the respiratory reduction of nitrate is beneficial to the biofilm lifestyle by providing more metabolic energy to maintain high viability and a higher level of c-di-GMP to reduce cell detachment. PMID:26327221

  3. Bordetella biofilms: a lifestyle leading to persistent infections.

    PubMed

    Cattelan, Natalia; Dubey, Purnima; Arnal, Laura; Yantorno, Osvaldo M; Deora, Rajendar

    2016-02-01

    Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines.

  4. Bordetella biofilms: a lifestyle leading to persistent infections.

    PubMed

    Cattelan, Natalia; Dubey, Purnima; Arnal, Laura; Yantorno, Osvaldo M; Deora, Rajendar

    2016-02-01

    Bordetella bronchiseptica and B. pertussis are Gram-negative bacteria that cause respiratory diseases in animals and humans. The current incidence of whooping cough or pertussis caused by B. pertussis has reached levels not observed since the 1950s. Although pertussis is traditionally known as an acute childhood disease, it has recently resurged in vaccinated adolescents and adults. These individuals often become silent carriers, facilitating bacterial circulation and transmission. Similarly, vaccinated and non-vaccinated animals continue to be carriers of B. bronchiseptica and shed bacteria resulting in disease outbreaks. The persistence mechanisms of these bacteria remain poorly characterized. It has been proposed that adoption of a biofilm lifestyle allows persistent colonization of the mammalian respiratory tract. The history of Bordetella biofilm research is only a decade long and there is no single review article that has exclusively focused on this area. We systematically discuss the role of Bordetella factors in biofilm development in vitro and in the mouse respiratory tract. We further outline the implications of biofilms to bacterial persistence and transmission in humans and for the design of new acellular pertussis vaccines. PMID:26586694

  5. Mature biofilms of Enterococcus faecalis and Enterococcus faecium are highly resistant to antibiotics.

    PubMed

    Holmberg, Anna; Rasmussen, Magnus

    2016-01-01

    Enterococcus faecalis and Enterococcus faecium are important nosocomial pathogens that form biofilms on implanted materials. We compare the antibiotic sensitivity of bacteria in new (established during 24 hours) and mature (established during 120 hours) enterococcal biofilms. Mature biofilms contained more bacteria and were much more tolerant to antibiotics, including rifampicin-containing combinations, as judged by determination of minimal biofilm eradication concentrations and by time-kill experiments of bacteria in biofilms formed on beads of bone cement.

  6. Dispersed cells represent a distinct stage in the transition from bacterial biofilm to planktonic lifestyles.

    PubMed

    Chua, Song Lin; Liu, Yang; Yam, Joey Kuok Hoong; Chen, Yicai; Vejborg, Rebecca Munk; Tan, Bryan Giin Chyuan; Kjelleberg, Staffan; Tolker-Nielsen, Tim; Givskov, Michael; Yang, Liang

    2014-01-01

    Bacteria assume distinct lifestyles during the planktonic and biofilm modes of growth. Increased levels of the intracellular messenger c-di-GMP determine the transition from planktonic to biofilm growth, while a reduction causes biofilm dispersal. It is generally assumed that cells dispersed from biofilms immediately go into the planktonic growth phase. Here we use single-nucleotide resolution transcriptomic analysis to show that the physiology of dispersed cells from Pseudomonas aeruginosa biofilms is highly different from those of planktonic and biofilm cells. In dispersed cells, the expression of the small regulatory RNAs RsmY and RsmZ is downregulated, whereas secretion genes are induced. Dispersed cells are highly virulent against macrophages and Caenorhabditis elegans compared with planktonic cells. In addition, they are highly sensitive towards iron stress, and the combination of a biofilm-dispersing agent, an iron chelator and tobramycin efficiently reduces the survival of the dispersed cells. PMID:25042103

  7. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity.

    PubMed

    Thuptimdang, Pumis; Limpiyakorn, Tawan; McEvoy, John; Prüß, Birgit M; Khan, Eakalak

    2015-06-15

    This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms. PMID:25756827

  8. Effect of silver nanoparticles on Pseudomonas putida biofilms at different stages of maturity.

    PubMed

    Thuptimdang, Pumis; Limpiyakorn, Tawan; McEvoy, John; Prüß, Birgit M; Khan, Eakalak

    2015-06-15

    This study determined the effect of silver nanoparticles (AgNPs) on Pseudomonas putida KT2440 biofilms at different stages of maturity. Three biofilm stages (1-3, representing early to late stages of development) were identified from bacterial adenosine triphosphate (ATP) activity under static (96-well plate) and dynamic conditions (Center for Disease Control and Prevention biofilm reactor). Extracellular polymeric substance (EPS) levels, measured using crystal violet and total carbohydrate assays, and expression of the EPS-associated genes, csgA and alg8, supported the conclusion that biofilms at later stages were older than those at earlier stages. More mature biofilms (stages 2 and 3) showed little to no reduction in ATP activity following exposure to AgNPs. In contrast, the same treatment reduced ATP activity by more than 90% in the less mature stage 1 biofilms. Regardless of maturity, biofilms with EPS stripped off were more susceptible to AgNPs than controls with intact EPS, demonstrating that EPS is critical for biofilm tolerance of AgNPs. The findings from this study show that stage of maturity is an important factor to consider when studying effect of AgNPs on biofilms.

  9. LuxS affects biofilm maturation and detachment of the periodontopathogenic bacterium Eikenella corrodens.

    PubMed

    Karim, Mohammad Minnatul; Hisamoto, Tatsunori; Matsunaga, Tetsuro; Asahi, Yoko; Noiri, Yuichiro; Ebisu, Shigeyuki; Kato, Akio; Azakami, Hiroyuki

    2013-09-01

    Previously, we reported that biofilm formation of Eikenella corrodens is regulated by autoinducer-2 (AI-2), based on observations that biofilm-forming efficiency of ΔluxS mutant was greater than that of the wild type (Azakami et al., J. Biosci. Bioeng., 102, 110-117, 2006). To determine whether the AI-2 molecule affects biofilm formation directly, we added purified AI-2 to luxS mutant and wild-type E. corrodens and compared biofilm formations by using a static assay. Results indicated that biofilm formation in E. corrodens was enhanced by the addition of AI-2. We also compared the biofilms formed by flow cell system for the luxS mutant and the wild type by using scanning electron microscopy and confocal laser scanning microscopy. The number of viable bacteria in the luxS mutant biofilm was dramatically reduced and more sparsely distributed than that of the wild type, which suggested that AI-2 might enhance the mature biofilm. Conversely, further analysis by modified confocal reflection microscopy indicated that the wild-type biofilm was matured earlier than that of the luxS mutant, and became thinner and more sparsely distributed with time. These data suggest that LuxS may facilitate the maturation and detachment of biofilm in E. corrodens. PMID:23639420

  10. Inhibitory activity of thymol on native and mature Gardnerella vaginalis biofilms: in vitro study.

    PubMed

    Braga, Pier Carlo; Dal Sasso, Monica; Culici, Maria; Spallino, Alessandra

    2010-01-01

    Bacterial vaginosis (BV) is the most frequent diagnosis made in women with lower genital tract symptoms. It has recently been observed that 90 % of subjects with BV show the growth of bacteria in the form of biofilms as against only 10% without BV, and that Gardnerella vaginalis was the predominant species. The propensity of G. vaginalis to form biofilm is clinically relevant because this form of growth allows it to tolerate higher concentrations of certain antibiotics, thus increasing the possibilty of recurrent BV even after apparently curative therapy. The aim of this study was to investigate whether thymol (CAS 89-83-8), a molecule present in thyme essential oil, that is credited with having a series of pharmacological properties including antimicrobial and antifungal effects, can interfere with newly formed and mature G. vaginalis biofilms. The ability of G. vaginalis ATCC 49145 and two G. vaginalis strains isolated from human BV to form biofilm in flat-bottomed 96-well microtitre plates was verified, and the effects of thymol concentrations ranging from 1 to 1/16 MIC (minimum inhibitory concentration) on preformed and mature biofilms was investigated by means of spectrophotometric analysis, Nomarski interference contrast microscopy, and fluorescence microscopy with live-dead cell visualisation (SYTO 9 and propidium iodide). Native biofilm was inhibited by concentrations ranging from 1 MIC to 1/8 MIC (32.77% +/- 2.37 to 11.39% +/- 1.46), and mature biofilm was inhibited by concentrations ranging from 1 MIC to 1/4 MIC (26.18% +/- 1.36 to 13.20% +/- 1.44). Nomarski interference contrast and fluorescence microscopy visually confirmed these findings. As biofilm is a multi-factorial phenomenon, the multiple mechanisms of thymol may act on different steps in the evolution of mature biofilm. PMID:21175040

  11. A modified CDC biofilm reactor to produce mature biofilms on the surface of peek membranes for an in vivo animal model application.

    PubMed

    Williams, Dustin L; Woodbury, Kassie L; Haymond, Bryan S; Parker, Albert E; Bloebaum, Roy D

    2011-06-01

    Biofilm-related infections have become a major clinical concern. Typically, animal models that involve inoculation with planktonic bacteria have been used to create positive infection signals and examine antimicrobial strategies for eradicating or preventing biofilm-related infection. However, it is estimated that 99.9% of bacteria in nature dwell in established biofilms. As such, open wounds have significant potential to become contaminated with bacteria that reside in a well-established biofilm. In this study, a modified CDC biofilm reactor was developed to repeatably grow mature biofilms of Staphylococcus aureus on the surface of polyetheretherketone (PEEK) membranes for inoculation in a future animal model of orthopaedic implant biofilm-related infection. Results indicated that uniform, mature biofilms repeatably grew on the surface of the PEEK membranes.

  12. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms.

    PubMed

    Li, Fang; Yu, Jialin; Yang, Hua; Wan, Zhenyan; Bai, Dan

    2008-07-01

    Biofilm-forming bacteria Pseudomonas aeruginosa is a common pathogen in mechanically ventilated newborns, which can cause life-threatening infections. Alginate of mucoid Pseudomonas aeruginosa biofilms is considered an important virulence factor which contributes to the resistance to antibiotics. Traditionally, ambroxol is widely used in newborns with lung problems as a mucolytic agent and antioxidant agent as well. And there are few studies that demonstrated the anti-biofilm activity of ambroxol. In this study, we found that ambroxol can affect the structure of mucoid Pseudomonas aeruginosa biofilms. Further, we found that ambroxol reduces the production of alginate, the expression of the important genes and the activity of key enzyme guanosine diphospho-D-mannose dehydrogenase (GDP-mannose dehydrogenase; GMD) which were involved in alginate biosynthesis.

  13. Integration of Posttranscriptional Gene Networks into Metabolic Adaptation and Biofilm Maturation in Candida albicans

    PubMed Central

    Harrison, Paul F.; Lo, Tricia L.; Quenault, Tara; Dagley, Michael J.; Bellousoff, Matthew; Powell, David R.; Beilharz, Traude H.; Traven, Ana

    2015-01-01

    The yeast Candida albicans is a human commensal and opportunistic pathogen. Although both commensalism and pathogenesis depend on metabolic adaptation, the regulatory pathways that mediate metabolic processes in C. albicans are incompletely defined. For example, metabolic change is a major feature that distinguishes community growth of C. albicans in biofilms compared to suspension cultures, but how metabolic adaptation is functionally interfaced with the structural and gene regulatory changes that drive biofilm maturation remains to be fully understood. We show here that the RNA binding protein Puf3 regulates a posttranscriptional mRNA network in C. albicans that impacts on mitochondrial biogenesis, and provide the first functional data suggesting evolutionary rewiring of posttranscriptional gene regulation between the model yeast Saccharomyces cerevisiae and C. albicans. A proportion of the Puf3 mRNA network is differentially expressed in biofilms, and by using a mutant in the mRNA deadenylase CCR4 (the enzyme recruited to mRNAs by Puf3 to control transcript stability) we show that posttranscriptional regulation is important for mitochondrial regulation in biofilms. Inactivation of CCR4 or dis-regulation of mitochondrial activity led to altered biofilm structure and over-production of extracellular matrix material. The extracellular matrix is critical for antifungal resistance and immune evasion, and yet of all biofilm maturation pathways extracellular matrix biogenesis is the least understood. We propose a model in which the hypoxic biofilm environment is sensed by regulators such as Ccr4 to orchestrate metabolic adaptation, as well as the regulation of extracellular matrix production by impacting on the expression of matrix-related cell wall genes. Therefore metabolic changes in biofilms might be intimately linked to a key biofilm maturation mechanism that ultimately results in untreatable fungal disease. PMID:26474309

  14. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants.

    PubMed

    Phillips, Priscilla L; Yang, Qingping; Davis, Stephen; Sampson, Edith M; Azeke, John I; Hamad, Afifa; Schultz, Gregory S

    2015-08-01

    An ex vivo porcine skin explant biofilm model that preserves key properties of biofilm attached to skin at different levels of maturity (0-3 days) was used to assess the efficacy of commercially available antimicrobial dressings and topical treatments. Assays were also performed on the subpopulation of antibiotic tolerant biofilm generated by 24 hours of pre-treatment with gentamicin (120× minimal inhibitory concentration) prior to agent exposure. Five types of antimicrobial agents (iodine, silver, polyhexamethylene biguanide, honey and ethanol) and four types of moisture dressings (cotton gauze, sodium carboxymethylcellulose fibre, calcium alginate fibre and cadexomer beads) were assessed. Time-release silver gel and cadexomer iodine dressings were the most effective in reducing mature biofilm [between 5 and 7 logarithmic (log) of 7-log total], whereas all other dressing formulations reduced biofilm between 0·3 and 2 log in 24 or 72 hours with a single exposure. Similar results were found after 24-hour exposure to silver release dressings using an in vivo pig burn wound model, demonstrating correlation between the ex vivo and in vivo models. Results of this study indicate that commonly used microbicidal wound dressings vary widely in their ability to kill mature biofilm and the efficacy is influenced by time of exposure, number of applications, moisture level and agent formulation (sustained release).

  15. Development of a novel ex vivo porcine skin explant model for the assessment of mature bacterial biofilms.

    PubMed

    Yang, Qingping; Phillips, Priscilla L; Sampson, Edith M; Progulske-Fox, Ann; Jin, Shouguang; Antonelli, Patrick; Schultz, Gregory S

    2013-01-01

    Bacterial biofilms have been proposed to be a major factor contributing to the failure of chronic wounds to heal because of their increased tolerance to antimicrobial agents and the prolonged inflammation they cause. Phenotypic characteristics of bacterial biofilms vary depending on the substratum to which they attach, the nutritional environment, and the microorganisms within the biofilm community. To develop an ex vivo biofilm model that more closely mimics biofilms in chronic skin wounds, we developed an optimal procedure to grow mature biofilms on a central partial-thickness wound in 12-mm porcine skin explants. Chlorine gas produced optimal sterilization of explants while preserving histological properties of the epidermis and dermis. Pseudomonas aeruginosa and Staphylococcus aureus developed mature biofilms after 3 days that had dramatically increased tolerance to gentamicin and oxacillin (∼100× and 8,000× minimal inhibitory concentration, respectively) and to sodium hypochlorite (0.6% active chlorine). Scanning electron microscopy and confocal microscopy verified extensive exopolymeric biofilm structures on the explants. Despite a significant delay, a ΔlasI quorum-sensing mutant of P. aeruginosa developed biofilm as antibiotic-tolerant as wild-type after 3 days. This ex vivo model simulates growth of biofilms on skin wounds and provides an accurate model to assess effects of antimicrobial agents on mature biofilms.

  16. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    PubMed

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition. PMID:26673448

  17. Outer membrane protein OmpQ of Bordetella bronchiseptica is required for mature biofilm formation.

    PubMed

    Cattelan, Natalia; Villalba, María Inés; Parisi, Gustavo; Arnal, Laura; Serra, Diego Omar; Aguilar, Mario; Yantorno, Osvaldo

    2016-02-01

    Bordetella bronchiseptica, an aerobic Gram-negative bacterium, is capable of colonizing the respiratory tract of diverse animals and chronically persists inside the hosts by forming biofilm. Most known virulence factors in Bordetella species are regulated by the BvgAS two-component transduction system. The Bvg-activated proteins play a critical role during host infection. OmpQ is an outer membrane porin protein which is expressed under BvgAS control. Here, we studied the contribution of OmpQ to the biofilm formation process by B. bronchiseptica. We found that the lack of expression of OmpQ did not affect the growth kinetics and final biomass of B. bronchiseptica under planktonic growth conditions. The ΔompQ mutant strain displayed no differences in attachment level and in early steps of biofilm formation. However, deletion of the ompQ gene attenuated the ability of B. bronchiseptica to form a mature biofilm. Analysis of ompQ gene expression during the biofilm formation process by B. bronchiseptica showed a dynamic expression pattern, with an increase of biofilm culture at 48 h. Moreover, we demonstrated that the addition of serum anti-OmpQ had the potential to reduce the biofilm biomass formation in a dose-dependent manner. In conclusion, we showed for the first time, to the best of our knowledge, evidence of the contribution of OmpQ to a process of importance for B. bronchiseptica pathobiology. Our results indicate that OmpQ plays a role during the biofilm development process, particularly at later stages of development, and that this porin could be a potential target for strategies of biofilm formation inhibition.

  18. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms.

    PubMed

    Ferreira, Inês Santos; Bettencourt, Ana F; Gonçalves, Lídia M D; Kasper, Stefanie; Bétrisey, Bertrand; Kikhney, Judith; Moter, Annette; Trampuz, Andrej; Almeida, António J

    2015-01-01

    The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was

  19. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms

    PubMed Central

    Ferreira, Inês Santos; Bettencourt, Ana F; Gonçalves, Lídia MD; Kasper, Stefanie; Bétrisey, Bertrand; Kikhney, Judith; Moter, Annette; Trampuz, Andrej; Almeida, António J

    2015-01-01

    The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was

  20. Activity of daptomycin- and vancomycin-loaded poly-epsilon-caprolactone microparticles against mature staphylococcal biofilms.

    PubMed

    Ferreira, Inês Santos; Bettencourt, Ana F; Gonçalves, Lídia M D; Kasper, Stefanie; Bétrisey, Bertrand; Kikhney, Judith; Moter, Annette; Trampuz, Andrej; Almeida, António J

    2015-01-01

    The aim of the present study was to develop novel daptomycin-loaded poly-epsilon-caprolactone (PCL) microparticles with enhanced antibiofilm activity against mature biofilms of clinically relevant bacteria, methicillin-resistant Staphylococcus aureus (MRSA) and polysaccharide intercellular adhesin-positive Staphylococcus epidermidis. Daptomycin was encapsulated into PCL microparticles by a double emulsion-solvent evaporation method. For comparison purposes, formulations containing vancomycin were also prepared. Particle morphology, size distribution, encapsulation efficiency, surface charge, thermal behavior, and in vitro release were assessed. All formulations exhibited a spherical morphology, micrometer size, and negative surface charge. From a very early time stage, the released concentrations of daptomycin and vancomycin were higher than the minimal inhibitory concentration and continued so up to 72 hours. Daptomycin presented a sustained release profile with increasing concentrations of the drug being released up to 72 hours, whereas the release of vancomycin stabilized at 24 hours. The antibacterial activity of the microparticles was assessed by isothermal microcalorimetry against planktonic and sessile MRSA and S. epidermidis. Regarding planktonic bacteria, daptomycin-loaded PCL microparticles presented the highest antibacterial activity against both strains. Isothermal microcalorimetry also revealed that lower concentrations of daptomycin-loaded microparticles were required to completely inhibit the recovery of mature MRSA and S. epidermidis biofilms. Further characterization of the effect of daptomycin-loaded PCL microparticles on mature biofilms was performed by fluorescence in situ hybridization. Fluorescence in situ hybridization showed an important reduction in MRSA biofilm, whereas S. epidermidis biofilms, although inhibited, were not eradicated. In addition, an important attachment of the microparticles to MRSA and S. epidermidis biofilms was

  1. The horizontally-acquired response regulator SsrB drives a Salmonella lifestyle switch by relieving biofilm silencing

    PubMed Central

    Desai, Stuti K; Winardhi, Ricksen S; Periasamy, Saravanan; Dykas, Michal M; Jie, Yan; Kenney, Linda J

    2016-01-01

    A common strategy by which bacterial pathogens reside in humans is by shifting from a virulent lifestyle, (systemic infection), to a dormant carrier state. Two major serovars of Salmonella enterica, Typhi and Typhimurium, have evolved a two-component regulatory system to exist inside Salmonella-containing vacuoles in the macrophage, as well as to persist as asymptomatic biofilms in the gallbladder. Here we present evidence that SsrB, a transcriptional regulator encoded on the SPI-2 pathogenicity-island, determines the switch between these two lifestyles by controlling ancestral and horizontally-acquired genes. In the acidic macrophage vacuole, the kinase SsrA phosphorylates SsrB, and SsrB~P relieves silencing of virulence genes and activates their transcription. In the absence of SsrA, unphosphorylated SsrB directs transcription of factors required for biofilm formation specifically by activating csgD (agfD), the master biofilm regulator by disrupting the silenced, H-NS-bound promoter. Anti-silencing mechanisms thus control the switch between opposing lifestyles. DOI: http://dx.doi.org/10.7554/eLife.10747.001 PMID:26880544

  2. Composition of microbial oral biofilms during maturation in young healthy adults.

    PubMed

    Langfeldt, Daniela; Neulinger, Sven C; Heuer, Wieland; Staufenbiel, Ingmar; Künzel, Sven; Baines, John F; Eberhard, Jörg; Schmitz, Ruth A

    2014-01-01

    In the present study we aimed to analyze the bacterial community structure of oral biofilms at different maturation stages in young healthy adults. Oral biofilms established on membrane filters were collected from 32 human subjects after 5 different maturation intervals (1, 3, 5, 9 and 14 days) and the respective phylogenetic diversity was analyzed by 16S rDNA amplicon sequencing. Our analyses revealed highly diverse entire colonization profiles, spread into 8 phyla/candidate divisions and in 15 different bacterial classes. A large inter-individual difference in the subjects' microbiota was observed, comprising 35% of the total variance, but lacking conspicuous general temporal trends in both alpha and beta diversity. We further obtained strong evidence that subjects can be categorized into three clusters based on three differently occurring and mutually exclusive species clusters.

  3. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development.

    PubMed

    Malamud, Florencia; Torres, Pablo S; Roeschlin, Roxana; Rigano, Luciano A; Enrique, Ramón; Bonomi, Hernán R; Castagnaro, Atilio P; Marano, María Rosa; Vojnov, Adrián A

    2011-03-01

    Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent. PMID:21109564

  4. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development.

    PubMed

    Malamud, Florencia; Torres, Pablo S; Roeschlin, Roxana; Rigano, Luciano A; Enrique, Ramón; Bonomi, Hernán R; Castagnaro, Atilio P; Marano, María Rosa; Vojnov, Adrián A

    2011-03-01

    Xanthomonas axonopodis pv. citri (Xac) is the causative agent of citrus canker. This bacterium develops a characteristic biofilm on both biotic and abiotic surfaces. To evaluate the participation of the single flagellum of Xac in biofilm formation, mutants in the fliC (flagellin) and the flgE (hook) genes were generated. Swimming motility, assessed on 0.25 % agar plates, was markedly reduced in fliC and flgE mutants. However, the fliC and flgE mutants exhibited a flagellar-independent surface translocation on 0.5 % agar plates. Mutation of either the rpfF or the rpfC gene, which both encode proteins involved in cell-cell signalling mediated by diffusible signal factor (DSF), led to a reduction in both flagellar-dependent and flagellar-independent surface translocation, indicating a regulatory role for DSF in both types of motility. Confocal laser scanning microscopy of biofilms produced in static culture demonstrated that the flagellum is also involved in the formation of mushroom-shaped structures and water channels, and in the dispersion of biofilms. The presence of the flagellum was required for mature biofilm development on lemon leaf surfaces. The absence of flagellin produced a slight reduction in Xac pathogenicity and this reduction was more severe when the complete flagellum structure was absent.

  5. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics.

    PubMed

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the 'holy grail' in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  6. Development of an intracanal mature Enterococcus faecalis biofilm and its susceptibility to some antimicrobial intracanal medications; an in vitro study

    PubMed Central

    Saber, Shehab El-Din Mohamed; El-Hady, Soha A.

    2012-01-01

    Objectives: To develop a mature biofilm of Enterococcus faecalis inside the root canal system and to test its susceptibility to some antimicrobial medications in vitro. Methods: Single rooted premolars were mechanically enlarged, sterilized, and then infected with a clinical isolate of E. faecalis. Biofilm formation and maturation was monitored using SEM. Biofilm bacteria were exposed to Amoxicillin+clavulanate, Ciprofloxacin, Clindamycin, Doxycycline, and calcium hydroxide as intracanal medications for 1 week. Finally bacterial samples were collected, and colony-forming units were enumerated. Results: SEM examination confirmed the formation of a mature biofilm at the end of the incubation period. All the chemotherapeutic agents used were significantly better than Calcium hydroxide in elimination of biofilm bacteria. The antimicrobial effect of Amoxicillin + clavulanate, Ciprofloxacin and Clindamycin was significantly better than Doxycycline (P=.05). However the difference in the antimicrobial effectiveness among them was statistically non-significant (P=.05). Conclusions: The method used for bacterial biofilm development and maturation is reliable and can be used to assess the anti bacterial potential of endodontic materials. Also, the local application of antibacterial agents can be beneficial in resistant cases of apical periodontitis but only after careful culture and sensitivity testing to choose the appropriate agent for the existing flora. PMID:22229006

  7. Listeria monocytogenes Impact on Mature or Old Pseudomonas fluorescens Biofilms During Growth at 4 and 20°C

    PubMed Central

    Puga, Carmen H.; Orgaz, Belen; SanJose, Carmen

    2016-01-01

    Changes in spatial organization, as observed by confocal laser scanning microscopy (CLSM), viable cell content, biovolume, and substratum surface coverage of the biofilms formed on glass by Pseudomonas fluorescens resulting from co-culture with Listeria monocytogenes, were examined. Two strains of L. monocytogenes, two culture temperatures and two biofilm developmental stages were investigated. Both L. monocytogenes strains, a persistently sampled isolate (collected repeatedly along 3 years from a meat factory) and Scott A, induced shrinkage in matrix volume, both at 20°C and 4°C, in mature or old biofilms, without loss of P. fluorescens cell count per surface unit. The nearly homogeneous pattern of surface coverage shown by mono-species P. fluorescens biofilms, turned into more irregular layouts in co-culture with L. monocytogenes. The upper layer of both mono and dual-species biofilms turned to predominantly consist of matrix, with plenty of viable cells underneath, in old biofilms cultured at 20°C, but not in those grown at 4°C. Between 15 and 56% of the substratum area was covered by biofilm, the extent depending on temperature, time and L. monocytogenes strain. Real biofilms in food-related surfaces may thus be very heterogeneous regarding their superficial components, i.e., those more accessible to disinfectants. It is therefore a hygienic challenge to choose an adequate agent to disrupt them. PMID:26913024

  8. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics

    PubMed Central

    Ren, Hang; Wu, Jianfeng; Colletta, Alessandro; Meyerhoff, Mark E.; Xi, Chuanwu

    2016-01-01

    Fast eradication of mature biofilms is the ‘holy grail’ in the clinical management of device-related infections. Endogenous nitric oxide (NO) produced by macrophages plays an important role in host defense against intracellular pathogens, and NO is a promising agent in preventing biofilms formation in vitro. However, the rate of delivery of NO by various NO donors (e.g., diazeniumdiolates, S-nitrosothiols, etc.) is difficult to control, which hinders fundamental studies aimed at understanding the role of NO in biofilm control. In this study, by using a novel precisely controlled electrochemical NO releasing catheter device, we examine the effect of physiological levels of NO on eradicating mature Pseudomonas aeruginosa biofilm (7 days), as well as the potential application of the combination of NO with antimicrobial agents. It is shown that physiological levels of NO exhibit mixed effects of killing bacteria and dispersing ambient biofilm. The overall biofilm-eradicating effect of NO is quite efficient in a dose-dependent manner over a 3 h period of NO treatment. Moreover, NO also greatly enhances the efficacy of antimicrobial agents, including human beta-defensin 2 (BD-2) and several antibiotics, in eradicating biofilm and its detached cells, which otherwise exhibited high recalcitrance to these antimicrobial agents. The electrochemical NO release technology offers a powerful tool in evaluating the role of NO in biofilm control as well as a promising approach when combined with antimicrobial agents to treat biofilm-associated infections in hospital settings, especially infections resulting from intravascular catheters. PMID:27582732

  9. Biofilm lifestyle enhances diesel bioremediation and biosurfactant production in the Antarctic polyhydroxyalkanoate producer Pseudomonas extremaustralis.

    PubMed

    Tribelli, Paula M; Di Martino, Carla; López, Nancy I; Raiger Iustman, Laura J

    2012-09-01

    Diesel is a widely distributed pollutant. Bioremediation of this kind of compounds requires the use of microorganisms able to survive and adapt to contaminated environments. Pseudomonas extremaustralis is an Antarctic bacterium with a remarkable survival capability associated to polyhydroxyalkanoates (PHAs) production. This strain was used to investigate the effect of cell growth conditions--in biofilm versus shaken flask cultures--as well as the inocula characteristics associated with PHAs accumulation, on diesel degradation. Biofilms showed increased cell growth, biosurfactant production and diesel degradation compared with that obtained in shaken flask cultures. PHA accumulation decreased biofilm cell attachment and enhanced biosurfactant production. Degradation of long-chain and branched alkanes was observed in biofilms, while in shaken flasks only medium-chain length alkanes were degraded. This work shows that the PHA accumulating bacterium P. extremaustralis can be a good candidate to be used as hydrocarbon bioremediation agent, especially in extreme environments.

  10. Comparative Transcriptome Analysis of Desulfovibrio Vulgaris Grown in Planktonic Culture and Mature Biofilm on a Steel Surface

    SciTech Connect

    Zhang, Weiwen; Culley, David E.; Nie, Lei; Scholten, Johannes C.

    2007-08-01

    The build-up of biofilms of sulphate -reducing bacteria (SRB) on metals surfaces may lead to severe corrosion of iron. To understand the processes at molecular level, in this study, a whole-genome oligonucleotide microarray was used to examine differential expression patterns between planktonic populations and mature biofilm of model SRB species Desulfovibrio vulgaris. Statistical analysis revealed that 472 genes were differentially expressed (1.5 fold or more with a p value less than 0.025) when comparing biofilm to planktonic cells. Among the differentially expressed genes were several that corresponded to biofilm formation genes identified in many aerobic bacterial biofilms (i.e., Pseudomonas species and Escherichia coli), such as down-regulation of genes encoding flagellin, flagellar motor switch protein and chemotaxis proteins involved in cell motility and induction of genes encoding sugar transferase and glycogen synthase involved in exopolysaccharide biosynthesis. In addition, D. vulgaris biofilm-bound cells exhibited decreased transcription of genes involved in protein synthesis, energy metabolism and sulfate reduction, as well as genes involved in general stress responses. These findings were all consistent with early suggestion that the average physiology of biofilm cells were similar to planktonic cells of stationary phases. Most notably, up-regulation of large number of outer membrane proteins was observed in D. vulgaris biofilm. Although their function is still unknown, the higher expression of these genes in D. vulgaris biofilm could implicate important roles formation and maintenance of multi-cellular consortium on metal surface. The study provided insights into the metabolic networks associated with D. vulgaris biofilm formation and maintenance on an iron surface.

  11. The role of the globin-coupled sensor YddV in a mature E. coli biofilm population.

    PubMed

    Donné, Joke; Van Kerckhoven, Marian; Maes, Louis; Cos, Paul; Dewilde, Sylvia

    2016-07-01

    Biofilm-associated infections are hard to treat because of their high antibiotic resistance and the presence of a very persistent subpopulation of bacteria. The second messenger molecule cyclic di-guanosine monophosphate (c-di-GMP) plays a very important role in this biofilm physiology. Here, we evaluated the role of YddV, an enzyme with a c-di-GMP synthesis function, in the formation and maturation of Escherichia coli biofilms. Our results suggest that YddV stimulates biofilm growth via its role in the production of c-di-GMP and this likely by influencing the production of matrix (e.g. poly-N-acetylglucosamine (PGA)). However, lowering the YddV expression did not alter the biofilm formation since there was no significant difference between the biofilm phenotypes of WT E. coli and YddV-knockout bacteria. Additionally, YddV expression had no significant influence on the amount of persister cells within the biofilm population, questioning the use of YddV as therapeutic target.

  12. Interfacial separation of a mature biofilm from a glass surface - A combined experimental and cohesive zone modelling approach.

    PubMed

    Safari, Ashkan; Tukovic, Zeljko; Cardiff, Philip; Walter, Maik; Casey, Eoin; Ivankovic, Alojz

    2016-02-01

    A good understanding of the mechanical stability of biofilms is essential for biofouling management, particularly when mechanical forces are used. Previous biofilm studies lack a damage-based theoretical model to describe the biofilm separation from a surface. The purpose of the current study was to investigate the interfacial separation of a mature biofilm from a rigid glass substrate using a combined experimental and numerical modelling approach. In the current work, the biofilm-glass interfacial separation process was investigated under tensile and shear stresses at the macroscale level, known as modes I and II failure mechanisms respectively. The numerical simulations were performed using a Finite Volume (FV)-based simulation package (OpenFOAM®) to predict the separation initiation using the cohesive zone model (CZM). Atomic force microscopy (AFM)-based retraction curve was used to obtain the separation properties between the biofilm and glass colloid at microscale level, where the CZM parameters were estimated using the Johnson-Kendall-Roberts (JKR) model. In this study CZM is introduced as a reliable method for the investigation of interfacial separation between a biofilm and rigid substrate, in which a high local stress at the interface edge acts as an ultimate stress at the crack tip.This study demonstrated that the total interfacial failure energy measured at the macroscale, was significantly higher than the pure interfacial separation energy obtained by AFM at the microscale, indicating a highly ductile deformation behaviour within the bulk biofilm matrix. The results of this study can significantly contribute to the understanding of biofilm detachments.

  13. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets?

    PubMed

    Abedon, Stephen T

    2016-02-01

    Robust evidence is somewhat lacking for biofilm susceptibility to bacteriophages in nature, contrasting often substantial laboratory biofilm vulnerability to phages. To help bridge this divide, I review a two-part scenario for 'heterogeneous' phage interaction even with phage-permissive single-species biofilms. First, through various mechanisms, those bacteria which are both more newly formed and located at biofilm surfaces may be particularly vulnerable to phage adsorption, rather than biofilm matrix being homogeneously resistant to phage penetration. Second, though phage infection of older, less metabolically active bacteria may still be virion productive, nevertheless the majority of phage population growth in association with biofilm bacteria could involve infection particularly of those bacteria which are more metabolically active and thereby better able to support larger phage bursts, versus clonally related biofilm bacteria equivalently supporting phage production. To the extent that biofilms are physiologically or structurally heterogeneous, with phages exploiting particularly relatively newly divided biofilm-surface bacteria, then even effective phage predation of natural biofilms could result in less than complete overall biofilm clearance. Phage tendencies toward only partial exploitation of even single-species biofilms could be consistent with observations that chronic bacterial infections in the clinic can require more aggressive or extensive phage therapy to eradicate.

  14. Bacteriophage exploitation of bacterial biofilms: phage preference for less mature targets?

    PubMed

    Abedon, Stephen T

    2016-02-01

    Robust evidence is somewhat lacking for biofilm susceptibility to bacteriophages in nature, contrasting often substantial laboratory biofilm vulnerability to phages. To help bridge this divide, I review a two-part scenario for 'heterogeneous' phage interaction even with phage-permissive single-species biofilms. First, through various mechanisms, those bacteria which are both more newly formed and located at biofilm surfaces may be particularly vulnerable to phage adsorption, rather than biofilm matrix being homogeneously resistant to phage penetration. Second, though phage infection of older, less metabolically active bacteria may still be virion productive, nevertheless the majority of phage population growth in association with biofilm bacteria could involve infection particularly of those bacteria which are more metabolically active and thereby better able to support larger phage bursts, versus clonally related biofilm bacteria equivalently supporting phage production. To the extent that biofilms are physiologically or structurally heterogeneous, with phages exploiting particularly relatively newly divided biofilm-surface bacteria, then even effective phage predation of natural biofilms could result in less than complete overall biofilm clearance. Phage tendencies toward only partial exploitation of even single-species biofilms could be consistent with observations that chronic bacterial infections in the clinic can require more aggressive or extensive phage therapy to eradicate. PMID:26738755

  15. Role of initial contamination levels, biofilm maturity and presence of salt and fat on desiccation survival of Listeria monocytogenes on stainless steel surfaces.

    PubMed

    Hingston, Patricia A; Stea, Emma C; Knøchel, Susanne; Hansen, Truelstrup

    2013-10-01

    This study investigated the effect of initial contamination levels, biofilm maturity and presence of salt and fatty food soils on desiccation survival of Listeria monocytogenes on stainless steel (SS) coupons. L. monocytogenes cultures grown (at 15 °C for 48 h) in Tryptic Soy Broth with 1% glucose (TSB-glu) containing either 0.5 or 5% (w/v) NaCl were re-suspended in TSB-glu containing either 0.5 or 5% NaCl and used to contaminate SS coupons at levels of 3.5, 5.5, and 7.5 log CFU/cm². Desiccation (at 15 °C for 20 days, 43% RH) commenced immediately (non-biofilm) or following biofilm formation (at 15 °C for 48 h, 100% RH). To study the impact of food lipids, non-biofilm L. monocytogenes cells were suspended in TSB-glu containing either canola oil (5-10%) or lard (20-60%) and desiccated as above on SS coupons. Following desiccation for 20 days, survivors decreased by 1.4-3.7 log CFU/cm² for non-biofilm L. monocytogenes cells. The contamination level had no significant (p > 0.05) effect on survival kinetics. SEM micrographs showed mature biofilms on coupons initially contaminated with 5.5 and 7.5 log CFU/cm². Mature biofilm cells were significantly (p < 0.05) more desiccation resistant than cells in immature biofilms formed by the lowest contamination level. Besides biofilm maturity/formation, previous osmoadaptation, exposure to lard (20-60%) or salt (5%) during desiccation significantly (p < 0.05) increased the bacterium's survival. In conclusion, L. monocytogenes desiccation survival can be greatly reduced by preventing presence of mature biofilms and salty or fatty soils on food contact surfaces.

  16. Mature Biofilm Degradation by Potential Probiotics: Aggregatibacter actinomycetemcomitans versus Lactobacillus spp.

    PubMed Central

    Mizuno, Kouhei; Okinaga, Toshinori

    2016-01-01

    The biofilm degradation of Aggregatibacter actinomycetemcomitans is essential as a complete periodontal disease therapy, and here we show the effects of potential probiotic bacteria such as Lactobacillus spp. for the biofilm of several serotypes of A. actinomycetemcomitans strains. Eight of the 13 species showed the competent biofilm degradation of ≥ 90% reduction in biofilm values in A. actinomycetemcomitans Y4 (serotype b) as well as four of the seven species for the biofilm of A. actinomycetemcomitans OMZ 534 (serotype e). In contrast, the probiotic bacteria did not have a big impact for the degradation of A. actinomycetemcomitans SUNY 75 (serotype a) biofilm. The dispersed A. actinomycetemcomitans Y4 cells through the biofilm detachment were still viable and plausible factors for the biofilm degradation were not due to the lactic acid and low pH conditions. The three enzymes, protease, lipase, and amylase may be responsible for the biofilm degradation; in particular, lipase was the most effective enzyme for the biofilm degradation of A. actinomycetemcomitans Y4 along with the protease activity which should be also important for the other serotypes. Remarkable lipase enzyme activities were detected from some of the potential probiotics and a supporting result using a lipase inhibitor presented corroborating evidence that lipase activity is one of the contributing factors for biofilm degradation outside of the protease which is also another possible factor for the biofilm of the other serotype of A. actinomycetemcomitans strains. On the other hand, the biofilm of A. actinomycetemcomitans SUNY 75 (serotype a) was not powerfully degraded by the lipase enzyme because the lipase inhibitor was slightly functional for only two of potential probiotics. PMID:27438340

  17. Synthetic amphibian peptides and short amino-acids derivatives against planktonic cells and mature biofilm of Providencia stuartii clinical strains.

    PubMed

    Ostrowska, Kinga; Kamysz, Wojciech; Dawgul, Małgorzata; Różalski, Antoni

    2014-01-01

    Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH2, Pal-KKK-NH2, Pal-RRR-NH2) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 μg/ml and 256 and ≥ 2048 μg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 μg/ml, 64 and 256 μg/ml and 16 and 512 μg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 μg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 μg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The

  18. Synthetic amphibian peptides and short amino-acids derivatives against planktonic cells and mature biofilm of Providencia stuartii clinical strains.

    PubMed

    Ostrowska, Kinga; Kamysz, Wojciech; Dawgul, Małgorzata; Różalski, Antoni

    2014-01-01

    Over the last decade, the growing number of multidrug resistant strains limits the use of many of the currently available chemotherapeutic agents. Furthermore, bacterial biofilm, due to its complex structure, constitutes an effective barrier to conventional antibiotics. The in vitro activities of naturally occurring peptide (Citropin 1.1), chemically engineered analogue (Pexiganan), newly-designed, short amino-acid derivatives (Pal-KK-NH2, Pal-KKK-NH2, Pal-RRR-NH2) and six clinically used antimicrobial agents (Gatifloxacin, Ampicilin, Cefotaxime, Ceftriaxone, Cefuroxime and Cefalexin) were investigated against planktonic cells and mature biofilm of multidrug-resistant Providencia stuartii strains, isolated from urological catheters. The MICs, MBCs values were determined by broth microdilution technique. Inhibition of biofilm formation by antimicrobial agents as well as biofilm susceptibility assay were tested using a surrogate model based on the Crystal Violet method. The antimicrobial activity of amino-acids derivatives and synthetic peptides was compared to that of clinically used antibiotics. For planktonic cells, MICs of peptides and antibiotics ranged between 1 and 256 μg/ml and 256 and ≥ 2048 μg/ml, respectively. The MBCs values of Pexiganan, Citropin 1.1 and amino-acids derivatives were between 16 and 256 μg/ml, 64 and 256 μg/ml and 16 and 512 μg/ml, respectively. For clinically used antibiotics the MBCs values were above 2048 μg/ml. All of the tested peptides and amino-acids derivatives, showed inhibitory activity against P. stuartii biofilm formation, in relation to their concentrations. Pexiganan and Citropin 1.1 in concentration range 32 and 256 μg/ml caused both strong and complete suppression of biofilm formation. None of the antibiotics caused complete inhibition of biofilm formation process. The biofilm susceptibility assay verified the extremely poor antibiofilm activity of conventional antibiotics compared to synthetic peptides. The

  19. Biofilms

    PubMed Central

    van Hoek, Monique L

    2013-01-01

    Our understanding of the virulence and pathogenesis of Francisella spp. has significantly advanced in recent years, including a new understanding that this organism can form biofilms. What is known so far about Francisella spp. biofilms is summarized here and future research questions are suggested. The molecular basis of biofilm production has begun to be studied, especially the role of extracellular carbohydrates and capsule, quorum sensing and two-component signaling systems. Further work has explored the contribution of amoebae, pili, outer-membrane vesicles, chitinases, and small molecules such as c-di-GMP to Francisella spp. biofilm formation. A role for Francisella spp. biofilm in feeding mosquito larvae has been suggested. As no strong role in virulence has been found yet, Francisella spp. biofilm formation is most likely a key mechanism for environmental survival and persistence. The significance and importance of Francisella spp.’s biofilm phenotype as a critical aspect of its microbial physiology is being developed. Areas for further studies include the potential role of Francisella spp. biofilms in the infection of mammalian hosts and virulence regulation. PMID:24225421

  20. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.

    PubMed

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 10(5) kJ/m(2) attenuated with a 0.1% neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission.

  1. Biofilm and planktonic lifestyles differently support the resistance of the desert cyanobacterium Chroococcidiopsis under space and Martian simulations.

    PubMed

    Baqué, Mickael; Scalzi, Giuliano; Rabbow, Elke; Rettberg, Petra; Billi, Daniela

    2013-10-01

    When Chroococcidiopsis sp. strain CCMEE 057 from the Sinai Desert and strain CCMEE 029 from the Negev Desert were exposed to space and Martian simulations in the dried status as biofilms or multilayered planktonic samples, the biofilms exhibited an enhanced rate of survival. Compared to strain CCMEE 029, biofilms of strain CCME 057 better tolerated UV polychromatic radiation (5 × 10(5) kJ/m(2) attenuated with a 0.1% neutral density filter) combined with space vacuum or Martian atmosphere of 780 Pa. CCMEE 029, on the other hand, failed to survive UV polychromatic doses higher than 1.5 × 10(3) kJ/m(2). The induced damage to genomic DNA, plasma membranes and photosynthetic apparatus was quantified and visualized by means of PCR-based assays and CLSM imaging. Planktonic samples of both strains accumulated a higher amount of damage than did the biofilms after exposure to each simulation; CLSM imaging showed that photosynthetic pigment bleaching, DNA fragmentation and damaged plasma membranes occurred in the top 3-4 cell layers of both biofilms and of multilayered planktonic samples. Differences in the EPS composition were revealed by molecular probe staining as contributing to the enhanced endurance of biofilms compared to that of planktonic samples. Our results suggest that compared to strain CCMEE 029, biofilms of strain CCMEE 057 might better tolerate 1 year's exposure in space during the next EXPOSE-R2 mission. PMID:23955666

  2. Antibacterial Activity of Blue Light against Nosocomial Wound Pathogens Growing Planktonically and as Mature Biofilms

    PubMed Central

    Thwaite, Joanne E.; Burt, Rebecca; Laws, Thomas R.; Raguse, Marina; Moeller, Ralf; Webber, Mark A.; Oppenheim, Beryl A.

    2016-01-01

    ABSTRACT The blue wavelengths within the visible light spectrum are intrinisically antimicrobial and can photodynamically inactivate the cells of a wide spectrum of bacteria (Gram positive and negative) and fungi. Furthermore, blue light is equally effective against both drug-sensitive and -resistant members of target species and is less detrimental to mammalian cells than is UV radiation. Blue light is currently used for treating acnes vulgaris and Helicobacter pylori infections; the utility for decontamination and treatment of wound infections is in its infancy. Furthermore, limited studies have been performed on bacterial biofilms, the key growth mode of bacteria involved in clinical infections. Here we report the findings of a multicenter in vitro study performed to assess the antimicrobial activity of 400-nm blue light against bacteria in both planktonic and biofilm growth modes. Blue light was tested against a panel of 34 bacterial isolates (clinical and type strains) comprising Acinetobacter baumannii, Enterobacter cloacae, Stenotrophomonas maltophilia, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, Enterococcus faecium, Klebsiella pneumoniae, and Elizabethkingia meningoseptica. All planktonic-phase bacteria were susceptible to blue light treatment, with the majority (71%) demonstrating a ≥5-log10 decrease in viability after 15 to 30 min of exposure (54 J/cm2 to 108 J/cm2). Bacterial biofilms were also highly susceptible to blue light, with significant reduction in seeding observed for all isolates at all levels of exposure. These results warrant further investigation of blue light as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications. IMPORTANCE Blue light shows great promise as a novel decontamination strategy for the nosocomial environment, as well as additional wider decontamination applications (e.g., wound closure during surgery). This warrants further

  3. Arginine Deiminase in Staphylococcus epidermidis Functions To Augment Biofilm Maturation through pH Homeostasis

    PubMed Central

    Lindgren, J. K.; Thomas, V. C.; Olson, M. E.; Chaudhari, S. S.; Nuxoll, A. S.; Schaeffer, C. R.; Lindgren, K. E.; Jones, J.; Zimmerman, M. C.; Dunman, P. M.; Bayles, K. W.

    2014-01-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids. PMID:24727224

  4. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis.

    PubMed

    Lindgren, J K; Thomas, V C; Olson, M E; Chaudhari, S S; Nuxoll, A S; Schaeffer, C R; Lindgren, K E; Jones, J; Zimmerman, M C; Dunman, P M; Bayles, K W; Fey, P D

    2014-06-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids. PMID:24727224

  5. Arginine deiminase in Staphylococcus epidermidis functions to augment biofilm maturation through pH homeostasis.

    PubMed

    Lindgren, J K; Thomas, V C; Olson, M E; Chaudhari, S S; Nuxoll, A S; Schaeffer, C R; Lindgren, K E; Jones, J; Zimmerman, M C; Dunman, P M; Bayles, K W; Fey, P D

    2014-06-01

    Allelic replacement mutants were constructed within arginine deiminase (arcA1 and arcA2) to assess the function of the arginine deiminase (ADI) pathway in organic acid resistance and biofilm formation of Staphylococcus epidermidis 1457. A growth-dependent acidification assay (pH ∼5.0 to ∼5.2) determined that strain 1457 devoid of arginine deiminase activity (1457 ΔADI) was significantly less viable than the wild type following depletion of glucose and in the presence of arginine. However, no difference in viability was noted for individual 1457 ΔarcA1 (native) or ΔarcA2 (arginine catabolic mobile element [ACME]-derived) mutants, suggesting that the native and ACME-derived ADIs are compensatory in S. epidermidis. Furthermore, flow cytometry and electron paramagnetic resonance spectroscopy results suggested that organic acid stress resulted in oxidative stress that could be partially rescued by the iron chelator dipyridyl. Collectively, these results suggest that formation of hydroxyl radicals is partially responsible for cell death via organic acid stress and that ADI-derived ammonia functions to counteract this acid stress. Finally, static biofilm assays determined that viability, ammonia synthesis, and pH were reduced in strain 1457 ΔADI following 120 h of growth in comparison to strain 1457 and the arcA1 and arcA2 single mutants. It is hypothesized that ammonia synthesis via the ADI pathway is important to reduce pH stress in specific microniches that contain high concentrations of organic acids.

  6. Health- and disease-associated species clusters in complex natural biofilms determine the innate immune response in oral epithelial cells during biofilm maturation.

    PubMed

    Langfeldt, Daniela; Neulinger, Sven C; Stiesch, Meike; Stumpp, Nico; Bang, Corinna; Schmitz, Ruth A; Eberhard, Jörg

    2014-11-01

    The aim of the present study was to verify our hypothesis concerning the differential induction of various antimicrobial and immunomodulatory responses in oral epithelial cells by diverse bacterial species clusters. For this purpose, oral biofilms between 1 and 14 days of maturation (36 volunteers) were co-incubated with gingival epithelial cells. Subsequently, human β-defensin (hBD)-2, hBD-3, LL-37, interleukin (IL)-1β, IL-6, IL-8 and IL-10 mRNA expression profiles were quantified by quantitative reverse transcription PCR. The correlation between bacterial species and the host innate immune response was determined by relating these results to existing 16S rRNA phylogenetic analysis by amplicon sequencing (Langfeldt et al. 2014. PLoS One 9: e87449). Data were analysed by multiple factor analysis. Transcription of hBD-2 and hBD-3 was significantly associated with the abundance of species of the Prevotella cluster and the absence of species of the Streptococcus cluster. IL-1β, -6, -8 and -10 mRNA syntheses were significant correlated with Leptotrichia species [Leptotrichia 302H02 (0.448, P < 0.0001), Leptotrichia nbw822e09c1 (0.214, P = 0.008) and Leptotrichia wadei (0.218, P = 0.007)] of the Prevotella cluster. In the third dimension IL-10 and members of the Prevotella cluster were negatively correlated, whereas hBD-3 and IL-1β, IL-6 and IL-8 were positive correlated to axis 3, like members of the Proteobacteria cluster. In conclusion, distinct species of health- and disease-associated bacterial clusters induce antibacterial or immunomodulatory reactions in oral epithelial cells during early stages of bacteria-host interactions.

  7. Health- and disease-associated species clusters in complex natural biofilms determine the innate immune response in oral epithelial cells during biofilm maturation.

    PubMed

    Langfeldt, Daniela; Neulinger, Sven C; Stiesch, Meike; Stumpp, Nico; Bang, Corinna; Schmitz, Ruth A; Eberhard, Jörg

    2014-11-01

    The aim of the present study was to verify our hypothesis concerning the differential induction of various antimicrobial and immunomodulatory responses in oral epithelial cells by diverse bacterial species clusters. For this purpose, oral biofilms between 1 and 14 days of maturation (36 volunteers) were co-incubated with gingival epithelial cells. Subsequently, human β-defensin (hBD)-2, hBD-3, LL-37, interleukin (IL)-1β, IL-6, IL-8 and IL-10 mRNA expression profiles were quantified by quantitative reverse transcription PCR. The correlation between bacterial species and the host innate immune response was determined by relating these results to existing 16S rRNA phylogenetic analysis by amplicon sequencing (Langfeldt et al. 2014. PLoS One 9: e87449). Data were analysed by multiple factor analysis. Transcription of hBD-2 and hBD-3 was significantly associated with the abundance of species of the Prevotella cluster and the absence of species of the Streptococcus cluster. IL-1β, -6, -8 and -10 mRNA syntheses were significant correlated with Leptotrichia species [Leptotrichia 302H02 (0.448, P < 0.0001), Leptotrichia nbw822e09c1 (0.214, P = 0.008) and Leptotrichia wadei (0.218, P = 0.007)] of the Prevotella cluster. In the third dimension IL-10 and members of the Prevotella cluster were negatively correlated, whereas hBD-3 and IL-1β, IL-6 and IL-8 were positive correlated to axis 3, like members of the Proteobacteria cluster. In conclusion, distinct species of health- and disease-associated bacterial clusters induce antibacterial or immunomodulatory reactions in oral epithelial cells during early stages of bacteria-host interactions. PMID:25212593

  8. Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons.

    PubMed

    Buse, Helen Y; Lu, Jingrang; Struewing, Ian T; Ashbolt, Nicholas J

    2014-03-01

    Legionella occurrence in premise drinking water (DW) systems contributes to legionellosis outbreaks, especially in the presence of suitable protozoan hosts. This study examined L. pneumophila behavior within DW biofilms grown on copper (Cu) and unplasticized polyvinylchloride (uPVC) surfaces in the presence of Acanthamoeba polyphaga. One year-old DW biofilms were established within six CDC biofilm reactors: three each containing Cu or uPVC coupons. Biofilms were then inoculated with L. pneumophila (uPVC-Lp and Cu-Lp), or L. pneumophila and A. polyphaga (uPVC-Lp/Ap and Cu-Lp/Ap) and compared to sterile water inoculated controls (uPVC- and Cu-Control) over a 4 month period. L. pneumophila appeared more persistent by qPCR within Cu biofilms in the presence of A. polyphaga compared to uPVC biofilms with or without A. polyphaga, but maintained their cultivability in uPVC biofilms compared to Cu biofilms. Also, persistent shedding of L. pneumophila cells (assayed by qPCR) in the effluent water implied colonization of L. pneumophila within Cu-coupon reactors compared to no detection from uPVC-coupon reactor effluent 14 days after inoculation. Hence, L. pneumophila appeared to colonize Cu surfaces more effectively and may be shed from the biofilms at a greater frequency and duration compared to L. pneumophila colonized uPVC surfaces with host amoebae playing a role in L. pneumophila persistence within Cu biofilms.

  9. Bacillus cereus Biofilms-Same, Only Different.

    PubMed

    Majed, Racha; Faille, Christine; Kallassy, Mireille; Gohar, Michel

    2016-01-01

    Bacillus cereus displays a high diversity of lifestyles and ecological niches and include beneficial as well as pathogenic strains. These strains are widespread in the environment, are found on inert as well as on living surfaces and contaminate persistently the production lines of the food industry. Biofilms are suspected to play a key role in this ubiquitous distribution and in this persistency. Indeed, B. cereus produces a variety of biofilms which differ in their architecture and mechanism of formation, possibly reflecting an adaptation to various environments. Depending on the strain, B. cereus has the ability to grow as immersed or floating biofilms, and to secrete within the biofilm a vast array of metabolites, surfactants, bacteriocins, enzymes, and toxins, all compounds susceptible to act on the biofilm itself and/or on its environment. Within the biofilm, B. cereus exists in different physiological states and is able to generate highly resistant and adhesive spores, which themselves will increase the resistance of the bacterium to antimicrobials or to cleaning procedures. Current researches show that, despite similarities with the regulation processes and effector molecules involved in the initiation and maturation of the extensively studied Bacillus subtilis biofilm, important differences exists between the two species. The present review summarizes the up to date knowledge on biofilms produced by B. cereus and by two closely related pathogens, Bacillus thuringiensis and Bacillus anthracis. Economic issues caused by B. cereus biofilms and management strategies implemented to control these biofilms are included in this review, which also discuss the ecological and functional roles of biofilms in the lifecycle of these bacterial species and explore future developments in this important research area. PMID:27458448

  10. Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons

    EPA Science Inventory

    Legionella persistence and amplification in premise drinking water systems is a known contributor to legionellosis outbreaks, especially in the presence of suitable eukaryotic hosts. Here we examined Legionella pneumophila behavior within drinking water biofilms grown on copper ...

  11. Insights into xanthomonas axonopodis pv. citri biofilm through proteomics

    PubMed Central

    2013-01-01

    Background Xanthomonas axonopodis pv. citri (X. a. pv. citri) causes citrus canker that can result in defoliation and premature fruit drop with significant production losses worldwide. Biofilm formation is an important process in bacterial pathogens and several lines of evidence suggest that in X. a. pv. citri this process is a requirement to achieve maximal virulence since it has a major role in host interactions. In this study, proteomics was used to gain further insights into the functions of biofilms. Results In order to identify differentially expressed proteins, a comparative proteomic study using 2D difference gel electrophoresis was carried out on X. a. pv. citri mature biofilm and planktonic cells. The biofilm proteome showed major variations in the composition of outer membrane proteins and receptor or transport proteins. Among them, several porins and TonB-dependent receptor were differentially regulated in the biofilm compared to the planktonic cells, indicating that these proteins may serve in maintaining specific membrane-associated functions including signaling and cellular homeostasis. In biofilms, UDP-glucose dehydrogenase with a major role in exopolysaccharide production and the non-fimbrial adhesin YapH involved in adherence were over-expressed, while a polynucleotide phosphorylase that was demonstrated to negatively control biofilm formation in E. coli was down-regulated. In addition, several proteins involved in protein synthesis, folding and stabilization were up-regulated in biofilms. Interestingly, some proteins related to energy production, such as ATP-synthase were down-regulated in biofilms. Moreover, a number of enzymes of the tricarboxylic acid cycle were differentially expressed. In addition, X. a. pv. citri biofilms also showed down-regulation of several antioxidant enzymes. The respective gene expression patterns of several identified proteins in both X. a. pv. citri mature biofilm and planktonic cells were evaluated by quantitative

  12. Functional RelBE-Family Toxin-Antitoxin Pairs Affect Biofilm Maturation and Intestine Colonization in Vibrio cholerae

    PubMed Central

    Hay, Amanda J.; Zhong, Zengtao; Zhu, Jun; Kan, Biao

    2015-01-01

    Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. Vibrio cholerae, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in V. cholerae, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in V. cholerae physiology and found that six of the seven relBE loci encoded functional toxins in E. coli. Deletion analyses of each relBE locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven relBE loci are induced under the standard virulence induction conditions and two of the relBE mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for V. cholerae physiology. PMID:26275048

  13. Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals.

    PubMed

    de Aguiar Cordeiro, Rossana; Serpa, Rosana; Flávia Uchoa Alexandre, Camila; de Farias Marques, Francisca Jakelyne; Vladia Silva de Melo, Charlline; da Silva Franco, Jônatas; José de Jesus Evangelista, Antonio; Pires de Camargo, Zoilo; Samia Nogueira Brilhante, Raimunda; Fabio Gadelha Rocha, Marcos; Luciano Bezerra Moreira, José; de Jesus Pinheiro Gomes Bandeira, Tereza; Júlio Costa Sidrim, José

    2015-11-01

    The aim of this study was to determine experimental conditions for in vitro biofilm formation of clinical isolates of Trichosporon inkin, an important opportunistic pathogen in immunocompromised patients. Biofilms were formed in microtitre plates in three different media (RPMI, Sabouraud and CLED), with inocula of 104, 105 or 106 cells ml- 1, at pH 5.5 and 7.0, and at 35 and 28 °C, under static and shaking conditions for 72 h. Growth kinetics of biofilms were evaluated at 6, 24, 48 and 72 h. Biofilm milieu analysis were assessed by counting viable cells and quantification of nucleic acids released into biofilm supernatants. Biofilms were also analysed for proteolytic activity and antifungal resistance against amphotericin B, caspofungin, fluconazole, itraconazole and voriconazole. Finally, ultrastructural characterization of biofilms formed in microtitre plates and catheter disks was performed by scanning electron microscopy. Greater biofilm formation was observed with a starter inoculum of 106 cells ml- 1, at pH 7.0 at 35 °C and 80 r.p.m., in both RPMI and Sabouraud media. Growth kinetics showed an increase in both viable cells and biomass with increasing incubation time, with maximum production at 48 h. Biofilms were able to disperse viable cells and nucleic acids into the supernatant throughout the developmental cycle. T. inkin biofilms produced more protease than planktonic cells and showed high tolerance to amphotericin B, caspofungin and azole derivatives. Mature biofilms were formed by different morphotypes, such as blastoconidia, arthroconidia and hyphae, in a strain-specific manner. The present article details the multicellular lifestyle of T. inkin and provides perspectives for further research. PMID:26310576

  14. Screening of Escherichia coli Species Biodiversity Reveals New Biofilm-Associated Antiadhesion Polysaccharides

    PubMed Central

    Rendueles, Olaya; Travier, Laetitia; Latour-Lambert, Patricia; Fontaine, Thierry; Magnus, Julie; Denamur, Erick; Ghigo, Jean-Marc

    2011-01-01

    ABSTRACT Bacterial biofilms often form multispecies communities in which complex but ill-understood competition and cooperation interactions occur. In light of the profound physiological modifications associated with this lifestyle, we hypothesized that the biofilm environment might represent an untapped source of natural bioactive molecules interfering with bacterial adhesion or biofilm formation. We produced cell-free solutions extracted from in vitro mature biofilms formed by 122 natural Escherichia coli isolates, and we screened these biofilm extracts for antiadhesion molecules active on a panel of Gram-positive and Gram-negative bacteria. Using this approach, we showed that 20% of the tested biofilm extracts contained molecules that antagonize bacterial growth or adhesion. We characterized a compound, produced by a commensal animal E. coli strain, for which activity is detected only in biofilm extract. Biochemical and genetic analyses showed that this compound corresponds to a new type of released high-molecular-weight polysaccharide whose biofilm-associated production is regulated by the RfaH protein. We demonstrated that the antiadhesion activity of this polysaccharide was restricted to Gram-positive bacteria and that its production reduced susceptibility to invasion and provided rapid exclusion of Staphylococcus aureus from mixed E. coli and S. aureus biofilms. Our results therefore demonstrate that biofilms contain molecules that contribute to the dynamics of mixed bacterial communities and that are not or only poorly detected in unconcentrated planktonic supernatants. Systematic identification of these compounds could lead to strategies that limit pathogen surface colonization and reduce the burden associated with the development of bacterial biofilms on medical devices. PMID:21558434

  15. Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals.

    PubMed

    de Aguiar Cordeiro, Rossana; Serpa, Rosana; Flávia Uchoa Alexandre, Camila; de Farias Marques, Francisca Jakelyne; Vladia Silva de Melo, Charlline; da Silva Franco, Jônatas; José de Jesus Evangelista, Antonio; Pires de Camargo, Zoilo; Samia Nogueira Brilhante, Raimunda; Fabio Gadelha Rocha, Marcos; Luciano Bezerra Moreira, José; de Jesus Pinheiro Gomes Bandeira, Tereza; Júlio Costa Sidrim, José

    2015-11-01

    The aim of this study was to determine experimental conditions for in vitro biofilm formation of clinical isolates of Trichosporon inkin, an important opportunistic pathogen in immunocompromised patients. Biofilms were formed in microtitre plates in three different media (RPMI, Sabouraud and CLED), with inocula of 104, 105 or 106 cells ml- 1, at pH 5.5 and 7.0, and at 35 and 28 °C, under static and shaking conditions for 72 h. Growth kinetics of biofilms were evaluated at 6, 24, 48 and 72 h. Biofilm milieu analysis were assessed by counting viable cells and quantification of nucleic acids released into biofilm supernatants. Biofilms were also analysed for proteolytic activity and antifungal resistance against amphotericin B, caspofungin, fluconazole, itraconazole and voriconazole. Finally, ultrastructural characterization of biofilms formed in microtitre plates and catheter disks was performed by scanning electron microscopy. Greater biofilm formation was observed with a starter inoculum of 106 cells ml- 1, at pH 7.0 at 35 °C and 80 r.p.m., in both RPMI and Sabouraud media. Growth kinetics showed an increase in both viable cells and biomass with increasing incubation time, with maximum production at 48 h. Biofilms were able to disperse viable cells and nucleic acids into the supernatant throughout the developmental cycle. T. inkin biofilms produced more protease than planktonic cells and showed high tolerance to amphotericin B, caspofungin and azole derivatives. Mature biofilms were formed by different morphotypes, such as blastoconidia, arthroconidia and hyphae, in a strain-specific manner. The present article details the multicellular lifestyle of T. inkin and provides perspectives for further research.

  16. Social Influence and Adolescent Lifestyle Attitudes.

    ERIC Educational Resources Information Center

    Harton, Helen C.; Latane, Bibb

    1997-01-01

    Examined fourth through eighth graders' lifestyle attitudes and sociometric status in a two-year panel study. Found that approval of healthy and deviant mature lifestyle attitudes increased linearly with grade. Boys approved of activities more than girls did, but by eighth grade, gender differences had almost disappeared. More mature attitudes…

  17. Vaccines Directed Against Microorganisms or Their Products Present During Biofilm Lifestyle: Can We Make a Translation as a Broad Biological Model to Tuberculosis?

    PubMed Central

    Flores-Valdez, Mario A.

    2016-01-01

    Tuberculosis (TB) remains as a global public health problem. In recent years, experimental evidence suggesting the relevance of in vitro pellicle (a type of biofilm formed at the air-liquid interface) production as a phenotype mimicking aspects found by Mycobacterium tuberculosis-complex bacteria during in vivo infection has started to accumulate. There are still opportunities for better diagnostic tools, therapeutic molecules as well as new vaccine candidates to assist in TB control programs worldwide and particularly in less developed nations. Regarding vaccines, despite the availability of a live, attenuated strain (Mycobacterium bovis BCG) since almost a century ago, its variable efficacy and lack of protection against pulmonary and latent disease has prompted basic and applied research leading to preclinical and clinical evaluation of up to 15 new candidates. In this work, I present examples of vaccines based on whole cells grown as biofilms, or specific proteins expressed under such condition, and the effect they have shown in relevant animal models or directly in the natural host. I also discuss why it might be worthwhile to explore these approaches, for constructing and developing new vaccine candidates for testing their efficacy against TB. PMID:26834732

  18. Vaccines Directed Against Microorganisms or Their Products Present During Biofilm Lifestyle: Can We Make a Translation as a Broad Biological Model to Tuberculosis?

    PubMed

    Flores-Valdez, Mario A

    2016-01-01

    Tuberculosis (TB) remains as a global public health problem. In recent years, experimental evidence suggesting the relevance of in vitro pellicle (a type of biofilm formed at the air-liquid interface) production as a phenotype mimicking aspects found by Mycobacterium tuberculosis-complex bacteria during in vivo infection has started to accumulate. There are still opportunities for better diagnostic tools, therapeutic molecules as well as new vaccine candidates to assist in TB control programs worldwide and particularly in less developed nations. Regarding vaccines, despite the availability of a live, attenuated strain (Mycobacterium bovis BCG) since almost a century ago, its variable efficacy and lack of protection against pulmonary and latent disease has prompted basic and applied research leading to preclinical and clinical evaluation of up to 15 new candidates. In this work, I present examples of vaccines based on whole cells grown as biofilms, or specific proteins expressed under such condition, and the effect they have shown in relevant animal models or directly in the natural host. I also discuss why it might be worthwhile to explore these approaches, for constructing and developing new vaccine candidates for testing their efficacy against TB.

  19. Analysis of structure and composition of bacterial core communities in mature drinking water biofilms and bulk water of a citywide network in Germany.

    PubMed

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid; Höfle, Manfred G

    2012-05-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity.

  20. Analysis of Structure and Composition of Bacterial Core Communities in Mature Drinking Water Biofilms and Bulk Water of a Citywide Network in Germany

    PubMed Central

    Henne, Karsten; Kahlisch, Leila; Brettar, Ingrid

    2012-01-01

    The bacterial core communities of bulk water and corresponding biofilms of a more than 20-year-old drinking water network were compared using 16S rRNA single-strand confirmation polymorphism (SSCP) fingerprints based on extracted DNA and RNA. The structure and composition of the bacterial core community in the bulk water was highly similar (>70%) across the city of Braunschweig, Germany, whereas all biofilm samples contained a unique community with no overlapping phylotypes from bulk water. Biofilm samples consisted mainly of Alphaproteobacteria (26% of all phylotypes), Gammaproteobacteria (11%), candidate division TM6 (11%), Chlamydiales (9%), and Betaproteobacteria (9%). The bulk water community consisted primarily of Bacteroidetes (25%), Betaproteobacteria (20%), Actinobacteria (16%), and Alphaproteobacteria (11%). All biofilm communities showed higher relative abundances of single phylotypes and a reduced richness compared to bulk water. Only biofilm communities sampled at nearby sampling points showed similar communities irrespective of support materials. In all of our bulk water studies, the community composition determined from 16S rRNA was completely different from the 16S rRNA gene-based community composition, whereas in biofilms both molecular fractions resulted in community compositions that were similar to each other. We hypothesize that a higher fraction of active bacterial phylotypes and a better protection from oxidative stress in drinking water biofilms are responsible for this higher similarity. PMID:22389373

  1. Dispersal from Microbial Biofilms.

    PubMed

    Barraud, Nicolas; Kjelleberg, Staffan; Rice, Scott A

    2015-12-01

    One common feature of biofilm development is the active dispersal of cells from the mature biofilm, which completes the biofilm life cycle and allows for the subsequent colonization of new habitats. Dispersal is likely to be critical for species survival and appears to be a precisely regulated process that involves a complex network of genes and signal transduction systems. Sophisticated molecular mechanisms control the transition of sessile biofilm cells into dispersal cells and their coordinated detachment and release in the bulk liquid. Dispersal cells appear to be specialized and exhibit a unique phenotype different from biofilm or planktonic bacteria. Further, the dispersal population is characterized by a high level of heterogeneity, reminiscent of, but distinct from, that in the biofilm, which could potentially allow for improved colonization under various environmental conditions. Here we review recent advances in characterizing the molecular mechanisms that regulate biofilm dispersal events and the impact of dispersal in a broader ecological context. Several strategies that exploit the mechanisms controlling biofilm dispersal to develop as applications for biofilm control are also presented. PMID:27337281

  2. Biofilm Formation by Candida dubliniensis

    PubMed Central

    Ramage, Gordon; Vande Walle, Kacy; Wickes, Brian L.; López-Ribot, José L.

    2001-01-01

    Candida dubliniensis is an opportunistic yeast closely related to Candida albicans that has been recently implicated in oropharyngeal candidiasis in human immunodeficiency virus-infected patients. Most manifestations of candidiasis are associated with biofilm formation, with cells in biofilms displaying properties dramatically different from free-living cells grown under normal laboratory conditions. Here, we report on the development of in vitro models of C. dubliniensis biofilms on the surfaces of biomaterials (polystyrene and acrylic) and on the characteristics associated with biofilm formation by this newly described species. Time course analysis using a formazan salt reduction assay to monitor metabolic activities of cells within the biofilm, together with microscopy studies, revealed that biofilm formation by C. dubliniensis occurred after initial focal adherence, followed by growth, proliferation, and maturation over 24 to 48 h. Serum and saliva preconditioning films enhanced the initial attachment of C. dubliniensis and subsequent biofilm formation. Scanning electron microscopy and confocal scanning laser microscopy were used to further characterize C. dubliniensis biofilms. Mature C. dubliniensis biofilms consisted of a dense network of yeasts cells and hyphal elements embedded within exopolymeric material. C. dubliniensis biofilms displayed spatial heterogeneity and an architecture showing microcolonies with ramifying water channels. Antifungal susceptibility testing demonstrated the increased resistance of sessile C. dubliniensis cells, including the type strain and eight different clinical isolates, against fluconazole and amphotericin B compared to their planktonic counterparts. C. dubliniensis biofilm formation may allow this species to maintain its ecological niche as a commensal and during infection with important clinical repercussions. PMID:11526156

  3. Transitions in biofilm formation

    NASA Astrophysics Data System (ADS)

    Gordon, Vernita; Thatcher, Travis; Cooley, Benjamin

    2011-03-01

    Biofilms are multicellular, dynamic communities formed by interacting unicellular organisms bound to a surface. Forming a biofilm is a developmental process, characterized by sequential changes in gene expression and behavior as bacteria and yeast progress from discrete, free-swimming cells though stages that arrive at a mature biofilm. We are developing automated metrics to identify key transitions in early biofilm formation as cells attach to a surface, populate that surface, and adhere to each other to form early microcolonies. Our metrics use high-throughput tracking and analysis of microscopy movies to localize these transitions in space and time. Each of these transitions is associated with a loss of entropy in the bacterial system and, therefore, with biological activity that drives this loss of entropy. Better understanding of these transitions will allow automated determination of the strength and turn-on of attractive cell-surface and cell-cell interactions as biofilm development progresses.

  4. [Lifestyle modifications].

    PubMed

    Kawano, Yuhei

    2015-11-01

    Lifestyle modifications are important in the prevention and treatment of hypertension. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH2014) recommend salt reduction (< 6 g/day), increased intake of vegetables/fruit and fish (fish oil), reduced intake of cholesterol and saturated fatty acids, weight loss (body mass index < 25kg/m2), exercise (≥ 30 min/day), reduction of alcohol intake (≤ 20-30 mL/day in men, ≤ 10-20 mL/day in women as ethanol), and quitting smoking. These lifestyle modifications are capable of reducing blood pressure and ameliorating other cardiovascular risk factors. However, the reduction in blood pressure is mild to moderate and the adherence to lifestyle modifications has been still suboptimal. PMID:26619658

  5. Lifestyle Assessment

    PubMed Central

    Wilson, Douglas M. C.; Ciliska, Donna

    1984-01-01

    An important aspect of health promotion is the assessment of lifestyle factors over which patients have some control. Health professionals often do not have time to integrate a comprehensive lifestyle inquiry into a busy practice. This article, the first in a six-part series on lifestyle assessment, describes the development and rationale of a simple patient questionnaire called FANTASTIC, which initially was used as a mnemonic memory aid for patients and physicians in the Department of Family Medicine at McMaster University. The inventory encompasses the physical, emotional and social components of health believed to be relevant to morbidity, mortality and quality of life. A retest reliability study demonstrated acceptable overall reliability, and the inadequate components of the checklist have been improved. Patient acceptance of both the written and microcomputer versions of the questionnaire has been high.

  6. [Peritoneal biofilms: microscopic features].

    PubMed

    Maloman, E; Lepadatu, C; Ciornâi, A; Sainsus, Natalia; Balica, I; Gladun, N

    2007-01-01

    Antibiotherapy remains one of the basic clinical tools, which can influence the evolution of severe peritonitis. Peritoneal biofilm formation may minimize the antibiotic effects due to dramatic growth of Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) for matrix-enclosed bacteria. In this paper we demonstrate the presence and evolution of bacterial biofilms on the peritoneal surface during the course of severe secondary peritonitis using an experimental model and clinical material. Cecal Ligation Puncture was performed in 20 mice Swiss Webster. Peritoneal samples were studied at optic and electronic microscope at 10, 24, 48 and 72 hours postoperative. Clinical samples were taken from 10 patients with diffuse peritonitis. At 24 hours after the onset of the peritonitis bacterial colonies were detected on the peritoneal surface. The formation of mature multilayer polymicrobial biofilms with deep penetration in abdominal wall by 48-72 hours was documented. The bacterial biofilms appear in first 24 hours in the course of experimental generalized peritonitis. Our experimental and clinical data demonstrate formation of the mature polymicrobial biofilm in 48-72 hours after the onset of peritonitis. The possibility of resistant biofilm formation in secondary diffuse peritonitis should be taken into consideration in elaboration of treatment schemes.

  7. Biofilms: an emergent form of bacterial life.

    PubMed

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  8. Presence of extracellular DNA in the Candida albicans biofilm matrix and its contribution to biofilms.

    PubMed

    Martins, Margarida; Uppuluri, Priya; Thomas, Derek P; Cleary, Ian A; Henriques, Mariana; Lopez-Ribot, José L; Oliveira, Rosário

    2010-05-01

    DNA has been described as a structural component of the extracellular matrix (ECM) in bacterial biofilms. In Candida albicans, there is a scarce knowledge concerning the contribution of extracellular DNA (eDNA) to biofilm matrix and overall structure. This work examined the presence and quantified the amount of eDNA in C. albicans biofilm ECM and the effect of DNase treatment and the addition of exogenous DNA on C. albicans biofilm development as indicators of a role for eDNA in biofilm development. We were able to detect the accumulation of eDNA in biofilm ECM extracted from C. albicans biofilms formed under conditions of flow, although the quantity of eDNA detected differed according to growth conditions, in particular with regards to the medium used to grow the biofilms. Experiments with C. albicans biofilms formed statically using a microtiter plate model indicated that the addition of exogenous DNA (>160 ng/ml) increases biofilm biomass and, conversely, DNase treatment (>0.03 mg/ml) decreases biofilm biomass at later time points of biofilm development. We present evidence for the role of eDNA in C. albicans biofilm structure and formation, consistent with eDNA being a key element of the ECM in mature C. albicans biofilms and playing a predominant role in biofilm structural integrity and maintenance.

  9. Physicochemical characteristics and microbial community evolution of biofilms during the start-up period in a moving bed biofilm reactor.

    PubMed

    Zhu, Yan; Zhang, Yan; Ren, Hong-Qiang; Geng, Jin-Ju; Xu, Ke; Huang, Hui; Ding, Li-Li

    2015-03-01

    This study aimed to investigate biofilm properties evolution coupled with different ages during the start-up period in a moving bed biofilm reactor system. Physicochemical characteristics including adhesion force, extracellular polymeric substances (EPS), morphology as well as volatile solid and microbial community were studied. Results showed that the formation and development of biofilms exhibited four stages, including (I) initial attachment and young biofilm formation, (II) biofilms accumulation, (III) biofilm sloughing and updating, and (IV) biofilm maturation. During the whole start-up period, adhesion force was positively and significantly correlated with the contents of EPS, especially the content of polysaccharide. In addition, increased adhesion force and EPS were beneficial for biofilm retention. Gram-negative bacteria mainly including Sphaerotilus, Zoogloea and Haliscomenobacter were predominant in the initial stage. Actinobacteria was beneficial to resist sloughing. Furthermore, filamentous bacteria were dominant in maturation biofilm.

  10. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    PubMed

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  11. Permeabilizing biofilms

    DOEpatents

    Soukos, Nikolaos S.; Lee, Shun; Doukas, Apostolos G.

    2008-02-19

    Methods for permeabilizing biofilms using stress waves are described. The methods involve applying one or more stress waves to a biofilm, e.g., on a surface of a device or food item, or on a tissue surface in a patient, and then inducing stress waves to create transient increases in the permeability of the biofilm. The increased permeability facilitates delivery of compounds, such as antimicrobial or therapeutic agents into and through the biofilm.

  12. Silver against Pseudomonas aeruginosa biofilms.

    PubMed

    Bjarnsholt, Thomas; Kirketerp-Møller, Klaus; Kristiansen, Søren; Phipps, Richard; Nielsen, Anne Kirstine; Jensen, Peter Østrup; Høiby, Niels; Givskov, Michael

    2007-08-01

    Silver has been recognized for its antimicrobial properties for centuries. Most studies on the antibacterial efficacy of silver, with particular emphasis on wound healing, have been performed on planktonic bacteria. Our recent studies, however, strongly suggest that colonization of wounds involves bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the silver concentration is important. A concentration of 5-10 mug/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 mug/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds primarily colonized either by biofilm-forming or planktonic bacteria.

  13. Medical Biofilms

    PubMed Central

    2009-01-01

    For more than two decades, Biotechnology and Bioengineering has documented research focused on natural and engineered microbial biofilms within aquatic and subterranean ecosystems, wastewater and waste-gas treatment systems, marine vessels and structures, and industrial bioprocesses. Compared to suspended culture systems, intentionally engineered biofilms are heterogeneous reaction systems that can increase reactor productivity, system stability, and provide inherent cell: product separation. Unwanted biofilms can create enormous increases in fluid frictional resistances, unacceptable reductions in heat transfer efficiency, product contamination, enhanced material deterioration, and accelerated corrosion. Missing from B&B has been an equivalent research dialogue regarding the basic molecular microbiology, immunology, and biotechnological aspects of medical biofilms. Presented here are the current problems related to medical biofilms; current concepts of biofilm formation, persistence, and interactions with the host immune system; and emerging technologies for controlling medical biofilms. PMID:18366134

  14. Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials.

    PubMed

    Corcoran, M; Morris, D; De Lappe, N; O'Connor, J; Lalor, P; Dockery, P; Cormican, M

    2014-02-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities.

  15. Commonly Used Disinfectants Fail To Eradicate Salmonella enterica Biofilms from Food Contact Surface Materials

    PubMed Central

    Morris, D.; De Lappe, N.; O'Connor, J.; Lalor, P.; Dockery, P.; Cormican, M.

    2014-01-01

    Salmonellosis is the second most common cause of food-borne illness worldwide. Contamination of surfaces in food processing environments may result in biofilm formation with a risk of food contamination. Effective decontamination of biofilm-contaminated surfaces is challenging. Using the CDC biofilm reactor, the activities of sodium hypochlorite, sodium hydroxide, and benzalkonium chloride were examined against an early (48-h) and relatively mature (168-h) Salmonella biofilm. All 3 agents result in reduction in viable counts of Salmonella; however, only sodium hydroxide resulted in eradication of the early biofilm. None of the agents achieved eradication of mature biofilm, even at the 90-min contact time. Studies of activity of chemical disinfection against biofilm should include assessment of activity against mature biofilm. The difficulty of eradication of established Salmonella biofilm serves to emphasize the priority of preventing access of Salmonella to postcook areas of food production facilities. PMID:24362427

  16. Focus on the physics of biofilms

    NASA Astrophysics Data System (ADS)

    Lecuyer, Sigolene; Stocker, Roman; Rusconi, Roberto

    2015-03-01

    Bacteria are the smallest and most abundant form of life. They have traditionally been considered as primarily planktonic organisms, swimming or floating in a liquid medium, and this view has shaped many of the approaches to microbial processes, including for example the design of most antibiotics. However, over the last few decades it has become clear that many bacteria often adopt a sessile, surface-associated lifestyle, forming complex multicellular communities called biofilms. Bacterial biofilms are found in a vast range of environments and have major consequences on human health and industrial processes, from biofouling of surfaces to the spread of diseases. Although the study of biofilms has been biologists’ territory for a long time, a multitude of phenomena in the formation and development of biofilms hinges on physical processes. We are pleased to present a collection of research papers that discuss some of the latest developments in many of the areas to which physicists can contribute a deeper understanding of biofilms, both experimentally and theoretically. The topics covered range from the influence of physical environmental parameters on cell attachment and subsequent biofilm growth, to the use of local probes and imaging techniques to investigate biofilm structure, to the development of biofilms in complex environments and the modeling of colony morphogenesis. The results presented contribute to addressing some of the major challenges in microbiology today, including the prevention of surface contamination, the optimization of biofilm disruption methods and the effectiveness of antibiotic treatments.

  17. Mechanisms of Candida biofilm drug resistance

    PubMed Central

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  18. L-Tryptophan prevents Escherichia coli biofilm formation and triggers biofilm degradation.

    PubMed

    Shimazaki, Junji; Furukawa, Soichi; Ogihara, Hirokazu; Morinaga, Yasushi

    2012-03-23

    The effect of deletion of trp operon and tna operon on the Escherichia coli biofilm formation was investigated in order to elucidate the role of L-tryptophan metabolism in biofilm formation. trp operon deletion mutants ΔtrpC, ΔtrpD and ΔtrpE deficient in L-tryptophan biosynthesis showed higher biofilm formation. In addition, ΔtnaC with increased L-tryptophan degradation activity showed higher biofilm formation. On the contrary, ΔtnaA deletion mutant which lost L-tryptophan degradation activity showed low biofilm formation. From these results, it was suggested that decrease of intracellular L-tryptophan level induced biofilm formation and increase of L-tryptophan repressed biofilm formation. So the effect of the addition of L-tryptophan to the medium on the E. coli biofilm formation was investigated. L-Tryptophan addition at starting culture decreased biofilm formation and furthermore L-tryptophan addition after 16 h culture induced the degradation of preformed biofilm. From the above results, it was suggested that maintenance of high intracellular L-tryptophan concentration prevents E. coli biofilm formation and elevation of intracellular L-tryptophan concentration triggers degradation of matured biofilm. PMID:22386992

  19. A flow cytometric approach to quantify biofilms.

    PubMed

    Kerstens, Monique; Boulet, Gaëlle; Van Kerckhoven, Marian; Clais, Sofie; Lanckacker, Ellen; Delputte, Peter; Maes, Louis; Cos, Paul

    2015-07-01

    Since biofilms are important in many clinical, industrial, and environmental settings, reliable methods to quantify these sessile microbial populations are crucial. Most of the currently available techniques do not allow the enumeration of the viable cell fraction within the biofilm and are often time consuming. This paper proposes flow cytometry (FCM) using the single-stain viability dye TO-PRO(®)-3 iodide as a fast and precise alternative. Mature biofilms of Candida albicans and Escherichia coli were used to optimize biofilm removal and dissociation, as a single-cell suspension is needed for accurate FCM enumeration. To assess the feasibility of FCM quantification of biofilms, E. coli and C. albicans biofilms were analyzed using FCM and crystal violet staining at different time points. A combination of scraping and rinsing proved to be the most efficient technique for biofilm removal. Sonicating for 10 min eliminated the remaining aggregates, resulting in a single-cell suspension. Repeated FCM measurements of biofilm samples revealed a good intraday precision of approximately 5 %. FCM quantification and the crystal violet assay yielded similar biofilm growth curves for both microorganisms, confirming the applicability of our technique. These results show that FCM using TO-PRO(®)-3 iodide as a single-stain viability dye is a valid fast alternative for the quantification of viable cells in a biofilm.

  20. Staphylococcal Biofilms

    PubMed Central

    Otto, Michael

    2009-01-01

    Staphylococcus epidermidis and S. aureus are the most frequent causes of nosocomial infections and infections on indwelling medical devices, which characteristically involve biofilms. Recent advances in staphylococcal molecular biology have provided more detailed insight into the basis of biofilm formation in these opportunistic pathogens. A series of surface proteins mediate initial attachment to host matrix proteins, which is followed by the expression of a cationic glucosamine-based exopolysaccharide that aggregates the bacterial cells. In some cases, proteins may function as alternative aggregating substances. Furthermore, surfactant peptides have now been recognized as key factors involved in generating the 3-dimensional structure of a staphylococcal biofilm by cell-cell disruptive forces, which eventually may lead to the detachment of entire cell clusters. Transcriptional profiling experiments have defined the specific physiology of staphylococcal biofilms and demonstrated that biofilm resistance to antimicrobials is due to gene-regulated processes. Finally, novel animal models of staphylococcal biofilm-associated infection have given us important information on which factors define biofilm formation in vivo. These recent advances constitute an important basis for the development of anti-staphylococcal drugs and vaccines. PMID:18453278

  1. Dental diagnostics: molecular analysis of oral biofilms.

    PubMed

    Hiyari, Sarah; Bennett, Katie M

    2011-01-01

    Dental biofilms are complex, multi-species bacterial communities that colonize the mouth in the form of plaque and are known to cause dental caries and periodontal disease. Biofilms are unique from planktonic bacteria in that they are mutualistic communities with a 3-dimensional structure and complex nutritional and communication pathways. The homeostasis within the biofilm colony can be disrupted, causing a shift in the bacterial composition of the colony and resulting in proliferation of pathogenic species. Because of this dynamic lifestyle, traditional microbiological techniques are inadequate for the study of biofilms. Many of the bacteria present in the oral cavity are viable but not culturable, which severely limits laboratory analysis. However, with the advent of new molecular techniques, the microbial makeup of oral biofilms can be better identified. Some of these techniques include DNA-DNA hybridization, 16S rRNA gene sequencing, denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, denaturing high-performance liquid chromatography and pyrosequencing. This review provides an overview of biofilm formation and examines the major molecular techniques currently used in oral biofilm analysis. Future applications of the molecular analysis of oral biofilms in the diagnosis and treatment of caries and periodontal disease are also discussed.

  2. Regulation of flagellar motility during biofilm formation

    PubMed Central

    Guttenplan, Sarah B.; Kearns, Daniel B.

    2013-01-01

    Many bacteria swim in liquid or swarm over solid surfaces by synthesizing rotary flagella. The same bacteria that are motile also commonly form non-motile multicellular aggregates held together by an extracellular matrix called biofilms. Biofilms are an important part of the lifestyle of pathogenic bacteria and it is assumed that there is a motility-to-biofilm transition wherein the inhibition of motility promotes biofilm formation. The transition is largely inferred from regulatory mutants that reveal the opposite regulation of the two phenotypes. Here we review the regulation of motility during biofilm formation in Bacillus, Pseudomonas, Vibrio, and Escherichia, and we conclude that the motility-to-biofilm transition, if necessary, likely involves two steps. In the short term, flagella are functionally regulated to either inhibit rotation or modulate the basal flagellar reversal frequency. Over the long term, flagellar gene transcription is inhibited and in the absence of de novo synthesis, flagella are likely diluted to extinction through growth. Both short term and long term control is likely important to the motility-to-biofilm transition to stabilize aggregates and optimize resource investment. We emphasize the newly discovered classes of flagellar functional regulators and speculate that others await discovery in the context of biofilm formation. PMID:23480406

  3. Dental diagnostics: molecular analysis of oral biofilms.

    PubMed

    Hiyari, Sarah; Bennett, Katie M

    2011-01-01

    Dental biofilms are complex, multi-species bacterial communities that colonize the mouth in the form of plaque and are known to cause dental caries and periodontal disease. Biofilms are unique from planktonic bacteria in that they are mutualistic communities with a 3-dimensional structure and complex nutritional and communication pathways. The homeostasis within the biofilm colony can be disrupted, causing a shift in the bacterial composition of the colony and resulting in proliferation of pathogenic species. Because of this dynamic lifestyle, traditional microbiological techniques are inadequate for the study of biofilms. Many of the bacteria present in the oral cavity are viable but not culturable, which severely limits laboratory analysis. However, with the advent of new molecular techniques, the microbial makeup of oral biofilms can be better identified. Some of these techniques include DNA-DNA hybridization, 16S rRNA gene sequencing, denaturing gradient gel electrophoresis, terminal restriction fragment length polymorphism, denaturing high-performance liquid chromatography and pyrosequencing. This review provides an overview of biofilm formation and examines the major molecular techniques currently used in oral biofilm analysis. Future applications of the molecular analysis of oral biofilms in the diagnosis and treatment of caries and periodontal disease are also discussed. PMID:22309866

  4. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation.

    PubMed

    Kwiecinski, Jakub; Peetermans, Marijke; Liesenborghs, Laurens; Na, Manli; Björnsdottir, Halla; Zhu, Xuefeng; Jacobsson, Gunnar; Johansson, Bengt R; Geoghegan, Joan A; Foster, Timothy J; Josefsson, Elisabet; Bylund, Johan; Verhamme, Peter; Jin, Tao

    2016-01-01

    Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.

  5. Fungal Biofilms: In Vivo Models for Discovery of Anti-Biofilm Drugs.

    PubMed

    Nett, Jeniel E; Andes, David R

    2015-06-01

    During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate, and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections: oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to the development of new strategies for the eradication of fungal biofilm infections.

  6. Fungal Biofilms: In vivo models for discovery of anti-biofilm drugs

    PubMed Central

    Nett, Jeniel E.; Andes, David

    2015-01-01

    SUMMARY During infection, fungi frequently transition to a biofilm lifestyle, proliferating as communities of surface-adherent aggregates of cells. Phenotypically, cells in a biofilm are distinct from free-floating cells. Their high tolerance of antifungals and ability to withstand host defenses are two characteristics that foster resilience. Biofilm infections are particularly difficult to eradicate and most available antifungals have minimal activity. Therefore, the discovery of novel compounds and innovative strategies to treat fungal biofilms is of great interest. Although many fungi have been observed to form biofilms, the most well-studied is Candida albicans. Animal models have been developed to simulate common Candida device-associated infections, including those involving vascular catheters, dentures, urinary catheters, and subcutaneous implants. Models have also reproduced the most common mucosal biofilm infections, oropharyngeal and vaginal candidiasis. These models incorporate the anatomical site, immune components, and fluid dynamics of clinical niches and have been instrumental in the study of drug resistance and investigation of novel therapies. This chapter describes the significance of fungal biofilm infections, the animal models developed for biofilm study, and how these models have contributed to development of new strategies for eradication of fungal biofilm infections. PMID:26397003

  7. Differential effects of antifungal agents on expression of genes related to formation of Candida albicans biofilms.

    PubMed

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2016-01-01

    The purpose of this study was to analyse specific molecular mechanisms involved in the intrinsic resistance of C. albicans biofilms to antifungals. We investigated the transcriptional profile of three genes (BGL2, SUN41, ECE1) involved in Candida cell wall formation in response to voriconazole or anidulafungin after the production of intermediate and mature biofilms. C. albicans M61, a well-documented biofilm producer strain, was used for the development of intermediate (12 h and 18 h) and completely mature biofilms (48 h). After exposure of cells from each biofilm growth mode to voriconazole (128 and 512 mg l(-1)) or anidulafungin (0.25 and 1 mg l(-1)) for 12-24 h, total RNA samples extracted from biofilm cells were analysed by RT-PCR. The voriconazole and anidulafungin biofilm MIC was 512 and 0.5 mg l(-1) respectively. Anidulafungin caused significant up-regulation of SUN41 (3.7-9.3-fold) and BGL2 (2.2-2.8 fold) in intermediately mature biofilms; whereas, voriconazole increased gene expression in completely mature biofilms (SUN41 2.3-fold, BGL2 2.1-fold). Gene expression was primarily down-regulated by voriconazole in intermediately, but not completely mature biofilms. Both antifungals caused down-regulation of ECE1 in intermediately mature biofilms.

  8. [Lifestyle and health].

    PubMed

    Morimoto, K

    2000-01-01

    The total environments to which individuals have been exposed throughout the lifestages from birth to the present time have been composing the individual and community lifestyles. Such lifestyles are known to determine the risks for developments of cancers, circulatory diseases, and other chronic diseases. To establish new theory and practice programs for disease prevention and health promotion in the environmental and preventive medicine, we have quantitatively investigated correlations of lifestyles, or ways of daily living, to comprehensive health potentials in the cohort of industrial workers. The total lifestyles were evaluated by the originally-designed 8 health-practices such as smoking, alcohol-drinking, physical exercise, and working and sleeping patterns. The data indicate that individuals having good lifestyles showed much younger health ages calculated based on the health-check-up data, and lower risks for developing lifestyle-related diseases than those with poor lifestyles. The physical health potentials were assessed by the biomarker-measurements such as lymphocyte chromosome-DNA alterations, natural-killer activities and serum IgE levels. The psycho-mental health potentials were evaluated by both the quality-of-life-related questionnaires and the stress-related hormonal and cytokine levels such as cortisol and interleukines. The comprehensive health potentials have been shown to be significantly lower in poor-lifestyle people than in good-lifestyle ones. The changes in poor to good lifestyles through health education and learning were also shown to result in promotion of such health potentials.

  9. Porphyromonas gingivalis and Treponema denticola Synergistic Polymicrobial Biofilm Development

    PubMed Central

    Zhu, Ying; Dashper, Stuart G.; Chen, Yu-Yen; Crawford, Simon; Slakeski, Nada; Reynolds, Eric C.

    2013-01-01

    Chronic periodontitis has a polymicrobial biofilm aetiology and interactions between key bacterial species are strongly implicated as contributing to disease progression. Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia have all been implicated as playing roles in disease progression. P. gingivalis cell-surface-located protease/adhesins, the gingipains, have been suggested to be involved in its interactions with several other bacterial species. The aims of this study were to determine polymicrobial biofilm formation by P. gingivalis, T. denticola and T. forsythia, as well as the role of P. gingivalis gingipains in biofilm formation by using a gingipain null triple mutant. To determine homotypic and polymicrobial biofilm formation a flow cell system was employed and the biofilms imaged and quantified by fluorescent in situ hybridization using DNA species-specific probes and confocal scanning laser microscopy imaging. Of the three species, only P. gingivalis and T. denticola formed mature, homotypic biofilms, and a strong synergy was observed between P. gingivalis and T. denticola in polymicrobial biofilm formation. This synergy was demonstrated by significant increases in biovolume, average biofilm thickness and maximum biofilm thickness of both species. In addition there was a morphological change of T. denticola in polymicrobial biofilms when compared with homotypic biofilms, suggesting reduced motility in homotypic biofilms. P. gingivalis gingipains were shown to play an essential role in synergistic polymicrobial biofilm formation with T. denticola. PMID:23990979

  10. Prevention of biofilm formation and removal of existing biofilms by extracellular DNases of Campylobacter jejuni.

    PubMed

    Brown, Helen L; Reuter, Mark; Hanman, Kate; Betts, Roy P; van Vliet, Arnoud H M

    2015-01-01

    The fastidious nature of the foodborne bacterial pathogen Campylobacter jejuni contrasts with its ability to survive in the food chain. The formation of biofilms, or the integration into existing biofilms by C. jejuni, is thought to contribute to food chain survival. As extracellular DNA (eDNA) has previously been proposed to play a role in C. jejuni biofilms, we have investigated the role of extracellular DNases (eDNases) produced by C. jejuni in biofilm formation. A search of 2791 C. jejuni genomes highlighted that almost half of C. jejuni genomes contains at least one eDNase gene, but only a minority of isolates contains two or three of these eDNase genes, such as C. jejuni strain RM1221 which contains the cje0256, cje0566 and cje1441 eDNase genes. Strain RM1221 did not form biofilms, whereas the eDNase-negative strains NCTC 11168 and 81116 did. Incubation of pre-formed biofilms of NCTC 11168 with live C. jejuni RM1221 or with spent medium from a RM1221 culture resulted in removal of the biofilm. Inactivation of the cje1441 eDNase gene in strain RM1221 restored biofilm formation, and made the mutant unable to degrade biofilms of strain NCTC 11168. Finally, C. jejuni strain RM1221 was able to degrade genomic DNA from C. jejuni NCTC 11168, 81116 and RM1221, whereas strain NCTC 11168 and the RM1221 cje1441 mutant were unable to do so. This was mirrored by an absence of eDNA in overnight cultures of C. jejuni RM1221. This suggests that the activity of eDNases in C. jejuni affects biofilm formation and is not conducive to a biofilm lifestyle. These eDNases do however have a potential role in controlling biofilm formation by C. jejuni strains in food chain relevant environments.

  11. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine.

    PubMed

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine's organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  12. Effect of Biofilm Formation by Oenococcus oeni on Malolactic Fermentation and the Release of Aromatic Compounds in Wine

    PubMed Central

    Bastard, Alexandre; Coelho, Christian; Briandet, Romain; Canette, Alexis; Gougeon, Régis; Alexandre, Hervé; Guzzo, Jean; Weidmann, Stéphanie

    2016-01-01

    The winemaking process involves the alcoholic fermentation of must, often followed by malolactic fermentation (MLF). The latter, mainly carried out by the lactic acid bacterium Oenococcus oeni, is used to improve wine quality when acidity reduction is required. Moreover, it prevents microbial spoilage and improves the wine’s organoleptic profile. Prior observations showed that O. oeni is able to resist several months in harsh wine conditions when adhered on oak barrels. Since biofilm is a prevailing microbial lifestyle in natural environments, the capacity of O. oeni to form biofilms was investigated on winemaking material such as stainless steel and oak chips. Scanning Electron Microscopy and Confocal Laser Scanning Microscopy showed that O. oeni was able to adhere to these surfaces and form spatially organized microcolonies embedded in extracellular substances. To assess the competitive advantage of this mode of life in wine, the properties of biofilm and planktonic cells were compared after inoculation in a fermented must (pH 3.5 or 3.2 and 12% ethanol) The results indicated that the biofilm culture of O. oeni conferred (i) increased tolerance to wine stress, and (ii) functional performance with effective malolactic activities. Relative gene expression focusing on stress genes and genes involved in EPS synthesis was investigated in a mature biofilm and emphasized the role of the matrix in increased biofilm resistance. As oak is commonly used in wine aging, we focused on the O. oeni biofilm on this material and its contribution to the development of wine color and the release of aromatic compounds. Analytical chromatography was used to target the main oak aging compounds such as vanillin, gaiacol, eugenol, whisky-lactones, and furfural. The results reveal that O. oeni biofilm developed on oak can modulate the wood-wine transfer of volatile aromatic compounds during MLF and aging by decreasing furfural, gaiacol, and eugenol in particular. This work showed that O

  13. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    PubMed

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies.

  14. Anti-biofilm Activity as a Health Issue.

    PubMed

    Miquel, Sylvie; Lagrafeuille, Rosyne; Souweine, Bertrand; Forestier, Christiane

    2016-01-01

    The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients' organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections.

  15. Anti-biofilm Activity as a Health Issue

    PubMed Central

    Miquel, Sylvie; Lagrafeuille, Rosyne; Souweine, Bertrand; Forestier, Christiane

    2016-01-01

    The formation and persistence of surface-attached microbial communities, known as biofilms, are responsible for 75% of human microbial infections (National Institutes of Health). Biofilm lifestyle confers several advantages to the pathogens, notably during the colonization process of medical devices and/or patients’ organs. In addition, sessile bacteria have a high tolerance to exogenous stress including anti-infectious agents. Biofilms are highly competitive communities and some microorganisms exhibit anti-biofilm capacities such as bacterial growth inhibition, exclusion or competition, which enable them to acquire advantages and become dominant. The deciphering and control of anti-biofilm properties represent future challenges in human infection control. The aim of this review is to compare and discuss the mechanisms of natural bacterial anti-biofilm strategies/mechanisms recently identified in pathogenic, commensal and probiotic bacteria and the main synthetic strategies used in clinical practice, particularly for catheter-related infections. PMID:27199924

  16. Wound biofilms: lessons learned from oral biofilms.

    PubMed

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  17. Fractal analysis of Xylella fastidiosa biofilm formation

    NASA Astrophysics Data System (ADS)

    Moreau, A. L. D.; Lorite, G. S.; Rodrigues, C. M.; Souza, A. A.; Cotta, M. A.

    2009-07-01

    We have investigated the growth process of Xylella fastidiosa biofilms inoculated on a glass. The size and the distance between biofilms were analyzed by optical images; a fractal analysis was carried out using scaling concepts and atomic force microscopy images. We observed that different biofilms show similar fractal characteristics, although morphological variations can be identified for different biofilm stages. Two types of structural patterns are suggested from the observed fractal dimensions Df. In the initial and final stages of biofilm formation, Df is 2.73±0.06 and 2.68±0.06, respectively, while in the maturation stage, Df=2.57±0.08. These values suggest that the biofilm growth can be understood as an Eden model in the former case, while diffusion-limited aggregation (DLA) seems to dominate the maturation stage. Changes in the correlation length parallel to the surface were also observed; these results were correlated with the biofilm matrix formation, which can hinder nutrient diffusion and thus create conditions to drive DLA growth.

  18. Microscale Confinement features in microfluidic devices can affect biofilm

    SciTech Connect

    Kumar, Aloke; Karig, David K; Neethirajan, Suresh; Acharya, Rajesh K; Mukherjee, Partha P; Retterer, Scott T; Doktycz, Mitchel John

    2013-01-01

    Biofilms are aggregations of microbes that are encased by extra-cellular polymeric substances (EPS) and adhere to surfaces and interfaces. Biofilm development on abiotic surfaces is a dynamic process, which typically proceeds through an initial phase of adhesion of plankntonic microbes to the substrate, followed by events such as growth, maturation and EPS secretion. However, the coupling of hydrodynamics, microbial adhesion and biofilm growth remain poorly understood. Here, we investigate the effect of semiconfined features on biofilm formation. Using a microfluidic device and fluorescent time-lapse microscopy, we establish that confinement features can significantly affect biofilm formation. Biofilm dynamics change not only as a function of confinement features, but also of the total fluid flow rate, and our combination of experimental results and numerical simulations reveal insights into the link between hydrodynamics and biofilm formation.

  19. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber.

    PubMed

    Sivan, A; Szanto, M; Pavlov, V

    2006-09-01

    We have recently isolated a biofilm-producing strain (C208) of Rhodococcus ruber that degraded polyethylene at a rate of 0.86% per week (r2=0.98). Strain C208 adheres to polyethylene immediately upon exposure to the polyolefin. This initial biofilm differentiates (in a stepwise process that lasts about 20 h) into cell-aggregation-forming microcolonies. Further organization yields "mushroom-like" three-dimensional structures on the mature biofilm. The ratio between the population densities of the biofilm and the planktonic C208 cells after 10 days of incubation was about 60:1, indicating a high preference for the biofilm mode of growth. Analysis of extracellular polymeric substances (EPS) in the biofilm of C208 revealed that the polysaccharides level was up to 2.5 folds higher than that of the protein. The biofilm showed a high viability even after 60 days of incubation, apparently due to polyethylene biodegradation. PMID:16534612

  20. Lifestyle and Mental Health

    ERIC Educational Resources Information Center

    Walsh, Roger

    2011-01-01

    Mental health professionals have significantly underestimated the importance of lifestyle factors (a) as contributors to and treatments for multiple psychopathologies, (b) for fostering individual and social well-being, and (c) for preserving and optimizing cognitive function. Consequently, therapeutic lifestyle changes (TLCs) are underutilized…

  1. In Vitro Models for Candida Biofilm Development.

    PubMed

    Krom, Bastiaan P; Willems, Hubertine M E

    2016-01-01

    Development of Candida spp. biofilms on medical devices such as catheters and voice prosthesis has been recognized as an increasing clinical problem. Different in vitro models are presented with increasing complexity. Each model system can be utilized for analysis of new active compounds to prevent or treat Candida biofilms as well as to study molecular processes involved in biofilm formation. Susceptibility studies of clinical isolates are generally performed in a simple 96-well model system similar to the CLSI standard. In the present chapter, optimized conditions that promote biofilm formation within individual wells of microtiter plates are described. In addition, the method has proven useful in preparing C. albicans biofilms for investigation by a variety of microscopic and molecular techniques. A more realistic and more complex biofilm system is presented by the Amsterdam Active Attachment (AAA) model. In this 24-well model all crucial steps of biofilm formation: adhesion, proliferation, and maturation, can be simulated on various surfaces, while still allowing a medium throughput approach. This model has been applied to study susceptibility, complex molecular mechanisms as well as interspecies (Candida-bacterium) interactions. Finally, a realistic microfluidics channel system is presented to follow dynamic processes in biofilm formation. In this Bioflux-based system, molecular mechanisms as well as dynamic processes can be studied at a high time-resolution.

  2. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients.

    PubMed

    de la Fuente-Núñez, César; Mansour, Sarah C; Wang, Zhejun; Jiang, Lucy; Breidenstein, Elena B M; Elliott, Melissa; Reffuveille, Fany; Speert, David P; Reckseidler-Zenteno, Shauna L; Shen, Ya; Haapasalo, Markus; Hancock, Robert E W

    2014-01-01

    Cystic fibrosis (CF) patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive) resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1) and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α) production by human peripheral blood mononuclear cells (PBMC) and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients.

  3. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    PubMed Central

    de la Fuente-Núñez, César; Mansour, Sarah C.; Wang, Zhejun; Jiang, Lucy; Breidenstein, Elena B.M.; Elliott, Melissa; Reffuveille, Fany; Speert, David P.; Reckseidler-Zenteno, Shauna L.; Shen, Ya; Haapasalo, Markus; Hancock, Robert E.W.

    2014-01-01

    Cystic fibrosis (CF) patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive) resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electron microscopy, it was demonstrated that an anti-biofilm peptide 1018 prevented biofilm formation, eradicated mature biofilms and killed biofilms formed by a wide range of P. aeruginosa and B. cenocepacia clinical isolates. New peptide derivatives were designed that, compared to their parent peptide 1018, showed similar or decreased anti-biofilm activity against P. aeruginosa biofilms, but increased activity against biofilms formed by the Gram-positive bacterium methicillin resistant Staphylococcus aureus. In addition, some of these new peptide derivatives retained the immunomodulatory activity of 1018 since they induced the production of the chemokine monocyte chemotactic protein-1 (MCP-1) and suppressed lipopolysaccharide-mediated tumor necrosis factor-α (TNF-α) production by human peripheral blood mononuclear cells (PBMC) and were non-toxic towards these cells. Peptide 1018 and its derivatives provide promising leads for the treatment of chronic biofilm infections and hyperinflammatory lung disease in CF patients. PMID:26221537

  4. Biofilm-based central line-associated bloodstream infections.

    PubMed

    Yousif, Ammar; Jamal, Mohamed A; Raad, Issam

    2015-01-01

    Different types of central venous catheters (CVCs) have been used in clinical practice to improve the quality of life of chronically and critically ill patients. Unfortunately, indwelling devices are usually associated with microbial biofilms and eventually lead to catheter-related bloodstream infections (CLABSIs).An estimated 250,000-400,000 CLABSIs occur every year in the United States, at a rate of 1.5 per 1,000 CVC days and a mortality rate of 12-25 %. The annual cost of caring for patients with CLABSIs ranges from 296 million to 2.3 billion dollars.Biofilm formation occurs on biotic and abiotic surfaces in the clinical setting. Extensive studies have been conducted to understand biofilm formation, including different biofilm developmental stages, biofilm matrix compositions, quorum-sensing regulated biofilm formation, biofilm dispersal (and its clinical implications), and multi-species biofilms that are relevant to polymicrobial infections.When microbes form a matured biofilm within human hosts through medical devices such as CVCs, the infection becomes resistant to antibiotic treatment and can develop into a chronic condition. For that reason, many techniques have been used to prevent the formation of biofilm by targeting different stages of biofilm maturation. Other methods have been used to diagnose and treat established cases of CLABSI.Catheter removal is the conventional management of catheter associated bacteremia; however, the procedure itself carries a relatively high risk of mechanical complications. Salvaging the catheter can help to minimize these complications.In this article, we provide an overview of microbial biofilm formation; describe the involvement of various genetic determinants, adhesion proteins, organelles, mechanism(s) of biofilm formation, polymicrobial infections, and biofilm-associated infections on indwelling intravascular catheters; and describe the diagnosis, management, and prevention of catheter-related bloodstream infections.

  5. A Communal Bacterial Adhesin Anchors Biofilm and Bystander Cells to Surfaces

    PubMed Central

    Absalon, Cedric; Van Dellen, Katrina; Watnick, Paula I.

    2011-01-01

    While the exopolysaccharide component of the biofilm matrix has been intensively studied, much less is known about matrix-associated proteins. To better understand the role of these proteins, we undertook a proteomic analysis of the V. cholerae biofilm matrix. Here we show that the two matrix-associated proteins, Bap1 and RbmA, perform distinct roles in the biofilm matrix. RbmA strengthens intercellular attachments. In contrast, Bap1 is concentrated on surfaces where it serves to anchor the biofilm and recruit cells not yet committed to the sessile lifestyle. This is the first example of a biofilm-derived, communally synthesized conditioning film that stabilizes the association of multilayer biofilms with a surface and facilitates recruitment of planktonic bystanders to the substratum. These studies define a novel paradigm for spatial and functional differentiation of proteins in the biofilm matrix and provide evidence for bacterial cooperation in maintenance and expansion of the multilayer biofilm. PMID:21901100

  6. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    PubMed

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  7. A new biofilm-associated colicin with increased efficiency against biofilm bacteria

    PubMed Central

    Rendueles, Olaya; Beloin, Christophe; Latour-Lambert, Patricia; Ghigo, Jean-Marc

    2014-01-01

    Formation of bacterial biofilm communities leads to profound physiological modifications and increased physical and metabolic exchanges between bacteria. It was previously shown that bioactive molecules produced within the biofilm environment contribute to bacterial interactions. Here we describe new pore-forming colicin R, specifically produced in biofilms formed by the natural isolate Escherichia coli ROAR029 but that cannot be detected under planktonic culture conditions. We demonstrate that an increased SOS stress response within mature biofilms induces SOS-dependent colicin R expression. We provide evidence that colicin R displays increased activity against E. coli strains that have a reduced lipopolysaccharide length, such as the pathogenic enteroaggregative E. coli LF82 clinical isolate, therefore pointing to lipopolysaccharide size as an important determinant for resistance to colicins. We show that colicin R toxicity toward E. coli LF82 is increased under biofilm conditions compared with planktonic susceptibility and that release of colicin R confers a strong competitive advantage in mixed biofilms by rapidly outcompeting sensitive neighboring bacteria. This work identifies the first biofilm-associated colicin that preferentially targets biofilm bacteria. Furthermore, it indicates that the study of antagonistic molecules produced in biofilm and multispecies contexts could reveal unsuspected, ecologically relevant bacterial interactions influencing population dynamics in natural environments. PMID:24451204

  8. Career Maturity.

    ERIC Educational Resources Information Center

    Crites, John O.

    1973-01-01

    Research in the field of Career Maturity is reviewed and summarized, with particular attention to Super's Career Pattern Study, Gribbons and Lohnes' Career Development Study, and Crites' Vocational Development Project. Crites' organization and revision into a hierarchical structure of the five dimensions of vocational maturity proposed in Supers'…

  9. Lifestyle and atrial fibrillation.

    PubMed

    Mattioli, Anna Vittoria

    2011-07-01

    Lifestyle factors, in particular dietary intake, have been recognized as important, modifiable risk factors for cardiovascular disease. Consuming a heart-healthy diet lowers the individual's risk for cardiovascular disease. Data on the relationship between lifestyle and atrial fibrillation are controversial; however, the strong association between obesity, atrial/ventricular dysfunction and a nonhealthy lifestyle and atrial fibrillation, suggests that a correction of nutritional habits could prevent the development of arrhythmias through a reduction of underlying cardiac diseases. Today, the Mediterranean diet is considered one of the most effective in terms of its prevention of cardiovascular disease.

  10. Virus Maturation

    PubMed Central

    Veesler, David; Johnson, John E.

    2013-01-01

    We examined virus maturation of selected non-enveloped and enveloped ssRNA viruses; retroviruses; bacteriophages and herpes virus. Processes associated with maturation in the RNA viruses range from subtle (noda and picornaviruses) to dramatic (tetraviruses and togaviruses). The elaborate assembly and maturation pathway of HIV is discussed in contrast to the less sophisticated but highly efficient processes associated with togaviruses. Bacteriophage assembly and maturation are discussed in general terms with specific examples chosen for emphasis. Finally the herpes viruses are compared with bacteriophages. The data support divergent evolution of noda, picorna and tetraviruses from a common ancestor and divergent evolution of alpha and flaviviruses from a common ancestor. Likewise, bacteriophages and herpes viruses almost certainly share a common ancestor in their evolution. Comparing all the viruses, we conclude that maturation is a convergent process that is required to solve conflicting requirements in biological dynamics and function. PMID:22404678

  11. Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters.

    PubMed

    Maisetta, Giuseppantonio; Grassi, Lucia; Di Luca, Mariagrazia; Bombardelli, Silvia; Medici, Chiara; Brancatisano, Franca Lisa; Esin, Semih; Batoni, Giovanna

    2016-08-01

    In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2-4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis.

  12. Garcinia xanthochymus Benzophenones Promote Hyphal Apoptosis and Potentiate Activity of Fluconazole against Candida albicans Biofilms.

    PubMed

    Jackson, Desmond N; Yang, Lin; Wu, ShiBiao; Kennelly, Edward J; Lipke, Peter N

    2015-10-01

    Xanthochymol and garcinol, isoprenylated benzophenones purified from Garcinia xanthochymus fruits, showed multiple activities against Candida albicans biofilms. Both compounds effectively prevented emergence of fungal germ tubes and were also cytostatic, with MICs of 1 to 3 μM. The compounds therefore inhibited development of hyphae and subsequent biofilm maturation. Xanthochymol treatment of developing and mature biofilms induced cell death. In early biofilm development, killing had the characteristics of apoptosis, including externalization of phosphatidyl serine and DNA fragmentation, as evidenced by terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) fluorescence. These activities resulted in failure of biofilm maturation and hyphal death in mature biofilms. In mature biofilms, xanthochymol and garcinol caused the death of biofilm hyphae, with 50% effective concentrations (EC50s) of 30 to 50 μM. Additionally, xanthochymol-mediated killing was complementary with fluconazole against mature biofilms, reducing the fluconazole EC50 from >1,024 μg/ml to 13 μg/ml. Therefore, xanthochymol has potential as an adjuvant for antifungal treatments as well as in studies of fungal apoptosis.

  13. Effect of biofilm on colloid attachment in saturated porous media.

    PubMed

    Majumdar, Udayan; Alexander, Thrisha; Waskar, Morris; Dagaonkar, Manoj V

    2014-01-01

    Biofilm plays an important role in controlling the transport of colloids in a porous media. Biofilms are formed when micro-organisms come in contact with substrates, and are able to attach and grow with availability of nutrients. The microorganisms get embedded in a matrix of the substrate and extracellular polymeric substances which are responsible for the morphology, physico-chemical properties, structure and coherence of the biofilm. In this study, the effect of biofilm and its aging on colloid removal was studied on a glass bead column. Oocysts, polystyrene microspheres and inorganic colloids were used as colloidal particles. Pseudomonas aeruginosa was used as a model biofilm-forming microorganism. Presence of biofilm significantly enhanced colloid removal in the column. After 3 weeks, almost complete colloid removal was observed. The formation of biofilm was confirmed by various physical characterization techniques. During the extended aging study, biofilm sloughed off under shear stress. The loss of biofilm was higher during the early stage of its growth, and subsequently slowed down probably due to the formation of a more rigid biofilm. This research indicates that biofilm formation, maturation and sloughing-off play a critical role in colloid removal through porous media.

  14. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found. PMID:26010032

  15. Kinetics of biofilm formation by drinking water isolated Penicillium expansum.

    PubMed

    Simões, Lúcia Chaves; Simões, Manuel; Lima, Nelson

    2015-01-01

    Current knowledge on drinking water (DW) biofilms has been obtained mainly from studies on bacterial biofilms. Very few reports on filamentous fungi (ff) biofilms are available, although they can contribute to the reduction in DW quality. This study aimed to assess the dynamics of biofilm formation by Penicillium expansum using microtiter plates under static conditions, mimicking water flow behaviour in stagnant regions of drinking water distribution systems. Biofilms were analysed in terms of biomass (crystal violet staining), metabolic activity (resazurin, fluorescein diacetate and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide [MTT]) and morphology (epifluorescence [calcofluor white M2R, FUN-1, FDA and acridine orange] and bright-field microscopies). Biofilm development over time showed the typical sigmoidal curve with noticeable different phases in biofilm formation (induction, exponential, stationary, and sloughing off). The methods used to assess metabolic activity provided similar results. The microscope analysis allowed identification of the involvement of conidia in initial adhesion (4 h), germlings (8 h), initial monolayers (12 h), a monolayer of intertwined hyphae (24 h), mycelial development, hyphal layering and bundling, and development of the mature biofilms (≥48 h). P. expansum grows as a complex, multicellular biofilm in 48 h. The metabolic activity and biomass of the fungal biofilms were shown to increase over time and a correlation between metabolism, biofilm mass and hyphal development was found.

  16. Antibiotic resistance in an in vitro subgingival biofilm model

    PubMed Central

    Sedlacek, M. J.; Walker, C.

    2007-01-01

    Introduction: The purpose of this study was to utilize an in vitro biofilm model of subgingival plaque to investigate resistances in subgingival biofilm communities to antibiotics commonly used as adjuncts to periodontal therapy. Methods: Biofilms were grown on saliva-coated hydroxyapatite supports in trypticasesoy broth for 4 h–10 days and then exposed for 48 h to either increasing twofold concentrations of tetracycline, amoxicillin, clindamycin, and erythromycin or therapeutically achievable concentrations of tetracycline, doxycycline, minocycline, amoxicillin, metronidazole, amoxicillin/clavulanate, and amoxicillin/metronidazole. Results: Concentrations necessary to inhibit bacterial strains in steady-state biofilms were up to 250 times greater than the concentrations needed to inhibit the same strains grown planktonically. In the presence of therapeutically available antibiotic concentrations, significantly higher proportions of the biofilms remained viable as the biofilms reached steady-state growth. The combinations of amoxicillin/clavulanate and amoxicillin/metronidazole were the most effective in suppressing growth. These combinations were particularly effective against biofilms up to and including 7 days of age and inhibited 90% or more of the bacteria present relative to untreated controls. As the biofilms approached steady state, these combinations were less effective with 50−60% of the bacteria retaining viability. Conclusion: Most, but not all, species of subgingival bacteria are considerably more resistant in biofilms than in planktonic cultures. Resistance appeared to be age-related because biofilms demonstrated progressive antibiotic resistance as they matured with maximum resistance coinciding with the steady-state phase of biofilm growth. PMID:17803631

  17. Use of In-Biofilm Expression Technology To Identify Genes Involved in Pseudomonas aeruginosa Biofilm Development†

    PubMed Central

    Finelli, Antonio; Gallant, Claude V.; Jarvi, Keith; Burrows, Lori L.

    2003-01-01

    Mature Pseudomonas aeruginosa biofilms form complex three-dimensional architecture and are tolerant of antibiotics and other antimicrobial compounds. In this work, an in vivo expression technology system, originally designed to study virulence-associated genes in complex mammalian environments, was used to identify genes up-regulated in P. aeruginosa grown to a mature (5-day) biofilm. Five unique cloned promoters unable to promote in vitro growth in the absence of purines after recovery from the biofilm environment were identified. The open reading frames downstream of the cloned promoter regions were identified, and knockout mutants were generated. Insertional mutation of PA5065, a homologue of Escherichia coli ubiB, was lethal, while inactivation of PA0240 (a porin homologue), PA3710 (a putative alcohol dehydrogenase), and PA3782 (a homologue of the Streptomyces griseus developmental regulator adpA) had no effect on planktonic growth but caused defects in biofilm formation in static and flowing systems. In competition experiments, mutants demonstrated reduced fitness compared with the parent strain, comprising less than 0.0001% of total biofilm cells after 5 days. Therefore, using in-biofilm expression technology, we have identified novel genes that do not affect planktonic growth but are important for biofilm formation, development, and fitness. PMID:12700249

  18. Epigenetics and lifestyle

    PubMed Central

    Alegría-Torres, Jorge Alejandro; Baccarelli, Andrea; Bollati, Valentina

    2013-01-01

    The concept of “lifestyle” includes different factors such as nutrition, behavior, stress, physical activity, working habits, smoking and alcohol consumption. Increasing evidence shows that environmental and lifestyle factors may influence epigenetic mechanisms, such as DNA methylation, histone acetylation and microRNA expression. Several lifestyle factors have been identified that might modify epigenetic patterns, such as diet, obesity, physical activity, tobacco smoking, alcohol consumption, environmental pollutants, psychological stress, and working on night shifts. Most studies conducted so far have been centered on DNA methylation, whereas only a few investigations have studied lifestyle factors in relation to histone modifications and miRNAs. Here, we review current evidence indicating that lifestyle factors might affect human health via epigenetic mechanisms. PMID:22122337

  19. Plasma is the main regulator of Staphylococcus epidermidis biofilms virulence genes transcription in human blood.

    PubMed

    França, Angela; Cerca, Nuno

    2016-03-01

    Staphylococcus epidermidis is frequently associated with the emergence of medical-device-associated bloodstream infections, due to its ability to form biofilms on the surface of vascular catheters. Although these biofilms may be in continuous contact with human blood, how S. epidermidis biofilm cells interact with blood and its cellular and soluble components is poorly understood. Herein, we evaluated biofilm structure, biofilm cells culturability and viability, and the transcription of a panel of genes associated with S. epidermidis biofilms virulence, upon interaction with whole human blood or plasma. Our results showed that although whole human blood caused significant alterations in biofilm structure and in the number of culturable and viable cells, plasma was the main regulator of the transcription of genes with central role in biofilm formation, maturation and immune evasion. These findings highlight the urgent need to intensify studies aiming to evaluate the impact of host soluble factors on S. epidermidis biofilms fitness and persistence. PMID:26712650

  20. Plasma is the main regulator of Staphylococcus epidermidis biofilms virulence genes transcription in human blood.

    PubMed

    França, Angela; Cerca, Nuno

    2016-03-01

    Staphylococcus epidermidis is frequently associated with the emergence of medical-device-associated bloodstream infections, due to its ability to form biofilms on the surface of vascular catheters. Although these biofilms may be in continuous contact with human blood, how S. epidermidis biofilm cells interact with blood and its cellular and soluble components is poorly understood. Herein, we evaluated biofilm structure, biofilm cells culturability and viability, and the transcription of a panel of genes associated with S. epidermidis biofilms virulence, upon interaction with whole human blood or plasma. Our results showed that although whole human blood caused significant alterations in biofilm structure and in the number of culturable and viable cells, plasma was the main regulator of the transcription of genes with central role in biofilm formation, maturation and immune evasion. These findings highlight the urgent need to intensify studies aiming to evaluate the impact of host soluble factors on S. epidermidis biofilms fitness and persistence.

  1. Lifestyle medicine for depression

    PubMed Central

    2014-01-01

    The prevalence of depression appears to have increased over the past three decades. While this may be an artefact of diagnostic practices, it is likely that there are factors about modernity that are contributing to this rise. There is now compelling evidence that a range of lifestyle factors are involved in the pathogenesis of depression. Many of these factors can potentially be modified, yet they receive little consideration in the contemporary treatment of depression, where medication and psychological intervention remain the first line treatments. “Lifestyle Medicine” provides a nexus between public health promotion and clinical treatments, involving the application of environmental, behavioural, and psychological principles to enhance physical and mental wellbeing. This may also provide opportunities for general health promotion and potential prevention of depression. In this paper we provide a narrative discussion of the major components of Lifestyle Medicine, consisting of the evidence-based adoption of physical activity or exercise, dietary modification, adequate relaxation/sleep and social interaction, use of mindfulness-based meditation techniques, and the reduction of recreational substances such as nicotine, drugs, and alcohol. We also discuss other potential lifestyle factors that have a more nascent evidence base, such as environmental issues (e.g. urbanisation, and exposure to air, water, noise, and chemical pollution), and the increasing human interface with technology. Clinical considerations are also outlined. While data supports that some of these individual elements are modifiers of overall mental health, and in many cases depression, rigorous research needs to address the long-term application of Lifestyle Medicine for depression prevention and management. Critically, studies exploring lifestyle modification involving multiple lifestyle elements are needed. While the judicious use of medication and psychological techniques are still

  2. Lifestyle medicine for depression.

    PubMed

    Sarris, Jerome; O'Neil, Adrienne; Coulson, Carolyn E; Schweitzer, Isaac; Berk, Michael

    2014-04-10

    The prevalence of depression appears to have increased over the past three decades. While this may be an artefact of diagnostic practices, it is likely that there are factors about modernity that are contributing to this rise. There is now compelling evidence that a range of lifestyle factors are involved in the pathogenesis of depression. Many of these factors can potentially be modified, yet they receive little consideration in the contemporary treatment of depression, where medication and psychological intervention remain the first line treatments. "Lifestyle Medicine" provides a nexus between public health promotion and clinical treatments, involving the application of environmental, behavioural, and psychological principles to enhance physical and mental wellbeing. This may also provide opportunities for general health promotion and potential prevention of depression. In this paper we provide a narrative discussion of the major components of Lifestyle Medicine, consisting of the evidence-based adoption of physical activity or exercise, dietary modification, adequate relaxation/sleep and social interaction, use of mindfulness-based meditation techniques, and the reduction of recreational substances such as nicotine, drugs, and alcohol. We also discuss other potential lifestyle factors that have a more nascent evidence base, such as environmental issues (e.g. urbanisation, and exposure to air, water, noise, and chemical pollution), and the increasing human interface with technology. Clinical considerations are also outlined. While data supports that some of these individual elements are modifiers of overall mental health, and in many cases depression, rigorous research needs to address the long-term application of Lifestyle Medicine for depression prevention and management. Critically, studies exploring lifestyle modification involving multiple lifestyle elements are needed. While the judicious use of medication and psychological techniques are still advocated

  3. Gene expression of lactobacilli in murine forestomach biofilms

    PubMed Central

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-01-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62–82% of rRNA reads), followed by Clostridiales (8–31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans. PMID:24702817

  4. Gene expression of lactobacilli in murine forestomach biofilms.

    PubMed

    Schwab, Clarissa; Tveit, Alexander Tøsdal; Schleper, Christa; Urich, Tim

    2014-07-01

    Lactobacilli populate the gastro-intestinal tract of vertebrates, and are used in food fermentations and as probiotics. Lactobacilli are also major constituents of stable biofilms in the forestomach of rodents. In order to investigate the lifestyle of these biofilm lactobacilli in C57BL/6 mice, we applied metatranscriptomics to analyse gene expression (assessed by mRNA) and community composition (assessed by rRNA). Lactobacillales were the major biofilm inhabitants (62-82% of rRNA reads), followed by Clostridiales (8-31% of rRNA reads). To identify mRNA transcripts specific for the forestomach, we compared forestomach and hindgut metatranscriptomes. Gene expression of the biofilm microbiota was characterized by high abundance of transcripts related to glucose and maltose utilization, peptide degradation, and amino acid transport, indicating their major catabolic and anabolic pathways. The microbiota transcribed genes encoding pathways enhancing oxidative stress (glutathione synthesis) and acid tolerance. Various pathways, including metabolite formation (urea degradation, arginine pathway, γ-aminobutyrate) and cell wall modification (DltA, cyclopropane-fatty-acyl-phospholipid synthase), contributed to acid tolerance, as judged from the transcript profile. In addition, the biofilm microbiota expressed numerous genes encoding extracellular proteins involved in adhesion and/or biofilm formation (e.g. MucBP, glycosyl hydrolase families 68 and 70). This study shed light on the lifestyle and specific adaptations of lactobacilli in the murine forestomach that might also be relevant for lactobacilli biofilms in other vertebrates, including humans.

  5. Establishment of a multi-species biofilm model and metatranscriptomic analysis of biofilm and planktonic cell communities.

    PubMed

    Nakamura, Yuya; Yamamoto, Nao; Kino, Yuta; Yamamoto, Nozomi; Kamei, Shota; Mori, Hiroshi; Kurokawa, Ken; Nakashima, Nobutaka

    2016-08-01

    We collected several biofilm samples from Japanese rivers and established a reproducible multi-species biofilm model that can be analyzed in laboratories. Bacterial abundance at the generic level was highly similar between the planktonic and biofilm communities, whereas comparative metatranscriptomic analysis revealed many upregulated and downregulated genes in the biofilm. Many genes involved in iron-sulfur metabolism, stress response, and cell envelope function were upregulated; biofilm formation is mediated by an iron-dependent signaling mechanism and the signal is relayed to stress-responsive and cell envelope function genes. Flagella-related gene expression was regulated depending upon the growth phase, indicating different roles of flagella during the adherence, maturation, and dispersal steps of biofilm formation. Downregulation of DNA repair genes was observed, indicating that spontaneous mutation frequency would be elevated within the biofilm and that the biofilm is a cradle for generating novel genetic traits. Although the significance remains unclear, genes for rRNA methyltransferase, chromosome partitioning, aminoacyl-tRNA synthase, and cysteine, methionine, leucine, thiamine, nucleotide, and fatty acid metabolism were found to be differentially regulated. These results indicate that planktonic and biofilm communities are in different dynamic states. Studies on biofilm and sessile cells, which have received less attention, are important for understanding microbial ecology and for designing tailor-made anti-biofilm drugs. PMID:27102130

  6. Investigation of biofilm formation in clinical isolates of Staphylococcus aureus.

    PubMed

    Cassat, James E; Smeltzer, Mark S; Lee, Chia Y

    2014-01-01

    Invasive methicillin-resistant Staphylococcus aureus (MRSA) infections are often characterized by recalcitrance to antimicrobial therapy, which is a function not only of widespread antimicrobial resistance among clinical isolates, but also the capacity to form biofilms. Biofilms consist of ordered populations of bacterial colonies encased in a polysaccharide and/or proteinaceous matrix. This unique physiologic adaptation limits penetration of antimicrobial molecules and innate immune effectors to the infectious focus, increasing the likelihood of treatment failure and progression to chronic infection. Investigation of mechanisms of biofilm formation and dispersal, as well as the physiologic adaptations to the biofilm lifestyle, is therefore critical to developing new therapies to combat MRSA infections. In this chapter, we describe two in vitro methods for the investigation of staphylococcal biofilm formation, a microtiter plate-based assay of biofilm formation under static conditions and a flow cell-based assay of biofilm formation under fluid shear. We also detail an in vivo murine model of catheter-associated biofilm formation that is amenable to imaging and microbiologic analyses. Special consideration is given to the conditions necessary to support biofilm formation by clinical isolates of S. aureus. PMID:24085698

  7. Oral biofilm architecture on natural teeth.

    PubMed

    Zijnge, Vincent; van Leeuwen, M Barbara M; Degener, John E; Abbas, Frank; Thurnheer, Thomas; Gmür, Rudolf; Harmsen, Hermie J M

    2010-02-24

    Periodontitis and caries are infectious diseases of the oral cavity in which oral biofilms play a causative role. Moreover, oral biofilms are widely studied as model systems for bacterial adhesion, biofilm development, and biofilm resistance to antibiotics, due to their widespread presence and accessibility. Despite descriptions of initial plaque formation on the tooth surface, studies on mature plaque and plaque structure below the gum are limited to landmark studies from the 1970s, without appreciating the breadth of microbial diversity in the plaque. We used fluorescent in situ hybridization to localize in vivo the most abundant species from different phyla and species associated with periodontitis on seven embedded teeth obtained from four different subjects. The data showed convincingly the dominance of Actinomyces sp., Tannerella forsythia, Fusobacterium nucleatum, Spirochaetes, and Synergistetes in subgingival plaque. The latter proved to be new with a possibly important role in host-pathogen interaction due to its localization in close proximity to immune cells. The present study identified for the first time in vivo that Lactobacillus sp. are the central cells of bacterial aggregates in subgingival plaque, and that Streptococcus sp. and the yeast Candida albicans form corncob structures in supragingival plaque. Finally, periodontal pathogens colonize already formed biofilms and form microcolonies therein. These in vivo observations on oral biofilms provide a clear vision on biofilm architecture and the spatial distribution of predominant species.

  8. Destruction of single-species biofilms of Escherichia coli or Klebsiella pneumoniae subsp. pneumoniae by dextranase, lactoferrin, and lysozyme

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The activity of dextranase, lactoferrin, lysozyme, and nisin against biofilms composed of either Klebsiella pneumonia or Escherichia coli was examined using the MBEC Assay™. Mature biofilms were treated and then sonicated to remove the adherent biofilm. This material was quantified using a lumines...

  9. [Biofilm Formation by the Nonflagellated flhB1 Mutant of Azospirillum brasilense Sp245].

    PubMed

    Shelud'ko, A V; Filip'echeva, Yu A; Shumiliva, E M; Khlebtsov, B N; Burov, A M; Petrova, L P; Katsy, E I

    2015-01-01

    Azospirillum brasilense Sp245 with mixed flagellation are able to form biofilms on various surfaces. A nonflagellated mutant of this strain with inactivated chromosomal copy of the flhB gene (flhB1) was shown to exhibit specific traits at the later stages of biofilm formation on a hydrophilic (glass) surface. Mature biofilms of the flhB1::Omegon-Km mutant Sp245.1063 were considerably thinner than those of the parent strain Sp245. The biofilms of the mutant were more susceptible to the forces of hydrodynamic shear. A. brasilense Sp245 cells in biofilms were not found to possess lateral flagella. Cells with polar flagella were, however, revealed by atomic force microscopy of mature native biofilms of strain Sp245. Preservation of a polar flagellum (probably nonmotile) on the cells of A. brasilense Sp245 may enhance the biofilm stability.

  10. Effect of tunicamycin on Candida albicans biofilm formation and maintenance

    PubMed Central

    Pierce, Christopher G.; Thomas, Derek P.; López-Ribot, José L.

    2009-01-01

    Background Candida albicans is a common opportunistic pathogen of the human body and is the frequent causative agent of candidiasis. Typically, these infections are associated with the formation of biofilms on both host tissues and implanted biomaterials. As a result of the intrinsic resistance of C. albicans biofilms to most antifungal agents, new strategies are needed to combat these infections. Methods Here we have used a 96-well microtitre plate model of C. albicans biofilm formation to study the inhibitory effect of tunicamycin, a nucleoside antibiotic that inhibits N-linked glycosylation affecting cell wall and secreted proteins, on C. albicans biofilm formation. A proteomic approach was used to study the effect of tunicamycin on levels of glycosylation of key secreted mannoproteins in the biofilm matrix. Results Our results revealed that physiological concentrations of tunicamycin displayed significant inhibitory effects on biofilm development and maintenance, while not affecting overall cell growth or morphology. However, tunicamycin exerted a minimal effect on fully mature, pre-formed C. albicans biofilms. Conclusions The effect of tunicamycin on the C. albicans biofilm mode of growth demonstrates the importance of N-linked glycosylation in the developmental stages of biofilm formation. In addition, our results indicate that N-linked glycosylation represents an attractive target for the development of alternative strategies for the prevention of biofilm formation by this important pathogenic fungus. PMID:19098294

  11. The Role of Microbial Biofilms as Ecosystem Engineers in Streams

    NASA Astrophysics Data System (ADS)

    Battin, T. I.; Battin, T. I.; Kaplan, L. A.; Newbold, J. D.

    2001-12-01

    Microbial biofilms growing on and through the surface of streambeds physically alter the interface between the water column and benthic zone and influence the biogeochemistry within the steambed and hyporheic zone. We monitored the development of biofilms within stream-side flumes, and were able to relate changes in biofilm structure to concomitant changes in hydrodynamics, particle deposition, and dissolved organic carbon (DOC) uptake. Biofilm development was assessed by measurements of ash free dry mass, bacterial density, concentrations of chlorophyll a and exopolysaccharides, and confocal microscopy of fluorescent-stained biotic and abiotic assemblages. The microbial biofilms were followed through an initial colonization period, the development of mm-thick mats that included streamers undulating in the current, and the eventual erosion and sloughing of these structural features. As the biofilms matured, hydrologic exchange rate, transient storage capacity, and particle deposition rates increased, reached a plateau, and eventually declined. The uptake of glucose and arabinose, added in nM concentrations to the flumes, showed a preferential uptake of glucose over arabinose. However, as the biofilms grew, the differences between the uptake of these two saccharides declined. This change is consistent with a shift in the rate-limiting step for DOC uptake from internal biofilm processes to greater diffusion-limitation as biofilm thickness, and thus the diffusion barrier, increased. We suggest that microscale processes, which alter biofilm structure, in turn alter large-scale physical and biogeochemical processes, including streamwater/subsurface hydrodynamics and organic matter fluxes.

  12. Lifestyle behaviours during pregnancy.

    PubMed

    Clissold, T L; Hopkins, W G; Seddon, R J

    1991-03-27

    Lifestyle behaviours of 183 women before and during pregnancy were investigated by retrospective questionnaire in the first few days postpartum. The threshold of cigarette smoking for a reduction in birth weight was exceeded at full term by 17% of the women, but only 1% exceeded a similar threshold for alcohol consumption. Consumption below the recommended minimum level for one or more major food groups was reported by 35% of the women during pregnancy. Only 36% of the women were vigorously active before pregnancy, and only 13% remained so throughout pregnancy. Level of education was a significant predictor of healthy lifestyle behaviours. Concern for their baby's and their own health were the main reasons given for change in behaviour during pregnancy, while doctor's advice and antenatal classes were cited infrequently. A new approach to lifestyle enhancement by health professionals might promote desirable changes in relation to smoking and possibly also food consumption and physical activity.

  13. Lifestyle modifications for GDM.

    PubMed

    Dhingra, Atul; Ahuja, Kamlesh

    2016-09-01

    Prevalence of gestational diabetes mellitus (GDM) is increasing worldwide more so in Southeast Asian countries like India and Pakistan. 1 GDM is associated with various adverse foetal and maternal effects. The management of GDM aims at reducing blood glucose to reduce maternal and foetal morbidity and mortality. Various studies have shown that lifestyle modifications are an important tool for reducing blood glucose levels in patients with GDM. Lifestyle modifications consist of dietary modifications and daily physical activity. Dietary modifications aim to achieve glycaemic control by providing adequate calories to the mother and foetus. Exercise is an obvious adjunct to dietary modifications for management of GDM. Therefore the purpose of this review is to summarize the benefits of lifestyle interventions in patients with GDM. PMID:27582149

  14. Macromolecular Fingerprinting of Sulfolobus Species in Biofilm: A Transcriptomic and Proteomic Approach Combined with Spectroscopic Analysis

    PubMed Central

    2011-01-01

    Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ∼3.4 and ∼1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. PMID:21761944

  15. Macromolecular fingerprinting of sulfolobus species in biofilm: a transcriptomic and proteomic approach combined with spectroscopic analysis.

    PubMed

    Koerdt, Andrea; Orell, Alvaro; Pham, Trong Khoa; Mukherjee, Joy; Wlodkowski, Alexander; Karunakaran, Esther; Biggs, Catherine A; Wright, Phillip C; Albers, Sonja-Verena

    2011-09-01

    Microorganisms in nature often live in surface-associated sessile communities, encased in a self-produced matrix, referred to as biofilms. Biofilms have been well studied in bacteria but in a limited way for archaea. We have recently characterized biofilm formation in three closely related hyperthermophilic crenarchaeotes: Sulfolobus acidocaldarius, S. solfataricus, and S. tokodaii. These strains form different communities ranging from simple carpet structures in S. solfataricus to high density tower-like structures in S. acidocaldarius under static condition. Here, we combine spectroscopic, proteomic, and transcriptomic analyses to describe physiological and regulatory features associated with biofilms. Spectroscopic analysis reveals that in comparison to planktonic life-style, biofilm life-style has distinctive influence on the physiology of each Sulfolobus spp. Proteomic and transcriptomic data show that biofilm-forming life-style is strain specific (eg ca. 15% of the S. acidocaldarius genes were differently expressed, S. solfataricus and S. tokodaii had ~3.4 and ~1%, respectively). The -omic data showed that regulated ORFs were widely distributed in basic cellular functions, including surface modifications. Several regulated genes are common to biofilm-forming cells in all three species. One of the most striking common response genes include putative Lrs14-like transcriptional regulators, indicating their possible roles as a key regulatory factor in biofilm development. PMID:21761944

  16. Sensitization of Candida albicans biofilms to fluconazole by terpenoids of plant origin.

    PubMed

    Doke, Sonali Kashinath; Raut, Jayant Shankar; Dhawale, Shashikant; Karuppayil, Sankunny Mohan

    2014-01-01

    Infections associated with the biofilms of Candida albicans are a challenge to antifungal treatment. Combinatorial therapy involving plant molecules with antifungal drugs would be an effective complementary approach against drug-resistant Candida biofilms. The aim of this study was to evaluate the efficacy of three bioactive terpenoids (carvacrol, eugenol and thymol) in combination with fluconazole against planktonic cells, biofilm development and mature biofilms of C. albicans. Activities of the selected molecules were tested using a microplate-based methodology, while their combinations with fluconazole were performed in a checkerboard format. Biofilms were quantitated by XTT-metabolic assay and confirmed by microscopic observations. Combinations of carvacrol and eugenol with fluconazole were found synergistic against planktonic growth of C. albicans, while that of thymol with fluconazole did not have any interaction. Biofilm development and mature biofilms were highly resistant to fluconazole, but susceptible to three terpenoids. Sensitization of cells by sub-inhibitory concentrations of carvacrol and eugenol resulted in prevention of biofilm formation at low fluconazole concentrations, i.e. 0.032 and 0.002 mg ml(-1), respectively. Addition of thymol could not potentiate activity of fluconazole against biofilm formation by C. albicans. Fractional inhibitory concentration indices (FICI) for carvacrol-fluconazole and eugenol-fluconazole combinations for biofilm formation were 0.311 and 0.25, respectively. The FICI value of 1.003 indicated a status of indifference for the combination of thymol and fluconazole against biofilm formation. Eugenol and thymol combinations with fluconazole did not have useful interaction against mature biofilms of C. albicans, but the presence of 0.5 mg ml(-1) of carvacrol caused inhibition of mature biofilms at a significantly low concentration (i.e. 0.032 mg ml(-1)) of fluconazole. The study indicated that carvacrol and eugenol

  17. Health lifestyles in early childhood.

    PubMed

    Mollborn, Stefanie; James-Hawkins, Laurie; Lawrence, Elizabeth; Fomby, Paula

    2014-12-01

    This study integrates two important developments, the concept of health lifestyles (which has focused on adults and adolescents) and the increased attention to early childhood. We introduce the concept of children's health lifestyles, identifying differences from adult health lifestyles and articulating intergenerational transmission and socialization processes shaping children's health lifestyles. Using the nationally representative Early Childhood Longitudinal Study-Birth Cohort (2001-2007; N ≈ 6,150), latent class analyses identify predominant health lifestyles among U.S. preschoolers. Five distinct empirical patterns representing health lifestyles emerge, two capturing low and medium levels of overall risk across domains and three capturing domain-specific risks. Social background predicts children's health lifestyles, but lower household resources often explain these relationships. Across kindergarten measures of cognition, behavior, and health, preschool health lifestyles predict children's development even after controlling for social disadvantage and concurrent household resources. Further research on health lifestyles throughout childhood is warranted.

  18. Health lifestyles in early childhood.

    PubMed

    Mollborn, Stefanie; James-Hawkins, Laurie; Lawrence, Elizabeth; Fomby, Paula

    2014-12-01

    This study integrates two important developments, the concept of health lifestyles (which has focused on adults and adolescents) and the increased attention to early childhood. We introduce the concept of children's health lifestyles, identifying differences from adult health lifestyles and articulating intergenerational transmission and socialization processes shaping children's health lifestyles. Using the nationally representative Early Childhood Longitudinal Study-Birth Cohort (2001-2007; N ≈ 6,150), latent class analyses identify predominant health lifestyles among U.S. preschoolers. Five distinct empirical patterns representing health lifestyles emerge, two capturing low and medium levels of overall risk across domains and three capturing domain-specific risks. Social background predicts children's health lifestyles, but lower household resources often explain these relationships. Across kindergarten measures of cognition, behavior, and health, preschool health lifestyles predict children's development even after controlling for social disadvantage and concurrent household resources. Further research on health lifestyles throughout childhood is warranted. PMID:25413801

  19. Lifestyle, Nutrition and Glaucoma

    PubMed Central

    Pasquale, Louis R.; Kang, Jae Hee

    2009-01-01

    The only proven strategy to prevent primary open-angle glaucoma (POAG) is the use of ocular hypotensive therapy among people diagnosed with ocular hypertension. In this review, various modifiable lifestyle factors, such as exercise, diet and cigarette smoking, that may influence intraocular pressure and that have been studied in relation to the risk of developing POAG are discussed. Epidemiologic studies on lifestyle factors are few, and the current evidence suggests that there are no environmental factors that are clearly associated with POAG; however, a few factors merit further study. This review also outlines future directions for research into the primary prevention of POAG. PMID:19680048

  20. In vitro model of bacterial biofilm formation on polyvinyl chloride biomaterial.

    PubMed

    Zhao, Guang-qiang; Ye, Lian-hua; Huang, Yun-chao; Yang, Da-kuan; Li, Li; Xu, Geng; Lei, Yu-jie

    2011-11-01

    The aim of the study was to establish an in vitro model of Staphylococcus epidermidis biofilms on polyvinyl chloride (PVC) material, and to investigate bacterial biofilm formation and its structure using the combined approach of confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM). Staphylococcus epidermidis bacteria (stain RP62A) were incubated with PVC pieces in Tris buffered saline to form biofilms. Biofilm formation was examined at 6, 12, 18, 24, 30, and 48 h. Thicknesses of these biofilms and the number, and percentage of viable cells in biofilms were measured. CT scan images of biofilms were obtained using CLSM and environmental SEM. The results of this study showed that Staphylococcus epidermidis biofilm is a highly organized multi-cellular structure. The biofilm is constituted of large number of viable and dead bacterial cells. Bacterial biofilm formation on the surface of PVC material was found to be a dynamic process with maximal thickness being attained at 12-18 h. These biofilms became mature by 24 h. There was significant difference in the percentage of viable cells along with interior, middle, and outer layers of biofilms (P < 0.05). Staphylococcus epidermidis biofilm is sophisticated in structure and the combination method involving CLSM and SEM was ideal for investigation of biofilms on PVC material.

  1. Biophysics of Biofilm Infection

    PubMed Central

    Stewart, Philip S.

    2014-01-01

    This article examines a likely basis of the tenacity of biofilm infections that has received relatively little attention: the resistance of biofilms to mechanical clearance. One way that a biofilm infection persists is by withstanding the flow of fluid or other mechanical forces that work to wash or sweep microorganisms out of the body. The fundamental criterion for mechanical persistence is that the biofilm failure strength exceeds the external applied stress. Mechanical failure of the biofilm and release of planktonic microbial cells is also important in vivo because it can result in dissemination of infection. The fundamental criterion for detachment and dissemination is that the applied stress exceeds the biofilm failure strength. The apparent contradiction for a biofilm to both persist and disseminate is resolved by recognizing that biofilm material properties are inherently heterogeneous. There are also mechanical aspects to the ways that infectious biofilms evade leukocyte phagocytosis. The possibility of alternative therapies for treating biofilm infections that work by reducing biofilm cohesion could: 1) allow prevailing hydrodynamic shear to remove biofilm, 2) increase the efficacy of designed interventions for removing biofilms, 3) enable phagocytic engulfment of softened biofilm aggregates, and 4) improve phagocyte mobility and access to biofilm. PMID:24376149

  2. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication.

    PubMed

    Qu, Lin; She, Pengfei; Wang, Yangxia; Liu, Fengxia; Zhang, Di; Chen, Lihua; Luo, Zhen; Xu, Huan; Qi, Yong; Wu, Yong

    2016-06-01

    Biofilms are defined as aggregation of single cell microorganisms and associated with over 80% of all the microbial infections. Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of leading to various infections in immunocompromised people. Recent studies showed that norspermidine, a kind of polyamine, prevented and disrupted biofilm formation by some Gram-negative bacterium. In this study, the effects of norspermidine on P. aeruginosa biofilm formation and eradication were tested. Microtiter plate combined with crystal violet staining was used to study the effects of norspermidine on P. aeruginosa initial attachment, then we employed SEM (scanning electron microscope), qRT-PCR, and QS-related virulence factor assays to investigate how norspermidine prevent biofilm formation by P. aeruginosa. We reported that high-dose norspermidine had bactericide effect on P. aeruginosa, and norspermidine began to inhibit biofilm formation and eradicate 24-h mature biofilm at concentration of 0.1 and 1 mmol/L, respectively, probably by preventing cell-surface attachment, inhibiting swimming motility, and downregulating QS-related genes expression. To investigate the potential utility of norspermidine in preventing device-related infections, we found that catheters immersed with norspermidine were effective in eradicating mature biofilm. These results suggest that norspermidine could be a potent antibiofilm agent for formulating strategies against P. aeruginosa biofilm. PMID:26817804

  3. The parasexual lifestyle of Candida albicans.

    PubMed

    Bennett, Richard J

    2015-12-01

    Candida albicans is both a prevalent human commensal and the most commonly encountered human fungal pathogen. This lifestyle is dependent on the ability of the fungus to undergo rapid genetic and epigenetic changes, often in response to specific environmental cues. A parasexual cycle in C. albicans has been defined that includes several unique properties when compared to the related model yeast, Saccharomyces cerevisiae. Novel features include strict regulation of mating via a phenotypic switch, enhanced conjugation within a sexual biofilm, and a program of concerted chromosome loss in place of a conventional meiosis. It is expected that several of these adaptations co-evolved with the ability of C. albicans to colonize the mammalian host.

  4. Optimization of an automatic counting system for the quantification of Staphylococcus epidermidis cells in biofilms.

    PubMed

    Freitas, Ana Isabel; Vasconcelos, Carlos; Vilanova, Manuel; Cerca, Nuno

    2014-07-01

    Biofilm formation is recognized as the main virulence factor in a variety of chronic infections. In vitro evaluation of biofilm formation is often achieved by quantification of viable or total cells. However, these methods depend on biofilm disruption, which is often achieved by vortexing or sonication. In this study, we investigated the effects of sonication on the elimination of Staphylococcus epidermidis cell clusters from biofilms grown over time, and quantification was performed by three distinct analytical techniques. Even when a higher number of sonication cycles was used, some stable cell clusters remained in the samples obtained from 48- and 72-h-old biofilms, interfering with the quantification of sessile bacteria by plate counting. On the other hand, the fluorescence microscopy automatic counting system allowed proper quantification of biofilm samples that had undergone any of the described sonication cycles, suggesting that this is a more accurate method for assessing the cell concentration in S. epidermidis biofilms, especially in mature biofilms.

  5. Evaluation of antibacterial and anti-biofilm activities of cinchona alkaloid derivatives against Staphylococcus aureus.

    PubMed

    Skogman, Malena E; Kujala, Janni; Busygin, Igor; Leinob, Reko; Vuorela, Pia M; Fallarero, Adyary

    2012-09-01

    Bacterial biofilms are resistant to most of the commonly available antibacterial chemotherapies. Thus, an enormous need exists to meet the demands of effective anti-biofilm therapy. In this study, a small library of cinchona alkaloids, including the naturally occurring compounds cinchonidine and cinchonine, as well as various synthetic derivatives and analogues was screened for antibacterial and anti-biofilm activity against the Staphylococcus aureus biofilm producing strain ATCC 25923. Two methods were used to evaluate activity against biofilms, namely crystal violet staining to measure biomass and resazurin assay to measure biofilms viability. Cinchonidine was found to be inactive, whereas a synthetic derivative, 11-triphenylsilyl-10,11-dihydrocinchonidine (11-TPSCD), was effective against planktonic bacteria as well as in preventing biofilm formation at low micromolar concentrations. Higher concentrations were required to eradicate mature biofilms.

  6. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    PubMed

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth.

  7. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    PubMed

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. PMID:26992071

  8. Child Lifestyles Predictors

    ERIC Educational Resources Information Center

    Özpolat, Ahmet Ragip

    2014-01-01

    The purpose of this study is to explain the effectiveness of parental attitudes, socio-economic status and gender in determining the predictors of child lifestyles. The study group consists of three hundred and fifty (350) eighth grade students studying in the province of Erzincan during the 2012-2013 academic year; the students are selected by…

  9. Dynamics of biofilm formation during anaerobic digestion of organic waste.

    PubMed

    Langer, Susanne; Schropp, Daniel; Bengelsdorf, Frank R; Othman, Maazuza; Kazda, Marian

    2014-10-01

    Biofilm-based reactors are effectively used for wastewater treatment but are not common in biogas production. This study investigated biofilm dynamics on biofilm carriers incubated in batch biogas reactors at high and low organic loading rates for sludge from meat industry dissolved air flotation units. Biofilm formation and dynamics were studied using various microscopic techniques. Resulting micrographs were analysed for total cell numbers, thickness of biofilms, biofilm-covered surface area, and the area covered by extracellular polymeric substances (EPS). Cell numbers within biofilms (10(11) cells ml(-1)) were up to one order of magnitude higher compared to the numbers of cells in the fluid reactor content. Further, biofilm formation and structure mainly correlated with the numbers of microorganisms present in the fluid reactor content and the organic loading. At high organic loading (45 kg VS m(-3)), the thickness of the continuous biofilm layer ranged from 5 to 160 μm with an average of 51 μm and a median of 26 μm. Conversely, at lower organic loading (15 kg VS m(-3)), only microcolonies were detectable. Those microcolonies increased in their frequency of occurrence during ongoing fermentation. Independently from the organic loading rate, biofilms were embedded completely in EPS within seven days. The maturation and maintenance of biofilms changed during the batch fermentation due to decreasing substrate availability. Concomitant, detachment of microorganisms within biofilms was observed simultaneously with the decrease of biogas formation. This study demonstrates that biofilms of high cell densities can enhance digestion of organic waste and have positive effects on biogas production.

  10. Active laser tweezers microrheometry of microbial biofilms

    NASA Astrophysics Data System (ADS)

    Osterman, N.; Slapar, V.; Boric, M.; Stopar, D.; Babič, D.; Poberaj, I.

    2010-08-01

    Microbial biofilms are present on biotic and abiotic surfaces and have a significant impact on many fields in industry, health care and technology. Thus, a better understanding of processes that lead to development of biofilms and their chemical and mechanical properties is needed. In the following paper we report the results of active laser tweezers microrheology study of optically inhomogeneous extracellular matrix secreted by Visbrio sp. bacteria. One particle and two particle active microrheology were used in experiments. Both methods exhibited high enough sensitivity to detect viscosity changes at early stages of bacterial growth. We also showed that both methods can be used in mature samples where optical inhomogeneity becomes significant.

  11. Artificial Klebsiella pneumoniae biofilm model mimicking in vivo system: altered morphological characteristics and antibiotic resistance.

    PubMed

    Singla, Saloni; Harjai, Kusum; Chhibber, Sanjay

    2014-04-01

    The purpose of this study was to develop a biofilm model of Klebsiella pneumoniae B5055, mimicking in vivo biofilm system so as to determine susceptibility of different phases of biofilm to antibiotics by three-dimensional analysis. Artificial mature biofilm of K. pneumoniae was made on black, polycarbonate membranes. Biofilm structure was visualized by scanning electron microscope (SEM) and confocal laser scanning microscopy (CLSM). Viable count method, CLSM and SEM analysis confirmed that mature, uniform and viable biofilms can be formed on the polycarbonate membranes by this method. The three-dimensional heterogeneity of biofilm was confirmed on the basis of results of CLSM, which is an important characteristics of in vivo biofilm system. Staining with the LIVE/DEAD BacLight viability kit and acridine orange suggested that the center of biofilm had more inactive cells compared with actively dividing cells on the periphery. Amikacin at a concentration of 40 μg ml⁻¹ was effective against younger biofilm whereas ineffective against older biofilm that showed sparsely populated dead cells using the BacLight viability staining kit. Role of altered morphological characteristics toward increased antibiotic susceptibility was also studied for different phases of K. pneumoniae biofilm by CLSM and light microscopy. Thickness of biofilm increased from 0.093 to 0.231 mm with time. So, both heterogeneity and thickness of the biofilm are likely to influence the ineffectiveness of amikacin in older biofilm. The present model holds considerable clinical relevance and may be useful for evaluating the efficacy of antimicrobial agent on bacterial biofilms in vitro.

  12. Role of Multicellular Aggregates in Biofilm Formation

    PubMed Central

    Kragh, Kasper N.; Hutchison, Jaime B.; Melaugh, Gavin; Rodesney, Chris; Roberts, Aled E. L.; Irie, Yasuhiko; Jensen, Peter Ø.; Diggle, Stephen P.; Allen, Rosalind J.

    2016-01-01

    ABSTRACT In traditional models of in vitro biofilm development, individual bacterial cells seed a surface, multiply, and mature into multicellular, three-dimensional structures. Much research has been devoted to elucidating the mechanisms governing the initial attachment of single cells to surfaces. However, in natural environments and during infection, bacterial cells tend to clump as multicellular aggregates, and biofilms can also slough off aggregates as a part of the dispersal process. This makes it likely that biofilms are often seeded by aggregates and single cells, yet how these aggregates impact biofilm initiation and development is not known. Here we use a combination of experimental and computational approaches to determine the relative fitness of single cells and preformed aggregates during early development of Pseudomonas aeruginosa biofilms. We find that the relative fitness of aggregates depends markedly on the density of surrounding single cells, i.e., the level of competition for growth resources. When competition between aggregates and single cells is low, an aggregate has a growth disadvantage because the aggregate interior has poor access to growth resources. However, if competition is high, aggregates exhibit higher fitness, because extending vertically above the surface gives cells at the top of aggregates better access to growth resources. Other advantages of seeding by aggregates, such as earlier switching to a biofilm-like phenotype and enhanced resilience toward antibiotics and immune response, may add to this ecological benefit. Our findings suggest that current models of biofilm formation should be reconsidered to incorporate the role of aggregates in biofilm initiation. PMID:27006463

  13. Temporal and Stochastic Control of Staphylococcus aureus Biofilm Development

    PubMed Central

    Moormeier, Derek E.; Bose, Jeffrey L.; Horswill, Alexander R.

    2014-01-01

    ABSTRACT Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated “multiplication” and “exodus”) that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. PMID:25316695

  14. Activity of Gallidermin on Staphylococcus aureus and Staphylococcus epidermidis Biofilms

    PubMed Central

    Saising, Jongkon; Dube, Linda; Ziebandt, Anne-Kathrin; Voravuthikunchai, Supayang Piyawan; Nega, Mulugeta

    2012-01-01

    Due to their abilities to form strong biofilms, Staphylococcus aureus and Staphylococcus epidermidis are the most frequently isolated pathogens in persistent and chronic implant-associated infections. As biofilm-embedded bacteria are more resistant to antibiotics and the immune system, they are extremely difficult to treat. Therefore, biofilm-active antibiotics are a major challenge. Here we investigated the effect of the lantibiotic gallidermin on two representative biofilm-forming staphylococcal species. Gallidermin inhibits not only the growth of staphylococci in a dose-dependent manner but also efficiently prevents biofilm formation by both species. The effect on biofilm might be due to repression of biofilm-related targets, such as ica (intercellular adhesin) and atl (major autolysin). However, gallidermin's killing activity on 24-h and 5-day-old biofilms was significantly decreased. A subpopulation of 0.1 to 1.0% of cells survived, comprising “persister” cells of an unknown genetic and physiological state. Like many other antibiotics, gallidermin showed only limited activity on cells within mature biofilms. PMID:22926575

  15. Three-dimensional stratification of bacterial biofilm populations in a moving bed biofilm reactor for nitritation-anammox.

    PubMed

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-29

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers.

  16. Three-Dimensional Stratification of Bacterial Biofilm Populations in a Moving Bed Biofilm Reactor for Nitritation-Anammox

    PubMed Central

    Almstrand, Robert; Persson, Frank; Daims, Holger; Ekenberg, Maria; Christensson, Magnus; Wilén, Britt-Marie; Sörensson, Fred; Hermansson, Malte

    2014-01-01

    Moving bed biofilm reactors (MBBRs) are increasingly used for nitrogen removal with nitritation-anaerobic ammonium oxidation (anammox) processes in wastewater treatment. Carriers provide protected surfaces where ammonia oxidizing bacteria (AOB) and anammox bacteria form complex biofilms. However, the knowledge about the organization of microbial communities in MBBR biofilms is sparse. We used new cryosectioning and imaging methods for fluorescence in situ hybridization (FISH) to study the structure of biofilms retrieved from carriers in a nitritation-anammox MBBR. The dimensions of the carrier compartments and the biofilm cryosections after FISH showed good correlation, indicating little disturbance of biofilm samples by the treatment. FISH showed that Nitrosomonas europaea/eutropha-related cells dominated the AOB and Candidatus Brocadia fulgida-related cells dominated the anammox guild. New carriers were initially colonized by AOB, followed by anammox bacteria proliferating in the deeper biofilm layers, probably in anaerobic microhabitats created by AOB activity. Mature biofilms showed a pronounced three-dimensional stratification where AOB dominated closer to the biofilm-water interface, whereas anammox were dominant deeper into the carrier space and towards the walls. Our results suggest that current mathematical models may be oversimplifying these three-dimensional systems and unless the multidimensionality of these systems is considered, models may result in suboptimal design of MBBR carriers. PMID:24481066

  17. Characterising the structure of photosynthetic biofilms using fluid dynamic gauging.

    PubMed

    Salley, B; Gordon, P W; McCormick, A J; Fisher, A C; Wilson, D I

    2012-01-01

    A new configuration of the fluid dynamic gauging technique for measuring soft layers on surfaces was used to monitor the growth of a cyanobacterium, Synechococcus sp. WH 5701, on stainless steel (SS), glass and an indium tin oxide (ITO) on a polyethylene terephthalate (PET) substratum. The biofilm thickness increased steadily over 4 weeks and exhibited noticeable changes in microstructure and strength. The biofilms all exhibited a two-layer structure, with a compact layer next to the substratum and a loose layer above. Biofilms on ITO or SS exhibited cohesive failure when removed by fluid shear whereas those on glass exhibited adhesive failure. The technique is able to elucidate various aspects of biofilm behaviour, as illustrated by the action of a biocide (NaOCl) on a mature biofilm. PMID:22329680

  18. Bacterial Biofilms: Development, Dispersal, and Therapeutic Strategies in the Dawn of the Postantibiotic Era

    PubMed Central

    Kostakioti, Maria; Hadjifrangiskou, Maria

    2013-01-01

    Biofilm formation constitutes an alternative lifestyle in which microorganisms adopt a multicellular behavior that facilitates and/or prolongs survival in diverse environmental niches. Biofilms form on biotic and abiotic surfaces both in the environment and in the healthcare setting. In hospital wards, the formation of biofilms on vents and medical equipment enables pathogens to persist as reservoirs that can readily spread to patients. Inside the host, biofilms allow pathogens to subvert innate immune defenses and are thus associated with long-term persistence. Here we provide a general review of the steps leading to biofilm formation on surfaces and within eukaryotic cells, highlighting several medically important pathogens, and discuss recent advances on novel strategies aimed at biofilm prevention and/or dissolution. PMID:23545571

  19. IMPACTS OF BIOFILM FORMATION ON CELLULOSE FERMENTATION

    SciTech Connect

    Leschine, Susan

    2009-10-31

    This project addressed four major areas of investigation: i) characterization of formation of Cellulomonas uda biofilms on cellulose; ii) characterization of Clostridium phytofermentans biofilm development; colonization of cellulose and its regulation; iii) characterization of Thermobifida fusca biofilm development; colonization of cellulose and its regulation; and iii) description of the architecture of mature C. uda, C. phytofermentans, and T. fusca biofilms. This research is aimed at advancing understanding of biofilm formation and other complex processes involved in the degradation of the abundant cellulosic biomass, and the biology of the microbes involved. Information obtained from these studies is invaluable in the development of practical applications, such as the single-step bioconversion of cellulose-containing residues to fuels and other bioproducts. Our results have clearly shown that cellulose-decomposing microbes rapidly colonize cellulose and form complex structures typical of biofilms. Furthermore, our observations suggest that, as cells multiply on nutritive surfaces during biofilms formation, dramatic cell morphological changes occur. We speculated that morphological changes, which involve a transition from rod-shaped cells to more rounded forms, might be more apparent in a filamentous microbe. In order to test this hypothesis, we included in our research a study of biofilm formation by T. fusca, a thermophilic cellulolytic actinomycete commonly found in compost. The cellulase system of T. fusca has been extensively detailed through the work of David Wilson and colleagues at Cornell, and also, genome sequence of a T. fusca strain has been determine by the DOE Joint Genome Institute. Thus, T. fusca is an excellent subject for studies of biofilm development and its potential impacts on cellulose degradation. We also completed a study of the chitinase system of C. uda. This work provided essential background information for understanding how C. uda

  20. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-01-01

    and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions. PMID:25096883

  1. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    PubMed

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    and industrial settings. One of the defining features of a biofilm is its extracellular matrix. The matrix has a heterogeneous structure and is formed from a secretion of various biopolymers, including proteins, extracellular DNA, and polysaccharides. It is generally known to interact with biofilm cells, thus affecting cell physiology and cell-cell communication. Despite the fact that the matrix may comprise up to 90% of the biofilm dry weight, how the matrix properties affect biofilm structure, maturation, and interspecies interactions remain largely unexplored. This study reveals that bacteria can use specific extracellular polymers to modulate the physical properties of their microenvironment. This in turn impacts biofilm structure, differentiation, and interspecies interactions.

  2. Bacterial biofilms and implantable prosthetic devices.

    PubMed

    Silverstein, A; Donatucci, C F

    2003-10-01

    Erectile dysfunction afflicts millions of men. A group of patients with advanced degeneration of their erectile tissue do not respond to pharmacological therapy, and surgical prosthetic reconstruction represents an attractive and highly satisfying alternative. Yet many men are unwilling to take this step due to fear of infection. Implanted prosthetic devices are at risk for infection because they provide a platform for the development of a bacterial biofilm, an organized bacterial colony that grows on the surface of the implanted material. The biofilm is resistant to all efforts to eradicate it short of removal of the foreign material. Bacteria may attach to the surface of the foreign material by surface charge attraction, hydrophilic/hydrophobic interactions, and by specific attachment by fimbrae. Growth, colonization, and maturation follow bacterial attachment. A mature biofilm is composed of three layers: a linking film binding the biofilm to the surface; a base film made up of a compact layer of bacteria; and a surface film from which free-floating bacteria can arise and spread. The majority of the surface layer is made up of exopolysaccharide matrix. Bacteria deep within the biofilm matrix live in a protected environment; diffusion of antibiotics is difficult, low oxygen tension leads to a lower bacterial metabolic rate rendering the bacteria functionally resistant to high levels of antibiotics. Effective strategies to reduce prosthetic infection levels must rely on the prevention of biofilm formation through surface modification. Possible mechanisms include the addition of antimicrobials to the surface of the device, or chemical modifications, which reduces bacterial attachment.

  3. Growth of Streptococcus mutans in Biofilms Alters Peptide Signaling at the Sub-population Level

    PubMed Central

    Shields, Robert C.; Burne, Robert A.

    2016-01-01

    Streptococcus mutans activates multiple cellular processes in response to the formation of a complex between comX-inducing peptide (XIP) and the ComR transcriptional regulator. Bulk phase and microfluidic experiments previously revealed that ComR-dependent activation of comX is altered by pH and by carbohydrate source. Biofilm formation is a major factor in bacterial survival and virulence in the oral cavity. Here, we sought to determine the response of S. mutans biofilm cells to XIP during different stages of biofilm maturation. Using flow cytometry and confocal microscopy, we showed that exogenous addition of XIP to early biofilms resulted in robust comX activation. However, as the biofilms matured, increasing amounts of XIP were required to activate comX expression. Single-cell analysis demonstrated that the entire population was responding to XIP with activation of comX in early biofilms, but only a sub-population was responding in mature biofilms. The sub-population response of mature biofilms was retained when the cells were dispersed and then treated with XIP. The proportion and intensity of the bi-modal response of mature biofilm cells was altered in mutants lacking the Type II toxins MazF and RelE, or in a strain lacking the (p)ppGpp synthase/hydrolase RelA. Thus, competence signaling is markedly altered in cells growing in mature biofilms, and pathways that control cell death and growth/survival decisions modulate activation of comX expression in these sessile populations. PMID:27471495

  4. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    PubMed

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies.

  5. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    PubMed

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. PMID:27161630

  6. Biofilm-Related Infections: Bridging the Gap between Clinical Management and Fundamental Aspects of Recalcitrance toward Antibiotics

    PubMed Central

    Lebeaux, David; Ghigo, Jean-Marc

    2014-01-01

    SUMMARY Surface-associated microbial communities, called biofilms, are present in all environments. Although biofilms play an important positive role in a variety of ecosystems, they also have many negative effects, including biofilm-related infections in medical settings. The ability of pathogenic biofilms to survive in the presence of high concentrations of antibiotics is called “recalcitrance” and is a characteristic property of the biofilm lifestyle, leading to treatment failure and infection recurrence. This review presents our current understanding of the molecular mechanisms of biofilm recalcitrance toward antibiotics and describes how recent progress has improved our capacity to design original and efficient strategies to prevent or eradicate biofilm-related infections. PMID:25184564

  7. Metabolism of mineral-sorbed organic matter and microbial lifestyles in fluvial ecosystems

    NASA Astrophysics Data System (ADS)

    Hunter, William Ross; Niederdorfer, Robert; Gernand, Anna; Veuger, Bart; Prommer, Judith; Mooshammer, Maria; Wanek, Wolfgang; Battin, Tom J.

    2016-02-01

    In fluvial ecosystems mineral erosion, carbon (C), and nitrogen (N) fluxes are linked via organomineral complexation, where dissolved organic molecules bind to mineral surfaces. Biofilms and suspended aggregates represent major aquatic microbial lifestyles whose relative importance changes predictably through fluvial networks. We tested how organomineral sorption affects aquatic microbial metabolism, using organomineral particles containing a mix of 13C, 15N-labeled amino acids. We traced 13C and 15N retention within biofilm and suspended aggregate biomass and its mineralization. Organomineral complexation restricted C and N retention within biofilms and aggregates and also their mineralization. This reduced the efficiency with which biofilms mineralize C and N by 30% and 6%. By contrast, organominerals reduced the C and N mineralization efficiency of suspended aggregates by 41% and 93%. Our findings show how organomineral complexation affects microbial C:N stoichiometry, potentially altering the biogeochemical fate of C and N within fluvial ecosystems.

  8. Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode.

    PubMed

    Weitere, Markus; Bergfeld, Tanja; Rice, Scott A; Matz, Carsten; Kjelleberg, Staffan

    2005-10-01

    In a previous study we identified microcolony formation and inhibitor production as the major protective mechanisms of Pseudomonas aeruginosa biofilms against flagellate grazing. Here we compared the efficacy of these two key protective mechanisms by exposing biofilms of the non-toxic alginate overproducing strain PDO300 and the wild-type toxic strain PAO1 to a range of feeding types commonly found in the succession of protozoans associated with natural biofilms. Alginate-mediated microcolony formation conferred effective protection for strain PDO300 against the suspension feeding flagellate Bodo saltans and, as reported earlier, the surface feeding flagellate Rhynchomonas nasuta, both of which are considered as early biofilm colonizers. However, microcolonies of mature PDO300 biofilms were highly susceptible to late biofilm colonizers, the surface-feeding amoeba Acanthamoeba polyphaga and the planktonic ciliate Tetrahymena sp., resulting in a significant reduction of biofilm biomass. Mature biofilms of strain PAO1 inhibited growth of flagellates and A. polyphaga while the grazing activity of Tetrahymena sp. remained unaffected. Our findings suggest that inhibitor production of mature P. aeruginosa biofilms is effective against a wider range of biofilm-feeding predators while microcolony-mediated protection is only beneficial in the early stages of biofilm formation.

  9. Characterization of structures in biofilms formed by a Pseudomonas fluorescens isolated from soil

    PubMed Central

    2009-01-01

    Background Microbial biofilms represent an incompletely understood, but fundamental mode of bacterial growth. These sessile communities typically consist of stratified, morphologically-distinct layers of extracellular material, where numerous metabolic processes occur simultaneously in close proximity. Limited reports on environmental isolates have revealed highly ordered, three-dimensional organization of the extracellular matrix, which may hold important implications for biofilm physiology in vivo. Results A Pseudomonas spp. isolated from a natural soil environment produced flocculent, nonmucoidal biofilms in vitro with unique structural features. These mature biofilms were made up of numerous viable bacteria, even after extended culture, and contained up to 50% of proteins and accumulated 3% (by dry weight) calcium, suggesting an important role for the divalent metal in biofilm formation. Ultrastructurally, the mature biofilms contained structural motifs consisting of dense, fibrillary clusters, nanofibers, and ordered, honeycomb-like chambers enveloped in thin sheets. Conclusion Mature biofilms contained living bacteria and were structurally, chemically, and physiologically heterogeneous. The principal architectural elements observed by electron microscopy may represent useful morphological clues for identifying bacterial biofilms in vivo. The complexity and reproducibility of the structural motifs observed in bacterial biofilms appear to be the result of organized assembly, suggesting that this environmental isolate may possess ecological advantages in its natural habitat. PMID:19460161

  10. Biofilms in dermatology.

    PubMed

    Nusbaum, A G; Kirsner, R S; Charles, C A

    2012-07-01

    Biofilms are diverse communities of microorganisms embedded within a self-produced matrix of extracellular polymeric substance which are firmly attached to biotic or abiotic surfaces. Approximately 80% of all human infections are associated with biofilms and evidence for their role in an ever-growing number of cutaneous disorders is constantly unfolding. Biofilms present a difficult challenge to clinicians due to their persistent nature, inability to be cultured with standard techniques, and resistance to conventional antimicrobial therapy. Although limited treatment options are presently available, better understanding of the molecular biology of biofilms and their pathogenicity will likely lead to the development of novel anti-biofilm agents for clinical use.

  11. Biofilms in dermatology.

    PubMed

    Nusbaum, A G; Kirsner, R S; Charles, C A

    2012-07-01

    Biofilms are diverse communities of microorganisms embedded within a self-produced matrix of extracellular polymeric substance which are firmly attached to biotic or abiotic surfaces. Approximately 80% of all human infections are associated with biofilms and evidence for their role in an ever-growing number of cutaneous disorders is constantly unfolding. Biofilms present a difficult challenge to clinicians due to their persistent nature, inability to be cultured with standard techniques, and resistance to conventional antimicrobial therapy. Although limited treatment options are presently available, better understanding of the molecular biology of biofilms and their pathogenicity will likely lead to the development of novel anti-biofilm agents for clinical use. PMID:22825648

  12. [Lifestyle and climate change].

    PubMed

    Lidegaard, Øjvind

    2009-10-26

    The majority of physicians are aware of the urgency of preventing major global warming, and of the global health consequences such warming could bring. Therefore, we should perhaps be more motivated to mitigate these climate changes. The Danish Medical Association should stress the importance of preventing major global climate health disasters, and the need for ambitious international reduction agreements. In our advice and treatment of patients, focus could be on mutually shared strategies comprising mitigation of global warming and changing of life-style habits to improve our general health.

  13. Market maturity

    SciTech Connect

    Meade, B.; Bowden, S.; Ellis, M

    1995-02-01

    The power sector in the Philipines provides one of the most mature independent power markets in Asia. Over the past five years, National Power Corp. (NPC), the government owned utility, has actively invited the power sector into power generation. Distribution has remained in the hands of private and rural cooperative utilities. Private utilities have been operating as full requirements customers of NPC while the growth in capacity additions by independent power producers (IPPs) has outpaced NPC`s for the second year in a row. With a recovering economy and regulatory reform proceeding, the outlook for independent power remains strong through the end of the decade. The Philipine Congress is now reviewing draft legislation that will decentralize NPC and begin the process of privatization and market-based reforms throughout the country`s power sector.

  14. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    PubMed Central

    2015-01-01

    P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i) on P. aeruginosa biofilm lifestyle cycle, (ii) on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii) finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa. PMID:25866808

  15. Biofilm Matrix Proteins

    PubMed Central

    Fong, Jiunn N. C.; Yildiz, Fitnat H.

    2015-01-01

    Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this chapter, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation. PMID:26104709

  16. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    PubMed Central

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-biofilm effectiveness by phages, by contrast, may result from a combination of inherent abilities to concentrate lytic antibacterial activity intracellularly via bacterial infection and extracellularly via localized population growth. Considered here is the anti-biofilm activity of microorganisms, with a case presented for why, ecologically, bacteriophages can be more efficacious than traditional antibiotics as medically or environmentally applied biofilm-disrupting agents. Four criteria, it can be argued, generally must be met, in combination, for microorganisms to eradicate biofilms: (1) Furnishing of sufficiently effective antibacterial factors, (2) intimate interaction with biofilm bacteria over extended periods, (3) associated ability to concentrate antibacterial factors in or around targets, and, ultimately, (4) a means of physically disrupting or displacing target bacteria. In nature, lytic predators of bacteria likely can meet these criteria whereas antibiotic production, in and of itself, largely may not. PMID:26371010

  17. On growth and form of Bacillus subtilis biofilms

    PubMed Central

    Dervaux, Julien; Magniez, Juan Carmelo; Libchaber, Albert

    2014-01-01

    A general feature of mature biofilms is their highly heterogeneous architecture that partitions the microbial city into sectors with specific micro-environments. To understand how this heterogeneity arises, we have investigated the formation of a microbial community of the model organism Bacillus subtilis. We first show that the growth of macroscopic colonies is inhibited by the accumulation of ammoniacal by-products. By constraining biofilms to grow approximately as two-dimensional layers, we then find that the bacteria which differentiate to produce extracellular polymeric substances form tightly packed bacterial chains. In addition to the process of cellular chaining, the biomass stickiness also strongly hinders the reorganization of cells within the biofilm. Based on these observations, we then write a biomechanical model for the growth of the biofilm where the cell density is constant and the physical mechanism responsible for the spreading of the biomass is the pressure generated by the division of the bacteria. Besides reproducing the velocity field of the biomass across the biofilm, the model predicts that, although bacteria divide everywhere in the biofilm, fluctuations in the growth rates of the bacteria lead to a coarsening of the growing bacterial layer. This process of kinetic roughening ultimately leads to the formation of a rough biofilm surface exhibiting self-similar properties. Experimental measurements of the biofilm texture confirm these predictions. PMID:25485075

  18. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment.

    PubMed

    Chusri, S; Sompetch, K; Mukdee, S; Jansrisewangwong, S; Srichai, T; Maneenoon, K; Limsuwan, S; Voravuthikunchai, S P

    2012-01-01

    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63-5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm. PMID:22919409

  19. Biofilm Formation by the Fish Pathogen Flavobacterium columnare: Development and Parameters Affecting Surface Attachment

    PubMed Central

    Cai, Wenlong; De La Fuente, Leonardo

    2013-01-01

    Flavobacterium columnare is a bacterial fish pathogen that affects many freshwater species worldwide. The natural reservoir of this pathogen is unknown, but its resilience in closed aquaculture systems posits biofilm as the source of contagion for farmed fish. The objectives of this study were (i) to characterize the dynamics of biofilm formation and morphology under static and flow conditions and (ii) to evaluate the effects of temperature, pH, salinity, hardness, and carbohydrates on biofilm formation. Nineteen F. columnare strains, including representatives of all of the defined genetic groups (genomovars), were compared in this study. The structure of biofilm was characterized by light microscopy, confocal laser scanning microscopy, and scanning electron microscopy. F. columnare was able to attach to and colonize inert surfaces by producing biofilm. Surface colonization started within 6 h postinoculation, and microcolonies were observed within 24 h. Extracellular polysaccharide substances and water channels were observed in mature biofilms (24 to 48 h). A similar time course was observed when F. columnare formed biofilm in microfluidic chambers under flow conditions. The virulence potential of biofilm was confirmed by cutaneous inoculation of channel catfish fingerlings with mature biofilm. Several physicochemical parameters modulate attachment to surfaces, with the largest influence being exerted by hardness, salinity, and the presence of mannose. Maintenance of hardness and salinity values within certain ranges could prevent biofilm formation by F. columnare in aquaculture systems. PMID:23851087

  20. Inhibition of Staphylococcus epidermidis Biofilm Formation by Traditional Thai Herbal Recipes Used for Wound Treatment.

    PubMed

    Chusri, S; Sompetch, K; Mukdee, S; Jansrisewangwong, S; Srichai, T; Maneenoon, K; Limsuwan, S; Voravuthikunchai, S P

    2012-01-01

    Development of biofilm is a key mechanism involved in Staphylococcus epidermidis virulence during device-associated infections. We aimed to investigate antibiofilm formation and mature biofilm eradication ability of ethanol and water extracts of Thai traditional herbal recipes including THR-SK004, THR-SK010, and THR-SK011 against S. epidermidis. A biofilm forming reference strain, S. epidermidis ATCC 35984 was employed as a model for searching anti-biofilm agents by MTT reduction assay. The results revealed that the ethanol extract of THR-SK004 (THR-SK004E) could inhibit the formation of S. epidermidis biofilm on polystyrene surfaces. Furthermore, treatments with the extract efficiently inhibit the biofilm formation of the pathogen on glass surfaces determined by scanning electron microscopy and crystal violet staining. In addition, THR-SK010 ethanol extract (THR-SK010E; 0.63-5 μg/mL) could decrease 30 to 40% of the biofilm development. Almost 90% of a 7-day-old staphylococcal biofilm was destroyed after treatment with THR-SK004E (250 and 500 μg/mL) and THR-SK010E (10 and 20 μg/mL) for 24 h. Therefore, our results clearly demonstrated THR-SK004E could prevent the staphylococcal biofilm development, whereas both THR-SK004E and THR-SK010E possessed remarkable eradication ability on the mature staphylococcal biofilm.

  1. In vitro activity of xanthorrhizol isolated from the rhizome of Javanese turmeric (Curcuma xanthorrhiza Roxb.) against Candida albicans biofilms.

    PubMed

    Rukayadi, Yaya; Hwang, Jae-Kwan

    2013-07-01

    The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD₄₉₀ compared to the control wells. The SMIC₅₀ and SMIC₈₀ of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD₄₉₀ was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.

  2. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    PubMed

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms. PMID:26782142

  3. Escherichia coli and Enterococcus faecalis are able to incorporate and enhance a pre-formed Gardnerella vaginalis biofilm.

    PubMed

    Castro, Joana; Machado, Daniela; Cerca, Nuno

    2016-04-01

    Gardnerella vaginalis is the most frequent microorganism found in bacterial vaginosis (BV), while Escherichia coli and Enterococcus faecalis are amongst the most frequent pathogens found in urinary tract infections (UTIs). This study aimed to evaluate possible interactions between UTIs pathogens and G. vaginalis using an in vitro dual-species biofilm model. Our results showed that dual-species biofilms reached significantly higher bacterial concentration than monospecies biofilms. Moreover, visualization of dual-populations species in the biofilms, using the epifluorescence microscopy, revealed that all of the urogenital pathogens coexisted with G. vaginalis. In conclusion, our work demonstrates that uropathogens can incorporate into mature BV biofilms.

  4. The role of bacterial biofilms in chronic infections.

    PubMed

    Bjarnsholt, Thomas

    2013-05-01

    Acute infections caused by pathogenic bacteria have been studied extensively for well over 100 years. These infections killed millions of people in previous centuries, but they have been combated effectively by the development of modern vaccines, antibiotics and infection control measures. Most research into bacterial pathogenesis has focused on acute infections, but these diseases have now been supplemented by a new category of chronic infections caused by bacteria growing in slime-enclosed aggregates known as biofilms. Biofilm infections, such as pneumonia in cystic fibrosis patients, chronic wounds, chronic otitis media and implant- and catheter-associated infections, affect millions of people in the developed world each year and many deaths occur as a consequence. In general, bacteria have two life forms during growth and proliferation. In one form, the bacteria exist as single, independent cells (planktonic) whereas in the other form, bacteria are organized into sessile aggregates. The latter form is commonly referred to as the biofilm growth phenotype. Acute infections are assumed to involve planktonic bacteria, which are generally treatable with antibiotics, although successful treatment depends on accurate and fast diagnosis. However, in cases where the bacteria succeed in forming a biofilm within the human host, the infection often turns out to be untreatable and will develop into a chronic state. The important hallmarks of chronic biofilm-based infections are extreme resistance to antibiotics and many other conventional antimicrobial agents, and an extreme capacity for evading the host defences. In this thesis, I will assemble the current knowledge on biofilms with an emphasis on chronic infections, guidelines for diagnosis and treatment of these infections, before relating this to my previous research into the area of biofilms. I will present evidence to support a view that the biofilm lifestyle dominates chronic bacterial infections, where bacterial

  5. Biofilm activity and sludge characteristics affected by exogenous N-acyl homoserine lactones in biofilm reactors.

    PubMed

    Hu, Huizhi; He, Junguo; Liu, Jian; Yu, Huarong; Zhang, Jie

    2016-07-01

    This study verified the effect of N-acyl homoserine lactone (AHL) concentrations on mature biofilm systems. Three concentrations of an AHL mixture were used in the batch test. Introducing of 5nM AHLs significantly increased biofilm activity and increased sludge characteristics, which resulted in better pollutant removal performance, whereas exogenous 50nM and 500nM AHLs limited pollutant removal, especially COD and nitrogen removal. To further identify how exogenous signal molecular affects biofilm system nitrogen removal, analyzing of nitrifying bacteria through real-time polymerase chain reaction (RT-PCR) revealed that these additional signal molecules affect nitrifying to total bacteria ratio. In addition, the running state of the system was stable during 15days of operation without an AHL dose, which suggests that the changes in the system due to AHL are irreversible. PMID:27030953

  6. Building Wellness Lifestyles: Counselor's Manual.

    ERIC Educational Resources Information Center

    Koss, Larry; Ketcham, Michael

    A camp program is described which reflects the Young Men's Christian Association's traditional commitment to the development of the whole person, introducing the development of a "wellness" lifestyle. A wellness lifestyle is described as one that involves living fully and abundantly while recognizing and assuming responsibility for one's own…

  7. Cyclic diguanylate regulation of Bacillus cereus group biofilm formation.

    PubMed

    Fagerlund, Annette; Smith, Veronika; Røhr, Åsmund K; Lindbäck, Toril; Parmer, Marthe P; Andersson, K Kristoffer; Reubsaet, Leon; Økstad, Ole Andreas

    2016-08-01

    Biofilm formation can be considered a bacterial virulence mechanism. In a range of Gram-negatives, increased levels of the second messenger cyclic diguanylate (c-di-GMP) promotes biofilm formation and reduces motility. Other bacterial processes known to be regulated by c-di-GMP include cell division, differentiation and virulence. Among Gram-positive bacteria, where the function of c-di-GMP signalling is less well characterized, c-di-GMP was reported to regulate swarming motility in Bacillus subtilis while having very limited or no effect on biofilm formation. In contrast, we show that in the Bacillus cereus group c-di-GMP signalling is linked to biofilm formation, and to several other phenotypes important to the lifestyle of these bacteria. The Bacillus thuringiensis 407 genome encodes eleven predicted proteins containing domains (GGDEF/EAL) related to c-di-GMP synthesis or breakdown, ten of which are conserved through the majority of clades of the B. cereus group, including Bacillus anthracis. Several of the genes were shown to affect biofilm formation, motility, enterotoxin synthesis and/or sporulation. Among these, cdgF appeared to encode a master diguanylate cyclase essential for biofilm formation in an oxygenated environment. Only two cdg genes (cdgA, cdgJ) had orthologs in B. subtilis, highlighting differences in c-di-GMP signalling between B. subtilis and B. cereus group bacteria.

  8. Phenotypic and functional characterization of Bacillus anthracis biofilms.

    PubMed

    Lee, Keehoon; Costerton, J W; Ravel, Jacques; Auerbach, Raymond K; Wagner, David M; Keim, Paul; Leid, Jeff G

    2007-06-01

    Biofilms, communities of micro-organisms attached to a surface, are responsible for many chronic diseases and are often associated with environmental reservoirs or lifestyles. Bacillus anthracis is a Gram-positive, endospore-forming bacterium and is the aetiological agent of pulmonary, gastrointestinal and cutaneous anthrax. Anthrax infections are part of the natural lifecycle of many ruminants in North America, including cattle and bison, and B. anthracis is thought to be a central part of this ecosystem. However, in endemic areas in which humans and livestock interact, chronic cases of cutaneous anthrax are commonly reported. This suggests that biofilms of B. anthracis exist in the environment and are part of the ecology associated with its lifecycle. Currently, there are few data that account for the importance of the biofilm mode of life in B. anthracis, yet biofilms have been characterized in other pathogenic and non-pathogenic Bacillus species, including Bacillus cereus and Bacillus subtilis, respectively. This study investigated the phenotypic and functional role of biofilms in B. anthracis. The results demonstrate that B. anthracis readily forms biofilms which are inherently resistant to commonly prescribed antibiotics, and that antibiotic resistance is not solely the function of sporulation.

  9. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    PubMed Central

    2012-01-01

    Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB) that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function), energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545) were also detected in the extracellular fraction from

  10. Modelling biofilm-induced formation damage and biocide treatment in subsurface geosystems

    PubMed Central

    Ezeuko, C C; Sen, A; Gates, I D

    2013-01-01

    Biofilm growth in subsurface porous media, and its treatment with biocides (antimicrobial agents), involves a complex interaction of biogeochemical processes which provide non-trivial mathematical modelling challenges. Although there are literature reports of mathematical models to evaluate biofilm tolerance to biocides, none of these models have investigated biocide treatment of biofilms growing in interconnected porous media with flow. In this paper, we present a numerical investigation using a pore network model of biofilm growth, formation damage and biocide treatment. The model includes three phases (aqueous, adsorbed biofilm, and solid matrix), a single growth-limiting nutrient and a single biocide dissolved in the water. Biofilm is assumed to contain a single species of microbe, in which each cell can be a viable persister, a viable non-persister, or non-viable (dead). Persisters describe small subpopulation of cells which are tolerant to biocide treatment. Biofilm tolerance to biocide treatment is regulated by persister cells and includes ‘innate’ and ‘biocide-induced’ factors. Simulations demonstrate that biofilm tolerance to biocides can increase with biofilm maturity, and that biocide treatment alone does not reverse biofilm-induced formation damage. Also, a successful application of biological permeability conformance treatment involving geologic layers with flow communication is more complicated than simply engineering the attachment of biofilm-forming cells at desired sites. PMID:23164434

  11. A Broad-Spectrum Antibiofilm Peptide Enhances Antibiotic Action against Bacterial Biofilms

    PubMed Central

    Reffuveille, Fany; de la Fuente-Núñez, César; Mansour, Sarah

    2014-01-01

    Biofilm-related infections account for at least 65% of all human infections, but there are no available antimicrobials that specifically target biofilms. Their elimination by available treatments is inefficient since biofilm cells are between 10- and 1,000-fold more resistant to conventional antibiotics than planktonic cells. Here we describe the synergistic interactions, with different classes of antibiotics, of a recently characterized antibiofilm peptide, 1018, to potently prevent and eradicate bacterial biofilms formed by multidrug-resistant ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens. Combinations of peptide 1018 and the antibiotic ceftazidime, ciprofloxacin, imipenem, or tobramycin were synergistic in 50% of assessments and decreased by 2- to 64-fold the concentration of antibiotic required to treat biofilms formed by Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, Salmonella enterica, and methicillin-resistant Staphylococcus aureus. Furthermore, in flow cell biofilm studies, combinations of low, subinhibitory levels of the peptide (0.8 μg/ml) and ciprofloxacin (40 ng/ml) decreased dispersal and triggered cell death in mature P. aeruginosa biofilms. In addition, short-term treatments with the peptide in combination with ciprofloxacin prevented biofilm formation and reduced P. aeruginosa PA14 preexisting biofilms. PCR studies indicated that the peptide suppressed the expression of various antibiotic targets in biofilm cells. Thus, treatment with the peptide represents a novel strategy to potentiate antibiotic activity against biofilms formed by multidrug-resistant pathogens. PMID:24982074

  12. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  13. Shifts in microbial community structure and function in light- and dark-grown biofilms driven by warming.

    PubMed

    Romaní, Anna M; Borrego, Carles M; Díaz-Villanueva, Verónica; Freixa, Anna; Gich, Frederic; Ylla, Irene

    2014-08-01

    Biofilms are dynamic players in biogeochemical cycling in running waters and are subjected to environmental stressors like those provoked by climate change. We investigated whether a 2°C increase in flowing water would affect prokaryotic community composition and heterotrophic metabolic activities of biofilms grown under light or dark conditions. Neither light nor temperature treatments were relevant for selecting a specific bacterial community at initial phases (7-day-old biofilms), but both variables affected the composition and function of mature biofilms (28-day-old). In dark-grown biofilms, changes in the prokaryotic community composition due to warming were mainly related to rotifer grazing, but no significant changes were observed in functional fingerprints. In light-grown biofilms, warming also affected protozoan densities, but its effect on prokaryotic density and composition was less evident. In contrast, heterotrophic metabolic activities in light-grown biofilms under warming showed a decrease in the functional diversity towards a specialized use of several carbohydrates. Results suggest that prokaryotes are functionally redundant in dark biofilms but functionally plastic in light biofilms. The more complex and self-serving light-grown biofilm determines a more buffered response to temperature than dark-grown biofilms. Despite the moderate increase in temperature of only 2°C, warming conditions drive significant changes in freshwater biofilms, which responded by finely tuning a complex network of interactions among microbial populations within the biofilm matrix.

  14. Effect of Fluoride and Chlorhexidine Digluconate Mouthrinses on Plaque Biofilms

    PubMed Central

    Rabe, Per; Twetman, Svante; Kinnby, Bertil; Svensäter, Gunnel; Davies, Julia R

    2015-01-01

    Objective : To develop a model in which to investigate the architecture of plaque biofilms formed on enamel surfaces in vivo and to compare the effects of anti-microbial agents of relevance for caries on biofilm vitality. Materials and Methodology : Enamel discs mounted on healing abutments in the pre-molar region were worn by three subjects for 7 days. Control discs were removed before subjects rinsed with 0.1% chlorhexidine digluconate (CHX) or 0.2% sodium fluoride (NaF) for 1 minute. Biofilms were stained with Baclight Live/Dead and z-stacks of images created using confocal scanning laser micoscopy. The levels of vital and dead/damaged bacteria in the biofilms, assessed as the proportion of green and red pixels respectively, were analysed using ImageTrak® software. Results : The subjects showed individual differences in biofilm architecture. The thickness of the biofilms varied from 28-96µm although cell density was always the greatest in the middle layers. In control biofilms, the overall levels of vitality were high (71-98%) especially in the area closest to the enamel interface. Rinsing with either CHX or NaF caused a similar reduction in overall vitality. CHX exerted an effect throughout the biofilm, particularly on the surface of cell clusters whereas NaF caused cell damage/death mainly in the middle to lower biofilm layers. Conclusion : We describe a model that allows the formation of mature, undisturbed oral biofilms on human enamel surfaces in vivo and show that CHX and NaF have a similar effect on overall vitality but differ in their sites of action. PMID:25870718

  15. Hiding in Plain Sight: Interplay between Staphylococcal Biofilms and Host Immunity

    PubMed Central

    Scherr, Tyler D.; Heim, Cortney E.; Morrison, John M.; Kielian, Tammy

    2014-01-01

    Staphylococcus aureus and Staphylococcus epidermidis are notable for their propensity to form biofilms on implanted medical devices. Staphylococcal biofilm infections are typified by their recalcitrance to antibiotics and ability to circumvent host immune-mediated clearance, resulting in the establishment of chronic infections that are often recurrent in nature. Indeed, the immunomodulatory lifestyle of biofilms seemingly shapes the host immune response to ensure biofilm engraftment and persistence in an immune competent host. Here, we provide a brief review of the mechanisms whereby S. aureus and S. epidermidis biofilms manipulate host–pathogen interactions and discuss the concept of microenvironment maintenance in infectious outcomes, as well as speculate how these findings pertain to the challenges of staphylococcal vaccine development. PMID:24550921

  16. New insights on molecular regulation of biofilm formation in plant-associated bacteria.

    PubMed

    Castiblanco, Luisa F; Sundin, George W

    2016-04-01

    Biofilms are complex bacterial assemblages with a defined three-dimensional architecture, attached to solid surfaces, and surrounded by a self-produced matrix generally composed of exopolysaccharides, proteins, lipids and extracellular DNA. Biofilm formation has evolved as an adaptive strategy of bacteria to cope with harsh environmental conditions as well as to establish antagonistic or beneficial interactions with their host. Plant-associated bacteria attach and form biofilms on different tissues including leaves, stems, vasculature, seeds and roots. In this review, we examine the formation of biofilms from the plant-associated bacterial perspective and detail the recently-described mechanisms of genetic regulation used by these organisms to orchestrate biofilm formation on plant surfaces. In addition, we describe plant host signals that bacterial pathogens recognize to activate the transition from a planktonic lifestyle to multicellular behavior. PMID:26377849

  17. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms.

    PubMed

    Al-Ahmad, A; Bucher, M; Anderson, A C; Tennert, C; Hellwig, E; Wittmer, A; Vach, K; Karygianni, L

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm(-2)), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis.

  18. Antimicrobial Photoinactivation Using Visible Light Plus Water-Filtered Infrared-A (VIS + wIRA) Alters In Situ Oral Biofilms

    PubMed Central

    Al-Ahmad, A.; Bucher, M.; Anderson, A. C.; Tennert, C.; Hellwig, E.; Wittmer, A.; Vach, K.; Karygianni, L.

    2015-01-01

    Recently, growing attention has been paid to antimicrobial photodynamic therapy (aPDT) in dentistry. Changing the microbial composition of initial and mature oral biofilm by aPDT using visible light plus water-filtered infrared-A wavelengths (VIS + wIRA) has not yet been investigated. Moreover, most aPDT studies have been conducted on planktonic bacterial cultures. Therefore, in the present clinical study we cultivated initial and mature oral biofilms in six healthy volunteers for 2 hours or 3 days, respectively. The biofilms were treated with aPDT using VIS+wIRA (200 mW cm-2), toluidine blue (TB) and chlorine e6 (Ce6) for 5 minutes. Chlorhexidine treated biofilm samples served as positive controls, while untreated biofilms served as negative controls. After aPDT treatment the colony forming units (CFU) of the biofilm samples were quantified, and the surviving bacteria were isolated in pure cultures and identified using MALDI-TOF, biochemical tests and 16S rDNA-sequencing. aPDT killed more than 99.9% of the initial viable bacterial count and 95% of the mature oral biofilm in situ, independent of the photosensitizer. The number of surviving bacterial species was highly reduced to 6 (TB) and 4 (Ce6) in the treated initial oral biofilm compared to the 20 different species of the untreated biofilm. The proportions of surviving bacterial species were also changed after TB- and Ce6-mediated aPDT of the mature oral biofilm, resulting in a shift in the microbial composition of the treated biofilm compared to that of the control biofilm. In conclusion, aPDT using VIS + wIRA showed a remarkable potential to eradicate both initial and mature oral biofilms, and also to markedly alter the remaining biofilm. This encourages the clinical use of aPDT with VIS + wIRA for the treatment of periimplantitis and periodontitis. PMID:26162100

  19. Host Responses to Biofilm.

    PubMed

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand. PMID:27571696

  20. Host Responses to Biofilm.

    PubMed

    Watters, C; Fleming, D; Bishop, D; Rumbaugh, K P

    2016-01-01

    From birth to death the human host immune system interacts with bacterial cells. Biofilms are communities of microbes embedded in matrices composed of extracellular polymeric substance (EPS), and have been implicated in both the healthy microbiome and disease states. The immune system recognizes many different bacterial patterns, molecules, and antigens, but these components can be camouflaged in the biofilm mode of growth. Instead, immune cells come into contact with components of the EPS matrix, a diverse, hydrated mixture of extracellular DNA (bacterial and host), proteins, polysaccharides, and lipids. As bacterial cells transition from planktonic to biofilm-associated they produce small molecules, which can increase inflammation, induce cell death, and even cause necrosis. To survive, invading bacteria must overcome the epithelial barrier, host microbiome, complement, and a variety of leukocytes. If bacteria can evade these initial cell populations they have an increased chance at surviving and causing ongoing disease in the host. Planktonic cells are readily cleared, but biofilms reduce the effectiveness of both polymorphonuclear neutrophils and macrophages. In addition, in the presence of these cells, biofilm formation is actively enhanced, and components of host immune cells are assimilated into the EPS matrix. While pathogenic biofilms contribute to states of chronic inflammation, probiotic Lactobacillus biofilms cause a negligible immune response and, in states of inflammation, exhibit robust antiinflammatory properties. These probiotic biofilms colonize and protect the gut and vagina, and have been implicated in improved healing of damaged skin. Overall, biofilms stimulate a unique immune response that we are only beginning to understand.

  1. In vitro characterization of Trichophyton rubrum and T. mentagrophytes biofilms.

    PubMed

    Costa-Orlandi, C B; Sardi, J C O; Santos, C T; Fusco-Almeida, A M; Mendes-Giannini, M J S

    2014-01-01

    Dermatophytes are fungi responsible for a disease known as dermatophytosis. Biofilms are sessile microbial communities surrounded by extracellular polymeric substances (EPS) with increased resistance to antimicrobial agents and host defenses. This paper describes, for the first time, the characteristics of Trichophyton rubrum and T. mentagrophytes biofilms. Biofilm formation was analyzed by light microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) as well as by staining with crystal violet and safranin. Metabolic activity was determined using the XTT reduction assay. Both species were able to form mature biofilms in 72 h. T. rubrum biofilm produced more biomass and EPS and was denser than T. mentagrophytes biofilm. The SEM results demonstrated a coordinated network of hyphae in all directions, embedded within EPS in some areas. Research and characterization of biofilms formed by dermatophytes may contribute to the search of new drugs for the treatment of these mycoses and might inform future revisions with respect to the dose and duration of treatment of currently available antifungals. PMID:24856309

  2. Quorum sensing inhibitors as anti-biofilm agents.

    PubMed

    Brackman, Gilles; Coenye, Tom

    2015-01-01

    Biofilms are microbial sessile communities characterized by cells that are attached to a substratum or interface or to each other, are embedded in a self-produced matrix of extracellular polymeric substances and exhibit an altered phenotype compared to planktonic cells. Biofilms are estimated to be associated with 80% of microbial infections and it is currently common knowledge that growth of micro-organisms in biofilms can enhance their resistance to antimicrobial agents. As a consequence antimicrobial therapy often fails to eradicate biofilms from the site of infection. For this reason, innovative anti-biofilm agents with novel targets and modes of action are needed. One alternative approach is targeting the bacterial communication system (quorum sensing, QS). QS is a process by which bacteria produce and detect signal molecules and thereby coordinate their behavior in a cell-density dependent manner. Three main QS systems can be distinguished: the acylhomoserine lactone (AHL) QS system in Gram-negative bacteria, the autoinducing peptide (AIP) QS system in Gram-positive bacteria and the autoinducer-2 (AI-2) QS system in both Gram-negative and -positive bacteria. Although much remains to be learned about the involvement of QS in biofilm formation, maintenance, and dispersal, QS inhibitors (QSI) have been proposed as promising antibiofilm agents. In this article we will give an overview of QS inhibitors which have been shown to play a role in biofilm formation and/or maturation. PMID:25189863

  3. Effect of Lactobacillus species on Streptococcus mutans biofilm formation.

    PubMed

    Ahmed, Ayaz; Dachang, Wu; Lei, Zhou; Jianjun, Liu; Juanjuan, Qiu; Yi, Xin

    2014-09-01

    Streptococcus mutans is the primary pathogen responsible for initiating dental caries and decay. The presence of sucrose, stimulates S. mutans to produce insoluble glucans to form oral biofilm also known as dental plaque to initiate caries lesion. The GtfB and LuxS genes of S. mutans are responsible for formation and maturation of biofilm. Lactobacillus species as probiotic can reduces the count of S. mutans. In this study effect of different Lactobacillus species against the formation of S. mutans biofilm was observed. Growing biofilm in the presence of sucrose was detected using 96 well microtiter plate crystal violet assay and biofilm formation by S. mutans in the presence of Lactobacillus was detected. Gene expression of biofilm forming genes (GtfB and LuxS) was quantified through Real-time PCR. All strains of Lactobacillus potently reduced the formation of S. mutans biofilm whereas Lactobacillus acidophilus reduced the genetic expression by 60-80%. Therefore, probiotic Lactobacillus species can be used as an alternative instead of antibiotics to decrease the chance of dental caries by reducing the count of S. mutans and their gene expression to maintain good oral health.

  4. Unraveling microbial biofilms of importance for food microbiology.

    PubMed

    Winkelströter, Lizziane Kretli; Teixeira, Fernanda Barbosa dos Reis; Silva, Eliane Pereira; Alves, Virgínia Farias; De Martinis, Elaine Cristina Pereira

    2014-07-01

    The presence of biofilms is a relevant risk factors in the food industry due to the potential contamination of food products with pathogenic and spoilage microorganisms. The majority of bacteria are able to adhere and to form biofilms, where they can persist and survive for days to weeks or even longer, depending on the microorganism and the environmental conditions. The biological cycle of biofilms includes several developmental phases such as: initial attachment, maturation, maintenance, and dispersal. Bacteria in biofilms are generally well protected against environmental stress, consequently, extremely difficult to eradicate and detect in food industry. In the present manuscript, some techniques and compounds used to control and to prevent the biofilm formation are presented and discussed. Moreover, a number of novel techniques have been recently employed to detect and evaluate bacteria attached to surfaces, including real-time polymerase chain reaction (PCR), DNA microarray and confocal laser scanning microscopy. Better knowledge on the architecture, physiology and molecular signaling in biofilms can contribute for preventing and controlling food-related spoilage and pathogenic bacteria. The present study highlights basic and applied concepts important for understanding the role of biofilms in bacterial survival, persistence and dissemination in food processing environments.

  5. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms.

    PubMed

    Kundukad, Binu; Seviour, Thomas; Liang, Yang; Rice, Scott A; Kjelleberg, Staffan; Doyle, Patrick S

    2016-06-29

    Cells in biofilms sense and interact with their environment through the extracellular matrix. The physicochemical properties of the matrix, particularly at the biofilm-environment interface, determine how cells respond to changing conditions. In this study we describe the application of atomic force microscopy and confocal imaging to probe in situ the mechanical properties of these interfacial regions and to elucidate how key matrix components can contribute to the physical sensing by the cells. We describe how the Young's modulus of microcolonies differs according to the size and morphology of microcolonies, as well as the flow rate. The Young's modulus increased as a function of microcolony diameter, which was correlated with the production of the polysaccharide Psl at later stages of maturation for hemispherical or mushroom shaped microcolonies. The Young's modulus of the periphery of the biofilm colony was however independent of the hydrodynamic shear. The morphology of the microcolonies also influenced interfacial or peripheral stiffness. Microcolonies with a diffuse morphology had a lower Young's modulus than isolated, circular ones and this phenomenon was due to a deficiency of Psl. In this way, changes in the specific polysaccharide components imbue the biofilm with distinct physical properties that may modulate the way in which bacteria perceive or respond to their environment. Further, the physical properties of the polysaccharides are closely linked to the specific architectures formed by the developing biofilm. PMID:27273453

  6. Numerical simulation of wrinkle morphology formation and the evolution of different Bacillus subtilis biofilms.

    PubMed

    Wang, Xiaoling; Hao, Mudong; Wang, Guoqing

    2016-01-01

    Wrinkle morphology is a distinctive phenomenon observed in mature biofilms that are produced by a great number of bacteria. The wrinkle pattern depends on the mechanical properties of the agar substrate and the biofilm itself, governed by the extracellular matrix (ECM). Here we study the macroscopic structures and the evolution of Bacillus subtilis biofilm wrinkles using the commercial finite element software ABAQUS. A mechanical model and simulation are set up to analyze and evaluate bacteria biofilm's wrinkle characteristics. We uncover the wrinkle formation mechanism and enumerate the quantitative relationship between wrinkle structure and mechanical properties of biofilm and its substrate. Our work can be used to modify the wrinkle pattern and control the biofilm size. PMID:26877034

  7. Protocol for Determination of the Persister Subpopulation in Candida Albicans Biofilms.

    PubMed

    De Brucker, Katrijn; De Cremer, Kaat; Cammue, Bruno P A; Thevissen, Karin

    2016-01-01

    In contrast to planktonic cultures of the human fungal pathogen Candida albicans, C. albicans biofilms can contain a persister subpopulation that is tolerant to high concentrations of currently used antifungals. In this chapter, the method to determine the persister fraction in a C. albicans biofilm treated with an antifungal compound is described. To this end, a mature biofilm is developed and subsequently treated with a concentration series of the antifungal compound of interest. Upon incubation, the fraction of surviving biofilm cells is determined by plating and plotted versus the used concentrations of the antifungal compound. If a persister subpopulation in the biofilm is present, the dose-dependent killing of the biofilm cells results in a biphasic killing pattern.

  8. Synergistic activity between an antimicrobial polyacrylamide and daptomycin versus Staphylococcus aureus biofilm.

    PubMed

    Siala, Wafi; Van Bambeke, Françoise; Taresco, Vincenzo; Piozzi, Antonella; Francolini, Iolanda

    2016-07-01

    Antibiotic resistance of bacteria growing in biofilms compared to their planktonic counterparts enhances the difficulty to eradicate biofilm-associated infections. In the last decade, combination antibiotic therapy has emerged as an attractive strategy for treating biofilm infections, even if in most of tolerant biofilms the optimal combinations are still unknown. In this study, an antimicrobial cationic polyacrylamide was used in combination with daptomycin or moxifloxacin against mature biofilms of Staphylococcus aureus clinical isolates to examine a possible improvement of the antibiofilm activity of the two antibiotics. The polymer did not have an effect on moxifloxacin but significantly increased the antibiofilm efficacy of daptomycin. These findings are presumably related to the different mechanism of action of the two drugs. In summary, our data highlighted the ability of polycations to increase daptomycin antibiofilm activity providing a potential strategy to eradicate biofilms in industrial or medical settings. PMID:27154750

  9. In-situ biofilm characterization in membrane systems using Optical Coherence Tomography: formation, structure, detachment and impact of flux change.

    PubMed

    Dreszer, C; Wexler, A D; Drusová, S; Overdijk, T; Zwijnenburg, A; Flemming, H-C; Kruithof, J C; Vrouwenvelder, J S

    2014-12-15

    Biofouling causes performance loss in spiral wound nanofiltration (NF) and reverse osmosis (RO) membrane operation for process and drinking water production. The development of biofilm formation, structure and detachment was studied in-situ, non-destructively with Optical Coherence Tomography (OCT) in direct relation with the hydraulic biofilm resistance and membrane performance parameters: transmembrane pressure drop (TMP) and feed-channel pressure drop (FCP). The objective was to evaluate the suitability of OCT for biofouling studies, applying a membrane biofouling test cell operated at constant crossflow velocity (0.1 m s(-1)) and permeate flux (20 L m(-2)h(-1)). In time, the biofilm thickness on the membrane increased continuously causing a decline in membrane performance. Local biofilm detachment was observed at the biofilm-membrane interface. A mature biofilm was subjected to permeate flux variation (20 to 60 to 20 L m(-2)h(-1)). An increase in permeate flux caused a decrease in biofilm thickness and an increase in biofilm resistance, indicating biofilm compaction. Restoring the original permeate flux did not completely restore the original biofilm parameters: After elevated flux operation the biofilm thickness was reduced to 75% and the hydraulic resistance increased to 116% of the original values. Therefore, after a temporarily permeate flux increase the impact of the biofilm on membrane performance was stronger. OCT imaging of the biofilm with increased permeate flux revealed that the biofilm became compacted, lost internal voids, and became more dense. Therefore, membrane performance losses were not only related to biofilm thickness but also to the internal biofilm structure, e.g. caused by changes in pressure. Optical Coherence Tomography proved to be a suitable tool for quantitative in-situ biofilm thickness and morphology studies which can be carried out non-destructively and in real-time in transparent membrane biofouling monitors.

  10. Biofilm growth: a lattice Monte Carlo model

    NASA Astrophysics Data System (ADS)

    Tao, Yuguo; Slater, Gary

    2011-03-01

    Biofilms are complex colonies of bacteria that grow in contact with a wall, often in the presence of a flow. In the current work, biofilm growth is investigated using a new two-dimensional lattice Monte Carlo algorithm based on the Bond-Fluctuation Algorithm (BFA). One of the distinguishing characteristics of biofilms, the synthesis and physical properties of the extracellular polymeric substance (EPS) in which the cells are embedded, is explicitly taken into account. Cells are modelled as autonomous closed loops with well-defined mechanical and thermodynamic properties, while the EPS is modelled as flexible polymeric chains. This BFA model allows us to add biologically relevant features such as: the uptake of nutrients; cell growth, division and death; the production of EPS; cell maintenance and hibernation; the generation of waste and the impact of toxic molecules; cell mutation and evolution; cell motility. By tuning the structural, interactional and morphologic parameters of the model, the cell shapes as well as the growth and maturation of various types of biofilm colonies can be controlled.

  11. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus.

    PubMed

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy; Haaber, Jakob; Ingmer, Hanne; Larsen, Ole Halfdan; Meyer, Rikke L

    2016-09-20

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus' ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%-50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections.

  12. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    PubMed Central

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy; Haaber, Jakob; Ingmer, Hanne; Larsen, Ole Halfdan; Meyer, Rikke L.

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%–50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections. PMID:27681928

  13. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus.

    PubMed

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy; Haaber, Jakob; Ingmer, Hanne; Larsen, Ole Halfdan; Meyer, Rikke L

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus' ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%-50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections. PMID:27681928

  14. Streptokinase Treatment Reverses Biofilm-Associated Antibiotic Resistance in Staphylococcus aureus

    PubMed Central

    Jørgensen, Nis Pedersen; Zobek, Natalia; Dreier, Cindy; Haaber, Jakob; Ingmer, Hanne; Larsen, Ole Halfdan; Meyer, Rikke L.

    2016-01-01

    Biofilms formed by Staphylococcus aureus is a serious complication to the use of medical implants. A central part of the pathogenesis relies on S. aureus’ ability to adhere to host extracellular matrix proteins, which adsorb to medical implants and stimulate biofilm formation. Being coagulase positive, S. aureus furthermore induces formation of fibrin fibers from fibrinogen in the blood. Consequently, we hypothesized that fibrin is a key component of the extracellular matrix of S. aureus biofilms under in vivo conditions, and that the recalcitrance of biofilm infections can be overcome by combining antibiotic treatment with a fibrinolytic drug. We quantified S. aureus USA300 biofilms grown on peg-lids in brain heart infusion (BHI) broth with 0%–50% human plasma. Young (2 h) and mature (24 h) biofilms were then treated with streptokinase to determine if this lead to dispersal. Then, the minimal biofilm eradication concentration (MBEC) of 24 h old biofilms was measured for vancomycin and daptomycin alone or in combination with 10 µg/mL rifampicin in the presence or absence of streptokinase in the antibiotic treatment step. Finally, biofilms were visualized by confocal laser scanning microscopy. Addition of human plasma stimulated biofilm formation in BHI in a dose-dependent manner, and biofilms could be partially dispersed by streptokinase. The biofilms could be eradicated with physiologically relevant concentrations of streptokinase in combination with rifampicin and vancomycin or daptomycin, which are commonly used antibiotics for treatment of S. aureus infections. Fibronolytic drugs have been used to treat thromboembolic events for decades, and our findings suggest that their use against biofilm infections has the potential to improve the efficacy of antibiotics in treatment of S. aureus biofilm infections.

  15. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin.

    PubMed

    Sager, Martin; Benten, W Peter M; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  16. Characterization of Biofilm Formation in [Pasteurella] pneumotropica and [Actinobacillus] muris Isolates of Mouse Origin

    PubMed Central

    Sager, Martin; Benten, W. Peter M.; Engelhardt, Eva; Gougoula, Christina; Benga, Laurentiu

    2015-01-01

    [Pasteurella] pneumotropica biotypes Jawetz and Heyl and [Actinobacillus] muris are the most prevalent Pasteurellaceae species isolated from laboratory mouse. However, mechanisms contributing to their high prevalence such as the ability to form biofilms have not been studied yet. In the present investigation we analyze if these bacterial species can produce biofilms in vitro and investigate whether proteins, extracellular DNA and polysaccharides are involved in the biofilm formation and structure by inhibition and dispersal assays using proteinase K, DNase I and sodium periodate. Finally, the capacity of the biofilms to confer resistance to antibiotics is examined. We demonstrate that both [P.] pneumotropica biotypes but not [A.] muris are able to form robust biofilms in vitro, a phenotype which is widely spread among the field isolates. The biofilm inhibition and dispersal assays by proteinase and DNase lead to a strong inhibition in biofilm formation when added at the initiation of the biofilm formation and dispersed pre-formed [P.] pneumotropica biofilms, revealing thus that proteins and extracellular DNA are essential in biofilm formation and structure. Sodium periodate inhibited the bacterial growth when added at the beginning of the biofilm formation assay, making difficult the assessment of the role of β-1,6-linked polysaccharides in the biofilm formation, and had a biofilm stimulating effect when added on pre-established mature biofilms of [P.] pneumotropica biotype Heyl and a majority of [P.] pneumotropica biotype Jawetz strains, suggesting that the presence of β-1,6-linked polysaccharides on the bacterial surface might attenuate the biofilm production. Conversely, no effect or a decrease in the biofilm quantity was observed by biofilm dispersal using sodium periodate on further biotype Jawetz isolates, suggesting that polysaccharides might be incorporated in the biofilm structure. We additionally show that [P.] pneumotropica cells enclosed in biofilms

  17. Adolescent Report of Lifestyle Counseling

    PubMed Central

    Goodman, Elizabeth; Robinson, Alyssa I.; Perrin, Eliana M.; Perrin, James M.

    2014-01-01

    Abstract Background: Physician counseling on lifestyle factors has been recommended as one way to help combat the obesity epidemic in the United States. The aim of this study was to examine the frequency of lifestyle counseling among healthy weight, overweight, and obese adolescents and determine the contributions of adolescent weight and physical activity. Methods: Self-reported surveys on dietary and physical activity counseling, along with measured height, weight, and physical activity data by accelerometry were collected on 76 adolescents ages 11–14 years. General linear models tested for associations of reported lifestyle counseling by weight category, adjusting for physical activity, age, gender, race/ethnicity, and parent education. Results: Half (47%) of the subjects were overweight or obese. Frequency of lifestyle counseling varied by weight category, with obese adolescents reporting greater amounts of lifestyle counseling across all topics than their peers. Obese adolescents received more dietary (β=0.88; standard error [SE]=0.25; p=0.001) and physical activity (β=0.80; SE=0.28; p=0.006) counseling than healthy weight youth, as well as being told to increase their physical activity more often (β=0.96; SE=0.29; p=0.001). There were no differences in lifestyle counseling between overweight and healthy weight subjects. Adolescents with greater daily moderate-to-vigorous physical activity reported less physical activity counseling (β=–0.02; SE=0.008; p=0.05). Conclusions: Despite universal recommendations to counsel adolescents on lifestyle, only obese adolescents consistently report receiving such counseling. Given known difficulties in reversing obesity after onset, efforts should ensure that all adolescents receive lifestyle counseling. PMID:24617855

  18. The effects of different seeding ratios on nitrification performance and biofilm formation in marine recirculating aquaculture system biofilter.

    PubMed

    Zhu, Songming; Shen, Jiazheng; Ruan, Yunjie; Guo, Xishan; Ye, Zhangying; Deng, Yale; Shi, Mingming

    2016-07-01

    Rapid start-up of biofilter is essential for intensive marine recirculating aquaculture system (RAS) production. This study evaluated the nitrifying biofilm formation using mature biofilm as an inoculum to accelerate the process in RAS practice. The effects of inoculation ratios (0-15 %) on the reactor performance and biofilm structure were investigated. Complete nitrification was achieved rapidly in reactors with inoculated mature biofilm (even in 32 days when 15 % seeding ratio was applied). However, the growth of target biofilm on blank carrier was affected by the mature biofilm inoculated through substrate competition. The analysis of extracellular polymeric substance (EPS) and nitrification rates confirmed the divergence of biofilm cultivation among reactors. Besides, three N-acyl-homoserine lactones (AHLs) were found in the process, which might regulate the activities of biofilm. Multivariate analysis based on non-metric multidimensional scaling (nMDS) also indicated the great roles of AHLs and substrate supply which might fundamentally determine varied cultivation performance on target biofilm.

  19. Osteocompatibility of Biofilm Inhibitors

    PubMed Central

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  20. Osteocompatibility of biofilm inhibitors.

    PubMed

    Rawson, Monica; Haggard, Warren; Jennings, Jessica A

    2014-01-01

    The demand for infection prevention therapies has led to the discovery of several biofilm inhibitors. These inhibiting signals are released by bacteria, fungi, or marine organisms to signal biofilm dispersal or disruption in Gram-positive, Gram-negative, and fungal microorganisms. The purpose of this study was to test the biocompatibility of five different naturally-produced biofilm chemical dispersal and inhibition signals with osteoblast-like cells: D-amino acids (D-AA), lysostaphin (LS), farnesol, cis-2-decenoic acid (C2DA), and desformyl flustrabromine (dFBr). In this preliminary study, compatibility of these anti-biofilm agents with differentiating osteoblasts was examined over a 21 days period at levels above and below concentrations active against bacterial biofilm. Anti-biofilm compounds listed above were serially diluted in osteogenic media and added to cultures of MC3T3 cells. Cell viability and cytotoxicity, after exposure to each anti-biofilm agent, were measured using a DNA assay. Differentiation characteristics of osteoblasts were determined qualitatively by observing staining of mineral deposits and quantitatively with an alkaline phosphatase assay. D-AA, LS, and C2DA were all biocompatible within the reported biofilm inhibitory concentration ranges and supported osteoblast differentiation. Farnesol and dFBr induced cytotoxic responses within the reported biofilm inhibitory concentration range and low doses of dFBr were found to inhibit osteoblast differentiation. At high concentrations, such as those that may be present after local delivery, many of these biofilm inhibitors can have effects on cellular viability and osteoblast function. Concentrations at which negative effects on osteoblasts occur should serve as upper limits for delivery to orthopaedic trauma sites and guide development of these potential therapeutics for orthopaedics. PMID:25505496

  1. Biofilm formation by Staphylococcus hominis strains isolated from human clinical specimens.

    PubMed

    Szczuka, Ewa; Telega, Kinga; Kaznowski, Adam

    2015-01-01

    Staphylococcus hominis is the third species of coagulase-negative staphylococci (CoNS) most frequently isolated from specimens of patients with hospital-acquired infections. Many infections caused by CoNS appeared to be associated with biofilms. Nevertheless, the knowledge of the ability of S. hominis to form a biofilm is limited. The aim of this study was to analyze the formation of the biofilm by 56 S. hominis strains isolated from clinical cases. The biofilm three-dimensional structure was reconstructed by confocal laser scanning microscopy. We found that most of S. hominis strains carried icaADBC genes encoding polysaccharide intercellular adhesin (PIA), which plays a crucial role in the formation of biofilms in staphylococci strains. However, only a half of the ica-positive strains had an ability to form a biofilm in vitro. In this study, we also accessed the sensitivity of biofilms of S. hominis strains to sodium metaperiodate, proteinase K and DNase. We found that polysaccharides and proteins are the major components of the extracellular matrix of the biofilm formed by S. hominis. DNase did not have a significant effect on biofilms, which suggested that nucleic acid plays a minor role in the mature biofilm.

  2. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution

    PubMed Central

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D.; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S.; Stone, Howard A.; Bassler, Bonnie L.

    2016-01-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development. PMID:26933214

  3. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli. PMID:27555592

  4. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution.

    PubMed

    Drescher, Knut; Dunkel, Jörn; Nadell, Carey D; van Teeffelen, Sven; Grnja, Ivan; Wingreen, Ned S; Stone, Howard A; Bassler, Bonnie L

    2016-04-01

    Many bacterial species colonize surfaces and form dense 3D structures, known as biofilms, which are highly tolerant to antibiotics and constitute one of the major forms of bacterial biomass on Earth. Bacterial biofilms display remarkable changes during their development from initial attachment to maturity, yet the cellular architecture that gives rise to collective biofilm morphology during growth is largely unknown. Here, we use high-resolution optical microscopy to image all individual cells in Vibrio cholerae biofilms at different stages of development, including colonies that range in size from 2 to 4,500 cells. From these data, we extracted the precise 3D cellular arrangements, cell shapes, sizes, and global morphological features during biofilm growth on submerged glass substrates under flow. We discovered several critical transitions of the internal and external biofilm architectures that separate the major phases of V. cholerae biofilm growth. Optical imaging of biofilms with single-cell resolution provides a new window into biofilm formation that will prove invaluable to understanding the mechanics underlying biofilm development.

  5. Vibrio cholerae biofilm growth program and architecture revealed by single-cell live imaging.

    PubMed

    Yan, Jing; Sharo, Andrew G; Stone, Howard A; Wingreen, Ned S; Bassler, Bonnie L

    2016-09-01

    Biofilms are surface-associated bacterial communities that are crucial in nature and during infection. Despite extensive work to identify biofilm components and to discover how they are regulated, little is known about biofilm structure at the level of individual cells. Here, we use state-of-the-art microscopy techniques to enable live single-cell resolution imaging of a Vibrio cholerae biofilm as it develops from one single founder cell to a mature biofilm of 10,000 cells, and to discover the forces underpinning the architectural evolution. Mutagenesis, matrix labeling, and simulations demonstrate that surface adhesion-mediated compression causes V. cholerae biofilms to transition from a 2D branched morphology to a dense, ordered 3D cluster. We discover that directional proliferation of rod-shaped bacteria plays a dominant role in shaping the biofilm architecture in V. cholerae biofilms, and this growth pattern is controlled by a single gene, rbmA Competition analyses reveal that the dense growth mode has the advantage of providing the biofilm with superior mechanical properties. Our single-cell technology can broadly link genes to biofilm fine structure and provides a route to assessing cell-to-cell heterogeneity in response to external stimuli.

  6. Characterisation of biofilms formed by Lactobacillus plantarum WCFS1 and food spoilage isolates.

    PubMed

    Fernández Ramírez, Mónica D; Smid, Eddy J; Abee, Tjakko; Nierop Groot, Masja N

    2015-08-17

    Lactobacillus plantarum has been associated with food spoilage in a wide range of products and the biofilm growth mode has been implicated as a possible source of contamination. In this study we analysed the biofilm forming capacity of L. plantarum WCFS1 and six food spoilage isolates. Biofilm formation as quantified by crystal violet staining and colony forming units was largely affected by the medium composition, growth temperature and maturation time and by strain specific features. All strains showed highest biofilm formation in Brain Heart Infusion medium supplemented with manganese and glucose. For L. plantarum biofilms the crystal violet (CV) assay, that is routinely used to quantify total biofilm formation, correlates poorly with the number of culturable cells in the biofilm. This can in part be explained by cell death and lysis resulting in CV stainable material, conceivably extracellular DNA (eDNA), contributing to the extracellular matrix. The strain to strain variation may in part be explained by differences in levels of eDNA, likely as result of differences in lysis behaviour. In line with this, biofilms of all strains tested, except for one spoilage isolate, were sensitive to DNase treatment. In addition, biofilms were highly sensitive to treatment with Proteinase K suggesting a role for proteins and/or proteinaceous material in surface colonisation. This study shows the impact of a range of environmental factors and enzyme treatments on biofilm formation capacity for selected L. plantarum isolates associated with food spoilage, and may provide clues for disinfection strategies in food industry.

  7. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant.

    PubMed

    Liu, Nancy T; Nou, Xiangwu; Bauchan, Gary R; Murphy, Charles; Lefcourt, Alan M; Shelton, Daniel R; Lo, Y Martin

    2015-01-01

    Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.

  8. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.

    PubMed

    Paule, A; Roubeix, V; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L

    2013-11-15

    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to

  9. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms.

    PubMed

    Paule, A; Roubeix, V; Lauga, B; Duran, R; Delmas, F; Paul, E; Rols, J L

    2013-11-15

    Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to

  10. The Histidine Kinase BinK Is a Negative Regulator of Biofilm Formation and Squid Colonization

    PubMed Central

    Brooks, John F.

    2016-01-01

    ABSTRACT Bacterial colonization of animal epithelial tissue is a dynamic process that relies on precise molecular communication. Colonization of Euprymna scolopes bobtail squid by Vibrio fischeri bacteria requires bacterial aggregation in host mucus as the symbiont transitions from a planktonic lifestyle in seawater to a biofilm-associated state in the host. We have identified a gene, binK (biofilm inhibitor kinase; VF_A0360), which encodes an orphan hybrid histidine kinase that negatively regulates the V. fischeri symbiotic biofilm (Syp) in vivo and in vitro. We identified binK mutants as exhibiting a colonization advantage in a global genetic screen, a phenotype that we confirmed in controlled competition experiments. Bacterial biofilm aggregates in the host are larger in strains lacking BinK, whereas overexpression of BinK suppresses biofilm formation and squid colonization. Signaling through BinK is required for temperature modulation of biofilm formation at 28°C. Furthermore, we present evidence that BinK acts upstream of SypG, the σ54-dependent transcriptional regulator of the syp biofilm locus. The BinK effects are dependent on intact signaling in the RscS-Syp biofilm pathway. Therefore, we propose that BinK antagonizes the signal from RscS and serves as an integral component in V. fischeri biofilm regulation. IMPORTANCE Bacterial lifestyle transitions underlie the colonization of animal hosts from environmental reservoirs. Formation of matrix-enclosed, surface-associated aggregates (biofilms) is common in beneficial and pathogenic associations, but investigating the genetic basis of biofilm development in live animal hosts remains a significant challenge. Using the bobtail squid light organ as a model, we analyzed putative colonization factors and identified a histidine kinase that negatively regulates biofilm formation at the host interface. This work reveals a novel in vivo biofilm regulator that influences the transition of bacteria from their

  11. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    PubMed

    Aggarwal, Srijan; Stewart, Philip S; Hozalski, Raymond M

    2015-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacterial biofilms appear to be designed to withstand extreme forces rather than typical or average loads. In scenarios requiring the removal or control of unwanted biofilms, this emphasizes the importance of considering strategies for structurally weakening the biofilms in conjunction with bacterial inactivation.

  12. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus

    PubMed Central

    Park, Jin Hwan; Jo, Youmi; Jang, Song Yee; Kwon, Haenaem; Irie, Yasuhiko; Parsek, Matthew R.; Kim, Myung Hee; Choi, Sang Ho

    2015-01-01

    A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3′,5′-cyclic diguanylic acid (c-di-GMP) and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose. PMID:26406498

  13. Simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Caetano, Erica Pacheco de; Oliveira, Jonathas Sales; Castelo-Branco, Débora de Souza Collares Maia; Souza, Elizabeth Ribeiro Yokobatake; Alencar, Lucas Pereira de; Cordeiro, Rossana de Aguiar; Bandeira, Tereza de Jesus Pinheiro Gomes; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2015-01-01

    The antifungal activity of some statins against different fungal species has been reported. Thus, at the first moment, the in vitro antifungal activity of simvastatin, atorvastatin and pravastatin was tested against Candida spp. and Cryptococcus spp. Then, in a second approach, considering that the best results were obtained for simvastatin, this drug was evaluated in combination with antifungal drugs against planktonic growth and tested against biofilms of Candida spp. and Cryptococcus spp. Drug susceptibility testing was performed using the microdilution broth method, as described by the Clinical and Laboratory Standards Institute. The interaction between simvastatin and antifungals against planktonic cells was analyzed by calculating the fractional inhibitory concentration index. Regarding biofilm susceptibility, simvastatin was tested against growing biofilm and mature biofilm of one strain of each tested yeast species. Simvastatin showed inhibitory effect against Candida spp. and Cryptococcus spp. with minimum inhibitory concentration values ranging from 15.6 to 1000 mg L(-1) and from 62.5 to 1000 mg L(-1), respectively. The combination of simvastatin with itraconazole and fluconazole showed synergism against Candida spp. and Cryptococcus spp., while the combination of simvastatin with amphotericin B was synergistic only against Cryptococcus spp. Concerning the biofilm assays, simvastatin was able to inhibit both growing biofilm and mature biofilm of Candida spp. and Cryptococcus spp. The present study showed that simvastatin inhibits planktonic cells and biofilms of Candida and Cryptococcus species.

  14. Systematic Exploration of Natural and Synthetic Flavonoids for the Inhibition of Staphylococcus aureus Biofilms

    PubMed Central

    Manner, Suvi; Skogman, Malena; Goeres, Darla; Vuorela, Pia; Fallarero, Adyary

    2013-01-01

    When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates. PMID:24071942

  15. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense.

    PubMed

    Arruebarrena Di Palma, Andrés; Pereyra, Cintia M; Moreno Ramirez, Lizbeth; Xiqui Vázquez, María L; Baca, Beatriz E; Pereyra, María A; Lamattina, Lorenzo; Creus, Cecilia M

    2013-01-01

    Azospirillum brasilense is a rhizobacterium that provides beneficial effects on plants when they colonize roots. The formation of complex bacterial communities known as biofilms begins with the interaction of planktonic cells with surfaces in response to appropriate signals. Nitric oxide (NO) is a signaling molecule implicated in numerous processes in bacteria, including biofilm formation or dispersion, depending on genera and lifestyle. Azospirillum brasilense Sp245 produces NO by denitrification having a role in root growth promotion. We analyzed the role of endogenously produced NO on biofilm formation in A. brasilense Sp245 and in a periplasmic nitrate reductase mutant (napA::Tn5; Faj164) affected in NO production. Cells were statically grown in media with nitrate or ammonium as nitrogen sources and examined for biofilm formation using crystal violet and by confocal laser microscopy. Both strains formed biofilms, but the mutant produced less than half compared with the wild type in nitrate medium showing impaired nitrite production in this condition. NO measurements in biofilm confirmed lower values in the mutant strain. The addition of a NO donor showed that NO influences biofilm formation in a dose-dependent manner and reverses the mutant phenotype, indicating that Nap positively regulates the formation of biofilm in A. brasilense Sp245.

  16. Novel entries in a fungal biofilm matrix encyclopedia.

    PubMed

    Zarnowski, Robert; Westler, William M; Lacmbouh, Ghislain Ade; Marita, Jane M; Bothe, Jameson R; Bernhardt, Jörg; Lounes-Hadj Sahraoui, Anissa; Fontaine, Joël; Sanchez, Hiram; Hatfield, Ronald D; Ntambi, James M; Nett, Jeniel E; Mitchell, Aaron P; Andes, David R

    2014-08-05

    for protection from antifungal drugs. The availability of these biochemical analyses provides a unique resource for further functional investigation of the biofilm matrix, a defining trait of this lifestyle.

  17. Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters.

    PubMed

    Maisetta, Giuseppantonio; Grassi, Lucia; Di Luca, Mariagrazia; Bombardelli, Silvia; Medici, Chiara; Brancatisano, Franca Lisa; Esin, Semih; Batoni, Giovanna

    2016-08-01

    In search of new antimicrobials with anti-biofilm potential, in the present study activity of the frog-skin derived antimicrobial peptide temporin 1Tb (TB) against Staphylococcus epidermidis biofilms was investigated. A striking ability of TB to kill both forming and mature S. epidermidis biofilms was observed, especially when the peptide was combined with cysteine or EDTA, respectively. Kinetics studies demonstrated that the combination TB/EDTA was active against mature biofilms already after 2-4-h exposure. A double 4-h exposure of biofilms to TB/EDTA further increased the therapeutic potential of the same combination. Of note, TB/EDTA was able to eradicate S. epidermidis biofilms formed in vitro on silicone catheters. At eradicating concentrations, TB/EDTA did not cause hemolysis of human erythrocytes. The results shed light on the anti-biofilm properties of TB and suggest a possible application of the peptide in the lock therapy of catheters infected with S. epidermidis. PMID:27351824

  18. Elevated level of the second messenger c-di-GMP in Comamonas testosteroni enhances biofilm formation and biofilm-based biodegradation of 3-chloroaniline.

    PubMed

    Wu, Yichao; Ding, Yuanzhao; Cohen, Yehuda; Cao, Bin

    2015-02-01

    The bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a ubiquitous second messenger that determines bacterial lifestyle between the planktonic and biofilm modes of life. Although the role of c-di-GMP signaling in biofilm development and dispersal has been extensively studied, how c-di-GMP signaling influences environmental bioprocess activities such as biodegradation remains unexplored. To elucidate the impacts of elevating c-di-GMP level on environmental bioprocesses, we constructed a Comamonas testosteroni strain constitutively expressing a c-di-GMP synthase YedQ from Escherichia coli and examined its capability in biofilm formation and biodegradation of 3-chloroaniline (3-CA). The high c-di-GMP strain exhibited an increased binding to Congo red dye, a decreased motility, and an enhanced biofilm formation capability. In planktonic cultures, the strain with an elevated c-di-GMP concentration and the wild type could degrade 3-CA comparably well. However, under batch growth conditions with a high surface to volume ratio, an elevated c-di-GMP concentration in C. testosteroni significantly increased the contribution of biofilms in 3-CA biodegradation. In continuous submerged biofilm reactors, C. testosteroni with an elevated c-di-GMP level exhibited an enhanced 3-CA biodegradation and a decreased cell detachment rate. Taken together, this study provides a novel strategy to enhance biofilm-based biodegradation of toxic xenobiotic compounds through manipulating bacterial c-di-GMP signaling.

  19. Application of Dynamic Speckle Techniques in Monitoring Biofilms Drying Process

    NASA Astrophysics Data System (ADS)

    Enes, Adilson M.; Júnior, Roberto A. Braga; Dal Fabbro, Inácio M.; da Silva, Washington A.; Pereira, Joelma

    2008-04-01

    Horticultural crops exhibit losses far greater than grains in Brazil which are associated to inappropriate maturation, mechanical bruising, infestation by microorganisms, wilting, etc. Appropriate packing prevents excessive mass loss associated to transpiration as well as to respiration, by controlling gas exchanging with outside environment. Common packing materials are identified as plastic films, waxes and biofilms. Although research developed with edible films and biopolymers has increased during last years to attend the food industry demands, avoiding environmental problems, little efforts have been reported on biofilm physical properties investigations. These properties, as drying time and biofilm interactions with environment are considered of basic importance. This research work aimed to contribute to development of a methodology to evaluate yucca (Maniot vulgaris) based biofilms drying time supported by a biospeckle technique. Biospeckle is a phenomenon generated by a laser beam scattered on a dynamic active surface, producing a time varying pattern which is proportional to the surface activity level. By capturing and processing the biospeckle image it is possible to attribute a numerical quantity to the surface bioactivity. Materials exhibiting high moisture content will also show high activity, which will support the drying time determination. Tests were set by placing biofilm samples on polyetilen plates and further submitted to laser exposition at four hours interval to capture the pattern images, generating the Intensities Dispersion Modulus. Results indicates that proposed methodology is applicable in determining biofilm drying time as well as vapor losses to environment.

  20. Microbial pathogenesis of bacterial biofilms: a causative factor of vascular surgical site infection.

    PubMed

    Frei, Elisabeth; Hodgkiss-Harlow, Kelley; Rossi, Peter J; Edmiston, Charles E; Bandyk, Dennis F

    2011-11-01

    Vascular surgical site infection (SSI) is caused by pathogenic bacterial strains whose preferred mode of growth is within a surface biofilm. Bacterial biofilm formation can develop within hours to days in a wound and produces a recalcitrant infectious process especially in the presence of a prosthetic graft. The initial steps of biofilm formation are bacterial adhesion to biologic or inert surgical site structures followed by organism production of exopolysaccaride matrix which encases developing bacteria colonies to produce a protective microenvironment. As the biofilm matures, a dynamic process of organism cell-to-cell signaling occurs with varying growth modes of sessile bacteria within the biofilm and the release of planktonic bacteria with the potential to spread and expand the biofilm-mediated infection. The prevalence of staphyloccocal strains causing vascular SSI is best understood when viewed as a biofilm-mediated infection with virulence factors related to specific cell surface adhesion proteins and bacteria-derived matrix production. Nonhealing surgical sites following lower limb revascularization, the late appearance of prosthetic graft infection caused by Staphylococcus epidermidis, and the development of groin site tracts after aortofemoral bypass grafting are clinical examples of a biofilm-mediated SSI. A mature biofilm within a wound or coating a prosthetic device exhibits resistance to host defenses and selected antibiotics, impairs wound healing, and is a perpetual irritant to that host by inciting a chronic inflammatory process. By understanding the microbial pathogenesis of biofilm formation, strategies to treat and prevent biofilm-mediated infection can be developed and utilized to reduce vascular SSIs.

  1. Dynamics and Control of Biofilms of the Oligotrophic Bacterium Caulobacter crescentus

    PubMed Central

    Entcheva-Dimitrov, Plamena; Spormann, Alfred M.

    2004-01-01

    Caulobacter crescentus is an oligotrophic α-proteobacterium with a complex cell cycle involving sessile-stalked and piliated, flagellated swarmer cells. Because the natural lifestyle of C. crescentus intrinsically involves a surface-associated, sessile state, we investigated the dynamics and control of C. crescentus biofilms developing on glass surfaces in a hydrodynamic system. In contrast to biofilms of the well-studied Pseudomonas aeruginosa, Escherichia coli, and Vibrio cholerae, C. crescentus CB15 cells form biphasic biofilms, consisting predominantly of a cell monolayer biofilm and a biofilm containing densely packed, mushroom-shaped structures. Based on comparisons between the C. crescentus strain CB15 wild type and its holdfast (hfsA; ΔCC0095), pili (ΔpilA-cpaF::Ωaac3), motility (motA), flagellum (flgH) mutants, and a double mutant lacking holdfast and flagellum (hfsA; flgH), a model for biofilm formation in C. crescentus is proposed. For both biofilm forms, the holdfast structure at the tip of a stalked cell is crucial for mediating the initial attachment. Swimming motility by means of the single polar flagellum enhances initial attachment and enables progeny swarmer cells to escape from the monolayer biofilm. The flagellum structure also contributes to maintaining the mushroom structure. Type IV pili enhance but are not absolutely required for the initial adhesion phase. However, pili are essential for forming and maintaining the well-defined three-dimensional mushroom-shaped biofilm. The involvement of pili in mushroom architecture is a novel function for type IV pili in C. crescentus. These unique biofilm features demonstrate a spatial diversification of the C. crescentus population into a sessile, “stem cell”-like subpopulation (monolayer biofilm), which generates progeny cells capable of exploring the aqueous, oligotrophic environment by swimming motility and a subpopulation accumulating in large mushroom structures. PMID:15576774

  2. Temporal and stochastic control of Staphylococcus aureus biofilm development.

    PubMed

    Moormeier, Derek E; Bose, Jeffrey L; Horswill, Alexander R; Bayles, Kenneth W

    2014-01-01

    Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated "multiplication" and "exodus") that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. Importance: In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior

  3. Temporal and stochastic control of Staphylococcus aureus biofilm development.

    PubMed

    Moormeier, Derek E; Bose, Jeffrey L; Horswill, Alexander R; Bayles, Kenneth W

    2014-01-01

    Biofilm communities contain distinct microniches that result in metabolic heterogeneity and variability in gene expression. Previously, these niches were visualized within Staphylococcus aureus biofilms by observing differential expression of the cid and lrg operons during tower formation. In the present study, we examined early biofilm development and identified two new stages (designated "multiplication" and "exodus") that were associated with changes in matrix composition and a distinct reorganization of the cells as the biofilm matured. The initial attachment and multiplication stages were shown to be protease sensitive but independent of most cell surface-associated proteins. Interestingly, after 6 h of growth, an exodus of the biofilm population that followed the transition of the biofilm to DNase I sensitivity was demonstrated. Furthermore, disruption of the gene encoding staphylococcal nuclease (nuc) abrogated this exodus event, causing hyperproliferation of the biofilm and disrupting normal tower development. Immediately prior to the exodus event, S. aureus cells carrying a nuc::gfp promoter fusion demonstrated Sae-dependent expression but only in an apparently random subpopulation of cells. In contrast to the existing model for tower development in S. aureus, the results of this study suggest the presence of a Sae-controlled nuclease-mediated exodus of biofilm cells that is required for the development of tower structures. Furthermore, these studies indicate that the differential expression of nuc during biofilm development is subject to stochastic regulatory mechanisms that are independent of the formation of metabolic microniches. Importance: In this study, we provide a novel view of four early stages of biofilm formation by the human pathogen Staphylococcus aureus. We identified an initial nucleoprotein matrix during biofilm development that is DNase I insensitive until a critical point when a nuclease-mediated exodus of the population is induced prior

  4. Fungal Biofilm Resistance

    PubMed Central

    Ramage, Gordon; Rajendran, Ranjith; Sherry, Leighann; Williams, Craig

    2012-01-01

    Fungal biofilm infections have become increasingly recognised as a significant clinical problem. One of the major reasons behind this is the impact that these have upon treatment, as antifungal therapy often fails and surgical intervention is required. This places a large financial burden on health care providers. This paper aims to illustrate the importance of fungal biofilms, particularly Candida albicans, and discusses some of the key fungal biofilm resistance mechanisms that include, extracellular matrix (ECM), efflux pump activity, persisters, cell density, overexpression of drug targets, stress responses, and the general physiology of the cell. The paper demonstrates the multifaceted nature of fungal biofilm resistance, which encompasses some of the newest data and ideas in the field. PMID:22518145

  5. Biofilm formation by enterococci.

    PubMed

    Mohamed, Jamal A; Huang, David B

    2007-12-01

    Enterococci are an important global cause of nosocomial infections, being increasingly associated with urinary tract infections, endocarditis, intra-abdominal and pelvic infections, catheter-related infections, surgical wound infections, and central nervous system infections. The two most common enterococci species are Enterococcus faecalis and Enterococcus faecium. Both are capable of producing biofilms, which consist of a population of cells attached irreversibly on various biotic and abiotic surfaces, encased in a hydrated matrix of exopolymeric substances. Many environmental and genetic factors are associated or have been proposed to be associated with the production of biofilm. This review discusses recent advances in knowledge about the biology and genetics of biofilm formation and the role of biofilms in enterococci pathogenesis.

  6. Biofilm in wound care.

    PubMed

    Rajpaul, Kumal

    2015-03-01

    A biofilm can be described as a microbial colony encased in a polysaccharide matrix which can become attached to a wound surface. This can affect the healing potential of chronic wounds due to the production of destructive enzymes and toxins which can promote a chronic inflammatory state within the wound. Biofilms can be polymicrobial and can result in delayed wound healing and chronic wound infection resistant to antibiotics, leading to prolonged hospitalisation for some patients. There appears to be a correlation between biofilms and non-healing in chronic wounds. It is suggested that biofilms are a major player in the chronicity of wounds. They are a complex concept to diagnose and management needs to be multifactorial.

  7. Secret lifestyles of Neurospora crassa.

    PubMed

    Kuo, Hsiao-Che; Hui, Sun; Choi, Jaeyoung; Asiegbu, Frederick O; Valkonen, Jari P T; Lee, Yong-Hwan

    2014-01-01

    Neurospora crassa has a long history as an excellent model for genetic, cellular, and biochemical research. Although this fungus is known as a saprotroph, it normally appears on burned vegetations or trees after forest fires. However, due to a lack of experimental evidence, the nature of its association with living plants remains enigmatic. Here we report that Scots pine (Pinus sylvestris) is a host plant for N. crassa. The endophytic lifestyle of N. crassa was found in its interaction with Scots pine. Moreover, the fungus can switch to a pathogenic state when its balanced interaction with the host is disrupted. Our data reveal previously unknown lifestyles of N. crassa, which are likely controlled by both environmental and host factors. Switching among the endophytic, pathogenic, and saprotrophic lifestyles confers upon fungi phenotypic plasticity in adapting to changing environments and drives the evolution of fungi and associated plants. PMID:24875794

  8. Secret lifestyles of Neurospora crassa.

    PubMed

    Kuo, Hsiao-Che; Hui, Sun; Choi, Jaeyoung; Asiegbu, Frederick O; Valkonen, Jari P T; Lee, Yong-Hwan

    2014-05-30

    Neurospora crassa has a long history as an excellent model for genetic, cellular, and biochemical research. Although this fungus is known as a saprotroph, it normally appears on burned vegetations or trees after forest fires. However, due to a lack of experimental evidence, the nature of its association with living plants remains enigmatic. Here we report that Scots pine (Pinus sylvestris) is a host plant for N. crassa. The endophytic lifestyle of N. crassa was found in its interaction with Scots pine. Moreover, the fungus can switch to a pathogenic state when its balanced interaction with the host is disrupted. Our data reveal previously unknown lifestyles of N. crassa, which are likely controlled by both environmental and host factors. Switching among the endophytic, pathogenic, and saprotrophic lifestyles confers upon fungi phenotypic plasticity in adapting to changing environments and drives the evolution of fungi and associated plants.

  9. Secret lifestyles of Neurospora crassa

    PubMed Central

    Kuo, Hsiao-Che; Hui, Sun; Choi, Jaeyoung; Asiegbu, Frederick O.; Valkonen, Jari P. T.; Lee, Yong-Hwan

    2014-01-01

    Neurospora crassa has a long history as an excellent model for genetic, cellular, and biochemical research. Although this fungus is known as a saprotroph, it normally appears on burned vegetations or trees after forest fires. However, due to a lack of experimental evidence, the nature of its association with living plants remains enigmatic. Here we report that Scots pine (Pinus sylvestris) is a host plant for N. crassa. The endophytic lifestyle of N. crassa was found in its interaction with Scots pine. Moreover, the fungus can switch to a pathogenic state when its balanced interaction with the host is disrupted. Our data reveal previously unknown lifestyles of N. crassa, which are likely controlled by both environmental and host factors. Switching among the endophytic, pathogenic, and saprotrophic lifestyles confers upon fungi phenotypic plasticity in adapting to changing environments and drives the evolution of fungi and associated plants. PMID:24875794

  10. Advanced nitrogen removal from landfill leachate via Anammox system based on Sequencing Biofilm Batch Reactor (SBBR): Effective protection of biofilm.

    PubMed

    Miao, Lei; Wang, Shuying; Cao, Tianhao; Peng, Yongzhen; Zhang, Man; Liu, Zhaoyuan

    2016-11-01

    High levels of organics negatively affect Anammox for treating landfill leachate. To enhance the ability of Anammox to survive against adverse environments, a lab-scale two-stage Anammox system using a Sequencing Biofilm Batch Reactor was applied to treat mature landfill leachate under 35°C. Over 107days, with influent total nitrogen (TN) and chemical oxygen demand (COD) concentrations of 3000±100 and 3000±100mg/L, effluent TN was below 20mg/L. For extracellular polymeric substance (EPS) of Anammox, slime-EPS and loosely-bound-EPS of floccules were both higher than biofilm, while tight-bound-EPS of biofilm was significantly higher, contributing to biofilm formation. Quantitative microbial analysis showed that as influent COD increased, Anammox gene ratios of biofilm increased from 1.34% to 13.28%; the gene ratios of floccule first increased, then decreased to 3.88%. This indicated that Anammox and heterotrophic bacteria could coexist because of the biofilm, leading to stable nitrogen removal performance, even when organics were present. PMID:27552718

  11. In vitro modeling of host-parasite interactions: the 'subgingival' biofilm challenge of primary human epithelial cells

    PubMed Central

    2009-01-01

    Background Microbial biofilms are known to cause an increasing number of chronic inflammatory and infectious conditions. A classical example is chronic periodontal disease, a condition initiated by the subgingival dental plaque biofilm on gingival epithelial tissues. We describe here a new model that permits the examination of interactions between the bacterial biofilm and host cells in general. We use primary human gingival epithelial cells (HGEC) and an in vitro grown biofilm, comprising nine frequently studied and representative subgingival plaque bacteria. Results We describe the growth of a mature 'subgingival' in vitro biofilm, its composition during development, its ability to adapt to aerobic conditions and how we expose in vitro a HGEC monolayer to this biofilm. Challenging the host derived HGEC with the biofilm invoked apoptosis in the epithelial cells, triggered release of pro-inflammatory cytokines and in parallel induced rapid degradation of the cytokines by biofilm-generated enzymes. Conclusion We developed an experimental in vitro model to study processes taking place in the gingival crevice during the initiation of inflammation. The new model takes into account that the microbial challenge derives from a biofilm community and not from planktonically cultured bacterial strains. It will facilitate easily the introduction of additional host cells such as neutrophils for future biofilm:host cell challenge studies. Our methodology may generate particular interest, as it should be widely applicable to other biofilm-related chronic inflammatory diseases. PMID:20043840

  12. Development of a novel, highly quantitative in vivo model for the study of biofilm-impaired cutaneous wound healing.

    PubMed

    Gurjala, Anandev N; Geringer, Matthew R; Seth, Akhil K; Hong, Seok J; Smeltzer, Mark S; Galiano, Robert D; Leung, Kai P; Mustoe, Thomas A

    2011-01-01

    A growing body of evidence suggests that in addition to hypoxia, ischemia-reperfusion injury, and intrinsic host factors, bacterial biofilms represent a fourth major pillar in chronic wound pathogenesis. Given that most studies to date rely on in vitro or observational clinical data, our aim was to develop a novel, quantitative animal model enabling further investigation of the biofilm hypothesis in vivo. Dermal punch wounds were created in New Zealand rabbit ears, and used as uninfected controls, or inoculated with green fluorescent protein-labeled Staphylococcus aureus to form wounds with bacteria predominantly in the planktonic or biofilm phase. Epifluorescence and scanning electron microscopy revealed that S. aureus rapidly forms mature biofilm in wounds within 24 hours of inoculation, with persistence of biofilm viability over time seen through serial bacterial count measurement and laser scanning confocal imaging at different time points postwounding and inoculation. Inflammatory markers confirmed that the biofilm phenotype creates a characteristic, sustained, low-grade inflammatory response, and that over time biofilm impairs epithelial migration and granulation tissue in-growth, as shown histologically. We have established and validated a highly quantitative, reproducible in vivo biofilm model, while providing evidence that the biofilm phenotype specifically contributes to profound cutaneous wound healing impairment. Our model highlights the importance of bacterial biofilms in chronic wound pathogenesis, providing an in vivo platform for further inquiry into the basic biology of bacterial biofilm-host interaction and high-throughput testing of antibiofilm therapeutics.

  13. Biofilms in chronic wounds.

    PubMed

    James, Garth A; Swogger, Ellen; Wolcott, Randall; Pulcini, Elinor deLancey; Secor, Patrick; Sestrich, Jennifer; Costerton, John W; Stewart, Philip S

    2008-01-01

    Chronic wounds including diabetic foot ulcers, pressure ulcers, and venous leg ulcers are a worldwide health problem. It has been speculated that bacteria colonizing chronic wounds exist as highly persistent biofilm communities. This research examined chronic and acute wounds for biofilms and characterized microorganisms inhabiting these wounds. Chronic wound specimens were obtained from 77 subjects and acute wound specimens were obtained from 16 subjects. Culture data were collected using standard clinical techniques. Light and scanning electron microscopy techniques were used to analyze 50 of the chronic wound specimens and the 16 acute wound specimens. Molecular analyses were performed on the remaining 27 chronic wound specimens using denaturing gradient gel electrophoresis and sequence analysis. Of the 50 chronic wound specimens evaluated by microscopy, 30 were characterized as containing biofilm (60%), whereas only one of the 16 acute wound specimens was characterized as containing biofilm (6%). This was a statistically significant difference (p<0.001). Molecular analyses of chronic wound specimens revealed diverse polymicrobial communities and the presence of bacteria, including strictly anaerobic bacteria, not revealed by culture. Bacterial biofilm prevalence in specimens from chronic wounds relative to acute wounds observed in this study provides evidence that biofilms may be abundant in chronic wounds.

  14. Bacteriophages and Biofilms

    PubMed Central

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  15. Intermicrobial Interactions as a Driver for Community Composition and Stratification of Oral Biofilms.

    PubMed

    Jakubovics, Nicholas S

    2015-11-20

    The oral cavity is accessible to microorganisms, and biofilms are present throughout on hard and soft tissues. The shedding of epithelial cell layers is usually effective for controlling biofilm development on soft tissues. Innate immune mechanisms are not so effective against biofilms on tooth surfaces, and oral hygiene measures such as brushing and flossing are required for the periodic removal of dental plaque. Even with good oral hygiene, microbial communities accumulate on teeth in areas that are protected from mechanical abrasion forces. Changes in the composition of these biofilms are associated with oral diseases such as dental caries or periodontitis. Newly formed biofilms and more mature dental plaque each have a level of spatial organization in the horizontal and vertical planes. Communities are shaped by many varied interactions between different species and genera within the biofilm, which include physical cell-cell associations known as coaggregation, interspecies signaling, secretion and turnover of antimicrobial compounds and the sharing of an extracellular matrix. Central to these interactions is the selection for metabolic synergies and it is becoming clear that the ability of communities to extract the maximum energy from the available metabolites is a potent driver for biofilm structure and stratification. This review discusses recent advances in our understanding of intermicrobial interactions in oral biofilms and the roles that they play in determining the spatial organization of biofilm communities.

  16. Single particle tracking reveals spatial and dynamic organization of the Escherichia coli biofilm matrix

    NASA Astrophysics Data System (ADS)

    Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.

    2014-08-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance. Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time.

  17. A three-step method for analysing bacterial biofilm formation under continuous medium flow.

    PubMed

    Schmutzler, Karolin; Schmid, Andreas; Buehler, Katja

    2015-07-01

    For the investigation and comparison of microbial biofilms, a variety of analytical methods have been established, all focusing on different growth stages and application areas of biofilms. In this study, a novel quantitative assay for analysing biofilm maturation under the influence of continuous flow conditions was developed using the interesting biocatalyst Pseudomonas taiwanensis VLB120. In contrast to other tubular-based assay systems, this novel assay format delivers three readouts using a single setup in a total assay time of 40 h. It combines morphotype analysis of biofilm colonies with the direct quantification of biofilm biomass and pellicle formation on an air/liquid interphase. Applying the Tube-Assay, the impact of the second messenger cyclic diguanylate on biofilm formation of P. taiwanensis VLB120 was investigated. To this end, 41 deletions of genes encoding for protein homologues to diguanylate cyclase and phosphodiesterase were generated in the genome of P. taiwanensis VLB120. Subsequently, the biofilm formation of the resulting mutants was analysed using the Tube-Assay. In more than 60 % of the mutants, a significantly altered biofilm formation as compared to the parent strain was detected. Furthermore, the potential of the proposed Tube-Assay was validated by investigating the biofilms of several other bacterial species.

  18. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    PubMed

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms. PMID:26072021

  19. Single particle tracking reveals spatial and dynamic organization of the E. coli biofilm matrix

    PubMed Central

    Birjiniuk, Alona; Billings, Nicole; Nance, Elizabeth; Hanes, Justin; Ribbeck, Katharina; Doyle, Patrick S.

    2014-01-01

    Biofilms are communities of surface-adherent bacteria surrounded by secreted polymers known as the extracellular polymeric substance (EPS). Biofilms are harmful in many industries, and thus it is of great interest to understand their mechanical properties and structure to determine ways to destabilize them. By performing single particle tracking with beads of varying surface functionalization it was found that charge interactions play a key role in mediating mobility within biofilms. With a combination of single particle tracking and microrheological concepts, it was found that Escherichia coli biofilms display height dependent charge density that evolves over time. Statistical analyses of bead trajectories and confocal microscopy showed inter-connecting micron scale channels that penetrate throughout the biofilm, which may be important for nutrient transfer through the system. This methodology provides significant insight into a particular biofilm system and can be applied to many others to provide comparisons of biofilm structure. The elucidation of structure provides evidence for the permeability of biofilms to microscale objects, and the ability of a biofilm to mature and change properties over time. PMID:25414591

  20. Comparison of SEM and VPSEM imaging techniques with respect to Streptococcus mutans biofilm topography.

    PubMed

    Weber, Kathryn; Delben, Juliana; Bromage, Timothy G; Duarte, Simone

    2014-01-01

    The study compared images of mature Streptococcus mutans biofilms captured at increasing magnification to determine which microscopy method is most acceptable for imaging the biofilm topography and the extracellular polymeric substance (EPS). In vitro S. mutans biofilms were imaged using (1) scanning electron microscopy (SEM), which requires a dehydration process; (2) SEM and ruthenium red (SEM-RR), which has been shown to support the EPS of biofilms during the SEM dehydration; and (3) variable pressure scanning electron microscopy (VPSEM), which does not require the intensive dehydration process of SEM. The dehydration process and high chamber vacuum of both SEM techniques devastated the biofilm EPS, removed supporting structures, and caused cracking on the biofilm surface. The VPSEM offered the most comprehensive representation of the S. mutans biofilm morphology. VPSEM provides similar contrast and focus as the SEM, but the procedure is far less time-consuming, and the use of hazardous chemicals associated with SEM dehydration protocol is avoided with the VPSEM. The inaccurate representations of the biofilm EPS in SEM experimentation is a possible source of inaccurate data and impediments in the study of S. mutans biofilms.

  1. Eradication of Staphylococcus aureus Catheter-Related Biofilm Infections Using ML:8 and Citrox.

    PubMed

    Hogan, S; Zapotoczna, M; Stevens, N T; Humphreys, H; O'Gara, J P; O'Neill, E

    2016-10-01

    Staphylococci are a leading cause of catheter-related infections (CRIs) due to biofilm formation. CRIs are typically managed by either device removal or systemic antibiotics, often in combination with catheter lock solutions (CLSs). CLSs provide high concentrations of the antimicrobial agent at the site of infection. However, the most effective CLSs against staphylococcal biofilm-associated infections have yet to be determined. The purpose of this study was to evaluate the efficacy and suitability of two newly described antimicrobial agents, ML:8 and Citrox, as CLSs against Staphylococcus aureus biofilms. ML:8 (1% [vol/vol]) and Citrox (1% [vol/vol]), containing caprylic acid and flavonoids, respectively, were used to treat S. aureus biofilms grown in vitro using newly described static and flow biofilm assays. Both agents reduced biofilm viability >97% after 24 h of treatment. Using a rat model of CRI, ML:8 was shown to inactivate early-stage S. aureus biofilms in vivo, while Citrox inactivated established, mature in vivo biofilms. Cytotoxicity and hemolytic activity of ML:8 and Citrox were equivalent to those of other commercially available CLSs. Neither ML:8 nor Citrox induced a cytokine response in human whole blood, and exposure of S. aureus to either agent for 90 days was not associated with any increase in resistance. Taken together, these data reveal the therapeutic potential of these agents for the treatment of S. aureus catheter-related biofilm infections. PMID:27458213

  2. Invasibility of resident biofilms by allochthonous communities in bioreactors.

    PubMed

    Bellucci, Micol; Bernet, Nicolas; Harmand, Jérôme; Godon, Jean-Jacques; Milferstedt, Kim

    2015-09-15

    Invasion of non-native species can drastically affect the community composition and diversity of engineered and natural ecosystems, biofilms included. In this study, a molecular community fingerprinting method was used to monitor the putative establishment and colonization of allochthonous consortia in resident multi-species biofilms. To do this, biofilms inoculated with tap water or activated sludge were grown for 10 days in bubble column reactors W1 and W2, and S, respectively, before being exposed to non-native microbial consortia. These consortia consisted of fresh activated sludge suspensions for the biofilms inoculated with tap water (reactors W1 and W2) and of transplanted mature tap water biofilm for the activated sludge biofilm (reactor S). The introduction of virgin, unoccupied coupons into W1 and W2 enabled us to additionally investigate the competition for new resources (space) among the resident biofilm and the allochthonous consortia. CE-SSCP revealed that after the invasion event changes were mostly observed in the abundance of the dominant species in the native biofilms rather than their composition. This suggests that the resident communities within a bioreactor immediately outcompete the allochthonous microbes and shape the microbial community assemblage on both new coupons and already colonized surfaces for the short term. However, with time, latent members of the allochthonous community might grow up affecting the diversity and composition of the original biofilms.

  3. Biofilm formation by Staphylococcus haemolyticus.

    PubMed

    Fredheim, Elizabeth Gladys Aarag; Klingenberg, Claus; Rohde, Holger; Frankenberger, Stephanie; Gaustad, Peter; Flaegstad, Trond; Sollid, Johanna Ericson

    2009-04-01

    Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm formation. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO(4), proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO(4) caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm formation is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm formation and determination of the biofilm mass also needed to be optimized for S. haemolyticus.

  4. Biofilm formation by Staphylococcus haemolyticus.

    PubMed

    Fredheim, Elizabeth Gladys Aarag; Klingenberg, Claus; Rohde, Holger; Frankenberger, Stephanie; Gaustad, Peter; Flaegstad, Trond; Sollid, Johanna Ericson

    2009-04-01

    Infections due to coagulase-negative staphylococci (CoNS) most frequently occur after the implantation of medical devices and are attributed to the biofilm-forming potential of CoNS. Staphylococcus haemolyticus is the second most frequently isolated CoNS from patients with hospital-acquired infections. There is only limited knowledge of the nature of S. haemolyticus biofilms. The aim of this study was to characterize S. haemolyticus biofilm formation. We analyzed the biofilm-forming capacities of 72 clinical S. haemolyticus isolates. A detachment assay with NaIO(4), proteinase K, or DNase was used to determine the main biofilm components. Biofilm-associated genes, including the ica operon, were analyzed by PCR, and the gene products were sequenced. Confocal laser scanning microscopy (CLSM) was used to elucidate the biofilm structure. Fifty-three isolates (74%) produced biofilms after growth in Trypticase soy broth (TSB) with glucose, but only 22 (31%) produced biofilms after growth in TSB with NaCl. It was necessary to dissolve the biofilm in ethanol-acetone to measure the optical density of the full biofilm mass. DNase, proteinase K, and NaIO(4) caused biofilm detachment for 100%, 98%, and 38% of the isolates, respectively. icaRADBC and polysaccharide intercellular adhesin (PIA) production were found in only two isolates. CLSM indicated that the biofilm structure of S. haemolyticus clearly differs from that of S. epidermidis. We conclude that biofilm formation is a common phenotype in clinical S. haemolyticus isolates. In contrast to S. epidermidis, proteins and extracellular DNA are of functional relevance for biofilm accumulation, whereas PIA plays only a minor role. The induction of biofilm formation and determination of the biofilm mass also needed to be optimized for S. haemolyticus. PMID:19144798

  5. Transcriptional response of Candida albicans biofilms following exposure to 2-amino-nonyl-6-methoxyl-tetralin muriate

    PubMed Central

    Liang, Rong-mei; Cao, Yong-bing; Zhou, You-jun; Xu, Yi; Gao, Ping-hui; Dai, Bao-di; Yang, Feng; Tang, Hui; Jiang, Yuan-ying

    2010-01-01

    Aim: To identify changes in the gene expression profile of Candida albicans (C albicans) biofilms following exposed to 2-amino-nonyl-6-methoxyl-tetralin muriate(10b) and clarify the mechanism of 10b against C albicans biofilms. Methods: Anti-biofilm activity of 10b was assessed by tetrazolium (XTT) reduction assay and the action mechanism against biofilms was investigated by cDNA microarray analysis and real-time RT-PCR assay. Results: Ten differentially expressed genes were directly linked to biofilm formation and filamentous or hyphal growth (eg, NRG1, ECE1 and CSA1). Decreased gene expression was involved in glycolysis (eg, HXK2 and PFK1) and antioxidant defense (eg, SOD5), while increased gene expression was associated with enzymes that specifically hydrolyzed β-1,3 glucan (XOG1), and with lipid, fatty acid and sterol metabolism (eg, SLD1, ERG6 and ERG2). Functional analysis indicated that addition of anti-oxidant ascorbic acid reduced inhibitory efficiency of 10b on mature biofilm. Conclusion: Inhibition of 10b on biofilm formation possibly depends on impairing the ability of C albicans to change its morphology via altering the expression of biofilm formation genes. Mitochondrial aerobic respiration shift and endogenous ROS augmentation might be a major contribution to reduce mature biofilm metabolic activity. The data may be useful for the development of new strategies to reduce the incidence of device-associated infections. PMID:20383169

  6. Ethyl Pyruvate: An Anti-Microbial Agent that Selectively Targets Pathobionts and Biofilms

    PubMed Central

    Debebe, Tewodros; Krüger, Monika; Huse, Klaus; Kacza, Johannes; Mühlberg, Katja; König, Brigitte; Birkenmeier, Gerd

    2016-01-01

    The microbiota has a strong influence on health and disease in humans. A causative shift favoring pathobionts is strongly linked to diseases. Therefore, anti-microbial agents selectively targeting potential pathogens as well as their biofilms are urgently demanded. Here we demonstrate the impact of ethyl pyruvate, so far known as ROS scavenger and anti-inflammatory agent, on planktonic microbes and biofilms. Ethyl pyruvate combats preferably the growth of pathobionts belonging to bacteria and fungi independent of the genera and prevailing drug resistance. Surprisingly, this anti-microbial agent preserves symbionts like Lactobacillus species. Moreover, ethyl pyruvate prevents the formation of biofilms and promotes matured biofilms dissolution. This potentially new anti-microbial and anti-biofilm agent could have a tremendous positive impact on human, veterinary medicine and technical industry as well. PMID:27658257

  7. Synthesis and Evaluation of Ciprofloxacin-Nitroxide Conjugates as Anti-Biofilm Agents.

    PubMed

    Verderosa, Anthony D; Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W; Fairfull-Smith, Kathryn E

    2016-01-01

    As bacterial biofilms are often refractory to conventional antimicrobials, the need for alternative and/or novel strategies for the treatment of biofilm related infections has become of paramount importance. Herein, we report the synthesis of novel hybrid molecules comprised of two different hindered nitroxides linked to the piperazinyl secondary amine of ciprofloxacin via a tertiary amine linker achieved utilising reductive amination. The corresponding methoxyamine derivatives were prepared alongside their radical-containing counterparts as controls. Subsequent biological evaluation of the hybrid compounds on preformed P. aeruginosa flow cell biofilms divulged significant dispersal and eradication abilities for ciprofloxacin-nitroxide hybrid compound 10 (up to 95% eradication of mature biofilms at 40 μM). Importantly, these hybrids represent the first dual-action antimicrobial-nitroxide agents, which harness the dispersal properties of the nitroxide moiety to circumvent the well-known resistance of biofilms to treatment with antimicrobial agents. PMID:27355936

  8. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66.

    PubMed

    You, JianLan; Xue, XiaoLi; Cao, LiXiang; Lu, Xin; Wang, Jian; Zhang, LiXin; Zhou, ShiNing

    2007-10-01

    China remains by far the largest aquaculture producer in the world. However, biofilms formed by pathogenic Vibrio strains pose serious problems to marine aquaculture. To provide a strategy for biofilm prevention, control, and eradication, extracts from 88 marine actinomycetes were screened. Thirty-five inhibited the biofilm formation of Vibrio harveyi, Vibrio vulnificus, and Vibrio anguillarum at a concentration of 2.5% (v/v). Thirty-three of the actinomycete extracts dispersed the mature biofilm. Six extracts inhibited the quorum-sensing system of V. harveyi by attenuating the signal molecules N-acylated homoserine lactones' activity. Strain A66, which was identified as Streptomyces albus, both attenuated the biofilms and inhibited their quorum-sensing system. It is suggested that strain A66 is a promising candidate to be used in future marine aquaculture. PMID:17624525

  9. Potential application of antimicrobial peptides in the treatment of bacterial biofilm infections.

    PubMed

    Strempel, Nikola; Strehmel, Janine; Overhage, Joerg

    2015-01-01

    The increasing prevalence of persistent biofilm infections, such as wound infections, chronic lung infections or medical device- related infections, which usually tolerate conventional antibiotic treatment, calls for the development of new therapeutic strategies. To date, antimicrobial peptides (AMPs) are considered as promising agents in the fight against multidrug-resistant bacterial biofilm infections, since many of them have been shown to prevent biofilm formation or even kill preexisting, mature biofilms of several Gram-positive and Gram-negative bacteria in addition to their bactericidal actions to planktonic cells. In this mini-review, we summarize in vitro and in vivo antibiofilm properties of natural and synthetic cationic AMPs against clinically relevant bacterial pathogens. Furthermore, the benefits and challenges in the use of AMPs for the medical treatment of bacterial biofilm infections are discussed.

  10. Peace Lifestyle and Peace Cultures.

    ERIC Educational Resources Information Center

    Allen, Judd

    Peace lifestyles are possible in social environments that endorse peace activism. This discussion of community change processes provides an outline of mechanisms needed for successful community activism working at the cultural level. The Community Peace Cultures Program (CPCP) is an approach to building supportive environments for peace…

  11. Lifestyle Improvement Program for Seniors.

    ERIC Educational Resources Information Center

    Barclay, Ralph

    The Wayne State College Lifestyle Improvement Program for Seniors, based on the wellness concept, is designed to facilitate social interaction and health through physical activities. It is adaptable to a variety of individual needs and preferences, including exercises for cardiac rehabilitation patients. Any person over 50 can participate at no…

  12. Outdoor Play: Combating Sedentary Lifestyles

    ERIC Educational Resources Information Center

    Thigpen, Betsy

    2007-01-01

    Increasingly sedentary lifestyles are contributing to overweight and other health concerns as children spend less and less time outside engaged in active play. Outdoor play provides important opportunities to explore the natural world, interact with peers, engage in vigorous physical activity, and learn about our environment. However, outdoor…

  13. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.

    PubMed

    Biyikoğlu, Basak; Ricker, Austin; Diaz, Patricia I

    2012-08-01

    Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.

  14. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    PubMed

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment. PMID:26404553

  15. Pentacyclic triterpenes combined with ciprofloxacin help to eradicate the biofilm formed in vitro by Escherichia coli

    PubMed Central

    Wojnicz, Dorota; Tichaczek-Goska, Dorota; Kicia, Marta

    2015-01-01

    Background & objectives: Ciprofloxacin is commonly used in clinical practice for the treatment of recurrent urinary tract infections caused by Escherichia coli. However, very often these recurrent infections are due to a failure in a complete eradication of the microorganisms colonizing the urinary tract, especially in catheterized patients. To enhance the bactericidal activity of ciprofloxacin against biofilm-forming uropathogenic E. coli (UPECs), we examined its effect in combination with two pentacyclic triterpenes – asiatic and ursolic acids. Methods: The anti-biofilm activity of ciprofloxacin and pentacyclic triterpenes - asiatic acid (AA) and ursolic acid (UA), as well as their synergistic effect were tested on two types of surfaces - polystyrene microtiter plates and silicone catheters. It was investigated using the time-killing and biofilm assays. Results: Anti-biofilm activity of ciprofloxacin was not observed on microtiter plates or on the catheters. Ciprofloxacin combined with ursolic acid inhibited the biofilm formation on microtitre plates. This mixture, however, did not express such a strong activity against the synthesis of biofilm on the surface of catheters. Ciprofloxacin combined with asiatic acid had very weak inhibiting effect on the synthesis of biofilm mass on microtitre plates as well as on the catheters. Despite this, both mixtures – ciprofloxacin and asiatic acid, as well as ciprofloxacin and ursolic acid, exhibited strong and significant impact on the eradication of mature biofilm (P < 0.05). Interpretation & conclusions: Although ciprofloxacin is recommended in the treatment of urinary tract infections caused by UPECs, but its efficacy is arguable. Subinhibitory concentrations of ciprofloxacin did not inhibit the formation of biofilm. Pentacyclic triterpenes used in combination with ciprofloxacin enhanced its anti-biofilm effectiveness. However, this anti-biofilm activity was found to depend on the type of surface on which biofilm was

  16. Miltefosine is effective against Candida albicans and Fusarium oxysporum nail biofilms in vitro.

    PubMed

    Machado Vila, Taissa Vieira; Sousa Quintanilha, Natália; Rozental, Sonia

    2015-11-01

    Onychomycosis is a fungal nail infection that represents ∼50 % of all nail disease cases worldwide. Clinical treatment with standard antifungals frequently requires long-term systemic therapy to avoid chronic disease. Onychomycosis caused by non-dermatophyte moulds, such as Fusarium spp., and yeasts, such as Candida spp., is particularly difficult to treat, possibly due to the formation of drug-resistant fungal biofilms on affected areas. Here, we show that the alkylphospholipid miltefosine, used clinically against leishmaniasis and cutaneous breast metastases, has potent activity against biofilms of Fusarium oxysporum and Candida albicans formed on human nail fragments in vitro. Miltefosine activity was compared with that of commercially available antifungals in the treatment of biofilms at two distinct developmental phases: formation and maturation (pre-formed biofilms). Drug activity towards biofilms formed on nail fragments and on microplate surfaces (microdilution assays) was evaluated using XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assays, and drug effects on fingernail biofilms were analysed by scanning electron microscopy (SEM). For F. oxysporum, miltefosine at 8 μg ml- 1 inhibited biofilm formation by 93%, whilst 256 μg ml- 1 reduced the metabolic activity of pre-formed nail biofilms by 93%. Treatment with miltefosine at 1000 μg ml- 1 inhibited biofilm formation by 89% and reduced the metabolic activity of pre-formed C. albicans biofilms by 99%. SEM analyses of biofilms formed on fingernail fragments showed a clear reduction in biofilm biomass after miltefosine treatment, in agreement with XTT results. Our results show that miltefosine has potential as a therapeutic agent against onychomycosis and should be considered for in vivo efficacy studies, especially in topical formulations for refractory disease treatment.

  17. Biofilms in wounds: management strategies.

    PubMed

    Rhoads, D D; Wolcott, R D; Percival, S L

    2008-11-01

    Biofilms probably induce a chronic and/or 'quiet' inflammation in the chronic wound and so delay healing. This paper reviews current strategies that can be used to suppress biofilms in chronic wounds until better options are available.

  18. Investigations into Monochloramine Biofilm Penetration

    EPA Science Inventory

    Biofilm in drinking water systems is undesirable. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. However, this hypothesis remains unconfirmed by direct b...

  19. Lifestyle factors and sperm aneuploidy.

    PubMed

    Jurewicz, Joanna; Radwan, Michał; Sobala, Wojciech; Radwan, Paweł; Jakubowski, Lucjusz; Hawuła, Wanda; Ulańska, Anna; Hanke, Wojciech

    2014-09-01

    Different environmental and lifestyle factors may interfere with the normal disjunction of sister chromatids/chromosomes during meiosis and may cause aneuploidy. The aim of the study was to examine the association between lifestyle factors and sperm aneuploidy. The study population consisted of 212 healthy men under 45 years of age attending an infertility clinic for diagnostic purposes and who had a normal semen concentration of 20-300×10⁶mL or slight oligozoospermia (semen concentration of 15-20×10⁶/mL). All participants were interviewed and provided a semen sample. Sperm aneuploidy was assessed using multicolor FISH (DNA probes specific for chromosomes X, Y, 18, 13, 21). Results from the study suggest that lifestyle factors are related to sperm aneuploidy. A positive relationship was found between coffee drinking everyday and the lack of chromosome X or Y, as well as coffee drinking 1-6 times per week and additional chromosome 18. Wearing boxer shorts decrease the copy number changes in the whole chromosome 18, the number of additional chromosome 18 and the lack of chromosome 13. Additionally, obesity (BMI 30-40 kg/m²) was positively associated with additional chromosome 21 after being adjusted for potential confounders. These findings demonstrate that changing the men's lifestyle habits may contribute to reduction of the incidence of sperm aneuploidy. It is necessary that men continue to follow sensible health advice concerning excess weight, coffee drinking and wearing tight fitting underwear. As this is the first such study to examine different lifestyle factors and sperm aneuploidy, the results need to be confirmed on larger population.

  20. Medication or Lifestyle for Pre-Diabetes

    MedlinePlus

    ... is possible. By committing to and maintaining a healthy lifestyle, some people are able to reverse their pre- ... can avoid many diabetes complications by adopting a healthy lifestyle. How much can be avoided usually depends on ...

  1. Pronounced Metabolic Changes in Adaptation to Biofilm Growth by Streptococcus pneumoniae

    PubMed Central

    Allan, Raymond N.; Skipp, Paul; Jefferies, Johanna; Clarke, Stuart C.; Faust, Saul N.

    2014-01-01

    Streptococcus pneumoniae accounts for a significant global burden of morbidity and mortality and biofilm development is increasingly recognised as important for colonization and infection. Analysis of protein expression patterns during biofilm development may therefore provide valuable insights to the understanding of pneumococcal persistence strategies and to improve vaccines. iTRAQ (isobaric tagging for relative and absolute quantification), a high-throughput gel-free proteomic approach which allows high resolution quantitative comparisons of protein profiles between multiple phenotypes, was used to interrogate planktonic and biofilm growth in a clinical serotype 14 strain. Comparative analyses of protein expression between log-phase planktonic and 1-day and 7-day biofilm cultures representing nascent and late phase biofilm growth were carried out. Overall, 244 proteins were identified, of which >80% were differentially expressed during biofilm development. Quantitatively and qualitatively, metabolic regulation appeared to play a central role in the adaptation from the planktonic to biofilm phenotype. Pneumococci adapted to biofilm growth by decreasing enzymes involved in the glycolytic pathway, as well as proteins involved in translation, transcription, and virulence. In contrast, proteins with a role in pyruvate, carbohydrate, and arginine metabolism were significantly increased during biofilm development. Downregulation of glycolytic and translational proteins suggests that pneumococcus adopts a covert phenotype whilst adapting to an adherent lifestyle, while utilization of alternative metabolic pathways highlights the resourcefulness of pneumococcus to facilitate survival in diverse environmental conditions. These metabolic proteins, conserved across both the planktonic and biofilm phenotypes, may also represent target candidates for future vaccine development and treatment strategies. Data are available via ProteomeXchange with identifier PXD001182. PMID

  2. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly

    PubMed Central

    Pepe-Ranney, Charles; Hall, Edward K.

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  3. The effect of carbon subsidies on marine planktonic niche partitioning and recruitment during biofilm assembly.

    PubMed

    Pepe-Ranney, Charles; Hall, Edward K

    2015-01-01

    The influence of resource availability on planktonic and biofilm microbial community membership is poorly understood. Heterotrophic bacteria derive some to all of their organic carbon (C) from photoautotrophs while simultaneously competing with photoautotrophs for inorganic nutrients such as phosphorus (P) or nitrogen (N). Therefore, C inputs have the potential to shift the competitive balance of aquatic microbial communities by increasing the resource space available to heterotrophs (more C) while decreasing the resource space available to photoautotrophs (less mineral nutrients due to increased competition from heterotrophs). To test how resource dynamics affect membership of planktonic communities and assembly of biofilm communities we amended a series of flow-through mesocosms with C to alter the availability of C among treatments. Each mesocosm was fed with unfiltered seawater and incubated with sterilized microscope slides as surfaces for biofilm formation. The highest C treatment had the highest planktonic heterotroph abundance, lowest planktonic photoautotroph abundance, and highest biofilm biomass. We surveyed bacterial 16S rRNA genes and plastid 23S rRNA genes to characterize biofilm and planktonic community membership and structure. Regardless of resource additions, biofilm communities had higher alpha diversity than planktonic communities in all mesocosms. Heterotrophic plankton communities were distinct from heterotrophic biofilm communities in all but the highest C treatment where heterotrophic plankton and biofilm communities resembled each other after 17 days. Unlike the heterotrophs, photoautotrophic plankton communities were different than photoautotrophic biofilm communities in composition in all treatments including the highest C treatment. Our results suggest that although resource amendments affect community membership and structure, microbial lifestyle (biofilm vs. planktonic) has a stronger influence on community composition. PMID:26236289

  4. A 3D numerical study of antimicrobial persistence in heterogeneous multi-species biofilms.

    PubMed

    Zhao, Jia; Shen, Ya; Haapasalo, Markus; Wang, Zhejun; Wang, Qi

    2016-03-01

    We develop a 3D hydrodynamic model to investigate the mechanism of antimicrobial persistence in a multi-species oral biofilm and its recovery after being treated by bisbiguanide chlorhexidine gluconate (CHX). In addition to the hydrodynamic transport in the spatially heterogeneous biofilm, the model also includes mechanisms of solvent-biomass interaction, bacterial phenotype conversion, and bacteria-drug interaction. A numerical solver for the model is developed using a second order numerical scheme in 3D space and time and implemented on GPUs for high-performance computing. The model is calibrated against a set of experimental data obtained using confocal laser scan microscopy (CLSM) on multi-species oral biofilms, where a quantitative agreement is reached. Our numerical results reveal that quorum sensing molecules and growth factors in this model are instrumental in biofilm formation and recovery after the antimicrobial treatment. In particular, we show that (i) young biofilms are more susceptible to the antimicrobial treatment than the mature ones, (ii) this phenomenon is strongly correlated with volume fractions of the persister and EPS in the biofilm being treated. This suggests that antimicrobial treatment should be best administered to biofilms earlier before they mature to produce a thick protective EPS layer. In addition, the numerical study also indicates that an antimicrobial effect can be achieved should a proper mechanism be devised to minimize the conversion of susceptible bacteria to persisters during and even after the treatment.

  5. Chitosan Improves Anti-Biofilm Efficacy of Gentamicin through Facilitating Antibiotic Penetration

    PubMed Central

    Mu, Haibo; Guo, Fan; Niu, Hong; Liu, Qianjin; Wang, Shunchun; Duan, Jinyou

    2014-01-01

    Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant “super bugs” that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin) to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes) biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa) and high N-deacetylation degree (~88% DD) elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended. PMID:25479075

  6. Targeting cyclic di-GMP signalling: a strategy to control biofilm formation?

    PubMed

    Caly, Delphine L; Bellini, Domenico; Walsh, Martin A; Dow, J Maxwell; Ryan, Robert P

    2015-01-01

    Cyclic di-GMP is a second messenger found in almost all eubacteria that acts to regulate a wide range of functions including developmental transitions, adhesion and biofilm formation. Cyclic di-GMP is synthesised from two GTP molecules by diguanylate cyclases that have a GGDEF domain and is degraded by phosphodiesterases with either an EAL or an HD-GYP domain. Proteins with these domains often contain additional signal input domains, suggesting that their enzymatic activity may be modulated as a response to different environmental or cellular cues. Cyclic di-GMP exerts a regulatory action through binding to diverse receptors that include a small protein domain called PilZ, enzymatically inactive GGDEF, EAL or HD-GYP domains, transcription factors and riboswitches. In many bacteria, high cellular levels of cyclic di-GMP are associated with a sessile, biofilm lifestyle, whereas low levels of the nucleotide promote motility and virulence factor synthesis in pathogens. Elucidation of the roles of cyclic di-GMP signalling in biofilm formation has suggested strategies whereby modulation of the levels of the nucleotide or interference with signalling pathways may lead to inhibition of biofilm formation or promotion of biofilm dispersal. In this review we consider these approaches for the control of biofilm formation, beginning with an overview of cyclic di-GMP signalling and the different ways that it can act in regulation of biofilm dynamics.

  7. Chitosan improves anti-biofilm efficacy of gentamicin through facilitating antibiotic penetration.

    PubMed

    Mu, Haibo; Guo, Fan; Niu, Hong; Liu, Qianjin; Wang, Shunchun; Duan, Jinyou

    2014-12-03

    Antibiotic overuse is one of the major drivers in the generation of antibiotic resistant "super bugs" that can potentially cause serious effects on health. In this study, we reported that the polycationic polysaccharide, chitosan could improve the efficacy of a given antibiotic (gentamicin) to combat bacterial biofilms, the universal lifestyle of microbes in the world. Short- or long-term treatment with the mixture of chitosan and gentamicin resulted in the dispersal of Listeria monocytogenes (L. monocytogenes) biofilms. In this combination, chitosan with a moderate molecular mass (~13 kDa) and high N-deacetylation degree (~88% DD) elicited an optimal anti-biofilm and bactericidal activity. Mechanistic insights indicated that chitosan facilitated the entry of gentamicin into the architecture of L. monocytogenes biofilms. Finally, we showed that this combination was also effective in the eradication of biofilms built by two other Listeria species, Listeria welshimeri and Listeria innocua. Thus, our findings pointed out that chitosan supplementation might overcome the resistance of Listeria biofilms to gentamicin, which might be helpful in prevention of gentamicin overuse in case of combating Listeria biofilms when this specific antibiotic was recommended.

  8. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    PubMed

    Li, Jinyun; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and

  9. Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation.

    PubMed

    Li, Jinyun; Wang, Nian

    2011-01-01

    Xanthomonas axonopodis pv. citri (Xac) causes citrus canker disease, a major threat to citrus production worldwide. Accumulating evidence suggests that the formation of biofilms on citrus leaves plays an important role in the epiphytic survival of this pathogen prior to the development of canker disease. However, the process of Xac biofilm formation is poorly understood. Here, we report a genome-scale study of Xac biofilm formation in which we identified 92 genes, including 33 novel genes involved in biofilm formation and 7 previously characterized genes, colR, fhaB, fliC, galU, gumD, wxacO, and rbfC, known to be important for Xac biofilm formation. In addition, 52 other genes with defined or putative functions in biofilm formation were identified, even though they had not previously reported been to be associated with biofilm formation. The 92 genes were isolated from 292 biofilm-defective mutants following a screen of a transposon insertion library containing 22,000 Xac strain 306 mutants. Further analyses indicated that 16 of the novel genes are involved in the production of extracellular polysaccharide (EPS) and/or lipopolysaccharide (LPS), 7 genes are involved in signaling and regulatory pathways, and 5 genes have unknown roles in biofilm formation. Furthermore, two novel genes, XAC0482, encoding a haloacid dehalogenase-like phosphatase, and XAC0494 (designated as rbfS), encoding a two-component sensor protein, were confirmed to be biofilm-related genes through complementation assays. Our data demonstrate that the formation of mature biofilm requires EPS, LPS, both flagellum-dependent and flagellum-independent cell motility, secreted proteins and extracellular DNA. Additionally, multiple signaling pathways are involved in Xac biofilm formation. This work is the first report on a genome-wide scale of the genetic processes of biofilm formation in plant pathogenic bacteria. The report provides significant new information about the genetic determinants and

  10. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    PubMed Central

    Laverty, Garry; Gorman, Sean P.; Gilmore, Brendan F.

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation. PMID:25438014

  11. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation.

    PubMed

    Laverty, Garry; Gorman, Sean P; Gilmore, Brendan F

    2014-07-18

    Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  12. Biofilm in endodontics: A review.

    PubMed

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms' formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  13. Biofilm in endodontics: A review.

    PubMed

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms' formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  14. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms.

    PubMed

    Castro, Joana; Cerca, Nuno

    2015-12-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation. PMID:26505928

  15. BV and non-BV associated Gardnerella vaginalis establish similar synergistic interactions with other BV-associated microorganisms in dual-species biofilms.

    PubMed

    Castro, Joana; Cerca, Nuno

    2015-12-01

    Dual-species biofilm formation between Gardnerella vaginalis strains isolated from women with or without bacterial vaginosis (BV) and other 24 BV-associated microorganisms support that the key difference in virulence potential between BV-negative and BV-positive G. vaginalis strains seems not to be related with biofilm maturation.

  16. Candida tropicalis from veterinary and human sources shows similar in vitro hemolytic activity, antifungal biofilm susceptibility and pathogenesis against Caenorhabditis elegans.

    PubMed

    Brilhante, Raimunda Sâmia Nogueira; Oliveira, Jonathas Sales de; Evangelista, Antônio José de Jesus; Serpa, Rosana; Silva, Aline Lobão da; Aguiar, Felipe Rodrigues Magalhães de; Pereira, Vandbergue Santos; Castelo-Branco, Débora de Souza Collares Maia; Pereira-Neto, Waldemiro Aquino; Cordeiro, Rossana de Aguiar; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-08-30

    The aim of this study was to evaluate the in vitro hemolytic activity and biofilm antifungal susceptibility of veterinary and human Candida tropicalis strains, as well as their pathogenesis against Caenorhabditis elegans. Twenty veterinary isolates and 20 human clinical isolates of C. tropicalis were used. The strains were evaluated for their hemolytic activity and biofilm production. Biofilm susceptibility to itraconazole, fluconazole, voriconazole, amphotericin B and caspofungin was assessed using broth microdilution assay. The in vivo evaluation of strain pathogenicity was investigated using the nematode C. elegans. Hemolytic factor was observed in 95% of the strains and 97.5% of the isolates showed ability to form biofilm. Caspofungin and amphotericin B showed better results than azole antifungals against mature biofilms. Paradoxical effect on mature biofilm metabolic activity was observed at elevated concentrations of caspofungin (8-64μg/mL). Azole antifungals were not able to inhibit mature C. tropicalis biofilms, even at the higher tested concentrations. High mortality rates of C. elegans were observed when the worms were exposed to with C. tropicalis strains, reaching up to 96%, 96h after exposure of the worms to C. tropicalis strains. These results reinforce the high pathogenicity of C. tropicalis from veterinary and human sources and show the effectiveness of caspofungin and amphotericin B against mature biofilms of this species. PMID:27527785

  17. Modelling of biofilm reactors

    SciTech Connect

    Rodrigues, A.; Grasmick, A.; Elmaleh, S.

    1982-10-01

    Comprehensive models of biofilm reactors are developed. Model I assumes a zero-order reaction of a limiting substrate and a diffusional mass transport through the biofilm; in the diffusion-controlled regime the model is fully characterized by one parameter alpha. From this model the conversion of substrate or reactor efficiency can be calculated, for continuously stirred tank reactors (CSTRs) and plug flow reactors respectively, as follows: EA = )alpha(alpha + 2)) 1/2 - alpha; and Ep = (2 alpha) 1/2 - alpha/2: Validation of the model is tested for different experimental systems. Model II includes liquid film mass transfer resistance. The conversion gap between plug flow reactors and CSTRs is always lower than 25% and, as a first approximation, the biofilm reactor design does not then require accurate residence time distribution measurements. (Refs. 23).

  18. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range

    PubMed Central

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H.; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures. PMID:27248687

  19. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    PubMed Central

    2010-01-01

    Background Pseudomonas aeruginosa is commonly associated with contact lens (CL) -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS), EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ. PMID:21062489

  20. Presence of Extracellular DNA during Biofilm Formation by Xanthomonas citri subsp. citri Strains with Different Host Range.

    PubMed

    Sena-Vélez, Marta; Redondo, Cristina; Graham, James H; Cubero, Jaime

    2016-01-01

    Xanthomonas citri subsp. citri (Xcc) A strain causes citrus bacterial canker, a serious leaf, fruit and stem spotting disease of several Citrus species. X. alfalfae subsp. citrumelonis (Xac) is the cause of citrus bacterial spot, a minor disease of citrus nursery plants and X. campestris pv. campestris (Xc) is a systemic pathogen that causes black rot of cabbage. Xanthomonas spp. form biofilms in planta that facilitate the host infection process. Herein, the role of extracellular DNA (eDNA) was evaluated in the formation and stabilization of the biofilm matrix at different stages of biofilm development. Fluorescence and light microscopy, as well as DNAse treatments, were used to determine the presence of eDNA in biofilms and bacterial cultures. DNAse treatments of Xcc strains and Xac reduced biofilm formation at the initial stage of development, as well as disrupted preformed biofilm. By comparison, no significant effect of the DNAse was detected for biofilm formation by Xc. DNAse effects on biofilm formation or disruption varied among Xcc strains and Xanthomonas species which suggest different roles for eDNA. Variation in the structure of fibers containing eDNA in biofilms, bacterial cultures, and in twitching motility was also visualized by microscopy. The proposed roles for eDNA are as an adhesin in the early stages of biofilm formation, as an structural component of mature bacterial aggregates, and twitching motility structures. PMID:27248687

  1. Inhibitory activity of isoniazid and ethionamide against Cryptococcus biofilms.

    PubMed

    Cordeiro, Rossana de Aguiar; Serpa, Rosana; Marques, Francisca Jakelyne de Farias; de Melo, Charlline Vládia Silva; Evangelista, Antonio José de Jesus; Mota, Valquíria Ferreira; Brilhante, Raimunda Sâmia Nogueira; Bandeira, Tereza de Jesus Pinheiro Gomes; Rocha, Marcos Fábio Gadelha; Sidrim, José Júlio Costa

    2015-11-01

    In recent years, the search for drugs to treat systemic and opportunistic mycoses has attracted great interest from the scientific community. This study evaluated the in vitro inhibitory effect of the antituberculosis drugs isoniazid and ethionamide alone and combined with itraconazole and fluconazole against biofilms of Cryptococcus neoformans and Cryptococcus gattii. Antimicrobials were tested at defined concentrations after susceptibility assays with Cryptococcus planktonic cells. In addition, we investigated the synergistic interaction of antituberculosis drugs and azole derivatives against Cryptococcus planktonic cells, as well as the influence of isoniazid and ethionamide on ergosterol content and cell membrane permeability. Isoniazid and ethionamide inhibited both biofilm formation and viability of mature biofilms. Combinations formed by antituberculosis drugs and azoles proved synergic against both planktonic and sessile cells, showing an ability to reduce Cryptococcus biofilms by approximately 50%. Furthermore, isoniazid and ethionamide reduced the content of ergosterol in Cryptococcus spp. planktonic cells and destabilized or permeabilized the fungal cell membrane, leading to leakage of macromolecules. Owing to the paucity of drugs able to inhibit Cryptococcus biofilms, we believe that the results presented here might be of interest in the designing of new antifungal compounds.

  2. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  3. Manipulatiaon of Biofilm Microbial Ecology

    SciTech Connect

    Burkhalter, R.; Macnaughton, S.J.; Palmer, R.J.; Smith, C.A.; Whitaker, K.W.; White, D.C.; Zinn, M.; kirkegaard, R.

    1998-08-09

    The Biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms by generated. The most effective monitoring of biofilm formation, succession and desquamation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in the distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  4. Manipulation of Biofilm Microbial Ecology

    SciTech Connect

    White, D.C.; Palmer, R.J., Jr.; Zinn, M.; Smith, C.A.; Burkhalter, R.; Macnaughton, S.J.; Whitaker, K.W.; Kirkegaard, R.D.

    1998-08-15

    The biofilm mode of growth provides such significant advantages to the members of the consortium that most organisms in important habitats are found in biofilms. The study of factors that allow manipulation of biofilm microbes in the biofilm growth state requires that reproducible biofilms be generated. The most effective monitoring of biofilm formation, succession and desaturation is with on-line monitoring of microbial biofilms with flowcell for direct observation. The biofilm growth state incorporates a second important factor, the heterogeneity in distribution in time and space of the component members of the biofilm consortium. This heterogeneity is reflected not only in the cellular distribution but in the metabolic activity within a population of cells. Activity and cellular distribution can be mapped in four dimensions with confocal microscopy, and function can be ascertained by genetically manipulated reporter functions for specific genes or by vital stains. The methodology for understanding the microbial ecology of biofilms is now much more readily available and the capacity to manipulate biofilms is becoming an important feature of biotechnology.

  5. Microbial Lifestyle and Genome Signatures

    PubMed Central

    Dutta, Chitra; Paul, Sandip

    2012-01-01

    Microbes are known for their unique ability to adapt to varying lifestyle and environment, even to the extreme or adverse ones. The genomic architecture of a microbe may bear the signatures not only of its phylogenetic position, but also of the kind of lifestyle to which it is adapted. The present review aims to provide an account of the specific genome signatures observed in microbes acclimatized to distinct lifestyles or ecological niches. Niche-specific signatures identified at different levels of microbial genome organization like base composition, GC-skew, purine-pyrimidine ratio, dinucleotide abundance, codon bias, oligonucleotide composition etc. have been discussed. Among the specific cases highlighted in the review are the phenomena of genome shrinkage in obligatory host-restricted microbes, genome expansion in strictly intra-amoebal pathogens, strand-specific codon usage in intracellular species, acquisition of genome islands in pathogenic or symbiotic organisms, discriminatory genomic traits of marine microbes with distinct trophic strategies, and conspicuous sequence features of certain extremophiles like those adapted to high temperature or high salinity. PMID:23024607

  6. Physicochemical regulation of biofilm formation

    PubMed Central

    Renner, Lars D.; Weibel, Douglas B.

    2011-01-01

    This article reviews the physical and chemical constraints of environments on biofilm formation. We provide a perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention. Specifically, we discuss three factors that impact the development and organization of bacterial communities. (1) Physical properties of surfaces regulate cell attachment and physiology and affect early stages of biofilm formation. (2) Chemical properties influence the adhesion of cells to surfaces and their development into biofilms and communities. (3) Chemical communication between cells attenuates growth and influences the organization of communities. Mechanisms of spatial and temporal confinement control the dimensions of communities and the diffusion path length for chemical communication between biofilms, which, in turn, influences biofilm phenotypes. Armed with a detailed understanding of biofilm formation, researchers are applying the tools and techniques of materials science and engineering to revolutionize the study and control of bacterial communities growing at interfaces. PMID:22125358

  7. Biofilms: Microbial Life on Surfaces

    PubMed Central

    2002-01-01

    Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management. PMID:12194761

  8. Physicochemical regulation of biofilm formation.

    PubMed

    Renner, Lars D; Weibel, Douglas B

    2011-05-01

    This article reviews the physical and chemical constraints of environments on biofilm formation. We provide a perspective on how materials science and engineering can address fundamental questions and unmet technological challenges in this area of microbiology, such as biofilm prevention. Specifically, we discuss three factors that impact the development and organization of bacterial communities. (1) Physical properties of surfaces regulate cell attachment and physiology and affect early stages of biofilm formation. (2) Chemical properties influence the adhesion of cells to surfaces and their development into biofilms and communities. (3) Chemical communication between cells attenuates growth and influences the organization of communities. Mechanisms of spatial and temporal confinement control the dimensions of communities and the diffusion path length for chemical communication between biofilms, which, in turn, influences biofilm phenotypes. Armed with a detailed understanding of biofilm formation, researchers are applying the tools and techniques of materials science and engineering to revolutionize the study and control of bacterial communities growing at interfaces.

  9. Microrheology of bacterial biofilms in vitro: Staphylococcus aureus and Pseudomonas aeruginosa.

    PubMed

    Rogers, S S; van der Walle, C; Waigh, T A

    2008-12-01

    The rheology of bacterial biofilms at the micron scale is an important step to understanding the communal lifecycles of bacteria that adhere to solid surfaces, as it measures how they mutually adhere and desorb. Improvements in particle-tracking software and imaging hardware have allowed us to successfully employ particle-tracking microrheology to measuring single-species bacterial biofilms, based on Staphlococcus aureus and Pseudomonas aeruginosa. By tracking displacements of the cells at a range of timescales, we separate active and thermal contributions to the cell motion. The S. aureus biofilms in particular show power-law rheology, in common with other dense colloidal suspensions. By calculating the mean compliance of S. aureus biofilms, we observe them becoming less compliant during growth, and more compliant during starvation. The biofilms are rheologically inhomogeneous on the micron scale, as a result of the strength of initial adhesion to the flow cell surface, the arrangement of individual bacteria, and larger-scale structures such as flocs of P. aeruginosa. Our S. aureus biofilms became homogeneous as a function of height as they matured: the rheological environment experienced by a bacterium became independent of how far it lived from the flow cell surface. Particle-tracking microrheology provides a quantitative measure of the "strength" of a biofilm. It may therefore prove useful in identifying drug targets and characterizing the effect of specific molecular changes on the micron-scale rheology of biofilms.

  10. Role of flgA for Flagellar Biosynthesis and Biofilm Formation of Campylobacter jejuni NCTC11168.

    PubMed

    Kim, Joo-Sung; Park, Changwon; Kim, Yun-Ji

    2015-11-01

    The complex roles of flagella in the pathogenesis of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are important. Compared with the wild-type, an insertional mutation of the flgA gene (cj0769c) demonstrated significant decrease in the biofilm formation of C. jejuni NCTC11168 on major food contact surfaces, such as polystyrene, stainless steel, and borosilicate glass. The flgA mutant was completely devoid of flagella and non-motile whereas the wild-type displayed the full-length flagella and motility. In addition, the biofilm formation of the wild-type was inversely dependent on the viscosity of the media. These results support that flagellar-mediated motility plays a significant role in the biofilm formation of C. jejuni NCTC11168. Moreover, our adhesion assay suggests that it plays an important role during biofilm maturation after initial attachment. Furthermore, C. jejuni NCTC11168 wild-type formed biofilm with a net-like structure of extracellular fiber-like material, but such a structure was significantly reduced in the biofilm of the flgA mutant. It supports that the extracellular fiber-like material may play a significant role in the biofilm formation of C. jejuni. This study demonstrated that flgA is essential for flagellar biosynthesis and motility, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

  11. In vitro Paracoccidioides brasiliensis biofilm and gene expression of adhesins and hydrolytic enzymes

    PubMed Central

    Sardi, Janaina de Cássia Orlandi; Pitangui, Nayla de Souza; Voltan, Aline Raquel; Braz, Jaqueline Derissi; Machado, Marcelo Pelajo; Fusco Almeida, Ana Marisa; Mendes Giannini, Maria Jose Soares

    2015-01-01

    Paracoccidioides species are dimorphic fungi that initially infect the lungs but can also spread throughout the body. The spreading infection is most likely due to the formation of a biofilm that makes it difficult for the host to eliminate the infection. Biofilm formation is crucial for the development of infections and confines the pathogen to an extracellular matrix. Its presence is associated with antimicrobial resistance and avoidance of host defenses. This current study provides the first description of biofilm formation by Paracoccidioides brasiliensis (Pb18) and an analysis of gene expression, using real-time PCR, associated with 3 adhesins and 2 hydrolytic enzymes that could be associated with the virulence profile. Biofilm formation was analyzed using fluorescence microscopy, scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). Metabolic activity was determined using the XTT reduction assay. P. brasiliensis was able to form mature biofilm in 144 h with a thickness of 100 μm. The presence of a biofilm was found to be associated with an increase in the expression of adhesins and enzymes. GP43, enolase, GAPDH and aspartyl proteinase genes were over-expressed, whereas phospholipase was down-regulated in biofilm. The characterization of biofilm formed by P. brasiliensis may contribute to a better understanding of the pathogenesis of paracoccidioidomycosis as well as the search for new therapeutic alternatives; while improving the effectiveness of treatment. PMID:26055497

  12. Derivatives of the mouse cathelicidin-related antimicrobial peptide (CRAMP) inhibit fungal and bacterial biofilm formation.

    PubMed

    De Brucker, Katrijn; Delattin, Nicolas; Robijns, Stijn; Steenackers, Hans; Verstraeten, Natalie; Landuyt, Bart; Luyten, Walter; Schoofs, Liliane; Dovgan, Barbara; Fröhlich, Mirjam; Michiels, Jan; Vanderleyden, Jos; Cammue, Bruno P A; Thevissen, Karin

    2014-09-01

    We identified a 26-amino-acid truncated form of the 34-amino-acid cathelicidin-related antimicrobial peptide (CRAMP) in the islets of Langerhans of the murine pancreas. This peptide, P318, shares 67% identity with the LL-37 human antimicrobial peptide. As LL-37 displays antimicrobial and antibiofilm activity, we tested antifungal and antibiofilm activity of P318 against the fungal pathogen Candida albicans. P318 shows biofilm-specific activity as it inhibits C. albicans biofilm formation at 0.15 μM without affecting planktonic survival at that concentration. Next, we tested the C. albicans biofilm-inhibitory activity of a series of truncated and alanine-substituted derivatives of P318. Based on the biofilm-inhibitory activity of these derivatives and the length of the peptides, we decided to synthesize the shortened alanine-substituted peptide at position 10 (AS10; KLKKIAQKIKNFFQKLVP). AS10 inhibited C. albicans biofilm formation at 0.22 μM and acted synergistically with amphotericin B and caspofungin against mature biofilms. AS10 also inhibited biofilm formation of different bacteria as well as of fungi and bacteria in a mixed biofilm. In addition, AS10 does not affect the viability or functionality of different cell types involved in osseointegration of an implant, pointing to the potential of AS10 for further development as a lead peptide to coat implants. PMID:24982087

  13. Transcriptomic analysis of the process of biofilm formation in Rhizobium etli CFN42.

    PubMed

    Reyes-Pérez, Agustín; Vargas, María Del Carmen; Hernández, Magdalena; Aguirre-von-Wobeser, Eneas; Pérez-Rueda, Ernesto; Encarnacion, Sergio

    2016-11-01

    Organisms belonging to the genus Rhizobium colonize leguminous plant roots and establish a mutually beneficial symbiosis. Biofilms are structured ecosystems in which microbes are embedded in a matrix of extracellular polymeric substances, and their development is a multistep process. The biofilm formation processes of R. etli CFN42 were analyzed at an early (24-h incubation) and mature stage (72 h), comparing cells in the biofilm with cells remaining in the planktonic stage. A genome-wide microarray analysis identified 498 differentially regulated genes, implying that expression of ~8.3 % of the total R. etli gene content was altered during biofilm formation. In biofilms-attached cells, genes encoding proteins with diverse functions were overexpressed including genes involved in membrane synthesis, transport and chemotaxis, repression of flagellin synthesis, as well as surface components (particularly exopolysaccharides and lipopolysaccharides), in combination with the presence of activators or stimulators of N-acyl-homoserine lactone synthesis This suggests that R. etli is able to sense surrounding environmental conditions and accordingly regulate the transition from planktonic and biofilm growth. In contrast, planktonic cells differentially expressed genes associated with transport, motility (flagellar and twitching) and inhibition of exopolysaccharide synthesis. To our knowledge, this is the first report of nodulation and nitrogen assimilation-related genes being involved in biofilm formation in R. etli. These results contribute to the understanding of the physiological changes involved in biofilm formation by bacteria.

  14. Biofilm formation of Salmonella serotypes in simulated meat processing environments and its relationship to cell characteristics.

    PubMed

    Wang, Huhu; Ding, Shijie; Dong, Yang; Ye, Keping; Xu, Xinglian; Zhou, Guanghong

    2013-10-01

    Salmonella attached to meat contact surfaces encountered in meat processing facilities may serve as a source of cross-contamination. In this study, the influence of serotypes and media on biofilm formation of Salmonella was investigated in a simulated meat processing environment, and the relationships between biofilm formation and cell characteristics were also determined. All six serotypes (Salmonella enterica serotype Heidelberg, Salmonella Derby, Salmonella Agona, Salmonella Indiana, Salmonella Infantis, and Salmonella Typhimurium) can readily form biofilms on stainless steel surfaces, and the amounts of biofilms were significantly influenced by the serotypes, incubation media, and incubation time used in this study. Significant differences in cell surface hydrophobicity, autoaggregation, motility, and growth kinetic parameters were observed between individual serotypes tested. Except for growth kinetic parameters, the cell characteristics were correlated with the ability of biofilm formation incubated in tryptic soy broth, whereas no correlation with biofilm formation incubated in meat thawing-loss broth (an actual meat substrate) was found. Salmonella grown in meat thawing-loss broth showed a "cloud-shaped" morphology in the mature biofilm, whereas when grown in tryptic soy broth it had a "reticulum-shaped" appearance. Our study provides some practical information to understand the process of biofilm formation on meat processing contact surfaces.

  15. Characteristics of Candida albicans Biofilms Grown in a Synthetic Urine Medium▿

    PubMed Central

    Uppuluri, Priya; Dinakaran, Hemamalini; Thomas, Derek P.; Chaturvedi, Ashok K.; Lopez-Ribot, Jose L.

    2009-01-01

    Urinary tract infections (UTIs) are the most common type of nosocomial infection, and Candida albicans is the most frequent organism causing fungal UTIs. Presence of an indwelling urinary catheter represents a significant risk factor for UTIs. Furthermore, these infections are frequently associated with the formation of biofilms on the surface of these catheters. Here, we describe the characterization of C. albicans biofilms formed in vitro using synthetic urine (SU) medium and the frequently used RPMI medium and compare the results. Biofilms of C. albicans strain SC5314 were formed in 96-well microtiter plates and on silicon elastomer pieces using both SU and RPMI media. Biofilm formation was monitored by microscopy and a colorimetric XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. As in biofilms grown in RPMI medium, time course studies revealed that biofilm formation using SU medium occurred after an initial adherence phase, followed by growth, proliferation, and maturation. However, microscopy techniques revealed that the architectural complexity of biofilms formed in SU medium was lower than that observed for those formed using RPMI medium. In particular, the level of filamentation of cells within the biofilms formed in SU medium was diminished compared to those in the biofilms grown in RPMI medium. This observation was also corroborated by expression profiling of five filamentation-associated genes using quantitative real-time reverse transcriptase PCR. Sessile C. albicans cells were resistant to fluconazole and amphotericin B, irrespective of the medium used to form the biofilms. However, caspofungin exhibited potent in vitro activity at therapeutic levels against C. albicans biofilms grown in both SU and RPMI media. PMID:19794044

  16. Characteristics of Candida albicans biofilms grown in a synthetic urine medium.

    PubMed

    Uppuluri, Priya; Dinakaran, Hemamalini; Thomas, Derek P; Chaturvedi, Ashok K; Lopez-Ribot, Jose L

    2009-12-01

    Urinary tract infections (UTIs) are the most common type of nosocomial infection, and Candida albicans is the most frequent organism causing fungal UTIs. Presence of an indwelling urinary catheter represents a significant risk factor for UTIs. Furthermore, these infections are frequently associated with the formation of biofilms on the surface of these catheters. Here, we describe the characterization of C. albicans biofilms formed in vitro using synthetic urine (SU) medium and the frequently used RPMI medium and compare the results. Biofilms of C. albicans strain SC5314 were formed in 96-well microtiter plates and on silicon elastomer pieces using both SU and RPMI media. Biofilm formation was monitored by microscopy and a colorimetric XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] reduction assay. As in biofilms grown in RPMI medium, time course studies revealed that biofilm formation using SU medium occurred after an initial adherence phase, followed by growth, proliferation, and maturation. However, microscopy techniques revealed that the architectural complexity of biofilms formed in SU medium was lower than that observed for those formed using RPMI medium. In particular, the level of filamentation of cells within the biofilms formed in SU medium was diminished compared to those in the biofilms grown in RPMI medium. This observation was also corroborated by expression profiling of five filamentation-associated genes using quantitative real-time reverse transcriptase PCR. Sessile C. albicans cells were resistant to fluconazole and amphotericin B, irrespective of the medium used to form the biofilms. However, caspofungin exhibited potent in vitro activity at therapeutic levels against C. albicans biofilms grown in both SU and RPMI media.

  17. Microbial biofilms are able to destroy hydroxyapatite in the absence of host immunity in vitro

    PubMed Central

    Junka, Adam Feliks; Szymczyk, Patrycja; Smutnicka, Danuta; Kos, Marcin; Smolina, Iryna; Bartoszewicz, Marzenna; Chlebus, Edward; Turniak, Michal; Sedghizadeh, Parish P.

    2014-01-01

    Introduction It is widely thought that inflammation and osteoclastogenesis result in hydroxyapatite (HA) resorption and sequestra formation during osseous infections, and microbial biofilm pathogens induce the inflammatory destruction of HA. We hypothesized that biofilms associated with infectious bone disease can directly resorb HA in the absence of host inflammation or osteoclastogenesis. Therefore, we developed an in vitro model to test this hypothesis. Materials and Methods Customized HA discs were manufactured as a substrate for growing clinically relevant biofilm pathogens. Single-species biofilms of S.mutans, S.aureus, P.aeruginosa and C.albicans, and mixed-species biofilms of C.albicans + S.mutans were incubated on HA discs for 72 hours to grow mature biofilms. Three different non-biofilm control groups were also established for testing. HA discs were then evaluated by means of scanning electron microscopy, micro-CT metrotomography, x-ray spectroscopy and confocal microscopy with planimetric analysis. Additionally, quantitative cultures and pH assessment were performed. ANOVA was used to test for significance between treatment and control groups. Results All investigated biofilms were able to cause significant (P<0.05) and morphologically characteristic alterations in HA structure as compared to controls. The highest number of alterations observed was caused by mixed biofilms of C.albicans + S.mutans. S. mutans biofilm incubated in medium with additional sucrose content was the most detrimental to HA surfaces among single-species biofilms. Conclusion These findings suggest that direct microbial resorption of bone is possible in addition to immune-mediated destruction, which has important translational implications for the pathogenesis of chronic bone infections and for targeted antimicrobial therapeutics. PMID:25544303

  18. Biofilm in endodontics: A review

    PubMed Central

    Jhajharia, Kapil; Parolia, Abhishek; Shetty, K Vikram; Mehta, Lata Kiran

    2015-01-01

    Endodontic disease is a biofilm-mediated infection, and primary aim in the management of endodontic disease is the elimination of bacterial biofilm from the root canal system. The most common endodontic infection is caused by the surface-associated growth of microorganisms. It is important to apply the biofilm concept to endodontic microbiology to understand the pathogenic potential of the root canal microbiota as well as to form the basis for new approaches for disinfection. It is foremost to understand how the biofilm formed by root canal bacteria resists endodontic treatment measures. Bacterial etiology has been confirmed for common oral diseases such as caries and periodontal and endodontic infections. Bacteria causing these diseases are organized in biofilm structures, which are complex microbial communities composed of a great variety of bacteria with different ecological requirements and pathogenic potential. The biofilm community not only gives bacteria effective protection against the host's defense system but also makes them more resistant to a variety of disinfecting agents used as oral hygiene products or in the treatment of infections. Successful treatment of these diseases depends on biofilm removal as well as effective killing of biofilm bacteria. So, the fundamental to maintain oral health and prevent dental caries, gingivitis, and periodontitis is to control the oral biofilms. From these aspects, the formation of biofilms carries particular clinical significance because not only host defense mechanisms but also therapeutic efforts including chemical and mechanical antimicrobial treatment measures have the most difficult task of dealing with organisms that are gathered in a biofilm. The aim of this article was to review the mechanisms of biofilms’ formation, their roles in pulpal and periapical pathosis, the different types of biofilms, the factors influencing biofilm formation, the mechanisms of their antimicrobial resistance, techniques to

  19. Biofilm Roughness Determines Cryptosporidium parvum Retention in Environmental Biofilms

    PubMed Central

    Hargreaves, B. R.; Jellison, K. L.

    2012-01-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales. PMID:22492449

  20. Biofilm roughness determines Cryptosporidium parvum retention in environmental biofilms.

    PubMed

    DiCesare, E A Wolyniak; Hargreaves, B R; Jellison, K L

    2012-06-01

    The genus Cryptosporidium is a group of waterborne protozoan parasites that have been implicated in significant outbreaks of gastrointestinal infections throughout the world. Biofilms trap these pathogens and can contaminate water supplies through subsequent release. Biofilm microbial assemblages were collected seasonally from three streams in eastern Pennsylvania and used to grow biofilms in laboratory microcosms. Daily oocyst counts in the influx and efflux flow allowed the calculation of daily oocyst retention in the biofilm. Following the removal of oocysts from the influx water, oocyst attachment to the biofilm declined to an equilibrium state within 5 days that was sustained for at least 25 days. Varying the oocyst loading rate for the system showed that biofilm retention could be saturated, suggesting that discrete binding sites determined the maximum number of oocysts retained. Oocyst retention varied seasonally but was consistent across all three sites; however, seasonal oocyst retention was not consistent across years at the same site. No correlation between oocyst attachment and any measured water quality parameter was found. However, oocyst retention was strongly correlated with biofilm surface roughness and roughness varied among seasons and across years. We hypothesize that biofilm roughness and oocyst retention are dependent on environmentally driven changes in the biofilm community rather than directly on water quality conditions. It is important to understand oocyst transport dynamics to reduce risks of human infection. Better understanding of factors controlling biofilm retention of oocysts should improve our understanding of oocyst transport at different scales.

  1. The protein tyrosine kinases EpsB and PtkA differentially affect biofilm formation in Bacillus subtilis

    PubMed Central

    Gerwig, Jan; Kiley, Taryn B.; Gunka, Katrin; Stanley-Wall, Nicola

    2014-01-01

    The Gram-positive soil bacterium Bacillus subtilis is able to choose between motile and sessile lifestyles. The sessile way of life, also referred to as biofilm, depends on the formation of an extracellular polysaccharide matrix and some extracellular proteins. Moreover, a significant proportion of cells in a biofilm form spores. The first two genes of the 15-gene operon for extracellular polysaccharide synthesis, epsA and epsB, encode a putative transmembrane modulator protein and a putative protein tyrosine kinase, respectively, with similarity to the TkmA/PtkA modulator/kinase couple. Here we show that the putative kinase EpsB is required for the formation of structured biofilms. However, an epsB mutant is still able to form biofilms. As shown previously, a ptkA mutant is also partially defective in biofilm formation, but this defect is related to spore formation in the biofilm. The absence of both kinases resulted in a complete loss of biofilm formation. Thus, EpsB and PtkA fulfil complementary functions in biofilm formation. The activity of bacterial protein tyrosine kinases depends on their interaction with modulator proteins. Our results demonstrate the specific interaction between the putative kinase EpsB and its modulator protein EpsA and suggest that EpsB activity is stimulated by its modulator EpsA. PMID:24493247

  2. Biofilm Cohesive Strength as a Basis for Biofilm Recalcitrance: Are Bacterial Biofilms Overdesigned?

    PubMed Central

    Aggarwal, Srijan; Stewart, Philip S.; Hozalski, Raymond M.

    2015-01-01

    Bacterial biofilms are highly resistant to common antibacterial treatments, and several physiological explanations have been offered to explain the recalcitrant nature of bacterial biofilms. Herein, a biophysical aspect of biofilm recalcitrance is being reported on. While engineering structures are often overdesigned with a factor of safety (FOS) usually under 10, experimental measurements of biofilm cohesive strength suggest that the FOS is on the order of thousands. In other words, bacterial biofilms appear to be designed to withstand extreme forces rather than typical or average loads. In scenarios requiring the removal or control of unwanted biofilms, this emphasizes the importance of considering strategies for structurally weakening the biofilms in conjunction with bacterial inactivation. PMID:26819559

  3. PATHOGENICITY OF BIOFILM BACTERIA

    EPA Science Inventory

    There is a paucity of information concerning any link between the microorganisms commonly found in biofilms of drinking water systems and their impacts on human health. For bacteria, culture-based techniques detect only a limited number of the total microorganisms associated wit...

  4. [Biofilms in otolaryngology].

    PubMed

    Mena Viveros, Nicolás

    2014-01-01

    According to the National Institute of Health of the USA, «more than 60% of all microbial infections are caused by biofilms».'This can surprise us, but it is enough to consider that common infections like those of the genito-urinary tract, infections produced by catheters, middle ear infections in children, the formation of dental plaque and gingivitis are caused by biofilms, for this statement to seem more realistic. At present this is one of the subjects of great interest within medicine, particularly in otolaryngology. Bacteria have traditionally been considered to be in a free state without evident organization, partly perhaps by the ease of studying them in this form. Nevertheless, the reality is that, in nature, the great majority of these germs form complex colonies adhered to surfaces, colonies that have received the name of biofilms. These biofilms are more common than previously thought and almost all of the people have been in contact with them in the form of infections in the teeth or humid, slippery areas. New treatments that can eradicate them are currently being investigated.

  5. [Urinary catheter biofilm infections].

    PubMed

    Holá, V; Růzicka, F

    2008-04-01

    Urinary tract infections, most of which are biofilm infections in catheterized patients, account for more than 40% of hospital infections. Bacterial colonization of the urinary tract and catheters causes not only infection but also other complications such as catheter blockage by bacterial encrustation, urolithiasis and pyelonephritis. About 50% of long-term catheterized patients face urinary flow obstruction due to catheter encrustation, but no measure is currently available to prevent it. Encrustation has been known either to result from metabolic dysfunction or to be of microbial origin, with urease positive bacterial species implicated most often. Infectious calculi account for about 15-20% of all cases of urolithiasis and are often associated with biofilm colonization of a long-term indwelling urinary catheter or urethral stent. The use of closed catheter systems is helpful in reducing such problems; nevertheless, such a system only delays the inevitable, with infections emerging a little later. Various coatings intended to prevent the bacterial adhesion to the surface of catheters and implants and thus also the emergence of biofilm infections, unfortunately, do not inhibit the microbial adhesion completely and permanently and the only reliable method for biofilm eradication remains the removal of the foreign body from the patient.

  6. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface.

    PubMed

    Madeira, Petrus L B; Carvalho, Letícia T; Paschoal, Marco A B; de Sousa, Eduardo M; Moffa, Eduardo B; da Silva, Marcos A Dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  7. In vitro Effects of Lemongrass Extract on Candida albicans Biofilms, Human Cells Viability, and Denture Surface

    PubMed Central

    Madeira, Petrus L. B.; Carvalho, Letícia T.; Paschoal, Marco A. B.; de Sousa, Eduardo M.; Moffa, Eduardo B.; da Silva, Marcos A. dos Santos; Tavarez, Rudys de Jesus Rodolfo; Gonçalves, Letícia M.

    2016-01-01

    The purpose of this study was to investigate whether immersion of a denture surface in lemongrass extract (LGE) has effects on C. albicans biofilms, human cell viability and denture surface. Minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) were performed for LGE against C. albicans. For biofilm analysis, discs were fabricated using a denture acrylic resin with surface roughness standardization. C. albicans biofilms were developed on saliva-coated discs, and the effects of LGE at MIC, 5XMIC, and 10XMIC were investigated during biofilm formation and after biofilm maturation. Biofilms were investigated for cell counting, metabolic activity, and microscopic analysis. The cytotoxicity of different concentrations of LGE to peripheral blood mononuclear cells (PBMC) was analyzed using MTT. The effects of LGE on acrylic resin were verified by measuring changes in roughness, color and flexural strength after 28 days of immersion. Data were analyzed by ANOVA, followed by a Tukey test at a 5% significance level. The minimal concentration of LGE required to inhibit C. albicans growth was 0.625 mg/mL, while MFC was 2.5 mg/mL. The presence of LGE during biofilm development resulted in a reduction of cell counting (p < 0.05), which made the MIC sufficient to reduce approximately 90% of cells (p < 0.0001). The exposure of LGE after biofilm maturation also had a significant antifungal effect at all concentrations (p < 0.05). When compared to the control group, the exposure of PBMC to LGE at MIC resulted in similar viability (p > 0.05). There were no verified differences in color perception, roughness, or flexural strength after immersion in LGE at MIC compared to the control (p > 0.05). It could be concluded that immersion of the denture surface in LGE was effective in reducing C. albicans biofilms with no deleterious effects on acrylic properties at MIC. MIC was also an effective and safe concentration for use. PMID:27446818

  8. Phenylpropanoids of plant origin as inhibitors of biofilm formation by Candida albicans.

    PubMed

    Raut, Jayant Shankar; Shinde, Ravikumar Bapurao; Chauhan, Nitin Mahendra; Karuppayil, Sankunny Mohan

    2014-09-01

    Biofilm-related infections of Candida albicans are a frequent cause of morbidity and mortality in hospitalized patients, especially those with immunocompromised status. Options of the antifungal drugs available for successful treatment of drug-resistant biofilms are very few, and as such, new strategies need to be explored against them. The aim of this study was to evaluate the efficacy of phenylpropanoids of plant origin against planktonic cells, important virulence factors, and biofilm forms of C. albicans. Standard susceptibility testing protocol was used to evaluate the activities of 13 phenylpropanoids against planktonic growth. Their effects on adhesion and yeast-to-hyphae morphogenesis were studied in microplate-based methodologies. An in vitro biofilm model analyzed the phenylpropanoid-mediated prevention of biofilm development and mature biofilms using XTT-metabolic assay, crystal violet assay, and light microscopy. Six molecules exhibited fungistatic activity at ≤0.5 mg/ml, of which four were fungicidal at low concentrations. Seven phenylpropanoids inhibited yeast-to-hyphae transition at low concentrations (0.031-0.5 mg/ml), whereas adhesion to the solid substrate was prevented in the range of 0.5-2 mg/ml. Treatment with ≤0.5 mg/ml concentrations of at least six small molecules resulted in significant (p < 0.05) inhibition of biofilm formation by C. albicans. Mature biofilms that are highly resistant to antifungal drugs were susceptible to low concentrations of 4 of the 13 molecules. This study revealed phenylpropanoids of plant origin as promising candidates to devise preventive strategies against drug-resistant biofilms of C. albicans. PMID:24851813

  9. Host contributions to construction of three device-associated Candida albicans biofilms.

    PubMed

    Nett, Jeniel E; Zarnowski, Robert; Cabezas-Olcoz, Jonathan; Brooks, Erin G; Bernhardt, Jörg; Marchillo, Karen; Mosher, Deane F; Andes, David R

    2015-12-01

    Among the most fascinating virulence attributes of Candida is the ability to transition to a biofilm lifestyle. As a biofilm, Candida cells adhere to a surface, such as a vascular catheter, and become encased in an extracellular matrix. During this mode of growth, Candida resists the normal immune response, often causing devastating disease. Based on scanning electron microscopy images, we hypothesized that host cells and proteins become incorporated into clinical biofilms. As a means to gain an understanding of these host-biofilm interactions, we explored biofilm-associated host components by using microscopy and liquid chromatography-mass spectrometry. Here we characterize the host proteins associated with several in vivo rat Candida albicans biofilms, including those from vascular catheter, denture, and urinary catheter models as well as uninfected devices. A conserved group of 14 host proteins were found to be more abundant during infection at each of the niches. The host proteins were leukocyte and erythrocyte associated and included proteins involved in inflammation, such as C-reactive protein, myeloperoxidase, and alarmin S100-A9. A group of 59 proteins were associated with both infected and uninfected devices, and these included matricellular and inflammatory proteins. In addition, site-specific proteins were identified, such as amylase in association with the denture device. Cellular analysis revealed neutrophils as the predominant leukocytes associating with biofilms. These experiments demonstrate that host cells and proteins are key components of in vivo Candida biofilms, likely with one subset associating with the device and another being recruited by the proliferating biofilm.

  10. Host contributions to construction of three device-associated Candida albicans biofilms.

    PubMed

    Nett, Jeniel E; Zarnowski, Robert; Cabezas-Olcoz, Jonathan; Brooks, Erin G; Bernhardt, Jörg; Marchillo, Karen; Mosher, Deane F; Andes, David R

    2015-12-01

    Among the most fascinating virulence attributes of Candida is the ability to transition to a biofilm lifestyle. As a biofilm, Candida cells adhere to a surface, such as a vascular catheter, and become encased in an extracellular matrix. During this mode of growth, Candida resists the normal immune response, often causing devastating disease. Based on scanning electron microscopy images, we hypothesized that host cells and proteins become incorporated into clinical biofilms. As a means to gain an understanding of these host-biofilm interactions, we explored biofilm-associated host components by using microscopy and liquid chromatography-mass spectrometry. Here we characterize the host proteins associated with several in vivo rat Candida albicans biofilms, including those from vascular catheter, denture, and urinary catheter models as well as uninfected devices. A conserved group of 14 host proteins were found to be more abundant during infection at each of the niches. The host proteins were leukocyte and erythrocyte associated and included proteins involved in inflammation, such as C-reactive protein, myeloperoxidase, and alarmin S100-A9. A group of 59 proteins were associated with both infected and uninfected devices, and these included matricellular and inflammatory proteins. In addition, site-specific proteins were identified, such as amylase in association with the denture device. Cellular analysis revealed neutrophils as the predominant leukocytes associating with biofilms. These experiments demonstrate that host cells and proteins are key components of in vivo Candida biofilms, likely with one subset associating with the device and another being recruited by the proliferating biofilm. PMID:26371129

  11. Host Contributions to Construction of Three Device-Associated Candida albicans Biofilms

    PubMed Central

    Nett, Jeniel E.; Zarnowski, Robert; Cabezas-Olcoz, Jonathan; Brooks, Erin G.; Bernhardt, Jörg; Marchillo, Karen; Mosher, Deane F.

    2015-01-01

    Among the most fascinating virulence attributes of Candida is the ability to transition to a biofilm lifestyle. As a biofilm, Candida cells adhere to a surface, such as a vascular catheter, and become encased in an extracellular matrix. During this mode of growth, Candida resists the normal immune response, often causing devastating disease. Based on scanning electron microscopy images, we hypothesized that host cells and proteins become incorporated into clinical biofilms. As a means to gain an understanding of these host-biofilm interactions, we explored biofilm-associated host components by using microscopy and liquid chromatography-mass spectrometry. Here we characterize the host proteins associated with several in vivo rat Candida albicans biofilms, including those from vascular catheter, denture, and urinary catheter models as well as uninfected devices. A conserved group of 14 host proteins were found to be more abundant during infection at each of the niches. The host proteins were leukocyte and erythrocyte associated and included proteins involved in inflammation, such as C-reactive protein, myeloperoxidase, and alarmin S100-A9. A group of 59 proteins were associated with both infected and uninfected devices, and these included matricellular and inflammatory proteins. In addition, site-specific proteins were identified, such as amylase in association with the denture device. Cellular analysis revealed neutrophils as the predominant leukocytes associating with biofilms. These experiments demonstrate that host cells and proteins are key components of in vivo Candida biofilms, likely with one subset associating with the device and another being recruited by the proliferating biofilm. PMID:26371129

  12. Comparative analysis of biofilm formation by Bacillus cereus reference strains and undomesticated food isolates and the effect of free iron.

    PubMed

    Hayrapetyan, Hasmik; Muller, Lisette; Tempelaars, Marcel; Abee, Tjakko; Nierop Groot, Masja

    2015-05-01

    Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms. Sporulation was favoured in the biofilm over the planktonic state. To substantiate whether iron availability could affect B. cereus biofilm formation, the free iron availability was varied in BHI by either the addition of FeCl3 or by depletion of iron with the scavenger 2,2-Bipyridine. Addition of iron resulted in increased air-liquid interface biofilm on polystyrene but not on SS for strain ATCC 10987, while the presence of Bipyridine reduced biofilm formation for both materials. Biofilm formation was restored when excess FeCl3 was added in combination with the scavenger. Further validation of the iron effect for all 23 strains in microtiter plate showed that fourteen strains (including ATCC10987) formed a biofilm on PS. For eight of these strains biofilm formation was enhanced in the presence of added iron and for eleven strains it was reduced when free iron was scavenged. Our results show that stainless steel as a contact material provides more favourable conditions for B. cereus biofilm formation and maturation compared to polystyrene. This effect could possibly be linked to iron availability as we show that free iron availability affects B. cereus biofilm formation.

  13. New Weapons to Fight Old Enemies: Novel Strategies for the (Bio)control of Bacterial Biofilms in the Food Industry

    PubMed Central

    Coughlan, Laura M.; Cotter, Paul D.; Hill, Colin; Alvarez-Ordóñez, Avelino

    2016-01-01

    Biofilms are microbial communities characterized by their adhesion to solid surfaces and the production of a matrix of exopolymeric substances, consisting of polysaccharides, proteins, DNA and lipids, which surround the microorganisms lending structural integrity and a unique biochemical profile to the biofilm. Biofilm formation enhances the ability of the producer/s to persist in a given environment. Pathogenic and spoilage bacterial species capable of forming biofilms are a significant problem for the healthcare and food industries, as their biofilm-forming ability protects them from common cleaning processes and allows them to remain in the environment post-sanitation. In the food industry, persistent bacteria colonize the inside of mixing tanks, vats and tubing, compromising food safety and quality. Strategies to overcome bacterial persistence through inhibition of biofilm formation or removal of mature biofilms are therefore necessary. Current biofilm control strategies employed in the food industry (cleaning and disinfection, material selection and surface preconditioning, plasma treatment, ultrasonication, etc.), although effective to a certain point, fall short of biofilm control. Efforts have been explored, mainly with a view to their application in pharmaceutical and healthcare settings, which focus on targeting molecular determinants regulating biofilm formation. Their application to the food industry would greatly aid efforts to eradicate undesirable bacteria from food processing environments and, ultimately, from food products. These approaches, in contrast to bactericidal approaches, exert less selective pressure which in turn would reduce the likelihood of resistance development. A particularly interesting strategy targets quorum sensing systems, which regulate gene expression in response to fluctuations in cell-population density governing essential cellular processes including biofilm formation. This review article discusses the problems associated

  14. Livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) isolates of swine origin form robust biofilms.

    PubMed

    Nicholson, Tracy L; Shore, Sarah M; Smith, Tara C; Frana, Timothy S; Fraena, Timothy S

    2013-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) colonization of livestock animals is common and prevalence rates for pigs have been reported to be as high as 49%. Mechanisms contributing to the persistent carriage and high prevalence rates of livestock-associated methicillin-resistant Staphylococcus aureus (LA-MRSA) strains in swine herds and production facilities have not been investigated. One explanation for the high prevalence of MRSA in swine herds is the ability of these organisms to exist as biofilms. In this report, the ability of swine LA-MRSA strains, including ST398, ST9, and ST5, to form biofilms was quantified and compared to several swine and human isolates. The contribution of known biofilm matrix components, polysaccharides, proteins and extracellular DNA (eDNA), was tested in all strains as well. All MRSA swine isolates formed robust biofilms similar to human clinical isolates. The addition of Dispersin B had no inhibitory effect on swine MRSA isolates when added at the initiation of biofilm growth or after pre-established mature biofilms formed. In contrast, the addition of proteinase K inhibited biofilm formation in all strains when added at the initiation of biofilm growth and was able to disperse pre-established mature biofilms. Of the LA-MRSA strains tested, we found ST398 strains to be the most sensitive to both inhibition of biofilm formation and dispersal of pre-formed biofilms by DNaseI. Collectively, these findings provide a critical first step in designing strategies to control or eliminate MRSA in swine herds.

  15. Lifestyles of Adult Omani Women

    PubMed Central

    Al-Habsi, Azza; Kilani, Hashem

    2015-01-01

    Objectives: This study aimed to investigate the lifestyles of adult Omani women with regards to physical activity (PA) levels and sedentary behaviour (SB). Methods: The study was carried out between May and June 2013 and included a total of 277 healthy women aged 18–48 years from five governorates in Oman. Total, moderate and vigorous PA levels and walking were self-reported by participants using the short form of the International Physical Activity Questionnaire. SB (total sitting time and different types of sitting time) was self-reported using the Domain-Specific Sitting Time Questionnaire on both working and non-working days. PA levels and SB were also objectively measured among 86 of the participants using an accelerometer. Results: The self-reported median ± interquartile range (IQR) total PA was 1,516 ± 3,392 metabolic equivalent of task minutes/week. The self-reported median ± IQR total sitting time was 433 ± 323 minutes/day and 470 ± 423 minutes/day for working and non-working days, respectively. Sitting at work on working days and sitting during leisure activities on non-working days formed the greatest proportion of total sitting time. Overall, accelerometer results indicated that participants spent 62% of their time involved in SB, 35% in light PA and only 3% in moderate to vigorous PA. Conclusion: Sedentary lifestyles were common among the adult Omani women studied. Lack of PA and increased SB is known to increase the risk of metabolic syndrome and obesity. The use of accelerometers to monitor PA and SB among different groups in Oman is highly recommended in order to accurately assess the lifestyle risks of this population. PMID:26052460

  16. Anorexia Nervosa: A Lifestyle Disorder

    PubMed Central

    Talbot, Yves

    1983-01-01

    Anorexia nervosa is a real lifestyle disorder. The apparent increase in frequency has been linked to the change of position of women in society. If families have an important role to play in the maintenance of the drama, they also hold the key to its resolution. The family physician in early contact with the anorectic patient is in an important position to involve the family in therapy and maximize the chances of recovery. The steps required are reframing, preparing the family involved for family therapy, exploring the benefits of change, and follow up. Imagesp555-a PMID:21283351

  17. Influence of volatile organic compounds emitted by Pseudomonas and Serratia strains on Agrobacterium tumefaciens biofilms.

    PubMed

    Plyuta, Vladimir; Lipasova, Valentina; Popova, Alexandra; Koksharova, Olga; Kuznetsov, Alexander; Szegedi, Erno; Chernin, Leonid; Khmel, Inessa

    2016-07-01

    The ability to form biofilms plays an important role in bacteria-host interactions, including plant pathogenicity. In this work, we investigated the action of volatile organic compounds (VOCs) produced by rhizospheric strains of Pseudomonas chlororaphis 449, Pseudomonas fluorescens B-4117, Serratia plymuthica IC1270, as well as Serratia proteamaculans strain 94, isolated from spoiled meat, on biofilms formation by three strains of Agrobacterium tumefaciens which are causative agents of crown-gall disease in a wide range of plants. In dual culture assays, the pool of volatiles emitted by the tested Pseudomonas and Serratia strains suppressed the formation of biofilms of A. tumefaciens strains grown on polycarbonate membrane filters and killed Agrobacterium cells in mature biofilms. The individual VOCs produced by the tested Pseudomonas strains, that is, ketones (2-nonanone, 2-heptanone, 2-undecanone), and dimethyl disulfide (DMDS) produced by Serratia strains, were shown to kill A. tumefaciens cells in mature biofilms and suppress their formation. The data obtained in this study suggest an additional potential of some ketones and DMDS as protectors of plants against A. tumefaciens strains, whose virulence is associated with the formation of biofilms on the infected plants. PMID:27214244

  18. Actinobacillus pleuropneumoniae genes expression in biofilms cultured under static conditions and in a drip-flow apparatus

    PubMed Central

    2013-01-01

    Background Actinobacillus pleuropneumoniae is the Gram-negative bacterium responsible for porcine pleuropneumonia. This respiratory infection is highly contagious and characterized by high morbidity and mortality. The objectives of our study were to study the transcriptome of A. pleuropneumoniae biofilms at different stages and to develop a protocol to grow an A. pleuropneumoniae biofilm in a drip-flow apparatus. This biofilm reactor is a system with an air-liquid interface modeling lung-like environment. Bacteria attached to a surface (biofilm) and free floating bacteria (plankton) were harvested for RNA isolation. Labelled cDNA was hybridized to a microarray to compare the expression profiles of planktonic cells and biofilm cells. Results It was observed that 47 genes were differentially expressed (22 up, 25 down) in a 4 h-static growing/maturing biofilm and 117 genes were differentially expressed (49 up, 68 down) in a 6h-static dispersing biofilm. The transcriptomes of a 4 h biofilm and a 6 h biofilm were also compared and 456 genes (235 up, 221 down) were identified as differently expressed. Among the genes identified in the 4 h vs 6h biofilm experiment, several regulators of stress response were down-regulated and energy metabolism associated genes were up-regulated. Biofilm bacteria cultured using the drip-flow apparatus differentially expressed 161 genes (68 up, 93 down) compared to the effluent bacteria. Cross-referencing of differentially transcribed genes in the different assays revealed that drip-flow biofilms shared few differentially expressed genes with static biofilms (4 h or 6 h) but shared several differentially expressed genes with natural or experimental infections in pigs. Conclusion The formation of a static biofilm by A. pleuropneumoniae strain S4074 is a rapid process and transcriptional analysis indicated that dispersal observed at 6 h is driven by nutritional stresses. Furthermore, A. pleuropneumoniae can form a biofilm under low

  19. Proteome Profiles of Outer Membrane Vesicles and Extracellular Matrix of Pseudomonas aeruginosa Biofilms.

    PubMed

    Couto, Narciso; Schooling, Sarah R; Dutcher, John R; Barber, Jill

    2015-10-01

    In the present work, two different proteomic platforms, gel-based and gel-free, were used to map the matrix and outer membrane vesicle exoproteomes of Pseudomonas aeruginosa PAO1 biofilms. These two proteomic strategies allowed us a confident identification of 207 and 327 proteins from enriched outer membrane vesicles and whole matrix isolated from biofilms. Because of the physicochemical characteristics of these subproteomes, the two strategies showed complementarity, and thus, the most comprehensive analysis of P. aeruginosa exoproteome to date was achieved. Under our conditions, outer membrane vesicles contribute approximately 20% of the whole matrix proteome, demonstrating that membrane vesicles are an important component of the matrix. The proteomic profiles were analyzed in terms of their biological context, namely, a biofilm. Accordingly relevant metabolic processes involved in cellular adaptation to the biofilm lifestyle as well as those related to P. aeruginosa virulence capabilities were a key feature of the analyses. The diversity of the matrix proteome corroborates the idea of high heterogeneity within the biofilm; cells can display different levels of metabolism and can adapt to local microenvironments making this proteomic analysis challenging. In addition to analyzing our own primary data, we extend the analysis to published data by other groups in order to deepen our understanding of the complexity inherent within biofilm populations. PMID:26303878

  20. [Insomnia and lifestyle-related diseases].

    PubMed

    Uchimura, Naohisa

    2012-07-01

    As both insomnia and lifestyle-related diseases are associated with a variety of underlying factors, they have been considered to occur as a complication of each other. Moreover, evidence has been presented in recent studies that they are closely related to each other as risks of development and exacerbation. As unhealthy lifestyle-habits have long been recognized to increase the risks of lifestyle-related diseases and their worsening, it is natural that sleep, which takes up one third of a person's life, is markedly associated with disorders such as hypertension and diabetes. It is important to provide interventions for insomnia and other sleep disorders based on the same viewpoint as for lifestyle-related diseases, and understand that lifestyle advice, including sleep hygiene, and drug treatment with sleeping pills are also effective for the treatment of lifestyle-related diseases themselves. PMID:22844789

  1. Biofilm susceptibility to metal toxicity.

    PubMed

    Harrison, Joe J; Ceri, Howard; Stremick, Carol A; Turner, Raymond J

    2004-12-01

    This study compared bacterial biofilm and planktonic cell susceptibility to metal toxicity by evaluating the minimum inhibitory concentration (MIC), the planktonic minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) using the MBEC device. In total, 17 metal cations and oxyanions, chosen to represent groups VIB to VIA of the periodic table, were each tested on biofilm and planktonic cultures of Escherichia coli JM109, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. In contrast to control antibiotic assays, where biofilm cultures were 2 to 64 times less susceptible to killing than logarithmically growing planktonic bacteria, metal compounds killed planktonic and biofilm cultures at the same concentration in the vast majority of combinations. Our data indicate that, under the conditions reported, growth in a biofilm does not provide resistance to bacteria against killing by metal cations or oxyanions.

  2. Engineering biofilm formation and dispersal

    PubMed Central

    Wood, Thomas K.; Hong, Seok Hoon; Ma, Qun

    2011-01-01

    Anywhere water is in the liquid state, bacteria will exist as biofilms, which are complex communities of cells cemented together. Although frequently associated with disease and biofouling, biofilms are also important for engineering applications, such as bioremediation, biocatalysis and microbial fuel cells. Here we review approaches to alter genetic circuits and cell signaling toward controlling biofilm formation, and emphasize utilizing these tools for engineering applications. Based on a better understanding of the genetic basis of biofilm formation, we find that biofilms may be controlled by manipulating extracellular signals and that they may be dispersed using conserved intracellular signals and regulators. Biofilms could also be formed at specific locations where they might be engineered to make chemicals or treat human disease. PMID:21131080

  3. New Technologies for Studying Biofilms

    PubMed Central

    FRANKLIN, MICHAEL J.; CHANG, CONNIE; AKIYAMA, TATSUYA; BOTHNER, BRIAN

    2016-01-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  4. Electrochemical biofilm control: a review.

    PubMed

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are: (1) to present the current status of knowledge regarding electrochemical biofilm control; (2) to establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it; (3) to discuss current proposed mechanisms; and (4) to introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing datasets across the literature and generating comparable datasets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use.

  5. Electrochemical biofilm control: A review

    PubMed Central

    Sultana, Sujala T; Babauta, Jerome T; Beyenal, Haluk

    2015-01-01

    One of the methods of controlling biofilms that has widely been discussed in the literature is to apply a potential or electrical current to a metal surface on which the biofilm is growing. Although electrochemical biofilm control has been studied for decades, the literature is often conflicting, as is detailed in this review. The goals of this review are to (1) present the current status of knowledge regarding electrochemical biofilm control, (2) establish a basis for a fundamental definition of electrochemical biofilm control and requirements for studying it, (3) discuss current proposed mechanisms, and (4) introduce future directions in the field. It is expected that the review will provide researchers with guidelines on comparing data sets across the literature and generating comparable data sets. The authors believe that, with the correct design, electrochemical biofilm control has great potential for industrial use. PMID:26592420

  6. New Technologies for Studying Biofilms.

    PubMed

    Franklin, Michael J; Chang, Connie; Akiyama, Tatsuya; Bothner, Brian

    2015-08-01

    Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level. PMID:26350329

  7. Miconazole activity against Candida biofilms developed on acrylic discs.

    PubMed

    Gebremedhin, S; Dorocka-Bobkowska, B; Prylinski, M; Konopka, K; Duzgunes, N

    2014-08-01

    Oral candidiasis in the form of Candida-associated denture stomatitis (CaDS) is associated with Candida adhesion and biofilm formation on the fitting surface of poly (methyl methacrylate) (PMMA) dentures. Candida biofilms show considerable resistance to most conventional antifungal agents, a phenomenon that is considered a developmental-phase-specific event that may help explain the high recurrence rates associated with CaDS. The aim of this study was to examine the activity of miconazole towards in vitro-grown mature Candida biofilms formed on heat-cured PMMA discs as a standardized model. The effect of miconazole nitrate on Candida biofilms developed on acrylic discs was determined for C. albicans MYA-2732 (ATCC), C. glabrata MYA-275 (ATCC), and clinical isolates, C. albicans 6122/06, C. glabrata 7531/06, C. tropicalis 8122/06, and C. parapsilosis 11375/07. Candida biofilms were developed on heat-cured poly(methyl methacrylate) discs and treated with miconazole (0.5 - 96 μg/ml). The metabolic activity of the biofilms was measured by the XTT reduction assay. The minimum inhibitory concentrations (MICs) of miconazole against Candida species were determined by the microdilution method. The MICs for miconazole for the investigated strains ranged from 0.016-32 μg/ml. Treatment with miconazole resulted in a significant reduction of biofilm metabolic activity for all strains. The highest inhibition was observed at 96 μg/ml miconazole. In the case of C. glabrata MYA-275 and C. tropicalis 8122/06 this corresponded to 83.7% and 75.4% inhibition, respectively. The lowest reduction was observed for C. parapsilosis 11375/07-46.1%. For all Candida strains there was a strong correlation between MIC values and miconazole concentrations corresponding to a reduction of metabolic activity of the biofilm by 50%. Miconazole exhibits high antifungal activity against Candida biofilms developed on the surface of PMMA discs. The study provides support for the use of miconazole as an

  8. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria*

    PubMed Central

    Valentini, Martina

    2016-01-01

    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa. This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission. PMID:27129226

  9. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria.

    PubMed

    Valentini, Martina; Filloux, Alain

    2016-06-10

    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission.

  10. Inhibition of Candida albicans Biofilm Formation by Farnesol, a Quorum-Sensing Molecule

    PubMed Central

    Ramage, Gordon; Saville, Stephen P.; Wickes, Brian L.; López-Ribot, José L.

    2002-01-01

    Farnesol is a quorum-sensing molecule that inhibits filamentation in Candida albicans. Both filamentation and quorum sensing are deemed to be important factors in C. albicans biofilm development. Here we examined the effect of farnesol on C. albicans biofilm formation. C. albicans adherent cell populations (after 0, 1, 2, and 4 h of adherence) and preformed biofilms (24 h) were treated with various concentrations of farnesol (0, 3, 30, and 300 μM) and incubated at 37°C for 24 h. The extent and characteristics of biofilm formation were then assessed microscopically and with a semiquantitative colorimetric technique based on the use of 2,3-bis(2-methoxy-4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The results indicated that the effect of farnesol was dependent on the concentration of this compound and the initial adherence time, and preincubation with 300 μM farnesol completely inhibited biofilm formation. Supernatant media recovered from mature biofilms inhibited the ability of planktonic C. albicans to form filaments, indicating that a morphogenetic autoregulatory compound is produced in situ in biofilms. Northern blot analysis of RNA extracted from cells in biofilms indicated that the levels of expression of HWP1, encoding a hypha-specific wall protein, were decreased in farnesol-treated biofilms compared to the levels in controls. Our results indicate that farnesol acts as a naturally occurring quorum-sensing molecule which inhibits biofilm formation, and we discuss its potential for further development and use as a novel therapeutic agent. PMID:12406738

  11. Role of Tec1 in the development, architecture, and integrity of sexual biofilms of Candida albicans.

    PubMed

    Daniels, Karla J; Srikantha, Thyagarajan; Pujol, Claude; Park, Yang-Nim; Soll, David R

    2015-03-01

    MTL-homozygous ( A: / A: or α/α) white cells form a complex sexual biofilm that exhibits the same architecture as that of MTL-heterozygous ( A: /α) pathogenic biofilms. However, the former is regulated by the mitogen-activated protein (MAP) kinase pathway, while the latter is regulated by the Ras1/cyclic AMP (cAMP) pathway. We previously demonstrated that in the formation of an MTL-homozygous, mature (48 h) sexual biofilm in RPMI 1640 medium, the MAP kinase pathway targets Tec1 rather than Cph1, the latter of which is the target of the same pathway, but for the opaque cell mating response. Here we continued our analysis of the role of Tec1 by comparing the effects of deleting TEC1 on initial adhesion to silicone elastomer, high-resolution confocal microscopy assessments of the stages and cellular phenotypes during the 48 h of biofilm development, human white cell penetration, and biofilm fragility. We show that although Tec1 plays only a minor role in initial adhesion to the silicone elastomer, it does play a major role in the growth of the basal yeast cell polylayer, vertical extension of hyphae and matrix deposition in the upper portion of the biofilm, final biofilm thickness, penetrability of human white blood cells, and final biofilm integrity (i.e., resistance to fluid flow). These results provide a more detailed description of normal biofilm development and architecture and confirm the central role played by the transcription factor Tec1 in the biofilm model employed here. PMID:25556183

  12. Diversity of biofilms produced by quorum-sensing-deficient clinical isolates of Pseudomonas aeruginosa.

    PubMed

    Schaber, J Andy; Hammond, Adrienne; Carty, Nancy L; Williams, Simon C; Colmer-Hamood, Jane A; Burrowes, Ben H; Dhevan, Vijian; Griswold, John A; Hamood, Abdul N

    2007-06-01

    The quorum-sensing (QS) systems control several virulence attributes of Pseudomonas aeruginosa. Five QS-deficient P. aeruginosa clinical isolates (CI) that were obtained from wound (CI-1), tracheal (CI-2, CI-3, CI-4) and urinary tract (CI-5) infections had previously been characterized. In this study, a flow-through continuous-culture system was utilized to examine in detail the biofilms formed by these isolates in comparison with the P. aeruginosa prototrophic strain PAO1. Analysis of the biofilms by confocal laser scanning microscopy and COMSTAT image analysis at 1 and 7 days post-inoculation showed that the isolates produced diverse biofilms. In comparison with PAO1, the CI produced biofilms that scarcely or partially covered the surface at day 1, although CI-1 produced larger microcolonies. At day 7, CI-2 and CI-4 produced mature biofilms denser than that produced by PAO1, while the biofilm formed by CI-1 changed very little from day 1. CI-1 was defective in both swarming and twitching motilities, and immunoblotting analysis confirmed that it produced a reduced level of PilA protein. The twitching-motility defect of CI-1 was not complemented by a plasmid carrying intact pilA. In the 48 h colony biofilm assay, the CI varied in susceptibility to imipenem, gentamicin and piperacillin/tazobactam. These results suggest that: (1) the isolates produced biofilms with different structures and densities from that of PAO1; (2) biofilm formation by the isolates was not influenced by either the isolation site or the QS deficiencies of the isolates; (3) the behaviour of CI-1 in the different biofilm systems may be due to its lack of swarming motility and type IV pilus-related twitching motility.

  13. Antipseudomonal agents exhibit differential pharmacodynamic interactions with human polymorphonuclear leukocytes against established biofilms of Pseudomonas aeruginosa.

    PubMed

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2015-04-01

    Pseudomonas aeruginosa is the most common pathogen infecting the lower respiratory tract of cystic fibrosis (CF) patients, where it forms tracheobronchial biofilms. Pseudomonas biofilms are refractory to antibacterials and to phagocytic cells with innate immunity, leading to refractory infection. Little is known about the interaction between antipseudomonal agents and phagocytic cells in eradication of P. aeruginosa biofilms. Herein, we investigated the capacity of three antipseudomonal agents, amikacin (AMK), ceftazidime (CAZ), and ciprofloxacin (CIP), to interact with human polymorphonuclear leukocytes (PMNs) against biofilms and planktonic cells of P. aeruginosa isolates recovered from sputa of CF patients. Three of the isolates were resistant and three were susceptible to each of these antibiotics. The concentrations studied (2, 8, and 32 mg/liter) were subinhibitory for biofilms of resistant isolates, whereas for biofilms of susceptible isolates, they ranged between sub-MIC and 2 × MIC values. The activity of each antibiotic alone or in combination with human PMNs against 48-h mature biofilms or planktonic cells was determined by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. All combinations of AMK with PMNs resulted in synergistic or additive effects against planktonic cells and biofilms of P. aeruginosa isolates compared to each component alone. More than 75% of CAZ combinations exhibited additive interactions against biofilms of P. aeruginosa isolates, whereas CIP had mostly antagonistic interaction or no interaction with PMNs against biofilms of P. aeruginosa. Our findings demonstrate a greater positive interaction between AMK with PMNs than that observed for CAZ and especially CIP against isolates of P. aeruginosa from the respiratory tract of CF patients.

  14. Deviant lifestyles and violent victimization at school.

    PubMed

    Nofziger, Stacey

    2009-09-01

    This study examines how the lifestyles of juveniles influence violent victimization at school. Using data from the National Survey of Adolescents, this study demonstrates that both indirect victimization, through witnessing violence, and sexual and physical assaults of students are pervasive problems at schools. Although a number of individual and structural characteristics predict the risk of becoming a victim at school, the most consistent predictor of violent victimization is the juvenile's own deviant lifestyle. Those who participate in a deviant lifestyle substantially increase their odds of all three forms of victimization. Therefore, even within the relatively controlled setting of schools, juveniles who participate in deviant lifestyles are at a high risk for victimization.

  15. Clinician perceptions of wound biofilm.

    PubMed

    Metcalf, Daniel G; Bowler, Philip G

    2016-10-01

    In wound care today, biofilm is a subject area of great interest and debate. There is an increasing awareness that biofilm exists in the majority of non-healing wounds, and that it is implicated in both recalcitrance and infection. Together with the presence of devitalised host tissue, biofilm is recognised as a component of the wound environment that requires removal to enable wound progression. However, uncertainty exists among wound care practitioners regarding confirmation of the presence of biofilm, and how best to remove biofilm from a non-healing wound. While recent efforts have been taken to assist practitioners in signs and symptoms of wound biofilm, continuing research is required to characterise and confirm wound biofilm. This research was conducted as part of a market research process to better understand the knowledge levels, experiences, clinical awareness and impact of biofilm in wound care, which was undertaken across the USA and Europe. While knowledge levels and experiences vary from country to country, certain wound characteristics were consistently associated with the presence of biofilm.

  16. Dynamic behavior of biofilms

    SciTech Connect

    Worden, R.M. ); Donaldson, T.L. )

    1986-01-01

    Biological fixed films, or biofilms, are composed of a dense cluster of cells bound to one another or a support surface by the glycocalyx, a cell-secreted carbohydrate matrix. A key advantage of fixed films over other types of immobilized-cell systems is that the immobilization occurs naturally, and hence does not require the additional materials and labor for cell entrapment within gels or covalent bonding to supports. Applications of microbial film fermenters have included animal-cell culture, bacterial leaching of ores, waste treatment, and the production of vinegar, ethanol, critic acid, and beer. Analysis of the unsteady-state behavior of biofilms can provide insight into basic scientific phenomena such as intracellular metabolic regulation patterns.

  17. Lysogenic conversion and phage resistance development in phage exposed Escherichia coli biofilms.

    PubMed

    Moons, Pieter; Faster, David; Aertsen, Abram

    2013-01-01

    In this study, three-day old mature biofilms of Escherichia coli were exposed once to either a temperate Shiga-toxin encoding phage (H-19B) or an obligatory lytic phage (T7), after which further dynamics in the biofilm were monitored. As such, it was found that a single dose of H-19B could rapidly lead to a near complete lysogenization of the biofilm, with a subsequent continuous release of infectious H-19B particles. On the other hand, a single dose of T7 rapidly led to resistance development in the biofilm population. Together, our data indicates a profound impact of phages on the dynamics within structured bacterial populations. PMID:23344561

  18. Inhibitory effects of Lactobacillus fermentum on microbial growth and biofilm formation.

    PubMed

    Rybalchenko, Oxana V; Bondarenko, Viktor M; Orlova, Olga G; Markov, Alexander G; Amasheh, S

    2015-10-01

    Beneficial effects of Lactobacilli have been reported, and lactic bacteria are employed for conservation of foods. Therefore, the effects of a Lactobacillus fermentum strain were analyzed regarding inhibitory effects on staphylococci, Candida albicans and enterotoxigenic enterobacteria by transmission electron microscopy (TEM). TEM of bacterial biofilms was performed using cocultures of bacteriocin-producing L. fermentum 97 with different enterotoxigenic strains: Staphylococcus epidermidis expressing the ica gene responsible for biofilm formation, Staphylococcus aureus producing enterotoxin type A, Citrobacter freundii, Enterobacter cloaceae, Klebsiella oxytoca, Proteus mirabilis producing thermolabile and thermostable enterotoxins determined by elt or est genes, and Candida albicans. L. fermentum 97 changed morphological features and suppressed biofilm formation of staphylococci, enterotoxigenic enterobacteria and Candida albicans; a marked transition to resting states, a degradation of the cell walls and cytoplasm, and a disruption of mature bacterial biofilms were observed, the latter indicating efficiency even in the phase of higher cell density.

  19. [In vitro activity of Eucalyptus smithii and Juniperus communis essential oils against bacterial biofilms and efficacy perspectives of complementary inhalation therapy in chronic and recurrent upper respiratory tract infections].

    PubMed

    Camporese, Alessandro

    2013-06-01

    Staphylococcus aureus and Pseudomonas aeruginosa have a high propensity to develop biofilms that are resistant to antimicrobial agents. Eucalyptus smithii and Juniperus communis essential oils are credited with a series of traditional therapeutical properties, including mucolytic effect. As S. aureus and P. aeruginosa biofilms are known to be important factors underlying their virulence and pathogenicity, the aim of this study was to investigate whether E. smithii and J. communis essential oils can interfere with biofilm formation as well as acting on mature biofilms. Tests of two S. aureus and P. aeruginosa clinical strains and two ATCC strains (S. aureus ATCC 25923 and P. aeruginosa ATCC 27853) showed that both E. smithii and J. communis essential oils interfere with the starting phases of biofilm production, as well as with mature biofilms. The results of this study reveal new relevant perspectives for a complementary inhalatory treatment of chronic and/or recurrent upper respiratory tract infections.

  20. Virulence and pathogenicity of Candida albicans is enhanced in biofilms containing oral bacteria.

    PubMed

    Cavalcanti, Yuri Wanderley; Morse, Daniel James; da Silva, Wander José; Del-Bel-Cury, Altair Antoninha; Wei, Xiaoqing; Wilson, Melanie; Milward, Paul; Lewis, Michael; Bradshaw, David; Williams, David Wynne

    2015-01-01

    This study examined the influence of bacteria on the virulence and pathogenicity of candidal biofilms. Mature biofilms (Candida albicans-only, bacteria-only, C. albicans with bacteria) were generated on acrylic and either analysed directly, or used to infect a reconstituted human oral epithelium (RHOE). Analyses included Candida hyphae enumeration and assessment of Candida virulence gene expression. Lactate dehydrogenase (LDH) activity and Candida tissue invasion following biofilm infection of the RHOE were also measured. Candida hyphae were more prevalent (p < 0.05) in acrylic biofilms also containing bacteria, with genes encoding secreted aspartyl-proteinases (SAP4/SAP6) and hyphal-wall protein (HWP1) up-regulated (p < 0.05). Candida adhesin genes (ALS3/EPA1), SAP6 and HWP1 were up-regulated in mixed-species biofilm infections of RHOE. Multi-species infections exhibited higher hyphal proportions (p < 0.05), up-regulation of IL-18, higher LDH activity and tissue invasion. As the presence of bacteria in acrylic biofilms promoted Candida virulence, consideration should be given to the bacterial component when managing denture biofilm associated candidoses.

  1. The Pseudomonas aeruginosa transcriptome in planktonic cultures and static biofilms using RNA sequencing.

    PubMed

    Dötsch, Andreas; Eckweiler, Denitsa; Schniederjans, Monika; Zimmermann, Ariane; Jensen, Vanessa; Scharfe, Maren; Geffers, Robert; Häussler, Susanne

    2012-01-01

    In this study, we evaluated how gene expression differs in mature Pseudomonas aeruginosa biofilms as opposed to planktonic cells by the use of RNA sequencing technology that gives rise to both quantitative and qualitative information on the transcriptome. Although a large proportion of genes were consistently regulated in both the stationary phase and biofilm cultures as opposed to the late exponential growth phase cultures, the global biofilm gene expression pattern was clearly distinct indicating that biofilms are not just surface attached cells in stationary phase. A large amount of the genes found to be biofilm specific were involved in adaptation to microaerophilic growth conditions, repression of type three secretion and production of extracellular matrix components. Additionally, we found many small RNAs to be differentially regulated most of them similarly in stationary phase cultures and biofilms. A qualitative analysis of the RNA-seq data revealed more than 3000 putative transcriptional start sites (TSS). By the use of rapid amplification of cDNA ends (5'-RACE) we confirmed the presence of three different TSS associated with the pqsABCDE operon, two in the promoter of pqsA and one upstream of the second gene, pqsB. Taken together, this study reports the first transcriptome study on P. aeruginosa that employs RNA sequencing technology and provides insights into the quantitative and qualitative transcriptome including the expression of small RNAs in P. aeruginosa biofilms. PMID:22319605

  2. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation.

    PubMed

    Janissen, Richard; Murillo, Duber M; Niza, Barbara; Sahoo, Prasana K; Nobrega, Marcelo M; Cesar, Carlos L; Temperini, Marcia L A; Carvalho, Hernandes F; de Souza, Alessandra A; Cotta, Monica A

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  3. Spatiotemporal distribution of different extracellular polymeric substances and filamentation mediate Xylella fastidiosa adhesion and biofilm formation

    PubMed Central

    Janissen, Richard; Murillo, Duber M.; Niza, Barbara; Sahoo, Prasana K.; Nobrega, Marcelo M.; Cesar, Carlos L.; Temperini, Marcia L. A.; Carvalho, Hernandes F.; de Souza, Alessandra A.; Cotta, Monica A.

    2015-01-01

    Microorganism pathogenicity strongly relies on the generation of multicellular assemblies, called biofilms. Understanding their organization can unveil vulnerabilities leading to potential treatments; spatially and temporally-resolved comprehensive experimental characterization can provide new details of biofilm formation, and possibly new targets for disease control. Here, biofilm formation of economically important phytopathogen Xylella fastidiosa was analyzed at single-cell resolution using nanometer-resolution spectro-microscopy techniques, addressing the role of different types of extracellular polymeric substances (EPS) at each stage of the entire bacterial life cycle. Single cell adhesion is caused by unspecific electrostatic interactions through proteins at the cell polar region, where EPS accumulation is required for more firmly-attached, irreversibly adhered cells. Subsequently, bacteria form clusters, which are embedded in secreted loosely-bound EPS, and bridged by up to ten-fold elongated cells that form the biofilm framework. During biofilm maturation, soluble EPS forms a filamentous matrix that facilitates cell adhesion and provides mechanical support, while the biofilm keeps anchored by few cells. This floating architecture maximizes nutrient distribution while allowing detachment upon larger shear stresses; it thus complies with biological requirements of the bacteria life cycle. Using new approaches, our findings provide insights regarding different aspects of the adhesion process of X. fastidiosa and biofilm formation. PMID:25891045

  4. Induced biofilm cultivation enhances riboflavin production by an intertidally derived Candida famata.

    PubMed

    Mitra, Sayani; Thawrani, Dheeraj; Banerjee, Priyam; Gachhui, Ratan; Mukherjee, Joydeep

    2012-04-01

    The aim of the investigation was to ascertain if surface attachment of Candida famata and aeration enhanced riboflavin production. A newly designed polymethylmethacrylate (PMMA) conico-cylindrical flask (CCF) holding eight equidistantly spaced rectangular strips mounted radially on a circular disk allowed comparison of riboflavin production between CCFs with hydrophobic surface (PMMA-CCF), hydrophilic glass surface (GS-CCF), and 500-ml Erlenmeyer flask (EF). Riboflavin production (mg/l) increased from 12.79 to 289.96, from 54.44 to 238.14, and from 36.98 to 158.71 in the GS-CCF, EF, and PMMA-CCF, respectively, when C. famata was grown as biofilm-induced cultures in contrast to traditional planktonic culture. Production was correlated with biofilm formation and planktonic growth was suppressed in cultivations that allowed higher biofilm formation. Enhanced aeration increased riboflavin production in hydrophilic vessels. Temporal pattern of biofilm progression based on two-channel fluorescence detection of extracellular polymeric substances and whole cells in a confocal laser scanning microscope followed by application of PHLIP and ImageJ volume viewer software demonstrated early maturity of a well-developed, stable biofilm on glass in contrast to PMMA surface. A strong correlation between hydrophilic reactor surface, aeration, biofilm formation, and riboflavin production was established in C. famata. Biofilm culture is a new-found means to improve riboflavin production by C. famata. PMID:22434353

  5. Seasonal and successional influences on bacterial community composition exceed that of protozoan grazing in river biofilms.

    PubMed

    Wey, Jennifer K; Jürgens, Klaus; Weitere, Markus

    2012-03-01

    The effects of protozoa (heterotrophic flagellates and ciliates) on the morphology and community composition of bacterial biofilms were tested under natural background conditions by applying size fractionation in a river bypass system. Confocal laser scanning microscopy (CLSM) was used to monitor the morphological structure of the biofilm, and fingerprinting methods (single-stranded conformation polymorphism [SSCP] and denaturing gradient gel electrophoresis [DGGE]) were utilized to assess changes in bacterial community composition. Season and internal population dynamics had a greater influence on the bacterial biofilm than the presence of protozoa. Within this general framework, bacterial area coverage and microcolony abundance were nevertheless enhanced by the presence of ciliates (but not by the presence of flagellates). We also found that the richness of bacterial operational taxonomic units was much higher in planktonic founder communities than in the ones establishing the biofilm. Within the first 2 h of colonization of an empty substrate by bacteria, the presence of flagellates additionally altered their biofilm community composition. As the biofilms matured, the number of bacterial operational taxonomic units increased when flagellates were present in high abundances. The additional presence of ciliates tended to at first reduce (days 2 to 7) and later increase (days 14 to 29) bacterial operational taxonomic unit richness. Altogether, the response of the bacterial community to protozoan grazing pressure was small compared to that reported in planktonic studies, but our findings contradict the assumption of a general grazing resistance of bacterial biofilms toward protozoa.

  6. Multiplication of the waterborne pathogen Cryptosporidium parvum in an aquatic biofilm system

    PubMed Central

    2013-01-01

    Background In natural aquatic environments biofilms are known to act as environmental reservoirs for Cryptosporidium parvum oocysts. However, the fate of these oocysts within biofilms has yet to be determined. Methods This study aimed to identify if biofilms have the ability to support the multiplication of Cryptosporidium by measuring the change in parasite number over time using quantitative polymerase chain reaction (qPCR) and detecting the possible extracellular developmental stages using a combination of confocal microscopy and immunolabelling techniques. Pseudomonas aeruginosa biofilm flow cell systems were established and C. parvum oocysts were constantly supplied over a six day period. Results A significant (P < 0.001) increase in Cryptosporidium was detected as the biofilm matured, with the total number of C. parvum multiplying 2–3 fold during this period. With this, various Cryptosporidium developmental stages (sporozoites, trophozoites, type I and II meronts) were identified from the biofilm. Conclusion This is the first study demonstrating that biofilms not only serve as an environmental reservoir for oocysts, but are also capable of supporting the multiplication of Cryptosporidium over time in an aquatic environment. PMID:24330483

  7. Terpenoids of plant origin inhibit morphogenesis, adhesion, and biofilm formation by Candida albicans.

    PubMed

    Raut, Jayant S; Shinde, Ravikumar B; Chauhan, Nitin M; Karuppayil, S Mohan

    2013-01-01

    Biofilm-related infections caused by Candida albicans and associated drug resistant micro-organisms are serious problems for immunocompromised populations. Molecules which can prevent or remove biofilms are needed. Twenty-eight terpenoids of plant origin were analysed for their activity against growth, virulence attributes, and biofilms of C. albicans. Eighteen molecules exhibited minimum inhibitory concentrations of <2 mg ml(-1) for planktonic growth. Selected molecules inhibited yeast to hyphal dimorphism at low concentrations (0.031-0.5 mg ml(-1)), while adhesion to a solid surface was prevented at 0.5-2 mg ml(-1). Treatment with 14 terpenoids resulted in significant (p < 0.05) inhibition of biofilm formation, and of these, linalool, nerol, isopulegol, menthol, carvone, α-thujone, and farnesol exhibited biofilm-specific activity. Eight terpenoids were identified as inhibitors of mature biofilms. This study demonstrated the antibiofilm potential of terpenoids, which need to be further explored as therapeutic strategy against biofilm associated infections of C. albicans. PMID:23216018

  8. A Multinuclear Metal Complex Based DNase-Mimetic Artificial Enzyme: Matrix Cleavage for Combating Bacterial Biofilms.

    PubMed

    Chen, Zhaowei; Ji, Haiwei; Liu, Chaoqun; Bing, Wei; Wang, Zhenzhen; Qu, Xiaogang

    2016-08-26

    Extracellular DNA (eDNA) is an essential structural component during biofilm formation, including initial bacterial adhesion, subsequent development, and final maturation. Herein, the construction of a DNase-mimetic artificial enzyme (DMAE) for anti-biofilm applications is described. By confining passivated gold nanoparticles with multiple cerium(IV) complexes on the surface of colloidal magnetic Fe3 O4  /SiO2 core/shell particles, a robust and recoverable artificial enzyme with DNase-like activity was obtained, which exhibited high cleavage ability towards both model substrates and eDNA. Compared to the high environmental sensitivity of natural DNase in anti-biofilm applications, DMAE exhibited a much better operational stability and easier recoverability. When DMAE was coated on substratum surfaces, biofilm formation was inhibited for prolonged periods of time, and the DMAE excelled in the dispersion of established biofilms of various ages. Finally, the presence of DMAE remarkably potentiated the efficiency of traditional antibiotics to kill biofilm-encased bacteria and eradiate biofilms. PMID:27484616

  9. Data Product Maturity

    Atmospheric Science Data Center

    2013-03-25

    ... document, maturity levels are provided separately for each scientific data set (SDS) included with the data files. The data product ... indiscriminate use of these data products as the basis for research findings, journal publications, and/or presentations.   ...

  10. Biofilm architecture in a novel pressurized biofilm reactor.

    PubMed

    Jiang, Wei; Xia, Siqing; Duan, Liang; Hermanowicz, Slawomir W

    2015-01-01

    A novel pure-oxygen pressurized biofilm reactor was operated at different organic loading, mechanical shear and hydrodynamic conditions to understand the relationships between biofilm architecture and its operation. The ultimate goal was to improve the performance of the biofilm reactor. The biofilm was labeled with seven stains and observed with confocal laser scanning microscopy. Unusual biofilm architecture of a ribbon embedded between two surfaces with very few points of attachment was observed. As organic loading increased, the biofilm morphology changed from a moderately rough layer into a locally smoother biomass with significant bulging protuberances, although the chemical oxygen demand (COD) removal efficiency remained unchanged at about 75%. At higher organic loadings, biofilms contained a larger fraction of active cells distributed uniformly within a proteinaceous matrix with decreasing polysaccharide content. Higher hydrodynamic shear in combination with high organic loading resulted in the collapse of biofilm structure and a substantial decrease in reactor performance (a COD removal of 16%). Moreover, the important role of proteins for the spatial distribution of active cells was demonstrated quantitatively.

  11. Exploring Mechanisms of Biofilm Removal

    PubMed Central

    Sahni, Karan; Khashai, Fatemeh; Forghany, Ali; Krasieva, Tatiana; Wilder-Smith, Petra

    2016-01-01

    Objective The goal of this study was to evaluate the effects of a novel anti-plaque formulation on oral biofilm removal. Specific aim was to elucidate the role of 2 potentially complementary mechanisms on dental biofilm removal using EPIEN Dental Debriding Solution (EDDS) like desiccating action leading to denaturation and destabilization of plaque and mechanical removal of destabilized plaque through forceful rinsing action Materials and Methods 25 extracted teeth, after routine debriding and cleaning, underwent standard biofilm incubation model over 4 days. Then samples were randomly divided into 5 groups of 5 teeth each, treated and stained with GUM®Red-Cote® plaque disclosing solution and imaged. Samples were subsequently treated with HYBENX® Oral Decontaminant. Group 1 samples were treated with a standardized “static” water dip exposure following biofilm incubation. Samples in Group 2 were given a standardized “dynamic” exposure to a dental high pressure air/water syringe for 20 s. Group 3 samples were exposed to a standardized “static” application of test agent (30 s dip rinse) followed by a standardized “static” water rinse (30 s dip rinse). Samples in Group 4 were given both the standardized “static” application of test formulation followed by the standardized “dynamic” exposure to a dental high pressure air/water syringe. Finally, samples in Group 5 were treated with a standardized “dynamic” application of test agent (20 s high pressure syringe at 10 ml/s) followed by the standardized “dynamic” exposure to a dental high pressure air/water syringe. Results The MPM images demonstrated that the water dip treatment resulted in the persistence of an almost continuous thick layer of biofilm coverage on the tooth surface. Similarly, test agent dip treatment followed by water dip only removed a few patches of biofilm, with the majority of the tooth surface remaining covered by an otherwise continuous layer of biofilm. Samples

  12. Evaluation of adhesive and anti-adhesive properties of Pseudomonas aeruginosa biofilms and their inhibition by herbal plants

    PubMed Central

    Zameer, Farhan; MS, Rukmangada; Chauhan, Jyoti Bala; Khanum, Shaukath Ara; Kumar, Pramod; Devi, Aishwarya Tripurasundari; MN, Nagendra Prasad; BL, Dhananjaya

    2016-01-01

    Background and Objectives: Adhesion and colonization are prerequisites for the establishment of bacterial pathogenesis. The biofilm development of Pseudomonas aeruginosa was assessed on adhesive surfaces like dialysis membrane, stainless steel, glass and polystyrene. Materials and Methods: Microtiter plate biofilm assay was performed to assess the effect of nutrient medium and growth parameters of P. aeruginosa. Further, its growth on adhesive surfaces namely hydrophilic (dialysis membrane) and hydrophobic (polystyrene plate, square glass and stainless steel coupon) was assessed. The exopolysaccharide (EPS) was quantified using ruthenium red microplate assay and microscopic analysis was used to observe P. aeruginosa biofilm architecture. The anti-biofilm activity of herbal extracts on mature P. aeruginosa was performed. Results: The formation of large scale biofilms on dialysis membrane for 72 h was proved to be the best surface. In microscopic studies, very few exopolysaccaride fibrils, indicating a rather loose matrix was observed at 48 h. Further, thick exopolysaccaride, indicated higher adhesive properties at 72 h which is evident from ruthenium red staining. Among the plant extract used, Justicia wynaadensis leaf and Aristolochia indica (Eswari) root extract showed significant reduction of anti-biofilm activity of 0.178 OD and 0.192 OD in inhibiting mature biofilms at 0.225 OD respectively, suggesting the possible use of these extracts as efficient anti-adhesive and biofilm-disrupting agents with potential applications in controlling biofilms on surfaces. Conclusion: Our study facilitates better understanding in the development of P. aeruginosa biofilms on different food processing and clinical surfaces ultimately taking care of food safety and hygiene. PMID:27307976

  13. In vitro Candida albicans biofilm induced proteinase activity and SAP8 expression correlates with in vivo denture stomatitis severity.

    PubMed

    Ramage, Gordon; Coco, Brent; Sherry, Leighann; Bagg, Jeremy; Lappin, David F

    2012-07-01

    Denture stomatitis is a common inflammatory disorder of the palatal mucosa amongst denture wearers. The pathological changes are induced by Candida albicans biofilm on the fitting surface of the upper denture, and different individuals experience different levels of disease. C. albicans is known to produce secreted aspartyl proteinases (SAPs) to aid adhesion, invasion and tissue destruction. We hypothesised that differential expression and activity of SAPs from denture stomatitis isolates results in different levels of disease amongst denture wearers. We selected C. albicans isolates from asymptomatic controls and three different severities of disease [Newton’s type (NT) 0, I, II and III]. We assessed biofilm formation and proteinase activity for each biofilm and investigated the transcriptional profile of SAPs 1, 2, 5, 6 and 8 from early (12 h) and mature (24 h) biofilms. There were no significant differences between isolates with respect to biofilm formation, whereas proteinase activity normalised to biofilm growth was significantly increased in the diseased groups (p < 0.0001). Proteinase activity correlated strongly with SAP expression (p < 0.0001). SAP8 expression was the greatest, followed by SAP5, 6, 2 and 1. The diseased groups showed the greatest levels of SAP expression, with significant differences also observed between the groups (p < 0.005). All SAPs except SAP5 were expressed in greater amounts in the mature biofilms compared to early biofilms. Overall, this study suggests that SAP activity in biofilms determined in vitro may help to explain differences in disease severity. SAP8 has been shown for the first time to play a prominent role in biofilms.

  14. Candida albicans biofilm development on medically-relevant foreign bodies in a mouse subcutaneous model followed by bioluminescence imaging.

    PubMed

    Kucharíková, Soňa; Vande Velde, Greetje; Himmelreich, Uwe; Van Dijck, Patrick

    2015-01-01

    Candida albicans biofilm development on biotic and/or abiotic surfaces represents a specific threat for hospitalized patients. So far, C. albicans biofilms have been studied predominantly in vitro but there is a crucial need for better understanding of this dynamic process under in vivo conditions. We developed an in vivo subcutaneous rat model to study C. albicans biofilm formation. In our model, multiple (up to 9) Candida-infected devices are implanted to the back part of the animal. This gives us a major advantage over the central venous catheter model system as it allows us to study several independent biofilms in one animal. Recently, we adapted this model to study C. albicans biofilm development in BALB/c mice. In this model, mature C. albicans biofilms develop within 48 hr and demonstrate the typical three-dimensional biofilm architecture. The quantification of fungal biofilm is traditionally analyzed post mortem and requires host sacrifice. Because this requires the use of many animals to perform kinetic studies, we applied non-invasive bioluminescence imaging (BLI) to longitudinally follow up in vivo mature C. albicans biofilms developing in our subcutaneous model. C. albicans cells were engineered to express the Gaussia princeps luciferase gene (gLuc) attached to the cell wall. The bioluminescence signal is produced by the luciferase that converts the added substrate coelenterazine into light that can be measured. The BLI signal resembled cell counts obtained from explanted catheters. Non-invasive imaging for quantifying in vivo biofilm formation provides immediate applications for the screening and validation of antifungal drugs under in vivo conditions, as well as for studies based on host-pathogen interactions, hereby contributing to a better understanding of the pathogenesis of catheter-associated infections.

  15. Infiltration of Matrix-Non-producers Weakens the Salmonella Biofilm and Impairs Its Antimicrobial Tolerance and Pathogenicity

    PubMed Central

    Srinandan, Chakravarthy S.; Elango, Monalisha; Gnanadhas, Divya P.; Chakravortty, Dipshikha

    2015-01-01

    Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony. PMID:26779121

  16. Infiltration of Matrix-Non-producers Weakens the Salmonella Biofilm and Impairs Its Antimicrobial Tolerance and Pathogenicity.

    PubMed

    Srinandan, Chakravarthy S; Elango, Monalisha; Gnanadhas, Divya P; Chakravortty, Dipshikha

    2015-01-01

    Bacterial biofilms display a collective lifestyle, wherein the cells secrete extracellular polymeric substances (EPS) that helps in adhesion, aggregation, stability, and to protect the bacteria from antimicrobials. We asked whether the EPS could act as a public good for the biofilm and observed that infiltration of cells that do not produce matrix components weakened the biofilm of Salmonella enterica serovar Typhimurium. EPS production was costly for the producing cells, as indicated by a significant reduction in the fitness of wild type (WT) cells during competitive planktonic growth relative to the non-producers. Infiltration frequency of non-producers in the biofilm showed a concomitant decrease in overall productivity. It was apparent in the confocal images that the non-producing cells benefit from the EPS produced by the Wild Type (WT) to stay in the biofilm. The biofilm containing non-producing cells were more significantly susceptible to sodium hypochlorite and ciprofloxacin treatment than the WT biofilm. Biofilm infiltrated with non-producers delayed the pathogenesis, as tested in a murine model. The cell types were spatially assorted, with non-producers being edged out in the biofilm. However, cellulose was found to act as a barrier to keep the non-producers away from the WT microcolony. Our results show that the infiltration of non-cooperating cell types can substantially weaken the biofilm making it vulnerable to antibacterials and delay their pathogenesis. Cellulose, a component of EPS, was shown to play a pivotal role of acting as the main public good, and to edge-out the non-producers away from the cooperating microcolony.

  17. A comprehensive study into the impact of a chitosan mouthwash upon oral microorganism's biofilm formation in vitro.

    PubMed

    Costa, E M; Silva, S; Madureira, A R; Cardelle-Cobas, A; Tavaria, F K; Pintado, M M

    2014-01-30

    Modern dentistry emphasizes the importance of dental plaque control to improve oral health. To that end the development of oral care formulations has been geared toward the incorporation of antiplaque agents that may play a crucial role in oral health maintenance. In later years the research into antiplaque agents has led to the discovery of compounds with significant capability to affect biofilm formation. Among these compounds was chitosan, a polysaccharide which showed great ability to interfere with Streptococcus mutans biofilm formation. As such the aim of this work was to incorporate chitosan into a mouthwash matrix and assess its effect upon biofilm formation of oral microorganisms. This assessment was performed via study of the impact the mouthwash upon microbial adherence, biofilm formation and mature biofilms. Additionally, the action of the chitosan mouthwash was compared with two commercially available mouthwashes. The results here obtained show that only the chitosan containing mouthwash was capable of interfering with all microorganisms' adherence, biofilm formation and mature biofilms while at the same time showing vastly superior activity than both commercial mouthwashes assayed. As such a chitosan mouthwash shows great potential as a natural and efficient alternative to traditional mouthwashes.

  18. Transcriptome profiling reveals stage-specific production and requirement of flagella during biofilm development in Bordetella bronchiseptica.

    PubMed

    Nicholson, Tracy L; Conover, Matt S; Deora, Rajendar

    2012-01-01

    We have used microarray analysis to study the transcriptome of the bacterial pathogen Bordetella bronchiseptica over the course of five time points representing distinct stages of biofilm development. The results suggest that B. bronchiseptica undergoes a coordinately regulated gene expression program similar to a bacterial developmental process. Expression and subsequent production of the genes encoding flagella, a classical Bvg(-) phase phenotype, occurs and is under tight regulatory control during B. bronchiseptica biofilm development. Using mutational analysis, we demonstrate that flagella production at the appropriate stage of biofilm development, i.e. production early subsequently followed by repression, is required for robust biofilm formation and maturation. We also demonstrate that flagella are necessary and enhance the initial cell-surface interactions, thereby providing mechanistic information on the initial stages of biofilm development for B. bronchiseptica. Biofilm formation by B. bronchiseptica involves the production of both Bvg-activated and Bvg-repressed factors followed by the repression of factors that inhibit formation of mature biofilms.

  19. Biofilm production by multiresistant Corynebacterium striatum associated with nosocomial outbreak

    PubMed Central

    de Souza, Cassius; Faria, Yuri Vieira; Sant’Anna, Lincoln de Oliveira; Viana, Vanilda Gonçalves; Seabra, Sérgio Henrique; de Souza, Mônica Cristina; Vieira, Verônica Viana; Hirata, Raphael; Moreira, Lílian de Oliveira; de Mattos-Guaraldi, Ana Luíza

    2015-01-01

    Corynebacterium striatum is a potentially pathogenic microorganism that causes nosocomial outbreaks. However, little is known about its virulence factors that may contribute to healthcare-associated infections (HAIs). We investigated the biofilm production on abiotic surfaces of multidrug-resistant (MDR) and multidrug-susceptible (MDS) strains of C. striatum of pulsed-field gel electrophoresis types I-MDR, II-MDR, III-MDS and IV-MDS isolated during a nosocomial outbreak in Rio de Janeiro, Brazil. The results showed that C. striatum was able to adhere to hydrophilic and hydrophobic abiotic surfaces. The C. striatum 1987/I-MDR strain, predominantly isolated from patients undergoing endotracheal intubation procedures, showed the greatest ability to adhere to all surfaces. C. striatum bound fibrinogen to its surface, which contributed to biofilm formation. Scanning electron microscopy showed the production of mature biofilms on polyurethane catheters by all pulsotypes. In conclusion, biofilm production may contribute to the establishment of HAIs caused by C. striatum. PMID:25946249

  20. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes.

    PubMed

    Ciornei, Cristina D; Novikov, Alexey; Beloin, Christophe; Fitting, Catherine; Caroff, Martine; Ghigo, Jean-Marc; Cavaillon, Jean-Marc; Adib-Conquy, Minou

    2010-10-01

    To determine whether growth of bacteria in biofilms triggers a specific immune response, we compared cytokine induction in human monocytes and mouse macrophages by planktonic and biofilm bacteria. We compared Pseudomonas aeruginosa and Staphylococcus aureus, two bacteria often colonizing the airways of cystic fibrosis patients. Planktonic and biofilm S. aureus induced equivalent amounts of cytokine in human monocytes. In contrast, biofilm-forming P. aeruginosa induced a higher production of tumor necrosis factor and interleukin-6 than their planktonic counterpart, both for clinical isolates and laboratory strains. This increased cytokine production was partly dependent on phagocytosis. In contrast, no difference in cytokine induction was observed with mouse macrophages. We investigated the structures of the lipopolysaccharides (LPSs) of these Gram-negative bacteria in biofilm and planktonic cultures of P. aeruginosa. Switch between the two life-styles was shown to cause several reversible LPS structure modifications affecting the lipid A and polysaccharide moieties of both clinical isolates and laboratory strains. In addition, LPS isolated from biofilm-grown bacteria induced slightly more inflammatory cytokines than that extracted from its planktonic counterpart. Our results, therefore, show that P. aeruginosa biofilm LPS undergoes structural modifications that only partially contribute to an increased inflammatory response from human monocytes. PMID:19710099

  1. Therapeutic Interventions with the Lifestyle Criminal.

    ERIC Educational Resources Information Center

    Walters, Glenn D.; White, Thomas W.

    1989-01-01

    Examines assessment, intervention, and follow-up phases of treatment process with lifestyle criminals. Recognizes that every therapeutic relationship is unique and should take into account individual characteristics of therapist, criminal, and environment. Subdivides assessment and intervention phases to reflect importance of lifestyle analysis,…

  2. Experimental evolution in biofilm populations

    PubMed Central

    Steenackers, Hans P.; Parijs, Ilse; Foster, Kevin R.; Vanderleyden, Jozef

    2016-01-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  3. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques. PMID:26895713

  4. Interaction of Nanoparticles with Biofilms

    EPA Science Inventory

    In this work we have studied the interaction and adsorption of engineered nanoparticles such as TiO2, ZnO, CeO2 , and carbon nanotubes with biofilms. Biofilm is an extracellular polymeric substance coating comprised of living material and it is an aggregation of bacteria, algae, ...

  5. In situ biofilm coupon device

    DOEpatents

    Peyton, Brent M.; Truex, Michael J.

    1997-01-01

    An apparatus for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements.

  6. In situ biofilm coupon device

    DOEpatents

    Peyton, B.M.; Truex, M.J.

    1997-06-24

    An apparatus is disclosed for characterization of in-situ microbial biofilm populations in subsurface groundwater. The device permits biofilm-forming microorganisms to adhere to packing material while emplaced in a groundwater strata, so that the packing material can be later analyzed for quantity and type of microorganisms, growth rate, and nutrient requirements. 3 figs.

  7. Experimental evolution in biofilm populations.

    PubMed

    Steenackers, Hans P; Parijs, Ilse; Foster, Kevin R; Vanderleyden, Jozef

    2016-05-01

    Biofilms are a major form of microbial life in which cells form dense surface associated communities that can persist for many generations. The long-life of biofilm communities means that they can be strongly shaped by evolutionary processes. Here, we review the experimental study of evolution in biofilm communities. We first provide an overview of the different experimental models used to study biofilm evolution and their associated advantages and disadvantages. We then illustrate the vast amount of diversification observed during biofilm evolution, and we discuss (i) potential ecological and evolutionary processes behind the observed diversification, (ii) recent insights into the genetics of adaptive diversification, (iii) the striking degree of parallelism between evolution experiments and real-life biofilms and (iv) potential consequences of diversification. In the second part, we discuss the insights provided by evolution experiments in how biofilm growth and structure can promote cooperative phenotypes. Overall, our analysis points to an important role of biofilm diversification and cooperation in bacterial survival and productivity. Deeper understanding of both processes is of key importance to design improved antimicrobial strategies and diagnostic techniques.

  8. Biofilm spatial organization by the emerging pathogen Campylobacter jejuni: comparison between NCTC 11168 and 81-176 strains under microaerobic and oxygen-enriched conditions

    PubMed Central

    Turonova, Hana; Briandet, Romain; Rodrigues, Ramila; Hernould, Mathieu; Hayek, Nabil; Stintzi, Alain; Pazlarova, Jarmila; Tresse, Odile

    2015-01-01

    During the last years, Campylobacter has emerged as the leading cause of bacterial foodborne infections in developed countries. Described as an obligate microaerophile, Campylobacter has puzzled scientists by surviving a wide range of environmental oxidative stresses on foods farm to retail, and thereafter intestinal transit and oxidative damage from macrophages to cause human infection. In this study, confocal laser scanning microscopy (CLSM) was used to explore the biofilm development of two well-described Campylobacter jejuni strains (NCTC 11168 and 81-176) prior to or during cultivation under oxygen-enriched conditions. Quantitative and qualitative appraisal indicated that C. jejuni formed finger-like biofilm structures with an open ultrastructure for 81-176 and a multilayer-like structure for NCTC 11168 under microaerobic conditions (MAC). The presence of motile cells within the biofilm confirmed the maturation of the C. jejuni 81-176 biofilm. Acclimation of cells to oxygen-enriched conditions led to significant enhancement of biofilm formation during the early stages of the process. Exposure to these conditions during biofilm cultivation induced an even greater biofilm development for both strains, indicating that oxygen demand for biofilm formation is higher than for planktonic growth counterparts. Overexpression of cosR in the poorer biofilm-forming strain, NCTC 11168, enhanced biofilm development dramatically by promoting an open ultrastructure similar to that observed for 81-176. Consequently, the regulator CosR is likely to be a key protein in the maturation of C. jejuni biofilm, although it is not linked to oxygen stimulation. These unexpected data advocate challenging studies by reconsidering the paradigm of fastidious requirements for C. jejuni growth when various subpopulations (from quiescent to motile cells) coexist in biofilms. These findings constitute a clear example of a survival strategy used by this emerging human pathogen. PMID:26217332

  9. Biofilms in periprosthetic orthopedic infections

    PubMed Central

    McConoughey, Stephen J; Howlin, Rob; Granger, Jeff F; Manring, Maurice M; Calhoun, Jason H; Shirtlif, Mark; Kathju, Sandeep; Stoodley, Paul

    2015-01-01

    As the number of total joint arthroplasty and internal fixation procedures continues to rise, the threat of infection following surgery has significant clinical implications. These infections may have highly morbid consequences to patients, who often endure additional surgeries and lengthy exposures to systemic antibiotics, neither of which are guaranteed to resolve the infection. Of particular concern is the threat of bacterial biofilm development, since biofilm-mediated infections are difficult to diagnose and effective treatments are lacking. Developing therapeutic strategies have targeted mechanisms of biofilm formation and the means by which these bacteria communicate with each other to take on specialized roles such as persister cells within the biofilm. In addition, prevention of infection through novel coatings for prostheses and the local delivery of high concentrations of antibiotics by absorbable carriers has shown promise in laboratory and animal studies. Biofilm development, especially in an arthoplasty environment, and future diagnostic and treatment options are discussed. PMID:25302955

  10. Genetic dissection of mycobacterial biofilms.

    PubMed

    Ojha, Anil K; Jacobs, William R; Hatfull, Graham F

    2015-01-01

    Our understanding of the biological principles of mycobacterial tolerance to antibiotics is crucial for developing shorter anti-tuberculosis regimens. Various in vitro approaches have been developed to identify the conditions that promote mycobacterial persistence against antibiotics. In our laboratories, we have developed a detergent-free in vitro growth model, in which mycobacteria spontaneously grow at the air-medium interface as self-organized multicellular structures, called biofilms. Mycobacterial biofilms harbor a subpopulation of drug tolerant persisters at a greater frequency than their planktonic counterpart. Importantly, development of these structures is genetically programmed, and defective biofilms of isogenic mutants harbor fewer persisters. Thus, genetic analysis of mycobacterial biofilms in vitro could potentially be a powerful tool to unravel the biology of drug tolerance in mycobacteria. In this chapter we describe a method for screening biofilm-defective mutants of mycobacteria in a 96-well format, which readily yields a clonally pure mutant for further studies. PMID:25779318

  11. Fungal Biofilms, Drug Resistance, and Recurrent Infection

    PubMed Central

    Desai, Jigar V.; Mitchell, Aaron P.; Andes, David R.

    2014-01-01

    A biofilm is a surface-associated microbial community. Diverse fungi are capable of biofilm growth. The significance of this growth form for infection biology is that biofilm formation on implanted devices is a major cause of recurrent infection. Biofilms also have limited drug susceptibility, making device-associated infection extremely difficult to treat. Biofilm-like growth can occur during many kinds of infection, even when an implanted device is not present. Here we summarize the current understanding of fungal biofilm formation, its genetic control, and the basis for biofilm drug resistance. PMID:25274758

  12. Spatial Patterns of Carbonate Biomineralization in Biofilms

    PubMed Central

    Li, Xiaobao; Chopp, David L.; Russin, William A.; Brannon, Paul T.; Parsek, Matthew R.

    2015-01-01

    Microbially catalyzed precipitation of carbonate minerals is an important process in diverse biological, geological, and engineered systems. However, the processes that regulate carbonate biomineralization and their impacts on biofilms are largely unexplored, mainly because of the inability of current methods to directly observe biomineralization within biofilms. Here, we present a method for in situ, real-time imaging of biomineralization in biofilms and use it to show that Pseudomonas aeruginosa biofilms produce morphologically distinct carbonate deposits that substantially modify biofilm structures. The patterns of carbonate biomineralization produced in situ were substantially different from those caused by accumulation of particles produced by abiotic precipitation. Contrary to the common expectation that mineral precipitation should occur at the biofilm surface, we found that biomineralization started at the base of the biofilm. The carbonate deposits grew over time, detaching biofilm-resident cells and deforming the biofilm morphology. These findings indicate that biomineralization is a general regulator of biofilm architecture and properties. PMID:26276112

  13. Biofilm formation and fibrinogen and fibronectin binding activities by Corynebacterium pseudodiphtheriticum invasive strains.

    PubMed

    Souza, Monica Cristina; dos Santos, Louisy Sanches; Sousa, Leonardo Paiva; Faria, Yuri Vieira; Ramos, Juliana Nunes; Sabbadini, Priscila Soares; da Santos, Cíntia Silva; Nagao, Prescilla Emy; Vieira, Verônica Viana; Gomes, Débora Leandro Rama; Hirata Júnior, Raphael; Mattos-Guaraldi, Ana Luiza

    2015-06-01

    Biofilm-related infections are considered a major cause of morbidity and mortality in hospital environments. Biofilms allow microorganisms to exchange genetic material and to become persistent colonizers and/or multiresistant to antibiotics. Corynebacterium pseudodiphtheriticum (CPS), a commensal bacterium that colonizes skin and mucosal sites has become progressively multiresistant and responsible for severe nosocomial infections. However, virulence factors of this emergent pathogen remain unclear. Herein, we report the adhesive properties and biofilm formation on hydrophilic (glass) and hydrophobic (plastic) abiotic surfaces by CPS strains isolated from patients with localized (ATCC10700/Pharyngitis) and systemic (HHC1507/Bacteremia) infections. Adherence to polystyrene attributed to hydrophobic interactions between bacterial cells and this negatively charged surface indicated the involvement of cell surface hydrophobicity in the initial stage of biofilm formation. Attached microorganisms multiplied and formed microcolonies that accumulated as multilayered cell clusters, a step that involved intercellular adhesion and synthesis of extracellular matrix molecules. Further growth led to the formation of dense bacterial aggregates embedded in the exopolymeric matrix surrounded by voids, typical of mature biofilms. Data also showed CPS recognizing human fibrinogen (Fbg) and fibronectin (Fn) and involvement of these sera components in formation of "conditioning films". These findings suggested that biofilm formation may be associated with the expression of different adhesins. CPS may form biofilms in vivo possibly by an adherent biofilm mode of growth in vitro currently demonstrated on hydrophilic and hydrophobic abiotic surfaces. The affinity to Fbg and Fn and the biofilm-forming ability may contribute to the establishment and dissemination of infection caused by CPS.

  14. Isolation of Extracellular Polymeric Substances from Biofilms of the Thermoacidophilic Archaeon Sulfolobus acidocaldarius

    PubMed Central

    Jachlewski, Silke; Jachlewski, Witold D.; Linne, Uwe; Bräsen, Christopher; Wingender, Jost; Siebers, Bettina

    2015-01-01

    Extracellular polymeric substances (EPS) are the major structural and functional components of microbial biofilms. The aim of this study was to establish a method for EPS isolation from biofilms of the thermoacidophilic archaeon, Sulfolobus acidocaldarius, as a basis for EPS analysis. Biofilms of S. acidocaldarius were cultivated on the surface of gellan gum-solidified Brock medium at 78°C for 4 days. Five EPS extraction methods were compared, including shaking of biofilm suspensions in phosphate buffer, cation-exchange resin (CER) extraction, and stirring with addition of EDTA, crown ether, or NaOH. With respect to EPS yield, impact on cell viability, and compatibility with subsequent biochemical analysis, the CER extraction method was found to be the best suited isolation procedure resulting in the detection of carbohydrates and proteins as the major constituents and DNA as a minor component of the EPS. Culturability of CER-treated cells was not impaired. Analysis of the extracellular proteome using two-dimensional gel electrophoresis resulted in the detection of several hundreds of protein spots, mainly with molecular masses of 25–116 kDa and pI values of 5–8. Identification of proteins suggested a cytoplasmic origin for many of these proteins, possibly released via membrane vesicles or biofilm-inherent cell lysis during biofilm maturation. Functional analysis of EPS proteins, using fluorogenic substrates as well as zymography, demonstrated the activity of diverse enzyme classes, such as proteases, lipases, esterases, phosphatases, and glucosidases. In conclusion, the CER extraction method, as previously applied to bacterial biofilms, also represents a suitable method for isolation of water soluble EPS from the archaeal biofilms of S. acidocaldarius, allowing the investigation of composition and function of EPS components in these types of biofilms. PMID:26380258

  15. The diguanylate cyclase GcbA facilitates Pseudomonas aeruginosa biofilm dispersion by activating BdlA.

    PubMed

    Petrova, Olga E; Cherny, Kathryn E; Sauer, Karin

    2015-01-01

    Biofilm dispersion is a highly regulated process that allows biofilm bacteria to respond to changing environmental conditions and to disseminate to new locations. The dispersion of biofilms formed by the opportunistic pathogen Pseudomonas aeruginosa is known to require a number of cyclic di-GMP (c-di-GMP)-degrading phosphodiesterases (PDEs) and the chemosensory protein BdlA, with BdlA playing a pivotal role in regulating PDE activity and enabling dispersion in response to a wide array of cues. BdlA is activated during biofilm growth via posttranslational modifications and nonprocessive cleavage in a manner that is dependent on elevated c-di-GMP levels. Here, we provide evidence that the diguanylate cyclase (DGC) GcbA contributes to the regulation of BdlA cleavage shortly after initial cellular attachment to surfaces and, thus, plays an essential role in allowing biofilm cells to disperse in response to increasing concentrations of a variety of substances, including carbohydrates, heavy metals, and nitric oxide. DGC activity of GcbA was required for its function, as a catalytically inactive variant could not rescue impaired BdlA processing or the dispersion-deficient phenotype of gcbA mutant biofilms to wild-type levels. While modulating BdlA cleavage during biofilm growth, GcbA itself was found to be subject to c-di-GMP-dependent and growth-mode-specific regulation. GcbA production was suppressed in mature wild-type biofilms and could be induced by reducing c-di-GMP levels via overexpression of genes encoding PDEs. Taken together, the present findings demonstrate that the regulatory functions of c-di-GMP-synthesizing DGCs expand beyond surface attachment and biofilm formation and illustrate a novel role for DGCs in the regulation of the reverse sessile-motile transition of dispersion. PMID:25331436

  16. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide.

    PubMed

    Goncalves, Marina Dos Santos; Delattre, Cédric; Balestrino, Damien; Charbonnel, Nicolas; Elboutachfaiti, Redouan; Wadouachi, Anne; Badel, Stéphanie; Bernardi, Thierry; Michaud, Philippe; Forestier, Christiane

    2014-01-01

    Competition and cooperation phenomena occur within highly interactive biofilm communities and several non-biocides molecules produced by microorganisms have been described as impairing biofilm formation. In this study, we investigated the anti-biofilm capacities of an ubiquitous and biofilm producing bacterium, Klebsiella pneumoniae. Cell-free supernatant from K. pneumoniae planktonic cultures showed anti-biofilm effects on most Gram positive bacteria tested but also encompassed some Gram negative bacilli. The anti-biofilm non-bactericidal activity was further investigated on Staphylococcus epidermidis, by determining the biofilm biomass, microscopic observations and agglutination measurement through a magnetic bead-mediated agglutination test. Cell-free extracts from K. pneumoniae biofilm (supernatant and acellular matrix) also showed an influence, although to a lesser extend. Chemical analyses indicated that the active molecule was a high molecular weight polysaccharide composed of five monosaccharides: galactose, glucose, rhamnose, glucuronic acid and glucosamine and the main following sugar linkage residues [→ 2)-α-L-Rhap-(1 →]; [→ 4)-α-L-Rhap-(1 →]; [α-D-Galp-(1 →]; [→ 2,3)-α-D-Galp-(1 →]; [→ 3)-β-D-Galp-(1 →] and, [→ 4)-β-D-GlcAp-(1 →]. Characterization of this molecule indicated that this component was more likely capsular polysaccharide (CPS) and precoating of abiotic surfaces with CPS extracts from different serotypes impaired the bacteria-surface interactions. Thus the CPS of Klebsiella would exhibit a pleiotropic activity during biofilm formation, both stimulating the initial adhesion and maturation steps as previously described, but also repelling potential competitors. PMID:24932475

  17. Anti-Biofilm Activity: A Function of Klebsiella pneumoniae Capsular Polysaccharide

    PubMed Central

    Dos Santos Goncalves, Marina; Delattre, Cédric; Balestrino, Damien; Charbonnel, Nicolas; Elboutachfaiti, Redouan; Wadouachi, Anne; Badel, Stéphanie; Bernardi, Thierry; Michaud, Philippe; Forestier, Christiane

    2014-01-01

    Competition and cooperation phenomena occur within highly interactive biofilm communities and several non-biocides molecules produced by microorganisms have been described as impairing biofilm formation. In this study, we investigated the anti-biofilm capacities of an ubiquitous and biofilm producing bacterium, Klebsiella pneumoniae. Cell-free supernatant from K. pneumoniae planktonic cultures showed anti-biofilm effects on most Gram positive bacteria tested but also encompassed some Gram negative bacilli. The anti-biofilm non-bactericidal activity was further investigated on Staphylococcus epidermidis, by determining the biofilm biomass, microscopic observations and agglutination measurement through a magnetic bead-mediated agglutination test. Cell-free extracts from K. pneumoniae biofilm (supernatant and acellular matrix) also showed an influence, although to a lesser extend. Chemical analyses indicated that the active molecule was a high molecular weight polysaccharide composed of five monosaccharides: galactose, glucose, rhamnose, glucuronic acid and glucosamine and the main following sugar linkage residues [→2)-α-l-Rhap-(1→]; [→4)-α-l-Rhap-(1→]; [α-d-Galp-(1→]; [→2,3)-α-d-Galp-(1→]; [→3)-β-d-Galp-(1→] and, [→4)-β-d-GlcAp-(1→]. Characterization of this molecule indicated that this component was more likely capsular polysaccharide (CPS) and precoating of abiotic surfaces with CPS extracts from different serotypes impaired the bacteria-surface interactions. Thus the CPS of Klebsiella would exhibit a pleiotropic activity during biofilm formation, both stimulating the initial adhesion and maturation steps as previously described, but also repelling potential competitors. PMID:24932475

  18. Uncertainty in bulk-liquid hydrodynamics and biofilm dynamics creates uncertainties in biofilm reactor design.

    PubMed

    Boltz, J P; Daigger, G T

    2010-01-01

    While biofilm reactors may be classified as one of seven different types, the design of each is unified by fundamental biofilm principles. It follows that state-of-the art design of each biofilm reactor type is subject to the same uncertainties (although the degree of uncertainty may vary). This paper describes unifying biofilm principles and uncertainties of importance in biofilm reactor design. This approach to biofilm reactor design represents a shift from the historical approach which was based on empirical criteria and design formulations. The use of such design criteria was largely due to inherent uncertainty over reactor-scale hydrodynamics and biofilm dynamics, which correlate with biofilm thickness, structure and function. An understanding of two fundamental concepts is required to rationally design biofilm reactors: bioreactor hydrodynamics and biofilm dynamics (with particular emphasis on mass transfer resistances). Bulk-liquid hydrodynamics influences biofilm thickness control, surface area, and development. Biofilm dynamics influences biofilm thickness, structure and function. While the complex hydrodynamics of some biofilm reactors such as trickling filters and biological filters have prevented the widespread use of fundamental biofilm principles and mechanistic models in practice, reactors utilizing integrated fixed-film activated sludge or moving bed technology provide a bulk-liquid hydrodynamic environment allowing for their application. From a substrate transformation perspective, mass transfer in biofilm reactors defines the primary difference between suspended growth and biofilm systems: suspended growth systems are kinetically (i.e., biomass) limited and biofilm reactors are primarily diffusion (i.e., biofilm growth surface area) limited.

  19. Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities

    SciTech Connect

    Singer, Steven; Erickson, Brian K; Verberkmoes, Nathan C; Hwang, Mona; Shah, Manesh B; Hettich, Robert {Bob} L; Banfield, Jillian F.; Thelen, Michael P.

    2010-01-01

    Characterizing proteins recovered from natural microbial communities affords the opportunity to correlate protein expression and modification with environmental factors, including species composition and successional stage. Proteogenomic and biochemical studies of pellicle biofilms from subsurface acid mine drainage streams have shown abundant cytochromes from the dominant organism, Leptospirillum Group II. These cytochromes are proposed to be key proteins in aerobic Fe(II) oxidation, the dominant mode of cellular energy generation by the biofilms. In this study, we determined that posttranslational modification and expression of amino-acid sequence variants change as a function of biofilm maturation. For Cytochrome579 (Cyt579), the most abundant cytochrome in the biofilms, late developmental-stage biofilms differed from early-stage biofilms in N-terminal truncations and decreased redox potentials. Expression of sequence variants of two monoheme c-type cytochromes also depended on biofilm development. For Cyt572, an abundant membrane-bound cytochrome, the expression of multiple sequence variants was observed in both early and late developmental-stage biofilms; however, redox potentials of Cyt572 from these different sources did not vary significantly. These cytochrome analyses show a complex response of the Leptospirillum Group II electron transport chain to growth within a microbial community and illustrate the power of multiple proteomics techniques to define biochemistry in natural systems.

  20. The intraoral device of overlaid disk-holding splints as a new in situ oral biofilm model

    PubMed Central

    Prada-López, Isabel; Quintas, Víctor

    2015-01-01

    Objectives: To design a device that allows the formation of in situ oral biofilm with similar characteristics to those from the dental plaque, overcoming the limitations of previous devices. Study Design: The Intraoral Device of Overlaid Disk-holding Splints (IDODS) was designed and manufactured. To test its validity, five healthy adult volunteers wore them for two and four days allowing the biofilm to grow without any type of distortion. After each period, the thickness, vitality and structure of the formed biofilm were measured with a Confocal Laser Scanning Microscope (CLSM) in combination with a dual fluorescence solution. All volunteers filled out a Likert-type questionnaire to evaluate the device. Results: Mean bacterial vitality in the 2- and 4-day biofilms was 71% and 63%, respectively. Mean thicknesses were 21 µm and 28 µm, respectively. There was predominance in the open and heterogeneous structure whose complexity was ascending as the biofilm matured. The results obtained from the questionnaire were 2/5 in the influence in aesthetics, 3.4/5 in comfort, and 5/5 in ease of maintaining oral hygiene and withdrawal from the oral cavity. Conclusions: A biofilm with optimum characteristics was obtained by IDODS. Its use is associated with good aesthetic and comfort results and is absent of functional limitations, allowing optimal oral hygiene without altering the structure of the in situ oral biofilm. Key words:Confocal Laser Scanning Microscope, fluorochromes, in situ, intraoral device, oral biofilm. PMID:25810823

  1. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    PubMed

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p < 0.05) in the number of biofilm cells (25.5-61.8 %) depending on the probiotic strain and the biofilm phase. L. rhamnosus supernatants had no significant effect on the mature biofilm (p > 0.05), but significantly reduced the early stages of Candida biofilm formation (p < 0.01). Microscopic analyses revealed that L. rhamnosus suspensions reduced Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections.

  2. Probiotic lactobacilli inhibit early stages of Candida albicans biofilm development by reducing their growth, cell adhesion, and filamentation.

    PubMed

    Matsubara, Victor Haruo; Wang, Yi; Bandara, H M H N; Mayer, Marcia Pinto Alves; Samaranayake, Lakshman P

    2016-07-01

    We evaluated the inhibitory effects of the probiotic Lactobacillus species on different phases of Candida albicans biofilm development. Quantification of biofilm growth and ultrastructural analyses were performed on C. albicans biofilms treated with Lactobacillus rhamnosus, Lactobacillus casei, and Lactobacillus acidophilus planktonic cell suspensions as well as their supernatants. Planktonic lactobacilli induced a significant reduction (p < 0.05) in the number of biofilm cells (25.5-61.8 %) depending on the probiotic strain and the biofilm phase. L. rhamnosus supernatants had no significant effect on the mature biofilm (p > 0.05), but significantly reduced the early stages of Candida biofilm formation (p < 0.01). Microscopic analyses revealed that L. rhamnosus suspensions reduced Candida hyphal differentiation, leading to a predominance of budding growth. All lactobacilli negatively impacted C. albicans yeast-to-hyphae differentiation and biofilm formation. The inhibitory effects of the probiotic Lactobacillus on C. albicans entailed both cell-cell interactions and secretion of exometabolites that may impact on pathogenic attributes associated with C. albicans colonization on host surfaces and yeast filamentation. This study clarifies, for the first time, the mechanics of how Lactobacillus species may antagonize C. albicans host colonization. Our data elucidate the inhibitory mechanisms that define the probiotic candicidal activity of lactobacilli, thus supporting their utility as an adjunctive therapeutic mode against mucosal candidal infections. PMID:27087525

  3. Free Chlorine and Monochloramine Application to Nitrifying Biofilm: Comparison of Biofilm Penetration, Activity, and Viability

    EPA Science Inventory

    Biofilm in drinking water systems is undesirable and effective biofilm control maintains public health. Free chlorine and monochloramine are commonly used as secondary drinking water disinfectants, but monochloramine is perceived to penetrate biofilm better than free chlorine. ...

  4. Mechanics of bacteriophage maturation.

    PubMed

    Roos, Wouter H; Gertsman, Ilya; May, Eric R; Brooks, Charles L; Johnson, John E; Wuite, Gijs J L

    2012-02-14

    Capsid maturation with large-scale subunit reorganization occurs in virtually all viruses that use a motor to package nucleic acid into preformed particles. A variety of ensemble studies indicate that the particles gain greater stability during this process, however, it is unknown which material properties of the fragile procapsids change. Using Atomic Force Microscopy-based nano-indentation, we study the development of the mechanical properties during maturation of bacteriophage HK97, a λ-like phage of which the maturation-induced morphological changes are well described. We show that mechanical stabilization and strengthening occurs in three independent ways: (i) an increase of the Young's modulus, (ii) a strong rise of the capsid's ultimate strength, and (iii) a growth of the resistance against material fatigue. The Young's modulus of immature and mature capsids, as determined from thin shell theory, fit with the values calculated using a new multiscale simulation approach. This multiscale calculation shows that the increase in Young's modulus isn't dependent on the crosslinking between capsomers. In contrast, the ultimate strength of the capsids does increase even when a limited number of cross-links are formed while full crosslinking appears to protect the shell against material fatigue. Compared to phage λ, the covalent crosslinking at the icosahedral and quasi threefold axes of HK97 yields a mechanically more robust particle than the addition of the gpD protein during maturation of phage λ. These results corroborate the expected increase in capsid stability and strength during maturation, however in an unexpected intricate way, underlining the complex structure of these self-assembling nanocontainers.

  5. An effective antibiofilm agent against Pseudomonas aeruginosa biofilm from traditional Thai herbal recipes used for wound treatments.

    PubMed

    Chusri, Sasitorn; Jittanon, Wittaya; Maneenoon, Katesarin; Voravuthikunchai, Supayang Piyawan

    2013-10-01

    The presence of bacterial biofilm, particularly formed by Pseudomonas aeruginosa, has been considered an important factor responsible for wound chronicity. The objective of this study was to investigate the antibiofilm activity of water and ethanol extracts obtained from three traditional herbal recipes (THR-SK004, THR-SK010, and THR-SK011) on biofilm formation and on mature biofilm of a reference strain of P. aeruginosa. The effects of the extracts on the biofilm mass were evaluated by using crystal violet (CV) assay. The respiratory activity of preformed biofilm of P. aeruginosa after treatment with the extract was determined by MTT reduction assay. Scanning electron microscopy was used to furnish images of biofilm reduction after the recipe treatment. Tested ethanol extracts displayed antibiofilm activity, but the water extracts exhibited low biofilm inhibition activity at the tested concentrations. Remarkable reduction in biofilm formation of P. aeruginosa was found after treatment with the THR-SK010 ethanol extract (THR-SK010E). Treatments with this extract resulted in prevention of biofilm formation of P. aeruginosa on both polystyrene and glass surfaces. Almost 50% reduction in the bacterial metabolic activity in the preformed biofilm was seen after exposure to the extract-supplemented buffer for 12 hr. After a 24-hr treatment with THR-SK010E at 62.5 μg/ml, 97.3% of the preformed biofilms were destroyed. Promising antibiofilm activity was displayed by the THR-SK010 ethanol extract, suggesting further investigation to explore the possible utilization of the herbal recipe as an antibiofilm agent, especially for wound treatment. PMID:23600560

  6. An effective antibiofilm agent against Pseudomonas aeruginosa biofilm from traditional Thai herbal recipes used for wound treatments.

    PubMed

    Chusri, Sasitorn; Jittanon, Wittaya; Maneenoon, Katesarin; Voravuthikunchai, Supayang Piyawan

    2013-10-01

    The presence of bacterial biofilm, particularly formed by Pseudomonas aeruginosa, has been considered an important factor responsible for wound chronicity. The objective of this study was to investigate the antibiofilm activity of water and ethanol extracts obtained from three traditional herbal recipes (THR-SK004, THR-SK010, and THR-SK011) on biofilm formation and on mature biofilm of a reference strain of P. aeruginosa. The effects of the extracts on the biofilm mass were evaluated by using crystal violet (CV) assay. The respiratory activity of preformed biofilm of P. aeruginosa after treatment with the extract was determined by MTT reduction assay. Scanning electron microscopy was used to furnish images of biofilm reduction after the recipe treatment. Tested ethanol extracts displayed antibiofilm activity, but the water extracts exhibited low biofilm inhibition activity at the tested concentrations. Remarkable reduction in biofilm formation of P. aeruginosa was found after treatment with the THR-SK010 ethanol extract (THR-SK010E). Treatments with this extract resulted in prevention of biofilm formation of P. aeruginosa on both polystyrene and glass surfaces. Almost 50% reduction in the bacterial metabolic activity in the preformed biofilm was seen after exposure to the extract-supplemented buffer for 12 hr. After a 24-hr treatment with THR-SK010E at 62.5 μg/ml, 97.3% of the preformed biofilms were destroyed. Promising antibiofilm activity was displayed by the THR-SK010 ethanol extract, suggesting further investigation to explore the possible utilization of the herbal recipe as an antibiofilm agent, especially for wound treatment.

  7. Phagosome maturation: aging gracefully.

    PubMed Central

    Vieira, Otilia V; Botelho, Roberto J; Grinstein, Sergio

    2002-01-01

    Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review. PMID:12061891

  8. Analysis of microbial community during biofilm development in an anaerobic wastewater treatment reactor.

    PubMed

    Fernández, Nuria; Díaz, Emiliano Enrique; Amils, Ricardo; Sanz, José L

    2008-07-01

    The formation, structure, and biodiversity of a multispecies anaerobic biofilm inside an Upflow Anaerobic Sludge Bed (UASB) reactor fed with brewery wastewater was examined using complementary microbial ecology methods such us fluorescence in situ hybridization (FISH), denaturing gradient gel electrophoresis (DGGE), and cloning. The biofilm development can be roughly divided into three stages: an initial attachment phase (0-36 h) characterized by random adhesion of the cells to the surface; a consolidation phase (from 36 h to 2 weeks) defined by the appearance of microcolonies; and maturation phase (from 2 weeks to 2 months). During the consolidation period, proteobacteria with broad metabolic capabilities, mainly represented by members of alpha-Proteobacteria class (Oleomonas, Azospirillum), predominated. Beta-, gamma-, delta- (both syntrophobacteria and sulfate-reducing bacteria) and epsilon- (Arcobacter sp.) Proteobacteria were also noticeable. Archaea first appeared during the consolidation period. A Methanospirillum-like methanogen was detected after 36 h, and this was followed by the detection of Methanosarcina, after 4 days of biofilm development. The mature biofilm displayed a hill and valley topography with cells embedded in a matrix of exopolymers where the spatial distribution of the microorganisms became well-established. Compared to the earlier phases, the biodiversity had greatly increased. Although alpha-Proteobacteria remained as predominant, members of the phyla Firmicutes, Bacteroidete, and Thermotogae were also detected. Within the domain Archaea, the acetoclastic methanogen Methanosaeta concilii become dominant. This study provides insights on the trophic web and the shifts in population during biofilm development in an UASB reactor.

  9. In Lactobacillus pentosus, the olive brine adaptation genes are required for biofilm formation.

    PubMed

    Perpetuini, G; Pham-Hoang, B N; Scornec, H; Tofalo, R; Schirone, M; Suzzi, G; Cavin, J F; Waché, Y; Corsetti, A; Licandro-Seraut, H

    2016-01-01

    Lactobacillus pentosus is one of the few lactic acid bacteria (LAB) species capable of surviving in olive brine, and thus desirable during table olive fermentation. We have recently generated mutants of the efficient strain L. pentosus C11 by transposon mutagenesis and identified five mutants unable to survive and adapt to olive brine conditions. Since biofilm formation represents one of the main bacterial strategy to survive in stressful environments, in this study, the capacity of adhesion and formation of biofilm on olive skin was investigated for this strain and five derivative mutants which are interrupted in metabolic genes (enoA1 and gpi), and in genes of unknown function ("oba" genes). Confocal microscopy together with bacteria count revealed that the sessile state represented the prevailing L. pentosus C11 life-style during table olive fermentation. The characterization of cell surface properties showed that mutants present less hydrophobic and basic properties than the wild type (WT). In fact, their ability to adhere to both abiotic (polystyrene plates) and biotic (olive skin) surfaces was lower than that of the WT. Confocal microscopy revealed that mutants adhered sparsely to the olive skin instead of building a thin, multilayer biofilm. Moreover, RT-qPCR showed that the three genes enoA1, gpi and obaC were upregulated in the olive biofilm compared to the planktonic state. Thus enoA1, gpi and "oba" genes are necessary in L. pentosus to form an organized biofilm on the olive skin. PMID:26447789

  10. In Lactobacillus pentosus, the olive brine adaptation genes are required for biofilm formation.

    PubMed

    Perpetuini, G; Pham-Hoang, B N; Scornec, H; Tofalo, R; Schirone, M; Suzzi, G; Cavin, J F; Waché, Y; Corsetti, A; Licandro-Seraut, H

    2016-01-01

    Lactobacillus pentosus is one of the few lactic acid bacteria (LAB) species capable of surviving in olive brine, and thus desirable during table olive fermentation. We have recently generated mutants of the efficient strain L. pentosus C11 by transposon mutagenesis and identified five mutants unable to survive and adapt to olive brine conditions. Since biofilm formation represents one of the main bacterial strategy to survive in stressful environments, in this study, the capacity of adhesion and formation of biofilm on olive skin was investigated for this strain and five derivative mutants which are interrupted in metabolic genes (enoA1 and gpi), and in genes of unknown function ("oba" genes). Confocal microscopy together with bacteria count revealed that the sessile state represented the prevailing L. pentosus C11 life-style during table olive fermentation. The characterization of cell surface properties showed that mutants present less hydrophobic and basic properties than the wild type (WT). In fact, their ability to adhere to both abiotic (polystyrene plates) and biotic (olive skin) surfaces was lower than that of the WT. Confocal microscopy revealed that mutants adhered sparsely to the olive skin instead of building a thin, multilayer biofilm. Moreover, RT-qPCR showed that the three genes enoA1, gpi and obaC were upregulated in the olive biofilm compared to the planktonic state. Thus enoA1, gpi and "oba" genes are necessary in L. pentosus to form an organized biofilm on the olive skin.

  11. Significance of biofilms in dentistry.

    PubMed

    Wróblewska, Marta; Strużycka, Izabela; Mierzwińska-Nastalska, Elżbieta

    2015-01-01

    In the past decades significant scientific progress has taken place in the knowledge about biofilms. They constitute multilayer conglomerates of bacteria and fungi, surrounded by carbohydrates which they produce, as well as substances derived from saliva and gingival fluid. Modern techniques showed significant diversity of the biofilm environment and a system of microbial communication (quorum sensing), enhancing their survival. At present it is believed that the majority of infections, particularly chronic with exacerbations, are a result of biofilm formation, particularly in the presence of biomaterials. It should be emphasised that penetration of antibiotics and other antimicrobial agents into deeper layers of a biofilm is poor, causing therapeutic problems and necessitating sometimes removal of the implant or prosthesis. Biofilms play an increasing role in dentistry as a result of more and more broad use in dental practice of plastic and implantable materials. Biofilms are produced on the surfaces of teeth as dental plaque, in the para-nasal sinuses, on prostheses, dental implants, as well as in waterlines of a dental unit, constituting a particular risk for severely immunocompromised patients. New methods of therapy and prevention of infections linked to biofilms are under development.

  12. Doubt, Struggle and Growth: A Profile of the Mature Woman in the Student Role.

    ERIC Educational Resources Information Center

    Patterson, Carey D.; Blank, Thomas O.

    This study was conducted to develop a profile of the mature woman who seeks a postsecondary education, to ascertain the personal and social reasons that influence an adult woman to return to school, and to describe the interpersonal adjustments that accompany this change in life-style. Data were collected via a 50-item fixed-response questionnaire…

  13. Managing biofilm by using dressings.

    PubMed

    Hampton, Sylvie

    2015-06-01

    Biofilm is a thin layer containing masses of microorganisms; it has a gelatinous protective cover that is capable of attaching to virtually any surface. A wound provides the perfect medium for the growth of bacteria. In a wound, the organisms in the biofilm can obtain nutrients more easily than when they live on their own, and they are protected from many of the insults of daily life. This article will focus on these microorganisms and their ability to protect the colony against all attempts to remove it and the problems biofilm creates within a wound.

  14. Activity of Tobramycin against Cystic Fibrosis Isolates of Burkholderia cepacia Complex Grown as Biofilms.

    PubMed

    Kennedy, Sarah; Beaudoin, Trevor; Yau, Yvonne C W; Caraher, Emma; Zlosnik, James E A; Speert, David P; LiPuma, John J; Tullis, Elizabeth; Waters, Valerie

    2015-10-26

    Pulmonary infection with Burkholderia cepacia complex in cystic fibrosis (CF) patients is associated with more-rapid lung function decline and earlier death than in CF patients without this infection. In this study, we used confocal microscopy to visualize the effects of various concentrations of tobramycin, achievable with systemic and aerosolized drug administration, on mature B. cepacia complex biofilms, both in the presence and absence of CF sputum. After 24 h of growth, biofilm thickness was significantly reduced by exposure to 2,000 μg/ml of tobramycin for Burkholderia cepacia, Burkholderia multivorans, and Burkholderia vietnamiensis; 200 μg/ml of tobramycin was sufficient to reduce the thickness of Burkholderia dolosa biofilm. With a more mature 48-h biofilm, significant reductions in thickness were seen with tobramycin at concentrations of ≥100 μg/ml for all Burkholderia species. In addition, an increased ratio of dead to live cells was observed in comparison to control with tobramycin concentrations of ≥200 μg/ml for B. cepacia and B. dolosa (24 h) and ≥100 μg/ml for Burkholderia cenocepacia and B. dolosa (48 h). Although sputum significantly increased biofilm thickness, tobramycin concentrations of 1,000 μg/ml were still able to significantly reduce biofilm thickness of all B. cepacia complex species with the exception of B. vietnamiensis. In the presence of sputum, 1,000 μg/ml of tobramycin significantly increased the dead-to-live ratio only for B. multivorans compared to control. In summary, although killing is attenuated, high-dose tobramycin can effectively decrease the thickness of B. cepacia complex biofilms, even in the presence of sputum, suggesting a possible role as a suppressive therapy in CF.

  15. Differing lifestyles of Staphylococcus epidermidis as revealed through Bayesian clustering of multilocus sequence types.

    PubMed

    Thomas, Jonathan C; Zhang, Liangfen; Robinson, D Ashley

    2014-03-01

    Staphylococcus epidermidis is part of the normal bacterial flora of human skin and a leading cause of infections associated with indwelling medical devices. Previous phylogenetic analyses of subgenomic data have been unable to distinguish between S. epidermidis strains with nosocomial or commensal lifestyles, despite the identification of specific phenotypes and accessory genes that may contribute to such lifestyles. To attempt to better define the population structure of this species, the international S. epidermidis multilocus sequence typing database was analyzed with the Bayesian clustering programs STRUCTURE and BAPS. A total of six genetic clusters (GCs) were identified. A local population of S. epidermidis from clinical specimens was classified according to these six GCs, and further characterized for antibiotic susceptibilities, biofilm, and various genetic markers. GC5 was abundant and significantly enriched for isolates that were resistant to four classes of antibiotics, high biofilm production, and positive for the virulence markers icaA, IS256, and sesD/bhp, indicating its potential clinical relevance. In contrast, GC2 was rare and contained the only isolates positive for the putative commensal marker, fdh. GC1 and GC6 were abundant but not significantly associated with any of the examined characteristics, except for sesF/aap and GC6. GC3 was rare and identified as a potential genetic sink that received, but did not donate, core genetic material from other GCs. In conclusion, population genetics analyses were essential for identifying clusters of strains that may differ in their adaptation to nosocomial or commensal lifestyles. These results provide a new, population genetics framework for studying S. epidermidis.

  16. Amish Lifestyle Brings Unexpected Benefit: Less Asthma

    MedlinePlus

    ... 160228.html Amish Lifestyle Brings Unexpected Benefit: Less Asthma Finding suggests exposing kids to lots of allergens, ... rest of the population -- much lower rates of asthma. "We found Amish children had extremely low levels ...

  17. Lifestyle strategies for cardiovascular risk reduction.

    PubMed

    Rippe, James M; Angelopoulos, Theodore J

    2014-10-01

    Daily lifestyle practices and habits profoundly affect the likelihood of developing cardiovascular disease (CVD). Abundant research and multiple recent consensus documents support the role of regular physical activity, not smoking cigarettes, maintaining a healthy body weight, controlling cholesterol levels, and controlling blood pressure to lower the risk of CVD. These strategies also play important roles in avoiding ever developing risk factors. Despite overwhelming knowledge in this area, adherence to lifestyle strategies remains suboptimal. Challenges remain in helping the public to act upon the current knowledge in this area. Recent guidelines for managing cholesterol and blood pressure provide new guidance in these areas. Controversy, however, exists related to specific recommendations in both of these areas. Similar strategies that are applied to adults for improving lifestyle habits and practices to lower CVD risk also apply to children and adolescents. A clear consensus exists that lifestyle strategies play a critical role in preventing, managing, and reducing cardiovascular disease and its risk factors.

  18. Control of bacterial biofilm growth on surfaces by nanostructural mechanics and geometry

    NASA Astrophysics Data System (ADS)

    Epstein, A. K.; Hochbaum, A. I.; Kim, Philseok; Aizenberg, J.

    2011-12-01

    Surface-associated communities of bacteria, called biofilms, pervade natural and anthropogenic environments. Mature biofilms are resistant to a wide range of antimicrobial treatments and therefore pose persistent pathogenic threats. The use of surface chemistry to inhibit biofilm growth has been found to only transiently affect initial attachment. In this work, we investigate the tunable effects of physical surface properties, including high-aspect-ratio (HAR) surface nanostructure arrays recently reported to induce long-range spontaneous spatial patterning of bacteria on the surface. The functional parameters and length scale regimes that control such artificial patterning for the rod-shaped pathogenic species Pseudomonas aeruginosa are elucidated through a combinatorial approach. We further report a crossover regime of biofilm growth on a HAR nanostructured surface versus the nanostructure effective stiffness. When the 'softness' of the hair-like nanoarray is increased beyond a threshold value, biofilm growth is inhibited as compared to a flat control surface. This result is consistent with the mechanoselective adhesion of bacteria to surfaces. Therefore by combining nanoarray-induced bacterial patterning and modulating the effective stiffness of the nanoarray—thus mimicking an extremely compliant flat surface—bacterial mechanoselective adhesion can be exploited to control and inhibit biofilm growth.

  19. Bidirectional microbial electron transfer: Switching an acetate oxidizing biofilm to nitrate reducing conditions.

    PubMed

    Pous, Narcís; Carmona-Martínez, Alessandro A; Vilajeliu-Pons, Anna; Fiset, Erika; Bañeras, Lluis; Trably, Eric; Balaguer, M Dolors; Colprim, Jesús; Bernet, Nicolas; Puig, Sebastià

    2016-01-15

    Up to date a few electroactive bacteria embedded in biofilms are described to catalyze both anodic and cathodic reactions in bioelectrochemical systems (i.e. bidirectional electron transfer). How these bacteria transfer electrons to or from the electrode is still uncertain. In this study the extracellular electron transfer mechanism of bacteria within an electroactive biofilm was investigated by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV). First, a mature anodic electroactive biofilm was developed from an activated sludge sample (inoculum), acetate as electron donor and a poised electrode (+397mV vs. SHE). Later, this biofilm was "switched" to biocathodic conditions by feeding it with a medium containing nitrates and poising the electrode at -303mV vs. SHE. The electrochemical characterization indicated that both, acetate oxidation and nitrate reduction took place at a similar formal potential of -175±05 and -175±34mV vs. SHE, respectively. The biofilm was predominantly composed by Geobacter sp. at both experimental conditions. Taken together, the results indicated that both processes could be catalyzed by using the same electron conduit, and most likely by the same bacterial consortium. Hence, this study suggests that electroactive bacteria within biofilms could use the same electron transfer conduit for catalyzing anodic and cathodic reactions.

  20. The Antibacterial Activity of Acetic Acid against Biofilm-Producing Pathogens of Relevance to Burns Patients

    PubMed Central

    Halstead, Fenella D.; Rauf, Maryam; Moiemen, Naiem S.; Bamford, Amy; Wearn, Christopher M.; Fraise, Adam P.; Lund, Peter A.; Oppenheim, Beryl A.; Webber, Mark A.

    2015-01-01

    Introduction Localised infections, and burn wound sepsis are key concerns in the treatment of burns patients, and prevention of colonisation largely relies on biocides. Acetic acid has been shown to have good antibacterial activity against various planktonic organisms, however data is limited on efficacy, and few studies have been performed on biofilms. Objectives We sought to investigate the antibacterial activity of acetic acid against important burn wound colonising organisms growing planktonically and as biofilms. Methods Laboratory experiments were performed to test the ability of acetic acid to inhibit growth of pathogens, inhibit the formation of biofilms, and eradicate pre-formed biofilms. Results Twenty-nine isolates of common wound-infecting pathogens were tested. Acetic acid was antibacterial against planktonic growth, with an minimum inhibitory concentration of 0.16–0.31% for all isolates, and was also able to prevent formation of biofilms (at 0.31%). Eradication of mature biofilms was observed for all isolates after three hours of exposure. Conclusions This study provides evidence that acetic acid can inhibit growth of key burn wound pathogens when used at very dilute concentrations. Owing to current concerns of the reducing efficacy of systemic antibiotics, this novel biocide application offers great promise as a cheap and effective measure to treat infections in burns patients. PMID:26352256

  1. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.

    PubMed

    Wikieł, Agata J; Datsenko, Iaryna; Vera, Mario; Sand, Wolfgang

    2014-06-01

    Sulfate reducing prokaryotes are associated with the steel deterioration. They build heterogeneous biofilms, capable of accelerating corrosion processes. In this study metabolic activity and the biofilm development of Desulfovibrio alaskensis were correlated to electrochemical response of carbon steel surface. In the exponential growth phase sulfide concentration reached its maximum of about 10mM. This phenomenon was responsible for the parallel increase in the corrosion potential (Ecorr) up to -720mV (vs. SCE). Subsequently, during the intensive biofilm formation and development another Ecorr peak (-710mV vs. SCE) occurred. Decrease in Ecorr was registered during the biofilm maturation and kept stable, being 20mV lower than in the control. While carbon steel was protected from the microbial attachment and exposed to metabolic products, only one potential maximum (-730mV vs. SCE) was recorded. Here Ecorr variations coincided with sulfide concentration changes and kept at 120mV lower vs. the control. Weight loss examinations revealed corrosion rates, which did not exceed 0.05mm/y. Confocal microscopy suggested the importance of extracellular proteins in the biofilm formation. Above 150 proteins were detected in the EPS matrix. Surface effects of biofilm and metabolic products were visualised, revealing the role of attached microorganisms in the localised corrosion.

  2. Effect of calcium on moving-bed biofilm reactor biofilms.

    PubMed

    Goode, C; Allen, D G

    2011-03-01

    The effect of calcium concentration on the biofilm structure, microbiology, and treatment performance was evaluated in a moving-bed biofilm reactor. Three experiments were conducted in replicate laboratory-scale reactors to determine if wastewater calcium is an important variable for the design and optimization of these reactors. Biofilm structural properties, such as thickness, oxygen microprofiles, and the composition of extracellular polymeric substances (EPS) were affected by increasing calcium concentrations. Above a threshold concentration of calcium between 1 and 50 mg/L, biofilms became thicker and denser, with a shift toward increasingly proteinaceous EPS at higher calcium concentrations up to 200 mgCa2+/L. At 300 mgCa2+/L, biofilms were found to become primarily composed of inorganic calcium precipitates. Microbiology was assessed through microscopy, denaturing grade gel electrophoresis, and enumeration of higher organisms. Higher calcium concentrations were found to change the bacterial community and promote the abundant growth of filamentous organisms and various protazoa and metazoan populations. The chemical oxygen demand removal efficiency was improved for reactors at calcium concentrations of 50 mg/L and above. Reactor effluents for the lowest calcium concentration (1 mgCa2+/L) were found to be turbid (>50 NTU), as a result of the detachment of small and poorly settling planktonic biomass, whereas higher concentrations promoted settling of the suspended phase. In general, calcium was found to be an important variable causing significant changes in biofilm structure and reactor function.

  3. The ``Swiss cheese'' instability of bacterial biofilms

    NASA Astrophysics Data System (ADS)

    Jang, Hongchul; Rusconi, Roberto; Stocker, Roman

    2012-11-01

    Bacteria often adhere to surfaces, where they develop polymer-encased communities (biofilms) that display dramatic resistance to antibiotic treatment. A better understanding of cell detachment from biofilms may lead to novel strategies for biofilm disruption. Here we describe a new detachment mode, whereby a biofilm develops a nearly regular array of ~50-100 μm holes. Using surface-treated microfluidic devices, we create biofilms of controlled shape and size. After the passage of an air plug, the break-up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a ``Swiss cheese'' pattern is left in the residual biofilm. Fluorescent staining of the polymeric matrix (EPS) reveals that resistance to cell dislodgement correlates with local biofilm age, early settlers having had more time to hunker down. Because few survivors suffice to regrow a biofilm, these results point at the importance of considering microscale heterogeneity in assessing the effectiveness of biofilm removal strategies.

  4. Metabolism links bacterial biofilms and colon carcinogenesis.

    PubMed

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-01

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  5. Broad-spectrum anti-biofilm peptide that targets a cellular stress response.

    PubMed

    de la Fuente-Núñez, César; Reffuveille, Fany; Haney, Evan F; Straus, Suzana K; Hancock, Robert E W

    2014-05-01

    Bacteria form multicellular communities known as biofilms that cause two thirds of all infections and demonstrate a 10 to 1000 fold increase in adaptive resistance to conventional antibiotics. Currently, there are no approved drugs that specifically target bacterial biofilms. Here we identified a potent anti-biofilm peptide 1018 that worked by blocking (p)ppGpp, an important signal in biofilm development. At concentrations that did not affect planktonic growth, peptide treatment completely prevented biofilm formation and led to the eradication of mature biofilms in representative strains of both Gram-negative and Gram-positive bacterial pathogens including Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, methicillin resistant Staphylococcus aureus, Salmonella Typhimurium and Burkholderia cenocepacia. Low levels of the peptide led to biofilm dispersal, while higher doses triggered biofilm cell death. We hypothesized that the peptide acted to inhibit a common stress response in target species, and that the stringent response, mediating (p)ppGpp synthesis through the enzymes RelA and SpoT, was targeted. Consistent with this, increasing (p)ppGpp synthesis by addition of serine hydroxamate or over-expression of relA led to reduced susceptibility to the peptide. Furthermore, relA and spoT mutations blocking production of (p)ppGpp replicated the effects of the peptide, leading to a reduction of biofilm formation in the four tested target species. Also, eliminating (p)ppGpp expression after two days of biofilm growth by removal of arabinose from a strain expressing relA behind an arabinose-inducible promoter, reciprocated the effect of peptide added at the same time, leading to loss of biofilm. NMR and chromatography studies showed that the peptide acted on cells to cause degradation of (p)ppGpp within 30 minutes, and in vitro directly interacted with ppGpp. We thus propose that 1018 targets (p)ppGpp and marks it for degradation in

  6. Rationing organs using psychosocial and lifestyle criteria.

    PubMed

    Corley, M C; Westerberg, N; Elswick, R K; Connell, D; Neil, J; Sneed, G; Witcher, V

    1998-08-01

    The role of patient psychosocial and lifestyle characteristics in decisions about the allocation of scarce health care resources has not been examined. In this national survey using the Criteria for Selection of Transplant Recipient (CSTR) Scale, organ transplant coordinators (N = 559) identified the psychosocial and lifestyle criteria they believe should be considered in patient selection/rejection for organ transplant. Using factor analysis to reduce the data, six factors were identified: current lifestyle/psychiatric problems, family/socioeconomic issues, habits, controlled lifestyle/psychiatric issues, cost, and stigmatized conditions. Patients who were in prison for a serious crime, used cocaine, had AIDS, or were HIV positive (criteria making up the Stigma factor), were more likely to be labeled for exclusion from transplant than those with other psychosocial/lifestyle characteristics. When transplant coordinators perceived that patients' psychosocial and lifestyle problems were under control or corrected, they were more likely to consider them for a transplant. For all but the cost factor, criteria were most stringent for heart transplants. Although over 90% of the coordinators assessed patients and participated in patient selection for transplant, master's prepared nurses were more likely than nurses with other educational preparation to be involved in organ recipient selection. These findings can serve as a prototype for how decisions are made for allocating other scarce health care resources. PMID:9679809

  7. Nanotechnology: role in dental biofilms.

    PubMed

    Bhardwaj, Sonia B; Mehta, Manjula; Gauba, K

    2009-01-01

    Biofilms are surface-adherent populations of microorganisms consisting of cells, water and extracellular matrix material Nanotechnology is promising field of science which can guide our understanding of the role of interspecies interaction in the development of biofilm. Streptococcus mutans with other species of bacteria has been known to form dental biofilm. The correlation between genetically modified bacteria Streptococcus mutans and nanoscale morphology has been assessed using AFMi.e atomic force microscopy. Nanotechnology application includes 16O/18O reverse proteolytic labeling,use of quantum dots for labeling of bacterial cells, selective removal of cariogenic bacteria while preserving the normal oral flora and silver antimicrobial nanotechnology against pathogens associated with biofilms. The future comprises a mouthwash full of smart nanomachines which can allow the harmless flora of mouth to flourish in a healthy ecosystem.

  8. Biomechanical Analysis of Infectious Biofilms.

    PubMed

    Head, David

    2016-01-01

    The removal of infectious biofilms from tissues or implanted devices and their transmission through fluid transport systems depends in part of the mechanical properties of their polymeric matrix. Linking the various physical and chemical microscopic interactions to macroscopic deformation and failure modes promises to unveil design principles for novel therapeutic strategies targeting biofilm eradication, and provide a predictive capability to accelerate the development of devices, water lines, etc, that minimise microbial dispersal. Here, our current understanding of biofilm mechanics is appraised from the perspective of biophysics , with an emphasis on constitutive modelling that has been highly successful in soft matter. Fitting rheometric data to viscoelastic models has quantified linear and nonlinear stress relaxation mechanisms, how they vary between species and environments, and how candidate chemical treatments alter the mechanical response. The rich interplay between growth, mechanics and hydrodynamics is just becoming amenable to computational modelling and promises to provide unprecedented characterisation of infectious biofilms in their native state. PMID:27193540

  9. Reproducibility of biofilm processes and the meaning of steady state in biofilm reactors.

    PubMed

    Lewandowski, Z; Beyenal, H; Stookey, D

    2004-01-01

    The need for reproducing biofilm processes is undisputable - the quality of biofilm research depends on this reproducibility. However, as many biofilm researchers know, long-term biofilm processes are notoriously difficult to reproduce. To avoid problems related to biofilm reproducibility two strategies are used: (1) to study very young biofilms that have accumulated for a few hours to a few days only, and (2) to run biofilm experiments only once. The first approach trades reproducibility for relevance because natural biofilms are usually older, often much older than a few days. This approach can be applied to answer questions relevant to initial events of biofilm formation but not questions relevant to long-term biofilm accumulation. The second approach conceals the problem of biofilm reproducibility. To assure reproducibility of biofilm processes, we methodically followed a procedure for growing biofilms in terms of microbial makeup, media composition, temperature, surface preparation, etc. Despite all this effort the reproducibility of our results for long term growth is unimpressive. Consequently, the question had to be asked: Are biofilm processes reproducible? The experiments described in this paper address this question. Biofilms grown in two identical and identically operated biofilm reactors had comparable structure only until the first sloughing event. After that, biofilms had different patterns of accumulation.

  10. A clinical algorithm for wound biofilm identification.

    PubMed

    Metcalf, D G; Bowler, P G; Hurlow, J

    2014-03-01

    Recognition of the existence of biofilm in chronic wounds is increasing among wound care practitioners, and a growing body of evidence indicates that biofilm contributes significantly to wound recalcitrance. While clinical guidelines regarding the involvement of biofilm in human bacterial infections have been proposed, there remains uncertainty and lack of guidance towards biofilm presence in wounds. The intention of this report is to collate knowledge and evidence of the visual and indirect clinical indicators of wound biofilm, and propose an algorithm designed to facilitate clinical recognition of biofilm and subsequent wound management practices.

  11. A clinical algorithm for wound biofilm identification.

    PubMed

    Metcalf, D G; Bowler, P G; Hurlow, J

    2016-03-01

    Recognition of the existence of biofilm in chronic wounds is increasing among wound care practitioners, and a growing body of evidence indicates that biofilm contributes significantly to wound recalcitrance. While clinical guidelines regarding the involvement of biofilm in human bacterial infections have been proposed, there remains uncertainty and lack of guidance towards biofilm presence in wounds. The intention of this report is to collate knowledge and evidence of the visual and indirect clinical indicators of wound biofilm, and propose an algorithm designed to facilitate clinical recognition of biofilm and subsequent wound management practices.

  12. Impact of biofilm-induced heterogeneities on solute transport in porous media

    NASA Astrophysics Data System (ADS)

    Kone, T.; Golfier, F.; Orgogozo, L.; Oltéan, C.; Lefèvre, E.; Block, J. C.; Buès, M. A.

    2014-11-01

    In subsurface systems, biofilm may degrade organic or organometallic pollutants contributing to natural attenuation and soil bioremediation techniques. This increase of microbial activity leads to change the hydrodynamic properties of aquifers. The purpose of this work was to investigate the influence of biofilm-induced heterogeneities on solute transport in porous media and more specifically on dispersivity. We pursued this goal by (i) monitoring both spatial concentration fields and solute breakthrough curves from conservative tracer experiments in a biofilm-supporting porous medium, (ii) characterizing in situ the changes in biovolume and visualizing the dynamics of the biological material at the mesoscale. A series of experiments was carried out in a flow cell system (60 cm3) with a silica sand (Φ = 50-70 mesh) as solid carrier and Shewanella oneidensis MR-1 as bacterial strain. Biofilm growth was monitored by image acquisition with a digital camera. The biofilm volume fraction was estimated through tracer experiments with the Blue Dextran macromolecule as in size-exclusion chromatography, leading to a fair picture of the biocolonization within the flow cell. Biofilm growth was achieved in the whole flow cell in 29 days and up to 50% of void space volume was plugged. The influence of biofilm maturation on porous medium transport properties was evaluated from tracer experiments using Brilliant Blue FCF. An experimental correlation was found between effective (i.e., nonbiocolonized) porosity and biofilm-affected dispersivity. Comparison with values given by the theoretical model of Taylor and Jaffé (1990b) yields a fair agreement.

  13. Motility and Chemotaxis in Agrobacterium tumefaciens Surface Attachment and Biofilm Formation▿ †

    PubMed Central

    Merritt, Peter M.; Danhorn, Thomas; Fuqua, Clay

    2007-01-01

    Bacterial motility mechanisms, including swimming, swarming, and twitching, are known to have important roles in biofilm formation, including colonization and the subsequent expansion into mature structured surface communities. Directed motility requires chemotaxis functions that are conserved among many bacterial species. The biofilm-forming plant pathogen Agrobacterium tumefaciens drives swimming motility by utilizing a small group of flagella localized to a single pole or the subpolar region of the cell. There is no evidence for twitching or swarming motility in A. tumefaciens. Site-specific deletion mutations that resulted in either aflagellate, flagellated but nonmotile, or flagellated but nonchemotactic A. tumefaciens derivatives were examined for biofilm formation under static and flowing conditions. Nonmotile mutants were significantly deficient in biofilm formation under static conditions. Under flowing conditions, however, the aflagellate mutant rapidly formed aberrantly dense, tall biofilms. In contrast, a nonmotile mutant with unpowered flagella was clearly debilitated for biofilm formation relative to the wild type. A nontumbling chemotaxis mutant was only weakly affected with regard to biofilm formation under nonflowing conditions but was notably compromised in flow, generating less adherent biomass than the wild type, with a more dispersed cellular arrangement. Extragenic suppressor mutants of the chemotaxis-impaired, straight-swimming phenotype were readily isolated from motility agar plates. These mutants regained tumbling at a frequency similar to that of the wild type. Despite this phenotype, biofilm formation by the suppressor mutants in static cultures was significantly deficient. Under flowing conditions, a representative suppressor mutant manifested a phenotype similar to yet distinct from that of its nonchemotactic parent. PMID:17766409

  14. Characterization of the algC Gene Expression Pattern in the Multidrug Resistant Acinetobacter baumannii AIIMS 7 and Correlation with Biofilm Development on Abiotic Surface

    PubMed Central

    Sahu, Praveen K.; Iyer, Pavithra S.; Barage, Sagar H.; Sonawane, Kailas D.; Chopade, Balu A.

    2014-01-01

    Relative quantification of algC gene expression was evaluated in the multidrug resistant strain Acinetobacter baumannii AIIMS 7 biofilm (3 to 96 h, on polystyrene surface) compared to the planktonic counterparts. Comparison revealed differential algC expression pattern with maximum 81.59-fold increase in biofilm cells versus 3.24-fold in planktonic cells (P < 0.05). Expression levels strongly correlated with specific biofilm stages (scale of 3 to 96 h), coinciding maximum at initial surface attachment stage (9 h) and biofilm maturation stage (48 h). Cloning, heterologous expression, and bioinformatics analyses indicated algC gene product as the bifunctional enzyme phosphomannomutase/phosphoglucomutase (PMM/PGM) of ∼53 kDa size, which augmented biofilms significantly in algC clones compared to controls (lacking algC gene), further localized by scanning electron microscopy. Moreover, molecular dynamics analysis on the three-dimensional structure of PMM/PGM (simulated up to 10 ns) revealed enzyme structure as stable and similar to that in P. aeruginosa (synthesis of alginate and lipopolysaccharide core) and involved in constitution of biofilm EPS (extracellular polymeric substances). Our observation on differential expression pattern of algC having strong correlation with important biofilm stages, scanning electron-microscopic evidence of biofilm augmentation taken together with predictive enzyme functions via molecular dynamic (MD) simulation, proposes a new basis of A. baumannii AIIMS 7 biofilm development on inanimate surfaces. PMID:25544957

  15. Strategies for combating bacterial biofilm infections

    PubMed Central

    Wu, Hong; Moser, Claus; Wang, Heng-Zhuang; Høiby, Niels; Song, Zhi-Jun

    2015-01-01

    Formation of biofilm is a survival strategy for bacteria and fungi to adapt to their living environment, especially in the hostile environment. Under the protection of biofilm, microbial cells in biofilm become tolerant and resistant to antibiotics and the immune responses, which increases the difficulties for the clinical treatment of biofilm infections. Clinical and laboratory investigations demonstrated a perspicuous correlation between biofilm infection and medical foreign bodies or indwelling devices. Clinical observations and experimental studies indicated clearly that antibiotic treatment alone is in most cases insufficient to eradicate biofilm infections. Therefore, to effectively treat biofilm infections with currently available antibiotics and evaluate the outcomes become important and urgent for clinicians. The review summarizes the latest progress in treatment of clinical biofilm infections and scientific investigations, discusses the diagnosis and treatment of different biofilm infections and introduces the promising laboratory progress, which may contribute to prevention or cure of biofilm infections. We conclude that, an efficient treatment of biofilm infections needs a well-established multidisciplinary collaboration, which includes removal of the infected foreign bodies, selection of biofilm-active, sensitive and well-penetrating antibiotics, systemic or topical antibiotic administration in high dosage and combinations, and administration of anti-quorum sensing or biofilm dispersal agents. PMID:25504208

  16. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    PubMed

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation.

  17. Anthranilate Deteriorates the Structure of Pseudomonas aeruginosa Biofilms and Antagonizes the Biofilm-Enhancing Indole Effect

    PubMed Central

    Kim, Soo-Kyoung; Park, Ha-Young

    2015-01-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation. PMID:25616795

  18. Assessing ex vivo dental biofilms and in vivo composite restorations using cross-polarization optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Jones, R.; Aparicio, C.; Chityala, R.; Chen, R.; Fok, A.; Rudney, J.

    2012-01-01

    A cross-polarization 1310-nm optical coherence tomography system (CP-OCT), using a beam splitter based design, was used to assess ex vivo growth of complex multi-species dental biofilms. These biofilm microcosms were derived from plaque samples along the interface of composite or amalgam restoration in children with a history of early childhood caries. This paper presents a method of measuring the mean biofilm height of mature biofilms using CP-OCT. For our in vivo application, the novel swept source based CP-OCT intraoral probe (Santec Co. Komaki, Japan) dimensions and system image acquisition speed (20 image frames/second) allowed imaging pediatric subjects as young as 4 years old. The subsurface enamel under the interface of composite resin restorations of pediatric subjects were imaged using CP-OCT. Cavitated secondary caries is clearly evident from sound resin composite restorations.

  19. Evaluating Preschool Children Knowledge about Healthy Lifestyle: Preliminary Examination of the Healthy Lifestyle Evaluation Instrument

    ERIC Educational Resources Information Center

    Grammatikopoulos, Vasilis; Konstantinidou, Elisavet; Tsigilis, Nikolaos; Zachopoulou, Evridiki; Tsangaridou, Niki; Liukkonen, Jarmo

    2008-01-01

    The aim of this study was to develop an instrument to evaluate the knowledge of preschool children about healthy lifestyle behavior. The innovation was that the instrument was designed to get direct evidence about healthy lifestyle from children aged 4-6 years old. Usually, children knowledge is estimated indirectly (parents, teachers), but the…

  20. Comparison of Switching and Biofilm Formation between MTL-Homozygous Strains of Candida albicans and Candida dubliniensis.

    PubMed

    Pujol, Claude; Daniels, Karla J; Soll, David R

    2015-12-01

    Candida albicans and Candida dubliniensis are highly related species that share the same main developmental programs. In C. albicans, it has been demonstrated that the biofilms formed by strains heterozygous and homozygous at the mating type locus (MTL) differ functionally, but studies rarely identify the MTL configuration. This becomes a particular problem in studies of C. dubliniensis, given that one-third of natural strains are MTL homozygous. For that reason, we have analyzed MTL-homozygous strains of C. dubliniensis for their capacity to switch from white to opaque, the stability of the opaque phenotype, CO2 induction of switching, pheromone induction of adhesion, the effects of minority opaque cells on biofilm thickness and dry weight, and biofilm architecture in comparison with C. albicans. Our results reveal that C. dubliniensis strains switch to opaque at lower average frequencies, exhibit a far lower level of opaque phase stability, are not stimulated to switch by high CO2, exhibit more variability in biofilm architecture, and most notably, form mature biofilms composed predominately of pseudohyphae rather than true hyphae. Therefore, while several traits of MTL-homozygous strains of C. dubliniensis appear to be degenerating or have been lost, others, most notably several related to biofilm formation, have been conserved. Within this context, the possibility is considered that C. dubliniensis is transitioning from a hypha-dominated to a pseudohypha-dominated biofilm and that aspects of C. dubliniensis colonization may provide insights into the selective pressures that are involved.

  1. A Socioanalytic Model of Maturity

    ERIC Educational Resources Information Center

    Hogan, Robert; Roberts, Brent W.

    2004-01-01

    K0 describes a point of view on maturity that departs from earlier treatments in two ways. First, it rejects the popular assumption from humanistic psychology that maturity is a function of self-actualization and stipulates that maturity is related to certain performance capacities--namely, the ability to form lasting relationships and to achieve…

  2. VARIABLES ASSOCIATED WITH VOCATIONAL MATURITY.

    ERIC Educational Resources Information Center

    REICHMAN, WALTER

    EVIDENCE ABOUT THE CONSTRUCT VALIDITY OF PRESUMED VOCATIONAL MATURITY FACTOR SCORES WAS OBTAINED BY STUDYING THE RELATIONSHIP BETWEEN FACTORS OF VOCATIONAL MATURITY AND A GROUP OF CONCURRENT VARIABLES DEEMED RELEVANT TO VOCATIONAL MATURITY. THESE VARIABLES WERE CLASSIFIED INTO FIVE GROUPS--FAMILY SOCIOECONOMIC STATUS, ABILITY AND ACHIEVEMENT,…

  3. Investigating Biofilm Recalcitrance In Pipe Flow Systems

    NASA Astrophysics Data System (ADS)

    Aggarwal, S.; Stewart, P. S.; Hozalski, R. M.

    2015-12-01

    It is challenging to remove biofilms from pipe walls owing to their recalcitrant nature. Several physiological explanations resulting from the community existence of microbes have been offered to explain the recalcitrant nature of biofilms. Herein a biophysical aspect of biofilm recalcitrance is being reported. While optimal efficiency argument suggests that bacterial biofilms would be just strong enough to withstand the surrounding shear forces, our experimental findings reveal the biofilms to be at least 330 to 55000 times stronger. Additionally, Monte-Carlo simulations for biofilm detachment in drinking water systems were performed, which show that the existing flow velocities are insufficient for significant biofilm removal and warrant alternative detachment strategies. This emphasizes the importance of considering strategies for biofilm weakening (and subsequent detachment) in conjunction with or as an alternative to bacterial inactivation.

  4. Candida Biofilms: Development, Architecture, and Resistance

    PubMed Central

    CHANDRA, JYOTSNA; MUKHERJEE, PRANAB K.

    2015-01-01

    Intravascular device–related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis–associated infections and also are commonly isolated from contact lens–related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms. PMID:26350306

  5. Chronic wounds and the medical biofilm paradigm.

    PubMed

    Wolcott, R D; Rhoads, D D; Bennett, M E; Wolcott, B M; Gogokhia, L; Costerton, J W; Dowd, S E

    2010-02-01

    There is a growing recognition that biofilms are the principal cause of wound chronicity. The development of treatments for wound biofilms raises the prospect that chronic wounds can be treated, potentially saving many patients' lives.

  6. Candida Biofilms: Development, Architecture, and Resistance.

    PubMed

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  7. Lifestyle and Depression among Hong Kong Nurses.

    PubMed

    Cheung, Teris; Yip, Paul S F

    2016-01-01

    Recent longitudinal data suggest a close association between depression and lifestyle. Little work to date has estimated the prevalence of depression in the nursing workforce in China, nor considered what lifestyle factors might be correlated with it-a gap filled by the present study. The study's web-based cross-sectional survey solicited data from qualified nurses aged between 21 and 65 registered with the Hong Kong Nursing Council. The Depression, Anxiety and Stress Scale 21 was used to measure 850 nurses for depression, anxiety and symptoms of stress; a generalized linear regression model examined associations between lifestyle factors and depression. Mean depression symptom scores show a downward linear trend for male and female participants. Gender and age, however, did not emerge as significant predictors of depression. Three lifestyles factors (sleep, entertainment and hobbies) showed a significant association with depression. Nurses should make therapeutic lifestyle changes to improve their work-life balance and safeguard their functioning at work and personal well-being. PMID:26784216

  8. Lifestyle and Depression among Hong Kong Nurses

    PubMed Central

    Cheung, Teris; Yip, Paul S.F.

    2016-01-01

    Recent longitudinal data suggest a close association between depression and lifestyle. Little work to date has estimated the prevalence of depression in the nursing workforce in China, nor considered what lifestyle factors might be correlated with it—a gap filled by the present study. The study’s web-based cross-sectional survey solicited data from qualified nurses aged between 21 and 65 registered with the Hong Kong Nursing Council. The Depression, Anxiety and Stress Scale 21 was used to measure 850 nurses for depression, anxiety and symptoms of stress; a generalized linear regression model examined associations between lifestyle factors and depression. Mean depression symptom scores show a downward linear trend for male and female participants. Gender and age, however, did not emerge as significant predictors of depression. Three lifestyles factors (sleep, entertainment and hobbies) showed a significant association with depression. Nurses should make therapeutic lifestyle changes to improve their work-life balance and safeguard their functioning at work and personal well-being. PMID:26784216

  9. Gut Microbiota and Lifestyle Interventions in NAFLD

    PubMed Central

    Houghton, David; Stewart, Christopher J.; Day, Christopher P.; Trenell, Michael

    2016-01-01

    The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed “dysbiosis”, has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host–microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis. PMID:27023533

  10. Effect of ferrocene-substituted porphyrin RL-91 on Candida albicans biofilm formation.

    PubMed

    Lippert, Rainer; Vojnovic, Sandra; Mitrovic, Aleksandra; Jux, Norbert; Ivanović-Burmazović, Ivana; Vasiljevic, Branka; Stankovic, Nada

    2014-08-01

    Ferrocene-substituted porphyrin RL-91 exhibits antifungal activity against opportune human pathogen Candida albicans. RL-91 efficiently inhibits growth of both planktonic C. albicans cells and cells within biofilms without photoactivation. The minimal inhibitory concentration for plankton form (PMIC) was established to be 100 μg/mL and the same concentration killed 80% of sessile cells in the mature biofilm (SMIC80). Furthermore PMIC of RL-91 efficiently prevents C. albicans biofilm formation. RL-91 is cytotoxic for human fibroblasts in vitro in concentration of 10 μg/mL, however it does not cause hemolysis in concentrations of up to 50 μg/mL. These findings open possibility for application of RL-91 as an antifungal agent for external antibiofilm treatment of medical devices as well as a scaffold for further development of porphyrin based systemic antifungals.

  11. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment.

    PubMed

    Subramanian, Sowmya; Gerasopoulos, Konstantinos; Guo, Min; Sintim, Herman O; Bentley, William E; Ghodssi, Reza

    2016-10-01

    Bacterial biofilms are a common cause of chronic medical implant infections. Treatment and eradication of biofilms by conventional antibiotic therapy has major drawbacks including toxicity and side effects associated with high-dosage antibiotics. Additionally, administration of high doses of antibiotics may facilitate the emergence of antibiotic resistant bacteria. Thus, there is an urgent need for the development of treatments that are not based on conventional antibiotic therapies. Presented herein is a novel bacterial biofilm combination treatment independent of traditional antibiotics, by using low electric fields in combination with small molecule inhibitors of bacterial quorum sensing - autoinducer-2 analogs. We investigate the effect of this treatment on mature Escherichia coli biofilms by application of an alternating and offset electric potential in combination with the small molecule inhibitor for 24 h using both macro and micro-scale devices. Crystal violet staining of the macro-scale biofilms shows a 46 % decrease in biomass compared to the untreated control. We demonstrate enhanced treatment efficacy of the combination therapy using a high-throughput polydimethylsiloxane-based microfluidic biofilm analysis platform. This microfluidic flow cell is designed to reduce the growth variance of in vitro biofilms while providing an integrated control, and thus allows for a more reliable comparison and evaluation of new biofilm treatments on a single device. We utilize linear array charge-coupled devices to perform real-time tracking of biomass by monitoring changes in optical density. End-point confocal microscopy measurements of biofilms treated with the autoinducer analog and electric fields in the microfluidic device show a 78 % decrease in average biofilm thickness in comparison to the negative controls and demonstrate good correlation with real-time optical density measurements. Additionally, the combination treatment showed 76 % better treatment

  12. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms.

    PubMed

    Iraola, Gregorio; Spangenberg, Lucía; Lopes Bastos, Bruno; Graña, Martín; Vasconcelos, Larissa; Almeida, Áurea; Greif, Gonzalo; Robello, Carlos; Ristow, Paula; Naya, Hugo

    2016-01-01

    The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth

  13. Autoinducer-2 analogs and electric fields - an antibiotic-free bacterial biofilm combination treatment.

    PubMed

    Subramanian, Sowmya; Gerasopoulos, Konstantinos; Guo, Min; Sintim, Herman O; Bentley, William E; Ghodssi, Reza

    2016-10-01

    Bacterial biofilms are a common cause of chronic medical implant infections. Treatment and eradication of biofilms by conventional antibiotic therapy has major drawbacks including toxicity and side effects associated with high-dosage antibiotics. Additionally, administration of high doses of antibiotics may facilitate the emergence of antibiotic resistant bacteria. Thus, there is an urgent need for the development of treatments that are not based on conventional antibiotic therapies. Presented herein is a novel bacterial biofilm combination treatment independent of traditional antibiotics, by using low electric fields in combination with small molecule inhibitors of bacterial quorum sensing - autoinducer-2 analogs. We investigate the effect of this treatment on mature Escherichia coli biofilms by application of an alternating and offset electric potential in combination with the small molecule inhibitor for 24 h using both macro and micro-scale devices. Crystal violet staining of the macro-scale biofilms shows a 46 % decrease in biomass compared to the untreated control. We demonstrate enhanced treatment efficacy of the combination therapy using a high-throughput polydimethylsiloxane-based microfluidic biofilm analysis platform. This microfluidic flow cell is designed to reduce the growth variance of in vitro biofilms while providing an integrated control, and thus allows for a more reliable comparison and evaluation of new biofilm treatments on a single device. We utilize linear array charge-coupled devices to perform real-time tracking of biomass by monitoring changes in optical density. End-point confocal microscopy measurements of biofilms treated with the autoinducer analog and electric fields in the microfluidic device show a 78 % decrease in average biofilm thickness in comparison to the negative controls and demonstrate good correlation with real-time optical density measurements. Additionally, the combination treatment showed 76 % better treatment

  14. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms

    PubMed Central

    Spangenberg, Lucía; Lopes Bastos, Bruno; Graña, Martín; Vasconcelos, Larissa; Almeida, Áurea; Greif, Gonzalo; Robello, Carlos; Ristow, Paula

    2016-01-01

    ABSTRACT The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm

  15. Transcriptome Sequencing Reveals Wide Expression Reprogramming of Basal and Unknown Genes in Leptospira biflexa Biofilms.

    PubMed

    Iraola, Gregorio; Spangenberg, Lucía; Lopes Bastos, Bruno; Graña, Martín; Vasconcelos, Larissa; Almeida, Áurea; Greif, Gonzalo; Robello, Carlos; Ristow, Paula; Naya, Hugo

    2016-01-01

    The genus Leptospira is composed of pathogenic and saprophytic spirochetes. Pathogenic Leptospira is the etiological agent of leptospirosis, a globally spread neglected disease. A key ecological feature of some pathogenic species is their ability to survive both within and outside the host. For most leptospires, the ability to persist outside the host is associated with biofilm formation, a most important bacterial strategy to face and overcome hostile environmental conditions. The architecture and biochemistry of leptospiral biofilms are rather well understood; however, the genetic program underpinning biofilm formation remains mostly unknown. In this work, we used the saprophyte Leptospira biflexa as a model organism to assess over- and underrepresented transcripts during the biofilm state, using transcriptome sequencing (RNA-seq) technology. Our results showed that some basal biological processes like DNA replication and cell division are downregulated in the mature biofilm. Additionally, we identified significant expression reprogramming for genes involved in motility, sugar/lipid metabolism, and iron scavenging, as well as for outer membrane-encoding genes. A careful manual annotation process allowed us to assign molecular functions to many previously uncharacterized genes that are probably involved in biofilm metabolism. We also provided evidence for the presence of small regulatory RNAs in this species. Finally, coexpression networks were reconstructed to pinpoint functionally related gene clusters that may explain how biofilm maintenance is regulated. Beyond elucidating some genetic aspects of biofilm formation, this work reveals a number of pathways whose functional dissection may impact our understanding of leptospiral biology, in particular how these organisms adapt to environmental changes. IMPORTANCE In this work, we describe the first transcriptome based on RNA-seq technology focused on studying transcriptional changes associated with biofilm growth

  16. Novel Broad-Spectrum Antimicrobial Photoinactivation of In Situ Oral Biofilms by Visible Light plus Water-Filtered Infrared A.

    PubMed

    Karygianni, L; Ruf, S; Follo, M; Hellwig, E; Bucher, M; Anderson, A C; Vach, K; Al-Ahmad, A

    2014-12-01

    Antimicrobial photodynamic therapy (APDT) has gained increased attention as an alternative treatment approach in various medical fields. However, the effect of APDT using visible light plus water-filtered infrared A (VIS + wIRA) on oral biofilms remains unexplored. For this purpose, initial and mature oral biofilms were obtained in situ; six healthy subjects wore individual upper jaw acrylic devices with bovine enamel slabs attached to their proximal sites for 2 h or 3 days. The biofilms were incubated with 100 μg ml(-1) toluidine blue O (TB) or chlorin e6 (Ce6) and irradiated with VIS + wIRA with an energy density of 200 mW cm(-2) for 5 min. After cultivation, the CFU of half of the treated biofilm samples were quantified, whereas following live/dead staining, the other half of the samples were monitored by confocal laser scanning microscopy (CLSM). TB- and Ce6-mediated APDT yielded a significant decrease of up to 3.8 and 5.7 log10 CFU for initial and mature oral biofilms, respectively. Quantification of the stained photoinactivated microorganisms confirmed these results. Overall, CLSM revealed the diffusion of the tested photosensitizers into the deepest biofilm layers after exposure to APDT. In particular, Ce6-aided APDT presented elevated permeability and higher effectiveness in eradicating 89.62% of biofilm bacteria compared to TB-aided APDT (82.25%) after 3 days. In conclusion, antimicrobial photoinactivation using VIS + wIRA proved highly potent in eradicating oral biofilms. Since APDT excludes the development of microbial resistance, it could supplement the pharmaceutical treatment of periodontitis or peri-implantitis.

  17. Novel Broad-Spectrum Antimicrobial Photoinactivation of In Situ Oral Biofilms by Visible Light plus Water-Filtered Infrared A

    PubMed Central

    Ruf, S.; Follo, M.; Hellwig, E.; Bucher, M.; Anderson, A. C.; Vach, K.; Al-Ahmad, A.

    2014-01-01

    Antimicrobial photodynamic therapy (APDT) has gained increased attention as an alternative treatment approach in various medical fields. However, the effect of APDT using visible light plus water-filtered infrared A (VIS + wIRA) on oral biofilms remains unexplored. For th