Science.gov

Sample records for mature imbibed seeds

  1. ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud.

    PubMed

    Goggin, Danica E; Steadman, Kathryn J; Emery, R J Neil; Farrow, Scott C; Benech-Arnold, Roberto L; Powles, Stephen B

    2009-01-01

    Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds. Inhibitors of ABA metabolism had the expected effects on seed germination but did not influence ABA concentration, suggesting that they act upon other (unknown) factors regulating dormancy. Although gibberellin (GA) synthesis was required for germination, the influence of exogenous GA on both germination and dormancy release was minor or non-existent. Embryo ABA concentration was the same following treatments to promote (dark stratification) and inhibit (light stratification) dormancy release; exogenous ABA had no effect on this process. However, the sensitivity of dark-stratified seeds to ABA supplied during germination was lower than that of light-stratified seeds. Therefore, although ABA definitely plays a role in the germination of annual ryegrass seeds, it is not the major factor mediating inhibition of dormancy release in imbibed seeds.

  2. ABA inhibits germination but not dormancy release in mature imbibed seeds of Lolium rigidum Gaud.

    PubMed Central

    Goggin, Danica E.; Steadman, Kathryn J.; Emery, R. J. Neil; Farrow, Scott C.; Benech-Arnold, Roberto L.; Powles, Stephen B.

    2009-01-01

    Dormancy release in imbibed annual ryegrass (Lolium rigidum Gaud.) seeds is promoted in the dark but inhibited in the light. The role of abscisic acid (ABA) in inhibition of dormancy release was found to be negligible, compared with its subsequent effect on germination of dormant and non-dormant seeds. Inhibitors of ABA metabolism had the expected effects on seed germination but did not influence ABA concentration, suggesting that they act upon other (unknown) factors regulating dormancy. Although gibberellin (GA) synthesis was required for germination, the influence of exogenous GA on both germination and dormancy release was minor or non-existent. Embryo ABA concentration was the same following treatments to promote (dark stratification) and inhibit (light stratification) dormancy release; exogenous ABA had no effect on this process. However, the sensitivity of dark-stratified seeds to ABA supplied during germination was lower than that of light-stratified seeds. Therefore, although ABA definitely plays a role in the germination of annual ryegrass seeds, it is not the major factor mediating inhibition of dormancy release in imbibed seeds. PMID:19487389

  3. A histone methyltransferase inhibits seed germination by increasing PIF1 mRNA expression in imbibed seeds.

    PubMed

    Lee, Nayoung; Kang, Hyojin; Lee, Daeyoup; Choi, Giltsu

    2014-04-01

    Phytochrome-interacting factor 1 (PIF1) inhibits light-dependent seed germination. The specific function of PIF1 in seed germination is partly due to its high level of expression in imbibed seeds, but the associated regulatory factors have not been identified. Here we show that mutation of the early flowering in short days (EFS) gene, encoding an H3K4 and H3K36 methyltransferase, decreases the level of H3K36me2 and H3K36me3 but not H3K4me3 at the PIF1 locus, reduces the targeting of RNA polymerase II to the PIF1 locus, and reduces mRNA expression of PIF1 in imbibed seeds. Consistently, the efs mutant geminated even under the phyBoff condition, and had an expression profile of PIF1 target genes similar to that of the pif1 mutant. Introduction of an EFS transgene into the efs mutant restored the level of H3K36me2 and H3K36me3 at the PIF1 locus, the high-level expression of PIF1 mRNA, the expression pattern of PIF1 target genes, and the light-dependent germination of these seeds. Introduction of a PIF1 transgene into the efs mutant also restored the expression pattern of PIF1 target genes and light-dependent germination in imbibed seeds, but did not restore the flowering phenotype. Taken together, our results indicate that EFS is necessary for high-level expression of PIF1 mRNA in imbibed seeds. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    PubMed

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h(-1)) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch(-1)) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches -20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  5. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds

    PubMed Central

    Jaganathan, Ganesh K.; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-01-01

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h−1) suffered significantly higher membrane damage at temperature between −20 °C and −10 °C than slow cooled (3 °Ch−1) seeds (P < 0.05), presumably explaining viability loss during fast cooling when temperature approaches −20 °C. Total soluble sugars increase in low temperature environment, but did not differ significantly between two cooling rates (P > 0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to −20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes. PMID:28287125

  6. Energy related germination and survival rates of water-imbibed Arabidopsis seeds irradiated with protons

    NASA Astrophysics Data System (ADS)

    Qin, H. L.; Xue, J. M.; Lai, J. N.; Wang, J. Y.; Zhang, W. M.; Miao, Q.; Yan, S.; Zhao, W. J.; He, F.; Gu, H. Y.; Wang, Y. G.

    2006-04-01

    In order to investigate the influence of ion energy on the germination and survival rates, water-imbibed Arabidopsis seeds were irradiated with protons in atmosphere. The ion fluence used in this experiment was in the range of 4 × 109-1 × 1014 ions/cm2. The ion energy is from 1.1 MeV to 6.5 MeV. According to the structure of the seed and TRIM simulation, the ions with the energy of 6.5 MeV can irradiate the shoot apical meristem directly whereas the ions with the energy of 1.1 MeV cannot. The results showed that both the germination and survival rates decrease while increasing the ion fluence, and the fluence-respond curve for each energy has different character. Besides the shoot apical meristem (SAM), which is generally considered as the main radiobiological target, the existence of a secondary target around SAM is proposed in this paper.

  7. Role of Seed Coat in Imbibing Soybean Seeds Observed by Micro-magnetic Resonance Imaging

    PubMed Central

    Koizumi, Mika; Kikuchi, Kaori; Isobe, Seiichiro; Ishida, Nobuaki; Naito, Shigehiro; Kano, Hiromi

    2008-01-01

    Background and Aims Imbibition of Japanese soybean (Glycine max) cultivars was studied using micro-magnetic resonance imaging (MRI) in order to elucidate the mechanism of soaking injury and the protective role of the seed coat. Methods Time-lapse images during water uptake were acquired by the single-point imaging (SPI) method at 15-min intervals, for 20 h in the dry seed with seed coat, and for 2 h in seeds with the seed coat removed. The technique visualized water migration within the testa and demonstrated the distortion associated with cotyledon swelling during the very early stages of water uptake. Key Results Water soon appeared in the testa and went around the dorsal surface of the seed from near the raphe, then migrated to the hilum region. An obvious protrusion was noted when water reached the hypocotyl and the radicle, followed by swelling of the cotyledons. A convex area was observed around the raphe with the enlargement of the seed. Water was always incorporated into the cotyledons from the abaxial surfaces, leading to swelling and generating a large air space between the adaxial surfaces. Water uptake greatly slowed, and the internal structures, veins and oil-accumulating tissues in the cotyledons developed after the seed stopped expanding. When the testa was removed from the dry seeds before imbibition, the cotyledons were severely damaged within 1·5 h of water uptake. Conclusions The activation of the water channel seemed unnecessary for water entry into soybean seeds, and the testa rapidly swelled with steeping in water. However, the testa did not regulate the water incorporation in itself, but rather the rate at which water encountered the hypocotyl, the radicle, and the cotyledons through the inner layer of the seed coat, and thus prevented the destruction of the seed tissues at the beginning of imbibition. PMID:18565982

  8. Dormant and after-Ripened Arabidopsis thaliana Seeds are Distinguished by Early Transcriptional Differences in the Imbibed State

    PubMed Central

    Dekkers, Bas J. W.; Pearce, Simon P.; van Bolderen-Veldkamp, R. P. M.; Holdsworth, Michael J.; Bentsink, Leónie

    2016-01-01

    Seed dormancy is a genetically controlled block preventing the germination of imbibed seeds in favorable conditions. It requires a period of dry storage (after-ripening) or certain environmental conditions to be overcome. Dormancy is an important seed trait, which is under selective pressure, to control the seasonal timing of seed germination. Dormant and non-dormant (after-ripened) seeds are characterized by large sets of differentially expressed genes. However, little information is available concerning the temporal and spatial transcriptional changes during early stages of rehydration in dormant and non-dormant seeds. We employed genome-wide transcriptome analysis on seeds of the model plant Arabidopsis thaliana to investigate transcriptional changes in dry seeds upon rehydration. We analyzed gene expression of dormant and after-ripened seeds of the Cvi accession over four time points and two seed compartments (the embryo and surrounding single cell layer endosperm), during the first 24 h after sowing. This work provides a global view of gene expression changes in dormant and non-dormant seeds with temporal and spatial detail, and these may be visualized via a web accessible tool (http://www.wageningenseedlab.nl/resources). A large proportion of transcripts change similarly in both dormant and non-dormant seeds upon rehydration, however, the first differences in transcript abundances become visible shortly after the initiation of imbibition, indicating that changes induced by after-ripening are detected and responded to rapidly upon rehydration. We identified several gene expression profiles which contribute to differential gene expression between dormant and non-dormant samples. Genes with enhanced expression in the endosperm of dormant seeds were overrepresented for stress-related Gene Ontology categories, suggesting a protective role for the endosperm against biotic and abiotic stress to support persistence of the dormant seed in its environment. PMID

  9. Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds.

    PubMed

    Goggin, Danica E; Steadman, Kathryn J; Powles, Stephen B

    2008-01-01

    Light plays an important role in two separate processes within the seeds of Lolium rigidum (annual ryegrass). Dormant seeds of L. rigidum remain dormant when imbibed in the light, but once seeds have lost dormancy through dark-stratification, light stimulates their germination. This study characterizes the light qualities and quantities which are effective in maintenance of dormancy. Dormant seeds were stratified under narrow- and broad-waveband light to identify the potential photoreceptors involved in dormancy maintenance, and to determine whether dark-induced dormancy loss is reversible by light. Blue and green light both mediated dormancy maintenance in a far-red-independent manner. Red light resulted in dormancy maintenance only when far-red wavelengths were excluded, suggesting a redundant function of phytochrome. At low fluence rates, white light was more effective than monochromatic light, suggesting the action of multiple photoreceptors in dormancy maintenance. By contrast, nondormant seeds did not germinate unless provided with red light. These results indicate that seed dormancy maintenance is potentially mediated through the actions of blue and green light photoreceptors. Seed dormancy could thus be added to the growing list of plant responses that may be mediated by green light in a cryptochrome-independent manner.

  10. Model for Variable Light Sensitivity in Imbibed Dark-Dormant Seeds

    PubMed Central

    Duke, Stephen O.; Egley, Grant H.; Reger, Bonnie J.

    1977-01-01

    The level of light-induced germination of the seed of common purslane (Portulaca oleracea L.) and curly dock (Rumex crispus L.) changes with dark incubation time prior to brief, low energy, red light treatment. The rate at which phytochrome—far red-absorbing form (Pfr) acts in the light-induced population of seeds was measured by quantitating per cent reversals of the red light effect with saturating far red light exposures at successive times after the red light exposure. A linear positive correlation was found between this rate and the final germination level. These results are compatible with a model involving changing levels, during dark incubation, of a component with which Pfr interacts. In this model, germination is initiated after attainment of a certain level of interaction between Pfr and this component. These findings also support the view that the Pfr to Pr decay rate constant and total phytochrome level are stable during dark incubation. PMID:16659826

  11. Model for variable light sensitivity in imbibed dark-dormant seeds.

    PubMed

    Duke, S O; Egley, G H; Reger, B J

    1977-02-01

    The level of light-induced germination of the seed of common purslane (Portulaca oleracea L.) and curly dock (Rumex crispus L.) changes with dark incubation time prior to brief, low energy, red light treatment. The rate at which phytochrome-far red-absorbing form (Pfr) acts in the light-induced population of seeds was measured by quantitating per cent reversals of the red light effect with saturating far red light exposures at successive times after the red light exposure. A linear positive correlation was found between this rate and the final germination level. These results are compatible with a model involving changing levels, during dark incubation, of a component with which Pfr interacts. In this model, germination is initiated after attainment of a certain level of interaction between Pfr and this component. These findings also support the view that the Pfr to Pr decay rate constant and total phytochrome level are stable during dark incubation.

  12. Maturation of sugar maple seed

    Treesearch

    Clayton M., Jr. Carl; Albert G., Jr. Snow; Albert G. Snow

    1971-01-01

    The seeds of a sugar maple tree (Acer saccharum Marsh.) do not mature at the same time every year. And different trees mature their seeds at different times. So time of year is not a reliable measure of when seeds are ripe. Better criteria are needed. In recent studies we have found that moisture content and color are the best criteria for judging when sugar maple...

  13. Dormancy induction by summer temperatures and/or desiccation in imbibed seeds of trumpet daffodils Narcissus alcaracensis and N. longispathus (Amaryllidaceae).

    PubMed

    Herranz, J M; Copete, E; Copete, M A; Márquez, J; Ferrandis, P

    2017-01-01

    We analysed the effects of summer temperatures (28/14 °C) and/or desiccation (from 48% to 8% humidity) on imbibed Narcissus alcaracensis and N. longispathus seeds with an elongating embryo. In the N. alcaracensis seeds that overcame dormancy (embryo elongation = 27.14%), exposure to high temperatures induced secondary dormancy and reduced subsequent embryo growth. A further 3-month cold stratification (5 °C) was required to break secondary dormancy. Desiccation in early embryo growth stages (elongation = 11.42%) also reduced germination. Desiccation in the seeds in a more advanced growth stage (i.e. embryo elongation = 27.14%) induced secondary dormancy, which the further 3-month cold stratification did not overcome. When desiccation was preceded by high temperatures, seeds better overcame secondary dormancy (i.e. longer embryo elongation and seed germination). Treatments did not affect seed viability. In the N. longispathus seeds that overcame dormancy (embryo elongation = 59.21%), exposure to high temperatures induced secondary dormancy and they needed a further 1-month stratification at 15/4 °C + 2 months at 5 °C to reactivate the germination process. When embryo elongation was 42.10%, seed desiccation totally impeded subsequent germination. When embryo elongation reached 59.21%, desiccation induced secondary dormancy, which was not overcome by the above-described stratification treatment. When desiccation was preceded by high temperatures, seeds better overcame dormancy. Stress treatments killed 5-10% of seeds. This study suggests that the seeds of species with complex morphophysiological dormancy (MPD) levels are sensitive to desiccation in early embryo development stages, as opposed to the seeds of species with deep simple epicotyl MPD, which better tolerate water stress.

  14. Maturation of Sweetgum and American Sycamore Seeds

    Treesearch

    F. T. Bonner

    1972-01-01

    Over three consecutive years in central Mississippi, sweetgum (Liquidambar styraciflua L.) and sycamore (Platanus occidentalis L.) fruits had nearly reached full-size by late June. Sweetgum seeds were physiologically mature by mid-August, but dry weight increased until late September. As sweetgum seeds matured, the crude fat level rose to 27 percent of seed dry weight...

  15. Unravling Key metabolomic alterations of embryos derived from water-imbibed seeds of two wheat cultivars contrasting with contrasting dormancy status

    USDA-ARS?s Scientific Manuscript database

    Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS) which deteriorates yield and quality of the crop. Metabolic homeostasis of embryo and endosperm plays a role in seed dormancy, and determines the status of the maturing grains either as dormant (PHS-tolerant) ...

  16. Optimum harvest maturity for Leymus chinensis seed

    PubMed Central

    Lin, Jixiang; Wang, Yingnan; Qi, Mingming; Li, Xiaoyu; Yang, Chunxue; Wang, Yongcui

    2016-01-01

    ABSTRACT Timely harvest is critical to achieve maximum seed viability and vigour in agricultural production. However, little information exists concerning how to reap the best quality seeds of Leymus chinensis, which is the dominant and most promising grass species in the Songnen Grassland of Northern China. The objective of this study was to investigate and evaluate possible quality indices of the seeds at different days after peak anthesis. Seed quality at different development stages was assessed by the colours of the seed and lemmas, seed weight, moisture content, electrical conductivity of seed leachate and germination indices. Two consecutive years of experimental results showed that the maximum seed quality was recorded at 39 days after peak anthesis. At this date, the colours of the seed and lemmas reached heavy brown and yellow, respectively. The seed weight was highest and the moisture content and the electrical conductivity of seed leachate were lowest. In addition, the seed also reached its maximum germination percentage and energy at this stage, determined using a standard germination test (SGT) and accelerated ageing test (AAT). Thus, Leymus chinensis can be harvested at 39 days after peak anthesis based on the changes in parameters. Colour identification can be used as an additional indicator to provide a more rapid and reliable measure of optimum seed maturity; approximately 10 days after the colour of the lemmas reached yellow and the colour of the seed reached heavy brown, the seed of this species was suitable for harvest. PMID:27170257

  17. Cone and Seed Maturation of Southern Pines

    Treesearch

    James P. Barnett

    1976-01-01

    If slightly reduced yields and viability are acceptable, loblolly and slash cone collections can begin 2 to 3 weeks before maturity if the cones are stored before processing. Longleaf(P. palestris Mill.) pine cones should be collected only when mature, as storage decreased germination of seeds from immature cones. Biochemical analyses to determine reducing sugar...

  18. Seed maturity differentially mediates metabolic responses in black soybean.

    PubMed

    Lee, Jinwook; Hwang, Young-Sun; Chang, Woo-Suk; Moon, Jung-Kyeong; Choung, Myoung-Gun

    2013-12-01

    The soybean seed is placed in the middle of the morphological and developmental alterations, such as changes in seed size, weight, and colour, and alteration of the composition and contents of metabolites during maturation. In this study, we used black soybean seeds to investigate the effect of maturity on metabolite levels at different maturity stages. Seeds were sorted into five maturity categories, from M1 to M5, based on seed size and external pigmentation. Maturity stages M1, M3, and M5 are equivalent to R6, R7, and R8 on the soybean reproductive growth stage scale, indicating full seed, beginning maturity, and full maturity, respectively. As seed maturation progressed, the seed size decreased and the water soluble extract changed, indicating that a change of seed pigmentation occurred. At the same time, numerous metabolites responded differentially to seed maturation. The partial least squares (PLS) scores plot indicated that the metabolic alteration during maturation was clearly visible. Furthermore, isoflavones were highly associated with seed maturity on the PLS loading plot while fatty acids, glucose, fructose, and sucrose were less linked with seed maturity, indicating that those metabolites responded less to seed maturation. Overall, the results indicate that each category of metabolites is mediated differentially during maturation in black soybean seeds. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31...

  20. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31...

  1. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31...

  2. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31...

  3. 7 CFR 1427.174 - Maturity of seed cotton loans.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Maturity of seed cotton loans. 1427.174 Section 1427..., DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS COTTON Recourse Seed Cotton Loans § 1427.174 Maturity of seed cotton loans. Seed cotton loans mature on demand by CCC but no later than May 31...

  4. Tomato seeds maturity detection system based on chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Li, Cuiling; Wang, Xiu; Meng, Zhijun

    2016-10-01

    Chlorophyll fluorescence intensity can be used as seed maturity and quality evaluation indicator. Chlorophyll fluorescence intensity of seed coats is tested to judge the level of chlorophyll content in seeds, and further to judge the maturity and quality of seeds. This research developed a detection system of tomato seeds maturity based on chlorophyll fluorescence spectrum technology, the system included an excitation light source unit, a fluorescent signal acquisition unit and a data processing unit. The excitation light source unit consisted of two high power LEDs, two radiators and two constant current power supplies, and it was designed to excite chlorophyll fluorescence of tomato seeds. The fluorescent signal acquisition unit was made up of a fluorescence spectrometer, an optical fiber, an optical fiber scaffolds and a narrowband filter. The data processing unit mainly included a computer. Tomato fruits of green ripe stage, discoloration stage, firm ripe stage and full ripe stage were harvested, and their seeds were collected directly. In this research, the developed tomato seeds maturity testing system was used to collect fluorescence spectrums of tomato seeds of different maturities. Principal component analysis (PCA) method was utilized to reduce the dimension of spectral data and extract principal components, and PCA was combined with linear discriminant analysis (LDA) to establish discriminant model of tomato seeds maturity, the discriminant accuracy was greater than 90%. Research results show that using chlorophyll fluorescence spectrum technology is feasible for seeds maturity detection, and the developed tomato seeds maturity testing system has high detection accuracy.

  5. Seed maturity in white fir and red fir

    Treesearch

    William W. Oliver

    1974-01-01

    White fir and red fir seed collected over a 2-month period in northern California was tested for germination of fresh and stratified seed. Ratio of embryo length to embryo cavity length was found to be the most useful index of seed maturity for white and red fir. Cone specific gravity also was correlated with nearly all measures of seed germination. Data suggest that...

  6. Seed maturation regulators are related to the control of seed dormancy in wheat (Triticum aestivum L.).

    PubMed

    Rikiishi, Kazuhide; Maekawa, Masahiko

    2014-01-01

    In Arabidopsis, the regulation network of the seed maturation program controls the induction of seed dormancy. Wheat EST sequences showing homology with the master regulators of seed maturation, leafy cotyledon1 (LEC1), LEC2 and FUSCA3 (FUS3), were searched from databases and designated respectively as TaL1L (LEC1-LIKE), TaL2L (LEC2-LIKE), and TaFUS3. TaL1LA, TaL2LA and TaFUS3 mainly expressed in seeds or embryos, with the expression limited to the early stages of seed development. Results show that tissue-specific and developmental-stage-dependent expressions are similar to those of seed maturation regulators in Arabidopsis. In wheat cultivars, the expression level of TaL1LA is correlated significantly with the germination index (GI) of whole seeds at 40 days after pollination (DAP) (r =  -0.83**). Expression levels of TaFUS3 and TaL2LA are significantly correlated respectively with GIs at 40 DAP and 50 DAP, except for dormant cultivars. No correlation was found between the expression level of TaVP1, orthologue of ABA insensitive3 (ABI3), and seed dormancy. Delay of germination1 (DOG1) was identified as a quantitative trait locus (QTL) for the regulation of seed dormancy in Arabidopsis. Its promoter has RY motif, which is a target sequence of LEC2. Significant correlation was found between the expression of TaDOG1 and seed dormancy except for dormant cultivars. These results indicate that TaL1LA, TaL2LA, and TaFUS3 are wheat orthologues of seed maturation regulators. The expressions of these genes affect the level of seed dormancy. Furthermore, the pathways, which involve seed maturation regulators and TaDOG1, are important for regulating seed dormancy in wheat.

  7. Proteomic analysis of mature Lagenaria siceraria seed.

    PubMed

    Kumari, Neha; Tajmul, Md; Yadav, Savita

    2015-04-01

    Lagenaria siceraria (bottle gourd) class belongs to Magnoliopsida family curcurbitaceae that is a traditionally used medicinal plant. Fruit of this plant are widely used as a therapeutic vegetable in various diseases, all over the Asia and Africa. Various parts of this plant like fruit, seed, leaf and root are used as alternative medicine. In the present study, primarily, we have focused on proteomic analysis of L. siceraria seed using phenol extraction method for protein isolation. Twenty-four colloidal coomassie blue stained protein spots were identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF/MS) after resolving on two-dimensional gel electrophoresis. Out of 24 identified protein spots, four were grouped as unidentified proteins which clearly suggest that less work has been done in the direction of plant seed proteomics. These proteins have been found to implicate in various functions such as biosynthesis of plant cell wall polysaccharides and glycoproteins, serine/threonine kinase activity, plant disease resistance and transferase activity against insects by means of insecticidal and larval growth inhibitory, anti-HIV, antihelmintic and antimicrobial properties. By Blast2GO annotation analysis, amongst the identified proteins of L. siceraria, molecular function for majority of proteins has indispensable role in catalytic activity, few in binding activity and antioxidant activity; it is mostly distributed in cell, organelle, membrane and macromolecular complex. Most of them involved in biological process such as metabolic process, cellular process, response to stimulus, single organism process, signalling, biological recognition, cellular component organization or biogenesis and localization.

  8. Bean Seed Imbibition.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1998-01-01

    Enables students to examine the time course for seed imbibition and the pressure generated by imbibing seeds. Provides background information, detailed procedures, and ideas for further investigation. (DDR)

  9. Expression of a GALACTINOL SYNTHASE Gene in Tomato Seeds Is Up-Regulated before Maturation Desiccation and Again after Imbibition whenever Radicle Protrusion Is Prevented1

    PubMed Central

    Downie, Bruce; Gurusinghe, Sunitha; Dahal, Petambar; Thacker, Richard R.; Snyder, John C.; Nonogaki, Hiroyuki; Yim, Kyuock; Fukanaga, Keith; Alvarado, Veria; Bradford, Kent J.

    2003-01-01

    Raffinose family oligosaccharides (RFOs) have been implicated in mitigating the effects of environmental stresses on plants. In seeds, proposed roles for RFOs include protecting cellular integrity during desiccation and/or imbibition, extending longevity in the dehydrated state, and providing substrates for energy generation during germination. A gene encoding galactinol synthase (GOLS), the first committed enzyme in the biosynthesis of RFOs, was cloned from tomato (Lycopersicon esculentum Mill. cv Moneymaker) seeds, and its expression was characterized in tomato seeds and seedlings. GOLS (LeGOLS-1) mRNA accumulated in developing tomato seeds concomitant with maximum dry weight deposition and the acquisition of desiccation tolerance. LeGOLS-1 mRNA was present in mature, desiccated seeds but declined within 8 h of imbibition in wild-type seeds. However, LeGOLS-1 mRNA accumulated again in imbibed seeds prevented from completing germination by dormancy or water deficit. Gibberellin-deficient (gib-1) seeds maintained LeGOLS-1 mRNA amounts after imbibition unless supplied with gibberellin, whereas abscisic acid (ABA) did not prevent the loss of LeGOLS-1 mRNA from wild-type seeds. The presence of LeGOLS-1 mRNA in ABA-deficient (sitiens) tomato seeds indicated that wild-type amounts of ABA are not necessary for its accumulation during seed development. In all cases, LeGOLS-1 mRNA was most prevalent in the radicle tip. LeGOLS-1 mRNA accumulation was induced by dehydration but not by cold in germinating seeds, whereas both stresses induced LeGOLS-1 mRNA accumulation in seedling leaves. The physiological implications of LeGOLS-1 expression patterns in seeds and leaves are discussed in light of the hypothesized role of RFOs in plant stress tolerance. PMID:12644684

  10. Synthesis of Endosperm Proteins in Wheat Seed during Maturation 1

    PubMed Central

    Flint, Dennis; Ayers, George S.; Ries, Stanley K.

    1975-01-01

    The time of synthesis, the molecular weight, and the relative glutamine-glutamate and proline to leucine ratios of the endosperm proteins of wheat (Triticum aestivum L. cv. Logan) were determined using a sodium dodecyl sulfate-polyacrylamide gel technique. In general, synthesis of most proteins occurred through much of the maturation of the seed, but past 20 days the rate of synthesis of the high molecular weight proteins declined more rapidly than those of lower molecular weight. The synthesis of at least one protein occurred only late in seed maturation. Several of the high molecular weight proteins had glutamate-glutamine to leucine ratios higher than the remainder of the proteins. No evidence for proteins of a polyglutamine-glutamate and/or proline nature was found. PMID:16659308

  11. Protein profile of mature soybean seeds and prepared soybean milk.

    PubMed

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2014-10-08

    The soybean (Glycine max (L.) Merrill) is economically the most important bean in the world, providing a wide range of vegetable proteins. Soybean milk is a colloidal solution obtained as water extract from swelled and ground soybean seeds. Soybean proteins represent about 35-40% on a dry weight basis and they are receiving increasing attention with respect to their health effects. However, the soybean is a well-recognized allergenic food, and therefore, it is urgent to define its protein components responsible for the allergenicity in order to develop hypoallergenic soybean products for sensitive people. The main aim of this work was the characterization of seed and milk soybean proteome and their comparison in terms of protein content and specific proteins. Using a shotgun proteomics approach, 243 nonredundant proteins were identified in mature soybean seeds.

  12. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  13. Cryopreservation of Bletilla striata mature seeds, 3-day germinating seeds and protocorms by droplet-vitrification.

    PubMed

    Jitsopakul, N; Thammasiri, K; Ishikawa, K

    2008-01-01

    Droplet-vitrification was studied for the cryopreservation of Bletilla striata mature seeds (0 day after sowing), 3-day germinating seeds and protocorms (6, 9 and 12 days after sowing). Mature seeds, 3-day germinating seeds and 6-day old protocorms were precultured in liquid medium supplemented with 0.3 M sucrose for 3 h on a shaker (110 rpm) and then dehydrated with 2 M glycerol and 0.4 M sucrose in liquid medium (loading solution) for 15 min and exposed to PVS2 solution for 60 min at 25 degree C. The plant materials were then immersed in liquid nitrogen, rewarmed rapidly and cultured on solidified ND medium supplemented with 3% sucrose for recovery. After cryopreservation, the highest germination percentage of mature seeds, 3-day germinating seeds and survival of cryopreserved 6-day old protocorms was 93%, 91% and 84%, respectively. For 9-day old protocorms, highest survival (66%) after cryopreservation was achieved after preculture with 0.5 M sucrose for 3 h on a shaker, dehydration with loading solution for 15 min, exposure to PVS2 solution for 40 min at 25 degree C, and culture on solidified ND medium supplemented with 480 mg per liter ammonium nitrate and 3% sucrose. No survival was observed in cryopreserved 12-day old protocorms.

  14. Adenylate energy pool and energy charge in maturing rape seeds.

    PubMed

    Ching, T M; Crane, J M

    1974-11-01

    A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number.

  15. Seed maturation: Simplification of control networks in plants.

    PubMed

    Devic, Martine; Roscoe, Thomas

    2016-11-01

    Networks controlling developmental or metabolic processes in plants are often complex as a consequence of the duplication and specialisation of the regulatory genes as well as the numerous levels of transcriptional and post-transcriptional controls added during evolution. Networks serve to accommodate multicellular complexity and increase robustness to environmental changes. Mathematical simplification by regrouping genes or pathways in a limited number of hubs has facilitated the construction of models for complex traits. In a complementary approach, a biological simplification can be achieved by using genetic modification to understand the core and singular ancestral function of the network, which is likely to be more prevalent within the plant kingdom rather than specific to a species. With this viewpoint, we review examples of simplification successfully undertaken in yeast and other organisms. A strategy of progressive complementation of single, double and triple mutants of seed maturation confirmed the fundamental role of the AFL sub-family of B3 transcription factors as master regulators of seed maturation, illustrating that biological simplification of complex networks could be more widely applied in plants. Defining minimal control networks will facilitate evolutionary comparisons of regulatory processes and the identification of an essential gene set for synthetic biology.

  16. The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds.

    PubMed

    Wang, Wei-Qing; Cheng, Hong-Yan; Møller, Ian M; Song, Song-Quan

    2012-01-01

    Mitochondrial repair is of fundamental importance for seed germination. When mature orthodox seeds are imbibed and germinated, they lose their desiccation tolerance in parallel. To gain a better understanding of this process, we studied the recovery of mitochondrial structure and function in pea (Pisum sativum cv. Jizhuang) seeds with different tolerance to desiccation. Mitochondria were isolated and purified from the embryo axes of control and imbibed-dehydrated pea seeds after (re-)imbibition for various times. Recovery of mitochondrial structure and function occurred both in control and imbibed-dehydrated seed embryo axes, but at different rates and to different maximum levels. The integrity of the outer mitochondrial membrane reached 96% in all treatments. However, only the seeds imbibed for 12 h and then dehydrated recovered the integrity of the inner mitochondrial membrane (IMM) and State 3 (respiratory state in which substrate and ADP are present) respiration (with NADH and succinate as substrate) to the control level after re-imbibition. With increasing imbibition time, the degree to which each parameter recovered decreased in parallel with the decrease in desiccation tolerance. The tolerance of imbibed seeds to desiccation increased and decreased when imbibed in CaCl(2) and methylviologen solution, respectively, and the recovery of the IMM integrity similarly improved and weakened in these two treatments, respectively. Survival of seeds after imbibition-dehydration linearly increased with the increase in ability to recover the integrity of IMM and State 3 respiration, which indicates that recovery of mitochondrial structure and function during germination has an important role in seed desiccation tolerance.

  17. The pivotal role of abscisic acid signaling during transition from seed maturation to germination.

    PubMed

    Yan, An; Chen, Zhong

    2016-11-23

    Seed maturation and germination are two continuous developmental processes that link two distinct generations in spermatophytes; the precise genetic control of these two processes is, therefore, crucially important for the survival of the next generation. Pieces of experimental evidence accumulated so far indicate that a concerted action of endogenous signals and environmental cues is required to govern these processes. Plant hormone abscisic acid (ABA) has been suggested to play a predominant role in directing seed maturation and maintaining seed dormancy under unfavorable environmental conditions until antagonized by gibberellins (GA) and certain environmental cues to allow the commencement of seed germination when environmental conditions are favorable; therefore, the balance of ABA and GA is a major determinant of the timing of seed germination. Due to the advent of new technologies and system biology approaches, molecular studies are beginning to draw a picture of the sophisticated genetic network that drives seed maturation during the past decade, though the picture is still incomplete and many details are missing. In this review, we summarize recent advances in ABA signaling pathway in the regulation of seed maturation as well as the transition from seed maturation to germination, and highlight the importance of system biology approaches in the study of seed maturation.

  18. Differential expression of wheat aspartic proteinases, WAP1 and WAP2, in germinating and maturing seeds.

    PubMed

    Tamura, Tomoko; Terauchi, Kaede; Kiyosaki, Toshihiro; Asakura, Tomiko; Funaki, Junko; Matsumoto, Ichiro; Misaka, Takumi; Abe, Keiko

    2007-04-01

    Two aspartic proteinase (AP) cDNA clones, WAP1 and WAP2, were obtained from wheat seeds. Proteins encoded by these clones shared 61% amino acid sequence identity. RNA blotting analysis showed that WAP1 and WAP2 were expressed in both germinating and maturing seeds. The level of WAP2 mRNA expression was clearly weaker than that of WAP1 in all tissues of seeds during germination and maturation. APs purified from germinating seeds were enzymatically active and digested the wheat storage protein, gluten. To elucidate the physiological functions of WAP1 and WAP2 in seeds, we investigated the localisation of WAP1 and WAP2 by in situ hybridisation. In germinating seeds investigated 24h after imbibition, both WAP1 and WAP2 were expressed in embryos, especially in radicles and shoots, scutellum, and the aleurone layer. In maturing seeds, WAP1 was expressed in the whole embryo, with slightly stronger expression in radicles and shoots. WAP1 was also expressed in the aleurone layer 3 weeks after flowering. Strong signals of WAP1 mRNA were detected in the whole embryo and aleurone layer 6 weeks after flowering. On the other hand, WAP2 was scarcely detected in seeds 3 weeks after flowering, and thereafter weak signals began to appear in the whole embryo. WAP1 and WAP2 were expressed widely in germinating and maturing seeds. Such diversity in site- and stage-specific expression of the two enzymes suggests their differential functions in wheat seeds.

  19. Effects of pollen supply and quality on seed formation and maturation in Pinus densiflora.

    PubMed

    Iwaizumi, Masakazu G; Takahashi, Makoto

    2012-07-01

    To understand the detailed mechanisms underlying variations in seed productivity per cone, it is important to examine simultaneously the effects of two pollination mode components (pollen supply and quality) on two seed production processes (seed formation and maturation). We conducted artificial pollination experiments with four pollination treatments (selfing, polycross, no-pollination and open-pollination treatments) in each of two vertical crown layers (upper and lower) for 19 Pinus densiflora ramets. We measured formed seeds as a proportion of ovules (P(Form)), and filled seeds as a proportion of formed seeds (P(Fill)) per cone in each treatment and layer, and inferred the relative influences of pollination mode and resource availability on seed productivity. In the no-pollination treatment, no seeds were formed in any cones of all five ramets. The Generalized Linear Model showed that there were no significant differences in P(Form) both between selfing and polycross treatments and upper and lower layers. The mean P(Fill) values in the selfing treatment were significantly lower than those in the polycross treatment in both layers. The mean P(Fill)s of the two layers did not differ significantly in the selfing treatment, but did in the open-pollination and polycross treatments. The results show that pollen supply affects mainly seed formation, whereas pollen quality affects mainly seed maturation. Resource availability also affects mainly seed maturation, if pollen quality is higher than a certain threshold.

  20. NYEs/SGRs-Mediated Chlorophyll Degradation is Critical for Detoxification during Seed Maturation in Arabidopsis.

    PubMed

    Li, Zhongpeng; Wu, Shouxin; Chen, Junyi; Wang, Xiaoyan; Gao, Jiong; Ren, Guodong; Kuai, Benke

    2017-09-05

    In seed industry, chlorophyll (Chl) fluorescence is often used as a major non-invasive reporter of seed maturation and quality. Breakdown of Chl is a proactive process during the late stage of seed maturation as well as during leaf senescence and fruit ripening. However, the biological significance of this process is still unclear. NYE1 and NYE2 are Mg-dechelatases, catalyzing the first also a rate-limiting step of Chl a degradation. Loss-of-function of both NYE1 and NYE2 not only results in a nearly complete retention of Chl during leaf senescence, but also produces green seeds in Arabidopsis. In this study, we showed that Chl retention in the nye1 nye2 double mutant caused a severe photo-damage to maturing seeds. Upon prolonged light exposure, green seeds of nye1 nye2 gradually bleached out and eventually lost their germination capacity. This organ specific photosensitive phenotype is likely due to an over-accumulation of free Chl, which possesses photosensitizing property and causes a burst of reactive oxygen species upon light exposure. Expectedly, a similar, albeit much mild, photosensitive phenotype was observed in the seeds of d1 d2, a green-seed mutant defective in NYE/SGR orthologous genes in soybean. Taken together, our data suggest that efficient NYEs-mediated Chl degradation is critical for detoxification during seed maturation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Seed maturation in Arabidopsis thaliana is characterized by nuclear size reduction and increased chromatin condensation

    PubMed Central

    van Zanten, Martijn; Koini, Maria A.; Geyer, Regina; Liu, Yongxiu; Brambilla, Vittoria; Bartels, Dorothea; Koornneef, Maarten; Fransz, Paul; Soppe, Wim J. J.

    2011-01-01

    Most plant species rely on seeds for their dispersal and survival under unfavorable environmental conditions. Seeds are characterized by their low moisture content and significantly reduced metabolic activities. During the maturation phase, seeds accumulate storage reserves and become desiccation-tolerant and dormant. Growth is resumed after release of dormancy and the occurrence of favorable environmental conditions. Here we show that embryonic cotyledon nuclei of Arabidopsis thaliana seeds have a significantly reduced nuclear size, which is established at the beginning of seed maturation. In addition, the chromatin of embryonic cotyledon nuclei from mature seeds is highly condensed. Nuclei regain their size and chromatin condensation level during germination. The reduction in nuclear size is controlled by the seed maturation regulator ABSCISIC ACID-INSENSITIVE 3, and the increase during germination requires two predicted nuclear matrix proteins, LITTLE NUCLEI 1 and LITTLE NUCLEI 2. Our results suggest that the specific properties of nuclei in ripe seeds are an adaptation to desiccation, independent of dormancy. We conclude that the changes in nuclear size and chromatin condensation in seeds are independent, developmentally controlled processes. PMID:22123962

  2. Transcriptome Analysis of Chilling-Imbibed Embryo Revealed Membrane Recovery Related Genes in Maize

    PubMed Central

    He, Fei; Shen, Hangqi; Lin, Cheng; Fu, Hong; Sheteiwy, Mohamed S.; Guan, Yajing; Huang, Yutao; Hu, Jin

    2017-01-01

    The delayed seed germination and poor seedling growth caused by imbibitional chilling injury was common phenomenon in maize seedling establishment. In this study, RNA sequencing technology was used to comprehensively investigate the gene expressions in chilling-imbibed maize embryo and to reveal the underlying mechanism of chilling injury at molecular level. Imbibed seeds for 2 h at 5°C (LT2) were selected and transcriptomic comparative analysis was performed. Among 327 DEGs indentified between dry seed (CK0) and LT2, 15 specific genes with plasma membrane (PM) relevant functions belonging to lipid metabolism, stress, signaling and transport were characterized, and most of them showed down-regulation pattern under chilling stress. When transferred to 25°C for recovery (LT3), remarkable changes occurred in maize embryo. There were 873 DEGs including many PM related genes being identified between LT2 and LT3, some of which showing significant increase after 1 h recovery. Moreover, 15 genes encoding intracellular vesicular trafficking proteins were found to be exclusively differential expressed at recovery stage. It suggested that the intracellular vesicle trafficking might be essential for PM recovery through PM turnover. Furthermore, transcriptome analyses on imbibed embryos under normal condition (25°C) were also made as a contrast. A total of 651 DEGs were identified to mainly involved in protein metabolism, transcriptional regulation, signaling, and energy productions. Overall, the RNA-Seq results provided us a deep knowledge of imbibitional chilling injury on plasma membrane and a new view on PM repaired mechanism during early seed imbibition at transcriptional level. The DEGs identified in this work would be useful references in future seed germination research. PMID:28101090

  3. Identification of new gene expression regulators specifically expressed during plant seed maturation.

    PubMed

    Gutierrez, Laurent; Conejero, Geneviève; Castelain, Mathieu; Guénin, Stéphanie; Verdeil, Jean-Luc; Thomasset, Brigitte; Van Wuytswinkel, Olivier

    2006-01-01

    A cDNA-AFLP approach on Linum usitatissimum (flax) was used to identify genes specifically expressed during the seed maturation process. Among the 20,000 cDNA-AFLP tags produced, 486 were selected for their seed-specific expression during maturation. When compared with the publicly available databases, half of them presented some significant similarity with known plant sequences. The results obtained confirmed the accuracy of the approach as numerous genes previously described as being expressed exclusively in plant seeds were identified in this screen. The focus was on sequences similar to plant regulators involved in the control of gene expression, either at the transcriptional, post-transcriptional, or post-translational levels. Using a real-time RT-PCR approach, seed-specific expression kinetics were confirmed for 13 of these regulators that were never characterized for being expressed during seed maturation. Among these, a flax gene of the non-LEC1-like HAP3 family and a flax MYB factor were shown to be expressed in specialized tissues of flax embryo using an in situ hybridization approach. By expression kinetic comparison between these flax genes and their Arabidopsis counterparts, it was found that the new HAP3 gene should be related to a ubiquitous seed maturation mechanism, while a new MYB factor appears to be related to a more seed-specific maturation mechanism. These results demonstrate the utility of the flax database in not only identifying new genes expressed during seed maturation but also in being able to highlight the distinction between conserved and non-conserved seed maturation mechanisms.

  4. Evolutionary Analysis of the LAFL Genes Involved in the Land Plant Seed Maturation Program

    PubMed Central

    Han, Jing-Dan; Li, Xia; Jiang, Chen-Kun; Wong, Gane K.-S.; Rothfels, Carl J.; Rao, Guang-Yuan

    2017-01-01

    Seeds are one of the most significant innovations in the land plant lineage, critical to the diversification and adaptation of plants to terrestrial environments. From perspective of seed evo-devo, the most crucial developmental stage in this innovation is seed maturation, which includes accumulation of storage reserves, acquisition of desiccation tolerance, and induction of dormancy. Based on previous studies of seed development in the model plant Arabidopsis thaliana, seed maturation is mainly controlled by the LAFL regulatory network, which includes LEAFY COTYLEDON1 (LEC1) and LEC1-LIKE (L1L) of the NF-YB gene family, and ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and LEC2 (LEAFY COTYLEDON2) of the B3-AFL gene family. In the present study, molecular evolution of these LAFL genes was analyzed, using representative species from across the major plant lineages. Additionally, to elucidate the molecular mechanisms of the seed maturation program, co-expression pattern analyses of LAFL genes were conducted across vascular plants. The results show that the origin of AFL gene family dates back to a common ancestor of bryophytes and vascular plants, while LEC1-type genes are only found in vascular plants. LAFL genes of vascular plants likely specify their co-expression in two different developmental phrases, spore and seed maturation, respectively, and expression patterns vary slightly across the major vascular plants lineages. All the information presented in this study will provide insights into the origin and diversification of seed plants. PMID:28421087

  5. Maturation and Collection of Yellow-Poplar Seeds in the Midsouth

    Treesearch

    F. T. Bonner

    1976-01-01

    Yellow-poplar fruits are best collected in late October when their color changes from green to yellow-green or yellow. There were no other obvious physical or chemical changes indicating maturity. The seeds are physiologically mature as early as September 1, although high fruit moisture contents make special handling necessary if fruits are collected at this time....

  6. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis.

    PubMed

    Sew, Yun Shin; Ströher, Elke; Fenske, Ricarda; Millar, A Harvey

    2016-06-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis.

  7. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds1[W

    PubMed Central

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-01-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds. PMID:22751379

  8. Chlorophyll b reductase plays an essential role in maturation and storability of Arabidopsis seeds.

    PubMed

    Nakajima, Saori; Ito, Hisashi; Tanaka, Ryouichi; Tanaka, Ayumi

    2012-09-01

    Although seeds are a sink organ, chlorophyll synthesis and degradation occurs during embryogenesis and in a manner similar to that observed in photosynthetic leaves. Some mutants retain chlorophyll after seed maturation, and they are disturbed in seed storability. To elucidate the effects of chlorophyll retention on the seed storability of Arabidopsis (Arabidopsis thaliana), we examined the non-yellow coloring1 (nyc1)/nyc1-like (nol) mutants that do not degrade chlorophyll properly. Approximately 10 times more chlorophyll was retained in the dry seeds of the nyc1/nol mutant than in the wild-type seeds. The germination rates rapidly decreased during storage, with most of the mutant seeds failing to germinate after storage for 23 months, whereas 75% of the wild-type seeds germinated after 42 months. These results indicate that chlorophyll retention in the seeds affects seed longevity. Electron microscopic studies indicated that many small oil bodies appeared in the embryonic cotyledons of the nyc1/nol mutant; this finding indicates that the retention of chlorophyll affects the development of organelles in embryonic cells. A sequence analysis of the NYC1 promoter identified a potential abscisic acid (ABA)-responsive element. An electrophoretic mobility shift assay confirmed the binding of an ABA-responsive transcriptional factor to the NYC1 promoter DNA fragment, thus suggesting that NYC1 expression is regulated by ABA. Furthermore, NYC1 expression was repressed in the ABA-insensitive mutants during embryogenesis. These data indicate that chlorophyll degradation is induced by ABA during seed maturation to produce storable seeds.

  9. Dynamic Quantitative Trait Locus Analysis of Seed Vigor at Three Maturity Stages in Rice

    PubMed Central

    Cheng, Jinping; Wang, Ling; Du, Wenli; Wang, Zhoufei; Zhang, Hongsheng

    2014-01-01

    Seed vigor is an important characteristic of seed quality. In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed vigor, including the germination potential, germination rate, germination index and time for 50% of germination, at 4 (early), 5 (middle) and 6 weeks (late) after heading in two years. A total of 24 additive and 9 epistatic quantitative trait loci (QTL) for seed vigor were identified using QTL Cartographer and QTLNetwork program respectively in 2012; while 32 simple sequence repeat (SSR) markers associated with seed vigor were detected using bulked segregant analysis (BSA) in 2013. The additive, epistatic and QTL × development interaction effects regulated the dry maturity developmental process to improve seed vigor in rice. The phenotypic variation explained by each additive, epistatic QTL and QTL × development interaction ranged from 5.86 to 40.67%, 4.64 to 11.28% and 0.01 to 1.17%, respectively. The QTLs were rarely co-localized among the different maturity stages; more QTLs were expressed at the early maturity stage followed by the late and middle stages. Twenty additive QTLs were stably expressed in two years which might play important roles in establishment of seed vigor in different environments. By comparing chromosomal positions of these stably expressed additive QTLs with those previously identified, the regions of QTL for seed vigor are likely to coincide with QTL for grain size, low temperature germinability and seed dormancy; while 5 additive QTL might represent novel genes. Using four selected RILs, three cross combinations of seed vigor for the development of RIL populations were predicted; 19 elite alleles could be pyramided by each combination. PMID:25536503

  10. Dynamic quantitative trait locus analysis of seed vigor at three maturity stages in rice.

    PubMed

    Liu, Liangfeng; Lai, Yanyan; Cheng, Jinping; Wang, Ling; Du, Wenli; Wang, Zhoufei; Zhang, Hongsheng

    2014-01-01

    Seed vigor is an important characteristic of seed quality. In this study, one rice population of recombinant inbred lines (RILs) was used to determine the genetic characteristics of seed vigor, including the germination potential, germination rate, germination index and time for 50% of germination, at 4 (early), 5 (middle) and 6 weeks (late) after heading in two years. A total of 24 additive and 9 epistatic quantitative trait loci (QTL) for seed vigor were identified using QTL Cartographer and QTLNetwork program respectively in 2012; while 32 simple sequence repeat (SSR) markers associated with seed vigor were detected using bulked segregant analysis (BSA) in 2013. The additive, epistatic and QTL × development interaction effects regulated the dry maturity developmental process to improve seed vigor in rice. The phenotypic variation explained by each additive, epistatic QTL and QTL × development interaction ranged from 5.86 to 40.67%, 4.64 to 11.28% and 0.01 to 1.17%, respectively. The QTLs were rarely co-localized among the different maturity stages; more QTLs were expressed at the early maturity stage followed by the late and middle stages. Twenty additive QTLs were stably expressed in two years which might play important roles in establishment of seed vigor in different environments. By comparing chromosomal positions of these stably expressed additive QTLs with those previously identified, the regions of QTL for seed vigor are likely to coincide with QTL for grain size, low temperature germinability and seed dormancy; while 5 additive QTL might represent novel genes. Using four selected RILs, three cross combinations of seed vigor for the development of RIL populations were predicted; 19 elite alleles could be pyramided by each combination.

  11. Maturation Proteins and Sugars in Desiccation Tolerance of Developing Soybean Seeds 1

    PubMed Central

    Blackman, Sheila A.; Obendorf, Ralph L.; Leopold, A. Carl

    1992-01-01

    The desiccation-tolerant state in seeds is associated with high levels of certain sugars and maturation proteins. The aim of this work was to evaluate the contributions of these components to desiccation tolerance in soybean (Glycine max [L.] Merrill cv Chippewa 64). When axes of immature seeds (34 d after flowering) were excised and gradually dried (6 d), desiccation tolerance was induced. By contrast, seeds held at high relative humidity for the same period were destroyed by desiccation. Maturation proteins rapidly accumulated in the axes whether the seeds were slowly dried or maintained at high relative humidity. During slow drying, sucrose content increased to five times the level present in the axes of seeds held at high relative humidity (128 versus 25 μg/axis, respectively). Stachyose content increased dramatically from barely detectable levels upon excision to 483 μg/axis during slow drying but did not increase significantly when seeds were incubated at high relative humidity. Galactinol was the only saccharide that accumulated to higher levels in axes from seeds incubated at high relative humidity relative to axes from seeds that were slowly dried. This suggests that slow drying serves to induce the accumulation of the raffinose series sugars at a point after galactinol biosynthesis. We conclude that stachyose plays an important role in conferring desiccation tolerance. Images Figure 4 PMID:16652951

  12. Phenotypic Characteristics as Predictors of Phytosterols in Mature Cycas micronesica Seeds.

    PubMed

    Marler, Thomas E; Shaw, Christopher A

    2009-01-01

    The relationship between mature Cycas micronesica K.D. Hill seed sterol concentration and content and plant or seed phenotypic characteristics was established by multiple regression. Combined models were significant for free but not glycosylated sterols. Reduced models revealed leaf number as the only significant predictor. Free and glycosylated sterol concentrations were unaffected throughout the range of several predictors: tree height (1.7 to 5.8 m), seed fresh weight (48 to 120 g), seed load (one to 76 seeds per plant), and estimated tree age (32 to 110 years). The free and glycosylated sterol phenotypes were also not dependent on the presence/absence of developed embryos in mature seeds. The significant response to leaf number was subtle with an increase of 43 leaves associated with a 0.1-mg increase in free sterol per gram seed fresh weight. This is the first report for any cycad that discusses reproductive or physiological traits in the context of allometric relations. Results indicate a highly constrained phenotypic plasticity of Cycas gametophyte sterol and steryl glucoside concentration and seed content in relation to whole plant and organ size variation.

  13. Protein composition of oil bodies from mature Brassica napus seeds.

    PubMed

    Jolivet, Pascale; Boulard, Céline; Bellamy, Annick; Larré, Colette; Barre, Marion; Rogniaux, Hélène; d'Andréa, Sabine; Chardot, Thierry; Nesi, Nathalie

    2009-06-01

    Seed oil bodies (OBs) are intracellular particles storing lipids as food or biofuel reserves in oleaginous plants. Since Brassica napus OBs could be easily contaminated with protein bodies and/or myrosin cells, they must be purified step by step using floatation technique in order to remove non-specifically trapped proteins. An exhaustive description of the protein composition of rapeseed OBs from two double-zero varieties was achieved by a combination of proteomic and genomic tools. Genomic analysis led to the identification of sequences coding for major seed oil body proteins, including 19 oleosins, 5 steroleosins and 9 caleosins. Most of these proteins were also identified through proteomic analysis and displayed a high level of sequence conservation with their Arabidopsis thaliana counterparts. Two rapeseed oleosin orthologs appeared acetylated on their N-terminal alanine residue and both caleosins and steroleosins displayed a low level of phosphorylation.

  14. Transformation of Morinda citrifolia via simple mature seed imbibition method.

    PubMed

    Lee, J J; Ahmad, S; Roslan, H A

    2013-12-15

    Morinda citrifolia, is a valuable medicinal plant with a wide range of therapeutic properties and extensive transformation study on this plant has yet been known. Present study was conducted to establish a simple and reliable transformation protocol for M. citrifolia utilising Agrobacterium tumefaciens via direct seed exposure. In this study, the seeds were processed by tips clipping and dried and subsequently incubated in inoculation medium. Four different parameters during the incubation such as incubation period, bacterial density, temperature and binary vectors harbouring beta-glucuronidase (GUS) gene (pBI121 and pGSA1131), were tested to examine its effect on transformation efficiency. The leaves from the treated and germinated seedlings were analysed via Polymerase Chain Reaction (PCR), histochemical assay of the GUS gene and reverse transcription-PCR (RT-PCR). Results of the study showed that Agrobacterium strain LBA4404 with optical density of 1.0 and 2 h incubation period were optimum for M. citrifolia transformation. It was found that various co-cultivation temperatures tested and type of vector used did not affect the transformation efficiency. The highest transformation efficiency for M. citrifolia direct seed transformation harbouring pBI121 and pGSA1131 was determined to be 96.8% with 2 h co-cultivation treatment and 80.4% when using bacterial density of 1.0, respectively. The transformation method can be applied for future characterization study of M. citrifolia.

  15. Using RNA-Seq to profile soybean seed development from fertilization to maturity.

    PubMed

    Jones, Sarah I; Vodkin, Lila O

    2013-01-01

    To understand gene expression networks leading to functional properties and compositional traits of the soybean seed, we have undertaken a detailed examination of soybean seed development from a few days post-fertilization to the mature seed using Illumina high-throughput transcriptome sequencing (RNA-Seq). RNA was sequenced from seven different stages of seed development, yielding between 12 million and 78 million sequenced transcripts. These have been aligned to the 79,000 gene models predicted from the soybean genome recently sequenced by the Department of Energy Joint Genome Institute. Over one hundred gene models were identified with high expression exclusively in young seed stages, starting at just four days after fertilization. These were annotated as being related to many basic components and processes such as histones and proline-rich proteins. Genes encoding storage proteins such as glycinin and beta-conglycinin had their highest expression levels at the stages of largest fresh weight, confirming previous knowledge that these storage products are being rapidly accumulated before the seed begins the desiccation process. Other gene models showed high expression in the dry, mature seeds, perhaps indicating the preparation of pathways needed later, in the early stages of imbibition. Many highly-expressed gene models at the dry seed stage are, as expected, annotated as hydrophilic proteins associated with low water conditions, such as late embryogenesis abundant (LEA) proteins and dehydrins, which help preserve the cellular structures and nutrients within the seed during desiccation. More significantly, the power of RNA-Seq to detect genes expressed at low levels revealed hundreds of transcription factors with notable expression in at least one stage of seed development. Results from a second biological replicate demonstrate high reproducibility of these data revealing a comprehensive view of the transciptome of seed development in the cultivar Williams, the

  16. A local dormancy cline is related to the seed maturation environment, population genetic composition and climate

    PubMed Central

    Fernández-Pascual, Eduardo; Jiménez-Alfaro, Borja; Caujapé-Castells, Juli; Jaén-Molina, Ruth; Díaz, Tomás Emilio

    2013-01-01

    Background and Aims Seed dormancy varies within species in response to climate, both in the long term (through ecotypes or clines) and in the short term (through the influence of the seed maturation environment). Disentangling both processes is crucial to understand plant adaptation to environmental changes. In this study, the local patterns of seed dormancy were investigated in a narrow endemic species, Centaurium somedanum, in order to determine the influence of the seed maturation environment, population genetic composition and climate. Methods Laboratory germination experiments were performed to measure dormancy in (1) seeds collected from different wild populations along a local altitudinal gradient and (2) seeds of a subsequent generation produced in a common garden. The genetic composition of the original populations was characterized using intersimple sequence repeat (ISSR) PCR and principal co-ordinate analysis (PCoA), and its correlation with the dormancy patterns of both generations was analysed. The effect of the local climate on dormancy was also modelled. Key Results An altitudinal dormancy cline was found in the wild populations, which was maintained by the plants grown in the common garden. However, seeds from the common garden responded better to stratification, and their release from dormancy was more intense. The patterns of dormancy variation were correlated with genetic composition, whereas lower temperature and summer precipitation at the population sites predicted higher dormancy in the seeds of both generations. Conclusions The dormancy cline in C. somedanum is related to a local climatic gradient and also corresponds to genetic differentiation among populations. This cline is further affected by the weather conditions during seed maturation, which influence the receptiveness to dormancy-breaking factors. These results show that dormancy is influenced by both long-and short-term climatic variation. Such processes at such a reduced spatial

  17. Retarded Embryo Development 1 (RED1) regulates embryo development, seed maturation and plant growth in Arabidopsis.

    PubMed

    Du, Qian; Wang, Huanzhong

    2016-07-20

    Plant seeds accumulate large amounts of protein and carbohydrate as storage reserves during maturation. Thus, understanding the genetic control of embryo and seed development may provide bioengineering tools for yield improvement. In this study, we report the identification of Retarded Embryo Development 1 (RED1) gene in Arabidopsis, whose two independent T-DNA insertion mutant lines, SALK_085642 (red1-1) and SALK_022583 (red1-2), show a retarded embryo development phenotype. The embryogenesis process ceases at the late heart stage in red1-1 and at the bent-cotyledon stage in red1-2, respectively, resulting in seed abortion in both lines. The retarded embryo development and seed abortion phenotypes reverted to normal when RED1 complementation constructs were introduced into mutant plants. Small red1-2 homozygous plants can be successfully rescued by culturing immature seeds, indicating that seed abortion likely results from compromised tolerance to the desiccation process associated with seed maturation. Consistent with this observation, red1-2 seeds accumulate less protein, and the expression of two late embryo development reporter transgenes, LEA::GUS and β-conglycinin::GUS, was significantly weak and started relatively late in the red1-2 mutant lines compared to the wild type. The RED1 gene encodes a plant specific novel protein that is localized in the nucleus. These results indicate that RED1 plays important roles in embryo development, seed maturation and plant growth. Copyright © 2016 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  18. [Dehydration in the cryopreservation of moist plant tissues and in seed maturation].

    PubMed

    Chetverikova, E P

    2008-01-01

    The possibility of long-term cryopreservation of plant objects depends on their water content. In orthodox seeds, it decreases at the late stage of maturation and is accompanied by the synthesis of protectors--sugars and proteins. These seeds easily withstand cryopreservation. Organs with a high water content, meristems, and recalcitrant seeds are dried in presence of sucrose before plunging in liquid nitrogen. In orthodox seeds, artificially dried moist seeds, and meristems, the cellular content forms glass structures that are estimated in frozen materials by differential scanning calorimetry and electron paramagnetic resonance methods. It is proposed that the glass cellular content is connected with the duration of cryopreservation. Methodical approaches to successive cryopreservation of moist plant tissues are described.

  19. 'US Early Pride', a very low-seeded, early-maturing mandarin hybrid

    USDA-ARS?s Scientific Manuscript database

    ‘US Early Pride’ is an irradiation-induced, very low-seeded mutant of the ‘Fallglo’ mandarin hybrid [‘Bower’ (Citrus reticulata Blanco x (C. paradisi Macf. X C. reticulata) x Temple’]. Mature ‘Fallglo’ budwood was irradiated in 1991 using 3 kRAD units of gamma irradiation from a Cobalt-60 source in ...

  20. Development of sunflower oil and composition with respect to seed moisture and physiological maturity

    USDA-ARS?s Scientific Manuscript database

    Desiccants/harvest aids are becoming more commonly used to hasten sunflower harvest. The current recommendation is to apply a desiccant (e.g., glyphosate and paraquat) at 35% or less seed moisture at physiological maturity (PM). Desiccating as early as possible without sacrificing yield may be a des...

  1. Effects of endophyte-infected fescue seed on physiological parameters of mature female meat goats

    USDA-ARS?s Scientific Manuscript database

    The objectives of the study were to determine if consumption of endophyte-infected (E+) tall fescue seed would affect thermoregulation and dry matter intake (DMI) in mature female meat goats. During the 4 week study, goats (n = 18) were assigned to one of three treatments (n = 6 per treatment) and f...

  2. Collecting near mature and immature orchid seeds for ex situ conservation: 'in vitro collecting' as a case study.

    PubMed

    Kendon, Jonathan P; Rajaovelona, Landy; Sandford, Helen; Fang, Rui; Bell, Jake; Sarasan, Viswambharan

    2017-08-08

    Lack of phenological information and efficient collecting methods are considered impediments for orchid seed collecting. This leads to opportunistic collecting as part of general seed collecting schedules that may last few weeks especially in remote areas. The study explored the feasibility of collecting near mature and immature seeds to support conservation action plans. Mature, near mature and immature seeds of orchids were collected from the wild in the Central Highlands of Madagascar (CHM). Seed capsules were collected in sterile culture medium in the wild, to prevent deterioration of seeds inside the capsule after collecting, later to be cultured under laboratory conditions. Seed capsules collected by the in vitro collecting (IVC) method were kept in very good condition for up to 4 weeks before germination under in vitro conditions. Significantly faster and higher germination rate (p < 0.001) than mature seeds was observed in a number of taxa collected during a 3 year-long study. In some taxa even immature seeds, with no apparent sign of testa covering the embryo, germinated following IVC where mature seeds failed to germinate. We propose that IVC method has potential to complement conventional seed collecting by increasing the germplasm that can be used in integrated conservation action plans. Improvements can be made in developing collections for taxa from biodiversity hotspots and remote areas where collecting requires considerable resources. This method can further be used on a wider selection of plants from different geographic areas and on embryo rescue programmes for economically important plants.

  3. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds.

    PubMed

    Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido

    2014-03-01

    Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation.

  4. Synchrony between fruit maturation and effective dispersers' foraging activity increases seed protection against seed predators.

    PubMed

    Boulay, Raphaël; Carro, Francisco; Soriguer, Ramón C; Cerdá, Xim

    2007-10-22

    The evolution of pollination and seed dispersal mutualisms is conditioned by the spatial and temporal co-occurrence of animals and plants. In the present study we explore the timing of seed release of a myrmecochorous plant (Helleborus foetidus) and ant activity in two populations in southern Spain during 2 consecutive years. The results indicate that fruit dehiscence and seed shedding occur mostly in the morning and correspond to the period of maximum foraging activity of the most effective ant dispersers. By contrast, ant species that do not transport seeds and/or that do not abound near the plants are active either before or after H. foetidus diaspores are released. Experimental analysis of diet preference for three kinds of food shows that effective ant dispersers are mostly scavengers that readily feed on insect corpses and sugars. Artificial seed depots suggest that seeds deposited on the ground out of the natural daily time window of diaspore releasing are not removed by ants and suffer strong predation by nocturnal rodents Apodemus sylvaticus. Nevertheless, important inter-annual variations in rodent populations cast doubts on their real importance as selection agents. We argue that traits allowing synchrony between seed presentation and effective partners may constitute a crucial pre-adaptation for the evolution of plant-animal mutualisms involving numerous animal partners.

  5. [Evolution of tocopherols in relation of unsaturated fatty acids during maturation of seeds of rapeseed (Brassica napus L.)].

    PubMed

    Sebei, Khaled; Boukhchina, Sadok; Kallel, Habib

    2007-01-01

    The oil content increases during the maturation of seeds (rise of 30%), but decreases at the end of seed maturation. Differences between SDS-PAGE total protein profiles were shown. Polyunsaturated fatty acids contents increase during middle-maturation. Contents of alpha and gamma tocopherols increase with time. This increase is explained by the fact that tocopherols participate actively in the protection of membranes whose phospholipids consist of polyunsaturated fatty acids (PUFAs).

  6. Coffee seeds isotopic composition as a potential proxy to evaluate Minas Gerais, Brazil seasonal variations during seed maturation

    NASA Astrophysics Data System (ADS)

    Rodrigues, Carla; Maia, Rodrigo; Brunner, Marion; Carvalho, Eduardo; Prohaska, Thomas; Máguas, Cristina

    2010-05-01

    Plant seeds incorporate the prevailing climate conditions and the physiological response to those conditions (Rodrigues et al., 2009; Rodrigues et al., submitted). During coffee seed maturation the biochemical compounds may either result from accumulated material in other organs such as leafs and/or from new synthesis. Accordingly, plant seeds develop in different stages along a particular part of the year, integrating the plant physiology and seasonal climatic conditions. Coffee bean is an extremely complex matrix, rich in many products derived from both primary and secondary metabolism during bean maturation. Other studies (De Castro and Marraccini, 2006) have revealed the importance of different coffee plant organs during coffee bean development as transfer tissues able to provide compounds (i.e. sugars, organic acids, etc) to the endosperm where several enzymatic activities and expressed genes have been reported. Moreover, it has been proved earlier on that green coffee bean is a particularly suitable case-study (Rodrigues et al., 2009; Rodrigues et al., submitted), not only due to the large southern hemispheric distribution but also because of this product high economic interest. The aim of our work was to evaluate the potential use of green coffee seeds as a proxy to seasonal climatic conditions during coffee bean maturation, through an array of isotopic composition determinations. We have determined carbon, nitrogen, oxygen and sulfur isotopic composition (by IRMS - Isotope Ratio Mass Spectrometry) as well as strontium isotope abundance (by MC-ICP-MS; Multicollector Inductively Coupled Plasma Mass Spectrometry), of green coffee beans harvested at different times at Minas Gerais, Brazil. The isotopic composition data were combined with air temperature and relative humidity data registered during the coffee bean developmental period, and with the parent rock strontium isotopic composition. Results indicate that coffee seeds indeed integrate the interactions

  7. Proteome Analysis of Grain Filling and Seed Maturation in Barley1

    PubMed Central

    Finnie, Christine; Melchior, Sabrina; Roepstorff, Peter; Svensson, Birte

    2002-01-01

    In monocotyledonous plants, the process of seed development involves the deposition of reserves in the starchy endosperm and development of the embryo and aleurone layer. The final stages of seed development are accompanied by an increase in desiccation tolerance and drying out of the mature seed. We have used two-dimensional gel electrophoresis for a time-resolved study of the changes in proteins that occur during seed development in barley (Hordeum vulgare). About 1,000 low-salt extractable protein spots could be resolved on the two-dimensional gels. Protein spots were divided into six categories according to the timing of appearance or disappearance during the 5-week period of comparison. Nineteen different proteins or protein fragments in 36 selected spots were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry (MS) or nano-electrospray tandem MS/MS. Some proteins were present throughout development (for example, cytosolic malate dehydrogenase), whereas others were associated with the early grain filling (ascorbate peroxidase) or desiccation (Cor14b) stages. Most noticeably, the development process is characterized by an accumulation of low-Mr α-amylase/trypsin inhibitors, serine protease inhibitors, and enzymes involved in protection against oxidative stress. We present examples of proteins not previously experimentally observed, differential extractability of thiol-bound proteins, and possible allele-specific spot variation. Our results both confirm and expand on knowledge gained from previous analyses of individual proteins involved in grain filling and maturation. PMID:12114584

  8. Translation and transcription in imbibed and germinating spores of Anemia phyllitidis L.Sw.

    PubMed

    Fechner, A; Schraudolf, H

    1984-07-01

    Induction of germination by gibberellin or light is not a prerequisite for protein and RNA synthesis in spores of A. phyllitidis. Imbibed but non-induced spores of this fern show a high rate of translation as well as appreciably transcription of all RNA types. The pattern of in-vitro translation of polyadenylated RNA present in the dry spore corresponds with the in-vivo translation products under non-inductive conditions. New proteins are not detectable among the in-vitro and in-vivo translation products until 48 h after a germination stimulus. Although the dark imbibition of spores is accompanied by a reduction in the lengths of polyadenylated tracts of the stored mRNA, this fraction is characterized by a remarkable stability which is undoubtedly a prerequisite for the high viability of these fern spores. The importance of these results for the general meaning of stored mRNA in spore and seed germination processes is discussed.

  9. Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta

    PubMed Central

    Newton, Rosemary J.; Hay, Fiona R.; Ellis, Richard H.

    2013-01-01

    Background and Aims Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Methods Phenology, seed mass, moisture content and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and under several temperature regimes after shedding. Key Results Seeds were shed at high moisture content (>59 %) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20 °C in G. nivalis and 15 °C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48 %, respectively, after 700 d. Conclusions Seeds of G. nivalis and N. pseudonarcissus were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal. PMID:23478943

  10. Seed development and maturation in early spring-flowering Galanthus nivalis and Narcissus pseudonarcissus continues post-shedding with little evidence of maturation in planta.

    PubMed

    Newton, Rosemary J; Hay, Fiona R; Ellis, Richard H

    2013-05-01

    Seeds of the moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus, dispersed during spring or early summer, germinated poorly in laboratory tests. Seed development and maturation were studied to better understand the progression from developmental to germinable mode in order to improve seed collection and germination practices in these and similar species. Phenology, seed mass, moisture content and ability to germinate and tolerate desiccation were monitored during seed development until shedding. Embryo elongation within seeds was investigated during seed development and under several temperature regimes after shedding. Seeds were shed at high moisture content (>59 %) with little evidence that dry mass accumulation or embryo elongation were complete. Ability to germinate developed prior to the ability of some seeds to tolerate enforced desiccation. Germination was sporadic and slow. Embryo elongation occurred post-shedding in moist environments, most rapidly at 20 °C in G. nivalis and 15 °C in N. pseudonarcissus. The greatest germination also occurred in these regimes, 78 and 48 %, respectively, after 700 d. Seeds of G. nivalis and N. pseudonarcissus were comparatively immature at shedding and substantial embryo elongation occurred post-shedding. Seeds showed limited desiccation tolerance at dispersal.

  11. Weed seed inactivation in soil mesocosms via biosolarization with mature compost and tomato processing waste amendments.

    PubMed

    Achmon, Yigal; Fernández-Bayo, Jesús D; Hernandez, Katie; McCurry, Dlinka G; Harrold, Duff R; Su, Joey; Dahlquist-Willard, Ruth M; Stapleton, James J; VanderGheynst, Jean S; Simmons, Christopher W

    2017-05-01

    Biosolarization is a fumigation alternative that combines passive solar heating with amendment-driven soil microbial activity to temporarily create antagonistic soil conditions, such as elevated temperature and acidity, that can inactivate weed seeds and other pest propagules. The aim of this study was to use a mesocosm-based field trial to assess soil heating, pH, volatile fatty acid accumulation and weed seed inactivation during biosolarization. Biosolarization for 8 days using 2% mature green waste compost and 2 or 5% tomato processing residues in the soil resulted in accumulation of volatile fatty acids in the soil, particularly acetic acid, and >95% inactivation of Brassica nigra and Solanum nigrum seeds. Inactivation kinetics data showed that near complete weed seed inactivation in soil was achieved within the first 5 days of biosolarization. This was significantly greater than the inactivation achieved in control soils that were solar heated without amendment or were amended but not solar heated. The composition and concentration of organic matter amendments in soil significantly affected volatile fatty acid accumulation at various soil depths during biosolarization. Combining solar heating with organic matter amendment resulted in accelerated weed seed inactivation compared with either approach alone. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  12. MicroRNAs and their putative targets in Brassica napus seed maturation

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are 20–21 nucleotide RNA molecules that suppress the transcription of target genes and may also inhibit translation. Despite the thousands of miRNAs identified and validated in numerous plant species, only small numbers have been identified from the oilseed crop plant Brassica napus (canola) – especially in seeds. Results Using next-generation sequencing technologies, we performed a comprehensive analysis of miRNAs during seed maturation at 9 time points from 10 days after flowering (DAF) to 50 DAF using whole seeds and included separate analyses of radicle, hypocotyl, cotyledon, embryo, endosperm and seed coat tissues at 4 selected time points. We identified more than 500 conserved miRNA or variant unique sequences with >300 sequence reads and also found 10 novel miRNAs. Only 27 of the conserved miRNA sequences had been previously identified in B. napus (miRBase Release 18). More than 180 MIRNA loci were identified/annotated using the B. rapa genome as a surrogate for the B.napus A genome. Numerous miRNAs were expressed in a stage- or tissue-specific manner suggesting that they have specific functions related to the fine tuning of transcript abundance during seed development. miRNA targets in B. napus were predicted and their expression patterns profiled using microarray analyses. Global correlation analysis of the expression patterns of miRNAs and their targets revealed complex miRNA-target gene regulatory networks during seed development. The miR156 family was the most abundant and the majority of the family members were primarily expressed in the embryo. Conclusions Large numbers of miRNAs with diverse expression patterns, multiple-targeting and co-targeting of many miRNAs, and complex relationships between expression of miRNAs and targets were identified in this study. Several key miRNA-target expression patterns were identified and new roles of miRNAs in regulating seed development are suggested. miR156, miR159, miR172, mi

  13. Proteomic analysis of oil bodies in mature Jatropha curcas seeds with different lipid content.

    PubMed

    Liu, Hui; Wang, Cuiping; Chen, Fan; Shen, Shihua

    2015-01-15

    To reveal the difference among three mature Jatropha curcas seeds (JcVH, variant with high lipid content; JcW, wild type and JcVL, variant with low lipid content) with different lipid content, comparative proteomics was employed to profile the changes of oil body (OB) associated protein species by using gels-based proteomic technique. Eighty-three protein species were successfully identified through LTQ-ES-MS/MS from mature JcW seeds purified OBs. Two-dimensional electrophoresis analysis of J. curcas OB associated protein species revealed they had essential interactions with other organelles and demonstrated that oleosin and caleosin were the most abundant OB structural protein species. Twenty-eight OB associated protein species showed significant difference among JcVH, JcW and JcVL according to statistical analysis. Complementary transient expression analysis revealed that calcium ion binding protein (CalBP) and glycine-rich RNA binding protein (GRP) were well targeted in OBs apart from the oleosins. This study demonstrated that ratio of lipid content to caleosins abundance was involved in the regulation of OB size, and the mutant induced by ethylmethylsulfone treatment might be related to the caleosin like protein species. These findings are important for biotechnological improvement with the aim to alter the lipid content in J. curcas seeds. The economic value of Jatropha curcas largely depends on the lipid content in seeds which are mainly stored in the special organelle called oil bodies (OBs). In consideration of the biological importance and applications of J. curcas OB in seeds, it is necessary to further explore the components and functions of J. curcas OBs. Although a previous study concerning the J. curcas OB proteome revealed oleosins were the major OB protein component and additional protein species were similar to those in other oil seed plants, these identified OB associated protein species were corresponding to the protein bands instead of protein

  14. A Network of Local and Redundant Gene Regulation Governs Arabidopsis Seed Maturation

    PubMed Central

    To, Alexandra; Valon, Christiane; Savino, Gil; Guilleminot, Jocelyne; Devic, Martine; Giraudat, Jérôme; Parcy, François

    2006-01-01

    In Arabidopsis thaliana, four major regulators (ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], LEAFY COTYLEDON1 [LEC1], and LEC2) control most aspects of seed maturation, such as accumulation of storage compounds, cotyledon identity, acquisition of desiccation tolerance, and dormancy. The molecular basis for complex genetic interactions among these regulators is poorly understood. By analyzing ABI3 and FUS3 expression in various single, double, and triple maturation mutants, we have identified multiple regulatory links among all four genes. We found that one of the major roles of LEC2 was to upregulate FUS3 and ABI3. The lec2 mutation is responsible for a dramatic decrease in ABI3 and FUS3 expression, and most lec2 phenotypes can be rescued by ABI3 or FUS3 constitutive expression. In addition, ABI3 and FUS3 positively regulate themselves and each other, thereby forming feedback loops essential for their sustained and uniform expression in the embryo. Finally, LEC1 also positively regulates ABI3 and FUS3 in the cotyledons. Most of the genetic controls discovered were found to be local and redundant, explaining why they had previously been overlooked. This works establishes a genetic framework for seed maturation, organizing the key regulators of this process into a hierarchical network. In addition, it offers a molecular explanation for the puzzling variable features of lec2 mutant embryos. PMID:16731585

  15. Endoplasmic Reticulum of Mung Bean Cotyledons: ACCUMULATION DURING SEED MATURATION AND CATABOLISM DURING SEEDLING GROWTH.

    PubMed

    Gilkes, N R; Chrispeels, M J

    1980-04-01

    Homogenates of mung bean cotyledons were subjected to equilibrium density centrifugation on linear sucrose gradients and the positions of the various organelles determined by assay of marker enzymes. Measurement of phospholipid distribution on such gradients showed that the major peak of phospholipid at a density of 1.11 to 1.13 grams per cubic centimeter coincided with the position of the endoplasmic reticulum (ER), confirming ultrastructural evidence that storage parenchyma cells are rich in ER. Germination and seedling growth were accompanied by a rapid decline in ER-associated phospholipid but a marked increase in the ER marker enzyme NADH cytochrome c reductase. Similar experiments with developing seeds indicated that the amount of ER-associated phospholipid increases during cotyledon expansion reaching a maximum during seed maturation. There was no subsequent decline during seed desiccation, instead ER-associated phospholipid levels were maintained in the dry seed until germination when catabolism was initiated 12 to 24 hours after the start of imbibition. This timing indicates that the observed ER breakdown is not an expression of the overall senescence of the cotyledons, but may represent the dismantling of the extensive rough ER used for reserve protein synthesis during cotyledon development.

  16. Inference of Longevity-Related Genes from a Robust Coexpression Network of Seed Maturation Identifies Regulators Linking Seed Storability to Biotic Defense-Related Pathways

    PubMed Central

    Righetti, Karima; Vu, Joseph Ly; Pelletier, Sandra; Vu, Benoit Ly; Glaab, Enrico; Lalanne, David; Pasha, Asher; Patel, Rohan V.; Provart, Nicholas J.; Verdier, Jerome; Leprince, Olivier

    2015-01-01

    Seed longevity, the maintenance of viability during storage, is a crucial factor for preservation of genetic resources and ensuring proper seedling establishment and high crop yield. We used a systems biology approach to identify key genes regulating the acquisition of longevity during seed maturation of Medicago truncatula. Using 104 transcriptomes from seed developmental time courses obtained in five growth environments, we generated a robust, stable coexpression network (MatNet), thereby capturing the conserved backbone of maturation. Using a trait-based gene significance measure, a coexpression module related to the acquisition of longevity was inferred from MatNet. Comparative analysis of the maturation processes in M. truncatula and Arabidopsis thaliana seeds and mining Arabidopsis interaction databases revealed conserved connectivity for 87% of longevity module nodes between both species. Arabidopsis mutant screening for longevity and maturation phenotypes demonstrated high predictive power of the longevity cross-species network. Overrepresentation analysis of the network nodes indicated biological functions related to defense, light, and auxin. Characterization of defense-related wrky3 and nf-x1-like1 (nfxl1) transcription factor mutants demonstrated that these genes regulate some of the network nodes and exhibit impaired acquisition of longevity during maturation. These data suggest that seed longevity evolved by co-opting existing genetic pathways regulating the activation of defense against pathogens. PMID:26410298

  17. Some eco-physiological aspects of seed dormancy in Geranium carolinianum L. from central tennessee.

    PubMed

    Baskin, Jerry M; Baskin, Carol C

    1974-09-01

    In central Tennessee Geranium carolinianum L. behaves as a winter annual. Seed germination occurs in autumn, and seed ripening and dispersal are completed in May. Freshly-matured seeds have hard coats and will not imbibe water unless scarified. Embryos of freshly-matured seeds are conditionally dormant; scarified seeds germinate better in darkness than in light at high temperatures. After a short after-ripening period the embryo is essentially nondormant, and scarified seeds germinate to high percentages over a wide range of temperatures in both light and darkness. About 50% of the nonscarified seeds become germinable after 4.5 months of dry-laboratory storage. In order for the seed coat to become permeable (without scarification), seeds must be kept either dry or alternately wet and dry at relatively high temperatures during the summer dormancy period. The ecological significance of seed dormancy in G. carolinianum in central Tennessee is that it allows this non-drought tolerant species to avoid droughts that frequently occur in its habitat between late spring and early autumn. Conditional dormancy of the embryo of freshly-matured seeds, hard seed coats and the inability of seeds (non-scarified but permeable) to germinate in summer at high summer temperatures all seem to play a role in delaying germination until autumn.

  18. Breaking dormancy in freshly matured seeds of Elymus sibiricus, an important forage grass in the Tibetan Plateau.

    PubMed

    Zhang, J Q; Wang, Y R

    2015-09-22

    Elymus sibiricus L. is an important forage grass widely distributed in Asia and is usually a dominant species on Tibetan Plateau alpine grasslands. Here, we used the seed development indices of 1000 seed weight, seed moisture content, and seed viability to compare the seed characteristics at 10, 20, 30, 40, 50, and 60 days after anthesis (DAA) in five populations of E. sibiricus growing in Gannan, China. Additionally, seeds collected at 60 DAA were air-dried for one month, and the primary germination percentage (GP) was determined in the laboratory. Treatment of seeds with 0.2% KNO3, 100 mg/L cytokinin, and 500 mg/L GA3 were tested for their effects on dormancy. A primary GP of 16% was found after 12 d of 15/25°C incubation, with no differences among the five populations. The 1000 seed weight and seed viability steadily increased and moisture content continuously fell with DAA. The optimal harvest time for E. sibiricus in an alpine pasture was 50 DAA. No effect on dormancy was found after treating seeds with 0.2% KNO3 or 100 mg/L cytokinin; however, a low concentration of GA3 induced a prompt and synchronized germination. Freshly matured E. sibiricus seeds were classified to be in non-deep physiologically dormant. Treatment of seeds with GA3 before sowing enhanced the emergence speed and seedling uniformity in E. sibiricus.

  19. Agrobacterium tumefaciens-mediated genetic transformation of Salix matsudana Koidz. using mature seeds.

    PubMed

    Yang, Jingli; Yi, Jaeseon; Yang, Chuanping; Li, Chenghao

    2013-06-01

    An Agrobacterium tumefaciens-mediated transformation method was developed for Salix matsudana Koidz. using mature seeds as starting material. Multiple shoots were induced directly from embryonic shoot apices of germinating seeds. Although thidiazuron, 6-benzylaminopurine and zeatin induced multiple shoot induction with high frequency, zeatin (4.5 μM) was more effective for elongation of shoots and roots. The binary vector pCAMBIA1303, which contained neomycin phosphotransferase as a selectable marker gene and β-glucuronidase as a reporter gene, was used for transformation. Factors affecting transformation efficiency were examined for optimization of the procedure. Up to 35 of 180 seeds regenerated kanamycin-resistant shoots under optimal transformation conditions as follows: seeds were precultured for 4 days, apices of embryonic shoots were removed and infected with A. tumefaciens strain LBA4404 grown to a cell density equivalent (OD600) of 0.6, and then the infected explants were cultivated at 21 °C for 4 days. Storage of seeds at -20 °C for as long as 3 years had no significant effect on the induction of kanamycin-resistant shoots. Using this method, transgenic plants were obtained within ∼5 months with a transformation frequency of 7.2%. Analysis by polymerase chain reaction (PCR) showed that 36.4-93.8% of plants from all 13 tested kanamycin-resistant lines were PCR positive. Several 'escapes' were eliminated by a second round of selection. PCR, Southern blot and reverse transcriptase-PCR analyses of selected transgenic individuals 2 years after cutting propagation confirmed the successful generation of stable transformants. Our method, which minimizes the duration of axenic culture, may provide an alternative procedure for transformation of other recalcitrant Salix species.

  20. Physiological changes and sHSPs genes relative transcription in relation to the acquisition of seed germination during maturation of hybrid rice seed.

    PubMed

    Zhu, Li-Wei; Cao, Dong-Dong; Hu, Qi-Juan; Guan, Ya-Jing; Hu, Wei-Min; Nawaz, Aamir; Hu, Jin

    2016-03-30

    During the production of early hybrid rice seed, the seeds dehydrated slowly and retained high moisture levels when rainy weather lasted for a couple of days, and the rice seeds easily occurred pre-harvest sprouting (PHS) along with high temperature. Therefore it is necessary to harvest the seeds before the PHS occurred. The seeds of hybrid rice (Oryza sativa L. subsp. indica) cv. Qianyou No1 that harvests from 19 to 28 days after pollination (DAP) all had high seed vigour. The seed moisture content at 10 DAP was 36.1%, and declined to 28.6% at 19 DAP; the contents of soluble sugar and total starch increased significantly with the development of seeds. The soluble protein content, the level of abscisic acid (ABA) and gibberellin (GA3 ), and ascorbate peroxidase (APX) activity continued to decrease from 10 DAP to 19 DAP. The seeds at 19 DAP had the highest peroxidase (POD) activity and lowest catalase (CAT) activity while the superoxide dismutase (SOD) activity had no significant difference among the different developing periods. The relative expressions of genes 64S Hsp18.0 and Os03g0267200 transcripts increased significantly from 10 to 19 DAP, and then decreased. However, no significant change was recorded in soluble protein, sugar and GA3 after 16 DAP, and they all significantly correlated with seed viability and vigour during the process of seed maturity. The seeds of hybrid rice Qianyou No1 had a higher viability and vigour when harvested from 19 DAP to 28 DAP, the transcription levels of 64S Hsp18.0 and Os03g0267200 increased significantly from 10 DAP to 19 DAP and the highest value was recorded at 19 DAP. The seeds could be harvested as early as 19 DAP without negative influence on seed vigour and viability. © 2015 Society of Chemical Industry.

  1. Spatial distribution of epigenetic modifications in Brachypodium distachyon embryos during seed maturation and germination.

    PubMed

    Wolny, Elzbieta; Braszewska-Zalewska, Agnieszka; Hasterok, Robert

    2014-01-01

    Seed development involves a plethora of spatially and temporally synchronised genetic and epigenetic processes. Although it has been shown that epigenetic mechanisms, such as DNA methylation and chromatin remodelling, act on a large number of genes during seed development and germination, to date the global levels of histone modifications have not been studied in a tissue-specific manner in plant embryos. In this study we analysed the distribution of three epigenetic markers, i.e. H4K5ac, H3K4me2 and H3K4me1 in 'matured', 'dry' and 'germinating' embryos of a model grass, Brachypodium distachyon (Brachypodium). Our results indicate that the abundance of these modifications differs considerably in various organs and tissues of the three types of Brachypodium embryos. Embryos from matured seeds were characterised by the highest level of H4K5ac in RAM and epithelial cells of the scutellum, whereas this modification was not observed in the coleorhiza. In this type of embryos H3K4me2 was most evident in epithelial cells of the scutellum. In 'dry' embryos H4K5ac was highest in the coleorhiza but was not present in the nuclei of the scutellum. H3K4me1 was the most elevated in the coleoptile but absent from the coleorhiza, whereas H3K4me2 was the most prominent in leaf primordia and RAM. In embryos from germinating seeds H4K5ac was the most evident in the scutellum but not present in the coleoptile, similarly H3K4me1 was the highest in the scutellum and very low in the coleoptile, while the highest level of H3K4me2 was observed in the coleoptile and the lowest in the coleorhiza. The distinct patterns of epigenetic modifications that were observed may be involved in the switch of the gene expression profiles in specific organs of the developing embryo and may be linked with the physiological changes that accompany seed desiccation, imbibition and germination.

  2. Loss of Mitochondrial Malate Dehydrogenase Activity Alters Seed Metabolism Impairing Seed Maturation and Post-Germination Growth in Arabidopsis1[OPEN

    PubMed Central

    2016-01-01

    Mitochondrial malate dehydrogenase (mMDH; EC 1.1.1.37) has multiple roles; the most commonly described is its catalysis of the interconversion of malate and oxaloacetate in the tricarboxylic acid cycle. The roles of mMDH in Arabidopsis (Arabidopsis thaliana) seed development and germination were investigated in mMDH1 and mMDH2 double knockout plants. A significant proportion of mmdh1mmdh2 seeds were nonviable and developed only to torpedo-shaped embryos, indicative of arrested seed embryo growth during embryogenesis. The viable mmdh1mmdh2 seeds had an impaired maturation process that led to slow germination rates as well as retarded post-germination growth, shorter root length, and decreased root biomass. During seed development, mmdh1mmdh2 showed a paler green phenotype than the wild type and exhibited deficiencies in reserve accumulation and reduced final seed biomass. The respiration rate of mmdh1mmdh2 seeds was significantly elevated throughout their maturation, consistent with the previously reported higher respiration rate in mmdh1mmdh2 leaves. Mutant seeds showed a consistently higher content of free amino acids (branched-chain amino acids, alanine, serine, glycine, proline, and threonine), differences in sugar and sugar phosphate levels, and lower content of 2-oxoglutarate. Seed-aging assays showed that quiescent mmdh1mmdh2 seeds lost viability more than 3 times faster than wild-type seeds. Together, these data show the important role of mMDH in the earliest phases of the life cycle of Arabidopsis. PMID:27208265

  3. Combining association mapping and transcriptomics identify HD2B histone deacetylase as a genetic factor associated with seed dormancy in Arabidopsis thaliana.

    PubMed

    Yano, Ryoichi; Takebayashi, Yumiko; Nambara, Eiji; Kamiya, Yuji; Seo, Mitsunori

    2013-06-01

    Seed dormancy is an important adaptive trait that enables germination at the proper time, thereby ensuring plant survival after germination. In Arabidopsis, considerable variation exists in the degree of seed dormancy among wild-type accessions (ecotypes). In this paper, we identify a plant-specific HD2 histone deacetylase gene, HD2B (At5g22650), as a genetic factor associated with seed dormancy. First, genome-wide association mapping of 113 accessions was used to identify single nucleotide polymorphisms that possibly explain natural variation for seed dormancy. Integration of genome-wide association mapping and transcriptome analysis during cold-induced dormancy cycling identified HD2B as the most plausible candidate gene, and quantitative RT-PCR analysis demonstrated that HD2B expression was up-regulated by cold and after-ripening (dry storage of mature seed), treatments that are known to break seed dormancy. Interestingly, quantitative RT-PCR analysis in 106 accessions revealed that the expression of HD2B in imbibed seeds was significantly suppressed in most of the dormant accessions compared with less-dormant accessions, suggesting that suppression of HD2B expression may be important to maintain seed dormancy in dormant accessions. In addition, transgenic seeds of a dormant Cvi-0 accession that carried a 2.5 kb genomic DNA fragment of HD2B cloned from a less-dormant Col-0 accession ((Col)HD2B/Cvi-0) exhibited reduced seed dormancy accompanied by enhanced expression of HD2B when after-ripened or cold-imbibed. Endogenous levels of gibberellin were found to be increased in the imbibed seeds of after-ripened (Col)HD2B/Cvi-0 compared with wild-type Cvi-0. These results suggest that HD2B plays a role in seed dormancy and/or germinability in Arabidopsis thaliana. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  4. Proteomic comparison between maturation drying and prematurely imposed drying of Zea mays seeds reveals a potential role of maturation drying in preparing proteins for seed germination, seedling vigor, and pathogen resistance.

    PubMed

    Wang, Wei-Qing; Ye, Jian-Qing; Rogowska-Wrzesinska, Adelina; Wojdyla, Katarzyna I; Jensen, Ole Nørregaard; Møller, Ian Max; Song, Song-Quan

    2014-02-07

    We have studied the role(s) of maturation drying in the acquisition of germinability, seedling vigor and pathogen resistance by comparing the proteome changes in maize embryo and endosperm during mature and prematurely imposed drying. Prematurely imposed dried seeds at 40 days after pollination (DAP) germinated almost as well as mature seeds (at 65 DAP), but their seedling growth was slower and they were seriously infected by fungi. A total of 80 and 114 proteins were identified to change at least two-fold (p < 0.05) in abundance during maturation drying in embryo and endosperm, respectively. Fewer proteins (48 and 59 in embryo and endosperm, respectively) changed in abundance during prematurely imposed drying. A number of proteins, 33 and 38 in embryo and endosperm, respectively, changed similarly in abundance during both maturation and prematurely imposed drying. Storage proteins were abundant in this group and may contribute to the acquisition of seed germinability. However, a relatively large number of proteins changed in the embryo (47 spots) and endosperm (76 spots) specifically during maturation drying. Among these proteins, storage proteins in the embryo and defense proteins in the endosperm may be particularly important for seedling vigor and resistance to fungal infection, respectively.

  5. Extraction, quantification, and antioxidant activities of phenolics from pericarp and seeds of bitter melons (Momordica charantia) harvested at three maturity stages (immature, mature, and ripe).

    PubMed

    Horax, Ronny; Hettiarachchy, Navam; Chen, Pengyin

    2010-04-14

    Bitter melon (Momordica charantia) is an exotic vegetable used for consumption and medicinal purposes mainly throughout Asia. Phenolics were extracted from pericarp (fleshy portion) and seeds of bitter melons harvested at three maturation stages (immature, mature, and ripe) using ethanol and water solvent systems. Total phenolic assessment demonstrated 80% of ethanol to be the optimal solvent level to extract phenolics either from pericarp or seed. Main phenolic constituents in the extracts were catechin, gallic acid, gentisic acid, chlorogenic acid, and epicatechin. Free radical scavenging assay using 2,2-diphenyl-1-picrylhydrazyl (DPPH) demonstrated the bitter melon extracts as slow rate free radical scavenging agents. There were low correlations between the total phenolic contents and antiradical power values of the extracts, suggesting a possible interaction among the phenolic constituents occurred. Bitter melon phenolic extracts contain natural antioxidant substances, and could be used as antioxidant agents in suitable food products.

  6. Cold stratification and exogenous nitrates entail similar functional proteome adjustments during Arabidopsis seed dormancy release.

    PubMed

    Arc, Erwann; Chibani, Kamel; Grappin, Philippe; Jullien, Marc; Godin, Béatrice; Cueff, Gwendal; Valot, Benoit; Balliau, Thierry; Job, Dominique; Rajjou, Loïc

    2012-11-02

    Despite having very similar initial pools of stored mRNAs and proteins in the dry state, mature Arabidopsis seeds can either proceed toward radicle protrusion or stay in a dormant state upon imbibition. Dormancy breaking, a prerequisite to germination completion, can be induced by different treatments though the underlying mechanisms remain elusive. Thus, we investigated the consequence of such treatments on the seed proteome. Two unrelated dormancy-releasing treatments were applied to dormant seeds, namely, cold stratification and exogenous nitrates, in combination with differential proteomic tools to highlight the specificities of the imbibed dormant state. The results reveal that both treatments lead to highly similar proteome adjustments. In the imbibed dormant state, enzymes involved in reserve mobilization are less accumulated and it appears that several energetically costly processes associated to seed germination and preparation for subsequent seedling establishment are repressed. Our data suggest that dormancy maintenance is associated to an abscisic-acid-dependent recapitulation of the late maturation program resulting in a higher potential to cope with environmental stresses. The comparison of the present results with previously published -omic data sets reinforces and extends the assumption that post-transcriptional, translational, and post-translational regulations are determinant for seed germination.

  7. Catalog of genetic variants within mature microRNA seed regions in chicken.

    PubMed

    Zorc, Minja; Omejec, Sandra; Tercic, Dusan; Holcman, Antonija; Dovc, Peter; Kunej, Tanja

    2015-09-01

    MicroRNA (miRNA) is a class of noncoding RNA important in posttranscriptional regulation of target genes. The regulation mechanism requires complementarity between target mRNA and the miRNA region responsible for their recognition and binding, also called the seed region. It has been estimated that each miRNA targets approximately 200 genes and genetic variability of miRNA genes has been associated with phenotypic variation and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes especially within the seed region could therefore represent biomarkers for phenotypic traits important in livestock animals. Using the updated Version 5.0 of our previously developed bioinformatics tool miRNA SNiPer we assembled polymorphic miRNA genes in chicken. Out of 740 miRNA genes 263 were polymorphic, among them 77 had SNPs located within the mature region, and 29 of them within the miRNA seed region. Because several polymorphisms in databases result from sequencing errors, we performed experimental validation of polymorphisms located within 4 selected miRNA genes in chicken (gga-mir-1614, -1644, -1648, and -1657). We confirmed the presence of nine polymorphisms and identified 3 additional novel polymorphisms within primary miRNA regions in chicken representing 3 layer-type breeds, one layer-type hybrid, and one meat-type intercrossed population. The developed catalog of mir-SNPs in chicken can serve researchers as a starting point for association studies dealing with poultry production traits and designing functional experiments.

  8. Catalog of genetic variants within mature microRNA seed regions in chicken

    PubMed Central

    Zorc, Minja; Omejec, Sandra; Tercic, Dusan; Holcman, Antonija; Dovc, Peter; Kunej, Tanja

    2015-01-01

    MicroRNA (miRNA) is a class of noncoding RNA important in posttranscriptional regulation of target genes. The regulation mechanism requires complementarity between target mRNA and the miRNA region responsible for their recognition and binding, also called the seed region. It has been estimated that each miRNA targets approximately 200 genes and genetic variability of miRNA genes has been associated with phenotypic variation and disease susceptibility in humans, livestock species, and model organisms. Polymorphisms in miRNA genes especially within the seed region could therefore represent biomarkers for phenotypic traits important in livestock animals. Using the updated Version 5.0 of our previously developed bioinformatics tool miRNA SNiPer we assembled polymorphic miRNA genes in chicken. Out of 740 miRNA genes 263 were polymorphic, among them 77 had SNPs located within the mature region, and 29 of them within the miRNA seed region. Because several polymorphisms in databases result from sequencing errors, we performed experimental validation of polymorphisms located within 4 selected miRNA genes in chicken (gga-mir-1614, −1644, −1648, and −1657). We confirmed the presence of nine polymorphisms and identified 3 additional novel polymorphisms within primary miRNA regions in chicken representing 3 layer-type breeds, one layer-type hybrid, and one meat-type intercrossed population. The developed catalog of mir-SNPs in chicken can serve researchers as a starting point for association studies dealing with poultry production traits and designing functional experiments. PMID:26175051

  9. Transitory development of rough endoplasmic reticulum aggregates during embryo maturation in seeds of mustard (Sinapis alba L.).

    PubMed

    Bergfeld, R; Schopfer, P

    1984-05-01

    During the final period of maturation of mustard (Sinapis alba L.) seeds conspicuous aggregates of rough endoplasmic reticulum are found specifically in some tissues of the differentiation zone of the radicle. The appearance of these structures is temporally correlated with the disappearance of single-stranded reticulum and the onset of seed dehydration. These aggregates can be demonstrated also in the dry, mature seed and during the first few hours after imbibition with water; they disappear however during germination. In germinated root tips reformation of the aggregates can be induced by severe water stress. It is concluded that the observed membrane aggregates represent a storage form of rough endoplasmic reticulum during periods of low protoplasmic hydration.

  10. Gene expression programs during Brassica oleracea seed maturation, osmopriming, and germination are indicators of progression of the germination process and the stress tolerance level.

    PubMed

    Soeda, Yasutaka; Konings, Maurice C J M; Vorst, Oscar; van Houwelingen, Adele M M L; Stoopen, Geert M; Maliepaard, Chris A; Kodde, Jan; Bino, Raoul J; Groot, Steven P C; van der Geest, Apolonia H M

    2005-01-01

    During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.

  11. Assessment of Soybean Flowering and Seed Maturation Time in Different Latitude Regions of Kazakhstan

    PubMed Central

    Abugalieva, Saule; Didorenko, Svetlana; Anuarbek, Shynar; Volkova, Lubov; Gerasimova, Yelena; Sidorik, Ivan

    2016-01-01

    Soybean is still a minor crop in Kazakhstan despite an increase in planting area from 4,500 to 11,400 km2 between 2006 and 2014. However, the Government’s recently accepted crop diversification policy projects the expansion of soybean cultivation area to more than 40,000 km2 by 2020. The policy is targeting significant expansion of soybean production in South-eastern, Eastern, and Northern regions of Kazakhstan. Successful realization of this policy requires a comprehensive characterization of plant growth parameters to identify optimal genotypes with appropriate adaptive phenotypic traits. In this study 120 soybean accessions from different parts of the World, including 18 accessions from Kazakhstan, were field tested in South-eastern, Eastern, and Northern regions of the country. These studies revealed positive correlation of yield with flowering time in Northern Kazakhstan, with seed maturity time in Eastern Kazakhstan, and with both these growth stages in South-eastern Kazakhstan. It was determined that in South-eastern, Eastern and Northern regions of Kazakhstan the majority of productive genotypes were in maturity groups MGI, MG0, and MG00, respectively. The accessions were genotyped for four major maturity genes (E1, E2, E3, and E4) in order to assess the relationship between E loci and agronomic traits. The allele composition of the majority of accessions was e1-as/e2/E3/E4 (specific frequencies 57.5%, 91.6%, 65.0%, and 63.3%, respectively). Accessions with dominant alleles in either E3 or E4 genes showed higher yield in all three regions, although the specific genotype associated with greatest productivity was different for each site. Genotype-environment interaction studies based on yield performances suggest that South-east and East regions formed one mega-environment, which was well separated from North Kazakhstan where significantly earlier time to maturation is required. The results provide important insights into the relationship between genetic

  12. The role of the Arabidopsis FUSCA3 transcription factor during inhibition of seed germination at high temperature

    PubMed Central

    2012-01-01

    Background Imbibed seeds integrate environmental and endogenous signals to break dormancy and initiate growth under optimal conditions. Seed maturation plays an important role in determining the survival of germinating seeds, for example one of the roles of dormancy is to stagger germination to prevent mass growth under suboptimal conditions. The B3-domain transcription factor FUSCA3 (FUS3) is a master regulator of seed development and an important node in hormonal interaction networks in Arabidopsis thaliana. Its function has been mainly characterized during embryonic development, where FUS3 is highly expressed to promote seed maturation and dormancy by regulating ABA/GA levels. Results In this study, we present evidence for a role of FUS3 in delaying seed germination at supraoptimal temperatures that would be lethal for the developing seedlings. During seed imbibition at supraoptimal temperature, the FUS3 promoter is reactivated and induces de novo synthesis of FUS3 mRNA, followed by FUS3 protein accumulation. Genetic analysis shows that FUS3 contributes to the delay of seed germination at high temperature. Unlike WT, seeds overexpressing FUS3 (ML1:FUS3-GFP) during imbibition are hypersensitive to high temperature and do not germinate, however, they can fully germinate after recovery at control temperature reaching 90% seedling survival. ML1:FUS3-GFP hypersensitivity to high temperature can be partly recovered in the presence of fluridone, an inhibitor of ABA biosynthesis, suggesting this hypersensitivity is due in part to higher ABA level in this mutant. Transcriptomic analysis shows that WT seeds imbibed at supraoptimal temperature activate seed-specific genes and ABA biosynthetic and signaling genes, while inhibiting genes that promote germination and growth, such as GA biosynthetic and signaling genes. Conclusion In this study, we have uncovered a novel function for the master regulator of seed maturation, FUS3, in delaying germination at supraoptimal

  13. The role of the persistent fruit wall in seed water regulation in Raphanus raphanistrum (Brassicaceae)

    PubMed Central

    Cousens, Roger D.; Young, Kenneth R.; Tadayyon, Ali

    2010-01-01

    Background and Aims Dry fruits remain around the seeds at dispersal in a number of species, especially the Brassicaceae. Explanations for this vary, but usually involve mechanisms of innate dormancy. We speculate that, instead, a persistent fruit may give additional protection through control of dehydration, to species growing in arid or Mediterranean environments where water is sporadic. Methods X-rays and weight measurements were used to determine the extent to which Raphanus raphanistrum seeds within mature fruits imbibe water, and germination tests determined the roles of the fruit and seed coat in seed dormancy. Rates of water uptake and desiccation, and seedling emergence were compared with and without the fruit. Finally, germinability of seeds extracted from fruits was determined after various periods of moist conditions followed by a range of dry conditions. Key Results Most seeds rapidly take up water within the fruit, but they do not fully imbibe when compared with naked seeds. The seed coat is more important than the dry fruit wall in maintaining seed dormancy. The presence of a dry fruit slows emergence from the soil by up to 6–8 weeks. The fruit slows the rate of desiccation of the seed to a limited extent. The presence of the fruit for a few days during imbibition somehow primes more seeds to germinate than if the fruit is absent; longer moist periods within the pod appear to induce dormancy. Conclusions The fruit certainly modifies the seed environment as external conditions change between wet and dry, but not to a great extent. The major role seems to be: (a) the physical restriction of imbibition and germination; and (b) the release and then re-imposition of dormancy within the seed. The ecological significance of the results requires more research under field conditions. PMID:19889801

  14. The distribution of caprylate, caprate and laurate in lipids from developing and mature seeds of transgenic Brassica napus L.

    PubMed

    Wiberg, E; Edwards, P; Byrne, J; Stymne, S; Dehesh, K

    2000-12-01

    The composition and positional distribution of lipids in developing and mature transgenic Brassica napus seeds accumulating up to 7 mol% of caprylate (8:0), 29 mol% caprate (10:0) or 63 mol% of laurate (12:0) were examined. The accumulation of 8:0 and 10:0 resulted from over-expression of the medium-chain-specific thioesterase (Ch FatB2) alone or together with the respective chain-length-specific condensing enzyme (Ch KASIV). Seeds containing high levels of 12:0 were obtained from plants expressing bay thioesterase (BTE) alone or crossed with a line over-expressing the coconut lysophosphatidic acid acyltransferase (LPAAT), an enzyme responsible for the increase in acylation of 12:0 at the sn-2 position. In all instances, 10:0 and 12:0 fatty acids were present in substantial amounts in phosphatidylcholine during seed development with a drastic decrease of 80-90% in mature seeds. At all stages of seed development however, 8:0 was barely detectable in this membrane lipid. Altogether, these results indicate that these transgenic seeds exclude and/or remove the medium-chain fatty acids from their membrane and that this mechanism(s) is more effective with the shorter-chain fatty acids. Furthermore, seeds of 8:0- and 10:0-producing lines had only negligible levels of these fatty acids present in the sn-2 position of the triacylglycerols. In contrast, all 12:0-producing seeds had a substantial amount of this fatty acid in the sn-2 position of the triacylglycerols, suggesting that the endogenous LPAAT is able to acylate 12:0 if no other acyl-CoA species are available.

  15. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis.

    PubMed

    Baud, Sébastien; Mendoza, Monica Santos; To, Alexandra; Harscoët, Erwana; Lepiniec, Loïc; Dubreucq, Bertrand

    2007-06-01

    The WRINKLED1 (WRI1) transcription factor has been shown to play a role of the utmost importance during oil accumulation in maturing seeds of Arabidopsis thaliana. However, little is known about the regulatory processes involved. In this paper, comprehensive functional analyses of three new mutants corresponding to null alleles of wri1 confirm that the induction of WRI1 is a prerequisite for fatty acid synthesis and is important for normal embryo development. The strong expression of WRI1 specifically detected at the onset of the maturation phase in oil-accumulating tissues of A. thaliana seeds is fully consistent with this function. Complementation experiments carried out with various seed-specific promoters emphasized the importance of a tight regulation of WRI1 expression for proper oil accumulation, raising the question of the factors controlling WRI1 transcription. Interestingly, molecular and genetic analyses using an inducible system demonstrated that WRI1 is a target of LEAFY COTYLEDON2 and is necessary for the regulatory action of LEC2 towards fatty acid metabolism. In addition to this, quantitative RT-PCR experiments suggested that several genes encoding enzymes of late glycolysis, the fatty acid synthesis pathway, and the biotin and lipoic acid biosynthetic pathways are targets of WRI1. Taken together, these results indicate new relationships in the regulatory model for the control of oil synthesis in maturing A. thaliana seeds. In addition, they exemplify how metabolic and developmental processes affecting the developing embryo can be coordinated at the molecular level.

  16. Effects of Boron Nutrition and Water Stress on Nitrogen Fixation, Seed δ15N and δ13C Dynamics, and Seed Composition in Soybean Cultivars Differing in Maturities

    PubMed Central

    Bellaloui, Nacer; Mengistu, Alemu

    2015-01-01

    Therefore, the objective of the current research was to investigate the effects of foliar B nutrition on seed protein, oil, fatty acids, and sugars under water stress conditions. A repeated greenhouse experiment was conducted using different maturity group (MG) cultivars. Plants were well-watered with no foliar B (W − B), well-watered with foliar B (W + B), water-stressed with no foliar B (WS − B), and water-stressed with foliar B (WS + B). Foliar B was applied at rate of 0.45 kg·ha−1 and was applied twice at flowering and at seed-fill stages. The results showed that seed protein, sucrose, fructose, and glucose were higher in W + B treatment than in W − B, WS + B, and WS − B. The increase in protein in W + B resulted in lower seed oil, and the increase of oleic in WS − B or WS + B resulted in lower linolenic acid. Foliar B resulted in higher nitrogen fixation and water stress resulted in seed δ15N and δ13C alteration. Increased stachyose indicated possible physiological and metabolic changes in carbon and nitrogen pathways and their sources under water stress. This research is beneficial to growers for fertilizer management and seed quality and to breeders to use 15N/14N and 13C/12C ratios and stachyose to select for drought tolerance soybean. PMID:25667936

  17. SCARECROW-LIKE15 interacts with HISTONE DEACETYLASE19 and is essential for repressing the seed maturation programme

    PubMed Central

    Gao, Ming-Jun; Li, Xiang; Huang, Jun; Gropp, Gordon M.; Gjetvaj, Branimir; Lindsay, Donna L.; Wei, Shu; Coutu, Cathy; Chen, Zhixiang; Wan, Xiao-Chun; Hannoufa, Abdelali; Lydiate, Derek J.; Gruber, Margaret Y.; Chen, Z. Jeffrey; Hegedus, Dwayne D.

    2015-01-01

    Epigenetic regulation of gene expression is critical for controlling embryonic properties during the embryo-to-seedling phase transition. Here we report that a HISTONE DEACETYLASE19 (HDA19)-associated regulator, SCARECROW-LIKE15 (SCL15), is essential for repressing the seed maturation programme in vegetative tissues. SCL15 is expressed in and GFP-tagged SCL15 predominantly localizes to, the vascular bundles particularly in the phloem companion cells and neighbouring specialized cells. Mutation of SCL15 leads to a global shift in gene expression in seedlings to a profile resembling late embryogenesis in seeds. In scl15 seedlings, many genes involved in seed maturation are markedly derepressed with concomitant accumulation of seed 12S globulin; this is correlated with elevated levels of histone acetylation at a subset of seed-specific loci. SCL15 physically interacts with HDA19 and direct targets of HDA19–SCL15 association are identified. These studies reveal that SCL15 acts as an HDA19-associated regulator to repress embryonic traits in seedlings. PMID:26129778

  18. Direct Gene Transfer into Plant Mature Seeds via Electroporation After Vacuum Treatment

    NASA Astrophysics Data System (ADS)

    Hagio, Takashi

    A number of direct gene transfer methods have been used successfully in plant genetic engineering, providing powerful tools to investigate fundamental and applied problems in plant biology (Chowrira et al., 1996; D'halluin et al., 1992; Morandini and Salamini, 2003; Rakoczy-Trojanowska, 2002; Songstad et al., 1995). In cereals, several methods have been found to be suitable for obtaining transgenic plant; these include bombardment of scutellum (Hagio et al., 1995) and inflorescence cultures (He et al., 2001), and silicon carbide fiber-mediated DNA delivery (Asano et al., 1991) and Agrobacterium tumefaciens transformation (Potrykus, 1990). Electroporation of cereal protoplasts also has proved successful but it involves prolonged cell treatments and generally is limited by the difficulties of regeneration from cereal protoplast cultures (Fromm et al., 1987). Many laboratories worldwide are now using Agrobacterium as a vehicle for routine production of transgenic crop plants. The primary application of the particle system (Klein et al., 1987) has been for transformation of species recalcitrant to conventional Agrobacterium (Binns, 1990) or protoplast methods. But these conventional methods can be applied to the species and varieties that are amenable to tissue culture (Machii et al., 1998). Mature seeds are readily available and free from the seasonal limits that immature embryo, inflorescence, and anther have. This method enables us to produce transgenic plants without time-consuming tissue culture process.

  19. Crystal structure of mature 2S albumin from Moringa oleifera seeds.

    PubMed

    Ullah, Anwar; Mariutti, Ricardo Barros; Masood, Rehana; Caruso, Icaro Putinhon; Costa, Gustavo Henrique Gravatim; Millena de Freita, Cristhyane; Santos, Camila Ramos; Zanphorlin, Leticia Maria; Rossini Mutton, Márcia Justino; Murakami, Mario Tyago; Arni, Raghuvir Krishnaswamy

    2S albumins, the seed storage proteins, are the primary sources of carbon and nitrogen and are involved in plant defense. The mature form of Moringa oleifera (M. oleifera), a chitin binding protein isoform 3-1 (mMo-CBP3-1) a thermostable antifungal, antibacterial, flocculating 2S albumin is widely used for the treatment of water and is potentially interesting for the development of both antifungal drugs and transgenic crops. The crystal structure of mMo-CBP3-1 determined at 1.7 Å resolution demonstrated that it is comprised of two proteolytically processed α-helical chains, stabilized by four disulfide bridges that is stable, resistant to pH changes and has a melting temperature (TM) of approximately 98 °C. The surface arginines and the polyglutamine motif are the key structural factors for the observed flocculating, antibacterial and antifungal activities. This represents the first crystal structure of a 2S albumin and the model of the pro-protein indicates the structural changes that occur upon formation of mMo-CBP3-1 and determines the structural motif and charge distribution patterns for the diverse observed activities.

  20. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    PubMed

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  1. Differential Contribution of Malic Enzymes during Soybean and Castor Seeds Maturation

    PubMed Central

    Righini, Silvana; Badia, Mariana Beatriz; Andreo, Carlos Santiago; Drincovich, María Fabiana; Saigo, Mariana

    2016-01-01

    Malic enzymes (ME) catalyze the decarboxylation of malate generating pyruvate, CO2 and NADH or NADPH. In some organisms it has been established that ME is involved in lipids biosynthesis supplying carbon skeletons and reducing power. In this work we studied the MEs of soybean and castor, metabolically different oilseeds. The comparison of enzymatic activities, transcript profiles and organic acid contents suggest different metabolic strategies operating in soybean embryo and castor endosperm in order to generate precursors for lipid biosynthesis. In castor, the malate accumulation pattern agrees with a central role of this metabolite in the provision of carbon to plastids, where the biosynthesis of fatty acids occurs. In this regard, the genome of castor possesses a single gene encoding a putative plastidic NADP-ME, whose expression level is high when lipid deposition is active. On the other hand, NAD-ME showed an important contribution to the maturation of soybean embryos, perhaps driving the carbon relocation from mitochondria to plastids to support the fatty acids synthesis in the last stages of seed filling. These findings provide new insights into intermediary metabolism in oilseeds and provide new biotechnological targets to improve oil yields. PMID:27347875

  2. Kinetics of the H+-ATPase from dry and 5-hours-imbibed maize embryos in its native, solubilized, and reconstituted forms.

    PubMed

    Sánchez-Nieto, Sobeida; Enríquez-Arredondo, Consuelo; Guzmán-Chávez, Fernando; Hernández-Muñoz, Rolando; Ramírez, Jorge; Gavilanes-Ruíz, Marina

    2011-05-01

    Membranes undergo recovery upon rehydration in seed germination. Previous work has described that the plasma membrane H+-ATPase from maize embryos adopts two different forms at 0 and 5 h of imbibition. We investigated how the kinetics of these two forms could be affected by alterations in the plasma membrane (PM). In comparison to the 0-h, PMs from the 5-h imbibed embryos showed changes in glycerophospholipid composition, decrease in leakage, and increase in fluidity. Kinetics of the PM H+-ATPase from 0 and 5-h imbibed embryos showed negative cooperativity. With the removal of the membrane environment, the activity of the enzymes shifted to a more complex kinetics, displaying two enzyme components. Lipid reconstitution produced one component with positive cooperativity. In all cases, enzymes from 0 and 5-h imbibed embryos presented similar kinetics with some quantitative differences. These results indicate that the two enzyme forms have the potential ability to respond to changes in the membrane environment, but the fact that they do not show differences in the native membranes at 0 or 5 h implies that modifications in the membrane are not drastic enough to alter their kinetics, or that they are able to preserve their boundary lipids or associated proteins and thus retain the same kinetic behavior.

  3. Transcriptomic profiling of genes in matured dimorphic seeds of euhalophyte Suaeda salsa.

    PubMed

    Xu, Yange; Zhao, Yuanqin; Duan, Huimin; Sui, Na; Yuan, Fang; Song, Jie

    2017-09-13

    Suaeda salsa (S. salsa) is a euhalophyte with high economic value. S. salsa can produce dimorphic seeds. Brown seeds are more salt tolerant, can germinate quickly and maintain the fitness of the species under high saline conditions. Black seeds are less salt tolerant, may become part of the seed bank and germinate when soil salinity is reduced. Previous reports have mainly focused on the ecophysiological traits of seed germination and production under saline conditions in this species. However, there is no information available on the molecular characteristics of S. salsa dimorphic seeds. In the present study, a total of 5825 differentially expressed genes were obtained; and 4648 differentially expressed genes were annotated based on a sequence similarity search, utilizing five public databases by transcriptome analysis. The different expression of these genes may be associated with embryo development, fatty acid, osmotic regulation substances and plant hormones in brown and black seeds. Compared to black seeds, most genes may relate to embryo development, and various genes that encode fatty acid desaturase and are involved in osmotic regulation substance synthesis or transport are upregulated in brown seeds. A large number of differentially expressed genes related to plant hormones were found in brown and black seeds, and their possible roles in regulating seed dormancy/germination were discussed. Upregulated genes involved in seed development and osmotic regulation substance accumulation may relate to bigger seed size and rapid seed germination in brown seeds, compared to black seeds. Differentially expressed genes of hormones may relate to seed dormancy/germination and the development of brown and black seeds. The transcriptome dataset will serve as a valuable resource to further understand gene expression and functional genomics in S. salsa dimorphic seeds.

  4. Nutritional functions of the funiculus in Brassica napus seed maturation revealed by transcriptome and dynamic metabolite profile analyses.

    PubMed

    Tan, Helin; Xiang, Xiaoe; Tang, Jie; Wang, Xingchun

    2016-11-01

    The funiculus provides the sole channel of communication between the seed and the parent plant; however, little is known about its role in nutrient supply during seed maturation. Here, we investigated the dynamic metabolite profiles of the funiculus during seed maturation in Brassica napus. The funiculus was fully developed at 21 days after flowering (DAF), but the levels of nutrients, including carbohydrates, fatty acids, and amino acids, increased rapidly from 21 to 35 DAF. Orthogonal partial least squares discriminant analysis and correlation analysis identified 37 metabolites that correlated closely with seed fresh weight. To determine the influence of silique wall photosynthesis on the metabolites in the funiculus, we also covered the siliques of intact plants with aluminum foil; in these plants, the funiculus and silique wall had lower metabolite levels, compared with control. RNA-sequencing analysis of the funiculi in the dark-treated and light-exposed siliques showed that the expression of genes encoding nutrient transporters significantly increased in the funiculi in the dark-treated siliques. Furthermore, the transcripts encoding primary metabolic enzymes for amino acid synthesis, fatty acid synthesis and triacylglycerol assembly, and sucrose-starch metabolism, were also markedly up-regulated, despite the decline in metabolite levels of funiculi in the dark-treated silique. These results provide new insights into funiculus function in seed growth and synthesis of storage reserves in seeds, at the metabolic and transcriptional levels. The identification of these metabolites and genes also provides useful information for creating genetically enhanced oilseed crops with improved seed properties.

  5. QTLs for resistance to Phomopsis seed decay are associated with days to maturity in soybean (Glycine max).

    PubMed

    Sun, Suli; Kim, Moon Young; Van, Kyujung; Lee, Yin-Won; Li, Baodu; Lee, Suk-Ha

    2013-08-01

    Phomopsis seed decay (PSD), primarily caused by Phomopsis longicolla, is a major contributor to poor soybean seed quality and significant yield loss, particularly in early maturing soybean genotypes. However, it is not yet known whether PSD resistance is associated with early maturity. This study was conducted to identify quantitative trait loci (QTLs) for resistance to PSD and days to maturity using a recombinant inbred line (RIL) population derived from a cross between the PSD-resistant Taekwangkong and the PSD-susceptible SS2-2. Based on a genetic linkage map incorporating 117 simple sequence repeat markers, QTL analysis revealed two and three QTLs conferring PSD resistance and days to maturity, respectively, in the RIL population. Two QTLs (PSD-6-1 and PSD-10-2) for PSD resistance were identified in the intervals of Satt100-Satt460 and Sat_038-Satt243 on chromosomes 6 and 10, respectively. Two QTLs explained phenotypic variances in PSD resistance of 46.3 and 14.1 %, respectively. At the PSD-6-1 QTL, the PSD-resistant cultivar Taekwangkong contributed the allele with negative effect decreasing the infection rate of PSD and this QTL does not overlap with any previously reported loci for PSD resistance in other soybean genotypes. Among the three QTLs for days to maturity, two (Mat-6-2 and Mat-10-3) were located at positions similar to the PSD-resistance QTLs. The identification of the QTLs linked to both PSD resistance and days to maturity indicates a biological correlation between these two traits. The newly identified QTL for resistance to PSD associated with days to maturity in Taekwangkong will help improve soybean resistance to P. longicolla.

  6. Avocado fruit maturation and ripening: dynamics of aliphatic acetogenins and lipidomic profiles from mesocarp, idioblasts and seed.

    PubMed

    Rodríguez-López, Carlos Eduardo; Hernández-Brenes, Carmen; Treviño, Víctor; Díaz de la Garza, Rocío I

    2017-09-29

    Avocado fruit contains aliphatic acetogenins (oft-acetylated, odd-chain fatty alcohols) with promising bioactivities for both medical and food industries. However, we have scarce knowledge about their metabolism. The present work aimed to study changes in acetogenin profiles from mesocarp, lipid-containing idioblasts, and seeds from 'Hass' cultivar during fruit development, germination, and three harvesting years. An untargeted LC-MS based lipidomic analysis was also conducted to profile the lipidome of avocado fruit in each tissue. The targeted analysis showed that acetogenin profiles and contents remained unchanged in avocado mesocarp during maturation and postharvest ripening, germination, and different harvesting years. However, a shift in the acetogenin profile distribution, accompanied with a sharp increase in concentration, was observed in seed during early maturation. Untargeted lipidomics showed that this shift was accompanied with remodeling of glycerolipids: TAGs and DAGs decreased during fruit growing in seed. Remarkably, the majority of the lipidome in mature seed was composed by acetogenins; we suggest that this tissue is able to synthesize them independently from mesocarp. On the other hand, lipid-containing idioblasts accumulated almost the entire acetogenin pool measured in the whole mesocarp, while only having 4% of the total fatty acids. The lipidome of this cell type changed the most when the fruit was ripening after harvesting, TAGs decreased while odd-chain DAGs increased. Notably, idioblast lipidome was more diverse than that from mesocarp. Evidence shown here suggests that idioblasts are the main site of acetogenin biosynthesis in avocado mesocarp. This work unveiled the prevalence of aliphatic acetogenins in the avocado fruit lipidome and evidenced TAGs as initial donors of the acetogenin backbones in its biosynthesis. It also sets evidence for acetogenins being included in future works aimed at characterizing the avocado seed, as they are

  7. Developmental variation of sugars, carboxylic acids, purine alkaloids, fatty acids, and endoproteinase activity during maturation of Theobroma cacao L. seeds.

    PubMed

    Bucheli, P; Rousseau, G; Alvarez, M; Laloi, M; McCarthy, J

    2001-10-01

    The changes of mono- and oligosaccharides, carboxylic acids, purine alkaloids, and fatty acid composition, and of aspartic endoproteinase activity, were analyzed during seed development in two varieties of cacao (Theobroma cacao). The majority of the components examined either decreased or accumulated steadily in concentration during the second half of bean development. Sucrose is the major sugar in the mature embryo, whereas fructose and glucose are at higher concentrations in the endosperm tissue. Considerable amounts of malate are found in the endosperm, whereas citrate is the dominant carboxylic acid in the embryo. A major change in the fatty acid composition occurs in the young embryo when the proportion of stearic acid increases rapidly at the expense of linoleic acid, which is reduced from about 18 to 3%. Theobromine is the dominant purine alkaloid (ca. 80%), and caffeine appears only toward the end of seed maturity. Aspartic endoproteinase activity increases rapidly during embryo expansion, reaching a maximal activity before final maturity. The results are discussed in conjunction with physiological changes in developing seeds, and the potential contributions of the compounds analyzed for cocoa quality.

  8. The Arabidopsis C2H2 zinc finger INDETERMINATE DOMAIN1/ENHYDROUS promotes the transition to germination by regulating light and hormonal signaling during seed maturation.

    PubMed

    Feurtado, J Allan; Huang, Daiqing; Wicki-Stordeur, Leigh; Hemstock, Laura E; Potentier, Mireille S; Tsang, Edward W T; Cutler, Adrian J

    2011-05-01

    Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development.

  9. Novel analysis of maturation of murine bone-marrow-derived dendritic cells induced by Ginkgo Seed Polysaccharides

    PubMed Central

    Chen, Yinghan; Meng, Yiming; Cao, Yan; Wen, Hua; Luo, Hong; Gao, Xinghua; Shan, Fengping

    2015-01-01

    Our understanding of the mechanisms of effect of Ginkgo Seed Polysaccharides (GSPs) on the immune system remains unclear. The aim of this work was to investigate the effect of GSPs on the maturation and function of bone-marrow-derived dendritic cells (BMDCs). The results demonstrate that GSP could exert positive immune modulation on the maturation and functions of BMDCs. This effect was evidenced by decreased changes of phagosome number inside BMDCs, decreased activity of acidic phosphatase (ACP), decreased phagocytosis of BMDCs, and increased changes of key membrane molecules on BMDCs. Upregulated production of cytokines IL-12 and TNF-α also was confirmed. Therefore, it can be concluded that GSPs can efficiently induce the maturation of BMDCs. Our exploration provides direct data and a rationale for potential application of GSPs as an immune enhancer in improving immunity and as a potent adjuvant in the design of DC-based vaccines. PMID:25806792

  10. A PQL (protein quantity loci) analysis of mature pea seed proteins identifies loci determining seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Cassecuelle, Florence; Savois, Vincent; Belghazi, Maya; Aubert, Grégoire; Quillien, Laurence; Huart, Myriam; Marget, Pascal; Burstin, Judith

    2011-05-01

    Legume seeds are a major source of dietary proteins for humans and animals. Deciphering the genetic control of their accumulation is thus of primary significance towards their improvement. At first, we analysed the genetic variability of the pea seed proteome of three genotypes over 3 years of cultivation. This revealed that seed protein composition variability was under predominant genetic control, with as much as 60% of the spots varying quantitatively among the three genotypes. Then, by combining proteomic and quantitative trait loci (QTL) mapping approaches, we uncovered the genetic architecture of seed proteome variability. Protein quantity loci (PQL) were searched for 525 spots detected on 2-D gels obtained for 157 recombinant inbred lines. Most protein quantity loci mapped in clusters, suggesting that the accumulation of the major storage protein families was under the control of a limited number of loci. While convicilin accumulation was mainly under the control of cis-regulatory regions, vicilins and legumins were controlled by both cis- and trans-regulatory regions. Some loci controlled both seed protein composition and protein content and a locus on LGIIa appears to be a major regulator of protein composition and of protein in vitro digestibility. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. New cross talk between ROS, ABA and auxin controlling seed maturation and germination unraveled in APX6 deficient Arabidopsis seeds.

    PubMed

    Chen, Changming; Twito, Shir; Miller, Gad

    2014-01-01

    Successful execution of germination program greatly depends on the seeds' oxidative homeostasis. We recently identified new roles for the H2O2-reducing enzyme ascorbate peroxidase 6 (APX6) in germination control and seeds' stress tolerance. APX6 replaces APX1 as the dominant APX in dry seeds, and its loss-of-function results in reduced germination due to over accumulation of ROS and oxidative damage. Metabolic analyses in dry apx6 seeds, revealed altered homeostasis of primary metabolites including accumulation of TCA cycle metabolites, ABA and auxin, supporting a novel role for APX6 in regulating cellular metabolism. Increased sensitivity of apx6 mutants to ABA or IAA in germination assays indicated impaired perception of these signals. Relative suppression of ABI3 and ABI5 expression, and induction of ABI4, suggested the activation of a signaling route inhibiting germination in apx6 seeds that is independent of ABI3. Here we provide additional evidence linking ABI4 with ABA- and auxin-controlled inhibition of germination and suggest a hypothetical model for the role of APX6 in the regulation of the crosstalk between these hormones and ROS.

  12. Proteomics analysis in mature seed of four peanut cultivars using two-dimensional gel electrophoresis reveals distinct differential expression of storage, anti-nutritive, and allergenic proteins

    USDA-ARS?s Scientific Manuscript database

    Protein profiles of total seed proteins isolated from mature seeds of four peanut cultivars, New Mexico Valencia C (NM Valencia C), Tamspan 90, Georgia Green, and NC-7, were studied using two-dimensional gel electrophoresis coupled with nano electrospray ionization liquid chromatography tandem mass ...

  13. Resistance to phomopsis seed decay identified in maturity group V soybean plant introductions

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) of soybean is the major cause of poor seed quality in most soybean-growing countries. This disease is primarily caused by the fungus Phomopsis longicolla. Few soybean cultivars currently available for planting in the U.S. have resistance to PSD. To identify soybean lines w...

  14. Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination.

    PubMed

    Chen, F; Dahal, P; Bradford, K J

    2001-11-01

    Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth.

  15. In Vivo Digital Phyto Imaging (IDPI) in Juglans Nigra Seeds

    Treesearch

    John A. Vozzo; R. Patel; A. Terrel

    1998-01-01

    A major disadvantage of conventional seed radiography is that the resulting image will not distinguish full-viable seeds from full-nonviable. Empty seeds will imbibe sufficient water to appear full, but these are easily distinguished by radiography before imbibition. Full seeds, both viable and nonviable, have 25 to 35% moisture content when freshly collected. This is...

  16. ZEAXANTHIN EPOXIDASE Activity Potentiates Carotenoid Degradation in Maturing Seed1[OPEN

    PubMed Central

    Magallanes-Lundback, Maria; Lipka, Alexander E.; Angelovici, Ruthie; DellaPenna, Dean

    2016-01-01

    Elucidation of the carotenoid biosynthetic pathway has enabled altering the composition and content of carotenoids in various plants, but to achieve desired nutritional impacts, the genetic components regulating carotenoid homeostasis in seed, the plant organ consumed in greatest abundance, must be elucidated. We used a combination of linkage mapping, genome-wide association studies (GWAS), and pathway-level analysis to identify nine loci that impact the natural variation of seed carotenoids in Arabidopsis (Arabidopsis thaliana). ZEAXANTHIN EPOXIDASE (ZEP) was the major contributor to carotenoid composition, with mutants lacking ZEP activity showing a remarkable 6-fold increase in total seed carotenoids relative to the wild type. Natural variation in ZEP gene expression during seed development was identified as the underlying mechanism for fine-tuning carotenoid composition, stability, and ultimately content in Arabidopsis seed. We previously showed that two CAROTENOID CLEAVAGE DIOXYGENASE enzymes, CCD1 and CCD4, are the primary mediators of seed carotenoid degradation, and here we demonstrate that ZEP acts as an upstream control point of carotenoid homeostasis, with ZEP-mediated epoxidation targeting carotenoids for degradation by CCD enzymes. Finally, four of the nine loci/enzymatic activities identified as underlying natural variation in Arabidopsis seed carotenoids also were identified in a recent GWAS of maize (Zea mays) kernel carotenoid variation. This first comparison of the natural variation in seed carotenoids in monocots and dicots suggests a surprising overlap in the genetic architecture of these traits between the two lineages and provides a list of likely candidates to target for selecting seed carotenoid variation in other species. PMID:27208224

  17. Comparative expression of two abscisic acid-inducible genes and proteins in seeds of aromatic indica rice cultivar with that of non-aromatic indica rice cultivars.

    PubMed

    Roychoudhury, Aryadeep; Basu, Supratim; Sengupta, Dibyendu N

    2009-10-01

    As an integral part of stress signal transduction, the phytohormone abscisic acid (ABA) regulates important cellular reactions, including up-regulation of stress-associated genes, the products of which are involved directly or indirectly in plant protection. Being accompanied by an increased endogenous ABA level, the matured seeds, embryo and aleurone tissues of cereals accumulate several genes and proteins, associated with desiccation. The present study was aimed at investigating how the contrasting rice genotypes, varying in their salt-stress sensitivity, differ with respect to the expression pattern of two abiotic stress-inducible genes, Rab16A and SamDC, and corresponding proteins, in the seeds, at the background level (dry or water-imbibed state) and ABA-imbibed conditions, which could be related to the varietal differences in tolerance. The rice genotypes selected were M-1-48 (salt-sensitive), Nonabokra (salt-tolerant) and Gobindobhog (aromatic). An extremely low abundance of Rab16A or practically undetectable SamDC transcripts were observed in M-1-48 and Gobindobhog seeds under control conditions, induced only after exogenous ABA treatment, whereas they were expressed at a much higher level even in dry and water-imbibed seeds of Nonabokra, and lesser induced by ABA. The RAB16A (=dehydrin) and SAMDC protein expression in the three varieties were also identical to the gene expression patterns. Thus, the expression was stress-inducible in M-1-48 and Gobindobhog, while constitutive in Nonabokra. Our study reflected the similarity of the molecular responses to exogenous ABA of the seeds of the aromatic rice Gobindobhog to that of the salt-sensitive M-1-48, in exhibiting lower expression of stress-tolerant proteins only after stress. This work also proved that variation in gene/protein expression in seeds could be highly correlated with the variation in the tolerance mechanism of rice varieties.

  18. Rice aldehyde dehydrogenase7 is needed for seed maturation and viability.

    PubMed

    Shin, Jun-Hye; Kim, Sung-Ryul; An, Gynheung

    2009-02-01

    Aldehyde dehydrogenases (ALDHs) catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding carboxylic acids. Although the proteins have been studied from various organisms and at different growth stages, their roles in seed development have not been well elucidated. We obtained T-DNA insertional mutants in OsALDH7, which is remarkably inducible by oxidative and abiotic stresses. Interestingly, endosperms from the osaldh7 null mutants accumulated brown pigments during desiccation and storage. Extracts from the mutant seeds showed a maximum absorbance peak at 360 nm, the wavelength that melanoidin absorbs. Under UV light, those extracts also exhibited much stronger fluorescence than the wild type, suggesting that the pigments are melanoidin. These pigments started to accumulate in the late seed developmental stage, the time when OsALDH7 expression began to increase significantly. Purified OsALDH7 protein showed enzyme activities to malondialdehyde, acetaldehyde, and glyceraldehyde. These results suggest that OsALDH7 is involved in removing various aldehydes formed by oxidative stress during seed desiccation. The mutant seeds were more sensitive to our accelerated aging treatment and accumulated more malondialdehyde than the wild type. These data imply that OsALDH7 plays an important role in maintaining seed viability by detoxifying the aldehydes generated by lipid peroxidation.

  19. HSI2 Repressor Recruits MED13 and HDA6 to Down-Regulate Seed Maturation Gene Expression Directly During Arabidopsis Early Seedling Growth.

    PubMed

    Chhun, Tory; Chong, Suet Yen; Park, Bong Soo; Wong, Eriko Chi Cheng; Yin, Jun-Lin; Kim, Mijung; Chua, Nam-Hai

    2016-08-01

    Arabidopsis HSI2 (HIGH-LEVEL EXPRESSION OF SUGAR-INDUCIBLE GENE 2) which carries a EAR (ERF-associated amphiphilic repression) motif acts as a repressor of seed maturation genes and lipid biosynthesis, whereas MEDIATOR (MED) is a conserved multiprotein complex linking DNA-bound transcription factors to RNA polymerase II transcription machinery. How HSI2 executes its repressive function through MED is hitherto unknown. Here, we show that HSI2 and its homolog, HSI2-lik (HSL1), are able to form homo- and heterocomplexes. Both factors bind to the TRAP240 domain of MED13, a subunit of the MED CDK8 module. Mutant alleles of the med13 mutant show elevated seed maturation gene expression and increased lipid accumulation in cotyledons; in contrast, HSI2- or MED13-overexpressing plants display the opposite phenotypes. The overexpression phenotypes of HSI2 and MED13 are abolished in med13 and hsi2 hsl1, respectively, indicating that HSI2 and MED13 together are required for these functions. The HSI2 C-terminal region interacts with HDA6, whose overexpression also reduces seed maturation gene expression and lipid accumulation. Moreover, HSI2, MED13 and HDA6 bind to the proximal promoter and 5'-coding regions of seed maturation genes. Taken together, our results suggest that HSI2 recruits MED13 and HDA6 to suppress directly a subset of seed maturation genes post-germination.

  20. The Arabidopsis C2H2 Zinc Finger INDETERMINATE DOMAIN1/ENHYDROUS Promotes the Transition to Germination by Regulating Light and Hormonal Signaling during Seed Maturation[W

    PubMed Central

    Feurtado, J. Allan; Huang, Daiqing; Wicki-Stordeur, Leigh; Hemstock, Laura E.; Potentier, Mireille S.; Tsang, Edward W.T.; Cutler, Adrian J.

    2011-01-01

    Seed development ends with a maturation phase that imparts desiccation tolerance, nutrient reserves, and dormancy degree. Here, we report the functional analysis of an Arabidopsis thaliana C2H2 zinc finger protein INDETERMINATE DOMAIN1 (IDD1)/ENHYDROUS (ENY). Ectopic expression of IDD1/ENY (2x35S:ENY) disrupted seed development, delaying endosperm depletion and testa senescence, resulting in an abbreviated maturation program. Consequently, mature 2x35S:ENY seeds had increased endosperm-specific fatty acids, starch retention, and defective mucilage extrusion. Using RAB18 promoter ENY lines (RAB18:ENY) to confine expression to maturation, when native ENY expression increased and peaked, resulted in mature seed with lower abscisic acid (ABA) content and decreased germination sensitivity to applied ABA. Furthermore, results of far-red and red light treatments of 2x35S:ENY and RAB18:ENY germinating seeds, and of artificial microRNA knockdown lines, suggest that ENY acts to promote germination. After using RAB18:ENY seedlings to induce ENY during ABA application, key genes in gibberellin (GA) metabolism and signaling were differentially regulated in a manner suggesting negative feedback regulation. Furthermore, GA treatment resulted in a skotomorphogenic-like phenotype in light-grown 2x35S:ENY and RAB18:ENY seedlings. The physical interaction of ENY with DELLAs and an ENY-triggered accumulation of DELLA transcripts during maturation support the conclusion that ENY mediates GA effects to balance ABA-promoted maturation during late seed development. PMID:21571950

  1. Proteomic insights into seed germination in response to environmental factors.

    PubMed

    Tan, Longyan; Chen, Sixue; Wang, Tai; Dai, Shaojun

    2013-06-01

    Seed germination is a critical process in the life cycle of higher plants. During germination, the imbibed mature seed is highly sensitive to different environmental factors.However, knowledge about the molecular and physiological mechanisms underlying the environmental effects on germination has been lacking. Recent proteomic work has provided invaluable insight into the molecular processes in germinating seeds of Arabidopsis, rice (Oryza sativa), soybean (Glycine max), barley (Hordeum vulgare), maize (Zeamays), tea (Camellia sinensis), European beech (Fagus sylvatica), and Norway maple (Acer platanoides) under different treatments including metal ions (e.g. copper and cadmium), drought, low temperature, hormones, and chemicals (gibberellic acid, abscisic acid, salicylic acid, and α-amanitin), as well as Fusarium graminearum infection. A total of 561 environmental factor-responsive proteins have been identified with various expression patterns in germinating seeds. The data highlight diverse regulatory and metabolic mechanisms upon seed germination, including induction of environmental factor-responsive signaling pathways, seed storage reserve mobilization and utilization, enhancement of DNA repair and modification, regulation of gene expression and protein synthesis, modulation of cell structure, and cell defense. In this review, we summarize the interesting findings and discuss the relevance and significance for our understanding of environmental regulation of seed germination.

  2. The modulating effect of the perisperm-endosperm envelope on ABA-inhibition of seed germination in cucumber.

    PubMed

    Amritphale, Dilip; Yoneyama, Koichi; Takeuchi, Yasutomo; Ramakrishna, P; Kusumoto, Dai

    2005-08-01

    Abscisic acid (ABA) markedly reduced the germination of developing seeds at much lower concentrations (ABA50=0.1 mM) compared with that of mature seeds (ABA50=1.6 mM) in cucumber (Cucumis sativus L. cv. Green long). The perisperm-endosperm (PE) envelope in developing seeds showed partly differentiated lipid and callose layers, considerable ABA biosynthetic activity in endosperm cells, and appreciable permeability to applied ABA. The decrease in the sensitivity of seeds to applied ABA was coincident with the complete development of lipid and callose layers, diminished ABA biosynthetic activity in endosperm cells in imbibed mature seeds, and moderate permeability of the PE envelope to applied ABA. Decoated seeds pretreated with chloroform showed decreased germination (ABA50=0.4 mM) in response to applied ABA and increased ABA permeation through the PE envelope. ABA thus allowed to permeate into embryonic tissues substantially reduced the pregerminative activity of beta-glucanase in the radicles. The structure and biophysical/biochemical properties of the PE envelope seem to modulate the effect of ABA on the germination of developing and mature cucumber seeds.

  3. Two Tomato Expansin Genes Show Divergent Expression and Localization in Embryos during Seed Development and Germination1

    PubMed Central

    Chen, Feng; Dahal, Peetambar; Bradford, Kent J.

    2001-01-01

    Expansins are plant proteins that can induce extension of isolated cell walls and are proposed to mediate cell expansion. Three expansin genes were expressed in germinating tomato (Lycopersicon esculentum Mill.) seeds, one of which (LeEXP4) was expressed specifically in the endosperm cap tissue enclosing the radicle tip. The other two genes (LeEXP8 and LeEXP10) were expressed in the embryo and are further characterized here. LeEXP8 mRNA was not detected in developing or mature seeds but accumulated specifically in the radicle cortex during and after germination. In contrast, LeEXP10 mRNA was abundant at an early stage of seed development corresponding to the period of rapid embryo expansion; it then decreased during seed maturation and increased again during germination. When gibberellin-deficient (gib-1) mutant seeds were imbibed in water, LeEXP8 mRNA was not detected, but a low level of LeEXP10 mRNA was present. Expression of both genes increased when gib-1 seeds were imbibed in gibberellin. Abscisic acid did not prevent the initial expression of LeEXP8 and LeEXP10, but mRNA abundance of both genes subsequently decreased during extended incubation. The initial increase in LeEXP8, but not LeEXP10, mRNA accumulation was blocked by low water potential, but LeEXP10 mRNA amounts fell after longer incubation. When seeds were transferred from abscisic acid or low water potential solutions to water, abundance of both LeEXP8 and LeEXP10 mRNAs increased in association with germination. The tissue localization and expression patterns of both LeEXP8 and LeEXP10 suggest developmentally specific roles during embryo and seedling growth. PMID:11706175

  4. Carbohydrate composition of mature and immature faba bean (Vicia faba L.) seeds from diverse origins

    USDA-ARS?s Scientific Manuscript database

    Faba bean (Vicia faba L.) is a valuable pulse crop for human consumption. The low molecular weight carbohydrates (LMWC): glucose, fructose, sucrose (GFS), raffinose, stachyose, and verbascose (RFO- raffinose family oligosaccharides) in faba bean seeds are significant components of human nutrition an...

  5. Fatty Acid Composition of Developing Sea Buckthorn (Hippophae rhamnoides L.) Berry and the Transcriptome of the Mature Seed

    PubMed Central

    Fatima, Tahira; Snyder, Crystal L.; Schroeder, William R.; Cram, Dustin; Datla, Raju; Wishart, David; Weselake, Randall J.; Krishna, Priti

    2012-01-01

    Background Sea buckthorn (Hippophae rhamnoides L.) is a hardy, fruit-producing plant known historically for its medicinal and nutraceutical properties. The most recognized product of sea buckthorn is its fruit oil, composed of seed oil that is rich in essential fatty acids, linoleic (18∶2ω-6) and α-linolenic (18∶3ω-3) acids, and pulp oil that contains high levels of monounsaturated palmitoleic acid (16∶1ω-7). Sea buckthorn is fast gaining popularity as a source of functional food and nutraceuticals, but currently has few genomic resources; therefore, we explored the fatty acid composition of Canadian-grown cultivars (ssp. mongolica) and the sea buckthorn seed transcriptome using the 454 GS FLX sequencing technology. Results GC-MS profiling of fatty acids in seeds and pulp of berries indicated that the seed oil contained linoleic and α-linolenic acids at 33–36% and 30–36%, respectively, while the pulp oil contained palmitoleic acid at 32–42%. 454 sequencing of sea buckthorn cDNA collections from mature seeds yielded 500,392 sequence reads, which identified 89,141 putative unigenes represented by 37,482 contigs and 51,659 singletons. Functional annotation by Gene Ontology and computational prediction of metabolic pathways indicated that primary metabolism (protein>nucleic acid>carbohydrate>lipid) and fatty acid and lipid biosynthesis pathways were highly represented categories. Sea buckthorn sequences related to fatty acid biosynthesis genes in Arabidopsis were identified, and a subset of these was examined for transcript expression at four developing stages of the berry. Conclusion This study provides the first comprehensive genomic resources represented by expressed sequences for sea buckthorn, and demonstrates that the seed oil of Canadian-grown sea buckthorn cultivars contains high levels of linoleic acid and α-linolenic acid in a close to 1∶1 ratio, which is beneficial for human health. These data provide the foundation for further studies on

  6. [Effects of high temperature and humidity stress at the physiological maturity stage on seed vigor, main nutrients and coat structure of spring soybean].

    PubMed

    Shu, Ying-Jie; Wang, Shuang; Tao, Yuan; Song, Li-Run; Huang, Li-Yan; Zhou, Yu-Li; Ma, Hao

    2014-05-01

    A pot experiment was conducted to investigate the effects of high temperature and humidity stress [(40 +/- 2) degrees C/(30 +/- 2) degrees C, RH (95 +/- 5)%/(70 +/- 5)%, 10 h/14 h (day/night)] at the physiological maturity stage of two spring soybean cultivars (Xiangdou No. 3 and Ningzhen No. 1) on seed vigor indices, main nutritional components and coat anatomical structure. High temperature and humidity stress were found to cause the decrease of seed viability, germination potential, and germination percentage as well as the dehydrogenase and acid phosphatase activities, but increased the seed cell membrane permeability as well as H+, soluble sugar and leucine levels in the seed soaking liquid of each cultivar. Moreover, the stress led to irregular changes of seed oil and protein contents and alteration of anatomical structure of episperm and hilum in the two cultivars. A shortterm stress (less than 5 h) had no significant impact on seed vigor, but a long-term one (more than 48 h) caused rapid decrease of seed vigor indices. Xiangdou No. 3 showed less decreases in seed germination potential and enzyme activities, and less increase in extravasation content in the seed soaking liquid, had compact seed coat and intact hilum, suggesting it was more resistant to high temperature and humidity stress.

  7. Proteomic Analysis of the Protein Expression Profile in the Mature Nigella sativa (Black Seed).

    PubMed

    Alanazi, Ibrahim O; Benabdelkamel, Hicham; Alfadda, Assim A; AlYahya, Sami A; Alghamdi, Waleed M; Aljohi, Hasan A; Almalik, Abdulaziz; Masood, Afshan

    2016-08-01

    Nigella sativa (N. sativa) seed has been used as an important nutritional flavoring agent and in traditional medicine for treating many illnesses since ancient times. Understanding the proteomic component of the seed may lead to enhance the understanding of its structural and biological functional complexity. In this study, we have analyzed its proteome profile based on gel-based proteome mapping technique that includes one-dimensional gel electrophoresis followed by liquid chromatography and tandem mass spectrometry strategy. We have not come across any such studies that have been performed in N. sativa seeds up to date. A total of 277 proteins were identified, and their functional, metabolic, and location-wise annotations were carried out using the UniProt database. The majority of proteins identified in the proteome dataset based on their function were those involved in enzyme catalytic activity, nucleotide binding, and protein binding while the major cellular processes included regulation of biological process followed by regulation of secondary biological process, cell organization and biogenesis, protein metabolism, and transport. The identified proteome was localized mainly to the nucleus then to the cytoplasm, plasma membrane, mitochondria, plastid, and others. A majority of the proteins were involved in biochemical pathways involving carbohydrate metabolism, amino acid and shikimate pathway, lipid metabolism, nucleotide, cell organization and biogenesis, transport, and defense processes. The identified proteins in the dataset help to improve our understanding of the pathways involved in N. sativa seed metabolism and its biochemical features and detail out useful information that may help to utilize these proteins. This study could thus pave a way for future further high-throughput studies using a more targeted proteomic approach.

  8. The Thiamine Biosynthesis Gene THI1 Promotes Nodule Growth and Seed Maturation.

    PubMed

    Nagae, Miwa; Parniske, Martin; Kawaguchi, Masayoshi; Takeda, Naoya

    2016-11-01

    Thiamine (vitamin B1) is essential for living organisms. Unlike animals, plants can synthesize thiamine. In Lotus japonicus, the expression of two thiamine biosynthesis genes, THI1 and THIC, was enhanced by inoculation with rhizobia but not by inoculation with arbuscular mycorrhizal fungi. THIC and THI2 (a THI1 paralog) were expressed in uninoculated leaves. THI2-knockdown plants and the transposon insertion mutant thiC had chlorotic leaves. This typical phenotype of thiamine deficiency was rescued by an exogenous supply of thiamine. In wild-type plants, THI1 was expressed mainly in roots and nodules, and the thi1 mutant had green leaves even in the absence of exogenous thiamine. THI1 was highly expressed in actively dividing cells of nodule primordia. The thi1 mutant had small nodules, and this phenotype was rescued by exogenous thiamine and by THI1 complementation. Exogenous thiamine increased nodule diameter, but the level of arbuscular mycorrhizal colonization was unaffected in the thi1 mutant or by exogenous thiamine. Expression of symbiotic marker genes was induced normally, implying that mainly nodule growth was delayed in the thi1 mutant. Furthermore, this mutant formed many immature seeds with reduced seed weight. These results indicate that thiamine biosynthesis mediated by THI1 enhances nodule enlargement and is required for seed development in L. japonicus. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. A Regulatory Network-Based Approach Dissects Late Maturation Processes Related to the Acquisition of Desiccation Tolerance and Longevity of Medicago truncatula Seeds1[C][W][OPEN

    PubMed Central

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K.; Buitink, Julia

    2013-01-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states. PMID:23929721

  10. A regulatory network-based approach dissects late maturation processes related to the acquisition of desiccation tolerance and longevity of Medicago truncatula seeds.

    PubMed

    Verdier, Jerome; Lalanne, David; Pelletier, Sandra; Torres-Jerez, Ivone; Righetti, Karima; Bandyopadhyay, Kaustav; Leprince, Olivier; Chatelain, Emilie; Vu, Benoit Ly; Gouzy, Jerome; Gamas, Pascal; Udvardi, Michael K; Buitink, Julia

    2013-10-01

    In seeds, desiccation tolerance (DT) and the ability to survive the dry state for prolonged periods of time (longevity) are two essential traits for seed quality that are consecutively acquired during maturation. Using transcriptomic and metabolomic profiling together with a conditional-dependent network of global transcription interactions, we dissected the maturation events from the end of seed filling to final maturation drying during the last 3 weeks of seed development in Medicago truncatula. The network revealed distinct coexpression modules related to the acquisition of DT, longevity, and pod abscission. The acquisition of DT and dormancy module was associated with abiotic stress response genes, including late embryogenesis abundant (LEA) genes. The longevity module was enriched in genes involved in RNA processing and translation. Concomitantly, LEA polypeptides accumulated, displaying an 18-d delayed accumulation compared with transcripts. During maturation, gulose and stachyose levels increased and correlated with longevity. A seed-specific network identified known and putative transcriptional regulators of DT, including ABSCISIC ACID-INSENSITIVE3 (MtABI3), MtABI4, MtABI5, and APETALA2/ ETHYLENE RESPONSE ELEMENT BINDING PROTEIN (AtAP2/EREBP) transcription factor as major hubs. These transcriptional activators were highly connected to LEA genes. Longevity genes were highly connected to two MtAP2/EREBP and two basic leucine zipper transcription factors. A heat shock factor was found at the transition of DT and longevity modules, connecting to both gene sets. Gain- and loss-of-function approaches of MtABI3 confirmed 80% of its predicted targets, thereby experimentally validating the network. This study captures the coordinated regulation of seed maturation and identifies distinct regulatory networks underlying the preparation for the dry and quiescent states.

  11. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment.

    PubMed

    Danchenko, Maksym; Skultety, Ludovit; Rashydov, Namik M; Berezhna, Valentyna V; Mátel, L'ubomír; Salaj, Terézia; Pret'ová, Anna; Hajduch, Martin

    2009-06-01

    The explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive. The aim of this study was to investigate plant adaptation mechanisms toward permanently increased level of radiation using a quantitative high-throughput proteomics approach. Soybeans of a local variety (Soniachna) were sown in contaminated and control fields in the Chernobyl region. Mature seeds were harvested and the extracted proteins were subjected to two-dimensional gel electrophoresis (2-DE). In total, 9.2% of 698 quantified protein spots on 2-D gel were found to be differentially expressed with a p-value seed storage proteins are involved in plant adaptation mechanism to radioactivity in the Chernobyl region.

  12. Oxidation and cyclization of casbene in the biosynthesis of Euphorbia factors from mature seeds of Euphorbia lathyris L.

    PubMed Central

    Luo, Dan; Callari, Roberta; Hamberger, Britta; Wubshet, Sileshi Gizachew; Nielsen, Morten T.; Andersen-Ranberg, Johan; Hallström, Björn M.; Cozzi, Federico; Lindberg Møller, Birger; Hamberger, Björn

    2016-01-01

    The seed oil of Euphorbia lathyris L. contains a series of macrocyclic diterpenoids known as Euphorbia factors. They are the current industrial source of ingenol mebutate, which is approved for the treatment of actinic keratosis, a precancerous skin condition. Here, we report an alcohol dehydrogenase-mediated cyclization step in the biosynthetic pathway of Euphorbia factors, illustrating the origin of the intramolecular carbon–carbon bonds present in lathyrane and ingenane diterpenoids. This unconventional cyclization describes the ring closure of the macrocyclic diterpene casbene. Through transcriptomic analysis of E. lathyris L. mature seeds and in planta functional characterization, we identified three enzymes involved in the cyclization route from casbene to jolkinol C, a lathyrane diterpene. These enzymes include two cytochromes P450 from the CYP71 clan and an alcohol dehydrogenase (ADH). CYP71D445 and CYP726A27 catalyze regio-specific 9-oxidation and 5-oxidation of casbene, respectively. When coupled with these P450-catalyzed monooxygenations, E. lathyris ADH1 catalyzes dehydrogenation of the hydroxyl groups, leading to the subsequent rearrangement and cyclization. The discovery of this nonconventional cyclization may provide the key link to complete elucidation of the biosynthetic pathways of ingenol mebutate and other bioactive macrocyclic diterpenoids. PMID:27506796

  13. Micro-CT observations of the 3D distribution of calcium oxalate crystals in cotyledons during maturation and germination in Lotus miyakojimae seeds.

    PubMed

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Takeuchi, Miyuki; Karahara, Ichirou; Sato, Mayuko; Toyooka, Kiminori; Nishioka, Hiroshi; Terada, Yasuko; Uesugi, Kentaro; Takano, Hidekazu; Kagoshima, Yasushi; Mineyuki, Yoshinobu

    2013-06-01

    The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds. In this study, micro-computed tomography (micro-CT) was employed at the SPring-8 facility to examine the three-dimensional distribution of crystals inside cotyledons during seed maturation and germination of Lotus miyakojimae (previously Lotus japonicus accession Miyakojima MG-20). Using this technique, we could detect the outline of the embryo, void spaces in seeds and the cotyledon venation pattern. We found several sites that strongly inhibited X-ray transmission within the cotyledons. Light and polarizing microscopy confirmed that these areas corresponded to CaOx crystals. Three-dimensional observations of dry seeds indicated that the CaOx crystals in the L. miyakojimae cotyledons were distributed along lateral veins; however, their distribution was limited to the abaxial side of the procambium. The CaOx crystals appeared at stage II (seed-filling stage) of seed development, and their number increased in dry seeds. The number of crystals in cotyledons was high during germination, suggesting that CaOx crystals are not degraded for their calcium supply. Evidence for the conservation of CaOx crystals in cotyledons during the L. miyakojimae germination process was also supported by the biochemical measurement of oxalic acid levels.

  14. Survival and growth of direct-seeded and natural northern red oak after c1earcutting a mature red pine plantation

    Treesearch

    R.D. Shipman; D.B. Dimarcello

    1991-01-01

    Initiated in 1985, a study was designed to evaluate the effects of site preparation (rototilling) and logging slash on 5-year survival and growth of natural and direct-seeded northern red oak (Quercus rubra L.) after clearcutting a mature, 45-year-old red pine (Pinus resinosa Ait.) plantation in central Pennsylvania.

  15. Effects on flowering and seed yield of dominant alleles at maturity loci E2 and E3 in a Japanese cultivar, Enrei

    PubMed Central

    Yamada, Tetsuya; Hajika, Makita; Yamada, Naohiro; Hirata, Kaori; Okabe, Akinori; Oki, Nobuhiko; Takahashi, Koji; Seki, Kousuke; Okano, Katsunori; Fujita, Yoichi; Kaga, Akito; Shimizu, Takehiko; Sayama, Takashi; Ishimoto, Masao

    2012-01-01

    ‘Enrei’ is the second leading variety of soybean (Glycine max (L.) Merr.) in Japan. Its cultivation area is mainly restricted to the Hokuriku region. In order to expand the adaptability of ‘Enrei’, we developed two near-isogenic lines (NILs) of ‘Enrei’ for the dominant alleles controlling late flowering at the maturity loci, E2 and E3, by backcrossing with marker-assisted selection. The resultant NILs and the original variety were evaluated for flowering, maturity, seed productivity and other agronomic traits in five different locations. Expectedly, NILs with E2 or E3 alleles flowered later than the original variety in most locations. These NILs produced comparatively larger plants in all locations. Seed yields were improved by E2 and E3 in the southern location or in late-sowing conditions, whereas the NIL for E2 exhibited almost the same or lower productivity in the northern locations due to higher degrees of lodging. Seed quality-related traits, such as 100-seed weight and protein content, were not significantly different between the original variety and its NILs. These results suggest that the modification of genotypes at maturity loci provides new varieties that are adaptive to environments of different latitudes while retaining almost the same seed quality as that of the original. PMID:23136505

  16. Reaction of maturity group V soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    In 2009, Soybean Phomopsis seed decay (PSD) caused over 12 million bushels of yield loss in 16 southern states. This disease severely affects soybean seed quality due to the reduction of seed viability, oil content, and alteration of seed composition, and it may also increase moldy and/or split seed...

  17. Changes in Chenopodium rubrum seeds with aging.

    PubMed

    Mitrović, Aleksandra; Ducić, Tanja; Liric-Rajlić, Ivana; Radotić, Ksenija; Zivanović, Branka

    2005-06-01

    We studied antioxidative system, germination, growth, and flowering in vitro in Chenopodium rubrum seeds of different ages. Peroxidase, superoxide dismutase, and catalase activity, as well as glutathione status, were determined in 2.5-h imbibed seeds. Germination was tested under controlled conditions. Growth and flowering of plants were tested in vitro. The enzyme activities and glutathione content were higher in younger seeds. Germination declines with seed age. Plants derived from older seeds were smaller, and flowering percentage was lower compared to plants derived from younger seeds. Gibberellic acid reduced the difference in growth and flowering between plants derived from seeds different in age.

  18. Phomopsis seed infection and time of harvest effects on seed phenol, ligin, and isoflavones in maturity V soybean genotypes differing in phomopsis resistance

    USDA-ARS?s Scientific Manuscript database

    The objective of this research was to evaluate phenolic compounds (total phenol, lignin, and isoflavones) in seed of susceptible (S), moderately resistant (MR), and resistant (R) soybean genotypes to phomopsis seed decay disease under irrigated and nonirrigated conditions. Seeds were evaluated at ph...

  19. Quantitative trait loci associated with lettuce seed germination under different temperature and light environments.

    PubMed

    Hayashi, Eiji; Aoyama, Natsuyo; Still, David W

    2008-11-01

    Temperature and light are primary environmental cues affecting seed germination. To elucidate the genetic architecture underlying lettuce (Lactuca sativa L.) seed germination under different environmental conditions, an F8 recombinant inbred line population consisting of 131 families was phenotyped for final germination and germination rate. Seeds were imbibed in water at 20 degrees C under continuous red light (20-Rc), 20 degrees C continuous dark (20-Dc), 31.5 degrees C continuous red light (31.5-Rc), 31.5 degrees C continuous dark (31.5-Dc), or 20 degrees C far-red light for 24 h followed by continuous dark (20-FRc-Dc). Thirty-eight quantitative trait loci (QTL) were identified from two seed maturation environments: 10 for final germination and 28 for germination rate. The amount of variation attributed to an individual QTL ranged from 9.3% to 17.2% and from 5.6% to 26.2% for final germination and germination rate, respectively. Path analysis indicated that factors affecting germination under 31.5-Rc or 31.5-Dc are largely the same, and these appear to differ from those employed under 20-FRc-Dc. QTL and path analysis support the notion of common and unique factors for germination under diverse temperature and light regimes. A highly significant effect of the seed maturation environment on subsequent germination capacity under environmental stress was observed.

  20. High frequency plant regeneration from mature seed of elite, recalcitrant Malaysian indica rice ( Oryza sativa L.) CV. MR 219.

    PubMed

    Sivakumar, P; Law, Y S; Ho, C-L; Harikrishna, Jennifer Ann

    2010-09-01

    An efficient in vitro plant regeneration system was established for elite, recalcitrant Malaysian indica rice, Oryza sativa L. CV. MR 219 using mature seeds as explant on Murashige and Skoog and Chu N6 media containing 2,4-dichlorophenoxy acetic acid and kinetin either alone or in different combinations. L-proline, casein hydrolysate and L-glutamine were added to callus induction media for enhancement of embryogenic callus induction. The highest frequency of friable callus induction (84%) was observed in N6 medium containing 2.5 mg l(-1) 2,4-dichlorophenoxy acetic acid, 0.2 mg l(-1) kinetin, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate, 20 mg l(-1) L-glutamine and 30 g l(-1) sucrose under culture in continuous lighting conditions. The maximum regeneration frequency (71%) was observed, when 30-day-old N6 friable calli were cultured on MS medium supplemented with 3 mg l(-1) 6-benzyl aminopurine, 1 mg l(-1) naphthalene acetic acid, 2.5 mg l(-1) L-proline, 300 mg l(-1) casein hydrolysate and 3% maltose. Developed shoots were rooted in half strength MS medium supplemented with 2% sucrose and were successfully transplanted to soil with 95% survival. This protocol may be used for other recalcitrant indica rice genotypes and to transfer desirable genes in to Malaysian indica rice cultivar MR219 for crop improvement.

  1. Effect of maturity stage on the content of ash components in raw and preserved grass pea (Lathyrus sativus L.) seeds.

    PubMed

    Lisiewska, Zofia; Korus, Anna; Kmiecik, Waldemar; Gebczyński, Piotr

    2006-01-01

    The grains of grass pea cultivar krab of dry matter content at the level of 26-40 g/100 g were used in the production of preserves by freezing and canning in air tight containers. The content of ash and its alkalinity and of potassium, magnesium, calcium, iron, total phosphorus, and phytic phosphorus was determined in raw and blanched material, in frozen products stored for six months and then cooked to consumption consistency, and in sterilized canned products after the same storage period. With the increasing degree of maturity the content of all the above constituents calculated per 100 g fresh matter, increased. Blanching considerably reduced the level of ash and its alkalinity, of potassium, and of phytic phosphorus. The cooking of frozen seeds and the sterilization in salty brine caused a reduction of the components analysed except for the content of ash, its alkalinity, and of calcium. In comparison with canned sterilized preserves in cooked frozen grains a higher content of all the mineral components was determined.

  2. EMS mutagenesis in mature seed-derived rice calli as a new method for rapidly obtaining TILLING mutant populations

    PubMed Central

    2014-01-01

    Background TILLING (Targeting Induced Local Lesions IN Genomes) is a reverse genetic method that combines chemical mutagenesis with high-throughput genome-wide screening for point mutation detection in genes of interest. However, this mutation discovery approach faces a particular problem which is how to obtain a mutant population with a sufficiently high mutation density. Furthermore, plant mutagenesis protocols require two successive generations (M1, M2) for mutation fixation to occur before the analysis of the genotype can begin. Results Here, we describe a new TILLING approach for rice based on ethyl methanesulfonate (EMS) mutagenesis of mature seed-derived calli and direct screening of in vitro regenerated plants. A high mutagenesis rate was obtained (i.e. one mutation in every 451 Kb) when plants were screened for two senescence-related genes. Screening was carried out in 2400 individuals from a mutant population of 6912. Seven sense change mutations out of 15 point mutations were identified. Conclusions This new strategy represents a significant advantage in terms of time-savings (i.e. more than eight months), greenhouse space and work during the generation of mutant plant populations. Furthermore, this effective chemical mutagenesis protocol ensures high mutagenesis rates thereby saving in waste removal costs and the total amount of mutagen needed thanks to the mutagenesis volume reduction. PMID:24475756

  3. Tracking sesamin synthase gene expression through seed maturity in wild and cultivated sesame species--a domestication footprint.

    PubMed

    Pathak, N; Bhaduri, A; Bhat, K V; Rai, A K

    2015-09-01

    Sesamin and sesamolin are the major oil-soluble lignans present in sesame seed, having a wide range of biological functions beneficial to human health. Understanding sesame domestication history using sesamin synthase gene expression could enable delineation of the sesame putative progenitor. This report examined the functional expression of sesamin synthase (CYP81Q1) during capsule maturation (0-40 days after flowering) in three wild Sesamum species and four sesame cultivars. Among the cultivated accessions, only S. indicum (CO-1) exhibited transcript abundance of sesamin synthase along with high sesamin content similar to S. malabaricum, while the other cultivated sesame showed low expression. The sesamin synthase expression analysis, coupled with quantification of sesamin level, indicates that sesamin synthase was not positively favoured during domestication. The sesamin synthase expression pattern and lignan content, along with phylogenetic analysis suggested a close relationship of cultivated sesame and the wild species S. malabaricum. The high genetic identity between the two species S. indicum and S. malabaricum points towards the role of the putative progenitor S. malabaricum in sesame breeding programmes to broaden the genetic base of sesame cultivars. This study emphasises the need to investigate intraspecific and interspecific variation in the primary, secondary and tertiary gene pools to develop superior sesame genotypes.

  4. Antimicrobial activity of crude epicarp and seed extracts from mature avocado fruit (Persea americana) of three cultivars.

    PubMed

    Raymond Chia, Teck Wah; Dykes, Gary A

    2010-07-01

    The epicarp and seed of Persea Americana Mill. var. Hass (Lauraceae), Persea Americana Mill. var. Shepard, and Persea americana Mill. var Fuerte cultivars of mature avocados (n = 3) were ground separately and extracted with both absolute ethanol and distilled water. Extracts were analyzed for antimicrobial activity using the microtiter broth microdilution assay against four Gram-positive bacteria, six Gram-negative bacteria, and one yeast. Antimicrobial activity against two molds was determined by the hole plate method. The ethanol extracts showed antimicrobial activity (104.2-416.7 microg/mL) toward both Gram-positive and Gram-negative bacteria (except Escherichia coli), while inhibition of the water extracts was only observed for Listeria monocytogenes (93.8-375.0 microg/mL) and Staphylococcus epidermidis (354.2 microg/mL). The minimum concentration required to inhibit Zygosaccharomyces bailii was 500 microg/mL for the ethanol extracts, while no inhibition was observed for the water extracts. No inhibition by either ethanol or water extracts was observed against Penicillium spp. and Aspergillus flavus.

  5. Studies of Electron Transport in Dry and Imbibed Peanut Embryos 1

    PubMed Central

    Wilson, S. B.; Bonner, Walter D.

    1971-01-01

    The respiration of isolated peanut (Arachis hypogea) embryos has been studied with dry and wet embryos and mitochondria prepared after various times of imbibition. Dry seeds respire slowly, apparently via a respiratory chain which is deficient in cytochrome c. Cytochrome c-deficient mitochondria have been prepared from the embryos up to 16 hours following imbibition. These mitochondria can metabolize reduced nicotinamide adenine dinucleotide and succinate, without respiratory control by ADP, but they do phosphorylate. Added cytochrome c increases both respiration and phosphorylation of these embryonic mitochondria. When growth starts, mitochondria appear which are similar to those isolated from other mature plant tissues; they have respiratory control and can actively metabolize succinate, malate, and reduced nicotinamide adenine dinucleotide. These latter mitochondria contain a concentration of cytochrome c comparable to that found in mitochondria isolated from other mature plant tissues. It is suggested that the earliest type of mitochondria may be required to control respiration in the dry and the recently wetted embryo. PMID:16657794

  6. Molecular cloning of the cDNA coding for the (R)-(+)-mandelonitrile lyase of Prunus amygdalus: temporal and spatial expression patterns in flowers and mature seeds.

    PubMed

    Suelves, M; Puigdomènech, P

    1998-10-01

    A gene highly expressed in the floral organs of almond (Prunus amygdalus Batsch), and coding for the cyanogenic enzyme (R)-(+)-mandelonitrile lyase (EC 4.1.2.10), has been identified and the full-length cDNA sequenced. The temporal expression pattern in maturing seeds and during floral development was analyzed by RNA blot, and the highest mRNA levels were detected in floral tissues. The spatial mRNA accumulation pattern in almond flower buds was also analyzed by in-situ hybridization. The mRNA levels were compared during seed maturation and floral development in fruit and floral samples from cultivars classified as homozygous or heterozygous for the sweet-almond trait or homozygous for the bitter trait. No correlation was found between these characteristics and levels of mandelonitrile lyase mRNA, suggesting that the presence of this protein is not the limiting factor in the production of hydrogen cyanide.

  7. α-TIP aquaporin distribution and size tonoplast variation in storage cells of Vicia faba cotyledons at seed maturation and germination stages.

    PubMed

    Béré, Emile; Lahbib, Karima; Merceron, Bruno; Fleurat-Lessard, Pierrette; Boughanmi, Néziha Ghanem

    2017-09-01

    Vacuoles have been shown to undergo deep modifications in relation to plant developmental stages and in the maintaining the cellular homeostasis. In this context, we studied the variations of the vacuolar membrane size and α-TIP aquaporin distribution at early and advanced seed stages of maturation, germination and embryo growth in Vicia faba cotyledon storage cells. Copyright © 2017 Elsevier GmbH. All rights reserved.

  8. Dark-mediated dormancy release in stratified Lolium rigidum seeds is associated with higher activities of cell wall-modifying enzymes and an apparent increase in gibberellin sensitivity.

    PubMed

    Goggin, Danica E; Powles, Stephen B; Toorop, Peter E; Steadman, Kathryn J

    2011-04-15

    Dormancy release in freshly matured, imbibed annual ryegrass (Lolium rigidum) seeds is inhibited by light and involves a decrease in seed sensitivity to abscisic acid. Other processes involved in dormancy release in the dark were investigated by measuring seed storage compound mobilisation and the activity of cell wall-degrading enzymes. Activities of endo-β-mannanase and total peroxidase were higher in dark-stratified compared to light-stratified seeds, indicating that weakening of the structures constraining the embryo was accelerated in the dark. A dramatic degradation of storage proteins in light-stratified seeds, accompanied by induction of a high molecular mass protease, suggests that maintenance of storage(-like) proteins is also important in dark-mediated dormancy release. α-Amylase activity was induced in dark-stratified seeds at least 48 h prior to radicle emergence upon transfer to conditions permitting germination, or in light-stratified seeds supplied with exogenous gibberellin A(4). This suggests that (a) α-amylase is involved in stimulation of germination of non-dormant L. rigidum seeds, and (b) dark-stratified seeds have an increased sensitivity to gibberellins which permits the rapid induction of α-amylase activity upon exposure to germination conditions. Overall, it appears that a number of processes, although possibly minor in themselves, occur in concert during dark-stratification to contribute to dormancy release. Copyright © 2010 Elsevier GmbH. All rights reserved.

  9. Improvement of efficient in vitro regeneration potential of mature callus induced from Malaysian upland rice seed (Oryza sativa cv. Panderas)

    PubMed Central

    Mohd Din, Abd Rahman Jabir; Iliyas Ahmad, Fauziah; Wagiran, Alina; Abd Samad, Azman; Rahmat, Zaidah; Sarmidi, Mohamad Roji

    2015-01-01

    A new and rapid protocol for optimum callus production and complete plant regeneration has been assessed in Malaysian upland rice (Oryza sativa) cv. Panderas. The effect of plant growth regulator (PGR) on the regeneration frequency of Malaysian upland rice (cv. Panderas) was investigated. Mature seeds were used as a starting material for callus induction experiment using various concentrations of 2,4-D and NAA. Optimal callus induction frequency at 90% was obtained on MS media containing 2,4-D (3 mg L−1) and NAA (2 mg L−1) after 6 weeks while no significant difference was seen on tryptophan and glutamine parameters. Embryogenic callus was recorded as compact, globular and light yellowish in color. The embryogenic callus morphology was further confirmed with scanning electron microscopy (SEM) analysis. For regeneration, induced calli were treated with various concentrations of Kin (0.5–1.5 mg L−1), BAP, NAA and 0.5 mg L−1 of TDZ. The result showed that the maximum regeneration frequency (100%) was achieved on MS medium containing BAP (0.5 mg L−1), Kin (1.5 mg L−1), NAA (0.5 mg L−1) and TDZ (0.5 mg L−1) within four weeks. Developed shoots were successfully rooted on half strength MS free hormone medium and later transferred into a pot containing soil for acclimatization. This cutting-edge finding is unique over the other existing publishable data due to the good regeneration response by producing a large number of shoots. PMID:26858569

  10. Leaf traits, shoot growth and seed production in mature Fagus sylvatica trees after 8 years of CO2 enrichment

    PubMed Central

    Han, Qingmin; Kabeya, Daisuke; Hoch, Günter

    2011-01-01

    Background and Aims Masting, i.e. synchronous but highly variable interannual seed production, is a strong sink for carbon and nutrients. It may, therefore, compete with vegetative growth. It is currently unknown whether increased atmospheric CO2 concentrations will affect the carbon balance (or that of other nutrients) between reproduction and vegetative growth of forest species. In this study, reproduction and vegetative growth of shoots of mature beech (Fagus sylvatica) trees grown at ambient and elevated atmospheric CO2 concentrations were quantified. It was hypothesized that within a shoot, fruiting has a negative effect on vegetative growth, and that this effect is ameliorated at increased CO2 concentrations. Methods Reproduction and its competition with leaf and shoot production were examined during two masting events (in 2007 and 2009) in F. sylvatica trees that had been exposed to either ambient or elevated CO2 concentrations (530 µmol mol−1) for eight consecutive years, between 2000 and 2008. Key Results The number of leaves per shoot and the length of terminal shoots was smaller or shorter in the two masting years compared with the one non-masting year (2008) investigated, but they were unaffected by elevated CO2 concentrations. The dry mass of terminal shoots was approx. 2-fold lower in the masting year (2007) than in the non-masting year in trees growing at ambient CO2 concentrations, but this decline was not observed in trees exposed to elevated CO2 concentrations. In both the CO2 treatments, fruiting significantly decreased nitrogen concentration by 25 % in leaves and xylem tissue of 1- to 3-year-old branches in 2009. Conclusions Our findings indicate that there is competition for resources between reproduction and shoot growth. Elevated CO2 concentrations reduced this competition, indicating effects on the balance of resource allocation between reproduction and vegetative growth in shoots with rising atmospheric CO2 concentrations. PMID:21493641

  11. Amplification of ABA biosynthesis and signaling through a positive feedback mechanism in seeds.

    PubMed

    Nonogaki, Mariko; Sall, Khadidiatou; Nambara, Eiji; Nonogaki, Hiroyuki

    2014-05-01

    Abscisic acid is an essential hormone for seed dormancy. Our previous study using the plant gene switch system, a chemically induced gene expression system, demonstrated that induction of 9-cis-epoxycarotenoid dioxygenase (NCED), a rate-limiting ABA biosynthesis gene, was sufficient to suppress germination in imbibed Arabidopsis seeds. Here, we report development of an efficient experimental system that causes amplification of NCED expression during seed maturation. The system was created with a Triticum aestivum promoter containing ABA responsive elements (ABREs) and a Sorghum bicolor NCED to cause ABA-stimulated ABA biosynthesis and signaling, through a positive feedback mechanism. The chimeric gene pABRE:NCED enhanced NCED and ABF (ABRE-binding factor) expression in Arabidopsis Columbia-0 seeds, which caused 9- to 73-fold increases in ABA levels. The pABRE:NCED seeds exhibited unusually deep dormancy which lasted for more than 3 months. Interestingly, the amplified ABA pathways also caused enhanced expression of Arabidopsis NCED5, revealing the presence of positive feedback in the native system. These results demonstrated the robustness of positive feedback mechanisms and the significance of NCED expression, or single metabolic change, during seed maturation. The pABRE:NCED system provides an excellent experimental system producing dormant and non-dormant seeds of the same maternal origin, which differ only in zygotic ABA. The pABRE:NCED seeds contain a GFP marker which enables seed sorting between transgenic and null segregants and are ideal for comparative analysis. In addition to its utility in basic research, the system can also be applied to prevention of pre-harvest sprouting during crop production, and therefore contributes to translational biology. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  12. Maturity Effects on Contamination of High-Oleic Peanut Lots with Normal-Oleic Seeds of a Large Seeded Virginia Type Peanut Variety.

    USDA-ARS?s Scientific Manuscript database

    The need to segregate high- and normal-oleic peanut seeds has lead to investigations into potential sources of mixing. Previous work in our lab examined the development of in two lines of virginia type seeds, Bailey (normal-oleic) and Spain (high-oleic) for changes in the oleic to linoleic ratios (...

  13. Effects of boron nutrition and water stress on nitrogen fixation, seed d15N and d13C daynamics, and seed composition in soybean cultivars differing in maturities

    USDA-ARS?s Scientific Manuscript database

    Water stress is a major abiotic stress factor, resulting in a major yield loss and poor seed quality. Little information is available on the effects of B nutrition on seed composition under water stress. Therefore, the objective of the current research was to investigate the effects of foliar B nutr...

  14. Proteomic Analysis of Seed Dormancy in Arabidopsis1[W

    PubMed Central

    Chibani, Kamel; Ali-Rachedi, Sonia; Job, Claudette; Job, Dominique; Jullien, Marc; Grappin, Philippe

    2006-01-01

    The mechanisms controlling seed dormancy in Arabidopsis (Arabidopsis thaliana) have been characterized by proteomics using the dormant (D) accession Cvi originating from the Cape Verde Islands. Comparative studies carried out with freshly harvested dormant and after-ripened non-dormant (ND) seeds revealed a specific differential accumulation of 32 proteins. The data suggested that proteins associated with metabolic functions potentially involved in germination can accumulate during after-ripening in the dry state leading to dormancy release. Exogenous application of abscisic acid (ABA) to ND seeds strongly impeded their germination, which physiologically mimicked the behavior of D imbibed seeds. This application resulted in an alteration of the accumulation pattern of 71 proteins. There was a strong down-accumulation of a major part (90%) of these proteins, which were involved mainly in energetic and protein metabolisms. This feature suggested that exogenous ABA triggers proteolytic mechanisms in imbibed seeds. An analysis of de novo protein synthesis by two-dimensional gel electrophoresis in the presence of [35S]-methionine disclosed that exogenous ABA does not impede protein biosynthesis during imbibition. Furthermore, imbibed D seeds proved competent for de novo protein synthesis, demonstrating that impediment of protein translation was not the cause of the observed block of seed germination. However, the two-dimensional protein profiles were markedly different from those obtained with the ND seeds imbibed in ABA. Altogether, the data showed that the mechanisms blocking germination of the ND seeds by ABA application are different from those preventing germination of the D seeds imbibed in basal medium. PMID:17028149

  15. The Vigna unguiculata Gene Expression Atlas (VuGEA) from de novo assembly and quantification of RNA-seq data provides insights into seed maturation mechanisms.

    PubMed

    Yao, Shaolun; Jiang, Chuan; Huang, Ziyue; Torres-Jerez, Ivone; Chang, Junil; Zhang, Heng; Udvardi, Michael; Liu, Renyi; Verdier, Jerome

    2016-10-01

    Legume research and cultivar development are important for sustainable food production, especially of high-protein seed. Thanks to the development of deep-sequencing technologies, crop species have been taken to the front line, even without completion of their genome sequences. Black-eyed pea (Vigna unguiculata) is a legume species widely grown in semi-arid regions, which has high potential to provide stable seed protein production in a broad range of environments, including drought conditions. The black-eyed pea reference genotype has been used to generate a gene expression atlas of the major plant tissues (i.e. leaf, root, stem, flower, pod and seed), with a developmental time series for pods and seeds. From these various organs, 27 cDNA libraries were generated and sequenced, resulting in more than one billion reads. Following filtering, these reads were de novo assembled into 36 529 transcript sequences that were annotated and quantified across the different tissues. A set of 24 866 unique transcript sequences, called Unigenes, was identified. All the information related to transcript identification, annotation and quantification were stored into a gene expression atlas webserver (http://vugea.noble.org), providing a user-friendly interface and necessary tools to analyse transcript expression in black-eyed pea organs and to compare data with other legume species. Using this gene expression atlas, we inferred details of molecular processes that are active during seed development, and identified key putative regulators of seed maturation. Additionally, we found evidence for conservation of regulatory mechanisms involving miRNA in plant tissues subjected to drought and seeds undergoing desiccation.

  16. The regulatory gamma subunit SNF4b of the sucrose non-fermenting-related kinase complex is involved in longevity and stachyose accumulation during maturation of Medicago truncatula seeds.

    PubMed

    Rosnoblet, Claire; Aubry, Catherine; Leprince, Olivier; Vu, Benoit Ly; Rogniaux, Hélène; Buitink, Julia

    2007-07-01

    The sucrose non-fermenting-related kinase complex (SnRK1) is a heterotrimeric complex that plays a central role in metabolic adaptation to nutritional or environmental stresses. Here we investigate the role of a regulatory gamma-subunit of the complex, MtSNF4b, in Medicago truncatula seeds. Western blot indicated that MtSNF4b accumulated during seed filling, whereas it disappeared during imbibition of mature seeds. Gel filtration chromatography suggested that MtSNF4b assembled into a complex (450-600 kDa) at the onset of maturation drying, and dissociated during subsequent imbibition. Drying of desiccation-tolerant radicles led to a reassembly of the complex, in contrast to sensitive tissues. Silencing of MtSNF4b using a RNA interference (RNAi) approach resulted in a phenotype with reduced seed longevity, evident from the reduction in both germination percentage and seedling vigour in aged RNAi MtSNF4b seeds compared with the wild-type seeds. In parallel to the assembly of the complex, seeds of the RNAi MtSNF4b lines showed impaired accumulation of raffinose family oligosaccharides compared with control seeds. In mature seeds, the amount of stachyose was reduced by 50-80%, whereas the sucrose content was 60% higher. During imbibition, the differences in non-reducing sugar compared with the control disappeared in parallel to the disassembly of the complex. No difference was observed in dry weight or reserve accumulation such as proteins, lipids and starch. These data suggest that the regulatory gamma-subunit MtSNF4b confers a specific and temporal function to SnRK1 complexes in seeds, improving seed longevity and affecting the non-reducing sugar content at later stages of seed maturation.

  17. Complementation of Seed Maturation Phenotypes by Ectopic Expression of ABSCISIC ACID INSENSITIVE3, FUSCA3 and LEAFY COTYLEDON2 in Arabidopsis.

    PubMed

    Roscoe, Thomas T; Guilleminot, Jocelyne; Bessoule, Jean-Jacques; Berger, Frédéric; Devic, Martine

    2015-06-01

    ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3) and LEAFY COTYLEDON2 (LEC2), collectively the AFL, are master regulators of seed maturation processes. This study examined the role of AFL in the production of seed reserves in Arabidopsis. Quantification of seed reserves and cytological observations of afl mutant embryos show that protein and lipid but not starch reserves are spatially regulated by AFL. Although AFL contribute to a common regulation of reserves, ABI3 exerts a quantitatively greater control over storage protein content whereas FUS3 controls lipid content to a greater extent. Although ABI3 controls the reserve content throughout the embryo, LEC2 and FUS3 regulate reserves in distinct embryonic territories. By analyzing the ability of an individual ectopically expressed AFL to suppress afl phenotypes genetically, we show that conserved domains common to each component of the AFL are sufficient for the initiation of storage product synthesis and the establishment of embryo morphology. This confirms redundancy among the AFL and indicates a threshold necessary for function within the AFL pool. Since no individual AFL was able to suppress the tolerance to desiccation, mid- and late-maturation programs were uncoupled.

  18. Reaction of maturity group IV soybean plant introductions to Phomopsis Seed Decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) causes poor seed quality and suppresses yield in most of soybean-growing states in United States. In 2009, PSD caused over 12 million bushel yield loss in 16 southern states. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Dia...

  19. Reaction of maturity group III soybean plant introductions to Phomopsis seed decay in Arkansas Mississippi and Missouri 2009

    USDA-ARS?s Scientific Manuscript database

    Soybean Phomopsis seed decay (PSD) is the major cause of poor seed quality in the United States, especially in the mid-south region. The disease is primarily caused by Phomopsis longicolla along with other Phomopsis and Diaporthe spp. There are few management strategies for this disease, and these s...

  20. Biological effects of protons targeted to different ranges in Arabidopsis seeds.

    PubMed

    Qin, H L; Wang, Y G; Xue, J M; Miao, Q; Ma, L; Mei, T; Zhang, W M; Guo, W; Wang, J Y; Gu, H Y

    2007-05-01

    To investigate the biological effects of radiation damage induced at different depths of a plant seed and to investigate the difference in radiation response between dry seeds and water-imbibed seeds to the same type of radiation. Arabidopsis seeds of the wild-type Columbia ecotype were used in our experiments. Dry or water-imbibed Arabidopsis seeds were irradiated with 1.1 MeV, 2.6 MeV or 6.5 MeV protons (H+). For comparison, 30 keV nitrogen ions (N+) were also used to irradiate dry Arabidopsis seeds. The germination and survival rates of the seeds were measured after each irradiation. After irradiation with 2.6 MeV H+ and 6.5 MeV H+, the fluence-response curves for germination and survival had distinct shoulders and then survival was reduced rapidly with increasing fluence. 2.6 MeV H+ was more effective than 6.5 MeV H+ in inhibiting germination and survival and water-imbibed seeds were more sensitive to the 6.5 MeV H+ irradiation than dry seeds. For 1.1 MeV H+ the germination and survival rates were reduced gradually and an intermediate plateau emerged for germination, which was similar to that observed for survival following 30 keV N+ irradiation. One of the key morphologic malformations, the multi-SAM (shoot apical meristem), was observed both for dry and water-imbibed seeds after all proton irradiations and for the dry seeds after 30 keV N+ irradiation. Radiation-induced damage produced at different ranges in Arabidopsis seeds results in different fluence-response curves with water-imbibed seeds being more sensitive to proton irradiation than dry seeds. As well as the shoot apical meristem (SAM) being the primary target for irradiation, there exists a secondary target around the SAM that also contributes to the radiation response.

  1. A class II KNOX gene, KNOX4, controls seed physical dormancy

    PubMed Central

    Chai, Maofeng; Zhou, Chuanen; Molina, Isabel; Fu, Chunxiang; Nakashima, Jin; Li, Guifen; Zhang, Wenzheng; Park, Jongjin; Tang, Yuhong; Jiang, Qingzhen

    2016-01-01

    Physical dormancy of seed is an adaptive trait that widely exists in higher plants. This kind of dormancy is caused by a water-impermeable layer that blocks water and oxygen from the surrounding environment and keeps embryos in a viable status for a long time. Most of the work on hardseededness has focused on morphological structure and phenolic content of seed coat. The molecular mechanism underlying physical dormancy remains largely elusive. By screening a large number of Tnt1 retrotransposon-tagged Medicago truncatula lines, we identified nondormant seed mutants from this model legume species. Unlike wild-type hard seeds exhibiting physical dormancy, the mature mutant seeds imbibed water quickly and germinated easily, without the need for scarification. Microscopic observations of cross sections showed that the mutant phenotype was caused by a dysfunctional palisade cuticle layer in the seed coat. Chemical analysis found differences in lipid monomer composition between the wild-type and mutant seed coats. Genetic and molecular analyses revealed that a class II KNOTTED-like homeobox (KNOXII) gene, KNOX4, was responsible for the loss of physical dormancy in the seeds of the mutants. Microarray and chromatin immunoprecipitation analyses identified CYP86A, a gene associated with cutin biosynthesis, as one of the downstream target genes of KNOX4. This study elucidated a novel molecular mechanism of physical dormancy and revealed a new role of class II KNOX genes. Furthermore, KNOX4-like genes exist widely in seed plants but are lacking in nonseed species, indicating that KNOX4 may have diverged from the other KNOXII genes during the evolution of seed plants. PMID:27274062

  2. A class II KNOX gene, KNOX4, controls seed physical dormancy.

    PubMed

    Chai, Maofeng; Zhou, Chuanen; Molina, Isabel; Fu, Chunxiang; Nakashima, Jin; Li, Guifen; Zhang, Wenzheng; Park, Jongjin; Tang, Yuhong; Jiang, Qingzhen; Wang, Zeng-Yu

    2016-06-21

    Physical dormancy of seed is an adaptive trait that widely exists in higher plants. This kind of dormancy is caused by a water-impermeable layer that blocks water and oxygen from the surrounding environment and keeps embryos in a viable status for a long time. Most of the work on hardseededness has focused on morphological structure and phenolic content of seed coat. The molecular mechanism underlying physical dormancy remains largely elusive. By screening a large number of Tnt1 retrotransposon-tagged Medicago truncatula lines, we identified nondormant seed mutants from this model legume species. Unlike wild-type hard seeds exhibiting physical dormancy, the mature mutant seeds imbibed water quickly and germinated easily, without the need for scarification. Microscopic observations of cross sections showed that the mutant phenotype was caused by a dysfunctional palisade cuticle layer in the seed coat. Chemical analysis found differences in lipid monomer composition between the wild-type and mutant seed coats. Genetic and molecular analyses revealed that a class II KNOTTED-like homeobox (KNOXII) gene, KNOX4, was responsible for the loss of physical dormancy in the seeds of the mutants. Microarray and chromatin immunoprecipitation analyses identified CYP86A, a gene associated with cutin biosynthesis, as one of the downstream target genes of KNOX4 This study elucidated a novel molecular mechanism of physical dormancy and revealed a new role of class II KNOX genes. Furthermore, KNOX4-like genes exist widely in seed plants but are lacking in nonseed species, indicating that KNOX4 may have diverged from the other KNOXII genes during the evolution of seed plants.

  3. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    PubMed

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  4. The transcriptomes of dormant leafy spurge seeds under alternating temperature are differentially affected by a germination-enhancing pretreatment

    USDA-ARS?s Scientific Manuscript database

    Seed dormancy is an important stage in the life cycle of many non-domesticated plants, often characterized by the temporary failure to germinate under conditions that normally favor the process. Pre-treating dormant imbibed seeds at a constant temperate accelerated germination of leafy spurge seeds ...

  5. ITS2 barcoding DNA region combined with high resolution melting (HRM) analysis of Hyoscyami Semen, the mature seed of Hyoscyamus niger.

    PubMed

    Xiong, Chao; Hu, Zhi-Gang; Tu, Yuan; Liu, He-Gang; Wang, Ping; Zhao, Ming-Ming; SHIi, Yu-Hua; Wu, Lan; Sun, Wei; Chen, Shi-Lin

    2016-12-01

    Hyoscyami Semen, the mature dried seed of Hyoscyamus niger L., has long been used as a traditional Chinese medicine to treat human diseases. Hyoscyami Semen is found in local markets in China. In markets, sellers and buyers commonly inadvertently mix the seeds of H. niger with the seeds of related species such as Hygrophila salicifolia (Vahl) Nees, Astragalus complanatus R. Br., Cuscuta australis R. Br., Cuscuta chinensis Lam., and Impatiens balsamina L. because of their similar morphologies or similar names. Thus, developing a reliable method for discriminating H. niger seeds from its adulterants is necessary to reduce confusion and ensure the safe use of Hyoscyami Semen. The present study was designed to evaluate the efficiency of high-resolution melting analysis combined with DNA barcoding (Bar-HRM) with internal transcribed spacer 2 to discriminate H. niger. Our results show that Bar-HRM successfully identified the adulterants and detected the proportion of H. niger DNA extract within an admixture. In particular, HRM detected H. niger DNA extract in A. complanatus DNA extract at concentrations as low as 1%. In conclusion, the Bar-HRM method developed in the present study for authenticating H. niger is rapid and cost-effective. It can be used in the future to guarantee the purity of Hyoscyami Semen for the clinical use.

  6. Chromodomain, Helicase and DNA-binding CHD1 protein, CHR5, are involved in establishing active chromatin state of seed maturation genes.

    PubMed

    Shen, Yuan; Devic, Martine; Lepiniec, Loïc; Zhou, Dao-Xiu

    2015-08-01

    Chromatin modification and remodelling are the basis for epigenetic regulation of gene expression. LEAFY COTYLEDON 1 (LEC1), LEAFY COTYLEDON 2 (LEC2), ABSCISIC ACID-INSENSITIVE 3 (ABI3) and FUSCA3 (FUS3) are key regulators of embryo development and are repressed after seed maturation. The chromatin remodelling CHD3 protein PICKLE (PKL) is involved in the epigenetic silencing of the genes. However, the chromatin mechanism that establishes the active state of these genes during early embryo development is not clear. We show that the Arabidopsis CHD1-related gene, CHR5, is activated during embryo development. Mutation of the gene reduced expression of LEC1, ABI3 and FUS3 in developing embryo and accumulation of seed storage proteins. Analysis of double mutants revealed an antagonistic function between CHR5 and PKL in embryo gene expression and seed storage protein accumulation, which likely acted on the promoter region of the genes. CHR5 was shown to be associated with the promoters of ABI3 and FUS3 and to be required to reduce nucleosome occupancy near the transcriptional start site. The results suggest that CHR5 is involved in establishing the active state of embryo regulatory genes by reducing nucleosomal barrier, which may be exploited to enhance seed protein production.

  7. Extracellular Vesicles Containing P301L Mutant Tau Accelerate Pathological Tau Phosphorylation and Oligomer Formation but Do Not Seed Mature Neurofibrillary Tangles in ALZ17 Mice.

    PubMed

    Baker, Siân; Polanco, Juan Carlos; Götz, Jϋrgen

    2016-10-04

    In Alzheimer's disease, the distribution of neurofibrillary tangles, a histological hallmark comprised of phosphorylated forms of the protein tau, follows a distinct pattern through anatomically connected brain regions. The well-documented correlation between the severity of tau pathology and disease progression implies a prion-like seeding and spreading mechanism for tau. Experimentally, this has been addressed in transgenic mice by the injection of protein lysates isolated from brains of transgenic mice or patients with tauopathies, including AD, that were shown to behave like seeds, accelerating tau pathology and tangle formation in predisposed mice. More specifically, in vivo data suggest that brain lysates from mice harboring the P301S mutation of tau can seed protein aggregation when injected into the hippocampi of human wild-type tau transgenic ALZ17 mice. Here, we compared the seeding potential of lysates and extracellular vesicles enriched for exosomes (EVs) from wild-type and human P301L tau transgenic rTg4510 mouse brains. We show that transgenic EVs cause increased tau phosphorylation and soluble oligomer formation in a manner comparable to that of freely available proteins in brain lysates, a prerequisite for the formation of mature protein aggregates.

  8. WRKY41 controls Arabidopsis seed dormancy via direct regulation of ABI3 transcript levels not downstream of ABA.

    PubMed

    Ding, Zhong Jie; Yan, Jing Ying; Li, Gui Xin; Wu, Zhong Chang; Zhang, Shu Qun; Zheng, Shao Jian

    2014-09-01

    Although seed dormancy is an important agronomic trait, its molecular basis is poorly understood. ABSCISIC ACID INSENSITIVE 3 (ABI3) plays an essential role in the establishment of seed dormancy. Here, we show that the lack of a seed-expressed WRKY transcription factor, WRKY41, confers reduced primary seed dormancy and thermoinhibition, phenotypes resembling those for a lack of ABI3. Loss-of-function abi3-17 and wrky41 alleles also both confer reduced sensitivity to ABA during germination and early seedling growth. Absence of WRKY41 decreases ABI3 transcript abundance in maturing and imbibed seeds, whereas transgenically overexpressing WRKY41 increases ABI3 expression. Moreover, transgenic overexpression of ABI3 completely restores seed dormancy phenotypes on wrky41. ChIP-qPCR and EMSA reveal that WRKY41 binds directly to the ABI3 promoter through three adjacent W-boxes, and a transactivation assay indicates that these W-boxes are essential for ABI3 expression. Whilst RT-qPCR analysis shows that the regulation of ABI3 by WRKY41 is not through ABA and other factors known to promote ABI3 transcription during seed maturation and germination, we also show that high concentrations of ABA might promote negative feedback regulation of WRKY41 expression. Finally, analysis of the wrky41 aba2 double mutant confirms that WRKY41 and ABA collaboratively regulate ABI3 expression and seed dormancy. In summary, our results demonstrate that WRKY41 is an important regulator of ABI3 expression, and hence of seed dormancy.

  9. Resistance mechanisms to toxin-mediated charcoal rot infection in maturity group III soybean: role of seed phenol lignin soflavones sugars and seed minerals in charcoal rot resistance

    USDA-ARS?s Scientific Manuscript database

    Charcoal rot is a disease caused by the fungus Macrophomina phaseolina (Tassi) Goid, and thought to infect the plants through roots by a toxin-mediated mechanism, resulting in yield loss and poor seed quality, especially under drought conditions. The mechanism by which this infection occurs is not y...

  10. Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1

    USDA-ARS?s Scientific Manuscript database

    The end of orthodox seed development is typified by a developmentally regulated period of dehydration leading to the loss of bulk water from the entire structure. When dehydration occurs, the cytoplasm condenses and intracellular components become more crowded, providing an environment amenable to ...

  11. A gastroretentive drug delivery system of lisinopril imbibed on isabgol-husk.

    PubMed

    Semwal, Ravindra; Semwal, Ruchi Badoni; Semwal, Deepak Kumar

    2014-01-01

    The gastroretentive drug delivery system is site-specific and allows the drug to remain in the stomach for a prolonged period of time so that it can be released in a controlled manner in gastrointestinal tract. The present study was carried out to develop a gastroretentive drug delivery system using isabgol as an excipient to prolong the residence time of the model drug lisinopril in the stomach. The gastroretentive ability of isabgol was increased by addition of NaHCO3 as a gas-generating agent while its mucoadhesive property was enhanced by incorporation of HPMC-K4M. The drug, NaHCO3 and HPMC-K3M were imbibed on isabgol-husk as per entrapment efficiency of the isabgol-husk. After drying, the product was filled in a hard gelatin capsule and evaluated for its buoyancy, mucoadhesive properties, swelling index and in vitro drug release. The lisinopril released through isabgol was delayed by 12 hours when compared to a preparation available on the market which released the complete drug in 0.5 hours. The drug release study of lisinopril from the formulation follows first order kinetics using a diffusion controlled mechanism. The results from the present study revealed that isabgol can be used as a potential excipient for the formulation of gastroretentive drug delivery systems in the near future.

  12. Fagopyritol B1, O-alpha-D-galactopyranosyl-(1-->2)-D-chiro-inositol, a galactosyl cyclitol in maturing buckwheat seeds associated with desiccation tolerance.

    PubMed

    Horbowicz, M; Brenac, P; Obendorf, R L

    1998-05-01

    O-alpha-D-Galactopyranosyl-(1-->2)-D-chiro-inositol, herein named fagopyritol B1, was identified as a major soluble carbohydrate (40% of total) in buckwheat (Fagopyrum esculentum Moench, Polygonaceae) embryos. Analysis of hydrolysis products of purified compounds and of the crude extract led to the conclusion that buckwheat embryos have five alpha-galactosyl D-chiro-inositols: fagopyritol A1 and fagopyritol B1 (mono-galactosyl D-chiro-inositol isomers), fagopyritol A2 and fagopyritol B2 (di-galactosyl D-chiro-inositol isomers), and fagopyritol B3 (tri-galactosyl D-chiro-inositol). Other soluble carbohydrates analyzed by high-resolution gas chromatography included sucrose (42% of total), D-chiro-inositol, myo-inositol, galactinol, raffinose and stachyose (1% of total), but no reducing sugars. All fagopyritols were readily hydrolyzed by alpha-galactosidase (EC 3.2.1.22) from green coffee bean, demonstrating alpha-galactosyl linkage. Retention time of fagopyritol B1 was identical to the retention time of O-alpha-D-galactopyranosyl-(1-->2)-D-chiro-inositol from soybean (Glycine max (L.) Merrill, Leguminosae), suggesting that the alpha-galactosyl linkage is to the 2-position of D-chiro-inositol. Accumulation of fagopyritol B1 was associated with acquisition of desiccation tolerance during seed development and maturation in planta, and loss of fagopyritol B1 correlated with loss of desiccation tolerance during germination. Embryos of seeds grown at 18 degrees C, a condition that favors enhanced seed vigor and storability, had a sucrose-to-fagopyritol B1 ratio of 0.8 compared to a ratio of 2.46 for seeds grown at 25 degrees C. We propose that fagopyritol B1 facilitates desiccation tolerance and storability of buckwheat seeds.

  13. Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart.

    PubMed

    Rao, Jun; Yang, Litao; Wang, Congmao; Zhang, Dabing; Shi, Jianxin

    2013-01-01

    The next generation sequencing technologies have been recently used for transcriptome analysis in many organisms because of the decreased sequencing cost and increased sequence output. In this study, we used digital gene expression (DGE) technique to compare the transcriptomic changes in mature seeds between transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. Deep sequencing of DGE libraries of the transgenic and its non-transgenic counterpart seeds generated 3,783,500 and 3,790,500 reads of 21-nucleotide, respectively, with frequencies spanning over four orders of magnitude. In transgenic maize, 53.97% of the unambiguous signature tags were mapped to the maize B73 reference genome, and 46.47% of genes were detected by at least two reads; in non-transgenic maize, the corresponding numbers were 51.38% and 47.39%. Compared with non-transgenic counterpart, about 12% of detected genes were differentially expressed in the transcriptome of transgenic maize seeds. Among these differentially expressed genes, there were 23 transcription factors in 14 families and no allergen genes. Pathway enrichment analysis revealed that 21 pathways were significantly affected by the transgenic event, in which the pathway involved in protein processing in endoplasmic reticulum was the most significantly affected. Results from this study indicated that both intended and unintended transcriptomic changes occurred in the transgenic maize, thus emphasizing the importance of transcriptome profiling in risk assessment of transgenic events.

  14. Agricultural recovery of a formerly radioactive area: I. Establishment of high-resolution quantitative protein map of mature flax seeds harvested from the remediated Chernobyl area.

    PubMed

    Klubicová, Katarína; Berčák, Michal; Danchenko, Maksym; Skultety, Ludovit; Rashydov, Namik M; Berezhna, Valentyna V; Miernyk, Ján A; Hajduch, Martin

    2011-07-01

    In recent years there has been an increasing tendency toward remediation of contaminated areas for agriculture purposes. The study described herein is part of a comprehensive, long-term characterization of crop plants grown in the area formerly contaminated with radioactivity. As a first step, we have established a quantitative map of proteins isolated from mature flax (Linum usitatissimum L.) seeds harvested from plants grown in a remediated plot localized directly in Chernobyl town. Flax was selected because it is a crop of economic and historical importance, despite the relative paucity of molecular resources. We used 2-dimensional electrophoresis followed by tandem mass spectrometry to establish a high-resolution seed proteome map. This approach yielded quantitative information for 318 protein spots. Genomic sequence resources for flax are very limited, leaving us with an "unknown function" annotation for 38% of the proteins analyzed including several that comprise very large spots. In addition to the seed storage proteins, we were able to reliably identify 82 proteins many of which are involved with central metabolism. Copyright © 2010 Elsevier Ltd. All rights reserved.

  15. Stable genetic transformation of castor (Ricinus communis L.) via particle gun-mediated gene transfer using embryo axes from mature seeds.

    PubMed

    Sailaja, M; Tarakeswari, M; Sujatha, M

    2008-09-01

    The first successful attempt to produce stably transformed castor plants through direct gene transfer using particle gun (BioRad) is described. Decotyledonated embryos from mature seeds were germinated and the embryonic axis was induced to proliferate on Murashige and Skoog (MS) medium supplemented with 0.5 mg l(-1) thidiazuron (TDZ) and subjected to bombardment after 5-7 days of pre-incubation. The physical parameters for transient transformation were optimized using the UidA gene encoding beta-glucuronidase (GUS) as the reporter gene and with hygromycin-phosphotransferase (hptII) gene as selectable marker. Statistical analysis revealed that helium pressure, target distance, osmoticum, microcarrier type and size, DNA quantity, explant type and number of bombardments had significant influence on transformation efficiency, while the effect of genotype was non-significant. Of the different variables evaluated, embryonic axes from mature seeds, a target distance of 6.0 cm, helium pressure of 1,100 psi, 0.6 microm gold microcarriers, single time bombardment and with both pre- and post-osmoticum were found ideal. Selection of putative transformants was done on MS medium supplemented with 0.5 mg l(-1) BA and hygromycin (20, 40 and 60 mg l(-1)) for 3 cycles. The stable integration of the incorporated gene into castor genome was confirmed with PCR and Southern analysis of T0 and T1 plants. Transformation frequency in terms of plants grown to maturity and showing the presence of the introduced genes was 1.4%. The present results demonstrate the possibility of transformation of embryonic meristematic tissues of castor through particle delivery system.

  16. Seed moisture at physiological maturity in oilseed and confectionary sunflower hybrids in the Northern U.S.

    USDA-ARS?s Scientific Manuscript database

    Desiccating sunflower (Helianthus annuus L.) to hasten harvest has become a common practice in the northern U.S. and can aid in reducing yield loss associated with severe weather and bird predation. Currently, it is recommended to apply desiccants to sunflower at 35% or less seed moisture correspond...

  17. Mass spectrometry imaging of mature cotton embryos with altered seed oil and protein reserves from diverse cotton (Gossypium sp.) genotypes

    USDA-ARS?s Scientific Manuscript database

    The domestication and breeding of cotton for elite, high-fiber cultivars has directly led to reduced genetic variation of seed constituents within currently cultivated accessions. A large screen of cottonseed embryos was carried out using time-domain 1H nuclear magnetic resonance (TD-NMR) for alter...

  18. Electrophysiology of pumpkin seeds: Memristors in vivo

    PubMed Central

    Volkov, Alexander G.; Nyasani, Eunice K.; Tuckett, Clayton; Greeman, Esther A.; Markin, Vladislav S.

    2016-01-01

    ABSTRACT Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K+ channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds. PMID:26926652

  19. Electrophysiology of pumpkin seeds: Memristors in vivo.

    PubMed

    Volkov, Alexander G; Nyasani, Eunice K; Tuckett, Clayton; Greeman, Esther A; Markin, Vladislav S

    2016-01-01

    Leon Chua, the discoverer of a memristor, theoretically predicted that voltage gated ion channels can be memristors. We recently found memristors in different plants such as the Venus flytrap, Mimosa pudica, Aloe vera, apple fruits, and in potato tubers. There are no publications in literature about the existence of memristors in seeds. The goal of this work was to discover if pumpkin seeds might have memristors. We selected Cucurbita pepo L., cv. Cinderella, Cucurbita maxima L. cv Warty Goblin, and Cucurbita maxima L., cv. Jarrahdale seeds for this analysis. In these seeds, we found the presence of resistors with memory. The analysis was based on cyclic voltammetry where a memristor should manifest itself as a nonlinear two-terminal electrical element, which exhibits a pinched hysteresis loop on a current-voltage plane for any bipolar cyclic voltage input signal. Dry dormant pumpkin seeds have very high electrical resistance without memristive properties. The electrostimulation by bipolar sinusoidal or triangular periodic waves induces electrical responses in imbibed pumpkin seeds with fingerprints of memristors. Tetraethylammonium chloride, an inhibitor of voltage gated K(+) channels, transforms a memristor to a resistor in pumpkin seeds. NPPB (5-Nitro-2-(3-phenylpropylamino)benzoic acid) inhibits the memristive properties of imbibed pumpkin seeds. The discovery of memristors in pumpkin seeds creates a new direction in the understanding of electrophysiological phenomena in seeds.

  20. Immature Seed Endosperm and Embryo Proteomics of the Lotus (Nelumbo Nucifera Gaertn.) by One-Dimensional Gel-Based Tandem Mass Spectrometry and a Comparison with the Mature Endosperm Proteome

    PubMed Central

    Moro, Carlo F.; Fukao, Yoichiro; Shibato, Junko; Rakwal, Randeep; Agrawal, Ganesh Kumar; Shioda, Seiji; Kouzuma, Yoshiaki; Yonekura, Masami

    2015-01-01

    Lotus (Nelumbo nucifera Gaertn.) seed proteome has been the focus of our studies, and we have recently established the first proteome dataset for its mature seed endosperm. The current study unravels the immature endosperm, as well as the embryo proteome, to provide a comprehensive dataset of the lotus seed proteins and a comparison between the mature and immature endosperm tissues across the seed’s development. One-dimensional gel electrophoresis (SDS-PAGE) linked with tandem mass spectrometry provided a protein inventory of the immature endosperm (122 non-redundant proteins) and embryo (141 non-redundant proteins) tissues. Comparing with the previous mature endosperm dataset (66 non-redundant proteins), a total of 206 non-redundant proteins were identified across all three tissues of the lotus seed. Results revealed some significant differences in proteome composition between the three lotus seed tissues, most notably between the mature endosperm and its immature developmental stage shifting the proteins from nutrient production to nutrient storage. PMID:28248268

  1. An efficient and reproducible method for regeneration of whole plants from mature seeds of a high yielding Indica rice (Oryza sativa L.) variety PAU 201.

    PubMed

    Wani, Shabir H; Sanghera, Gulzar S; Gosal, Satbir S

    2011-07-01

    Tissue culture is one of the tools necessary for genetic engineering and many other breeding programs. Moreover, selection of high regenerating rice varieties is a pre-requisite for success in rice biotechnology. In this report we established a reproducible plant regeneration system through somatic embryogenesis. The explants used for regeneration were embryogenic calli derived from mature seeds cultured on callus induction media. For callus induction mature seeds were cultured on MS medium containing 30 g/l sucrose combined with 560 mg/l proline and 1.5-3.5 mg/l 2,4-D and 0.5-1.5 mg/l Kin. For plant regeneration, embryogenic calli were transferred to MS medium containing 30 g/l sucrose, supplemented with 1.0-3.0 mg/l BAP, 0.5-1.5 mg/l Kin and 0.5-1.5 mg/l NAA. The highest frequency of callus induction (44.4%) was observed on the MS medium supplemented with 2.5 mg/l 2,4-D, 0.5 mg/l Kin, 560 mg/l proline and 30 g/l sucrose. The highest frequency of shoot regeneration (42.5%) was observed on the MS medium supplemented with 2.0 mg/l BAP, 0.5 mg/l NAA and 0.5 mg/l Kin. The plantlets were hardened and transferred to soil in earthen pots. The developed method was highly reproducible. The in vitro developed plants showed normal growth and flowering under glasshouse conditions. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Seed Development and Germination

    USDA-ARS?s Scientific Manuscript database

    Seed is the fertilized and matured ovule of angiosperms and gymnosperms and represents a crucial stage in the life cycle of plants. Seeds of diverse plant species may display differences in size, shape and color. Despite apparent morphological variations, most mature seeds consist of three major com...

  3. Libidibia ferrea Mature Seeds Promote Antinociceptive Effect by Peripheral and Central Pathway: Possible Involvement of Opioid and Cholinergic Receptors

    PubMed Central

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies. PMID:24860820

  4. Transcriptome Profile of Near-Isogenic Soybean Lines for β-Conglycinin α-Subunit Deficiency during Seed Maturation

    PubMed Central

    Song, Bo; An, Lixin; Han, Yanjing; Gao, Hongxiu; Ren, Hongbo; Zhao, Xue; Wei, Xiaoshuang; Krishnan, Hari B.

    2016-01-01

    Crossing, backcrossing, and molecular marker-assisted background selection produced a soybean (Glycine max) near-isogenic line (cgy-2-NIL) containing the cgy-2 allele, which is responsible for the absence of the allergenic α-subunit of β-conglycinin. To identify α-null-related transcriptional changes, the gene expressions of cgy-2-NIL and its recurrent parent DN47 were compared using Illumina high-throughput RNA-sequencing of samples at 25, 35, 50, and 55 days after flowering (DAF). Seeds at 18 DAF served as the control. Comparison of the transcript profiles identified 3,543 differentially expressed genes (DEGs) between the two genotypes, with 2,193 genes downregulated and 1,350 genes upregulated. The largest numbers of DEGs were identified at 55 DAF. The DEGs identified at 25 DAF represented a unique pattern of GO category distributions. KEGG pathway analyses identified 541 altered metabolic pathways in cgy-2-NIL. At 18DAF, 12 DEGs were involved in arginine and proline metabolism. The cgy-2 allele in the homozygous form modified the expression of several Cupin allergen genes. The cgy-2 allele is an alteration of a functional allele that is closely related to soybean protein amino acid quality, and is useful for hypoallergenic soybean breeding programs that aim to improve seed protein quality. PMID:27532666

  5. Libidibia ferrea mature seeds promote antinociceptive effect by peripheral and central pathway: possible involvement of opioid and cholinergic receptors.

    PubMed

    Sawada, Luis Armando; Monteiro, Vanessa Sâmia da Conçeição; Rabelo, Guilherme Rodrigues; Dias, Germana Bueno; Da Cunha, Maura; do Nascimento, José Luiz Martins; Bastos, Gilmara de Nazareth Tavares

    2014-01-01

    Libidibia ferrea (LF) is a medicinal plant that holds many pharmacological properties. We evaluated the antinociceptive effect in the LF aqueous seed extract and Lipidic Portion of Libidibia ferrea (LPLF), partially elucidating their mechanisms. Histochemical tests and Gas chromatography of the LPLF were performed to characterize its fatty acids. Acetic acid-induced abdominal constriction, formalin-induced pain, and hot-plate test in mice were employed in the study. In all experiments, aqueous extract or LPLF was administered systemically at the doses of 1, 5, and 10 mg/kg. LF aqueous seed extract and LPLF demonstrated a dose-dependent antinociceptive effect in all tests indicating both peripheral anti-inflammatory and central analgesia properties. Also, the use of atropine (5 mg/kg), naloxone (5 mg/kg) in the abdominal writhing test was able to reverse the antinociceptive effect of the LPLF, indicating that at least one of LF lipids components is responsible for the dose related antinociceptive action in chemical and thermal models of nociception in mice. Together, the present results suggested that Libidibia ferrea induced antinociceptive activity is possibly related to its ability to inhibit opioid, cholinergic receptors, and cyclooxygenase-2 pathway, since its main component, linoleic acid, has been demonstrated to produce such effect in previous studies.

  6. Transcriptome Profile of Near-Isogenic Soybean Lines for β-Conglycinin α-Subunit Deficiency during Seed Maturation.

    PubMed

    Song, Bo; An, Lixin; Han, Yanjing; Gao, Hongxiu; Ren, Hongbo; Zhao, Xue; Wei, Xiaoshuang; Krishnan, Hari B; Liu, Shanshan

    2016-01-01

    Crossing, backcrossing, and molecular marker-assisted background selection produced a soybean (Glycine max) near-isogenic line (cgy-2-NIL) containing the cgy-2 allele, which is responsible for the absence of the allergenic α-subunit of β-conglycinin. To identify α-null-related transcriptional changes, the gene expressions of cgy-2-NIL and its recurrent parent DN47 were compared using Illumina high-throughput RNA-sequencing of samples at 25, 35, 50, and 55 days after flowering (DAF). Seeds at 18 DAF served as the control. Comparison of the transcript profiles identified 3,543 differentially expressed genes (DEGs) between the two genotypes, with 2,193 genes downregulated and 1,350 genes upregulated. The largest numbers of DEGs were identified at 55 DAF. The DEGs identified at 25 DAF represented a unique pattern of GO category distributions. KEGG pathway analyses identified 541 altered metabolic pathways in cgy-2-NIL. At 18DAF, 12 DEGs were involved in arginine and proline metabolism. The cgy-2 allele in the homozygous form modified the expression of several Cupin allergen genes. The cgy-2 allele is an alteration of a functional allele that is closely related to soybean protein amino acid quality, and is useful for hypoallergenic soybean breeding programs that aim to improve seed protein quality.

  7. Efficiency of seed production in southern pine seed orchards

    Treesearch

    David L. Bramlett

    1977-01-01

    Seed production in southern pine seed orchards can be evaluated by estimating the efficiency of four separate stages of cone, seed, and seedling development. Calculated values are: cone efficiency (CE), the ratio of mature cones to the initial flower crop; seed efficiency (SE), the ratio of filled seeds per cone to the seed potential; extraction efficiency (EE), the...

  8. Analysis of gene expression profiles of two near-isogenic lines differing at a QTL region affecting oil content at high temperatures during seed maturation in oilseed rape (Brassica napus L.).

    PubMed

    Zhu, Yana; Cao, Zhengying; Xu, Fei; Huang, Yi; Chen, Mingxun; Guo, Wanli; Zhou, Weijun; Zhu, Jun; Meng, Jinling; Zou, Jitao; Jiang, Lixi

    2012-02-01

    Seed oil production in oilseed rape is greatly affected by the temperature during seed maturation. However, the molecular mechanism of the interaction between genotype and temperature in seed maturation remains largely unknown. We developed two near-isogenic lines (NIL-9 and NIL-1), differing mainly at a QTL region influencing oil content on Brassica napus chromosome C2 (qOC.C2.2) under high temperature during seed maturation. The NILs were treated under different temperatures in a growth chamber after flowering. RNA from developing seeds was extracted on the 25th day after flowering (DAF), and transcriptomes were determined by microarray analysis. Statistical analysis indicated that genotype, temperature, and the interaction between genotype and temperature (G × T) all significantly affected the expression of the genes in the 25 DAF seeds, resulting in 4,982, 19,111, and 839 differentially expressed unisequences, respectively. NIL-9 had higher seed oil content than NIL-1 under all of the temperatures in the experiments, especially at high temperatures. A total of 39 genes, among which six are located at qOC.C2.2, were differentially expressed among the NILs regardless of temperature, indicating the core genetic divergence that was unaffected by temperature. Increasing the temperature caused a reduction in seed oil content that was accompanied by the downregulation of a number of genes associated with red light response, photosynthesis, response to gibberellic acid stimulus, and translational elongation, as well as several genes of importance in the lipid metabolism pathway. These results contribute to our knowledge of the molecular nature of QTLs and the interaction between genotype and temperature.

  9. Seed Detection and Discrimination by Ground Beetles (Coleoptera: Carabidae) Are Associated with Olfactory Cues.

    PubMed

    Kulkarni, Sharavari S; Dosdall, Lloyd M; Spence, John R; Willenborg, Christian J

    2017-01-01

    Olfactory ability is an element of fitness in many animals, guiding choices among alternatives such as mating partners or food. Ground beetles (Coleoptera; Carabidae), exhibit preferences for prey, and some species are well-known weed seed predators. We used olfactometer-based bioassays to determine if olfactory stimuli are associated with detection of Brassica napus L., Sinapis arvensis L., and Thlaspi arvense L. seeds by ground beetles characteristic of agroecosystems, and whether behavioural responses to seed odors depended on seed physiological state (imbibed or unimbibed). Imbibed B.napus seeds were preferred over other weed species by two of the three carabid species tested. Only A. littoralis responded significantly to unimbibed seeds of B. napus. Sensitivity to olfactory cues appeared to be highly specific as all carabid species discriminated between the olfactory cues of imbibed brassicaceous weed seeds, but did not discriminate between weed seeds that were unimbibed. Overall, our data suggest that depending on seed physiological state, odours can play an important role in the ability of carabids to find and recognize seeds of particular weed species.

  10. Seed Detection and Discrimination by Ground Beetles (Coleoptera: Carabidae) Are Associated with Olfactory Cues

    PubMed Central

    2017-01-01

    Olfactory ability is an element of fitness in many animals, guiding choices among alternatives such as mating partners or food. Ground beetles (Coleoptera; Carabidae), exhibit preferences for prey, and some species are well-known weed seed predators. We used olfactometer-based bioassays to determine if olfactory stimuli are associated with detection of Brassica napus L., Sinapis arvensis L., and Thlaspi arvense L. seeds by ground beetles characteristic of agroecosystems, and whether behavioural responses to seed odors depended on seed physiological state (imbibed or unimbibed). Imbibed B.napus seeds were preferred over other weed species by two of the three carabid species tested. Only A. littoralis responded significantly to unimbibed seeds of B. napus. Sensitivity to olfactory cues appeared to be highly specific as all carabid species discriminated between the olfactory cues of imbibed brassicaceous weed seeds, but did not discriminate between weed seeds that were unimbibed. Overall, our data suggest that depending on seed physiological state, odours can play an important role in the ability of carabids to find and recognize seeds of particular weed species. PMID:28107464

  11. Mitochondrial structural and antioxidant system responses to aging in oat (Avena sativa L.) seeds with different moisture contents.

    PubMed

    Xia, Fangshan; Wang, Xianguo; Li, Manli; Mao, Peisheng

    2015-09-01

    We observed the relationship between lifespan and mitochondria, including antioxidant systems, ultrastructure, and the hydrogen peroxide and malondialdehyde contents in 4 h imbibed oat (Avena sativa L.) seeds that were aged with different moisture contents (4%, 10% and 16%) for 0 (the control), 8, 16, 24, 32 and 40 d at 45 °C. The results showed that the decline in the oat seed vigor and in the integrity of the mitochondrial ultrastructure occurred during the aging process, and that these changes were enhanced by higher moisture contents. Mitochondrial antioxidants in imbibed oat seeds aged with a 4% moisture content were maintained at higher levels than imbibed oat seeds aged with a 10% and 16% moisture content. These results indicated that the levels of mitochondrial antioxidants and malondialdehyde after imbibition were related to the integrity of the mitochondrial membrane in aged oat seeds. The scavenging role of mitochondrial superoxide dismutase was inhibited in imbibed oat seeds aged at the early stage. Monodehydroascorbate reductase and dehydroascorbate reductase played more important roles than glutathione reductase in ascorbate regeneration in aged oat seeds during imbibition. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Osmoconditioning prevents the onset of microtubular cytoskeleton and activation of cell cycle and is detrimental for germination of Jatropha curcas L. seeds.

    PubMed

    de Brito, C D; Loureiro, M B; Ribeiro, P R; Vasconcelos, P C T; Fernandez, L G; de Castro, R D

    2016-11-01

    Jatropha curcas is an oilseed crop renowned for its tolerance to a diverse range of environmental stresses. In Brazil, this species is grown in semiarid regions where crop establishment requires a better understanding of the mechanisms underlying appropriate seed, seedling and plant behaviour under water restriction conditions. In this context, the objective of this study was to investigate the physiological and cytological profiles of J. curcas seeds in response to imbibition in water (control) and in polyethylene glycol solution (osmoticum). Seed germinability and reactivation of cell cycle events were assessed by means of different germination parameters and immunohistochemical detection of tubulin and microtubules, i.e. tubulin accumulation and microtubular cytoskeleton configurations in water imbibed seeds (control) and in seeds imbibed in the osmoticum. Immunohistochemical analysis revealed increasing accumulation of tubulin and appearance of microtubular cytoskeleton in seed embryo radicles imbibed in water from 48 h onwards. Mitotic microtubules were only visible in seeds imbibed in water, after radicle protrusion, as an indication of cell cycle reactivation and cell proliferation, with subsequent root development. Imbibition in osmoticum prevented accumulation of microtubules, i.e. activation of cell cycle, therefore germination could not be resumed. Osmoconditioned seeds were able to survive re-drying and could resume germination after re-imbibition in water, however, with lower germination performance, possibly due to acquisition of secondary dormancy. This study provides important insights into understanding of the physiological aspects of J. curcas seed germination in response to water restriction conditions.

  13. Impact of protective agents and drying methods on desiccation tolerance of Salix nigra L. seeds.

    PubMed

    Santagapita, Patricio R; Ott Schneider, Helena; Agudelo-Laverde, Lina M; Buera, M Pilar

    2014-09-01

    Willow seeds are classified as orthodox, but they show some recalcitrant characteristics, as they lose viability in a few weeks at room temperature. The aim of this work was to improve the desiccation tolerance of willow seeds (Salix nigra L.), as a model of sensitive materials to dehydration, through imbibition in solutions and later vacuum (VD) or freeze-drying (FD). Imbibition was conducted with 45% w/v trehalose or polyethylene glycol 400 -PEG- or water prior to dehydration treatments. Water- and especially trehalose-imbibed seeds subjected to VD showed better germination capability with respect to the freeze-dried ones. Water crystallization was mainly responsible for the great loss of capability germination observed in water- or trehalose-imbibed seeds subjected to FD. PEG behavior was better when seeds were FD instead of VD. DSC thermograms of seeds allowed to identify two thermal transitions corresponding to lipids melting and to proteins denaturation. This last transition reveals information about proteins state/functionality. Dehydration of control and PEG- or water-imbibed seeds affected proteins functionality leading to lower germinability. In the case of trehalose-imbibed seeds subjected to VD, proteins maintained their native state along dehydration, and the seeds showed a great germination capacity for all the water content range. Germinated seeds showed higher luminosity (L*), greenness (a*) and yellowness (b*) values than not-germinated seeds independently of the employed agent. Present work reveals that the presence of adequate protective agents as well the dehydration method were the main critical factors involved in willow seed desiccation tolerance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Loss of desiccation tolerance in Copaifera langsdorffii Desf. seeds during germination.

    PubMed

    Pereira, W V S; Faria, J M R; Tonetti, O A O; Silva, E A A

    2014-05-01

    This study evaluated the loss of desiccation tolerance in C. langsdorffii seeds during the germination process. Seeds were imbibed for 24, 48, 72, 96, 120 and 144 hours and dried to the initial moisture content, kept in this state for 3 days after which they were submitted to pre-humidification and rehydration. Ultraestructural evaluations were done aiming to observe the cell damage caused by the dry process. Desiccation tolerance was evaluated in terms of the percentage of normal seedlings. Seeds not submitted to the drying process presented 61% of normal seedlings, and after 24 hours of imbibition, followed by drying, the seeds presented the same percentage of survival. However, after 48 hours of imbibition, seeds started to lose the desiccation tolerance. There was twenty six percent of normal seedlings formed from seeds imbibed for 96 hours and later dried and rehydrated. Only 5% of seeds imbibed for 144 hours, dried and rehydrated formed normal seedlings. At 144 hours of imbibition followed the dry process, there was damage into the cell structure, indicating that the seeds were unable to keep the cell structure during the drying process. Copaifera langsdorffii seeds loses the desiccation tolerance at the start of Phase 2 of imbibition.

  15. Seed anatomy and water uptake in relation to seed dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae).

    PubMed

    Orozco-Segovia, A; Márquez-Guzmán, J; Sánchez-Coronado, M E; Gamboa de Buen, A; Baskin, J M; Baskin, C C

    2007-04-01

    There is considerable confusion in the literature concerning impermeability of seeds with 'hard' seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. A germination valve and a water channel are formed in the hilum-micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae.

  16. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    PubMed Central

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  17. Seed Treatment with Systemic Fungicides for the Control of Fusiform Rust in Loblolly Pine

    Treesearch

    John G. Mexal; Glenn A. Snow

    1978-01-01

    A new systemic fungicide, Bayleton, may economically control fusiform rust in southern pine nurseries. Stratified seeds of loblolly pine (Pinus taeda L.) were imbibed with Bayleton and two other systemic fungicides, and the seedlings were inoculated at three stages of emergence with spores of Cronartium quercuum (Berk.) Miyabe ex...

  18. Physiology of Oil Seeds

    PubMed Central

    Ketring, D. L.; Morgan, P. W.

    1972-01-01

    To further elucidate the regulation of dormancy release, we followed the natural afterripening of Virginia-type peanut (Arachis hypogaea L.) seeds from about the 5th to 40th week after harvest. Seeds were kept at low temperature (3 ± 2 C) until just prior to testing for germination, ethylene production, and internal ethylene concentration. Germination tended to fluctuate but did not increase significantly during the first 30 weeks; internal ethylene concentrations and ethylene production remained comparatively low during this time. When the seeds were placed at room temperature during the 30th to 40th weeks after harvest, there was a large increase in germination, 49% and 47% for apical and basal seeds, respectively. The data confirm our previous suggestion that production rates of 2.0 to 3.0 nanoliters per gram fresh weight per hour are necessary to provide internal ethylene concentrations at activation levels which cause a substantial increase of germination. Activation levels internally must be more than 0.4 microliter per liter and 0.9 microliter per liter for some apical and basal seeds, respectively, since dormant-imbibed seeds containing these concentrations did not germinate. Abscisic acid inhibited germination and ethylene production of afterripened seeds. Kinetin reversed the effects of ABA and this was correlated with its ability to stimulate ethylene production by the seeds. Ethylene also reversed the effects of abscisic acid. Carbon dioxide did not compete with ethylene action in this system. The data indicate that ethylene and an inhibitor, possibly abscisic acid, interact to control dormant peanut seed germination. The inability of CO2 to inhibit competitively the action of ethylene on dormancy release, as it does other ethylene effects, suggests that the primary site of action of ethylene in peanut seeds is different from the site for other plant responses to ethylene. PMID:16658179

  19. Effects of Seed Treatments on Germination

    DTIC Science & Technology

    1994-09-01

    and then the plant hormones gibberellic acid and kinetin.The kept in a cold room at -5"C for a week. role of plant hormones in germination has been...concerned the gibberellins, of which gibberellic acid removing inhibitors and imbibing the seeds. For is one form. The gibberellic acid used in this...pratense L.] 6. Gibberellic acid (GA 3)-200 ppmn"* ianthy ricleras[ise L.1 s (R.and The seeds were soaked in about 100 mL of a 200-"S.) Ricker] ppm

  20. Effect of temperature and water availability during late maturation of the soybean seed on germ and cotyledon isoflavone content and composition

    USDA-ARS?s Scientific Manuscript database

    Soybean seeds contain high levels of isoflavones (genistein, daidzein, glycitein), which have been associated with many positive human health effects. Seed isoflavone content is strongly influenced by both environment and genotype. The isoflavone concentration and composition of the soybean seed ger...

  1. Radiation effects on Brassica seeds and seedlings

    NASA Astrophysics Data System (ADS)

    Deoli, Naresh; Hasenstein, Karl H.

    2016-07-01

    Space radiation consists of high energy charged particles and affects biological systems, but because of its stochastic, non-directional nature is difficult to replicate on Earth. Radiation damages biological systems acutely at high doses or cumulatively at low doses through progressive changes in DNA organization. These damages lead to death or cause of mutations. While radiation biology typically focuses on mammalian or human systems, little is known as to how radiation affects plants. In addition, energetic ion beams are widely used to generate new mutants in plants considering their high-LET (Linear Energy Transfer) as compared to gamma rays and X-rays. Understanding the effect of ionizing radiation on plant provides a basis for studying effects of radiation on biological systems and will help mitigate (space) radiation damage in plants. We exposed dry and imbibed Brassica rapa seeds and seedling roots to proton beams of varying qualities and compared the theoretical penetration range of different energy levels with observable growth response. We used 1, 2 and 3 MeV protons in air at the varying fluences to investigate the effect of direct irradiation on the seeds (1012 - 1015 ions/cm2) and seedlings (1013 ions/cm2). The range of protons in the tissue was calculated using Monte-Carlo based SRIM (Stopping and Range of Ions in Matter) software. The simulation and biological results indicate that ions did not penetrate the tissue of dry or hydrated seeds at all used ion energies. Therefore the entire energy was transferred to the treated tissue. Irradiated seeds were germinated vertically under dim light and roots growth was observed for two days after imbibition. The LD50 of the germination was about 2×1014 ions/cm2 and about 5×1014 ions/cm2 for imbibed and dry seeds, respectively. Since seedlings are most sensitive to gravity, the change in gravitropic behavior is a convenient means to assess radiation damage on physiological responses other than direct tissue

  2. Prior hydration of Brassica tournefortii seeds reduces the stimulatory effect of karrikinolide on germination and increases seed sensitivity to abscisic acid

    PubMed Central

    Long, Rowena L.; Williams, Kimberlyn; Griffiths, Erin M.; Flematti, Gavin R.; Merritt, David J.; Stevens, Jason C.; Turner, Shane R.; Powles, Stephen B.; Dixon, Kingsley W.

    2010-01-01

    Background and Aims The smoke-derived compound karrikinolide (KAR1) shows significant potential as a trigger for the synchronous germination of seeds in a variety of plant-management contexts, from weed seeds in paddocks, to native seeds when restoring degraded lands. Understanding how KAR1 interacts with seed physiology is a necessary precursor to the development of the compound as an efficient and effective management tool. This study tested the ability of KAR1 to stimulate germination of seeds of the global agronomic weed Brassica tournefortii, at different hydration states, to gain insight into how the timing of KAR1 applications in the field should be managed relative to rain events. Methods Seeds of B. tournefortii were brought to five different hydration states [equilibrated at 15 % relative humidity (RH), 47 % RH, 96 % RH, fully imbibed, or re-dried to 15 % RH following maximum imbibition] then exposed to 1 nm or 1 µm KAR1 for one of five durations (3 min, 1 h, 24 h, 14 d or no exposure). Key Results Dry seeds with no history of imbibition were the most sensitive to KAR1; sensitivity was lower in seeds that were fully imbibed or fully imbibed then re-dried. In addition, reduced sensitivity to KAR1 was associated with an increased sensitivity to exogenously applied abscisic acid (ABA). Conclusions Seed water content and history of imbibition were found to significantly influence whether seeds germinate in response to KAR1. To optimize the germination response of seeds, KAR1 should be applied to dry seeds, when sensitivity to ABA is minimized. PMID:20348089

  3. Rice PROTEIN l-ISOASPARTYL METHYLTRANSFERASE isoforms differentially accumulate during seed maturation to restrict deleterious isoAsp and reactive oxygen species accumulation and are implicated in seed vigor and longevity.

    PubMed

    Petla, Bhanu Prakash; Kamble, Nitin Uttam; Kumar, Meenu; Verma, Pooja; Ghosh, Shraboni; Singh, Ajeet; Rao, Venkateswara; Salvi, Prafull; Kaur, Harmeet; Saxena, Saurabh Chandra; Majee, Manoj

    2016-07-01

    PROTEIN l-ISOASPARTYL O-METHYLTRANSFERASE (PIMT) is a protein-repairing enzyme involved in seed vigor and longevity. However, the regulation of PIMT isoforms during seed development and the mechanism of PIMT-mediated improvement of seed vigor and longevity are largely unknown. In this study in rice (Oryza sativa), we demonstrate the dynamics and correlation of isoaspartyl (isoAsp)-repairing demands and PIMT activity, and their implications, during seed development, germination and aging, through biochemical, molecular and genetic studies. Molecular and biochemical analyses revealed that rice possesses various biochemically active and inactive PIMT isoforms. Transcript and western blot analyses clearly showed the seed development stage and tissue-specific accumulation of active isoforms. Immunolocalization studies revealed distinct isoform expression in embryo and aleurone layers. Further analyses of transgenic lines for each OsPIMT isoform revealed a clear role in the restriction of deleterious isoAsp and age-induced reactive oxygen species (ROS) accumulation to improve seed vigor and longevity. Collectively, our data suggest that a PIMT-mediated, protein repair mechanism is initiated during seed development in rice, with each isoform playing a distinct, yet coordinated, role. Our results also raise the intriguing possibility that PIMT repairs antioxidative enzymes and proteins which restrict ROS accumulation, lipid peroxidation, etc. in seed, particularly during aging, thus contributing to seed vigor and longevity. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  4. Fiber micronaire, fineness and maturity predictions using NIR spectroscopy instruments on seed cotton and cotton fiber, in and outside of the laboratory

    USDA-ARS?s Scientific Manuscript database

    Micronaire is an important fiber quality parameter in the cotton industry. Micronaire is a function of maturity (the degree of the fiber secondary wall development) and fineness (linear density). Bench-top near infrared (NIR) spectroscopy has the ability to measure micronaire, maturity and fineness,...

  5. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron-Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment.

    PubMed

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron-sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5' untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron-sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy.

  6. An active Mitochondrial Complex II Present in Mature Seeds Contains an Embryo-Specific Iron–Sulfur Subunit Regulated by ABA and bZIP53 and Is Involved in Germination and Seedling Establishment

    PubMed Central

    Restovic, Franko; Espinoza-Corral, Roberto; Gómez, Isabel; Vicente-Carbajosa, Jesús; Jordana, Xavier

    2017-01-01

    Complex II (succinate dehydrogenase) is an essential mitochondrial enzyme involved in both the tricarboxylic acid cycle and the respiratory chain. In Arabidopsis thaliana, its iron–sulfur subunit (SDH2) is encoded by three genes, one of them (SDH2.3) being specifically expressed during seed maturation in the embryo. Here we show that seed SDH2.3 expression is regulated by abscisic acid (ABA) and we define the promoter region (-114 to +49) possessing all the cis-elements necessary and sufficient for high expression in seeds. This region includes between -114 and -32 three ABRE (ABA-responsive) elements and one RY-enhancer like element, and we demonstrate that these elements, although necessary, are not sufficient for seed expression, our results supporting a role for the region encoding the 5’ untranslated region (+1 to +49). The SDH2.3 promoter is activated in leaf protoplasts by heterodimers between the basic leucine zipper transcription factors bZIP53 (group S1) and bZIP10 (group C) acting through the ABRE elements, and by the B3 domain transcription factor ABA insensitive 3 (ABI3). The in vivo role of bZIP53 is further supported by decreased SDH2.3 expression in a knockdown bzip53 mutant. By using the protein synthesis inhibitor cycloheximide and sdh2 mutants we have been able to conclusively show that complex II is already present in mature embryos before imbibition, and contains mainly SDH2.3 as iron–sulfur subunit. This complex plays a role during seed germination sensu-stricto since we have previously shown that seeds lacking SDH2.3 show retarded germination and now we demonstrate that low concentrations of thenoyltrifluoroacetone, a complex II inhibitor, also delay germination. Furthermore, complex II inhibitors completely block hypocotyl elongation in the dark and seedling establishment in the light, highlighting an essential role of complex II in the acquisition of photosynthetic competence and the transition from heterotrophy to autotrophy. PMID

  7. Influence of factors affecting germination on respiration of Phacelia tanacetifolia seeds.

    PubMed

    Chen, S S

    1970-12-01

    Germination of the seeds of Phacelia tanacetifolia is inhibited by light. Removal of that part of the covering structures of the seeds which directly covers the radicle allows full germination in light. The rate of O2 uptake in the seeds increases following imbibition, and reaches the same steady rate in light and in darkness after 3 hr. From the 14 th hour on, dark-imbibed seeds show a linear increase in the rate of respiration. This increase is not observed in "dormant" seeds incubated in light. In normal dark germination, protrusion of the radicle begins at 12 th hour following soaking, and by the end of 18 th hour approximately 60% of the seeds have germinated. The seeds which have been scarified at the radicle end and germinate readily in light show a steady increase in Q O 2. If scarified seeds are allowed to imbibe 0.3 M mannitol and are then incubated in light, the embryo does not grow and the pattern of O2 uptake becomes identical with that of intact seeds in light. Mannitol, however, does not inhibit respiration by itself. These observations indicate that the increased O2 uptake is the result rather than the cause of seed germination, and that light does not cause dormancy by inhibiting O2 uptake. Measures effective in releasing dormancy (dark incubation, mechanical scarification, gibberellin treatment) do not induce germination by facilitating oxygen entry.

  8. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism.

    PubMed

    Seo, Mitsunori; Hanada, Atsushi; Kuwahara, Ayuko; Endo, Akira; Okamoto, Masanori; Yamauchi, Yukika; North, Helen; Marion-Poll, Annie; Sun, Tai-Ping; Koshiba, Tomokazu; Kamiya, Yuji; Yamaguchi, Shinjiro; Nambara, Eiji

    2006-11-01

    In a wide range of plant species, seed germination is regulated antagonistically by two plant hormones, abscisic acid (ABA) and gibberellin (GA). In the present study, we have revealed that ABA metabolism (both biosynthesis and inactivation) was phytochrome-regulated in an opposite fashion to GA metabolism during photoreversible seed germination in Arabidopsis. Endogenous ABA levels were decreased by irradiation with a red (R) light pulse in dark-imbibed seeds pre-treated with a far-red (FR) light pulse, and the reduction in ABA levels in response to R light was inhibited in a phytochrome B (PHYB)-deficient mutant. Expression of an ABA biosynthesis gene, AtNCED6, and the inactivation gene, CYP707A2, was regulated in a photoreversible manner, suggesting a key role for the genes in PHYB-mediated regulation of ABA metabolism. Abscisic acid-deficient mutants such as nced6-1, aba2-2 and aao3-4 exhibited an enhanced ability to germinate relative to wild type when imbibed in the dark after irradiation with an FR light pulse. In addition, the ability to synthesize GA was improved in the aba2-2 mutant compared with wild type during dark-imbibition after an FR light pulse. Activation of GA biosynthesis in the aba2-2 mutant was also observed during seed development. These data indicate that ABA is involved in the suppression of GA biosynthesis in both imbibed and developing seeds. Spatial expression patterns of the AtABA2 and AAO3 genes, responsible for last two steps of ABA biosynthesis, were distinct from that of the GA biosynthesis gene, AtGA3ox2, in both imbibed and developing seeds, suggesting that biosynthesis of ABA and GA in seeds occurs in different cell types.

  9. Dormancy termination of western white pine (Pinus monticola Dougl. Ex D. Don) seeds is associated with changes in abscisic acid metabolism.

    PubMed

    Feurtado, J Allan; Ambrose, Stephen J; Cutler, Adrian J; Ross, Andrew R S; Abrams, Suzanne R; Kermode, Allison R

    2004-02-01

    Western white pine (Pinus monticola) seeds exhibit deep dormancy at maturity and seed populations require several months of moist chilling to reach their uppermost germination capacities. Abscisic acid (ABA) and its metabolites, phaseic acid (PA), dihydrophaseic acid (DPA), 7'-hydroxy ABA (7'OH ABA) and ABA-glucose ester (ABA-GE), were quantified in western white pine seeds during dormancy breakage (moist chilling) and germination using an HPLC-tandem mass spectrometry method with multiple reaction monitoring and internal standards incorporating deuterium-labeled analogs. In the seed coat, ABA and metabolite levels were high in dry seeds, but declined precipitously during the pre-moist-chilling water soak to relatively low levels thereafter. In the embryo and megagametophyte, ABA levels decreased significantly during moist chilling, coincident with an increase in the germination capacity of seeds. ABA catabolism occurred via several routes, depending on the stage and the seed tissue. Moist chilling of seeds led to increases in PA and DPA levels in both the embryo and megagametophyte. Within the embryo, 7'OH ABA and ABA-GE also accumulated during moist chilling; however, 7'OH ABA peaked early in germination. Changes in ABA flux, i.e. shifts in the ratio between biosynthesis and catabolism, occurred at three distinct stages during the transition from dormant seed to seedling. During moist chilling, the relative rate of ABA catabolism exceeded ABA biosynthesis. This trend became even more pronounced during germination, and germination was also accompanied by a decrease in the ABA catabolites DPA and PA, presumably as a result of their further metabolism and/or leaching/transport. The transition from germination to post-germinative growth was accompanied by a shift toward ABA biosynthesis. Dormant imbibed seeds, kept in warm moist conditions for 30 days (after an initial 13 days of soaking), maintained high ABA levels, while the amounts of PA, 7'OH ABA, and DPA

  10. Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat (Triticum aestivum L.).

    PubMed

    Gao, Feng; Jordan, Mark C; Ayele, Belay T

    2012-05-01

    Seed dormancy is an important agronomic trait in wheat (Trticum aestivum). Seeds can be released from a physiologically dormant state by after-ripening. To understand the molecular mechanisms underlying the role of after-ripening in conferring developmental switches from dormancy to germination in wheat seeds, we performed comparative transcriptomic analyses between dormant (D) and after-ripened (AR) seeds in both dry and imbibed states. Transcriptional activation of genes represented by a core of 22 and 435 probesets was evident in the dry and imbibed states of D seeds, respectively. Furthermore, two-way ANOVA analysis identified 36 probesets as specifically regulated by dormancy. These data suggest that biological functions associated with these genes are involved in the maintenance of seed dormancy. Expression of genes encoding protein synthesis/activity inhibitors was significantly repressed during after-ripening, leading to dormancy decay. Imbibing AR seeds led to transcriptional activation of distinct biological processes, including those related to DNA replication, nitrogen metabolism, cytoplasmic membrane-bound vesicle, jasmonate biosynthesis and cell wall modification. These after-ripening-mediated transcriptional programs appear to be regulated by epigenetic mechanisms. Clustering of our microarray data produced 16 gene clusters; dormancy-specific probesets and abscisic acid (ABA)-responsive elements were significantly overrepresented in two clusters, indicating the linkage of dormancy in wheat with that of seed sensitivity to ABA. The role of ABA signalling in regulating wheat seed dormancy was further supported by the down-regulation of ABA response-related probesets in AR seeds and absence of differential expression of ABA metabolic genes between D and AR seeds. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  11. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy.

    PubMed

    Martínez-Andújar, Cristina; Ordiz, M Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N; Nonogaki, Hiroyuki

    2011-10-11

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism.

  12. Induction of 9-cis-epoxycarotenoid dioxygenase in Arabidopsis thaliana seeds enhances seed dormancy

    PubMed Central

    Martínez-Andújar, Cristina; Ordiz, M. Isabel; Huang, Zhonglian; Nonogaki, Mariko; Beachy, Roger N.; Nonogaki, Hiroyuki

    2011-01-01

    Full understanding of mechanisms that control seed dormancy and germination remains elusive. Whereas it has been proposed that translational control plays a predominant role in germination, other studies suggest the importance of specific gene expression patterns in imbibed seeds. Transgenic plants were developed to permit conditional expression of a gene encoding 9-cis-epoxycarotenoid dioxygenase 6 (NCED6), a rate-limiting enzyme in abscisic acid (ABA) biosynthesis, using the ecdysone receptor-based plant gene switch system and the ligand methoxyfenozide. Induction of NCED6 during imbibition increased ABA levels more than 20-fold and was sufficient to prevent seed germination. Germination suppression was prevented by fluridone, an inhibitor of ABA biosynthesis. In another study, induction of the NCED6 gene in transgenic seeds of nondormant mutants tt3 and tt4 reestablished seed dormancy. Furthermore, inducing expression of NCED6 during seed development suppressed vivipary, precocious germination of developing seeds. These results indicate that expression of a hormone metabolism gene in seeds can be a sole determinant of dormancy. This study opens the possibility of developing a robust technology to suppress or promote seed germination through engineering pathways of hormone metabolism. PMID:21969557

  13. Identification and characterization of a matrix metalloproteinase (Pta1-MMP) expressed during Loblolly pine (Pinus taeda) seed development, germination completion, and early seedling establishment.

    PubMed

    Ratnaparkhe, Supriya M; Egertsdotter, E M Ulrika; Flinn, Barry S

    2009-07-01

    Extracellular matrix (ECM) modifications occur during plant growth, development, and in response to environmental stimuli. Key modulators of ECM modification in vertebrates, the extracellular matrix metalloproteinases (MMPs), have also been described in a few plants. Here, we report the identification of Loblolly pine (Pinus taeda) Pta1-MMP and its characterization during seed development and germination. Pta1-MMP protein has the structural characteristics of other plant MMPs, the recombinant protein exhibits Zn(2+)-dependent protease activity, and is inhibited by EDTA and the active site-binding hydroxamate inhibitor GM6001. The Pta1-MMP gene is expressed in both embryo and megagametophyte, with transcript levels increasing in both during the period from proembryo to early cotyledonary stage, then declining during late embryogenesis and maturation drying. Protein extracts exhibited similar developmental-stage MMP-like activity. Seed germination was stimulated by GA(3) and inhibited by ABA, and the timing of germination completion was mirrored by the presence of MMP-like protease activity in both water- and GA(3)-imbibed embryos. Pta1-MMP gene transcript levels increased in association with radicle protrusion for both GA(3)- and water-treated embryos, in agreement with MMP-like activity. In contrast, by 11 days after imbibition, Pta1-MMP gene transcripts in ABA-treated embryos were at levels similar to the other treatments, although MMP-like activity was not observed. The application of GM6001 during Loblolly pine seed germination inhibited radicle protrusion. Our results suggest that MMP activity may be involved in ECM modification, facilitating the cell division and expansion required during seed development, germination completion, and subsequent seedling establishment.

  14. Sorghum seed maturity affects the weight and feeding duration of immature corn earworm, Helicoverpa zea, and fall armyworm, Spodoptera frugiperda, in the laboratory.

    PubMed

    Soper, Alysha M; Whitworth, R Jeff; McCornack, Brian P

    2013-01-01

    Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda J.E. Smith, are occasional pests in sorghum, Sorghum bicolor L. Moench (Poales: Poaceae), and can be economically damaging when conditions are favorable. Despite the frequent occurrence of mixed-species infestations, the quantitative data necessary for developing yield loss relationships for S. frugiperda are not available. Although these species share similar biological characteristics, it is unknown whether their damage potentials in developing grain sorghum panicles are the same. Using no-choice feeding assays in the laboratory, this study examined larval growth and feeding duration for H. zea and S. frugiperda in the absence of competition. Each species responded positively when exposed to sorghum seed in the soft-dough stage, supporting evidence for the interactions between host-quality and larval growth and development. The results of this study also confirmed the suitability of using laboratory-reared H. zea to develop sorghum yield loss estimates in the field, and provided insights into the biological responses of S. frugiperda feeding on developing sorghum seed.

  15. Sorghum Seed Maturity Affects the Weight and Feeding Duration of Immature Corn Earworm, Helicoverpa zea, and Fall Armyworm, Spodoptera frugiperda, in the Laboratory

    PubMed Central

    Soper, Alysha M.; Whitworth, R. Jeff; McCornack, Brian P.

    2013-01-01

    Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), and fall armyworm, Spodoptera frugiperda J.E. Smith, are occasional pests in sorghum, Sorghum bicolor L. Moench (Poales: Poaceae), and can be economically damaging when conditions are favorable. Despite the frequent occurrence of mixed-species infestations, the quantitative data necessary for developing yield loss relationships for S. frugiperda are not available. Although these species share similar biological characteristics, it is unknown whether their damage potentials in developing grain sorghum panicles are the same. Using no-choice feeding assays in the laboratory, this study examined larval growth and feeding duration for H. zea and S. frugiperda in the absence of competition. Each species responded positively when exposed to sorghum seed in the soft-dough stage, supporting evidence for the interactions between host-quality and larval growth and development. The results of this study also confirmed the suitability of using laboratory-reared H. zea to develop sorghum yield loss estimates in the field, and provided insights into the biological responses of S. frugiperda feeding on developing sorghum seed. PMID:24219328

  16. ELECTROCHEMICAL PROPERTIES, MECHANICAL TESTING, AND GEL MORPHOLOGY STUDY OF PHOSPHORIC ACID-DOPED META-POLYBENZIMIDAZOLE MEMBRANES VIA CONVENTIONALLY IMBIBING AND THE SOL-GEL PROCESS

    SciTech Connect

    Perry, Kelly A; More, Karren Leslie; Benicewicz, Brian

    2009-01-01

    Proton exchange membrane (PEM) research has been directed at phosphoric acid (PA)-doped polybenzimidazole (PBI) membranes since the 1990s. PEM fuel cells based on PA-doped PBI membranes produced via a sol-gel transition process have achieved lifetimes >10,000hrs with low degradation rates. It has been suggested that the gel morphology of the PA-doped PBI membranes is responsible for their excellent electrochemical performance. Thus, a study has been underway to characterize the microstructure of PA-doped PBI membranes, and to correlate structure with performance. However, PA-doped PBI membranes present special challenges for microscopy analysis, as these membranes are extremely sensitive to the electron beam and high vacuum conditions. This paper will discuss and compare the mechanical, electrochemical, and cryo-SEM analyses of PA-doped meta-PBI membranes produced via conventional imbibing and the sol-gel process.

  17. Analysis of the Arabidopsis Histidine Kinase ATHK1 Reveals a Connection between Vegetative Osmotic Stress Sensing and Seed Maturation[W][OA

    PubMed Central

    Wohlbach, Dana J.; Quirino, Betania F.; Sussman, Michael R.

    2008-01-01

    To cope with water stress, plants must be able to effectively sense, respond to, and adapt to changes in water availability. The Arabidopsis thaliana plasma membrane His kinase ATHK1 has been suggested to act as an osmosensor that detects water stress and initiates downstream responses. Here, we provide direct genetic evidence that ATHK1 not only is involved in the water stress response during early vegetative stages of plant growth but also plays a unique role in the regulation of desiccation processes during seed formation. To more comprehensively identify genes involved in the downstream pathways affected by the ATHK1-mediated response to water stress, we created a large-scale summary of expression data, termed the AtMegaCluster. In the AtMegaCluster, hierarchical clustering techniques were used to compare whole-genome expression levels in athk1 mutants with the expression levels reported in publicly available data sets of Arabidopsis tissues grown under a wide variety of conditions. These experiments revealed that ATHK1 is cotranscriptionally regulated with several Arabidopsis response regulators, together with two proteins containing novel sequences. Since overexpression of ATHK1 results in increased water stress tolerance, our observations suggest a new top-down route to increasing drought resistance via receptor-mediated increases in sensing water status, rather than through genetically engineered changes in downstream transcription factors or specific osmolytes. PMID:18441212

  18. Plants grow better if seeds see green.

    PubMed

    Sommer, Andrei P; Franke, Ralf-Peter

    2006-07-01

    We report on the response of dry plant seeds to their irradiation with intense green light applied at biostimulatory doses. Red and near-infrared light delivered by lasers or arrays of light emitting diodes applied at such doses have been shown previously by us to have effects on mammalian cells. Effects include cell proliferation and elevation of cell vitality, and have practical applications in various biomedical fields. Growth processes induced by photoreceptor stimulation (phytochromes and cryptochromes) in plant seeds with green light were described so far only for imbibed seeds. In this paper, we show that irradiation of dry cress, radish and carrot seeds with intense green light (laser or arrays of light emitting diodes), applied at biostimulatory doses, resulted in a significant increase in biomass--14, 26, and 71 days after seeding, respectively. In the case of radish and carrot, the irradiation led to important changes in the root-to-foliage surface ratio. Seeds with a potential to grant growth acceleration could be of special interest in agricultural applications, and could even compensate for shorter growth seasons caused by climate change.

  19. Plants grow better if seeds see green

    NASA Astrophysics Data System (ADS)

    Sommer, Andrei P.; Franke, Ralf-Peter

    2006-07-01

    We report on the response of dry plant seeds to their irradiation with intense green light applied at biostimulatory doses. Red and near-infrared light delivered by lasers or arrays of light emitting diodes applied at such doses have been shown previously by us to have effects on mammalian cells. Effects include cell proliferation and elevation of cell vitality, and have practical applications in various biomedical fields. Growth processes induced by photoreceptor stimulation (phytochromes and cryptochromes) in plant seeds with green light were described so far only for imbibed seeds. In this paper, we show that irradiation of dry cress, radish and carrot seeds with intense green light (laser or arrays of light emitting diodes), applied at biostimulatory doses, resulted in a significant increase in biomass—14, 26, and 71 days after seeding, respectively. In the case of radish and carrot, the irradiation led to important changes in the root-to-foliage surface ratio. Seeds with a potential to grant growth acceleration could be of special interest in agricultural applications, and could even compensate for shorter growth seasons caused by climate change.

  20. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues☆

    PubMed Central

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11), in vegetative tissues. PMID:24363987

  1. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    PubMed

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  2. Mediated proton transport through Nafion 117 membranes imbibed with varying concentrations of aqueous VOSO4 (VO2+) and NH4VO3 (VO2+) in 2 M H2SO4

    NASA Astrophysics Data System (ADS)

    Suarez, Sophia; Paterno, Domenec

    2016-11-01

    We performed an extensive study on Nafion 117 membrane imbibed with various concentrations of aqueous ammonium metavanadate (NH4VO3), and vanadyl sulfate (VOSO4), in 2 M H2SO4 over the temperature range of 20-100 °C, using 1H NMR and AC Impedance spectroscopies. The objective was to determine the effect of the tetravalent (VO2+) and pentavalent (VO2+) vanadium ions on the proton transport of Nafion 117.1H NMR chemical shift and linewidth data show greater short-range proton transport for the VO2+ imbibed membranes compared with the VO2+. However, the local environments seem to differ in that while the data for VO2+ imbibed membranes seem to follow more the trends observed for water hydrated Nafion 117, those for the VO2+ followed the trend of its aqueous bulk vanadium solvents, indicating that viscosity plays a larger role for the VO2+ imbibed membranes compared to the VO2+.

  3. The novel gene CpEdi-9 from the resurrection plant C. plantagineum encodes a hydrophilic protein and is expressed in mature seeds as well as in response to dehydration in leaf phloem tissues.

    PubMed

    Rodrigo, Maria Jesus; Bockel, Christine; Blervacq, Anne-Sophie; Bartels, Dorothea

    2004-08-01

    The resurrection plant Craterostigma plantagineum Hochst. is used as an experimental system to investigate desiccation tolerance in higher plants. A search for genes activated during early stages of dehydration identified the gene CpEdi-9, which is expressed in mature seeds and in response to dehydration in the phloem cells of vascular tissues of leaves. Elements for the tissue-specific expression pattern reside in the isolated promoter of the CpEdi-9 gene, as shown through the analysis of transgenic plants. The CpEdi-9 promoter could be a suitable tool for expressing genes in the vascular system of dehydrated plants. CpEdi-9 encodes a small (10 kDa) hydrophilic protein, which does not have significant sequence homologies to known genes. The predicted protein CpEDI-9 shares some physicochemical features with LEA proteins from plants and a nematode. Based on the unique expression pattern and on the nucleotide sequence we propose that CpEdi-9 defines a new class of hydrophilic proteins that are supposed to contribute to cellular protection during dehydration. This group of proteins may have evolved because desiccation tolerance requires the abundant expression of protective proteins during early stages of dehydration in all tissues.

  4. Purification and characterization of Moschatin, a novel type I ribosome-inactivating protein from the mature seeds of pumpkin (Cucurbita moschata), and preparation of its immunotoxin against human melanoma cells.

    PubMed

    Xia, Heng Chuan; Li, Feng; Li, Zhen; Zhang, Zu Chuan

    2003-10-01

    A novel ribosome-inactivating protein designated Moschatin from the mature seeds of pumpkin (Cucurbita moschata) has been successively purified to homogeneity, using ammonium sulfate precipitation, CM-cellulose 52 column chromatography, Blue Sepharose CL-6B Affinity column chromatography and FPLC size-exclusion column chromatography. Moschatin is a type 1 RIP with a pI of 9.4 and molecular weight of approximately 29 kD. It is a rRNA N-glycosidase and potently blocked the protein synthesis in the rabbit reticulocyte lysate with a IC50 of 0.26 nM. Using the anti-human melanoma McAb Ng76, a novel immunotoxin Moschatin-Ng76 was prepared successfully and it efficiently inhibited the growth of targeted melanoma cells M21 with a IC50 of 0.04 nM, 1500 times lower than that of free Moschatin. The results implied that Moschatin could be used as a new potential anticancer agent.

  5. Seed dormancy and germination.

    PubMed

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  6. Exogenous auxin regulates multi-metabolic network and embryo development, controlling seed secondary dormancy and germination in Nicotiana tabacum L.

    PubMed

    Li, Zhenhua; Zhang, Jie; Liu, Yiling; Zhao, Jiehong; Fu, Junjie; Ren, Xueliang; Wang, Guoying; Wang, Jianhua

    2016-02-09

    Auxin was recognized as a secondary dormancy phytohormone, controlling seed dormancy and germination. However, the exogenous auxin-controlled seed dormancy and germination remain unclear in physiological process and gene network. Tobacco seeds soaked in 1000 mg/l auxin solution showed markedly decreased germination compared with that in low concentration of auxin solutions and ddH2O. Using an electron microscope, observations were made on the seeds which did not unfold properly in comparison to those submerged in ddH2O. The radicle traits measured by WinRHIZO, were found to be also weaker than the other treatment groups. Quantified by ELISA, there was no significant difference found in β-1,3glucanase activity and abscisic acid (ABA) content between the seeds imbibed in gradient concentration of auxin solution and those soaked in ddH2O. However, gibberellic acid (GA) and auxin contents were significantly higher at the time of exogenous auxin imbibition and were gradually reduced at germination. RNA sequencing (RNA-seq), revealed that the transcriptome of auxin-responsive dormancy seeds were more similar to that of the imbibed seeds when compared with primary dormancy seeds by principal component analysis. The results of gene differential expression analysis revealed that auxin-controlled seed secondary dormancy was associated with flavonol biosynthetic process, gibberellin metabolic process, adenylyl-sulfate reductase activity, thioredoxin activity, glutamate synthase (NADH) activity and chromatin regulation. In addition, auxin-responsive germination responded to ABA, auxin, jasmonic acid (JA) and salicylic acid (SA) mediated signaling pathway (red, far red and blue light), glutathione and methionine (Met) metabolism. In this study, exogenous auxin-mediated seed secondary dormancy is an environmental model that prevents seed germination in an unfavorable condition. Seeds of which could not imbibe normally, and radicles of which also could not develop normally and

  7. [Non-thermal effect of GSM electromagnetic radiation on quality of pea seeds].

    PubMed

    Veselova, T V; Veselovskiĭ, V A; Deev, L I; Baĭzhumanov, A A

    2012-01-01

    The seeds with low level of room temperature phosphorescence (RTP) were selected from a lot of air-dry peas (Pisum sativum) with 62% germination. These strong seeds (95-97% germination percentage) in air-dry, imbibed or emerged states were exposed to 905 MHz GSM-band electromagnetic radiation (EMR). The following effects of EMR were observed. Fraction II with higher RTP level appeared in the air-dry seeds. The germination rate decreased 2-3 fold in the air-dry, swollen and sprouting seeds due to an increase in the ratio of the seedlings with morphological defects (from 3 to 38%) and suffocated seeds (from 1 to 15%). We suggest tentative mechanisms to account for the decreased fitness of peas under GSM-band EMR (905 MHz); also discussed is the role of non-enzymatic hydrolysis of carbohydrates and amino-carbonyl reaction in this process.

  8. Seed germination and vigor.

    PubMed

    Rajjou, Loïc; Duval, Manuel; Gallardo, Karine; Catusse, Julie; Bally, Julia; Job, Claudette; Job, Dominique

    2012-01-01

    Germination vigor is driven by the ability of the plant embryo, embedded within the seed, to resume its metabolic activity in a coordinated and sequential manner. Studies using "-omics" approaches support the finding that a main contributor of seed germination success is the quality of the messenger RNAs stored during embryo maturation on the mother plant. In addition, proteostasis and DNA integrity play a major role in the germination phenotype. Because of its pivotal role in cell metabolism and its close relationships with hormone signaling pathways regulating seed germination, the sulfur amino acid metabolism pathway represents a key biochemical determinant of the commitment of the seed to initiate its development toward germination. This review highlights that germination vigor depends on multiple biochemical and molecular variables. Their characterization is expected to deliver new markers of seed quality that can be used in breeding programs and/or in biotechnological approaches to improve crop yields.

  9. Oxidative Phosphorylation in Germinating Lettuce Seeds (Lactuca sativa) during the First Hours of Imbibition

    PubMed Central

    Hourmant, Annick; Pradet, Alain

    1981-01-01

    Experiments with lettuce seeds during the first hours of imbibition showed that oxygen is necessary to sustain high adenine nucleotide ratios and consequently, energy charge values are higher than 0.8 as is usually the case in normally metabolizing tissues. The energy charge value (0.2) of dry seeds soaked in aerated water increased to normal values (0.8) within 30 minutes. The energy charge value of seeds imbibed under cyanide or nitrogen stayed at low values, about 0.3 for 30 minutes. Nitrogen and cyanide treatment of seeds imbibed in aerated water produced a decrease of energy charge to low values within 3 minutes. During the first minutes of imbibition, the oxygen uptake is cyanide-sensitive. The effect of the uncoupler carbonyl cyanide p-trifluoromethoxyphenyl hydrazone was not as clear-cut. However, results were obtained which agree with the occurrence of oxidative phosphorylation during the first hours of imbibition. These results indicate that a normal cytochromic pathway synthesizes ATP during the first minutes and hours following the imbibition of lettuce seeds. PMID:16661970

  10. Post desiccation germination of mature seeds of tea (Camellia sinensis L.) can be enhanced by pro-oxidant treatment, but partial desiccation tolerance does not ensure survival at -20°C.

    PubMed

    Chen, Hongying; Pritchard, Hugh W; Seal, Charlotte E; Nadarajan, Jayanthi; Li, Weiqi; Yang, Shixiong; Kranner, Ilse

    2012-03-01

    The maximal potential desiccation tolerance (MPDT) of tea (Camellia sinensis) seeds has been a matter of debate for decades. Here we assessed the ability of tea seeds from three sites in China to germinate after desiccation. Desiccation tolerance was greatest in Kunming, followed by Puer and Lincang, with Kunming seeds tolerating drying to 8% moisture content (MC), or ∼0.5 water activity (a(w)). Such tolerance was observed in Lincang seeds only when hydrogen peroxide (H₂O₂) at 0.5 or 1M was applied to seeds, indicating a stimulatory role for H₂O₂ in post-desiccation germination. Puer seeds exhibited MPDT of 16% MC (∼0.7 a(w)). Therefore, seeds from all three sites were not recalcitrant. The length of the dry season after dispersal and the high ratio of seed coat to seed mass (>0.3) support the observation of non-recalcitrant behaviour. The seeds were not immature, as the lipid signal in embryonic axes mirrored that of the cotyledons (30% oil). Even after high survival [>60% total germination (TG)] on drying to 10-13% MC, no Kunming seeds tolerated 1 month storage at -20 °C coinciding with lipid transitional changes at this temperature. The results indicate that tea seeds from China are neither recalcitrant nor storable at -20 °C. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  11. Seed size selection by olive baboons.

    PubMed

    Kunz, Britta Kerstin; Linsenmair, Karl Eduard

    2008-10-01

    Seed size is an important plant fitness trait that can influence several steps between fruiting and the establishment of a plant's offspring. Seed size varies considerably within many plant species, yet the relevance of the trait for intra-specific fruit choice by primates has received little attention. Primates may select certain seed sizes within a species for a number of reasons, e.g. to decrease indigestible seed load or increase pulp intake per fruit. Olive baboons (Papio anubis, Cercopithecidae) are known to select seed size in unripe and mature pods of Parkia biglobosa (Mimosaceae) differentially, so that pods with small seeds, and an intermediate seed number, contribute most to dispersal by baboons. We tested whether olive baboons likewise select for smaller ripe seeds within each of nine additional fruit species whose fruit pulp baboons commonly consume, and for larger seeds in one species in which baboons feed on the seeds. Species differed in fruit type and seed number per fruit. For five of these species, baboons dispersed seeds that were significantly smaller than seeds extracted manually from randomly collected fresh fruits. In contrast, for three species, baboons swallowed seeds that were significantly longer and/or wider than seeds from fresh fruits. In two species, sizes of ingested seeds and seeds from fresh fruits did not differ significantly. Baboons frequently spat out seeds of Drypetes floribunda (Euphorbiaceae) but not those of other plant species having seeds of equal size. Oral processing of D. floribunda seeds depended on seed size: seeds that were spat out were significantly larger and swallowed seeds smaller, than seeds from randomly collected fresh fruits. We argue that seed size selection in baboons is influenced, among other traits, by the amount of pulp rewarded per fruit relative to seed load, which is likely to vary with fruit and seed shape.

  12. Testing tree seeds for vigor: a review

    Treesearch

    F.T. Bonner

    1998-01-01

    This review examines the use of vigor tests for tree seeds. It suggests that precise evaluations of these tests and their application with seeds of woody plants is not yet possible. This is due to the wide genetic variation, primarily manifested in variable maturity and dormancy, that exists in most tree seed lots. Sensitive measurements of germination rate during...

  13. Artificial ripening of sugar pine seeds

    Treesearch

    Stanley L. Krugman

    1966-01-01

    Immature sugar pine seeds were collected and ripened either in the cone or in moist vermiculate. Seeds collected before the second week of August could not be artificially ripened and the causes for these failures were investigated. After the second week of August, immature seeds could be brought to maturity. A practical method for a commercial operation should be...

  14. A loose endosperm structure of wheat seed produced under low nitrogen level promotes early germination by accelerating water uptake.

    PubMed

    Wen, Daxing; Xu, Haicheng; Xie, Liuyong; He, Mingrong; Hou, Hongcun; Zhang, Chunqing

    2017-06-08

    Water uptake is the fundamental requirement for the initiation and completion of seed germination that is a vital phase in the life cycle of seed plants. We found that seeds produced under four nitrogen levels showed significantly different germination speed. The objective of this study was to study the mechanism of rapid seed germination and explore which pathways and genes play critical roles in radicle protrusion. Anatomical data revealed that seed protein content affected endosperm structure of seeds. Moreover, scanning electron microscope maps showed that faster germinated seeds had a looser endosperm structure compared with other seeds. Subsequently, high throughout RNA-seq data were used to compare the transcriptomes of imbibed seeds with different germination speed. Gene ontology (GO) term enrichment analysis revealed that cell wall metabolism related genes significantly up-regulated in faster germinated seeds. In these genes, the top four were chitinase that had about fourfold higher expression in faster germinated seeds. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that faster germinated seeds had enhanced expression in glutathione metabolism. By combining these results, we propose a model for nitrogen fertilizer affects germination speed of wheat seed, which provide new insights into seed germination.

  15. Ecophysiological characteristics of the seed of the tropical forest pioneer Urera caracasana (Urticaceae).

    PubMed

    Orozco-Segovia, A; Vàzquez-Yanes, C; Coates-Estrada, R; Pérez-Nasser, N

    1987-12-01

    Urera caracasana (Jacq.) Griseb is a small, fast-growing evergreen pioneer tree which colonizes openings in the tropical rain forest of 'Los Tuxtlas', Veracruz, Mèxico. Annual seed production by 10 trees was estimated to range from 0.4 x 10(5) to 1.6 x 10(6) seeds per tree. Fifteen species of resident and migratory birds were observed to visit the plants and disperse the seeds. Most seeds imbibed in petri dishes placed on the forest floor beneath a small opening in the canopy, where the red/far-red ratio of the light was around 1.0, germinated within 2 weeks. Germination beneath the forest canopy, where the red/far-red ratio of the light was approximately 0.2, was much slower and did not exceed 40%. A minimum of 4 h daily exposure to unfiltered natural light was required for rapid germination in the forest. In the laboratory rapid germination at 25 degrees C required a minimum of 4 h white light. However, if temperature during the light period was 35 degrees C, 30 min exposure to white light daily was sufficient to induce germination. Seeds that failed to germinate when imbibed for 60-360 days in petri dishes placed on the forest floor beneath the forest canopy, germinated rapidly in the laboratory when held at 25 degrees C and exposed daily to 12 h white or red light. Seeds imbibed for 120 days or more beneath the forest canopy were also induced to germinate by 12 h daily exposure to far-red light when this was combined with a 35/25 degrees C day/night temperature regime. Seeds buried in vermiculite-filled nylon mesh bags disappeared rapidly with few remaining after 2 months. Seeds that survived remained viable and germinated when incubated in petri dishes at 25 degrees C. Initially, buried seeds required light for germination. However, after 17 months' burial, seeds germinated in darkness when transferred to the laboratory and incubated on agar at 25 degrees C.

  16. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds.

    PubMed

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Zhang, Aying; Li, Yingxuan; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-03-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis.

  17. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds

    PubMed Central

    Ye, Nenghui; Zhu, Guohui; Liu, Yinggao; Liu, Rui; Shi, Lu; Jia, Liguo; Zhang, Jianhua

    2012-01-01

    The antagonism between abscisic acid (ABA) and gibberellin (GA) plays a key role in controlling seed germination, but the mechanism of antagonism during this process is not known. The possible links among ABA, reactive oxygen species (ROS), ascorbic acid (ASC), and GA during rice seed germination were investigated. Unlike in non-seed tissues where ROS production is increased by ABA, ABA reduced ROS production in imbibed rice seeds, especially in the embryo region. Such reduced ROS also led to an inhibition of ASC production. GA accumulation was also suppressed by a reduced ROS and ASC level, which was indicated by the inhibited expression of GA biosynthesis genes, amylase genes, and enzyme activity. Application of exogenous ASC can partially rescue seed germination from ABA treatment. Production of ASC, which acts as a substrate in GA biosynthesis, was significantly inhibited by lycorine which thus suppressed the accumulation of GA. Consequently, expression of GA biosynthesis genes was suppressed by the low levels of ROS and ASC in ABA-treated seeds. It can be concluded that ABA regulates seed germination in multiple dimensions. ROS and ASC are involved in its inhibition of GA biosynthesis. PMID:22200664

  18. Lettuce seed germination: modulation of pregermination protein synthesis by gibberellic Acid, abscisic Acid, and cytokinin.

    PubMed

    Fountain, D W; Bewley, J D

    1976-10-01

    Protein synthesis in gibberellin-treated lettuce (Lactuca sativa) seeds has been studied during the lag phase between the beginning of imbibition and the first signs of radicle protrusion. When compared to the water-imbibed controls, both polyribosome populations and radioactive leucine incorporation into protein increase in the embryos of GA(3)- induced seeds early in the imbibition period. Since these results are contradictory to previously published studies, the reasons for the differences are outlined and various alternative possibilities eliminated. The protocol for protein extraction, particularly the speed at which the supernatant from the seed homogenate is cleared, is important for demonstrating the GA(3)-mediated changes. Embryos maintained in the dormant state by abscisic acid still conduct considerable amounts of protein synthesis, and this is enhanced by concentrations of 6-benzylaminopurine which also promote germination. Therefore, the actions of GA(3), abscisic acid, and cytokinin on lettuce seed germination are mediated, directly or indirectly, via protein synthesis.

  19. [Seed aging and survival mechanisms].

    PubMed

    Grappin, Philippe; Bourdais, Gildas; Collet, Boris; Godin, Béatrice; Job, Dominique; Ogé, Laurent; Jullien, Marc; Rajjou, Loïc

    2008-01-01

    Aging and death are universal to living systems. In temperate climate latitudes the mature seeds of higher plants are exposed to aging and have developed resistance mechanisms allowing survival and plant propagation. In addition to the physicochemical properties of the seed that confer stress resistance, the protein metabolism contributes importantly to longevity mechanisms. Recently, genetic studies have demonstrated the occurrence of the Protein L-isoaspartyl methyltransferase repair enzyme in controlling age-related protein damages and seed survival. These protective mechanisms by protein repair are widespread in all kingdoms, so that the use of seeds as models to study these controlling processes offers the prospect of understanding longevity mechanisms better.

  20. Ecosystem services from keystone species: diversionary seeding and seed-caching desert rodents can enhance Indian ricegrass seedling establishment

    USDA-ARS?s Scientific Manuscript database

    Seeds of Achnatherum hymenoides (Indian ricegrass), a native bunchgrass on arid western rangelands, are naturally dispersed by seed-caching rodent species, particularly Dipodomys spp. (kangaroo rats). These animals cache large quantities of seeds when mature seeds are available and recover most of t...

  1. Virus maturation.

    PubMed

    Delgui, Laura R; Rodríguez, José F

    2013-01-01

    The formation of infectious virus particles is a highly complex process involving a series of sophisticated molecular events. In most cases, the assembly of virus structural elements results in the formation of immature virus particles unable to initiate a productive infection. Accordingly, for most viruses the final stage of the assembly pathway entails a set of structural transitions and/or biochemical modifications that transform inert precursor particles into fully infectious agents. In this chapter, we review the most relevant maturation mechanisms involved in the generation of infectious virions for a wide variety of viruses.

  2. Investigation of gamma-irradiated vegetable seeds with high-resolution solid-state 13C NMR.

    PubMed

    Bardet, Michel; Maron, Sébastien; Foray, Marie Françoise; Berger, Maurice; Guillermo, Armel

    2004-04-01

    13C solid-state NMR was used to investigate the effects of gamma radiation on vegetable seeds, Pisum sativum and Latuca sativa, at absorbed doses that inhibit their germination. By combining single-pulse excitation and cross-polarization experiments under magic angle spinning, both liquid and solid domains of seeds can be characterized. We showed that the liquid domains, mostly made of triacylglycerols (TAG), of vegetable seeds are not sensitive to radiation. The main structural changes have been observed in the embryonic axes of seeds when the seeds are water-imbibed before irradiation. These results rule out a starting hypothesis concerning the potential role of TAG contained in oil bodies as a potential source of aldehydes that could further react with DNA moiety.

  3. Control of macaw palm seed germination by the gibberellin/abscisic acid balance.

    PubMed

    Bicalho, E M; Pintó-Marijuan, M; Morales, M; Müller, M; Munné-Bosch, S; Garcia, Q S

    2015-09-01

    The hormonal mechanisms involved in palm seed germination are not fully understood. To better understand how germination is regulated in Arecaceae, we used macaw palm (Acrocomia aculeata (Jacq.) Lodd. Ex Mart.) seed as a model. Endogenous hormone concentrations, tocopherol and tocotrienol and lipid peroxidation during germination were studied separately in the embryo and endosperm. Evaluations were performed in dry (D), imbibed (I), germinated (G) and non-germinated (NG) seeds treated (+GA3 ) or not treated (control) with gibberellins (GA). With GA3 treatment, seeds germinated faster and to a higher percentage than control seeds. The +GA3 treatment increased total bioactive GA in the embryo during germination relative to the control. Abscisic acid (ABA) concentrations decreased gradually from D to G in both tissues. Embryos of G seeds had a lower ABA content than NG seeds in both treatments. The GA/ABA ratio in the embryo was significantly higher in G than NG seeds. The +GA3 treatment did not significantly affect the GA/ABA ratio in either treatment. Cytokinin content increased from dry to germinated seeds. Jasmonic acid (JA) increased and 1-aminocyclopropane-1-carboylic acid (ACC) decreased after imbibition. In addition, α-tocopherol and α-tocotrienol decreased, while lipid peroxidation increased in the embryo during germination. We conclude that germination in macaw palm seed involves reductions in ABA content and, consequently, increased GA/ABA in the embryo. Furthermore, the imbibition process generates oxidative stress (as observed by changes in vitamin E and MDA).

  4. Purification and Characterization of Two Voltage-Dependent Anion Channel Isoforms from Plant Seeds1

    PubMed Central

    Abrecht, Helge; Wattiez, Ruddy; Ruysschaert, Jean-Marie; Homblé, Fabrice

    2000-01-01

    Mitochondria were isolated from imbibed seeds of lentil (Lens culinaris) and Phaseolus vulgaris. We copurified two voltage-dependent anion channel from detergent solubilized mitochondria in a single purification step using hydroxyapatite. The two isoforms from P. vulgaris were separated by chromatofocusing chromatography in 4 m urea without any loss of channel activity. Channel activity of each isoform was characterized upon reconstitution into diphytanoyl phosphatidylcholine planar lipid bilayers. Both isoforms form large conductance channels that are slightly anion selective and display cation selective substates. PMID:11080295

  5. Morphological analysis of seed shape in Arabidopsis thaliana reveals altered polarity in mutants of the ethylene signaling pathway.

    PubMed

    Robert, Céline; Noriega, Arturo; Tocino, Angel; Cervantes, Emilio

    2008-06-16

    The shape of Arabidopsis thaliana dry seed is described here as a prolate spheroid. The accuracy of this approximation is discussed. Considering its limitations, it allows a geometric approximation to the analysis of changes occurring in seed shape during imbibition prior to seed germination as well as the differences in shape between genotypes and their changes during imbibition. The triple mutant ein2-1, ers1-2, etr1-7 presents notable alterations in seed shape. In addition, seeds of this and other mutants in the ethylene signaling pathway (ctr1-1, eto1-1, etr1-1, ein2-1) show different response to imbibition than the wild type. Imbibed seeds of the wild type increase their asymmetry compared with the dry seeds. This is detected by the relative changes in the curvature values in both poles. Thus, during imbibition of the wild-type seeds, the reduction in curvature values observed in the basal pole gives them an ovoid shape. In contrast, in the seeds of the ethylene mutants, reduction in curvature values occurs in both basal and apical poles, and its shape remains as a prolate spheroid. Our data indicate that the ethylene signaling pathway is involved, in general, in the complex regulation of seed shape and, in particular, in the establishment of polarity in seeds, controlling curvature values in the seed poles.

  6. Seed Germination

    USDA-ARS?s Scientific Manuscript database

    Initiation of seed germination is a critical decision for plants. It is important for seed populations under natural conditions to spread the timing of germination of individual seeds to maximize the probability of species survival. Therefore, seeds have evolved the multiple layers of mechanisms tha...

  7. Tissue-specific hormonal profiling during dormancy release in macaw palm seeds.

    PubMed

    Ribeiro, Leonardo M; Garcia, Queila S; Müller, Maren; Munné-Bosch, Sergi

    2015-04-01

    Little is known about the control exerted by hormones in specific tissues during germination and post-germinative development in monocot seeds, whose embryos have complex structures and can remain dormant for long periods of time. Here the tissue-specific hormonal profile of macaw palm (Acrocomia aculeata) seeds overcoming dormancy and seedling during initial development was examined. Endogenous hormonal concentrations were determined in the cotyledonary petiole, haustorium, operculum, endosperm adjacent to the embryo and peripheral endosperm of dry dormant seeds, imbibed seeds trapped in phase I of germination, and germinating (phase 2 and phase 3) seeds 2, 5, 10 and 15 days after sowing. Evaluations were performed on seeds treated for overcoming dormancy by removal of the operculum and by immersion in a gibberellic acid (GA3 ) solution. Removal of the operculum effectively helped in overcoming dormancy, which was associated with the synthesis of active gibberellins (GAs) and cytokinins (CKs), as well as reductions of abscisic acid (ABA) in the cotyledonary petiole. In imbibed seeds trapped in phase I of germination, exogenous GA3 caused an increase in active GAs in the cotyledonary petiole and operculum and reduction in ABA in the operculum. Initial seedling development was associated with increases in the CK/auxin ratio in the haustorium and GA levels in the endosperm which is possibly related to the mobilization of metabolic reserves. Increases in salicylic acid (SA) and jasmonic acid (JA) concentrations were associated with the development of the vegetative axis. Hormones play a crucial tissue-specific role in the control of dormancy, germination and initial development of seedlings in macaw palm, including a central role not only for GAs and ABA, but also for CKs and other hormones.

  8. Effect of freezing and canning on the content of selected vitamins and pigments in seeds of two grass pea (Lathyrus sativus L.) cultivars at the not fully mature stage.

    PubMed

    Korus, Anna; Lisiewska, Zofia; Kmiecik, Waldemar

    2002-08-01

    Seeds of the grass pea (Lathyrus sativus L.) cultivars Derek and Krab, with a dry matter content of about 33%, were used for freezing and for canning. The content of vitamins C, B1, and B2 and of carotenoids, beta-carotene, and chlorophylls was determined in raw and blanched material, in frozen products after 6-month storage before and after cooking to consumption consistency, and in canned products after 6-month storage. In comparison with the cultivar Krab, raw seeds of Derek contained 45% more vitamin C, 14% more total chlorophylls, 13% less thiamine (vitamin B1), and 7% less riboflavin (vitamin B2). The level of carotenoids was similar. Blanching of seeds led to a statistically significant decrease only in the content of vitamin C. Freezing and frozen storage significantly lowered the level of vitamin C and chlorophylls. The cooking of frozen seeds and the production of canned products and their storage resulted in a statistically verified reduction in the content of components analysed in all the samples. Greater losses were found in products prepared from seeds of the cv. Krab. After cooking, frozen seeds contained more of all the analysed components than the canned products.

  9. Oxygen dependency of germinating Brassica seeds

    NASA Astrophysics Data System (ADS)

    Park, Myoung Ryoul; Hasenstein, Karl H.

    2016-02-01

    Establishing plants in space, Moon or Mars requires adaptation to altered conditions, including reduced pressure and composition of atmospheres. To determine the oxygen requirements for seed germination, we imbibed Brassica rapa seeds under varying oxygen concentrations and profiled the transcription patterns of genes related to early metabolism such as starch degradation, glycolysis, and fermentation. We also analyzed the activity of lactate dehydrogenase (LDH) and alcohol dehydrogenase (ADH), and measured starch degradation. Partial oxygen pressure (pO2) greater than 10% resulted in normal germination (i.e., protrusion of radicle about 18 hours after imbibition) but lower pO2 delayed and reduced germination. Imbibition in an oxygen-free atmosphere for three days resulted in no germination but subsequent transfer to air initiated germination in 75% of the seeds and the root growth rate was transiently greater than in roots germinated under ambient pO2. In hypoxic seeds soluble sugars degraded faster but the content of starch after 24 h was higher than at ambient oxygen. Transcription of genes related to starch degradation, α-amylase (AMY) and Sucrose Synthase (SUS), was higher under ambient O2 than under hypoxia. Glycolysis and fermentation pathway-related genes, glucose phosphate isomerase (GPI), 6-phosphofructokinase (PFK), fructose 1,6-bisphosphate aldolase (ALD), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), pyruvate decarboxylase (PDC), LDH, and ADH, were induced by low pO2. The activity of LDH and ADH was the highest in anoxic seeds. Germination under low O2 conditions initiated ethanolic fermentation. Therefore, sufficient oxygen availability is important for germination before photosynthesis provides necessary oxygen and the determination of an oxygen carrying capacity is important for uniform growth in space conditions.

  10. Germination of Croton urucurana L. seeds exposed to different storage temperatures and pre-germinative treatments.

    PubMed

    Scalon, Silvana P Q; Mussury, Rosilda M; Lima, Andréa A

    2012-03-01

    The present work evaluated the germinability and vigor of Croton urucurana seeds. 1) Seeds were sorted by color (caramel, gray and black) and were subjected to seven different pre-germination treatments followed by incubation at 20ºC, 25°C or 20/30°C. 2) Seeds were stored in cold chambers or at room temperature for up to 300 days and were subsequently incubated at 20/30ºC in a germination chamber or under greenhouse conditions. Only gray seeds showed significant germination rates. The highest first count percentages of total germination and the highest germination speed indices were observed in control seeds and in those which were treated with water or 200 mg.L(-1) gibberellic acid for 12 hours. Seeds stored under refrigeration showed the highest values for all of the characteristics examined, as well as less electrical conductivity of the imbibing solution. Seedlings were more vigorous when seeds were stored for 300 days in a cold chamber. The seedlings production can be increased by incubating the seeds at alternating temperatures (20/30°C). The seeds do not need pre-germination treatments.

  11. Physiological characteristics and related gene expression of after-ripening on seed dormancy release in rice.

    PubMed

    Du, W; Cheng, J; Cheng, Y; Wang, L; He, Y; Wang, Z; Zhang, H

    2015-11-01

    After-ripening is a common method used for dormancy release in rice. In this study, the rice variety Jiucaiqing (Oryza sativa L. subsp. japonica) was used to determine dormancy release following different after-ripening times (1, 2 and 3 months). Germination speed, germination percentage and seedling emergence increased with after-ripening; more than 95% germination and 85% seedling emergence were observed following 1 month of after-ripening within 10 days of imbibition, compared with <45% germination and 20% seedling emergence in freshly harvested seed. Hence, 3 months of after-ripening could be considered a suitable treatment period for rice dormancy release. Dormancy release by after-ripening is mainly correlated with a rapid decline in ABA content and increase in IAA content during imbibition. Subsequently, GA(1)/ABA, GA(7)/ABA, GA(12)/ABA, GA(20)/ABA and IAA/ABA ratios significantly increased, while GA(3)/ABA, GA(4)/ABA and GAs/IAA ratio significantly decreased in imbibed seeds following 3 months of after-ripening, thereby altering α-amylase activity during seed germination. Peak α-amylase activity occurred at an earlier germination stage in after-ripened seeds than in freshly harvested seeds. Expression of ABA, GA and IAA metabolism genes and dormancy-related genes was regulated by after-ripening time upon imbibition. Expression of OsCYP707A5, OsGA2ox1, OsGA2ox2, OsGA2ox3, OsILR1, OsGH3-2, qLTG3-1 and OsVP1 increased, while expression of Sdr4 decreased in imbibed seeds following 3 months of after-ripening. Dormancy release through after-ripening might be involved in weakening tissues covering the embryo via qLTG3-1 and decreased ABA signalling and sensitivity via Sdr4 and OsVP1.

  12. A GAMYB-like gene in tomato and its expression during seed germination.

    PubMed

    Gong, Xuemei; Bewley, Derek J

    2008-09-01

    To understand the function of the gibberellin (GA) transduction pathway during germination, the transcription factor gene GAMYB, which responds to the GA signal, has been studied in tomato (Solanum lycopersicum) seeds. This gene, called LeGAMYBL1 is present as a single copy, and is expressed in both the embryo and endosperm during seed germination in gib-1 mutant (non-GA producing) and wild-type (cv. Glamour) seeds. It is also expressed in young vegetative tissues. There is an 83% similarity in the amino acid sequence of the binding domain of the protein that is encoded by this tomato GAMYB-like gene when compared to that encoded by the GAMYB genes from barley, rice and Arabidopsis. In both mutant and wild-type intact tomato seeds, LeGAMYBL1 expression increases during germination, is upregulated by gibberellic acid (GA(3)), and declines thereafter. LeGAMYBL1 transcripts are also present in non-germinating gib-1 mutant seeds imbibed in water, and they are upregulated by GA(3) during promotion of germination. However, dissected gib-1 embryos complete germination when imbibed in either water or GA(3), with almost no difference in the amount of mRNA transcribed by the LeGAMYBL1 gene during this event. This is indicative that GA(3) is not required for the expression of the LeGAMYBL1 gene, which is likely necessary, but not sufficient, for germination to be completed, especially in the intact seed. The germination-inhibiting hormone abscisic acid does not influence expression of this gene. Expression of the LeGAMYB1 gene also occurs in the endosperm, but there is no correlation between its expression and GA-promoted expression of the cell-wall-degrading enzyme endo-beta-mannanase.

  13. Detection of ethanol and acetaldehyde released from cabbage seeds of different quality: Laser photoacoustic spectroscopy versus FTIR and headspace gas chromatography

    NASA Astrophysics Data System (ADS)

    Bicanic, D.; Persijn, S.; Taylor, A.; Cozijnsen, J.; van Veldhuyzen, B.; Lenssen, G.; Wegh, H.

    2003-01-01

    Detecting early ageing stages of seeds in storage is of great concern to vegetable seed companies. Despite their reliability conventional germination tests are destructive and time consuming. One alternative towards assessing the quality of seed is to monitor the concentration of certain volatiles (acting as biological markers) evolved from the seeds; examples are ethanol (EtOH), acetaldehyde, ethane, methanol, etc. Most of the presently used methods have only moderate insensitivity and are therefore not suitable for the on-line measurements. In this work CO laser photoacoustic spectroscopy (LPAS) was used to investigate the on-line evolution of EtOH and acetaldehyde from the imbibed nonaged and aged seeds of cabbage. The overall performance of LPAS was superior to that of Fourier transform infrared and of gas chromatography.

  14. Precursor of kunitz trypsin inhibitor in soybean seeds

    SciTech Connect

    McGrain, A.; Chen, J.; Tan-Wilson, A. )

    1990-05-01

    Kunitz soybean trypsin inhibitor (KSTI) appears to be synthesized in precursor form which is converted by proteolytic digestion to the mature form of KSTI. Two forms of anti-cross-reacting material are evident when Western blots of extracts of developing seeds are analyzed. The precursor form increases to maximum levels as seed lengths increase to 11 mm. As the seed matures to 13 mm and turns yellow, precursor levels decrease while mature KSTI levels increase. The conversion of precursor to mature form could be demonstrated in vitro in seed extracts. The conversion could also be demonstrated in excised seeds pulse-labeled with ({sup 14}C)-leucine as loss of radioactivity from the precursor and appearance in the mature KSTI form.

  15. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice.

    PubMed

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2016-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice.

  16. Proteomic Analysis Reveals Proteins Involved in Seed Imbibition under Salt Stress in Rice

    PubMed Central

    Xu, Enshun; Chen, Mingming; He, Hui; Zhan, Chengfang; Cheng, Yanhao; Zhang, Hongsheng; Wang, Zhoufei

    2017-01-01

    Enhancement of salinity tolerance during seed germination is very important for direct seeding in rice. In this study, the salt-tolerant japonica landrace Jiucaiqing was used to determine the regulators that are involved in seed imbibition under salt stress. Briefly, the comparative proteomic analysis was conducted between dry (0 h) and imbibed (24 h) seeds with 150 mM NaCl. Under salt stress, the uptake of water increased rapidly before 24 h imbibition (Phase I), followed by a plateau of seed imbibition from 24 to 96 h imbibition (Phase II). We identified 14 proteins involved in seed imbibition, in which the majority of these proteins were involved in energy supply and storage protein. The early imbibition process was mediated by protein catabolism; the most of proteins were down-regulated after 24 h imbibition. Eleven genes in salt stress treated seeds were expressed early during the seed imbibition in comparison to control seeds. By comparison, 2,3-bisphosphoglycerate-independent phosphoglycerate mutase (BPM), glutelin (GLU2.2 and GLU2.3), glucose-1-phosphate adenylyltransferase large subunit (GAS8), and cupin domain containing protein (CDP3.1 and CDP3.2) were near the regions of quantitative trait loci (QTLs) for seed dormancy, seed reserve utilization, and seed germination in Jiucaiqing. In particular, CDP3.1 was co-located in the region of qIR-3 for imbibition rate, and qGP-3 for germination percentage. The role of CDP3.1 was verified in enhancing seed germination under salt stress using T-DNA mutant. The identified proteins might be applicable for the improvement of seed germination under salt stress in rice. PMID:28105039

  17. Direct seeding

    Treesearch

    Richard M. Godman; G. A. Mattson

    1992-01-01

    At present, direct seeding of hardwoods in the Lake States is more of a supplemental than a primary means of artificial regeneration. Direct seeding may be used to augment a poor seed crop or increase the proportion of a preferred species. In the future, it will no doubt play a bigger role-in anticipation of this we need to collect and store the amounts of seed needed...

  18. Cytokinins and Expression of SWEET, SUT, CWINV and AAP Genes Increase as Pea Seeds Germinate

    PubMed Central

    Jameson, Paula E.; Dhandapani, Pragatheswari; Novak, Ondrej; Song, Jiancheng

    2016-01-01

    Transporter genes and cytokinins are key targets for crop improvement. These genes are active during the development of the seed and its establishment as a strong sink. However, during germination, the seed transitions to being a source for the developing root and shoot. To determine if the sucrose transporter (SUT), amino acid permease (AAP), Sugar Will Eventually be Exported Transporter (SWEET), cell wall invertase (CWINV), cytokinin biosynthesis (IPT), activation (LOG) and degradation (CKX) gene family members are involved in both the sink and source activities of seeds, we used RT-qPCR to determine the expression of multiple gene family members, and LC-MS/MS to ascertain endogenous cytokinin levels in germinating Pisum sativum L. We show that genes that are actively expressed when the seed is a strong sink during its development, are also expressed when the seed is in the reverse role of being an active source during germination and early seedling growth. Cytokinins were detected in the imbibing seeds and were actively biosynthesised during germination. We conclude that, when the above gene family members are targeted for seed yield improvement, a downstream effect on subsequent seed germination or seedling vigour must be taken into consideration. PMID:27916945

  19. A close look at cotton seed coat fragments with AFISPro

    USDA-ARS?s Scientific Manuscript database

    Seed coat fragments (SCF) can cause spinning problems and fabric defects, which ultimately cause financial losses to the cotton industry. SCF are parts of a seed coat that have been broken from the surface of either mature or immature seeds during mechanical processing. The objective of this study ...

  20. Measurements of seed coat fragments in cotton fibers and fabrics

    USDA-ARS?s Scientific Manuscript database

    Seed coat fragments (SCF) are parts of a seed coat that have been broken from the surface of either mature or immature seeds during mechanical processing. SCF can cause spinning problems and fabric defects, which ultimately cause losses to the cotton industry. The objective of this study was to dev...

  1. Seed Nutrition and Quality, Seed Coat Boron and Lignin Are Influenced by Delayed Harvest in Exotically-Derived Soybean Breeding Lines under High Heat.

    PubMed

    Bellaloui, Nacer; Smith, James R; Mengistu, Alemu

    2017-01-01

    The timing of harvest is a major factor affecting seed quality in soybean, particularly in Midsouthern USA, when rain during harvest period is not uncommon. The objective of this research was to evaluate the effects of time of harvest on soybean seed quality (seed composition, germination, seed coat boron, and lignin) in high germinability (HG) breeding lines (50% exotic) developed under high heat. The hypothesis was that seeds of HG lines possess physiological and genetic traits for a better seed quality at harvest maturity and delayed harvest. A 2-year field experiment was conducted under irrigated conditions. Results showed that, at harvest maturity, the exotic HG lines had higher seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin, but lower seed oil compared with the non-exotic checks (Control), confirming our hypothesis. At 28 days after harvest maturity (delayed harvest), the content of seed protein, oleic acid, sugars, seed coat boron, and seed coat lignin were higher in some of the HG lines compared with the checks, indicating a possible involvement of these seed constituents, especially seed coat boron and seed coat lignin, in maintaining seed coat integrity and protecting seed coat against physical damage. Highly significant positive correlations were found between germination and seed protein, oleic acid, sugars, and seed coat boron and seed coat lignin. Highly significant negative correlation was found between germination and oil, linoleic acid, seed coat wrinkling, shattering, and hard seed. Yields of some HG lines were competitive with checks. This research demonstrated that time of harvesting is an important factor influencing seed protein and oil production. Also, since high oleic acid is desirable for oxidative stability, shelf-life and biodiesel properties, using HG lines could positively influence these important traits. This result should suggest to breeders of some of the advantages of selecting for high seed coat boron and

  2. Control of alpha-Amylase Development in Cotyledons during and following Germination of Mung Bean Seeds.

    PubMed

    Morohashi, Y; Katoh, H; Kaneko, Y; Matsushima, H

    1989-09-01

    Developmental patterns of alpha-amylase in Vigna radiata cotyledons during and following germination were quite different depending on the differences in the treatments of cotyledons during the imbibitional stage. When axis-detached cotyledons were imbibed in water with seed-coats attached, alpha-amylase activity did not increase and remained low. On the other hand, when the cotyledons were imbibed in water after seed-coat removal, the enzyme activity increased markedly. If the axis was attached to the cotyledons, alpha-amylase showed a marked development even under the former imbibition conditions. These changes in the enzyme activity were in parallel with those in the enzyme content, and the content, in turn, was dependent upon the availability of mRNA for alpha-amylase. We propose that the regulation of the development of alpha-amylase in cotyledons may involve some factor(s) inhibitory to accumulation of alpha-amylase mRNA, which is present in dry cotyledons and can be removed from cotyledons by leakage or by the presence of the axis.

  3. Geographic variation in the flood-induced fluctuating temperature requirement for germination in Setaria parviflora seeds.

    PubMed

    Mollard, F P O; Insausti, P

    2011-07-01

    Our aim was to search for specific seed germinative strategies related to flooding escape in Setaria parviflora, a common species across the Americas. For this purpose, we investigated induction after floods, in relation to fluctuating temperature requirements for germination in seeds from mountain, floodplain and successional grasslands. A laboratory experiment was conducted in which seeds were imbibed or immersed in water at 5°C. Seeds were also buried in flood-prone and upland grasslands and exhumed during the flooding season. Additionally, seeds were buried in flooded or drained grassland mesocosms. Germination of exhumed seeds was assayed at 25°C or at 20°C/30°C in the dark or in the presence of red light pulses. After submergence or soil flooding, a high fraction (>32%) of seeds from the floodplain required fluctuating temperatures to germinate. In contrast, seeds from the mountains showed maximum differences in germination between fluctuating and constant temperature treatment only after imbibition (35%) or in non-flooded soil conditions (40%). The fluctuating temperature requirement was not clearly related to the foregoing conditions in the successional grassland seeds. Maximum germination could also be attained with red light pulses to seeds from mountain and successional grasslands. Results show that the fluctuating temperature requirement might help floodplain seeds to germinate after floods, indicating a unique feature of the dormancy of S. parviflora seeds from floodplains, which suggests an adaptive advantage aimed at postponing emergence during inundation periods. In contrast, the fluctuating temperature required for germination among seeds from mountain and successional grasslands show its importance for gap detection.

  4. Water uptake and oil distribution during imbibition of seeds of western white pine (Pinus monticola Dougl. ex D. Don) monitored in vivo using magnetic resonance imaging.

    PubMed

    Terskikh, Victor V; Feurtado, J Allan; Ren, Chengwei; Abrams, Suzanne R; Kermode, Allison R

    2005-04-01

    Dry or fully imbibed seeds of western white pine (Pinus monticola Dougl. ex D. Don) were studied using high-resolution magnetic resonance imaging (MRI). Analyses of the dry seed revealed many of the gross anatomical features of seed structure. Furthermore, the non-invasive nature of MRI allowed for a study of the dynamics of water and oil distribution during in situ imbibition of a single seed with time-lapse chemical shift selective MRI. During soaking of the dry seed, water penetrated through the seed coat and megagametophyte. The cotyledons of the embryo (located in the chalazal end of the seed) were the first to show hydration followed by the hypocotyl and later the radicle. After penetrating the seed coat, water in the micropylar end of the seed likely also contributed to further hydration of the embryo; however, the micropyle itself did not appear to be a site for water entry into the seed. A model that describes the kinetics of the earlier stages of imbibition is proposed. Non-viable pine seeds captured with MRI displayed atypical imbibition kinetics and were distinguished by their rapid and uncontrolled water uptake. The potential of MR microimaging for detailed studies of water uptake and distribution during the soaking, moist chilling ("stratification"), and germination of conifer seeds is discussed.

  5. Effects of elevated CO2 and temperature on seed quality.

    PubMed

    Hampton, J G; Boelt, B; Rolston, M P; Chastain, T G

    2013-04-01

    Successful crop production depends initially on the availability of high-quality seed. By 2050 global climate change will have influenced crop yields, but will these changes affect seed quality? The present review examines the effects of elevated carbon dioxide (CO2) and temperature during seed production on three seed quality components: seed mass, germination and seed vigour. In response to elevated CO2, seed mass has been reported to both increase and decrease in C3 plants, but not change in C4 plants. Increases are greater in legumes than non-legumes, and there is considerable variation among species. Seed mass increases may result in a decrease of seed nitrogen (N) concentration in non-legumes. Increasing temperature may decrease seed mass because of an accelerated growth rate and reduced seed filling duration, but lower seed mass does not necessarily reduce seed germination or vigour. Like seed mass, reported seed germination responses to elevated CO2 have been variable. The reported changes in seed C/N ratio can decrease seed protein content which may eventually lead to reduced viability. Conversely, increased ethylene production may stimulate germination in some species. High-temperature stress before developing seeds reach physiological maturity (PM) can reduce germination by inhibiting the ability of the plant to supply the assimilates necessary to synthesize the storage compounds required for germination. Nothing is known concerning the effects of elevated CO2 on seed vigour. However, seed vigour can be reduced by high-temperature stress both before and after PM. High temperatures induce or increase the physiological deterioration of seeds. Limited evidence suggests that only short periods of high-temperature stress at critical seed development stages are required to reduce seed vigour, but further research is required. The predicted environmental changes will lead to losses of seed quality, particularly for seed vigour and possibly germination. The seed

  6. Electropriming of wheatgrass seeds using pulsed electric fields enhances antioxidant metabolism and the bioprotective capacity of wheatgrass shoots

    PubMed Central

    Leong, Sze Ying; Burritt, David John; Oey, Indrawati

    2016-01-01

    The influence of pulsed electric field (PEF) (0.5–2 kV/cm) treatment of wheatgrass (Triticum aestivum L.) seeds, with different water contents, on antioxidant metabolism in the resultant seedlings was investigated. Imbibing seeds to a water content of 45% or greater prior to PEF treatment increased the glutathione level and activities of superoxide dismutase, catalase, glutathione reductase, glutathione peroxidase and ascorbate peroxidase in the resultant seedlings, compared to untreated controls. Pre-culture of human intestinal Caco-2 cells with simulated gastrointestinal digests of electrostimulated seedlings enhanced the ability of Caco-2 cells to cope with H2O2-induced oxidative damage, determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release assays. The Caco-2 cell MTT and LDH assays correlated better with the increases in seedling glutathione content and antioxidant enzyme activities compared to the 2, 2-diphenyl-1-picrylhydrazyl (DPPH) total antioxidant capacity assay, an assay commonly used to determine the ability of plant extracts to protect cells from oxidative damage. These results demonstrate for the first time that PEF treatment of imbibed seeds can stimulate changes in metabolism in the resultant seedlings, increasing the bioprotective potential of their shoots/sprouts and hence value as functional foods. PMID:27147445

  7. Seed production temperature regulation of primary dormancy occurs through control of seed coat phenylpropanoid metabolism.

    PubMed

    MacGregor, Dana R; Kendall, Sarah L; Florance, Hannah; Fedi, Fabio; Moore, Karen; Paszkiewicz, Konrad; Smirnoff, Nicholas; Penfield, Steven

    2015-01-01

    Environmental changes during seed production are important drivers of lot-to-lot variation in seed behaviour and enable wild species to time their life history with seasonal cues. Temperature during seed set is the dominant environmental signal determining the depth of primary dormancy, although the mechanisms though which temperature changes impart changes in dormancy state are still only partly understood. We used molecular, genetic and biochemical techniques to examine the mechanism through which temperature variation affects Arabidopsis thaliana seed dormancy. Here we show that, in Arabidopsis, low temperatures during seed maturation result in an increase in phenylpropanoid gene expression in seeds and that this correlates with higher concentrations of seed coat procyanidins. Lower maturation temperatures cause differences in coat permeability to tetrazolium, and mutants with increased seed coat permeability and/or low procyanidin concentrations are less able to enter strongly dormant states after exposure to low temperatures during seed maturation. Our data show that maternal temperature signalling regulates seed coat properties, and this is an important pathway through which the environmental signals control primary dormancy depth.

  8. Variation in Germination and Amino Acid Leakage of Seeds with Temperature Related to Membrane Phase Change

    PubMed Central

    Hendricks, Sterling B.; Taylorson, Ray B.

    1976-01-01

    Leakages of amino acids and/or fluorescent material as functions of temperature between 15 and 40 C are reported for imbibed seeds of Avena fatua L., Lactuca sativa L., Barbarea vulgaris R. Br., Amaranthus albus L., Abutilon theophrasti Medic., Lychnis alba Mill., Daucus carota L., Setaria faberi Herrm., Setaria viridis (L.) Beauv., and Datura stramonium L. The leakage indicates prominent increase in permeability of the plasmalemma in the 30 to 35 C range for 8 of the 10 kinds of seeds studied. Germination of the seeds at constant temperatures or with daily shifts in temperature is related to the membrane transition temperature for permeation by amino acids. Seeds of A. albus and A. theophrasti, which did not show membrane changes in the 25 to 40 C range, germinated best at 35 to 40 C; the other seeds germinated best below 30 C. Seeds of B. vulgaris showed rapid permeation of limiting membranes upon initial wetting with water, which was indicative of membrane disorder when dry. Leakage under anaerobiosis was observed for S. faberi seeds. PMID:16659623

  9. Mechanical Resistance of the Seed Coat and Endosperm during Germination of Capsicum annuum at Low Temperature.

    PubMed

    Watkins, J T; Cantliffe, D J

    1983-05-01

    Decoated pepper (Capsicum annuum L. cv Early Calwonder) seeds germinated earlier at 25 degrees C, but not at 15 degrees C, compared to coated seeds. The seed coat did not appear to impose a mechanical restriction on pepper seed germination. Scarification of the endosperm material directly in front of the radicle reduced the time to germination at both 15 degrees C and 25 degrees C.The amount of mechanical resistance imposed by the endosperm on radicle emergence before germination was measured using the Instron Universal Testing Machine. Endosperm strength decreased as imbibition time increased. The puncture force decreased faster when seeds were imbibed at 25 degrees C than at 15 degrees C. The reduction in puncture force corresponded with the ability of pepper seeds to germinate. Most radicle emergence occurred at 15 degrees C and 25 degrees C after the puncture force was reduced to between 0.3 and 0.4 newtons.Application of gibberellic acid(4+7) (100 microliters per liter) resulted in earlier germination at 15 degrees C and 25 degrees C and decreased endosperm strength sooner than in untreated seeds. Similarly, high O(2) concentrations had similar effects on germination earliness and endosperm strength decline as did gibberellic acid(4+7), but only at 25 degrees C. At 15 degrees C, high O(2) concentrations slowed germination and endosperm strength decline.

  10. Water uptake, priming, drying and storage effects in Cassia excelsa Schrad seeds.

    PubMed

    Jeller, H; Perez, S C; Raizer, J

    2003-02-01

    The aims of this study were to evaluate the effects of osmotic potential on the water uptake curve in Cassia excelsa seeds and use the results to analyze the effects of dehydration and storage on primed seed germination. Seeds were imbibed in distilled water and polyethylene glicol (PEG 6000) osmotic solutions at -0.2, -0.4, and -0.6 MPa, at 20 degrees C. The radicle emergence and seed moisture content were evaluated at 6-hour intervals during 240 hours. Afterwards, seeds were primed in distilled water and PEG 6000 solutions at -0.2, -0.4, and -0.6 MPa for 48, 72, 96, and 168 hours at 20 degrees C, followed by air drying and storage for 15 days at 5 degrees C. The lower the osmotic potential, the higher the time required for priming. The osmoconditioning yields benefits with PEG solutions at 0.0 and -0.2 MPa; seed improvements were maintained during storage for 15 days at 5 degrees C, but were reverted by seed drying.

  11. Vacuolar H+-ATPase Is Expressed in Response to Gibberellin during Tomato Seed Germination1

    PubMed Central

    Cooley, Michael B.; Yang, Hong; Dahal, Peetambar; Mella, R. Alejandra; Downie, A. Bruce; Haigh, Anthony M.; Bradford, Kent J.

    1999-01-01

    Completion of germination (radicle emergence) by gibberellin (GA)-deficient (gib-1) mutant tomato (Lycopersicon esculentum Mill.) seeds is dependent upon exogenous GA, because weakening of the endosperm tissue enclosing the radicle tip requires GA. To investigate genes that may be involved in endosperm weakening or embryo growth, differential cDNA display was used to identify mRNAs differentially expressed in gib-1 seeds imbibed in the presence or absence of GA4+7. Among these was a GA-responsive mRNA encoding the 16-kD hydrophobic subunit c of the V0 membrane sector of vacuolar H+-translocating ATPases (V-ATPase), which we termed LVA-P1. LVA-P1 mRNA expression in gib-1 seeds was dependent on GA and was particularly abundant in the micropylar region prior to radicle emergence. Both GA dependence and tissue localization of LVA-P1 mRNA expression were confirmed directly in individual gib-1 seeds using tissue printing. LVA-P1 mRNA was also expressed in wild-type seeds during development and germination, independent of exogenous GA. Specific antisera detected protein subunits A and B of the cytoplasmic V1 sector of the V-ATPase holoenzyme complex in gib-1 seeds only in the presence of GA, and expression was localized to the micropylar region. The results suggest that V-ATPase plays a role in GA-regulated germination of tomato seeds. PMID:10594121

  12. Identification of genes involved in rice seed priming in the early imbibition stage.

    PubMed

    Cheng, J; Wang, L; Zeng, P; He, Y; Zhou, R; Zhang, H; Wang, Z

    2017-01-01

    Phase II of seed imbibition is a critical process during seed priming. To identify genes involved in rice seed priming, the altered proteins between the dry and imbibed (24 h) seeds were compared using a two-dimensional gel electrophoresis system in this study. Ten significantly changed proteins (fold change ≥ twofold; P < 0.01) were successfully identified, which could be categorised as carbohydrate and protein biosynthesis and metabolism-related, signalling-related, storage and stress-related proteins. A meta-analysis indicated that the highest expression of the identified genes was at the milk and dough stages and in the endosperm tissue. Quantitative real-time PCR analysis showed that there was significant variation in gene expression (except FAD-dependent oxidoreductase) in embryos during seed priming (0-48 h). The expression of genes associated with stress appeared at the early imbibition stage, while those associated with carbohydrate metabolism, protein synthesis and signalling increased at the late imbibition stage. Three identified proteins (glucose-1-phosphate adenylyltransferase large subunit, aminotransferase and prolamin precursor) had similar transcript and protein expression patterns in embryos. Based on phenotype and gene expression, the optimal stop time for seed priming is 24 h, when these three genes have relatively low expression, followed by significant induction during imbibition in embryos. These three genes are ideal candidate biomarkers for rice seed priming.

  13. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis.

    PubMed

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D; Deng, Xing Wang

    2013-10-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that phytochrome-interacting factor1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, long hypocotyl in far-red1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1-PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1-PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1-PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination.

  14. Dynamics of the antioxidant system during seed osmopriming, post-priming germination, and seedling establishment in Spinach (Spinacia oleracea).

    PubMed

    Chen, Keting; Arora, Rajeev

    2011-02-01

    Osmopriming is a pre-sowing treatment that improves seed germination performance and stress tolerance. To understand osmopriming physiology, and its association with post-priming stress tolerance, we investigated the antioxidant system dynamics during three stages: during osmopriming, post-priming germination, and seedling establishment. Spinach seeds (Spinacia oleracea L. cv. Bloomsdale) were primed with -0.6 MPa PEG at 15°C for 8 d, and dried at room temperature for 2 d. Unprimed and primed germinating seeds/seedlings were subjected to a chilling and desiccation stresses. Seed/seedling samples were collected for antioxidant assays and germination performance and stress tolerance were evaluated. Our data indicate that: (1) during osmopriming the transition of seeds from dry to germinating state represses the antioxidant pathways (residing in dry seeds) that involve CAT and SOD enzymes but stimulates another pathway (only detectable in imbibed seeds) involving APX; (2) a renewal of antioxidant system, possibly required by seedling establishment, occurs after roughly 5 d of germination; (3) osmopriming strengthens the antioxidant system and increases seed germination potential, resulting in an increased stress tolerance in germinating seeds. Osmopriming-mediated promotive effect on stress tolerance, however, may diminish in relatively older (e.g. ~5-week) seedlings.

  15. Carbonhydrate Content and Root Growth in Seeds Germinated Under Salt Stress: Implications for Seed Conditioning

    USDA-ARS?s Scientific Manuscript database

    Sugars and sugar alcohols have well documented roles in salt tolerance in whole plants and maturing seeds. Less is known, however, about possible effects of these compounds during germination. Seeds from mannitol-accumulating salt-tolerant celery [Apium graveloens L. var. dulce (P. Mill.) DC], non...

  16. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    SciTech Connect

    Krishnan, P. Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  17. Development of simple algorithm for direct and rapid determination of cotton maturity from FTIR spectroscopy

    USDA-ARS?s Scientific Manuscript database

    Fourier transform infrared (FTIR) spectra of seed and lint cottons were collected to explore the potential for the discrimination of immature cottons from mature ones and also for the determination of actual cotton maturity. Spectral features of immature and mature cottons revealed large differences...

  18. Ultrastructure of mature protein body in the starchy endosperm of dry cereal grain.

    PubMed

    Saito, Yuhi; Shigemitsu, Takanari; Tanaka, Kunisuke; Morita, Shigeto; Satoh, Shigeru; Masumura, Takehiro

    2010-01-01

    The development of the protein body in the late stage of seed maturation is poorly understood, because electron-microscopy of mature cereal endosperm is technically difficult. In this study, we attempted to modify the existing method of embedding rice grain in resin. The modified method revealed the ultrastructures of the mature protein body in dry cereal grains.

  19. Regulation of Wheat Seed Dormancy by After-Ripening Is Mediated by Specific Transcriptional Switches That Induce Changes in Seed Hormone Metabolism and Signaling

    PubMed Central

    Kanno, Yuri; Jordan, Mark C.; Kamiya, Yuji; Seo, Mitsunori; Ayele, Belay T.

    2013-01-01

    Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage) in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum), temporal expression patterns of genes related to abscisic acid (ABA), gibberellin (GA), jasmonate and indole acetic acid (IAA) metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals. PMID:23437172

  20. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica

    PubMed Central

    Cao, Dechang; Baskin, Carol C.; Baskin, Jerry M.; Yang, Fan; Huang, Zhenying

    2012-01-01

    Background and Aims Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Method Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Key Results Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. Conclusions The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds. PMID:22975287

  1. Comparison of germination and seed bank dynamics of dimorphic seeds of the cold desert halophyte Suaeda corniculata subsp. mongolica.

    PubMed

    Cao, Dechang; Baskin, Carol C; Baskin, Jerry M; Yang, Fan; Huang, Zhenying

    2012-12-01

    Differences in dormancy and germination requirements have been documented in heteromorphic seeds of many species, but it is unknown how this difference contributes to maintenance and regeneration of populations. The primary aim of this study was to compare the seed bank dynamics, including dormancy cycling, of the two seed morphs (black and brown) of the cold desert halophyte Suaeda corniculata and, if differences were found, to determine their influence on regeneration of the species. Seeds of the two seed morphs were buried, exhumed and tested monthly for 24 months over a range of temperatures and salinities, and germination recovery and viability were determined after exposure to salinity and water stress. Seedling emergence and dynamics of the soil seed bank were also investigated for the two morphs. Black seeds had an annual dormancy/non-dormancy cycle, while brown seeds, which were non-dormant at maturity, remained non-dormant. Black seeds also exhibited an annual cycle in sensitivity of germination to salinity. Seedlings derived from black seeds emerged in July and August and those from brown seeds in May. Seedlings were recruited from 2·6 % of the black seeds and from 2·8 % of the brown seeds in the soil, and only 0·5 % and 0·4 % of the total number of black and brown seeds in the soil, respectively, gave rise to seedlings that survived to produce seeds. Salinity and water stress induced dormancy in black seeds and decreased viability of brown seeds. Brown seeds formed only a transient soil seed bank and black seeds a persistent seed bank. The presence of a dormancy cycle in black but not in brown seeds of S. corniculata and differences in germination requirements of the two morphs cause them to differ in their germination dynamics. The study contributes to our limited knowledge of dormancy cycling and seed bank formation in species producing heteromorphic seeds.

  2. The role of the testa during development and in establishment of dormancy of the legume seed

    PubMed Central

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  3. The role of the testa during development and in establishment of dormancy of the legume seed.

    PubMed

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W; Soukup, Aleš; Thompson, Richard D

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the "domestication syndrome." Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on structural

  4. [Dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains].

    PubMed

    Wu, Min; Zhang, Wen-Hui; Zhou, Jian-Yun; Ma, Chuang; Ma, Li-Wei

    2011-11-01

    In order to explore the dynamics of Quercus variabilis seed rain and soil seed bank in different habitats on the north slope of Qinling Mountains, three kinds of micro-habitats (understory, forest gap, and forest edge) were selected, with the seed rain quantity and quality of Q. variabilis, seed amount and viability in soil seed bank, as well as the seedling development of Q. variabilis studied. The seed rain of Q. variabilis started from mid August, reached the peak in mid September-early October, and ended at the beginning of November, and there existed differences in the dissemination process, occurrence time, and composition of the seed rain among the three micro-habitats. The seed rain had the maximum intensity (39.55 +/- 5.56 seeds x m(-2)) in understory, the seeds had the earliest landing time, the longest lasting duration, and the highest viability in forest gap, and the mature seeds had the largest proportion in forest edge, accounting for 58.7% of the total. From the ending time of seed rain to next August, the total reserve of soil seed bank was the largest in understory and the smallest in forest edge. In the three habitats, the amount of mature and immature seeds, that of seeds eaten by animals, and the seed viability in soil seed bank all decreased with time. In contrast, the number of moldy seeds increased. The seeds were mainly concentrated in litter layer, a few of them were in 0-2 cm soil layer, and few were in 2-5 cm soil layer. The density of the seedlings varied with habitats, being the largest in forest gap, followed by in forest edge, and the least in understory, which suggested that forest gap was more suitable for the seed germination and seedling growth of Q. variabilis, and thus, appropriate thinning should be taken to increase forest gap to provide favorable conditions for the natural regeneration of Q. variabilis forest.

  5. A β-Galactosidase from Radish (Raphanus sativus L.) Seeds

    PubMed Central

    Sekimata, Masayuki; Ogura, Kiyoshi; Tsumuraya, Yoichi; Hashimoto, Yohichi; Yamamoto, Shigeru

    1989-01-01

    A basic β-galactosidase (β-Galase) has been purified 281-fold from imbibed radish (Raphanus sativus L.) seeds by conventional purification procedures. The purified enzyme is an electrophoretically homogeneous protein consisting of a single polypeptide with an apparent molecular mass of 45 kilodaltons and pl values of 8.6 to 8.8. The enzyme was maximally active at pH 4.0 on p-nitrophenyl β-d-galactoside and β-1,3-linked galactobiose. The enzyme activity was inhibited strongly by Hg2+ and 4-chloromercuribenzoate. d-Galactono-(1→4)-lactone and d-galactal acted as potent competitive inhibitors. Using galactooligosaccharides differing in the types of linkage as the substrates, it was demonstrated that radish seed β-Galase specifically split off β-1,3- and β-1,6-linked d-galactosyl residues from the nonreducing ends, and their rates of hydrolysis increased with increasing chain lengths. Radish seed and leaf arabino-3,6-galactan-proteins were resistant to the β-galase alone but could be partially degraded by the enzyme after the treatment with a fungal α-l-arabinofuranosidase leaving some oligosaccharides consisting of d-galactose, uronic acid, l-arabinose, and other minor sugar components besides d-galactose as the main product. Images Figure 2 Figure 4 PMID:16666809

  6. PHYSIOLOGICAL AND MOLECULAR MECHANISMS UNDERLYING THE INTEGRATION OF LIGHT AND TEMPERATURE CUES IN ARABIDOPSIS THALIANA SEEDS.

    PubMed

    Arana, María Verónica; Tognacca, Rocío Soledad; Estravis-Barcalá, Maximiliano; Sánchez, Rodolfo Augusto; Botto, Javier Francisco

    2017-09-23

    The relief of dormancy and the promotion of seed germination are of extreme importance for a successful seedling establishment. Although alternating temperatures and light are signals promoting the relief of seed dormancy, the underlying mechanisms of their interaction in seeds are scarcely known. By exposing imbibed Arabidopsis thaliana dormant seeds to two-day temperature cycles previous of a red light pulse, we demonstrate that the germination mediated by phytochrome B requires the presence of functional PRR7 (PSEUDO-RESPONSE REGULATOR 7) and TOC1 (TIMING OF CAB EXPRESSION 1) alleles. In addition, daily cycles of alternating temperatures in darkness reduce the protein levels of DOG1, allowing the expression of TOC1 to induce seed germination. Our results suggest a functional role for some components of the circadian clock related with the action of DOG1 for the integration of alternating temperatures and light signals in the relief of seed dormancy. The synchronization of germination by the synergic action of light and temperature through the activity of circadian clock might have ecological and adaptive consequences. This article is protected by copyright. All rights reserved.

  7. Expression of an Expansin Is Associated with Endosperm Weakening during Tomato Seed Germination1

    PubMed Central

    Chen, Feng; Bradford, Kent J.

    2000-01-01

    Expansins are extracellular proteins that facilitate cell wall extension, possibly by disrupting hydrogen bonding between hemicellulosic wall components and cellulose microfibrils. In addition, some expansins are expressed in non-growing tissues such as ripening fruits, where they may contribute to cell wall disassembly associated with tissue softening. We have identified at least three expansin genes that are expressed in tomato (Lycopersicon esculentum Mill.) seeds during germination. Among these, LeEXP4 mRNA is specifically localized to the micropylar endosperm cap region, suggesting that the protein might contribute to tissue weakening that is required for radicle emergence. In gibberellin (GA)-deficient (gib-1) mutant seeds, which germinate only in the presence of exogenous GA, GA induces the expression of LeEXP4 within 12 hours of imbibition. When gib-1 seeds were imbibed in GA solution combined with 100 μm abscisic acid, the expression of LeEXP4 was not reduced, although radicle emergence was inhibited. In wild-type seeds, LeEXP4 mRNA accumulation was blocked by far-red light and decreased by low water potential but was not affected by abscisic acid. The presence of LeEXP4 mRNA during seed germination parallels endosperm cap weakening determined by puncture force analysis. We hypothesize that LeEXP4 is involved in the regulation of seed germination by contributing to cell wall disassembly associated with endosperm cap weakening. PMID:11080302

  8. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  9. Mature Teachers Matter

    ERIC Educational Resources Information Center

    Berl, Patricia Scallan

    2005-01-01

    In this article, the author discusses the consequences of losing mature teachers due to voluntary separation or retirement and the mindset of a mature teacher that is different from younger teachers in a number of ways. Mature teachers are colleagues over 45 years of age possessing significant experience in the field. Future trends in teacher…

  10. Seed rain, soil seed bank, seed loss and regeneration of Castanopsis fargesii (Fagaceae) in a subtropical evergreen broad-leaved forest

    USGS Publications Warehouse

    Du, X.; Guo, Q.; Gao, X.; Ma, K.

    2007-01-01

    Understanding the seed rain and seed loss dynamics in the natural condition has important significance for revealing the natural regeneration mechanisms. We conducted a 3-year field observation on seed rain, seed loss and natural regeneration of Castanopsis fargesii Franch., a dominant tree species in evergreen broad-leaved forests in Dujiangyan, southwestern China. The results showed that: (1) there were marked differences in (mature) seed production between mast (733,700 seeds in 2001) and regular (51,200 and 195,600 seeds in 2002 and 2003, respectively) years for C. fargesii. (2) Most seeds were dispersed in leaf litter, humus and 0-2 cm depth soil in seed bank. (3) Frequency distributions of both DBH and height indicated that C. fargesii had a relatively stable population. (4) Seed rain, seed ground density, seed loss, and leaf fall were highly dynamic and certain quantity of seeds were preserved on the ground for a prolonged time due to predator satiation in both the mast and regular years so that the continuous presence of seed bank and seedling recruitments in situ became possible. Both longer time observations and manipulative experiments should be carried out to better understand the roles of seed dispersal and regeneration process in the ecosystem performance. ?? 2006 Elsevier B.V. All rights reserved.

  11. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.

  12. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1992-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seeds were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The seeds were germinated and the germination rates and development of the resulting plants compared to the control seed that stayed in the storage facility. There was a better survival rate in the sealed canister in space than in the storage facility. At least some of the seed in the vented canisters survived the exposure to vacuum for almost six years. The number of observed mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutation and obtain a second generation seed. These small seeded crops are now being grown for evaluation.

  13. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination.

    PubMed

    Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

    2014-07-01

    Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·(-) and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·(-) and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·(-), H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·(-), peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination

    PubMed Central

    Zhang, Yu; Chen, Bingxian; Xu, Zhenjiang; Shi, Zhaowan; Chen, Shanli; Huang, Xi; Chen, Jianxun; Wang, Xiaofeng

    2014-01-01

    Endosperm cap (CAP) weakening and embryo elongation growth are prerequisites for the completion of lettuce seed germination. Although it has been proposed that the cell wall loosening underlying these processes results from an enzymatic mechanism, it is still unclear which enzymes are involved. Here it is shown that reactive oxygen species (ROS), which are non-enzymatic factors, may be involved in the two processes. In Guasihong lettuce seeds imbibed in water, O2·– and H2O2 accumulated and peroxidase activity increased in the CAP, whereas its puncture force decreased. In addition, in the radicle, the increase in embryo growth potential was accompanied by accumulation of O2·– and an increase in peroxidase activity. Imbibing seeds in 0.3% sodium dichloroisocyanurate (SDIC) reduced endosperm viability and the levels of O2·–, H2O2, and peroxidase activity in the CAP, whereas the decrease in its puncture force was inhibited. However, in the embryo, SDIC did not affect the accumulation of O2·–, peroxidase activity, and the embryo growth potential. As a result, SDIC caused atypical germination, in which the endosperm ruptured at the boundary between the CAP and lateral endosperm. ROS scavengers and ROS generation inhibitors inhibited the CAP weakening and also decreased the embryo growth potential, thus decreasing the percentage of seed germination. Exogenous ROS and ROS generation inducers increased the percentage of CAP rupture to some extent, and the addition of H2O2 to 0.3% SDIC enabled some seeds to undergo typical germination. PMID:24744430

  15. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination.

    PubMed

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8'-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8'-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination.

  16. ABA crosstalk with ethylene and nitric oxide in seed dormancy and germination

    PubMed Central

    Arc, Erwann; Sechet, Julien; Corbineau, Françoise; Rajjou, Loïc; Marion-Poll, Annie

    2013-01-01

    Dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. It has been clearly demonstrated that dormancy is induced by abscisic acid (ABA) during seed development on the mother plant. After seed dispersal, germination is preceded by a decline in ABA in imbibed seeds, which results from ABA catabolism through 8′-hydroxylation. The hormonal balance between ABA and gibberellins (GAs) has been shown to act as an integrator of environmental cues to maintain dormancy or activate germination. The interplay of ABA with other endogenous signals is however less documented. In numerous species, ethylene counteracts ABA signaling pathways and induces germination. In Brassicaceae seeds, ethylene prevents the inhibitory effects of ABA on endosperm cap weakening, thereby facilitating endosperm rupture and radicle emergence. Moreover, enhanced seed dormancy in Arabidopsis ethylene-insensitive mutants results from greater ABA sensitivity. Conversely, ABA limits ethylene action by down-regulating its biosynthesis. Nitric oxide (NO) has been proposed as a common actor in the ABA and ethylene crosstalk in seed. Indeed, convergent evidence indicates that NO is produced rapidly after seed imbibition and promotes germination by inducing the expression of the ABA 8′-hydroxylase gene, CYP707A2, and stimulating ethylene production. The role of NO and other nitrogen-containing compounds, such as nitrate, in seed dormancy breakage and germination stimulation has been reported in several species. This review will describe our current knowledge of ABA crosstalk with ethylene and NO, both volatile compounds that have been shown to counteract ABA action in seeds and to improve dormancy release and germination. PMID:23531630

  17. Sinapic acid or its derivatives interfere with abscisic acid homeostasis during Arabidopsis thaliana seed germination.

    PubMed

    Bi, Baodi; Tang, Jingliang; Han, Shuang; Guo, Jinggong; Miao, Yuchen

    2017-06-06

    Sinapic acid and its esters have broad functions in different stages of seed germination and plant development and are thought to play a role in protecting against ultraviolet irradiation. To better understand the interactions between sinapic acid esters and seed germination processes in response to various stresses, we analyzed the role of the plant hormone abscisic acid (ABA) in the regulation of sinapic acid esters involved in seed germination and early seedling growth. We found that exogenous sinapic acid promotes seed germination in a dose-dependent manner in Arabidopsis thaliana. High-performance liquid chromatography mass spectrometry analysis showed that exogenous sinapic acid increased the sinapoylcholine content of imbibed seeds. Furthermore, sinapic acid affected ABA catabolism, resulting in reduced ABA levels and increased levels of the ABA-glucose ester. Using mutants deficient in the synthesis of sinapate esters, we showed that the germination of mutant sinapoylglucose accumulator 2 (sng2) and bright trichomes 1 (brt1) seeds was more sensitive to ABA than the wild-type. Moreover, Arabidopsis mutants deficient in either abscisic acid deficient 2 (ABA2) or abscisic acid insensitive 3 (ABI3) displayed increased expression of the sinapoylglucose:choline sinapoyltransferase (SCT) and sinapoylcholine esterase (SCE) genes with sinapic acid treatment. This treatment also affected the accumulation of sinapoylcholine and free choline during seed germination. We demonstrated that sinapoylcholine, which constitutes the major phenolic component in seeds among various minor sinapate esters, affected ABA homeostasis during seed germination and early seedling growth in Arabidopsis. Our findings provide insights into the role of sinapic acid and its esters in regulating ABA-mediated inhibition of Arabidopsis seed germination in response to drought stress.

  18. Seed proteomics.

    PubMed

    Miernyk, Ján A; Hajduch, Martin

    2011-04-01

    Seeds comprise a protective covering, a small embryonic plant, and a nutrient-storage organ. Seeds are protein-rich, and have been the subject of many mass spectrometry-based analyses. Seed storage proteins (SSP), which are transient depots for reduced nitrogen, have been studied for decades by cell biologists, and many of the complicated aspects of their processing, assembly, and compartmentation are now well understood. Unfortunately, the abundance and complexity of the SSP requires that they be avoided or removed prior to gel-based analysis of non-SSP. While much of the extant data from MS-based proteomic analysis of seeds is descriptive, it has nevertheless provided a preliminary metabolic picture explaining much of their biology. Contemporary studies are moving more toward analysis of protein interactions and posttranslational modifications, and functions of metabolic networks. Many aspects of the biology of seeds make then an attractive platform for heterologous protein expression. Herein we present a broad review of the results from the proteomic studies of seeds, and speculate on a potential future research directions. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Galactinol as marker for seed longevity.

    PubMed

    de Souza Vidigal, Deborah; Willems, Leo; van Arkel, Jeroen; Dekkers, Bas J W; Hilhorst, Henk W M; Bentsink, Leónie

    2016-05-01

    Reduced seed longevity or storability is a major problem in seed storage and contributes to increased costs in crop production. Here we investigated whether seed galactinol contents could be predictive for seed storability behavior in Arabidopsis, cabbage and tomato. The analyses revealed a positive correlation between galactinol content and seed longevity in the three species tested, which indicates that this correlation is conserved in the Brassicaceae and beyond. Quantitative trait loci (QTL) mapping in tomato revealed a co-locating QTL for galactinol content and seed longevity on chromosome 2. A candidate for this QTL is the GALACTINOL SYNTHASE gene (Solyc02g084980.2.1) that is located in the QTL interval. GALACTINOL SYNTHASE is a key enzyme of the raffinose family oligosaccharide (RFO) pathway. To investigate the role of enzymes in the RFO pathway in more detail, we applied a reverse genetics approach using T-DNA knock-out lines in genes encoding enzymes of this pathway (GALACTINOL SYNTHASE 1, GALACTINOL SYNTHASE 2, RAFFINOSE SYNTHASE, STACHYOSE SYNTHASE and ALPHA-GALACTOSIDASE) and overexpressors of the cucumber GALACTINOL SYNTHASE 2 gene in Arabidopsis. The galactinol synthase 2 mutant and the galactinol synthase 1 galactinol synthase 2 double mutant contained the lowest seed galactinol content which coincided with lower seed longevity. These results show that galactinol content of mature dry seed can be used as a biomarker for seed longevity in Brassicaceae and tomato.

  20. Natural seed fall in white pine (Pinus strobes L.) stands of varying density

    Treesearch

    Raymond E. Graber

    1970-01-01

    Seed fall was observed in three stands of mature white pines at stand basal-area densities of 80, 120, and 187 square feet per acre. It was found that the intermediate-density stand produced nearly 50 percent more seed than the stands of other densities. During a good seed year this stand produced 59 pounds of dry sound seed per acre. Most of the seeds were dispersed...

  1. HFR1 Sequesters PIF1 to Govern the Transcriptional Network Underlying Light-Initiated Seed Germination in Arabidopsis[C][W][OPEN

    PubMed Central

    Shi, Hui; Zhong, Shangwei; Mo, Xiaorong; Liu, Na; Nezames, Cynthia D.; Deng, Xing Wang

    2013-01-01

    Seed germination is the first step for seed plants to initiate a new life cycle. Light plays a predominant role in promoting seed germination, where the initial phase is mediated by photoreceptor phytochrome B (phyB). Previous studies showed that PHYTOCHROME-INTERACTING FACTOR1 (PIF1) represses seed germination downstream of phyB. Here, we identify a positive regulator of phyB-dependent seed germination, LONG HYPOCOTYL IN FAR-RED1 (HFR1). HFR1 blocks PIF1 transcriptional activity by forming a heterodimer with PIF1 that prevents PIF1 from binding to DNA. Our whole-genomic analysis shows that HFR1 and PIF1 oppositely mediate the light-regulated transcriptome in imbibed seeds. Through the HFR1–PIF1 module, light regulates expression of numerous genes involved in cell wall loosening, cell division, and hormone pathways to initiate seed germination. The functionally antagonistic HFR1–PIF1 pair constructs a fail-safe mechanism for fine-tuning seed germination during low-level illumination, ensuring a rapid response to favorable environmental changes. This study identifies the HFR1–PIF1 pair as a central module directing the whole genomic transcriptional network to rapidly initiate light-induced seed germination. PMID:24179122

  2. Seed dispersal limitations shift over time in tropical forest restoration.

    PubMed

    Reid, J Leighton; Holl, Karen D; Zahawi, Rakan A

    2015-06-01

    Past studies have shown that tropical forest regeneration on degraded farmlands is initially limited by lack of seed dispersal, but few studies have tracked changes in abundance and composition of seed rain past the first few years after land abandonment. We measured seed rain for 12 months in 10 6-9-year-old restoration sites and five mature, reference forests in southern Costa Rica in order to learn (1) if seed rain limitation persists past the first few years of regeneration; (2) how restoration treatments influence seed community structure and composition; and (3) whether seed rain limitation is contingent on landscape context. Each restoration site contained three 0.25-ha treatment plots: (1) a naturally regenerating control, (2) tree islands, and (3) a mixed-species tree plantation. Sites spanned a deforestation gradient with 9-89% forest area within 500 m around the treatment plots. Contrary to previous studies, we found that tree seeds were abundant and ubiquitous across all treatment plots (585.1 ± 142.0 seeds · m(-2) · yr(-1) [mean ± SE]), indicating that lack of seed rain ceased to limit forest regeneration within the first decade of recovery. Pioneer trees and shrubs comprised the vast majority of seeds, but compositional differences between restoration sites and reference forests were driven by rarer, large-seeded species. Large, animal-dispersed tree seeds were more abundant in tree islands (4.6 ± 2.9 seeds · m(-2) · yr(-1)) and plantations (5.8 ± 3.0 seeds · m(-2) · yr(-1)) than control plots (0.2 ± 0.1 seeds · m(-2) · yr(-1)), contributing to greater tree species richness in actively restored plots. Planted tree species accounted for < 1% of seeds. We found little evidence for landscape forest cover effects on seed rain, consistent with previous studies. We conclude that seed rain limitation shifted from an initial, complete lack of tree seeds to a specific limitation on large-seeded, mature forest species over the first decade

  3. Scanning electron microscopy in characterizing seeds of some leguminous trees

    NASA Astrophysics Data System (ADS)

    Ghosh, Nabarun; Chatterjee, Amiyanghshu; Smith, Don W.

    2009-05-01

    SEM has greatly increased our knowledge of the microstructure of seeds. Mature seed coats are rather thick walled and stable in a vacuum: this allows quick preparation for SEM examination, without the need of complicated dehydration techniques. The low level of technical expenditure required, in combination with the high structural diversity exhibited and the intuitive ability to understand the "three dimensional", often aesthetically appealing micro-structures visualized, has turned seed-coat studies into a favorite tool of many taxonomists. We used dry mature seeds of 26 species of 4 Leguminous genera, Acacia, Albizia, Cassia and Dalbergia to standardize a procedure for identifying the seeds through SEM on the seed surface and seed sections. We cut transverse and longitudinal sections of the seeds and observed the sections from different regions of seeds: midseed, near the hilum and two distal ends. Light microscopy showed the color, texture, pleurograms, fissures and hilum at lower magnification. The anatomical study with SEM on the seed sections revealed the size, shape, and number of tiers and cellular organization of the epidermis, hypodermis, endosperm and internal structural details. We found the ornamentation pattern of the seeds including undulations, reticulations and rugae that were species specific. Species of Dalbergia (assamica, latifolia and sissoo), Albizia (odoratissima and procera), Acaia (arabica and catechu) and Cassia (glauca, siamia and spectabilis) are difficult to distinguish externally, but SEM studies provided enough characteristic features to distinguish from the other. This technique could be valuable in identifying seeds of important plant species for conservation and trading.

  4. Mobilization of storage materials during light-induced germination of tomato (Solanum lycopersicum) seeds.

    PubMed

    Eckstein, Aleksandra; Jagiełło-Flasińska, Dominika; Lewandowska, Aleksandra; Hermanowicz, Paweł; Appenroth, Klaus-J; Gabryś, Halina

    2016-08-01

    The aim of this study was to analyze the metabolism of storage materials in germinating tomato (Solanum lycopersicum) seeds and to determine whether it is regulated by light via phytochromes. Wild type, single and multiple phytochrome A, B1 and B2 mutants were investigated. Imbibed seeds were briefly irradiated with far-red or far-red followed by red light, and germinated in darkness. Triacylglycerols and starch were quantified using biochemical assays in germinating seeds and seedlings during the first 5 days of growth. To investigate the process of fat-carbohydrate transformation, the activity of the glyoxylate cycle was assessed. Our results confirm the role of phytochrome in the control of tomato seed germination. Phytochromes A and B2 were shown to play specific roles, acting antagonistically in far-red light. While the breakdown of triacylglycerols proceeded independently of light, phytochrome control was visible in the next stages of the lipid-carbohydrate transformation. The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were regulated by phytochrome(s). This was reflected in a greater increase of starch content during seedling growth in response to additional red light treatment. This study is the first attempt to build a comprehensive image of storage material metabolism regulation by light in germinating dicotyledonous seeds.

  5. Flavonoids Released Naturally from Alfalfa Seeds Enhance Growth Rate of Rhizobium meliloti1

    PubMed Central

    Hartwig, Ueli A.; Joseph, Cecillia M.; Phillips, Donald A.

    1991-01-01

    Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots. PMID:16668056

  6. Oxidative metabolism-related changes in cryogenically stored neem (Azadirachta indica A. Juss) seeds.

    PubMed

    Varghese, Boby; Naithani, Subhash Chandra

    2008-05-05

    The seeds of Azadirachta indica were successfully cryopreserved for 12 months with 45% survival following drying to 0.16 g H(2)O g(-1) dry mass (DM). Highest survival (94-96%) was recorded during the first month of cryostorage. Subsequent cryopreservation up to 12 months resulted in decreasing germination. Post-thawing pre-heat treatment enhanced the recovery marginally in seeds cryopreserved from 3 to 12 months. Viability of cryostored seeds was negatively correlated with leachate conductivity and accumulation of thiobarbituric acid reactive substances (TBRS) estimated in cotyledons and axes. Leachate conductivity of imbibed seeds was low during the first month of cryostorage but increased gradually with the duration of cryostorage to a maximum after 12 months. TBRS accumulation was gradual throughout cryostorage. Relatively low amounts of active oxygen species (AOS) detected during the first month of cryostorage were closely associated with very high activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX) in seeds (cotyledons and axes). Marked accumulation of AOS from 3 to 12 months was associated with decrease in antioxidant enzyme activity.

  7. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed.

    PubMed

    Webster, Rachel E; Waterworth, Wanda M; Stuppy, Wolfgang; West, Christopher E; Ennos, Roland; Bray, Clifford M; Pritchard, Hugh W

    2016-12-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. Biomechanical, biochemical, and morphological mechanisms of heat shock-mediated germination in Carica papaya seed

    PubMed Central

    Webster, Rachel E.; Waterworth, Wanda M.; Stuppy, Wolfgang; West, Christopher E.; Ennos, Roland; Bray, Clifford M.; Pritchard, Hugh W.

    2016-01-01

    Carica papaya (papaya) seed germinate readily fresh from the fruit, but desiccation induces a dormant state. Dormancy can be released by exposure of the hydrated seed to a pulse of elevated temperature, typical of that encountered in its tropical habitat. Carica papaya is one of only a few species known to germinate in response to heat shock (HS) and we know little of the mechanisms that control germination in tropical ecosystems. Here we investigate the mechanisms that mediate HS-induced stimulation of germination in pre-dried and re-imbibed papaya seed. Exogenous gibberellic acid (GA3 ≥250 µM) overcame the requirement for HS to initiate germination. However, HS did not sensitise seeds to GA3, indicative that it may act independently of GA biosynthesis. Seed coat removal also overcame desiccation-imposed dormancy, indicative that resistance to radicle emergence is coat-imposed. Morphological and biomechanical studies identified that neither desiccation nor HS alter the physical structure or the mechanical strength of the seed coat. However, cycloheximide prevented both seed coat weakening and germination, implicating a requirement for de novo protein synthesis in both processes. The germination antagonist abscisic acid prevented radicle emergence but had no effect on papaya seed coat weakening. Desiccation therefore appears to reduce embryo growth potential, which is reversed by HS, without physically altering the mechanical properties of the seed coat. The ability to germinate in response to a HS may confer a competitive advantage to C. papaya, an opportunistic pioneer species, through detection of canopy removal in tropical forests. PMID:27811004

  9. Using μPIXE for quantitative mapping of metal concentration in Arabidopsis thaliana seeds

    PubMed Central

    Schnell Ramos, Magali; Khodja, Hicham; Mary, Viviane; Thomine, Sébastien

    2013-01-01

    Seeds are a crucial stage in plant life. They contain the nutrients necessary to initiate the development of a new organism. Seeds also represent an important source of nutrient for human beings. Iron (Fe) and zinc (Zn) deficiencies affect over a billion people worldwide. It is therefore important to understand how these essential metals are stored in seeds. In this work, Particle-Induced X-ray Emission with the use of a focused ion beam (μPIXE) has been used to map and quantify essential metals in Arabidopsis seeds. In agreement with Synchrotron radiation X-ray fluorescence (SXRF) imaging and Perls/DAB staining, μPIXE maps confirmed the specific pattern of Fe and Mn localization in the endodermal and subepidermal cell layers in dry seeds, respectively. Moreover, μPIXE allows absolute quantification revealing that the Fe concentration in the endodermal cell layer reaches ~800 μg·g−1 dry weight. Nevertheless, this cell layer accounts only for about half of Fe stores in dry seeds. Comparison between Arabidopsis wild type (WT) and mutant seeds impaired in Fe vacuolar storage (vit1-1) or release (nramp3nramp4) confirmed the strongly altered Fe localization pattern in vit1-1, whereas no alteration could be detected in nramp3nramp4 dry seeds. Imaging of imbibed seeds indicates a dynamic localization of metals as Fe and Zn concentrations increase in the subepidermal cell layer of cotyledons after imbibition. The complementarities between μPIXE and other approaches as well as the importance of being able to quantify the patterns for the interpretation of mutant phenotypes are discussed. PMID:23761799

  10. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions.

    PubMed

    Krishnan, P; Singh, Ravender; Verma, A P S; Joshi, D K; Singh, Sheoraj

    2014-02-21

    Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin-spin relaxation time (T2). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin-spin relaxation (T2) component like bound water increased with seed maturation (40-50%) but decreased with moisture stress conditions (30-40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  11. Arabidopsis seed-specific vacuolar aquaporins are involved in maintaining seed longevity under the control of ABSCISIC ACID INSENSITIVE 3

    PubMed Central

    Mao, Zhilei; Sun, Weining

    2015-01-01

    The tonoplast intrinsic proteins TIP3;1 and TIP3;2 are specifically expressed during seed maturation and localized to the seed protein storage vacuole membrane. However, the function and physiological roles of TIP3s are still largely unknown. The seed performance of TIP3 knockdown mutants was analysed using the controlled deterioration test. The tip3;1/tip3;2 double mutant was affected in seed longevity and accumulated high levels of hydrogen peroxide compared with the wild type, suggesting that TIP3s function in seed longevity. The transcription factor ABSCISIC ACID INSENSITIVE 3 (ABI3) is known to be involved in seed desiccation tolerance and seed longevity. TIP3 transcript and protein levels were significantly reduced in abi3-6 mutant seeds. TIP3;1 and TIP3;2 promoters could be activated by ABI3 in the presence of abscisic acid (ABA) in Arabidopsis protoplasts. TIP3 proteins were detected in the protoplasts transiently expressing ABI3 and in ABI3-overexpressing seedlings when treated with ABA. Furthermore, ABI3 directly binds to the RY motif of the TIP3 promoters. Therefore, seed-specific TIP3s may help maintain seed longevity under the expressional control of ABI3 during seed maturation and are members of the ABI3-mediated seed longevity pathway together with small heat shock proteins and late embryo abundant proteins. PMID:26019256

  12. A Race for Survival: Can Bromus tectorum Seeds Escape Pyrenophora semeniperda-caused Mortality by Germinating Quickly?

    PubMed Central

    Beckstead, Julie; Meyer, Susan E.; Molder, Cherrilyn J.; Smith, Caitlyn

    2007-01-01

    Background and Aims Pathogen–seed interactions may involve a race for seed resources, so that seeds that germinate more quickly, mobilizing reserves, will be more likely to escape seed death than slow-germinating seeds. This race-for-survival hypothesis was tested for the North American seed pathogen Pyrenophora semeniperda on seeds of the annual grass Bromus tectorum, an invasive plant in North America. In this species, the seed germination rate varies as a function of dormancy status; dormant seeds germinate slowly if at all, whereas non-dormant seeds germinate quickly. Methods Three experimental approaches were utilized: (a) artificial inoculations of mature seeds that varied in primary dormancy status and wounding treatment; (b) naturally inoculated undispersed seeds that varied in primary dormancy status; and (c) naturally inoculated seeds from the carry-over seed bank that varied in degree of secondary dormancy, habitat of origin and seed age. Key Results In all three approaches, seeds that germinated slowly were usually killed by the pathogen, whereas seeds that germinated quickly frequently escaped. Pyrenophora semeniperda reduced B. tectorum seed banks. Populations in drier habitats sustained 50 times more seed mortality than a population in a mesic habitat. Older carry-over seeds experienced 30 % more mortality than younger seeds. Conclusions Given the dramatic levels of seed death and the ability of this pathogen to reduce seed carry-over, it is intriguing to consider whether P. semeniperda could be used to control B. tectorum through direct reduction of its seed bank. PMID:17353206

  13. Dormancy as exaptation to protect mimetic seeds against deterioration before dispersal

    PubMed Central

    Brancalion, Pedro H. S.; Novembre, Ana D. L. C.; Rodrigues, Ricardo R.; Marcos Filho, Júlio

    2010-01-01

    Background and Aims Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naïve seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Methods Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a ‘basal’ species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 °C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 °C and 40 % relative air humidity). Key Results All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 °C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Conclusions Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low

  14. MYB76 Inhibits Seed Fatty Acid Accumulation in Arabidopsis

    PubMed Central

    Duan, Shaowei; Jin, Changyu; Li, Dong; Gao, Chenhao; Qi, Shuanghui; Liu, Kaige; Hai, Jiangbo; Ma, Haoli; Chen, Mingxun

    2017-01-01

    The MYB family of transcription factors is important in regulatory networks controlling development, metabolism and responses to biotic and abiotic stresses in Arabidopsis. However, their role in regulating fatty acid accumulation in seeds is still largely unclear. Here, we found that MYB76, localized in the nucleus, was predominantly expressed in developing seeds during maturation. The myb76 mutation caused a significant increase in the amounts of total fatty acids and several major fatty acid compositions in mature seeds, suggesting that MYB76 functioned as an important repressor during seed oil biosynthesis. RNA sequencing and quantitative real-time PCR analysis revealed remarkable alteration of numerous genes involved in photosynthesis, fatty acid biosynthesis, modification, and degradation, and oil body formation in myb76 seeds at 12 days after pollination. These results help us to understand the novel function of MYB76 and provide new insights into the regulatory network of MYB transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:28270825

  15. The 120-yr period for Dr. Beal's seed viability experiment.

    PubMed

    Telewski, Frank W; Zeevaart, Jan A D

    2002-08-01

    After 120 yr of burial in moist, well-aerated sand, 23 seeds of Verbascum blattaria and two seeds of a Verbascum sp. germinated and produced normal plants (50% germination for Verbascum). After a 6-wk cold treatment, a single seed of Malva rotundifolia germinated also, producing a normal plant (2% germination). Plants were grown to maturity in a greenhouse, and flowering was induced by exposure to a 6-wk cold treatment. Flowers were artificially pollinated to produce seed of both Verbascum blattaria and Malva rotundifolia. The Verbascum sp. failed to set seed. Collected seeds were subsequently germinated, producing normal plants. F(1) seeds of V. blattaria had a germination of 64%. Seeds (6%) of M. rotundifolia germinated after a cold treatment.

  16. Nonlethal Thrips Damage to Slash Pine Flowers Reduces Seed Yields

    Treesearch

    Gary L. DeBarr; John A. Williams

    1971-01-01

    Nonlethal damage to female flowers of slash pine (Pinus elliottii Engelm.) by a thrips, Gnophothrips fuscus Morgan, was examined a Florida seed orchard. Thrips-damaged flowers developed into crooked mature cones with areas of sunken, deformed cone scales. Damaged cones were significantly shorter, yielded fewer total seed and...

  17. Alternative splicing enhances transcriptome complexity in desiccating seeds.

    PubMed

    Srinivasan, Arunkumar; Jiménez-Gómez, José M; Fornara, Fabio; Soppe, Wim J J; Brambilla, Vittoria

    2016-12-01

    Before being dispersed in the environment, mature seeds need to be dehydrated. The survival of seeds after dispersal depends on their low hydration in combination with high desiccation tolerance. These characteristics are established during seed maturation. Some key seed maturation genes have been reported to be regulated by alternative splicing (AS). However, so far AS was described only for single genes and a comprehensive analysis of AS during seed maturation has been lacking. We investigated gene expression and AS during Arabidopsis thaliana seed development at a global level, before and after desiccation. Bioinformatics tools were developed to identify differentially spliced regions within genes. Our data suggest the importance and shows the peculiar features of AS during seed desiccation. We identified AS in 34% of genes that are expressed at both timepoints before and after desiccation. Most of these AS transcript variants had not been found before in other tissues. Among the AS genes some seed master regulators could be found. Interestingly, 6% of all expressed transcripts were not transcriptionally regulated during desiccation, but only modified by AS. We propose that AS should be more routinely taken into account in the analysis of transcriptomic data to prevent overlooking potentially important regulators. © 2016 Institute of Botany, Chinese Academy of Sciences.

  18. Continued results of the seeds in space experiment

    NASA Technical Reports Server (NTRS)

    Alston, Jim A.

    1993-01-01

    Two million seeds of 120 different varieties representing 106 species, 97 genera, and 55 plant families were flown aboard the Long Duration Exposure Facility (LDEF). The seed were housed on the Space Exposed Experiment Developed for Students (SEEDS) tray in the sealed canister number 6 and in two small vented canisters. The tray was in the F-2 position. The seed were germinated and the germination rates and the development of the resulting plants were compared to the performance of the control seed that stayed in Park Seed's seed storage facility. The initial results were presented in a paper at the First LDEF Post-Retrieval Symposium. There was a better survival rate of the seed in the sealed canister in space than in the storage facility at Park Seed. At least some of the seed in each of the vented canisters survived the exposure to vacuum for almost six years. The number of observed apparent mutations was very low. In the initial testing, the small seeded crops were not grown to maturity to check for mutations and obtain second generation seed. These small seeded crops have now been grown for evaluation and second generation seed collected.

  19. Identification of a characteristic antioxidant, anthrasesamone F, in black sesame seeds and its accumulation at different seed developmental stages.

    PubMed

    Furumoto, Toshio; Nishimoto, Kiyoshi

    2016-01-01

    Assay-guided fractionation of the methanol extract from black seeds of sesame (Sesamum indicum L.) led to the isolation of an active compound that had a 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity. This antioxidant was confirmed to be anthrasesamone F, an anthraquinone derivative previously isolated from different black sesame seeds and biogenetically related to other anthrasesamones in sesame roots. The radical scavenging assay showed that anthrasesamone F had more potent activity than Trolox. The content of anthrasesamone F in different parts and at different developmental stages of black sesame seeds was investigated to clarify the accumulation pattern of this antioxidant in the black seeds. Anthrasesamone F was localized in the seed coat of black seeds and accumulated after the seed coat color changed to black. The content of anthrasesamone F increased gradually with seed maturation and drastically on air-drying, the final stage in sesame cultivation.

  20. [Adolescent brain maturation].

    PubMed

    Holzer, L; Halfon, O; Thoua, V

    2011-05-01

    Recent progress in neuroscience has yielded major findings regarding brain maturation during adolescence. Unlike the body, which reaches adult size and morphology during this period, the adolescent brain is still maturing. The prefrontal cortex appears to be an important locus of maturational change subserving executive functions that may regulate emotional and motivational issues. The recent expansion of the adolescent period has increased the lag between the onset of emotional and motivational changes activated by puberty and the completion of cognitive development-the maturation of self-regulatory capacities and skills that are continuing to develop long after puberty has occurred. This "disconnect" predicts risk for a broad set of behavioral and emotional problems. Adolescence is a critical period for high-level cognitive functions such as socialization that rely on maturation of the prefrontal cortex. Intervention during the period of adolescent brain development provides opportunities and requires an interdisciplinary approach.

  1. Nitric oxide reduces seed dormancy in Arabidopsis.

    PubMed

    Bethke, Paul C; Libourel, Igor G L; Jones, Russell L

    2006-01-01

    Dormancy is a property of many mature seeds, and experimentation over the past century has identified numerous chemical treatments that will reduce seed dormancy. Nitrogen-containing compounds including nitrate, nitrite, and cyanide break seed dormancy in a range of species. Experiments are described here that were carried out to further our understanding of the mechanism whereby these and other compounds, such as the nitric oxide (NO) donor sodium nitroprusside (SNP), bring about a reduction in seed dormancy of Arabidopsis thaliana. A simple method was devised for applying the products of SNP photolysis through the gas phase. Using this approach it was shown that SNP, as well as potassium ferricyanide (Fe(III)CN) and potassium ferrocyanide (Fe(II)CN), reduced dormancy of Arabidopsis seeds by generating cyanide (CN). The effects of potassium cyanide (KCN) on dormant seeds were tested and it was confirmed that cyanide vapours were sufficient to break Arabidopsis seed dormancy. Nitrate and nitrite also reduced Arabidopsis seed dormancy and resulted in substantial rates of germination. The effects of CN, nitrite, and nitrate on dormancy were prevented by the NO scavenger c-PTIO. It was confirmed that NO plays a role in reducing seed dormancy by using purified NO gas, and a model to explain how nitrogen-containing compounds may break dormancy in Arabidopsis is presented.

  2. ‘WhiteAcre-DG’, a Small-seeded, Cream-type Southernpea with an Enhanced Persistent Green Seed Phenotype

    USDA-ARS?s Scientific Manuscript database

    The USDA has released a high yielding, small-seeded, cream-type southernpea cultivar that has a persistent green seed phenotype conditioned by both the green cotyledon gene (gc) and the green testa gene (gt). The new cultivar, named ‘WhiteAcre-DG’, can be harvested at the dry-pod stage of maturity ...

  3. Project SEED.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1986

    1986-01-01

    Reports on Project SEED (Summer Educational Experience for the Disadvantaged) a project in which high school students from low-income families work in summer jobs in a variety of academic, industrial, and government research labs. The program introduces the students to career possibilities in chemistry and to the advantages of higher education.…

  4. PECTIN METHYLESTERASE INHIBITOR6 promotes Arabidopsis mucilage release by limiting methylesterification of homogalacturonan in seed coat epidermal cells.

    PubMed

    Saez-Aguayo, Susana; Ralet, Marie-Christine; Berger, Adeline; Botran, Lucy; Ropartz, David; Marion-Poll, Annie; North, Helen M

    2013-01-01

    Imbibed seeds of the Arabidopsis thaliana accession Djarly are affected in mucilage release from seed coat epidermal cells. The impaired locus was identified as a pectin methylesterase inhibitor gene, PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), specifically expressed in seed coat epidermal cells at the time when mucilage polysaccharides are accumulated. This spatio-temporal regulation appears to be modulated by GLABRA2 and LEUNIG HOMOLOG/MUCILAGE MODIFIED1, as expression of PMEI6 is reduced in mutants of these transcription regulators. In pmei6, mucilage release was delayed and outer cell walls of epidermal cells did not fragment. Pectin methylesterases (PMEs) demethylate homogalacturonan (HG), and the majority of HG found in wild-type mucilage was in fact derived from outer cell wall fragments. This correlated with the absence of methylesterified HG labeling in pmei6, whereas transgenic plants expressing the PMEI6 coding sequence under the control of the 35S promoter had increased labeling of cell wall fragments. Activity tests on seeds from pmei6 and 35S:PMEI6 transgenic plants showed that PMEI6 inhibits endogenous PME activities, in agreement with reduced overall methylesterification of mucilage fractions and demucilaged seeds. Another regulator of PME activity in seed coat epidermal cells, the subtilisin-like Ser protease SBT1.7, acts on different PMEs, as a pmei6 sbt1.7 mutant showed an additive phenotype.

  5. Propagation protocol for production of Lomatium triternatum (Pursh) Coulter and Rose seeds

    Treesearch

    Derek Tilley; Loren St. John; Dan Ogle; Nancy Shaw; Jim Cane

    2012-01-01

    Nineleaf biscuit is native to western North America, occurring from northeastern California to British Columbia and east to Alberta and Colorado. Seed matures in July or August. Wildland seed is easily hand collected. The seed disarticulates readily from the stems, and very clean, small collections can be made by shaking ripened inflorescences over a bag or tarp.

  6. Dispersal and viability of seeds from cones in tops of harvested loblolly pines

    Treesearch

    Michael G. Shelton; Michael D. Cain

    2001-01-01

    Seed supply is one of the most important determinants of successful natural regeneration. We conducted a study to determine the potential contribution of cones in the tops of harvested loblolly pines (Pinus taeda L.) to the stand's seed supply if trees were felled after seed maturation but before dispersal. Closed cones, collected in...

  7. Association of the Pitch Canker Fungus with Cones and Seeds of Pines

    Treesearch

    L. David Dwinell

    1998-01-01

    The pitch canker fungus, Fusarium subglutinans f. sp.pini, causes the mortality of female flowers and mature cones, and can infect and destroy gametophyte tissues of seeds of several pine species in the southeastern U.S. The fungus can also be associated with the seed coats of apparently healthy, viable pine seeds. The pitch canker...

  8. Dynamic changes of genome-wide DNA methylation during soybean seed development

    USDA-ARS?s Scientific Manuscript database

    Seed development is programmed by expression of many genes in plants. Seed maturation is an important developmental process to soybean seed quality and yield. DNA methylation is a major epigenetic modification regulating gene expression. However, little is known about the dynamic nature of DNA me...

  9. Maturation of Acorns of Cherrybark, Water, and Willow Oaks

    Treesearch

    F. T. Bonner

    1974-01-01

    Acorns of cherrybark, water, and willow oaks grew slowly but steadily in July and August and reached maximum size in September, when fats and carbohydrates, the major storage foods, accumulated rapidly. At physiological maturity in late October or early November, crude fat levels were 15 to 20 percent of seed dry weight and carbohydrates totaled 25 percent.

  10. Organization of lipid reserves in cotyledons of primed and aged sunflower seeds.

    PubMed

    Walters, Christina; Landré, Pierre; Hill, Lisa; Corbineau, Françoise; Bailly, Christophe

    2005-10-01

    Imbibing sunflower (Helianthus annuus L., cv. Briosol) seeds at water potentials between -2 MPa and -5 MPa leads to faster (priming) or slower (accelerated ageing) germination depending on the temperature and duration of treatment. Mobilization of food reserves may be associated with the changes in seed vigor. To study this, morphological, biochemical and phase properties of lipid, the major food reserve in sunflower, were compared in freshly harvested (i.e., control), primed and aged sunflower cotyledons using electron microscopy, biochemical analyses and differential scanning calorimetry, respectively. Lipid bodies became smaller and more dispersed throughout the cytoplasm during priming and ageing. Despite ultrastructural changes, there were few measured changes in biochemistry of the neutral lipid component; lipid content, proportion of saturated and unsaturated fatty acids and level of free fatty acids were unchanged in primed and slightly aged seeds, with only severely aged seeds showing a net decrease in polyunsaturated fatty acids and an increase in free fatty acids. Subtle changes in the calorimetric behavior of lipids within sunflower cotyledons were observed. Sunflower lipids exhibited polymorphic crystalline and amorphous solid phases when cooled to <-100 degrees C, but priming decreased the rate of crystallization in vivo and ageing increased the rate of crystallization, but decreased percentage crystallinity. The observed changes in thermal behavior in vivo are consistent with losses and gains, respectively, of interacting non-lipid moieties in the triacylglycerol matrix.

  11. A detailed survey of seed coat flavonoids in developing seeds of Brassica napus L.

    PubMed

    Auger, Bathilde; Marnet, Nathalie; Gautier, Véronique; Maia-Grondard, Alessandra; Leprince, Françoise; Renard, Michel; Guyot, Sylvain; Nesi, Nathalie; Routaboul, Jean-Marc

    2010-05-26

    Proanthocyanidins (PAs) are seed coat flavonoids that impair the digestibility of Brassica napus meal. Development of low-PA lines is associated with a high-quality meal and with increased contents in oil and proteins, but requires better knowledge of seed flavonoids. Flavonoids in Brassica mature seed are mostly insoluble so that very few qualitative and quantitative data are available yet. In the present study, the profiling of seed coat flavonoids was established in eight black-seeded B. napus genotypes, during seed development when soluble flavonoids were present and predominated over the insoluble forms. Thirteen different flavonoids including (-)-epicatechin, five procyanidins (PCs which are PAs composed of epicatechin oligomers only) and seven flavonols (quercetin-3-O-glucoside, quercetin-dihexoside, isorhamnetin-3-O-glucoside, isorhamnetin-hexoside-sulfate, isorhamnetin-dihexoside, isorhamnetin-sinapoyl-trihexoside and kaempferol-sinapoyl-trihexoside) were identified and quantified using liquid chromatography coupled to electrospray ionization-mass spectrometry (LC-ESI-MS(n)). These flavonol derivatives were characterized for the first time in the seed coat of B. napus, and isorhamnetin-hexoside-sulfate and isorhamnetin-sinapoyl-trihexoside were newly identified in Brassica spp. High amounts of PCs accumulated in the seed coat, with solvent-soluble polymers of (-)-epicatechin reaching up to 10% of the seed coat weight during seed maturation. In addition, variability for both PC and flavonol contents was observed within the panel of eight black-seeded genotypes. Our results provide new insights into breeding for low-PC B. napus genotypes.

  12. Toward Teacher Maturity.

    ERIC Educational Resources Information Center

    Pickle, Judy

    1985-01-01

    The essence of teacher maturity can be synthesized into personal, professional, and process domains. Although overlapping, these categories add a multidimensional approach to the search for what is good in teaching and provide a model for professional development. (MT)

  13. Visualizing Antibody Affinity Maturation in Germinal Centers

    PubMed Central

    Tas, Jeroen M.J.; Mesin, Luka; Pasqual, Giulia; Targ, Sasha; Jacobsen, Johanne T.; Mano, Yasuko M.; Chen, Casie S.; Weill, Jean-Claude; Reynaud, Claude-Agnès; Browne, Edward P.; Meyer-Hermann, Michael; Victora, Gabriel D.

    2016-01-01

    Antibodies somatically mutate to attain high affinity in germinal centers (GCs). There, competition between B cell clones and among somatic mutants of each clone drives an increase in average affinity across the population. The extent to which higher-affinity cells eliminating competitors restricts clonal diversity is unknown. By combining multiphoton microscopy and sequencing, we show that tens to hundreds of distinct B cell clones seed each GC, and that GCs lose clonal diversity at widely disparate rates. Furthermore, efficient affinity maturation can occur in the absence of homogenizing selection, ensuring that many clones can mature in parallel within the same GC. Our findings have implications for development of vaccines in which antibodies with non-immunodominant specificities must be elicited, as is the case for HIV-1 and influenza. PMID:26912368

  14. Ecosystem services from keystone species: diversionary seeding and seed-caching desert rodents can enhance Indian ricegrass seedling establishment

    USGS Publications Warehouse

    Longland, William; Ostoja, Steven M.

    2013-01-01

    Seeds of Indian ricegrass (Achnatherum hymenoides), a native bunchgrass common to sandy soils on arid western rangelands, are naturally dispersed by seed-caching rodent species, particularly Dipodomys spp. (kangaroo rats). These animals cache large quantities of seeds when mature seeds are available on or beneath plants and recover most of their caches for consumption during the remainder of the year. Unrecovered seeds in caches account for the vast majority of Indian ricegrass seedling recruitment. We applied three different densities of white millet (Panicum miliaceum) seeds as “diversionary foods” to plots at three Great Basin study sites in an attempt to reduce rodents' over-winter cache recovery so that more Indian ricegrass seeds would remain in soil seedbanks and potentially establish new seedlings. One year after diversionary seed application, a moderate level of Indian ricegrass seedling recruitment occurred at two of our study sites in western Nevada, although there was no recruitment at the third site in eastern California. At both Nevada sites, the number of Indian ricegrass seedlings sampled along transects was significantly greater on all plots treated with diversionary seeds than on non-seeded control plots. However, the density of diversionary seeds applied to plots had a marginally non-significant effect on seedling recruitment, and it was not correlated with recruitment patterns among plots. Results suggest that application of a diversionary seed type that is preferred by seed-caching rodents provides a promising passive restoration strategy for target plant species that are dispersed by these rodents.

  15. Water Relations of Seed Development and Germination in Muskmelon (Cucumis melo L.) : V. Water Relations of Imbibition and Germination.

    PubMed

    Welbaum, G E; Bradford, K J

    1990-04-01

    The initiation of radicle growth during seed germination may be driven by solute accumulation and increased turgor pressure, by cell wall relaxation, or by weakening of tissues surrounding the embryo. To investigate these possibilities, imbibition kinetics, water contents, and water (Psi) and solute (psi(s)) potentials of intact muskmelon (Cucumis melo L.) seeds, decoated seeds (testa removed, but a thin perisperm/endosperm envelope remains around the embryo), and isolated cotyledons and embryonic axes were measured. Cotyledons and embryonic axes excised and imbibed as isolated tissues attained water contents 25 and 50% greater, respectively, than the same tissues hydrated within intact seeds. The effect of the testa and perisperm on embryo water content was due to mechanical restriction of embryo swelling and not to impermeability to water. The Psi and psi(s) of embryo tissues were measured by psychrometry after excision from imbibed intact seeds. For intact or decoated seeds and excised cotyledons, Psi values were >-0.2 MPa just prior to radicle emergence. The Psi of excised embryonic axes, however, averaged only -0.6 MPa over the same period. The embryonic axis apparently is mechanically constrained within the testa/perisperm, increasing its total pressure potential until axis Psi is in equilibrium with cotyledon Psi, but reducing its water content and resulting in a low Psi when the constraint is removed. There was no evidence of decreasing psi(s) or increasing turgor pressure (Psi-psi(s)) prior to radicle growth for either intact seeds or excised tissues. Given the low relative water content of the axes within intact seeds, cell wall relaxation would be ineffective in creating a Psi gradient for water uptake. Rather, axis growth may be initiated by weakening of the perisperm, thus releasing the external pressure and creating a Psi gradient for water uptake into the axis. The perisperm envelope contains a cap of small, thin-walled endosperm cells adjacent to

  16. Zinc and selenium accumulation and their effect on iron bioavailability in common bean seeds.

    PubMed

    de Figueiredo, Marislaine A; Boldrin, Paulo F; Hart, Jonathan J; de Andrade, Messias J B; Guilherme, Luiz R G; Glahn, Raymond P; Li, Li

    2017-02-01

    Common beans (Phaseolus vulgaris) are the most important legume crops. They represent a major source of micronutrients and a target for essential trace mineral enhancement (i.e. biofortification). To investigate mineral accumulation during seed maturation and to examine whether it is possible to biofortify seeds with multi-micronutrients without affecting mineral bioavailability, three common bean cultivars were treated independently with zinc (Zn) and selenium (Se), the two critical micronutrients that can be effectively enhanced via fertilization. The seed mineral concentrations during seed maturation and the seed Fe bioavailability were analyzed. Common bean seeds were found to respond positively to Zn and Se treatments in accumulating these micronutrients. While the seed pods showed a decrease in Zn and Se along with Fe content during pod development, the seeds maintained relatively constant mineral concentrations during seed maturation. Selenium treatment had minimal effect on the seed accumulation of phytic acid and polyphenols, the compounds affecting Fe bioavailability. Zinc treatment reduced phytic acid level, but did not dramatically affect the concentrations of total polyphenols. Iron bioavailability was found not to be greatly affected in seeds biofortified with Se and Zn. In contrast, the inhibitory polyphenol compounds in the black bean profoundly reduced Fe bioavailability. These results provide valuable information for Se and Zn enhancement in common bean seeds and suggest the possibility to biofortify with these essential nutrients without greatly affecting mineral bioavailability to increase the food quality of common bean seeds. Published by Elsevier Masson SAS.

  17. MYB89 Transcription Factor Represses Seed Oil Accumulation1[OPEN

    PubMed Central

    Li, Dong; Jin, Changyu; Duan, Shaowei; Zhu, Yana; Qi, Shuanghui; Liu, Kaige; Gao, Chenhao; Ma, Haoli; Liao, Yuncheng

    2017-01-01

    In many higher plants, seed oil accumulation is precisely controlled by intricate multilevel regulatory networks, among which transcriptional regulation mainly influences oil biosynthesis. In Arabidopsis (Arabidopsis thaliana), the master positive transcription factors, WRINKLED1 (WRI1) and LEAFY COTYLEDON1-LIKE (L1L), are important for seed oil accumulation. We found that an R2R3-MYB transcription factor, MYB89, was expressed predominantly in developing seeds during maturation. Oil and major fatty acid biosynthesis in seeds was significantly promoted by myb89-1 mutation and MYB89 knockdown; thus, MYB89 was an important repressor during seed oil accumulation. RNA sequencing revealed remarkable up-regulation of numerous genes involved in seed oil accumulation in myb89 seeds at 12 d after pollination. Posttranslational activation of a MYB89-glucocorticoid receptor fusion protein and chromatin immunoprecipitation assays demonstrated that MYB89 inhibited seed oil accumulation by directly repressing WRI1 and five key genes and by indirectly suppressing L1L and 11 key genes involved in oil biosynthesis during seed maturation. These results help us to understand the novel function of MYB89 and provide new insights into the regulatory network of transcriptional factors controlling seed oil accumulation in Arabidopsis. PMID:27932421

  18. Gene expression profiling of the green seed problem in Soybean.

    PubMed

    Teixeira, Renake N; Ligterink, Wilco; França-Neto, José de B; Hilhorst, Henk W M; da Silva, Edvaldo A A

    2016-02-01

    Due to the climate change of the past few decades, some agricultural areas in the world are now experiencing new climatic extremes. For soybean, high temperatures and drought stress can potentially lead to the "green seed problem", which is characterized by chlorophyll retention in mature seeds and is associated with lower oil and seed quality, thus negatively impacting the production of soybean seeds. Here we show that heat and drought stress result in a "mild" stay-green phenotype and impaired expression of the STAY-GREEN 1 and STAY-GREEN 2 (D1, D2), PHEOPHORBIDASE 2 (PPH2) and NON-YELLOW COLORING 1 (NYC1_1) genes in soybean seeds of a susceptible soybean cultivar. We suggest that the higher expression of these genes in fully mature seeds of a tolerant cultivar allows these seeds to cope with stressful conditions and complete chlorophyll degradation. The gene expression results obtained in this study represent a significant advance in understanding chlorophyll retention in mature soybean seeds produced under stressful conditions. This will open new research possibilities towards finding molecular markers for breeding programs to produce cultivars which are less susceptible to chlorophyll retention under the hot and dry climate conditions which are increasingly common in the largest soybean production areas of the world.

  19. Involvement of Polyamine Oxidase-Produced Hydrogen Peroxide during Coleorhiza-Limited Germination of Rice Seeds

    PubMed Central

    Chen, Bing-Xian; Li, Wen-Yan; Gao, Yin-Tao; Chen, Zhong-Jian; Zhang, Wei-Na; Liu, Qin-Jian; Chen, Zhuang; Liu, Jun

    2016-01-01

    Seed germination is a complicated biological process that requires regulated enzymatic and non-enzymatic reactions. The action of polyamine oxidase (PAO) produces hydrogen peroxide (H2O2), which promotes dicot seed germination. However, whether and, if so, how PAOs regulate monocot seed germination via H2O2 production is unclear. Herein, we report that the coleorhiza is the main physical barrier to radicle protrusion during germination of rice seed (a monocot seed) and that it does so in a manner similar to that of dicot seed micropylar endosperm. We found that H2O2 specifically and steadily accumulated in the coleorhizae and radicles of germinating rice seeds and was accompanied by increased PAO activity as the germination percentage increased. These physiological indexes were strongly decreased in number by guazatine, a PAO inhibitor. We also identified 11 PAO homologs (OsPAO1–11) in the rice genome, which could be classified into four subfamilies (I, IIa, IIb, and III). The OsPAO genes in subfamilies I, IIa, and IIb (OsPAO1–7) encode PAOs, whereas those in subfamily III (OsPAO8–11) encode histone lysine-specific demethylases. In silico-characterized expression profiles of OsPAO1–7 and those determined by qPCR revealed that OsPAO5 is markedly upregulated in imbibed seeds compared with dry seeds and that its transcript accumulated to a higher level in embryos than in the endosperm. Moreover, its transcriptional abundance increased gradually during seed germination in water and was inhibited by 5 mM guazatine. Taken together, these results suggest that PAO-generated H2O2 is involved in coleorhiza-limited rice seed germination and that OsPAO5 expression accounts for most PAO expression and activity during rice seed germination. These findings should facilitate further study of PAOs and provide valuable information for functional validation of these proteins during seed germination of monocot cereals. PMID:27570530

  20. Seed Treatment. Manual 92.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet minimum EPA standards for certification as a commercial applicator of pesticides in the seed treatment category. The text discusses pests commonly associated with seeds; seed treatment pesticides; labels; chemicals and seed treatment equipment; requirements of federal and state seed laws;…

  1. Seed Treatment. Bulletin 760.

    ERIC Educational Resources Information Center

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  2. Seed Treatment. Bulletin 760.

    ERIC Educational Resources Information Center

    Lowery, Harvey C.

    This manual gives a definition of seed treatment, the types of seeds normally treated, diseases and insects commonly associated with seeds, fungicides and insecticides used, types of equipment used for seed treatment, and information on labeling and coloring of treated seed, pesticide carriers, binders, stickers, and safety precautions. (BB)

  3. Seed Treatment. Manual 92.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Agricultural Experiment Station.

    This training manual provides information needed to meet minimum EPA standards for certification as a commercial applicator of pesticides in the seed treatment category. The text discusses pests commonly associated with seeds; seed treatment pesticides; labels; chemicals and seed treatment equipment; requirements of federal and state seed laws;…

  4. Two biologically distinct isolates of Zucchini yellow mosaic virus lack seed transmissibility in cucumber.

    PubMed

    Glasa, M; Kollerova, E

    2007-01-01

    The seed transmission of the Zucchini yellow mosaic virus (ZYMV) was studied in cucumber using two isolates unrelated in their biological characteristics. Although the virus could be readily detected in mature seeds harvested from infected cucumbers, the seedlings obtained from infected germinated seeds tested negative for ZYMV using both ELISA and RT-PCR assays. No evidence was obtained for transmission of two ZYMV isolates through seeds.

  5. Seed Development in Ipomoea lacunosa (Convolvulaceae), with Particular Reference to Anatomy of the Water Gap

    PubMed Central

    Gehan Jayasuriya, K. M. G.; Baskin, Jerry M.; Geneve, Robert L.; Baskin, Carol C.

    2007-01-01

    Background and Aims Disruption of one or both of the bulges (water gap) in the seed coat adjacent to the micropyle is responsible for breaking physical dormancy (PY) in seeds of Ipomoea lacunosa and other taxa of Convolvulaceae. Hitherto, neither ontogeny of these bulges nor onset of PY together with anatomical development and maturation drying of the seed had been studied in this family. The aims of this study were to monitor physiological and anatomical changes that occur during seed development in I. lacunosa, with particular reference to ontogeny of the water gap. Methods Developmental anatomy (ontogeny) of seed coat and dry mass, length, moisture content, germinability and onset of seed coat impermeability to water were monitored from pollination to seed maturity. Blocking/drying and dye-tracking experiments were done to identify site of moisture loss during the final stages of seed drying. Key Results Physiological maturity of seeds occurred 22 d after pollination (DAP), and 100 % of seeds germinated 24 DAP. Impermeability of the seed coat developed 27–30 DAP, when seed moisture content was 13 %. The hilar fissure was identified as the site of moisture loss during the final stages of seed drying. The entire seed coat developed from the two outermost layers of the integument. A transition zone, i.e. a weak margin where seed coat ruptures during dormancy break, formed between the bulge and hilar ring and seed coat away from the bulge. Sclereid cells in the transition zone were square, whereas they were elongated under the bulge. Conclusions Although the bulge and other areas of the seed coat have the same origin, these two cell layers underwent a different series of periclinal and anticlinal divisions during bulge development (beginning a few hours after pollination) than they did during development of the seed coat away from the bulge. Further, the boundary between the square sclereids in the transition zone and the elongated ones of the bulge delineate the

  6. Seed development in Ipomoea lacunosa (Convolvulaceae), with particular reference to anatomy of the water gap.

    PubMed

    Gehan Jayasuriya, K M G; Baskin, Jerry M; Geneve, Robert L; Baskin, Carol C

    2007-09-01

    Disruption of one or both of the bulges (water gap) in the seed coat adjacent to the micropyle is responsible for breaking physical dormancy (PY) in seeds of Ipomoea lacunosa and other taxa of Convolvulaceae. Hitherto, neither ontogeny of these bulges nor onset of PY together with anatomical development and maturation drying of the seed had been studied in this family. The aims of this study were to monitor physiological and anatomical changes that occur during seed development in I. lacunosa, with particular reference to ontogeny of the water gap. Developmental anatomy (ontogeny) of seed coat and dry mass, length, moisture content, germinability and onset of seed coat impermeability to water were monitored from pollination to seed maturity. Blocking/drying and dye-tracking experiments were done to identify site of moisture loss during the final stages of seed drying. Physiological maturity of seeds occurred 22 d after pollination (DAP), and 100 % of seeds germinated 24 DAP. Impermeability of the seed coat developed 27-30 DAP, when seed moisture content was 13 %. The hilar fissure was identified as the site of moisture loss during the final stages of seed drying. The entire seed coat developed from the two outermost layers of the integument. A transition zone, i.e. a weak margin where seed coat ruptures during dormancy break, formed between the bulge and hilar ring and seed coat away from the bulge. Sclereid cells in the transition zone were square, whereas they were elongated under the bulge. Although the bulge and other areas of the seed coat have the same origin, these two cell layers underwent a different series of periclinal and anticlinal divisions during bulge development (beginning a few hours after pollination) than they did during development of the seed coat away from the bulge. Further, the boundary between the square sclereids in the transition zone and the elongated ones of the bulge delineate the edge of the water gap.

  7. Predispersal predation of an understory rainforest herb Aphelandra aurantiaca (Acanthaceae) in gaps and mature forest.

    PubMed

    Calvo-Irabién, L M; Islas-Luna, A

    1999-08-01

    The opening of a canopy gap at Los Tuxtlas rainforest has an impact on populations of the understory herb Aphelandra aurantiaca: the ratio of recruited seedlings per reproductive individual is 1:17 in mature forest vs. gaps. Predation occurring before seed dispersal seems a plausible explanation for this observed difference. In a field experiment, in which insecticide was applied to plants growing in gaps and mature forest, we evaluated the extent to which herbivore damage to flowers, fruits, and seeds reduces the number of seeds available for seedling establishment. Under natural conditions, ∼30% of the flowers and >70% of the capsules of A. aurantiaca showed herbivore damage, but its impact changed depending on the type of forest habitat. Flower and fruit herbivores caused more damage in closed forest than in gaps, and this difference was even bigger under the insecticide treatment. Insecticide effectiveness varied depending on the type of forest patch. The highest herbivore impact on seeds was found in the mature forest without insecticide treatment, where most seeds were destroyed. The percentages of seed damage reported here show that predispersal predation is limiting seedling recruitment, especially in mature forest. Other possible explanations might be differences in insect composition, densities, and behavior between gaps and mature forest.

  8. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L.

    PubMed

    Kuang, A; Xiao, Y; McClure, G; Musgrave, M E

    2000-06-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  9. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  10. Influence of microgravity on ultrastructure and storage reserves in seeds of Brassica rapa L

    NASA Technical Reports Server (NTRS)

    Kuang, A.; Xiao, Y.; McClure, G.; Musgrave, M. E.

    2000-01-01

    Successful plant reproduction under spaceflight conditions has been problematic in the past. During a 122 d opportunity on the Mir space station, full life cycles of Brassica rapa L. were completed in microgravity in a series of three experiments in the Svet greenhouse. Ultrastructural and cytochemical analyses of storage reserves in mature dry seeds produced in these experiments were compared with those of seeds produced during a high-fidelity ground control. Additional analyses were performed on developing Brassica embryos, 15 d post pollination, which were produced during a separate experiment on the Shuttle (STS-87). Seeds produced on Mir had less than 20% of the cotyledon cell number found in seeds harvested from the ground control. Cytochemical localization of storage reserves in mature cotyledons showed that starch was retained in the spaceflight material, whereas protein and lipid were the primary storage reserves in ground control seeds. Protein bodies in mature cotyledons produced in space were 44% smaller than those in the ground control seeds. Fifteen days after pollination, cotyledon cells from mature embryos formed in space had large numbers of starch grains, and protein bodies were absent, while in developing ground control seeds at the same stage, protein bodies had already formed and fewer starch grains were evident. These data suggest that both the late stage of seed development and maturation are changed in Brassica by growth in a microgravity environment. While gravity is not absolutely required for any step in the plant life cycle, seed quality in Brassica is compromised by development in microgravity.

  11. Uptake and allocation of carbon and nitrogen in Vicia narbonensis plants with increased seed sink strength achieved by seed-specific expression of an amino acid permease.

    PubMed

    Götz, Klaus-Peter; Staroske, Nicole; Radchuk, Ruslana; Emery, R J Neil; Wutzke, Klaus-Dieter; Herzog, Helmut; Weber, Hans

    2007-01-01

    Over-expressing an amino acid permease in Vicia narbonensis seeds increases sink strength for N that is evident from the higher seed protein content and seed weight. Here, the effect of increased seed sink strength of line AAP-12 on growth, development, and on whole plant carbon and nitrogen uptake and partitioning is analysed. AAP-12 plants have a prolonged growth period. Accumulation and partitioning of dry matter and N in leaves, stems, and pods are higher whereas remobilization to the seeds is delayed, indicating that the switch from growth to reserve allocation and remobilization is delayed. Measuring uptake and allocation of (15)N-ammonia applied via the roots revealed a higher and longer label uptake period during maturation. Measuring whole plant carbon fixation and allocation after (13)C labelling shows higher levels at maturation, particularly in seeds, indicating higher seed sink strength for C and increased allocation into maturing seeds. Levels of cytokinins were dramatically increased in AAP-12 seeds indicating its role in nitrogen-mediated growth stimulation. AAP-12 seeds have higher natural abundances for (13)C indicating increased C fixation via PEP carboxylase in order to meet the higher demand of carbon acceptors for amino acid synthesis. In summary, increased seed sink strength for N in AAP-12 stimulates seed growth, but also that of vegetative organs, which finally leads to a higher ratio of vegetative to seed biomass at maturity and thus a lower harvest index. Therefore, the increased N uptake due to higher seed demand of AAP-12 is partly compensated by growth stimulation of vegetative organs.

  12. Storage reserve accumulation in Arabidopsis: metabolic and developmental control of seed filling.

    PubMed

    Baud, Sébastien; Dubreucq, Bertrand; Miquel, Martine; Rochat, Christine; Lepiniec, Loïc

    2008-01-01

    In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus.

  13. Storage Reserve Accumulation in Arabidopsis: Metabolic and Developmental Control of Seed Filling

    PubMed Central

    Baud, Sébastien; Dubreucq, Bertrand; Miquel, Martine; Rochat, Christine; Lepiniec, Loïc

    2008-01-01

    In the life cycle of higher plants, seed development is a key process connecting two distinct sporophytic generations. Seed development can be divided into embryo morphogenesis and seed maturation. An essential metabolic function of maturing seeds is the deposition of storage compounds that are mobilised to fuel post-germinative seedling growth. Given the importance of seeds for food and animal feed and considering the tremendous interest in using seed storage products as sustainable industrial feedstocks to replace diminishing fossil reserves, understanding the metabolic and developmental control of seed filling constitutes a major focus of plant research. Arabidopsis thaliana is an oilseed species closely related to the agronomically important Brassica oilseed crops. The main storage compounds accumulated in seeds of A. thaliana consist of oil stored as triacylglycerols (TAGs) and seed storage proteins (SSPs). Extensive tools developed for the molecular dissection of A. thaliana development and metabolism together with analytical and cytological procedures adapted for very small seeds have led to a good description of the biochemical pathways producing storage compounds. In recent years, studies using these tools have shed new light on the intricate regulatory network controlling the seed maturation process. This network involves sugar and hormone signalling together with a set of developmentally regulated transcription factors. Although much remains to be elucidated, the framework of the regulatory system controlling seed filling is coming into focus. PMID:22303238

  14. Phagosome maturation: aging gracefully.

    PubMed Central

    Vieira, Otilia V; Botelho, Roberto J; Grinstein, Sergio

    2002-01-01

    Foreign particles and apoptotic bodies are eliminated from the body by phagocytic leucocytes. The initial stage of the elimination process is the internalization of the particles into a plasma membrane-derived vacuole known as the phagosome. Such nascent phagosomes, however, lack the ability to kill pathogens or to degrade the ingested targets. These properties are acquired during the course of phagosomal maturation, a complex sequence of reactions that result in drastic remodelling of the phagosomal membrane and contents. The determinants and consequences of the fusion and fission reactions that underlie phagosomal maturation are the topic of this review. PMID:12061891

  15. Regulation of Phosphoenolpyruvate Carboxylase Phosphorylation by Metabolites and Abscisic Acid during the Development and Germination of Barley Seeds1[C][W

    PubMed Central

    Feria, Ana-Belén; Alvarez, Rosario; Cochereau, Ludivine; Vidal, Jean; García-Mauriño, Sofía; Echevarría, Cristina

    2008-01-01

    During barley (Hordeum vulgare) seed development, phosphoenolpyruvate carboxylase (PEPC) activity increased and PEPC-specific antibodies revealed housekeeping (103-kD) and inducible (108-kD) subunits. Bacterial-type PEPC fragments were immunologically detected in denatured protein extracts from dry and imbibed conditions; however, on nondenaturing gels, the activity of the recently reported octameric PEPC (in castor [Ricinus communis] oil seeds) was not detected. The phosphorylation state of the PEPC, as judged by l-malate 50% inhibition of initial activity values, phosphoprotein chromatography, and immunodetection of the phosphorylated N terminus, was found to be high between 8 and 18 d postanthesis (DPA) and during imbibition. In contrast, the enzyme appeared to be in a low phosphorylation state from 20 DPA up to dry seed. The time course of 32/36-kD, Ca2+-independent PEPC kinase activity exhibited a substantial increase after 30 DPA that did not coincide with the PEPC phosphorylation profile. This kinase was found to be inhibited by l-malate and not by putative protein inhibitors, and the PEPC phosphorylation status correlated with high glucose-6-phosphate to malate ratios, thereby suggesting an in vivo metabolic control of the kinase. PEPC phosphorylation was also regulated by photosynthate supply at 11 DPA. In addition, when fed exogenously to imbibing seeds, abscisic acid significantly increased PEPC kinase activity. This was further enhanced by the cytosolic protein synthesis inhibitor cycloheximide but blocked by protease inhibitors, thereby suggesting that the phytohormone acts on the stability of the kinase. We propose that a similar abscisic acid-dependent effect may contribute to produce the increase in PEPC kinase activity during desiccation stages. PMID:18753284

  16. Assessing ant seed predation in threatened plants: a case study

    NASA Astrophysics Data System (ADS)

    Albert, María José; Escudero, Adrián; Iriondo, José María

    2005-11-01

    Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant-plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.

  17. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch

    PubMed Central

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-01-01

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region. PMID:27881868

  18. Seed sojourn and fast viability loss constrain seedling production of a prominent riparian protection plant Salix variegata Franch.

    PubMed

    Ayi, Qiaoli; Zeng, Bo; Liu, Jianhui; Shi, Shaohua; Niu, Hangang; Lin, Feng; Zhang, Yeyi

    2016-11-24

    Salix variegata Franch, a prominent plant applied in riparian shelter vegetation in Three Gorges reservoir region of China, produces many seeds every year but generates only a few or no seedlings. Whether the low seedling production of S. variegata is caused by seed sterility or by rapid loss of seed viability remains unknown. We investigated the sojourn time of mature seeds in capsules produced in early, mid, and late reproductive season and the germinability of mature seeds fresh or stored after different period of time. The sojourn time of seeds in capsules was 2.89, 3.95, and 4.72 days in early, mid, and late reproductive season, respectively. The maximal germination percentage of non-stored fresh seeds produced in early, mid, and late reproductive season was 93.33%, 78.67%, and 40%, respectively, which indicates mature seeds were not sterile. The longest viability-retaining time of seeds produced in early, mid, and late reproductive season was only 8, 16, 16 days, respectively, indicating that mature seeds of S. variegata lost viability very rapidly. Mature seeds possessed good viability, but their rapid viability loss caused the low seedling production and hampered the population growth of S. variegata in the riparian area of Three Gorges reservoir region.

  19. Photoinduced Seed Germination of Oenothera biennis L

    PubMed Central

    Ensminger, Peter A.; Ikuma, Hiroshi

    1987-01-01

    General characteristics of light-induced germination of Oenothera biennis L. seeds were investigated at 24°C. During dark imbibition, seeds reached maximal respiration in 7 hours and maximal water content and photosensitivity in 24 hours. After dark imbibition of 24 hours, seeds required a long exposure (>36 hours) to red or white light for maximal germination. Two photoperiods (12 and 2 hours) separated by a period of darkness of 10 to 16 hours gave near maximal germination. For the two photoperiod regime, the first light potentiates a reversible phytochrome response by the second light. A 35°C treatment for 2 to 3 hours in the dark immediately prior or subsequent to 8 hours of light caused a higher percentage of germination. A 2 hour treatment at 35°C also potentiates a reversible phytochrome response. Halved seeds germinated at 100% in light or darkness indicating that the light requirement of the seeds is lost in the halving procedure. After-ripened seeds required less light and germinated more rapidly and at higher percentages than seeds tested shortly after maturation. PMID:16665824

  20. Maturation in Larch 1

    PubMed Central

    Greenwood, Michael S.; Hopper, Catherine A.; Hutchison, Keith W.

    1989-01-01

    The time course of maturation in eastern larch (Larix laricina [Du Roi] K. Koch) was examined by grafting scions from trees of different ages onto 2-year-old root stock and following scion development for several years. Height, diameter, foliar chlorophyll content, and rooting ability of scion-derived cuttings all varied linearly as a function of log10 age. Chlorophyll content (milligrams per gram of dry weight) increased while height, diameter, and ability to root decreased with age (P < 0.01). The tendency toward orthotropic growth and branch formation per centimeter of main stem decreased abruptly between age 1 and 5 years (P < 0.01). Total chlorophyll content of both long and short shoot foliage increased by 30 to 50% with increasing age, but the chlorophyll a/b ratio did not change. Also, juvenile long shoot needles were significantly longer than mature (P < 0.01). Surprisingly, the juvenile scions produced more total strobili over two successive years, but the mature scions produced a significantly higher proportion of male strobili (P < 0.001 year 1; P < 0.02 year 2). The age-related changes in foliar traits were not associated with changes in DNA methylation between juvenile and mature scions. Using HPLC, we found that 20% of foliar DNA cytosine residues were methylated in both scion types. Images Figure 1 PMID:16666785

  1. Jealousy and Moral Maturity.

    ERIC Educational Resources Information Center

    Mathes, Eugene W.; Deuger, Donna J.

    Jealousy may be perceived as either good or bad depending upon the moral maturity of the individual. To investigate this conclusion, a study was conducted testing two hypothesis: a positive relationship exists between conventional moral reasoning (reference to norms and laws) and the endorsement and level of jealousy; and a negative relationship…

  2. Mature Students Studying Mathematics.

    ERIC Educational Resources Information Center

    Hirst, Keith

    1999-01-01

    Discusses mature students in the single subject area of mathematics in a single institution and makes comparisons with traditional universities. Reviews some features of the age distribution, entry qualifications, degree-class distribution, non-completion rates and gender distribution. (Author/ASK)

  3. Brain maturation and epilepsy.

    PubMed

    Dulac, Olivier; Milh, Mathieu; Holmes, Gregory L

    2013-01-01

    At full term, both glutamate and gamma-amino-butyric acid (GABA) are excitatory; cortical synapses are beginning to appear, there is little myelin in the cerebral hemispheres, and long tracts hardly start to develop. Neonatal myoclonic encephalopathy can result from premature activation of N-methyl-D-aspartate (NMDA) transmission. Benign neonatal seizures and migrating partial seizures in infancy could involve excessive or premature excitability of deep cortical layers. Benign rolandic epilepsy and continuous spike waves in slow sleep are consistent with an excess of both excitatory and inhibitory cortical synapses. West and Lennox-Gastaut syndromes express age-related diffuse cortical hyperexcitability, the pattern depending on the age of occurrence; synchronization of spikes is becoming possible with maturation of the myelin. Idiopathic generalized epilepsy is itself modulated by maturation that causes frontal hyperexcitability generating myoclonic-astatic seizures, between the ages of infantile and juvenile myoclonic epilepsies. Physiological delay of hippocampo-neocortical pathways maturation could account for the delayed occurrence of mesial temporal epilepsy following infantile damage, whereas premature maturation could contribute to fronto-temporal damage characteristic of fever-induced epileptic encephalopathy in school-age children, a dramatic school-age epileptic encephalopathy.

  4. De novo assembly and characterization of germinating lettuce seed transcriptome using Illumina paired-end sequencing.

    PubMed

    Liu, Shu-Jun; Song, Shun-Hua; Wang, Wei-Qing; Song, Song-Quan

    2015-11-01

    At supraoptimal temperature, germination of lettuce (Lactuca sativa L.) seeds exhibits a typical germination thermoinhibition, which can be alleviated by sodium nitroprusside (SNP) in a nitric oxide-dependent manner. However, the molecular mechanism of seed germination thermoinhibition and its alleviation by SNP are poorly understood. In the present study, the lettuce seeds imbibed at optimal temperature in water or at supraoptimal temperature with or without 100 μM SNP for different periods of time were used as experimental materials, the total RNA was extracted and sequenced, we gained 147,271,347 raw reads using Illumina paired-end sequencing technique and assembled the transcriptome of germinating lettuce seeds. A total of 51,792 unigenes with a mean length of 849 nucleotides were obtained. Of these unigenes, a total of 29,542 unigenes were annotated by sequence similarity searching in four databases, NCBI non-redundant protein database, SwissProt protein database, euKaryotic Ortholog Groups database, and NCBI nucleotide database. Among the annotated unigenes, 22,276 unigenes were assigned to Gene Ontology database. When all the annotated unigenes were searched against the Kyoto Encyclopedia of Genes and Genomes Pathway database, a total of 8,810 unigenes were mapped to 5 main categories including 260 pathways. We first obtained a lot of unigenes encoding proteins involved in abscisic acid (ABA) signaling in lettuce, including 11 ABA receptors, 94 protein phosphatase 2Cs and 16 sucrose non-fermenting 1-related protein kinases. These results will help us to better understand the molecular mechanism of seed germination, thermoinhibition of seed germination and its alleviation by SNP. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  5. Rapid identification of lettuce seed germination mutants by bulked segregant analysis and whole genome sequencing.

    PubMed

    Huo, Heqiang; Henry, Isabelle M; Coppoolse, Eric R; Verhoef-Post, Miriam; Schut, Johan W; de Rooij, Han; Vogelaar, Aat; Joosen, Ronny V L; Woudenberg, Leo; Comai, Luca; Bradford, Kent J

    2016-11-01

    Lettuce (Lactuca sativa) seeds exhibit thermoinhibition, or failure to complete germination when imbibed at warm temperatures. Chemical mutagenesis was employed to develop lettuce lines that exhibit germination thermotolerance. Two independent thermotolerant lettuce seed mutant lines, TG01 and TG10, were generated through ethyl methanesulfonate mutagenesis. Genetic and physiological analyses indicated that these two mutations were allelic and recessive. To identify the causal gene(s), we applied bulked segregant analysis by whole genome sequencing. For each mutant, bulked DNA samples of segregating thermotolerant (mutant) seeds were sequenced and analyzed for homozygous single-nucleotide polymorphisms. Two independent candidate mutations were identified at different physical positions in the zeaxanthin epoxidase gene (ABSCISIC ACID DEFICIENT 1/ZEAXANTHIN EPOXIDASE, or ABA1/ZEP) in TG01 and TG10. The mutation in TG01 caused an amino acid replacement, whereas the mutation in TG10 resulted in alternative mRNA splicing. Endogenous abscisic acid contents were reduced in both mutants, and expression of the ABA1 gene from wild-type lettuce under its own promoter fully complemented the TG01 mutant. Conventional genetic mapping confirmed that the causal mutations were located near the ZEP/ABA1 gene, but the bulked segregant whole genome sequencing approach more efficiently identified the specific gene responsible for the phenotype. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  6. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition

    PubMed Central

    Lee, Sorcheng; Cheng, Hui; King, Kathryn E.; Wang, Weefuen; He, Yawen; Hussain, Alamgir; Lo, Jane; Harberd, Nicholas P.; Peng, Jinrong

    2002-01-01

    The germination of Arabidopsis seeds is promoted by gibberellin (GA). Arabidopsis GAI, and RGA are genes encoding key GA signal-transduction components (GAI and RGA) that mediate GA regulation of stem elongation. The Arabidopsis genome contains two further genes, RGL1 and RGL2, that encode proteins (RGL1 and RGL2) that are closely related to GAI and RGA. Here, we show that RGL2 regulates seed germination in response to GA, and that RGL1, GAI, and RGA do not. In addition, we show that RGL2 transcript levels rise rapidly following seed imbibition, and then decline rapidly as germination proceeds. In situ GUS staining revealed that RGL2 expression in imbibed seeds is restricted to elongating regions of pre-emergent and recently emerged radicles. These observations indicate that RGL2 is a negative regulator of GA responses that acts specifically to control seed germination rather than stem elongation. Furthermore, as RGL2 expression is imbibition inducible, RGL2 may function as an integrator of environmental and endogenous cues to control seed germination. PMID:11877383

  7. PECTIN METHYLESTERASE INHIBITOR6 Promotes Arabidopsis Mucilage Release by Limiting Methylesterification of Homogalacturonan in Seed Coat Epidermal Cells[C][W

    PubMed Central

    Saez-Aguayo, Susana; Ralet, Marie-Christine; Berger, Adeline; Botran, Lucy; Ropartz, David; Marion-Poll, Annie; North, Helen M.

    2013-01-01

    Imbibed seeds of the Arabidopsis thaliana accession Djarly are affected in mucilage release from seed coat epidermal cells. The impaired locus was identified as a pectin methylesterase inhibitor gene, PECTIN METHYLESTERASE INHIBITOR6 (PMEI6), specifically expressed in seed coat epidermal cells at the time when mucilage polysaccharides are accumulated. This spatio-temporal regulation appears to be modulated by GLABRA2 and LEUNIG HOMOLOG/MUCILAGE MODIFIED1, as expression of PMEI6 is reduced in mutants of these transcription regulators. In pmei6, mucilage release was delayed and outer cell walls of epidermal cells did not fragment. Pectin methylesterases (PMEs) demethylate homogalacturonan (HG), and the majority of HG found in wild-type mucilage was in fact derived from outer cell wall fragments. This correlated with the absence of methylesterified HG labeling in pmei6, whereas transgenic plants expressing the PMEI6 coding sequence under the control of the 35S promoter had increased labeling of cell wall fragments. Activity tests on seeds from pmei6 and 35S:PMEI6 transgenic plants showed that PMEI6 inhibits endogenous PME activities, in agreement with reduced overall methylesterification of mucilage fractions and demucilaged seeds. Another regulator of PME activity in seed coat epidermal cells, the subtilisin-like Ser protease SBT1.7, acts on different PMEs, as a pmei6 sbt1.7 mutant showed an additive phenotype. PMID:23362209

  8. Compositional changes in developing rape seed (Brassica napus L.).

    PubMed

    Norton, G; Harris, J F

    1975-01-01

    The growth and composition of siliquas and seeds of oilseed rape was followed over 12 weeks from shortly after anthesis to maturity. Each plant produced 220 siliquas, this number being constant throughout development. Seed numbers per siliqua fell from 19 to 9 by week 5 and declined to 7 at maturity. Hull(1) and seed growth followed a sigmoid pattern, but were not in phase. Seed development could be divided into 3 phases: In Phase 1, seed weight was low and starch and ethanol soluble compounds accounted for 80% DM. Phase 2, seed growth increased and storage oil and proteins were deposited accounting for 40% and 20% DM respectively at the end of this stage. Starch, glucose and fructose were utilized in this process. Phase 3 was largely concerned with the deposition of oil and protein in fixed proportions. Seed weight more than doubled while DM composition remained constant. Sugars were transferred from the hull to the seed to support this growth.The proportion of hull lipids remained constant throughout development until shortly before maturity when MGDG and DGDG fell due to chloroplast breakdown as indicated by chlorophyll disappearance. The FA composition of the hull lipids resembled that of photosynthetic tissue. In the seeds, the neutral lipids increased from 20% of the total lipids in Phase 1 to 93% at maturity. The proportion of structural lipids declined as the storage lipids increased. In Phase 1 the FA composition of the lipid resembled that of photosynthetic tissue (high in C16:0; C18:2; C18:3). In Phase 2, FA typical of storage triglycerides (C20:1; C22:1, appeared, C18:1 transitorily increased, but C18:2 and C18:3 fell dramatically. In Phase 3, the content of C22:1 continued to rise, but the proportions of the other FA remained constant.

  9. Harvest time of Cryptomeria japonica seeds depending on climate factors

    NASA Astrophysics Data System (ADS)

    Son, Seog-Gu; Kim, Hyo-Jeong; Kim, Chang-Soo; Byun, Kwang-Ok

    2010-05-01

    Sound seeds should have good germination rates and seed germination can be influenced by several factors. Seed picking time is regarded as one of the necessary elements to obtain sound seeds. From a clonal seed orchard of Cryptomeria japonica located in southern part of Korean peninsular, cones were picked about every 10 days from 30th of July 2005 to 30th of October in both 2005 and 2006. We have also analyzed the effects of climatic factors about two consecutive years on seed productivity. From the picked cones, seeds were collected and these germination ability, seed size and embryo shapes were investigated according to cone picking time. The 1,000-seed weight picked on 18th of August was 3.3 g and 5.3 g on 30th of September 2005and 2006. The size of seeds picked from 18th of August to 30th of September increased from 19.3 mm to 21.3 mm in length and from 15.8 mm to 18.5 mm in width. Depending on picking time, various shapes of embryos, including embryos with liquid material, jellied material and fully matured ones were observed. Germination aspects also varied throughout the test days. About two weeks after seeding in a glass petri-dish, germinal apparatuses appeared from each test seed sets which had been picked from after 10 August 2005 and 10 August 2006. The germination rates started from 10.7% from seeds picked 20 August 2006. Average germination rate in 2005 was 18.3 and 19.6 in 2006. In 2005, the highest germination rate was 34.3% from seeds picked on the 30th of September. In 2006, the highest germination rate was 31.7% for seeds picked at the same date as the 2005 seeds. After September, the highest germination rate for picked seeds decreased in both 2005 and 2006. Among the climatic factors, monthly sum of temperature and of precipitation were the main factors for maturation of C. japonica seeds. The results implied that the best cone picking time for the Korean C. japonica seed orchard to be around the end of September.

  10. Potent endogenous allelopathic compounds in Lepidium sativum seed exudate: effects on epidermal cell growth in Amaranthus caudatus seedlings.

    PubMed

    Iqbal, Amjad; Fry, Stephen C

    2012-04-01

    Many plants exude allelochemicals--compounds that affect the growth of neighbouring plants. This study reports further studies of the reported effect of cress (Lepidium sativum) seed(ling) exudates on seedling growth in Amaranthus caudatus and Lactuca sativa. In the presence of live cress seedlings, both species grew longer hypocotyls and shorter roots than cress-free controls. The effects of cress seedlings were allelopathic and not due to competition for resources. Amaranthus seedlings grown in the presence of cress allelochemical(s) had longer, thinner hypocotyls and shorter, thicker roots--effects previously attributed to lepidimoide. The active principle was more abundant in cress seed exudate than in seedling (root) exudates. It was present in non-imbibed seeds and releasable from heat-killed seeds. Release from live seeds was biphasic, starting rapidly but then continuing gradually for 24 h. The active principle was generated by aseptic cress tissue and was not a microbial digestion product or seed-treatment chemical. Crude seed exudate affected hypocotyl and root growth at ~25 and ~450 μg ml(-1) respectively. The exudate slightly (28%) increased epidermal cell number along the length of the Amaranthus hypocotyl but increased total hypocotyl elongation by 129%; it resulted in a 26% smaller hypocotyl circumference but a 55% greater epidermal cell number counted round the circumference. Therefore, the effect of the allelochemical(s) on organ morphology was imposed primarily by regulation of cell expansion, not cell division. It is concluded that cress seeds exude endogenous substances, probably including lepidimoide, that principally regulate cell expansion in receiver plants.

  11. Characterization of molecular mobility within the glassy matrix of dry seeds using mechanical properties: pea cotyledon as a test study

    USDA-ARS?s Scientific Manuscript database

    Seed glasses form during maturation drying and regulate seed longevity. Seeds continue to age within the glassy state and, even during cryogenic storage, viability eventually declines. Inevitability of aging suggests some level of molecular motion within the glassy matrix and quantifying these “rel...

  12. Dormancy-specific imprinting underlies maternal inheritance of seed dormancy in Arabidopsis thaliana

    PubMed Central

    Piskurewicz, Urszula; Iwasaki, Mayumi; Susaki, Daichi; Megies, Christian; Kinoshita, Tetsu; Lopez-Molina, Luis

    2016-01-01

    Mature seed dormancy is a vital plant trait that prevents germination out of season. In Arabidopsis, the trait can be maternally regulated but the underlying mechanisms sustaining this regulation, its general occurrence and its biological significance among accessions are poorly understood. Upon seed imbibition, the endosperm is essential to repress the germination of dormant seeds. Investigation of genomic imprinting in the mature seed endosperm led us to identify a novel set of imprinted genes that are expressed upon seed imbibition. Remarkably, programs of imprinted gene expression are adapted according to the dormancy status of the seed. We provide direct evidence that imprinted genes play a role in regulating germination processes and that preferential maternal allelic expression can implement maternal inheritance of seed dormancy levels. DOI: http://dx.doi.org/10.7554/eLife.19573.001 PMID:28005006

  13. Genome-wide miRNA seeds prediction in Archaea.

    PubMed

    Wang, Shengqin; Xu, Yuming; Lu, Zuhong

    2014-01-01

    Growing evidence indicates that miRNA genes exist in the archaeal genome, though the functional role of such noncoding RNA remains unclear. Here, we integrated the phylogenetic information of available archaeal genomes to predict miRNA seeds (typically defined as the 2-8 nucleotides of mature miRNAs) on the genomic scale. Finally, we found 2649 candidate seeds with significant conservation signal. Eleven of 29 unique seeds from previous study support our result (P value <0.01), which demonstrates that the pipeline is suitable to predict experimentally detectable miRNA seeds. The statistical significance of the overlap between the detected archaeal seeds and known eukaryotic seeds shows that the miRNA may evolve before the divergence of these two domains of cellular life. In addition, miRNA targets are enriched for genes involved in transcriptional regulation, which is consistent with the situation in eukaryote. Our research will enhance the regulatory network analysis in Archaea.

  14. Free and glycosylated sterol bioaccumulation in developing Cycas micronesica seeds.

    PubMed

    Marler, Thomas E; Shaw, Christopher A

    2009-07-15

    The bioaccumulation of free and glycosylated forms of stigmasterol and β-sitosterol were determined from Cycas micronesica K.D. Hill seeds throughout seed ontogeny. Per-seed pool of the four compounds increased linearly from 2 to 24 months, indicating no developmental period elicited a major shift in the rate of bioaccumulation. The slopes were not homogeneous, signifying a change in relative sterol profile concomitant with seed maturation. This shift was in favour of the glucosides, as their rate of accumulation exceeded that of the free sterols. Stigmasterol content exceeded that of β-sitosterol, but ontogeny did not influence the ratio of these dominant sterols. The quantity and quality of sterol exposure during consumption of foods prepared from gametophytes by humans is strongly influenced by age of harvested seeds. Results are critical for a further understanding of the link between human neurodegenerative diseases and historical consumption of foods derived from the seed gametophyte tissue.

  15. Identification of a molecular dialogue between developing seeds of Medicago truncatula and seedborne xanthomonads.

    PubMed

    Terrasson, Emmanuel; Darrasse, Armelle; Righetti, Karima; Buitink, Julia; Lalanne, David; Ly Vu, Benoit; Pelletier, Sandra; Bolingue, William; Jacques, Marie-Agnès; Leprince, Olivier

    2015-07-01

    Plant pathogenic bacteria disseminate and survive mainly in association with seeds. This study addresses whether seeds are passive carriers or engage a molecular dialogue with pathogens during their development. We developed two pathosystems using Medicago truncatula with Xanthomonas alfalfae subsp. alfalfae (Xaa), the natural Medicago sp. pathogen and Xanthomonas campestris pv. campestris (Xcc), a Brassicaceae pathogen. Three days after flower inoculation, the transcriptome of Xcc-infected pods showed activation of an innate immune response that was strongly limited in Xcc mutated in the type three secretion system, demonstrating an incompatible interaction of Xcc with the reproductive structures. In contrast, the presence of Xaa did not result in an activation of defence genes. Transcriptome profiling during development of infected seeds exhibited time-dependent and differential responses to Xcc and Xaa. Gene network analysis revealed that the transcriptome of Xcc-infected seeds was mainly affected during seed filling whereas that of Xaa-infected seeds responded during late maturation. The Xcc-infected seed transcriptome exhibited an activation of defence response and a repression of targeted seed maturation pathways. Fifty-one percent of putative ABSCISIC ACID INSENSITIVE3 targets were deregulated by Xcc, including oleosin, cupin, legumin and chlorophyll degradation genes. At maturity, these seeds displayed decreased weight and increased chlorophyll content. In contrast, these traits were not affected by Xaa infection. These findings demonstrate the existence of a complex molecular dialogue between xanthomonads and developing seeds and provides insights into a previously unexplored trade-off between seed development and pathogen defence.

  16. Ant behaviour and seed morphology: a missing link of myrmecochory.

    PubMed

    Gómez, Crisanto; Espadaler, Xavier; Bas, Josep M

    2005-12-01

    Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants' size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.

  17. Dormancy and Germination of Abscisic Acid-Deficient Tomato Seeds 1

    PubMed Central

    Groot, Steven P. C.; Karssen, Cees M.

    1992-01-01

    The role of abscisic acid (ABA) in the dormancy induction of tomato (Lycopersicon esculentum) seeds was studied by comparison of the germination behavior of the ABA-deficient sitiens mutant with that of the isogenic wild-type genotype. Freshly harvested mutant seeds, in contrast to wild-type seeds, always readily germinate and even exhibit viviparous germination in overripe fruits. Crosses between mutant and wild-type and self-pollination of heterozygous plants show that in particular the ABA fraction of embryo and endosperm is decisive for the induction of dormancy. After-ripened wild-type seeds fully germinate in water but are more sensitive toward osmotic inhibition than mutant seeds. Germination of both wild-type and mutant seeds is equally sensitive toward inhibition by exogenous ABA. ABA content of mature wild-type seeds is about 10-fold the level found in mutant seeds. Nevertheless, it is argued that the differences in dormancy between the seeds of both genotypes are not a result of actual ABA levels in the mature seeds or fruits but a result of differences in ABA levels during seed development. It is hypothesized that the high levels of ABA that occur during seed development in wild-type seeds induce an inhibition of cell elongation of the radicle that can still be observed after long periods of dry storage. ImagesFigure 2 PMID:16669024

  18. Comparative proteomic analysis of embryos between a maize hybrid and its parental lines during early stages of seed germination.

    PubMed

    Guo, Baojian; Chen, Yanhong; Zhang, Guiping; Xing, Jiewen; Hu, Zhaorong; Feng, Wanjun; Yao, Yingyin; Peng, Huiru; Du, Jinkun; Zhang, Yirong; Ni, Zhongfu; Sun, Qixin

    2013-01-01

    In spite of commercial use of heterosis in agriculture, the molecular basis of heterosis is poorly understood. It was observed that maize hybrid Zong3/87-1 exhibited an earlier onset or heterosis in radicle emergence. To get insights into the underlying mechanism of heterosis in radicle emergence, differential proteomic analysis between hybrid and its parental lines was performed. In total, the number of differentially expressed protein spots between hybrid and its parental lines in dry and 24 h imbibed seed embryos were 134 and 191, respectively, among which 47.01% (63/134) and 34.55% (66/191) protein spots displayed nonadditively expressed pattern. Remarkably, 54.55% of nonadditively accumulated proteins in 24 h imbibed seed embryos displayed above or equal to the level of the higher parent patterns. Moreover, 155 differentially expressed protein spots were identified, which were grouped into eight functional classes, including transcription & translation, energy & metabolism, signal transduction, disease & defense, storage protein, transposable element, cell growth & division and unclassified proteins. In addition, one of the upregulated proteins in F1 hybrids was ZmACT2, a homolog of Arabidopsis thaliana ACT7 (AtACT7). Expressing ZmACT2 driven by the AtACT7 promoter partially complemented the low germination phenotype in the Atact7 mutant. These results indicated that hybridization between two parental lines can cause changes in the expression of a variety of proteins, and it is concluded that the altered pattern of gene expression at translational level in the hybrid may be responsible for the observed heterosis.

  19. Evolutionary and ecological consequences of multiscale variation in pollen receipt for seed production.

    PubMed

    Schreiber, Sebastian J; Rosenheim, Jay A; Williams, Neal W; Harder, Lawrence D

    2015-01-01

    Variation in resource availability can select for traits that reduce the negative impacts of this variability on mean fitness. Such selection may be particularly potent for seed production in flowering plants, as they often experience variation in pollen receipt among individuals and among flowers within individuals. Using analytically tractable models, we examine the optimal allocations for producing ovules, attracting pollen, and maturing seeds in deterministic and stochastic pollen environments. In deterministic environments, the optimal strategy attracts sufficient pollen to fertilize every ovule and mature every zygote into a seed. Stochastic environments select for allocations proportional to the risk of seed production being limited by zygotes or seed maturation. When producing an ovule is cheap and maturing a seed is expensive, among-plant variation selects for attracting more pollen at the expense of producing fewer ovules and having fewer resources for seed maturation. Despite this increased allocation, such populations are likely to be pollen limited. In contrast, within-plant variation generally selects for an overproduction of ovules and, to a lesser extent, pollen attraction. Such populations are likely to be resource limited and exhibit low seed-to-ovule ratios. These results highlight the importance of multiscale variation in the evolution and ecology of resource allocations.

  20. A Germination-Specific Endo-β-Mannanase Gene Is Expressed in the Micropylar Endosperm Cap of Tomato Seeds1

    PubMed Central

    Nonogaki, Hiroyuki; Gee, Oliver H.; Bradford, Kent J.

    2000-01-01

    Endo-β-mannanase (EC 3.2.1.78) is involved in hydrolysis of the mannan-rich cell walls of the tomato (Lycopersicon esculentum Mill.) endosperm during germination and post-germinative seedling growth. Different electrophoretic isoforms of endo-β-mannanase are expressed sequentially in different parts of the endosperm, initially in the micropylar endosperm cap covering the radicle tip and subsequently in the remaining lateral endosperm surrounding the rest of the embryo. We have isolated a cDNA from imbibed tomato seeds (LeMAN2) that shares 77% deduced amino acid sequence similarity with a post-germinative tomato mannanase (LeMAN1). When expressed in Escherichia coli, the protein encoded by LeMAN2 cDNA was recognized by anti-mannanase antibody and exhibited endo-β-mannanase activity, confirming the identity of the gene. LeMAN2 was expressed exclusively in the endosperm cap tissue of tomato seeds prior to radicle emergence, whereas LeMAN1 was expressed only in the lateral endosperm after radicle emergence. LeMAN2 mRNA accumulation and mannanase activity were induced by gibberellin in gibberellin-deficient gib-1 mutant seeds but were not inhibited by abscisic acid in wild-type seeds. Distinct mannanases are involved in germination and post-germinative growth, with LeMAN2 being associated with endosperm cap weakening prior to radicle emergence, whereas LeMAN1 mobilizes galactomannan reserves in the lateral endosperm. PMID:10938343

  1. Delayed visual maturation.

    PubMed Central

    Cole, G F; Hungerford, J; Jones, R B

    1984-01-01

    Sixteen blind babies who were considered to be showing the characteristics of delayed visual maturation were studied prospectively. The diagnosis was made on clinical grounds, and the criteria for this are discussed. All of these infants developed visual responses between 4 and 6 months of age and had normal or near normal visual acuities by 1 year of age. Long term follow up, however, has shown neurological abnormalities in some of these children. PMID:6200080

  2. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions.

    PubMed

    Groot, S P C; Surki, A A; de Vos, R C H; Kodde, J

    2012-11-01

    Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. methods: Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice.

  3. Seed storage at elevated partial pressure of oxygen, a fast method for analysing seed ageing under dry conditions

    PubMed Central

    Groot, S. P. C.; Surki, A. A.; de Vos, R. C. H.; Kodde, J.

    2012-01-01

    Background and Aims Despite differences in physiology between dry and relative moist seeds, seed ageing tests most often use a temperature and seed moisture level that are higher than during dry storage used in commercial practice and gene banks. This study aimed to test whether seed ageing under dry conditions can be accelerated by storing under high-pressure oxygen. Methods Dry barley (Hordeum vulgare), cabbage (Brassica oleracea), lettuce (Lactuca sativa) and soybean (Glycine max) seeds were stored between 2 and 7 weeks in steel tanks under 18 MPa partial pressure of oxygen. Storage under high-pressure nitrogen gas or under ambient air pressure served as controls. The method was compared with storage at 45 °C after equilibration at 85 % relative humidity and long-term storage at the laboratory bench. Germination behaviour, seedling morphology and tocopherol levels were assessed. Key Results The ageing of the dry seeds was indeed accelerated by storing under high-pressure oxygen. The morphological ageing symptoms of the stored seeds resembled those observed after ageing under long-term dry storage conditions. Barley appeared more tolerant of this storage treatment compared with lettuce and soybean. Less-mature harvested cabbage seeds were more sensitive, as was the case for primed compared with non-primed lettuce seeds. Under high-pressure oxygen storage the tocopherol levels of dry seeds decreased, in a linear way with the decline in seed germination, but remained unchanged in seeds deteriorated during storage at 45 °C after equilibration at 85 % RH. Conclusions Seed storage under high-pressure oxygen offers a novel and relatively fast method to study the physiology and biochemistry of seed ageing at different seed moisture levels and temperatures, including those that are representative of the dry storage conditions as used in gene banks and commercial practice. PMID:22967856

  4. A seed coat-specific promoter for canola.

    PubMed

    El-Mezawy, Aliaa; Wu, Limin; Shah, Saleh

    2009-12-01

    The canola industry generates more than $11 billion of yearly income to the Canadian economy. One problem of meal quality is the dark polyphenolic pigments that accumulate in the seed coat. Seed coat-specific promoters are a pre-requisite to regulate the genes involved in seed coat development and metabolism. The beta-glucuronidase (GUS) reporter gene was used to test an Arabidopsis promoter in developing and mature seeds of canola (Brassica napus). The promoter tested is the regulatory region of the laccase gene (AtLAC15) from Arabidopsis thaliana. The AtLAC15 promoter::GUS construct was inserted into canola double haploid line DH12075 using Agrobacterium-mediated transformation. Southern blot analysis using a 536 bp GUS probe showed variation among the transformed plants in the T-DNA copy numbers and the position of the insertion in their genomes. Histochemical assay of the GUS enzyme in different tissues (roots, leaves, stem, pollen grains, flowers, siliques, embryos and seed coats) showed ascending GUS activity only in the seed coat from 10 days after pollination (DAP) to the fully mature stage (35 DAP). GUS stain was observed in the mucilage cell layer, in the outer integument layer of the seed coat but not in the inner integument. The AtLAC15 promoter exhibited a specificity and expression level that is useful as a seed coat-specific promoter for canola.

  5. Proteomic analysis of rice (Oryza sativa) seeds during germination.

    PubMed

    Yang, Pingfang; Li, Xiaojuan; Wang, Xiaoqin; Chen, Hui; Chen, Fan; Shen, Shihua

    2007-09-01

    Although seed germination is a major subject in plant physiological research, there is still a long way to go to elucidate the mechanism of seed germination. Recently, functional genomic strategies have been applied to study the germination of plant seeds. Here, we conducted a proteomic analysis of seed germination in rice (Oryza sativa indica cv. 9311) - a model monocot. Comparison of 2-DE maps showed that there were 148 proteins displayed differently in the germination process of rice seeds. Among the changed proteins, 63 were down-regulated, 69 were up-regulated (including 20 induced proteins). The down-regulated proteins were mainly storage proteins, such as globulin and glutelin, and proteins associated with seed maturation, such as "early embryogenesis protein" and "late embryogenesis abundant protein", and proteins related to desiccation, such as "abscisic acid-induced protein" and "cold-regulated protein". The degradation of storage proteins mainly happened at the late stage of germination phase II (48 h imbibition), while that of seed maturation and desiccation associated proteins occurred at the early stage of phase II (24 h imbibition). In addition to alpha-amylase, the up-regulated proteins were mainly those involved in glycolysis such as UDP-glucose dehydrogenase, fructokinase, phosphoglucomutase, and pyruvate decarboxylase. The results reflected the possible biochemical and physiological processes of germination of rice seeds.

  6. Notice of Release of WhiteAcre-DG, a Small-seeded, Cream-type Southernpea with an Enhanced Persistent Green Seed Phenotype

    USDA-ARS?s Scientific Manuscript database

    The USDA has developed a high yielding, small-seeded, cream-type southernpea cultivar that has a persistent green seed phenotype conditioned by both the green cotyledon gene (gc) and the green testa gene (gt). The new cultivar, named WhiteAcre-DG, can be harvested at the dry-pod stage of maturity w...

  7. Changes in lipid status and glass properties in cotyledons of developing sunflower seeds.

    PubMed

    Lehner, Arnaud; Corbineau, Françoise; Bailly, Christophe

    2006-07-01

    Biochemical events involved in the acquisition of germinability and storability during orthodox seed development are well documented; however, the roles played by the physical organization of lipids and water are poorly characterized. The aim of this work was to determine, using a thermodynamic approach, whether changes in thermal properties of lipid reserves, and intracellular glasses might play a role in sunflower (Helianthus annuus L.) seed development. Triacyglycerols (TAGs) accumulated in cotyledons until the end of seed filling, which occurred 42 days after anthesis (DAA). Further seed development, leading to mature seed at 58 DAA, was mainly associated with an enlargement of lipid bodies without significant changes either in the lipid content or in their composition. When cooled to -100 degrees C, lipid reserves from cotyledons of mature seeds displayed alpha and beta' polymorphic crystalline structures; however, the ability to form alpha crystals, which was an indicator of lipid purity, progressively appeared during seed development. Characteristics of lipid melting confirmed that seed maturation drying was associated with changes in TAG physical organization. Cotyledon development was associated with an increase in the temperature of glass to rubber transition (Tg), thus suggesting a decrease in molecular mobility during maturation drying. This phenomenon was concomitant with an increase in raffinose content. Our results demonstrate that physical characteristics of lipid reserves and glasses of sunflower cotyledons are developmentally regulated and might play a role in acquisition of seed germinability and storability.

  8. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana

    PubMed Central

    Postma, Froukje M.; Lundemo, Sverre; Ågren, Jon

    2016-01-01

    Background and Aims Intraspecific variation in seed bank dynamics should contribute to local adaptation, but is not well studied. The extent to which genetic and environmental factors affect dormancy cycling and seed mortality was investigated in the annual herb Arabidopsis thaliana by conducting a reciprocal seed burial experiment. Methods Seeds from two locally adapted populations (from Italy and Sweden) were buried at both of the sites of origin, and seed mortality and germinability were determined during the following 2 years for initially non-dormant glasshouse-matured seeds and dormant field-matured seeds. Key Results Mean soil temperature was higher at the Italian site compared with the Swedish site throughout the year, and the germination proportions were in general higher for seeds buried in Italy than in Sweden. The rate of secondary dormancy induction of the Italian genotype was faster than that of the Swedish genotype at both sites, while the opposite was true for the rate of dormancy release, at least at the Swedish site. The comparison of non-dormant glasshouse seeds with dormant field seeds demonstrated that A. thaliana seeds can adjust their dormancy levels to current environmental conditions, and suggests that maternal environmental conditions have only minor effects on dormancy cycles. At both sites, locally produced seeds had low germinability in the first year compared with the second year, suggesting that a considerable fraction of the seeds would enter the seed bank. In Italy, but not in Sweden, seed mortality increased rapidly during the second year of burial. Conclusions This is the first demonstration of intraspecific genetic differentiation in the annual seed dormancy cycle of any species, and the documented difference is likely to contribute to local adaptation. The results suggest that the contribution of a seed bank to seedling recruitment should vary among environments due to differences in the rate of seed mortality. PMID:26637384

  9. Seed dormancy cycling and mortality differ between two locally adapted populations of Arabidopsis thaliana.

    PubMed

    Postma, Froukje M; Lundemo, Sverre; Ågren, Jon

    2016-02-01

    Intraspecific variation in seed bank dynamics should contribute to local adaptation, but is not well studied. The extent to which genetic and environmental factors affect dormancy cycling and seed mortality was investigated in the annual herb Arabidopsis thaliana by conducting a reciprocal seed burial experiment. Seeds from two locally adapted populations (from Italy and Sweden) were buried at both of the sites of origin, and seed mortality and germinability were determined during the following 2 years for initially non-dormant glasshouse-matured seeds and dormant field-matured seeds. Mean soil temperature was higher at the Italian site compared with the Swedish site throughout the year, and the germination proportions were in general higher for seeds buried in Italy than in Sweden. The rate of secondary dormancy induction of the Italian genotype was faster than that of the Swedish genotype at both sites, while the opposite was true for the rate of dormancy release, at least at the Swedish site. The comparison of non-dormant glasshouse seeds with dormant field seeds demonstrated that A. thaliana seeds can adjust their dormancy levels to current environmental conditions, and suggests that maternal environmental conditions have only minor effects on dormancy cycles. At both sites, locally produced seeds had low germinability in the first year compared with the second year, suggesting that a considerable fraction of the seeds would enter the seed bank. In Italy, but not in Sweden, seed mortality increased rapidly during the second year of burial. This is the first demonstration of intraspecific genetic differentiation in the annual seed dormancy cycle of any species, and the documented difference is likely to contribute to local adaptation. The results suggest that the contribution of a seed bank to seedling recruitment should vary among environments due to differences in the rate of seed mortality. © The Author 2015. Published by Oxford University Press on behalf of

  10. Dynamic distribution and the role of abscisic acid during seed development of a lady’s slipper orchid, Cypripedium formosanum

    PubMed Central

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C.; Lee, Nean

    2015-01-01

    Background and Aims Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. Methods The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. Key Results ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. Conclusions The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. PMID

  11. Dynamic distribution and the role of abscisic acid during seed development of a lady's slipper orchid, Cypripedium formosanum.

    PubMed

    Lee, Yung-I; Chung, Mei-Chu; Yeung, Edward C; Lee, Nean

    2015-09-01

    Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity. © The Author 2015. Published by Oxford University Press on

  12. A dynamic interplay between phytohormones is required for fruit development, maturation, and ripening

    PubMed Central

    McAtee, Peter; Karim, Siti; Schaffer, Robert; David, Karine

    2013-01-01

    Plant species that bear fruit often utilize expansion of an ovary (carpel) or accessory tissue as a vehicle for seed dispersal. While the seed(s) develop, the tissue(s) of the fruit follow a common progression of cell division and cell expansion, promoting growth of the fruit. Once the seed is fully developed, the fruit matures and the surrounding tissue either dries or ripens promoting the dissemination of the seed. As with many developmental processes in plants, plant hormones play an important role in the synchronization of signals between the developing seed and its surrounding fruit tissue(s), regulating each phase of fruit development. Following pollination, fruit set is achieved through a de-repression of growth and an activation of cell division via the action of auxin and/or cytokinin and/or gibberellin. Following fruit set, growth of the fruit is facilitated through a relatively poorly studied period of cell expansion and endoreduplication that is likely regulated by similar hormones as in fruit set. Once the seeds reach maturity, fruit become ready to undergo ripening and during this period there is a major switch in relative hormone levels of the fruit, involving an overall decrease in auxin, gibberellin, and cytokinin and a simultaneous increase in abscisic acid and ethylene. While the role of hormones in fruit set and ripening is well documented, the knowledge of the roles of other hormones during growth, maturation, and some individual ripening components is sketchy. PMID:23616786

  13. Sequential steps for developmental arrest in Arabidopsis seeds.

    PubMed

    Raz, V; Bergervoet, J H; Koornneef, M

    2001-01-01

    The continuous growth of the plant embryo is interrupted during the seed maturation processes which results in a dormant seed. The embryo continues development after germination when it grows into a seedling. The embryo growth phase starts after morphogenesis and ends when the embryo fills the seed sac. Very little is known about the processes regulating this phase. We describe mutants that affect embryo growth in two sequential developmental stages. Firstly, embryo growth arrest is regulated by the FUS3/LEC type genes, as mutations in these genes cause a continuation of growth in immature embryos. Secondly, a later stage of embryo dormancy is regulated by ABI3 and abscisic acid; abi3 and aba1 mutants exhibit premature germination only after embryos mature. Mutations affecting both developmental stages result in an additive phenotype and double mutants are highly viviparous. Embryo growth arrest is regulated by cell division activities in both the embryo and the endosperm, which are gradually switched off at the mature embryo stage. In the fus3/lec mutants, however, cell division in both the embryo and endosperm is not arrested, but rather is prolonged throughout seed maturation. Furthermore ectopic cell division occurs in seedlings. Our results indicate that seed dormancy is secured via at least two sequential developmental processes: embryo growth arrest, which is regulated by cell division and embryo dormancy.

  14. Vocational Maturity and Self Concepts.

    ERIC Educational Resources Information Center

    Helbing, Hans

    The relationship between separate dimensions of vocational maturity and different self-concept and identity variables were examined. Subjects were Dutch students, age 14-18 years. The vocational maturity dimensions were measured by Dutch adaptations of American vocational maturity scales. Instruments for self-concept and identity measurement were…

  15. Capability Maturity Model for Software,

    DTIC Science & Technology

    1991-08-01

    This paper provides a technical overview of the Capability Maturity Model for Software and reflects the most current version. Specifically, this...paper, in combination with the Key Practices of the Capability Maturity Model , is intended to help software organizations use the CMM as a guide to improve the maturity of their software process.

  16. Tree Seed Technology Training Course

    Treesearch

    F.T. Bonner; James A. Vozzo; W.W. Elam; S.B. Land

    1994-01-01

    This manual is intended primarily to train seed collectors, seed-plant managers, seed analysts, and nursery managers, but it can serve as a resource for any training course in forest regeneration. It includes both temperate and tropical tree species of all intended uses. The manual covers the following topics: seed biology, seed collection, seed handling, seed-quality...

  17. How many seeds does it take to make a sapling?

    PubMed

    Terborgh, John; Zhu, Kai; Alvarez-Loayza, Patricia; Cornejo Valverde, Fernando

    2014-04-01

    Tall canopy trees produce many more seeds than do understory treelets, yet, on average, both classes of trees achieve the same lifetime fitness. Using concurrent data on seedfall (8 years) and sapling recruitment (12 years) from a long-established tree plot at the Cocha Cashu Biological Station in Peru, we show that a 40-m canopy tree must produce roughly 13 times the mass of seeds to generate a sapling as a 5-m understory treelet. Mature tree height accounted for 41% of the variance in seed mass per sapling recruit in a simple univariate regression, whereas a multivariate model that included both intrinsic (seed mass, tree height, and dispersal mode) and extrinsic factors (sapling mortality as a surrogate for microsite quality) explained only 31% of the variance in number of seeds per sapling recruit. The multivariate model accounted for less variance because tall trees produce heavier seeds, on average, than treelets. We used "intact" (mostly dispersed) seeds to parameterize the response variable so as to reduce, if not eliminate, any contribution of conspecific crowding to the difference in reproductive efficiency between canopy trees and treelets. Accordingly, a test for negative density dependence failed to expose a relationship between density of reproductive trees in the population and reproductive efficiency (seed mass per recruit). We conclude that understory treelets, some of which produce only a dozen seeds a year, gain their per-seed advantage by failing to attract enemies à la Janzen-Connell, either in ecological or evolutionary time.

  18. [Research advance in seed germination of desert woody plants].

    PubMed

    Chang, Wei; Wu, Jian-guo; Liu, Yan-hong

    2007-02-01

    This paper reviewed the research methods of desert woody plants seed germination, and the effects of internal and external ecological factors on it. Most researchers use incubator and artificial climate chamber to dispose the seeds, while field investigation was few involved. Seed dormancy is the important physiological factor affecting germination, while seed size, mass and color are closely correlated with its maturity and vigor. The poor permeability of seed capsule is a barrier that restrains the germination, which can be weakened or eliminated by shaving, cutting, treating with low temperature, and dipping in chemical reagent, etc. Seed water content has a close correlation with its storage life and water-absorbing capability. Suitable temperature is the prerequisite of seed germination, while changing temperature can accelerate the germination. Soil moisture content is a limiting factor, while illumination is not so essential to the seed germination of most desert woody plants. Sand-burying plays an important role in the seed germination through regulating illumination, temperature, and soil moisture content. Salinity stress restrains the seed germination of desert woody plants observably. In further studies, the effects of multi-factors and the eco-physiological and molecular biological mechanisms of germination should be more concerned.

  19. Callose Deposition Is Responsible for Apoplastic Semipermeability of the Endosperm Envelope of Muskmelon Seeds1

    PubMed Central

    Yim, Kyu-Ock; Bradford, Kent J.

    1998-01-01

    Semipermeable cell walls or apoplastic “membranes” have been hypothesized to be present in various plant tissues. Although often associated with suberized or lignified walls, the wall component that confers osmotic semipermeability is not known. In muskmelon (Cucumis melo L.) seeds, a thin, membranous endosperm completely encloses the embryo, creating a semipermeable apoplastic envelope. When dead muskmelon seeds are allowed to imbibe, solutes leaking from the embryo are retained within the envelope, resulting in osmotic water uptake and swelling called osmotic distention (OD). The endosperm envelope of muskmelon seeds stained with aniline blue, which is specific for callose (β-1,3-glucan). Outside of the aniline-blue-stained layer was a Sudan III- and IV-staining (lipid-containing) layer. In young developing seeds 25 d after anthesis (DAA) that did not exhibit OD, the lipid layer was already present but callose had not been deposited. At 35 DAA, callose was detected as distinct vesicles or globules in the endosperm envelope. A thick callose layer was evident at 40 DAA, coinciding with development of the capacity for OD. Removal of the outer lipid layer by brief chloroform treatment resulted in more rapid water uptake by both viable and nonviable (boiled) seeds, but did not affect semipermeability of the endosperm envelope. The aniline-blue-staining layer was digested by β-1,3-glucanase, and these envelopes lost OD. Thus, apoplastic semipermeability of the muskmelon endosperm envelope is dependent on the deposition of a thick callose-containing layer outside of the endosperm cell walls. PMID:9733528

  20. Phytochrome Regulates Gibberellin Biosynthesis during Germination of Photoblastic Lettuce Seeds1

    PubMed Central

    Toyomasu, Tomonobu; Kawaide, Hiroshi; Mitsuhashi, Wataru; Inoue, Yasunori; Kamiya, Yuji

    1998-01-01

    Germination of lettuce (Lactuca sativa L.) seed is regulated by phytochrome. The requirement for red light is circumvented by the application of gibberellin (GA). We have previously shown that the endogenous content of GA1, the main bioactive GA in lettuce seeds, increases after red-light treatment. To clarify which step of GA1 synthesis is regulated by phytochrome, cDNAs encoding GA 20-oxidases (Ls20ox1 and Ls20ox2, for L. sativa GA 20-oxidase) and 3β-hydroxylases (Ls3h1 and Ls3h2 for L. sativa GA 3β-hydroxylase) were isolated from lettuce seeds by reverse-transcription polymerase chain reaction. Functional analysis of recombinant proteins expressed in Escherichia coli confirmed that the Ls20ox and Ls3h encode GA 20-oxidases and 3β-hydroxylases, respectively. Northern-blot analysis showed that Ls3h1 expression was dramatically induced by red-light treatment within 2 h, and that this effect was canceled by a subsequent far-red-light treatment. Ls3h2 mRNA was not detected in seeds that had been allowed to imbibe under any light conditions. Expression of the two Ls20ox genes was induced by initial imbibition alone in the dark. The level of Ls20ox2 mRNA decreased after the red-light treatment, whereas that of Ls20ox1 was unaffected by light. These results suggest that red light promotes GA1 synthesis in lettuce seeds by inducing Ls3h1 expression via phytochrome action. PMID:9847128

  1. Hormonal profile and the role of cell expansion in the germination control of Cerrado biome palm seeds.

    PubMed

    Dias, Daiane Souza; Ribeiro, Leonardo Monteiro; Lopes, Paulo Sérgio Nascimento; Munné-Bosch, Sergi; Garcia, Queila Souza

    2017-09-01

    Little information is currently available concerning the mechanisms controlling palm seed germination. We compared the anatomical and physiological aspects of seeds of two neotropical palm species showing different levels of dormancy. The seeds of Attalea vitrivir and Butia capitata were evaluated for the endogenous contents of hormones (ABA, GAs, CKs, BRs, IAA, JA, SA and the ethylene precursor ACC) in their cotyledonary petiole and operculum (structures involved in germination control), the force necessary to displace the operculum, endo-β-mannanase activities, and embryo cell elongation. The analyses were carried out on with intact dry and imbibed seeds as well as with seeds with the operculum mechanically removed, 2, 5 and 10 days after sowing. The germinabilities of the intact seeds of A. vitrivir and B. capitata were 68% and 3%, respectively; the removal of the operculum increased germination to more than 90% in both species. Reductions of ABA and increases in GAs contents coincided with cell elongation, although there is no evidence that hormonal balance and endo-β-mannanase activity are involved in operculum weakening. The ratio between the embryo length and the force required for operculum displacement (EL/OF) was found to be 1.9 times greater in A. vitrivir than in B. capitata, which means that very small elongations in each cell would be sufficient to promote germination, resulting in a lower level of dormancy in the former species. EL/OF and cell growth control are therefore important for defining dormancy level in palm seeds. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Loop nucleotides control primary and mature miRNA function in target recognition and repression

    PubMed Central

    Yue, Si-Biao; Deis Trujillo, Robin; Tang, Yujie; O'Gorman, William E

    2011-01-01

    MicroRNA (miRNA) genes produce three major RNA products; primary (pri-), precursor (pre-), and mature miRNAs. Each product includes sequences complementary to cognate targets, thus they all can in principle interact with the targets. In a recent study we showed that pri-miRNAs play a direct role in target recognition and repression in the absence of functional mature miRNAs. Here we examined the functional contribution of pri-miRNAs in target regulation when full-length functional miRNAs are present. We found that pri-let-7 loop nucleotides control the production of the 5′ end of mature miRNAs and modulate the activity of the miRNA gene. This insight enabled us to modulate biogenesis of functional mature miRNAs and dissect the causal relationships between mature miRNA biogenesis and target repression. We demonstrate that both pri- and mature miRNAs can contribute to target repression and that their contributions can be distinguished by the differences between the pri- and mature miRNAs' sensitivity to bind to the first seed nucleotide. Our results demonstrate that the regulatory information encoded in the pri-/pre-miRNA loop nucleotides controls the activities of pri-miRNAs and mature let-7 by influencing pri-miRNA and target complex formation and the fidelity of mature miRNA seed generation. PMID:22142974

  3. Dissociation of motor maturation.

    PubMed

    DiMario, Francis J

    2003-06-01

    We prospectively acquired clinical data regarding the presentation, evaluation, and developmental progress of all patients identified with dissociated motor maturation to define their clinical outcomes. Children (N = 8) referred for evaluation of suspected cerebral palsy because of delayed sitting or walking and identified to have dissociated motor maturation were followed with serial clinical examination. All displayed the characteristic "sitting on air" posture while held in vertical suspension and had otherwise normal developmental assessments. This posture is composed of the hips held in flexion and abduction with the knees extended and feet plantar or dorsiflexed. Three children were initially evaluated at 10 months of age owing to absence of sitting and five other children were evaluated at a mean of 14 months (range 12-19 months) owing to inability to stand. Follow-up evaluations were conducted over a mean of 10.5 months (range 5-34 months). Five children were born prematurely at 34 to 36 weeks gestation. Denver Developmental Screening Test and general and neurologic examinations were normal except to note hypotonia in six children and the "sitting on air" posture in all of the children. Four children have older siblings or parents who "walked late" (after 15 months). On average, the children attained sitting by 8 months (range 7-10 months). One child did not crawl prior to independent walking, two children scooted rather than crawled, and five children crawled at an average of 13.5 months (range 10-16 months). All children cruised by a mean of 18 months (range 16-21.5 months) and attained independent walking by 20.1 months (range 18-25 months). Neuroimaging and serum creatine kinase enzyme testing were normal in two children who were tested. These eight children conform to the syndrome of dissociated motor maturation. The "sitting on air" posture serves as a diagnostic sign and anticipated excellent prognosis, but follow-up is required to ensure a normal

  4. Maturation in Larch 1

    PubMed Central

    Hutchison, Keith W.; Sherman, Christopher D.; Weber, Jill; Smith, Sandra Schiller; Singer, Patricia B.; Greenwood, Michael S.

    1990-01-01

    The effect of maturation on the morphological and photosynthetic characteristics, as well as the expression of two genes involved in photosynthesis in the developing, current year foliage of Eastern larch (Larix laricina [Du Roi]) is described. These effects were observed on foliage during the third growing season after grafting of scions from trees of different ages onto 2 year old rootstock. Specific leaf weight (gram dry weight per square meter), leaf cross-sectional area (per square millimeter), and chlorophyll content (milligram per gram dry weight) all increase with increasing age in long shoot foliage from both indoor- and outdoor-grown trees. Net photosynthesis (NPS) (mole of CO2 per square millimeter per second) increases with age on indoor- but not outdoor-grown trees. NPS also increases with increased chlorophyll content, but outdoor-grown scions of all ages had higher chlorophyll content, and chlorophyll does not appear to be limiting for NPS outdoors. To extend these studies of maturation-related differences in foliar morphology and physiology to the molecular genetic level, sequences were cloned from the cab and rbsS gene families of larch. Both cab and rbcS gene families are expressed in foliage but not in roots, and they are expressed in light-grown seedlings of larch but only at very low levels in dark-grown seedlings (~2% of light-grown seedlings). Steady-state cab mRNA levels are relatively higher (~40%) in newly expanding short shoot foliage from juvenile plants compared to mature plants. Unlike cab, the expression of the rbcS gene family did not seem to vary with age. These data show that the maturation-related changes in morphological and physiological phenotypes are associated with changes in gene expression. No causal relationship has been established, however. Indeed, we conclude that the faster growth of juvenile scions reported previously (MS Greenwood, CA Hopper, KW Hutchison [1989] Plant Physiol 90: 406-412) is not due to increased NPS

  5. Pigment composition and location in honey locust (Gleditsia triacanthos) seeds before and after desiccation.

    PubMed

    Schoefs, Benoit

    2002-03-01

    Gleditsia triacanthos L. pods were harvested at San Lorenzo del Escorial, Madrid, Spain, before and after seed desiccation. Maturing green pods, harvested from trees, contained soft light-green seeds, whereas fully mature brown pods, collected on the ground, contained hard dark-green seeds. Based on visual inspection of seeds, it was determined that the green color is located in the cotyledons and embryo of soft seeds but mainly in the seed coat of hard seeds. High performance liquid chromatographic analysis indicated that both hard and soft seeds contained the same set of photosynthetic pigments as fully developed leaves, but in different proportions. The hard and soft seeds mainly differed in their chlorophyll a to chlorophyll b ratio and in the composition of the xanthophyll cycle pool of pigments. Fluorescence at -196 degrees C revealed that the molecular organization of the pigment molecules in the seed coat of hard seeds differed from that in intact cotyledons of soft seeds and intact green leaves. The -196 degrees C fluorescence spectra also revealed the presence of a small heterogenous pool of non-photoactive protochlorophyll(ide)s, similar to those found in dark-grown tissues of gymnosperms and angiosperms.

  6. ``From seed-to-seed'' experiment with wheat plants under space-flight conditions

    NASA Astrophysics Data System (ADS)

    Mashinsky, A.; Ivanova, I.; Derendyaeva, T.; Nechitailo, G.; Salisbury, F.

    1994-11-01

    An important goal with plant experiments in microgravity is to achieve a complete life cycle, the ``seed-to-seed experiment''. Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.

  7. "From seed-to-seed" experiment with wheat plants under space-flight conditions.

    PubMed

    Mashinsky, A; Ivanova, I; Derendyaeva, T; Nechitailo, G; Salisbury, F

    1994-11-01

    An important goal with plant experiments in microgravity is to achieve a complete life cycle, the "seed-to-seed experiment." Some Soviet attempts to reach this goal are described, notably an experiment with the tiny mustard, Arabidopsis thaliana, in the Phyton 3 device on Salyut 7. Normal seeds were produced although yields were reduced and development was delayed. Several other experiments have shown abnormalities in plants grown in space. In recent work, plants of wheat (Triticum aestivum) were studied on the ground and then in a preliminary experiment in space. Biometric indices of vegetative space plants were 2 to 2.5 times lower than those of controls, levels of chlorophyll a and b were reduced (no change in the ratio of the two pigments), carotenoids were reduced, there was a serious imbalance in major minerals, and membrane lipids were reduced (no obvious change in lipid patterns). Following the preliminary studies, an attempt was made with the Svetoblock-M growth unit to grow a super-dwarf wheat cultivar through a life cycle. The experiment lasted 167 d on Mir. Growth halted from about day 40 to day 100, when new shoots appeared. Three heads had appeared in the boot (surrounded by leaves) when plants were returned to earth. One head was sterile, but 28 seeds matured on earth, and most of these have since produced normal plants and seeds. In principle, a seed-to-seed experiment with wheat should be successful in microgravity.

  8. Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds.

    PubMed

    Garnczarska, Małgorzata; Bednarski, Waldemar; Jancelewicz, Mariusz

    2009-01-01

    Seeds of yellow lupine (Lupinus luteus L. cv. Juno) were collected throughout their development on the mother plant to determine whether the ability to germinate and to tolerate desiccation is related to the level of free radicals and the changes in the redox state of ascorbate and glutathione as well as the activities of antioxidative enzymes. Electron paramagnetic resonance (EPR)-based analyses showed that development of lupine seed was accompanied by generation of free radicals with g(1) and g(2) values of 2.0049+/-0.0004 and 2.0029+/-0.0003, respectively. Free radical level increased significantly 25 DAF and decreased thereafter. The amount of hydrogen peroxide was high in fresh immature seeds and decreased during maturation drying. Ascorbate accumulated in lupine embryos during early seed filling stage whereas glutathione content increased during late seed filling phase. During maturation drying the redox state of both ascorbate and glutathione pools shifted towards the oxidized forms. While superoxide dismutase (SOD, EC 1.15.1.1), and ascorbate peroxidase (APX, EC 1.11.1.11) activities remained high at the early seed filling stage the activities of both dehydroascorbate reductase (DHAR, EC 1.8.5.1) and glutathione reductase (GR, EC 1.6.4.2) and that of catalase (CAT, EC 1.11.1.6) increased before seeds reached physiological maturity and decreased thereafter. The changes of isoform patterns of antioxidative enzymes were observed during seed maturation. Immature lupine seeds tested immediately after harvest acquired the ability to germinate when less than half-filled and reached high tolerance to desiccation just after physiological maturity. The physiological implications of the changes in antioxidative machinery for the acquisition of desiccation tolerance and seeds germinability are discussed.

  9. Identifying Conserved and Novel MicroRNAs in Developing Seeds of Brassica napus Using Deep Sequencing

    PubMed Central

    Körbes, Ana Paula; Machado, Ronei Dorneles; Guzman, Frank; Almerão, Mauricio Pereira; de Oliveira, Luiz Felipe Valter; Loss-Morais, Guilherme; Turchetto-Zolet, Andreia Carina; Cagliari, Alexandro; dos Santos Maraschin, Felipe; Margis-Pinheiro, Marcia; Margis, Rogerio

    2012-01-01

    MicroRNAs (miRNAs) are important post-transcriptional regulators of plant development and seed formation. In Brassica napus, an important edible oil crop, valuable lipids are synthesized and stored in specific seed tissues during embryogenesis. The miRNA transcriptome of B. napus is currently poorly characterized, especially at different seed developmental stages. This work aims to describe the miRNAome of developing seeds of B. napus by identifying plant-conserved and novel miRNAs and comparing miRNA abundance in mature versus developing seeds. Members of 59 miRNA families were detected through a computational analysis of a large number of reads obtained from deep sequencing two small RNA and two RNA-seq libraries of (i) pooled immature developing stages and (ii) mature B. napus seeds. Among these miRNA families, 17 families are currently known to exist in B. napus; additionally 29 families not reported in B. napus but conserved in other plant species were identified by alignment with known plant mature miRNAs. Assembled mRNA-seq contigs allowed for a search of putative new precursors and led to the identification of 13 novel miRNA families. Analysis of miRNA population between libraries reveals that several miRNAs and isomiRNAs have different abundance in developing stages compared to mature seeds. The predicted miRNA target genes encode a broad range of proteins related to seed development and energy storage. This work presents a comparative study of the miRNA transcriptome of mature and developing B. napus seeds and provides a basis for future research on individual miRNAs and their functions in embryogenesis, seed maturation and lipid accumulation in B. napus. PMID:23226347

  10. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum

    PubMed Central

    Hay, F. R.; Smith, R. D.; Ellis, R. H.; Butler, L. H.

    2010-01-01

    Background and Aims Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Methods Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Key Results Whilst population mass maturity was reached at 33–36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p50) at 60 % relative humidity and 45 °C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Conclusions Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors. PMID:20228084

  11. Developmental changes in the germinability, desiccation tolerance, hardseededness, and longevity of individual seeds of Trifolium ambiguum.

    PubMed

    Hay, F R; Smith, R D; Ellis, R H; Butler, L H

    2010-06-01

    Using two parental clones of outcrossing Trifolium ambiguum as a potential model system, we examined how during seed development the maternal parent, number of seeds per pod, seed position within the pod, and pod position within the inflorescence influenced individual seed fresh weight, dry weight, water content, germinability, desiccation tolerance, hardseededness, and subsequent longevity of individual seeds. Near simultaneous, manual reciprocal crosses were carried out between clonal lines for two experiments. Infructescences were harvested at intervals during seed development. Each individual seed was weighed and then used to determine dry weight or one of the physiological behaviour traits. Whilst population mass maturity was reached at 33-36 days after pollination (DAP), seed-to-seed variation in maximum seed dry weight, when it was achieved, and when maturation drying commenced, was considerable. Individual seeds acquired germinability between 14 and 44 DAP, desiccation tolerance between 30 and 40 DAP, and the capability to become hardseeded between 30 and 47 DAP. The time for viability to fall to 50 % (p(50)) at 60 % relative humidity and 45 degrees C increased between 36 and 56 DAP, when the seed coats of most individuals had become dark orange, but declined thereafter. Individual seed f. wt at harvest did not correlate with air-dry storage survival period. Analysing survival data for cohorts of seeds reduced the standard deviation of the normal distribution of seed deaths in time, but no sub-population showed complete uniformity of survival period. Variation in individual seed behaviours within a developing population is inherent and inevitable. In this outbreeder, there is significant variation in seed longevity which appears dependent on embryo genotype with little effect of maternal genotype or architectural factors.

  12. The development of transgenic crops to improve human health by advanced utilization of seed storage proteins.

    PubMed

    Maruyama, Nobuyuki; Mikami, Bunzo; Utsumi, Shigeru

    2011-01-01

    Seed storage proteins are a major component of mature seeds. They are utilized as protein sources in foods. We designed seed storage proteins containing bioactive peptides based on their three-dimensional structures. Furthermore, to create crops with enhanced food qualities, we developed transgenic crops producing seed storage proteins with bioactive peptides. This strategy promises to prevent lifestyle-related diseases by simple daily food consumption. In this review, we discuss a strategy to develop transgenic crops to improve human health by advanced utilization of seed storage proteins.

  13. Lignans in seeds of Linum species.

    PubMed

    Schmidt, Thomas J; Klaes, Michael; Sendker, Jandirk

    2012-10-01

    Mature seeds of 20 Linum species were analyzed for their content of lignans. The seeds of common flax (Linum usitatissimum L.) are known to contain as characteristic lignan sesoisolariciresinol diglucoside (SDG), whose presence in seeds of some other Linum species has also been reported. In order to investigate the material for the presence of such very polar lignans as well as for less polar non-glycosidic lignans as frequently found in aerial parts of Linum species, polar and non-polar extracts of each sample were analyzed by HPLC/ESI-MSMS. SDG was detected in 15 of 16 investigated seed samples of taxa representing sections Linum and Dasylinum. None of eight samples of taxa from sections Syllinum and Linopsis contained detectable amounts of SDG. Quite interestingly, most of the SDG-positive samples contained the 8R,8'R-isomer exclusively while only three (including L. usitatissimum) contained the 8S,8'S-stereoisomer as the predominant form. As a most noteworthy finding, the dichloromethane extracts obtained from seeds of several Linum species were found to contain significant concentrations of non-polar cyclolignans of the arylnaphthalene/-dihydronaphthalene lactone type or, alternatively of the aryltetralin lactone type. Thus, seeds of Linum perenne L. as well as those of several other representatives of sections Linum and Dasylinum were found to contain significant concentrations of the arylnaphthalene justicidin B along with further compounds of this type and some aryldihydronaphthalene-type lignans. On the other hand, seeds of Linum flavum and further representatives of section Syllinum were found to contain aryltetralin-type lignans, mainly in the form of esters with aliphatic carboxylic acids, such as 6-methoxypodophyllotoxin-7-O-n-hexanoate, whose occurrence in L. flavum seeds has very recently been reported by us for the first time. Various chemosystematic and biogenetic aspects are discussed in the light of these results. Copyright © 2012 Elsevier Ltd

  14. Mitochondrial biogenesis in plants during seed germination.

    PubMed

    Law, Simon R; Narsai, Reena; Whelan, James

    2014-11-01

    Mitochondria occupy a central role in the eukaryotic cell. In addition to being major sources of cellular energy, mitochondria are also involved in a diverse range of functions including signalling, the synthesis of many essential organic compounds and a role in programmed cell death. The active proliferation and differentiation of mitochondria is termed mitochondrial biogenesis and necessitates the coordinated communication of mitochondrial status within an integrated cellular network. Two models of mitochondrial biogenesis have been defined previously, the growth and division model and the maturation model. The former describes the growth and division of pre-existing mature organelles through a form of binary fission, while the latter describes the propagation of mitochondria from structurally and biochemically simple promitochondrial structures that upon appropriate stimuli, mature into fully functional mitochondria. In the last decade, a number of studies have utilised seed germination in plants as a platform for the examination of the processes occurring during mitochondrial biogenesis. These studies have revealed many new aspects of the tightly regulated procession of events that define mitochondrial biogenesis during this period of rapid development. A model for mitochondrial biogenesis that supports the maturation of mitochondria from promitochondrial structures has emerged, where mitochondrial signalling plays a crucial role in the early steps of seed germination.

  15. Occurrence and biosynthesis of glyoxysomal enzymes in ripening cucumber seeds.

    PubMed

    Frevert, J; Köller, W; Kindl, H

    1980-10-01

    Glyoxysomal enzymes, being necessary during seed germination, are already synthesized at the stage of seed maturation. Two stages of embryogenesis of cucumber seeds (Cucumis sativus) were investigated. One was characterized by the presence of microbodies showing catalase and enoyl-CoA hydratase activities. Microbodies at a later stage contained, in addition, malate synthase and isocitrate lyase. The biosynthesis of three microbody components was followed in a pulse chase-labelling experiment which demonstrated that the biosynthesis of cytosolic species of malate synthase, isocitrate lyase and enoyl-CoA hydratase preceded the appearance of these proteins in microbodies.

  16. Propagation protocol for production of Lomatium grayi (J. M. Coult. and Rose) seeds

    Treesearch

    Derek Tilley; Loren St. John; Dan Ogle; Nancy Shaw

    2012-01-01

    Gray's biscuitroot occurs in Northwest North America, primarily from the Cascade and Sierra Nevada to the Rocky Mountains in Washington, Idaho, Oregon, Wyoming, Nevada, Utah, Colorado and New Mexico. There are two populations in British Columbia, Canada where it is considered a threatened species. Seed matures in July into August. Wildland seed disarticulates...

  17. Propagation protocol for production of Lomatium dissectum (Nutt.) Mathias and Constance seeds

    Treesearch

    Derek Tilley; Loren St. John; Dan Ogle; Nancy Shaw; Jim Cane

    2012-01-01

    Fernleaf biscuitroot naturally occurs from British Columbia and Saskatchewan south to California and New Mexico and extends eastward to Wyoming and Colorado. Seed matures in July into August. Wildland seed disarticulates readily and is easily hand collected. Very clean collections can be made by shaking ripened inflorescences over a bag or tarp.

  18. Research and management in a young northern red oak seedling seed orchard

    Treesearch

    S.E. Schlarbaum; J.L. McConnell; L.R. Barber; R.A. Cox; J.F. Grant; Paul P. Kormanik; T. La Farge; P.L. Lambdin; S.W. Oak; C.K. Proffitt; J.R. Rhea; T. Tibbs

    1994-01-01

    A northern red oak progeny test was thinned at age 15 to produce a seedling seed orchard. Studies were initiated to determine relationships between acorn production and seed source. Acorn production was observed in 1984-1986 and 1989-1992.Family differences were observed in reproductive maturity. Large differences in size of acorns from the same tree were observed...

  19. Do Cones In Tops Of Harvested Shortleaf Pines Contribute To The Stand's Seed Supply?

    Treesearch

    Michael G. Shelton; Michael D. Cain

    2002-01-01

    Because success of natural regeneration strongly depends on a stand's seed supply, we conducted a study to determine the potential contribution of cones in the tops of harvested shortleaf pines (Pinus echinata Mill.) if trees were felled after seed maturation but before dispersal was complete. Closed cones, collected in October 1998, were stored...

  20. Evaluation of Commercial Soybean Cultivars for Reaction to Phomopsis Seed Decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD), caused by Phomopsis longicolla (syn. Diaporthe longicolla), is an economically important soybean disease causing poor seed quality. Planting resistant cultivars is one of the most effective means to control PSD. In this study, 16 commercially available maturity groups IV ...

  1. Discovery and purification of a fungal protease secreted by Bipolaris zeicola that modifies maize seed endochitinase

    USDA-ARS?s Scientific Manuscript database

    Healthy maize seeds have two basic endochitinases, chitA and chitB, with antifungal properties. A comparison of the isoenzyme profiles of symptomatic fungal-infested maize seeds, removed at harvest from ears that we wound inoculated in the late milk stage of maturity with one of several common ear-...

  2. Fresh and Stored Pollen From Slash and Loblolly Pines Compared For Seed Yields

    Treesearch

    John F. Kraus; Davie L. Hunt

    1970-01-01

    Seed yields showed no consistent differences between fresh and stored pollen from 8 years of controlled pollination on slash pine and 4 years on loblolly pine. Collection of male strobili at the proper stage of pollen maturity was an important factor in obtaining good seed yields from stored pollen. Criteria are described which were useful in determining when to...

  3. Isoflavones in soybean seeds: Genetic variation and environmental effects in field-grown crops

    USDA-ARS?s Scientific Manuscript database

    Both controlled environment and field studies indicate that isoflavones, a dietary source of a class of bioactive phytochemicals present primarily in soybean seeds, increase greatly when seeds mature under cooler conditions or when plants are well-watered. Environmental effects can be superimposed ...

  4. Evaluation of diverse soybean germplasm for resistance to Phomopsis Seed Decay

    USDA-ARS?s Scientific Manuscript database

    Phomopsis seed decay (PSD) is a major cause of poor quality soybean seeds. The disease is caused primarily by the fungal pathogen, Phomopsis longicolla. To identify soybean lines with resistance to PSD, a total of 135 selected soybean germplasm accessions originally from 28 countries and in maturity...

  5. The functions of the endosperm during seed germination.

    PubMed

    Yan, Dawei; Duermeyer, Lisza; Leoveanu, Catalina; Nambara, Eiji

    2014-09-01

    In angiosperms, a double fertilization event initiates the development of two distinct structures, the embryo and endosperm. The endosperm plays an important role in supporting embryonic growth by supplying nutrients, protecting the embryo and controlling embryo growth by acting as a mechanical barrier during seed development and germination. Its structure and function in the mature dry seed is divergent and specialized among different plant species. A subset of endospermic tissues are composed of living cells even after seed maturation, and play an active role in the regulation of seed germination. Transcriptome analysis has provided new insights into the regulatory functions of the endosperm during seed germination. It is well known that the embryo secretes signals to the endosperm to induce the degradation of the seed reserve and to promote endosperm weakening during germination. Recent advances in seed biology have shown that the endosperm is capable of sensing environmental signals, and can produce and secrete signals to regulate the growth of the embryo. Thus, germination is a systemic response that involves bidirectional interactions between the embryo and endosperm.

  6. [Growth and development of fruit and seed of Panax quinquefolium].

    PubMed

    Dai, Xiaolei; Li, Xian'en; Guo, Qiaosheng

    2012-08-01

    To understand the embryo after-ripening phenomenon of Panax quinquefolium, the growth and development process of fruit and seed was investigated in this study. The growth and development characteristics of fruit and seed were obtained by field observation, the morphological changes were measured with a vernier caliper, paraffin section was used as well. The plant reached the most flowering numbers in 5-8 d after initial blooming time and the lag phase of embryo occurred in about 70 d. The size, fresh and dry weight of fruit and seed were all reached maximum in fruit maturation period. As the result showed, the development of seed was stopped at torpedo form of embryos, this conclusion can be applied to explore the morphological after-ripening mechanism of P. quinquefolium seed.

  7. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds (crop...

  8. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds (crop...

  9. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds (crop...

  10. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 3 2014-01-01 2014-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds (crop...

  11. 7 CFR 201.18 - Other agricultural seeds (crop seeds).

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 3 2012-01-01 2012-01-01 false Other agricultural seeds (crop seeds). 201.18 Section... SERVICE (Standards, Inspections, Marketing Practices), DEPARTMENT OF AGRICULTURE (CONTINUED) FEDERAL SEED ACT FEDERAL SEED ACT REGULATIONS Labeling Agricultural Seeds § 201.18 Other agricultural seeds (crop...

  12. Seed Treatment. Sale Publication 4076.

    ERIC Educational Resources Information Center

    Wamsley, Mary Ann, Ed.; Vermeire, Donna M., Ed.

    This guide gives information about types of seeds that may require chemical protection against pests, seed treatment pesticide formulations, seed treatment methods, labeling treated seed, and safety and environmental precautions. (Author/BB)

  13. Function of antioxidant enzymes and metabolites during maturation of pea fruits

    PubMed Central

    Matamoros, Manuel A.; Loscos, Jorge; Dietz, Karl-Josef; Aparicio-Tejo, Pedro M.; Becana, Manuel

    2010-01-01

    In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 °C led to a decline in antioxidant activities and metabolites and in γ-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate–glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development. PMID:19822534

  14. Function of antioxidant enzymes and metabolites during maturation of pea fruits.

    PubMed

    Matamoros, Manuel A; Loscos, Jorge; Dietz, Karl-Josef; Aparicio-Tejo, Pedro M; Becana, Manuel

    2010-01-01

    In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 degrees C led to a decline in antioxidant activities and metabolites and in gamma-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate-glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development.

  15. Correlation between dental maturity and cervical vertebral maturity.

    PubMed

    Chen, Jianwei; Hu, Haikun; Guo, Jing; Liu, Zeping; Liu, Renkai; Li, Fan; Zou, Shujuan

    2010-12-01

    The aim of this study was to investigate the association between dental and skeletal maturity. Digital panoramic radiographs and lateral skull cephalograms of 302 patients (134 boys and 168 girls, ranging from 8 to 16 years of age) were examined. Dental maturity was assessed by calcification stages of the mandibular canines, first and second premolars, and second molars, whereas skeletal maturity was estimated by the cervical vertebral maturation (CVM) stages. The Spearman rank-order correlation coefficient was used to measure the association between CVM stage and dental calcification stage of individual teeth. The mean chronologic age of girls was significantly lower than that of boys in each CVM stage. The Spearman rank-order correlation coefficients between dental maturity and cervical vertebral maturity ranged from 0.391 to 0.582 for girls and from 0.464 to 0.496 for boys (P < 0.05). In girls, the mandibular second molar had the highest and the canine the lowest correlation. In boys, the canine had the highest and the first premolar the lowest correlation. Tooth calcification stage was significantly correlated with cervical vertebral maturation stage. The development of the mandibular second molar in females and that of the mandibular canine in males had the strongest correlations with cervical vertebral maturity. Therefore, it is practical to consider the relationship between dental and skeletal maturity when planning orthodontic treatment. Copyright © 2010 Mosby, Inc. All rights reserved.

  16. What Are Chia Seeds?

    MedlinePlus

    ... The seeds of a related plant, Salvia columbariae (golden chia), were used primarily by Native Americans in ... Sprinkle ground or whole chia seeds on cereal, rice, yogurt or vegetables. In Mexico, a dish called ...

  17. Effects of Cultivar and Maternal Environment on Seed Quality in Vicia sativa.

    PubMed

    Li, Rong; Chen, Lijun; Wu, Yanpei; Zhang, Rui; Baskin, Carol C; Baskin, Jerry M; Hu, Xiaowen

    2017-01-01

    Production of high quality seeds is of fundamental importance for successful crop production. However, knowledge of the effects of increased temperature resulting from global warming on seed quality of alpine species is limited. We investigated the effect of maternal environment on seed quality of three cultivars of the leguminous forage species Vicia sativa, giving particular attention to temperature. Plants of each cultivar were grown at 1700 and 3000 m a.s.l., and mass, germination, electrical conductivity (EC) of leakage and longevity were determined for mature seeds. Seeds of all three cultivars produced at the low elevation had a significantly lower mass and longevity but higher EC of leachate than those produced at the high elevation, suggesting that increased temperatures decreased seed quality. However, seed viability did not differ between elevations. The effects of maternal environment on seed germination strongly depended on cultivar and germination temperature. At 10 and 15°C, seeds of "Lanjian 3" produced at high elevation germinated to higher percentages and rates than those produced at low elevation, but the opposite trend was observed at 20°C. However, for seeds of "Lanjian 1" and "Lanjian 2," no significant effect of elevation was observed in germination percentage. Our results indicate that the best environment for the production of high quality seeds (e.g., high seed mass, low EC, high seed longevity) of V. sativa is one in which temperatures are relatively low during seed development.

  18. CFD - Mature Technology?

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Over the past 30 years, numerical methods and simulation tools for fluid dynamic problems have advanced as a new discipline, namely, computational fluid dynamics (CFD). Although a wide spectrum of flow regimes are encountered in many areas of science and engineering, simulation of compressible flow has been the major driver for developing computational algorithms and tools. This is probably due to a large demand for predicting the aerodynamic performance characteristics of flight vehicles, such as commercial, military, and space vehicles. As flow analysis is required to be more accurate and computationally efficient for both commercial and mission-oriented applications (such as those encountered in meteorology, aerospace vehicle development, general fluid engineering and biofluid analysis) CFD tools for engineering become increasingly important for predicting safety, performance and cost. This paper presents the author's perspective on the maturity of CFD, especially from an aerospace engineering point of view.

  19. Evidence of eelgrass (Zostera marina) seed dispersal by northern diamondback terrapin (Malaclemys terrapin terrapin) in lower Chesapeake Bay.

    PubMed

    Tulipani, Diane C; Lipcius, Romuald N

    2014-01-01

    The initial discovery in May 2009 of eelgrass (Zostera marina) seeds in fecal samples of wild-caught northern diamondback terrapins (Malaclemys terrapin terrapin) was the first field evidence of eelgrass seed ingestion in this species. This finding suggested the potential of terrapins as seed dispersers in eelgrass beds, which we sampled for two additional years (2010 and 2011). Seeds were only found in feces of terrapins captured prior to June 8 in all three years, coinciding with eelgrass seed maturation and release. Numbers of seeds in terrapin feces varied annually and decreased greatly in 2011 after an eelgrass die off in late 2010. The condition of seeds in terrapin feces was viable-mature, germinated, damaged, or immature. Of terrapins captured during time of seed release, 97% were males and juvenile females, both of which had head widths <30 mm. The fraction of individuals with ingested seeds was 33% for males, 35% for small females, and only 6% for large (mature) females. Probability of seed ingestion decreased exponentially with increasing terrapin head width; only males and small females (head width <30 mm) were likely to be vectors of seed dispersal. The characteristic that diamondback terrapins have well-defined home ranges allowed us to estimate the number of terrapins potentially dispersing eelgrass seeds annually. In seagrass beds of the Goodwin Islands region (lower York River, Virginia), there were 559 to 799 terrapins, which could disperse between 1,341 and 1,677 eelgrass seeds annually. These would represent a small proportion of total seed production within a single seagrass bed. However, based on probable home range distances, terrapins can easily traverse eelgrass meadow boundaries, thereby dispersing seeds beyond the bed of origin. Given the relatively short dispersion distance of eelgrass seeds, the diamondback terrapin may be a major source of inter-bed seed dispersal and genetic diversity.

  20. Evidence of Eelgrass (Zostera marina) Seed Dispersal by Northern Diamondback Terrapin (Malaclemys terrapin terrapin) in Lower Chesapeake Bay

    PubMed Central

    Tulipani, Diane C.; Lipcius, Romuald N.

    2014-01-01

    The initial discovery in May 2009 of eelgrass (Zostera marina) seeds in fecal samples of wild-caught northern diamondback terrapins (Malaclemys terrapin terrapin) was the first field evidence of eelgrass seed ingestion in this species. This finding suggested the potential of terrapins as seed dispersers in eelgrass beds, which we sampled for two additional years (2010 and 2011). Seeds were only found in feces of terrapins captured prior to June 8 in all three years, coinciding with eelgrass seed maturation and release. Numbers of seeds in terrapin feces varied annually and decreased greatly in 2011 after an eelgrass die off in late 2010. The condition of seeds in terrapin feces was viable-mature, germinated, damaged, or immature. Of terrapins captured during time of seed release, 97% were males and juvenile females, both of which had head widths <30 mm. The fraction of individuals with ingested seeds was 33% for males, 35% for small females, and only 6% for large (mature) females. Probability of seed ingestion decreased exponentially with increasing terrapin head width; only males and small females (head width <30 mm) were likely to be vectors of seed dispersal. The characteristic that diamondback terrapins have well-defined home ranges allowed us to estimate the number of terrapins potentially dispersing eelgrass seeds annually. In seagrass beds of the Goodwin Islands region (lower York River, Virginia), there were 559 to 799 terrapins, which could disperse between 1,341 and 1,677 eelgrass seeds annually. These would represent a small proportion of total seed production within a single seagrass bed. However, based on probable home range distances, terrapins can easily traverse eelgrass meadow boundaries, thereby dispersing seeds beyond the bed of origin. Given the relatively short dispersion distance of eelgrass seeds, the diamondback terrapin may be a major source of inter-bed seed dispersal and genetic diversity. PMID:25072473

  1. Parthenocarpy and Seed Predation by Insects in Bursera morelensis

    PubMed Central

    Ramos-Ordoñez, María F.; Márquez-Guzmán, Judith; Del Coro Arizmendi, Ma.

    2008-01-01

    Background and Aims While parthenocarpy (meaning the production of fruits without seeds) may limit fecundity in many plants, its function is not clear; it has been proposed, however, that it might be associated with a strategy to avoid seed predation. Bursera morelensis is a dioecious endemic plant that produces fruits with and without seeds, and its fruits are parasitized by insects. Its reproductive system is not well described and no published evidence of parthenocarpy exists for the species. The purpose of this work was to describe the breeding system of B. morelensis and its relationship to seed predation by insects. Methods The breeding system was described using pollination experiments, verifying the presence of parthenocarpic fruits and apomictic seeds. Reproductive structures from flower buds to mature fruits were quantified. For fruits, an anatomical and histological characterization was made. The number of fruits in which seeds had been predated by insects was correlated with parthenocarpic fruit production. Key Results The major abortion of reproductive structures occurred during fruit set. The results discard the formation of apomictic seeds. Flowers that were not pollinated formed parthenocarpic fruits and these could be distinguished during early developmental stages. In parthenocarpic fruits in the first stages of development, an unusual spread of internal walls of the ovary occurred invading the locule and preventing ovule development. Unlike fruits with seeds, parthenocarpic fruits do not have calcium oxalate crystals in the ovary wall. Both fruit types can be separated in the field at fruit maturity by the presence of dehiscence, complete in seeded and partial in parthenocarpic fruits. Trees with more parthenocarpic fruits had more parasitized fruits. Conclusions This is the first time the anatomy of parthenocarpic fruits in Burseraceae has been described. Parthenocarpic fruits in B. morelensis might function as a deceit strategy for insect seed

  2. Inheritance of natural seed-coat cracking in chickpea.

    PubMed

    Gaur, Pooran M; Srinivasan, Samineni; Suresh, Kamatam; Deepika, Sarikonda R; Rao, Boyapati V

    2012-01-01

    A spontaneous mutant with natural seed-coat cracking, designated "cracked seed-coat mutant (CSM)," was identified in chickpea (Cicer arietinum L.) from an F(2) population of a cross ICRISAT chickpea (ICC) 10301 × ICC 12430. The extent of seed-coat cracking (SCC) varied widely from a minute to several wide cracks. Seed coats showed cracks before seeds were fully developed and the plants had reached physiological maturity. However, seed-coat cracks were most visible on dry matured seeds, particularly in desi types. Two loci (Scc-1 and Scc-2) that controlled SCC were identified. F(1) plants from the crosses of CSM with desi genotypes produced seeds with no SCC, whereas F(1) plants from the crosses of CSM with kabuli genotypes produced seeds with SCC. F(2) segregation followed 13:3 and 7:9 ratios for plants without SCC and with SCC in CSM × Desi and CSM × Kabuli crosses, respectively. Three alleles were identified at the first locus (Scc-1) from CSM (Scc-1 (c)), desi (Scc-1 (d)), and kabuli (Scc-1 (k)) types, with the dominance relationship being Scc-1 (d) > Scc-1 (c) > Scc-1 ( k ). At the second locus (Scc-2), CSM had the dominant allele (Scc-2), whereas both desi and kabuli types had the recessive allele (scc-2). The SCC trait showed no linkage with leaf type (pinnate vs. simple) and flower color (pink vs. white) and had no adverse effects on grain yield. The SCC trait may facilitate dehulling and preparation of splits (dal), but the cracked seed would be prone to damage by insect pests and unfavorable moisture conditions.

  3. In vitro maturation of oocytes.

    PubMed

    Smith, G D

    2001-10-01

    In vitro maturation (IVM) of human oocytes is an emerging assisted reproductive technology with great promise. To be successful, this process must entail both nuclear and cytoplasmic maturation. Endogenous regulation of oocyte maturation is a complex sequence of events regulated by endocrine parameters, oocyte/follicular cross-talk, and intra-oocyte kinase/phosphatase interactions. Although nuclear maturation during human oocyte IVM progresses normally, cytoplasmic maturation is significantly lacking, as exemplified by poor embryonic developmental competence and pregnancy rates. Advances made in immature oocyte isolation and oocyte and embryo culture conditions have increased the clinical feasibility of IVM. However, in order to achieve acceptable birth rates, future studies should focus on characterization and regulation of oocyte cytoplasmic maturation, and how oocyte-derived factors influence zygotic genome activation and embryonic developmental competence.

  4. Mechanisms of Hierarchical Cortical Maturation

    PubMed Central

    Chomiak, Taylor; Hu, Bin

    2017-01-01

    Cortical information processing is structurally and functionally organized into hierarchical pathways, with primary sensory cortical regions providing modality specific information and associative cortical regions playing a more integrative role. Historically, there has been debate as to whether primary cortical regions mature earlier than associative cortical regions, or whether both primary and associative cortical regions mature simultaneously. Identifying whether primary and associative cortical regions mature hierarchically or simultaneously will not only deepen our understanding of the mechanisms that regulate brain maturation, but it will also provide fundamental insight into aspects of adolescent behavior, learning, neurodevelopmental disorders and computational models of neural processing. This mini-review article summarizes the current evidence supporting the sequential and hierarchical nature of cortical maturation, and then proposes a new cellular model underlying this process. Finally, unresolved issues associated with hierarchical cortical maturation are also addressed. PMID:28959187

  5. Needs of Seeds

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    The "Needs of Seeds" formative assessment probe can be used to find out whether students recognize that seeds have needs both similar to and different from plants and other living organisms (Keeley, Eberle, and Tugel 2007). The probe reveals whether students overgeneralize the needs of seeds by assuming they have the same needs as the adult plants…

  6. Pasture seed banks

    USDA-ARS?s Scientific Manuscript database

    In our surveys of northeastern pastures, we found the equivalent of more than 8 million seeds per acre in the surface soil (the top four inches) from the seed bank study. These seeds came from 58 species of plants. The annual forbs (all broadleaf plants with the exception of legumes and trees) domin...

  7. Preservation of recalcitrant seeds

    USDA-ARS?s Scientific Manuscript database

    Recalcitrant and intermediate seeds are not included in seed banks because of misperceptions that these efforts would be futile. Between 20 and 25% of the Earth’s angiosperm species are estimated to produce recalcitrant or intermediate seeds. These species are more prevalent in the tropics and sub...

  8. Going to Seed.

    ERIC Educational Resources Information Center

    Powell, Richard R.

    1984-01-01

    Describes a unit on seeds designed to introduce students to their scientific and nutritional uses. Unit activities are easily done, employ a variety of process skills, and can be used at various grade levels. Suggests field trips to gather seeds, seed sprouting, and making cookies out of various whole grains. (JM)

  9. Seed Proteomics"

    USDA-ARS?s Scientific Manuscript database

    Proteomic analysis of seeds encounters some specific problems that do not impinge on analyses of other plant cells, tissues, or organs. There are anatomic considerations. Seeds comprise the seed coat, the storage organ(s), and the embryonic axis. Are these to be studied individually or as a compo...

  10. Needs of Seeds

    ERIC Educational Resources Information Center

    Keeley, Page

    2011-01-01

    The "Needs of Seeds" formative assessment probe can be used to find out whether students recognize that seeds have needs both similar to and different from plants and other living organisms (Keeley, Eberle, and Tugel 2007). The probe reveals whether students overgeneralize the needs of seeds by assuming they have the same needs as the adult plants…

  11. Genome-Wide Dissection of the MicroRNA Expression Profile in Rice Embryo during Early Stages of Seed Germination

    PubMed Central

    He, Dongli; Wang, Qiong; Wang, Kun; Yang, Pingfang

    2015-01-01

    The first 24 hours after imbibition (HAI) is pivotal for rice seed germination, during which embryo cells switch from a quiescent state to a metabolically active state rapidly. MicroRNAs (miRNAs) have increasingly been shown to play important roles in rice development. Nevertheless, limited knowledge about miRNA regulation has been obtained in the early stages of rice seed germination. In this study, the small RNAs (sRNAs) from embryos of 0, 12, and 24 HAI rice seeds were sequenced to investigate the composition and expression patterns of miRNAs. The bioinformatics analysis identified 289 miRNA loci, including 59 known and 230 novel miRNAs, and 35 selected miRNAs were confirmed by stem-loop real-time RT-PCR. Expression analysis revealed that the dry and imbibed seeds have unique miRNA expression patterns compared with other tissues, particularly for the dry seeds. Using three methods, Mireap, psRNATarget and degradome analyses, 1197 potential target genes of identified miRNAs involved in various molecular functions were predicted. Among these target genes, 39 had significantly negative correlations with their corresponding miRNAs as inferred from published transcriptome data, and 6 inversely expressed miRNA-target pairs were confirmed by 5ʹ-RACE assay. Our work provides an inventory of miRNA expression profiles and miRNA-target interactions in rice embryos, and lays a foundation for further studies of miRNA-mediated regulation in initial seed germination. PMID:26681181

  12. Far-red Sensitive Dark Processes Essential for Light- and Gibberellin-induced Germination of Lettuce Seed

    PubMed Central

    Negbi, M.; Black, M.; Bewley, J. D.

    1968-01-01

    The action of prolonged far-red on seed germination was studied in Lactuca sativa L. var. Grand Rapids. Exposure of imbibed seeds to 6 hours far-red before the application of gibberellic acid (GA3) and thiourea completely prevented germination. Using GA3, this far-red was effective after the sixth hour of imbibition. At 6, 12, and 18 hours of imbibition equal durations of far-red had equal effects. The kinetics of far-red action was investigated: it was found that although far-red for several hours, irrespective of the energy level, was needed for maximum inhibition, shorter durations (15 and 30 mins) were also appreciably effective provided they were followed by several hours darkness before the supply of GA3. This is taken to indicate the existence of labile product(s) of the action of a far-red sensitive pigment. Evidence is provided for the existence of promotive dark processes controlled by this pigment, which are essential for germination whether triggered by GA3, thiourea or red-light. A model for the operation of the pigment system is proposed and its role in the germination mechanism of this seed is discussed. PMID:16656733

  13. Proteome-wide characterization of sugarbeet seed vigor and its tissue specific expression

    PubMed Central

    Catusse, Julie; Strub, Jean-Marc; Job, Claudette; Van Dorsselaer, Alain; Job, Dominique

    2008-01-01

    Proteomic analysis of mature sugarbeet seeds led to the identification of 759 proteins and their specific tissue expression in root, cotyledons, and perisperm. In particular, the proteome of the perispermic storage tissue found in many seeds of the Caryophyllales is described here. The data allowed us to reconstruct in detail the metabolism of the seeds toward recapitulating facets of seed development and provided insights into complex behaviors such as germination. The seed appears to be well prepared to mobilize the major classes of reserves (the proteins, triglycerides, phytate, and starch) during germination, indicating that the preparation of the seed for germination is mainly achieved during its maturation on the mother plant. Furthermore, the data revealed several pathways that can contribute to seed vigor, an important agronomic trait defined as the potential to produce vigorous seedlings, such as glycine betaine accumulation in seeds. This study also identified several proteins that, to our knowledge, have not previously been described in seeds. For example, the data revealed that the sugarbeet seed can initiate translation either through the traditional cap-dependent mechanism or by a cap-independent process. The study of the tissue specificity of the seed proteome demonstrated a compartmentalization of metabolic activity between the roots, cotyledons, and perisperm, indicating a division of metabolic tasks between the various tissues. Furthermore, the perisperm, although it is known as a dead tissue, appears to be very active biochemically, playing multiple roles in distributing sugars and various metabolites to other tissues of the embryo. PMID:18635686

  14. Protein mobilization in germinating mung bean seeds involves vacuolar sorting receptors and multivesicular bodies.

    PubMed

    Wang, Junqi; Li, Yubing; Lo, Sze Wan; Hillmer, Stefan; Sun, Samuel S M; Robinson, David G; Jiang, Liwen

    2007-04-01

    Plants accumulate and store proteins in protein storage vacuoles (PSVs) during seed development and maturation. Upon seed germination, these storage proteins are mobilized to provide nutrients for seedling growth. However, little is known about the molecular mechanisms of protein degradation during seed germination. Here we test the hypothesis that vacuolar sorting receptor (VSR) proteins play a role in mediating protein degradation in germinating seeds. We demonstrate that both VSR proteins and hydrolytic enzymes are synthesized de novo during mung bean (Vigna radiata) seed germination. Immunogold electron microscopy with VSR antibodies demonstrate that VSRs mainly locate to the peripheral membrane of multivesicular bodies (MVBs), presumably as recycling receptors in day 1 germinating seeds, but become internalized to the MVB lumen, presumably for degradation at day 3 germination. Chemical cross-linking and immunoprecipitation with VSR antibodies have identified the cysteine protease aleurain as a specific VSR-interacting protein in germinating seeds. Further confocal immunofluorescence and immunogold electron microscopy studies demonstrate that VSR and aleurain colocalize to MVBs as well as PSVs in germinating seeds. Thus, MVBs in germinating seeds exercise dual functions: as a storage compartment for proteases that are physically separated from PSVs in the mature seed and as an intermediate compartment for VSR-mediated delivery of proteases from the Golgi apparatus to the PSV for protein degradation during seed germination.

  15. Reduced seed germination in Arabidopsis over-expressing SWI/SNF2 ATPase genes.

    PubMed

    Leeggangers, Hendrika A C F; Folta, Adam; Muras, Aleksandra; Nap, Jan-Peter; Mlynarova, Ludmila

    2015-02-01

    In the life of flowering plants, seed germination is a critical step to ensure survival into the next generation. Generally the seed prior to germination has been in a dormant state with a low rate of metabolism. In the transition from a dormant seed to a germinating seed, various epigenetic mechanisms play a regulatory role. Here, we demonstrate that the over-expression of chromatin remodeling ATPase genes (AtCHR12 or AtCHR23) reduced the frequency of seed germination in Arabidopsis thaliana up to 30% relative to the wild-type seeds. On the other hand, single loss-of-function mutations of the two genes did not affect seed germination. The reduction of germination in over-expressing mutants was more pronounced in stress conditions (salt or high temperature), showing the impact of the environment. Reduced germinations upon over-expression coincided with increased transcript levels of seed maturation genes and with reduced degradation of their mRNAs stored in dry seeds. Our results indicate that repression of AtCHR12/23 gene expression in germinating wild-type Arabidopsis seeds is required for full germination. This establishes a functional link between chromatin modifiers and regulatory networks towards seed maturation and germination.

  16. The effect of burial depth on removal of seeds of Phytolacca americana.

    SciTech Connect

    Orrock, John, L.: Damschen, Ellen, I.

    2007-04-01

    Abstract - Although burial is known to have important effects on seed predation in a variety of habitats, the role of burial depth in affecting the removal of seeds in early successional systems is poorly known. Phytolacca American (pokeweed) is a model species to examine the role of burial depth in affecting seed removal because it is common in early-successional habitats, studies suggest that seed removal is indicative of seed predation, and seed predation is related to the recruitment of mature plants. To determine how burial depth affects P. americana seed removal, 20 seeds of P. americana were buried at depths of 0, 1, or 3 cm in early-successional habitats at the Savannah River Site in South Carolina for over 6 weeks. The frequency with which seeds were encountered (as measured by the removal of at least one seed) and the proportion of seeds removed was significantly greater when seeds were on the soil surface (0 cm depth) compared to seeds that were buried 1 cm or 3 cm; there was no difference in encounter or removal between seeds at 1 cm or 3 cm. Our findings suggest that burial may have important consequences for P. americana population dynamics, because seed survival depends upon whether or not the seed is buried, and relatively shallow burial can yield large increases in seed survival. Because seed limitation is known to be an important determinant of plant community composition in early successional systems, our work suggests that burial may play an unappreciated role in the dynamics of these communities by reducing predator-mediated seed limitation.

  17. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity

    PubMed Central

    Châtelain, Emilie; Satour, Pascale; Laugier, Edith; Ly Vu, Benoit; Payet, Nicole; Rey, Pascal; Montrichard, Françoise

    2013-01-01

    Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds. PMID:23401556

  18. Evidence for participation of the methionine sulfoxide reductase repair system in plant seed longevity.

    PubMed

    Châtelain, Emilie; Satour, Pascale; Laugier, Edith; Ly Vu, Benoit; Payet, Nicole; Rey, Pascal; Montrichard, Françoise

    2013-02-26

    Seeds are in a natural oxidative context leading to protein oxidation. Although inevitable for proper progression from maturation to germination, protein oxidation at high levels is detrimental and associated with seed aging. Oxidation of methionine to methionine sulfoxide is a common form of damage observed during aging in all organisms. This damage is reversible through the action of methionine sulfoxide reductases (MSRs), which play key roles in lifespan control in yeast and animal cells. To investigate the relationship between MSR capacity and longevity in plant seeds, we first used two Medicago truncatula genotypes with contrasting seed quality. After characterizing the MSR family in this species, we analyzed gene expression and enzymatic activity in immature and mature seeds exhibiting distinct quality levels. We found a very strong correlation between the initial MSR capacities in different lots of mature seeds of the two genotypes and the time to a drop in viability to 50% after controlled deterioration. We then analyzed seed longevity in Arabidopsis thaliana lines, in which MSR gene expression has been genetically altered, and observed a positive correlation between MSR capacity and longevity in these seeds as well. Based on our data, we propose that the MSR repair system plays a decisive role in the establishment and preservation of longevity in plant seeds.

  19. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis.

    PubMed

    Zhu, Guohui; Ye, Nenghui; Zhang, Jianhua

    2009-03-01

    Both glucose and ABA play crucial roles in the regulation of seed germination and post-germination development. In Arabidopsis thaliana, up-regulation of ABA biosynthesis is suggested as one of the possible mechanisms mediating the glucose-induced delay in seed germination. Since the endogenous ABA level is controlled by the equilibrium between ABA biosynthesis and catabolism, we investigated how this equilibrium is related to the regulation of seed germination by glucose in rice. When ABA biosynthesis was inhibited by nordihydroguaiaretic acid (NDGA), an inhibitor of the ABA anabolic enzyme 9-cis-epoxycarotenoid dioxygenase (NCED), rice seed germination showed no response. In contrast, inhibition of ABA catabolism by diniconazole significantly arrested seed germination, suggesting that the regulation of ABA catabolism plays a major role. Further experiments indicated that the expression of OsABA8ox3, a key gene in ABA catabolism and encoding ABA 8'-hydroxylase in rice, was significantly increased during the first 6 h of imbibition, which was consistent with the decline of ABA content in the imbibed seeds. Expression of OsABA8ox genes, especially OsABA8ox2 and OsABA8ox3, was sensitively suppressed in the presence of exogenously supplied glucose. In contrast, the expression profiles of OsNCED genes that control the limiting step of ABA biosynthesis showed no significant changes in response to low levels of glucose. Our results demonstrated that the glucose-induced delay of seed germination is a result of the suppression of ABA catabolism rather than any enhancement of ABA biosynthesis during rice seed germination.

  20. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of Pinus tabuliformis Carr. over a 12-year span.

    PubMed

    Li, Wei; Wang, Xiaoru; Li, Yue

    2011-01-01

    Coniferous seed orchards require a long period from initial seed harvest to stable seed production. Differential reproductive success and asynchrony are among the main factors for orchard crops year-to-year variation in terms of parental gametic contribution and ultimately the genetic gain. It is fundamental in both making predictions about the genetic composition of the seed crop and decisions about orchard roguing and improved seed orchard establishment. In this paper, a primary Chinese pine seed orchard with 49 clones is investigated for stability, variation and correlation analysis of factors which influence genetic quality of the seed lots from initial seed harvest to the stable seed production over a 12 years span. Results indicated that the reproductive synchrony index of pollen shedding has shown to be higher than that of the strobili receptivity, and both can be drastically influenced by the ambient climate factors. Reproductive synchrony index of the clones has certain relative stability and it could be used as an indication of the seed orchard status during maturity stage; clones in the studied orchard have shown extreme differences in terms of the gametic and genetic contribution to the seed crop at the orchard's early production phase specifically when they severe as either female or male parents. Those differences are closely related to clonal sex tendency at the time of orchard's initial reproduction. Clonal gamete contribution as male and female parent often has a negative correlation. Clone utilization as pollen, seed or both pollen and seed donors should consider the role it would play in the seed crop; due to numerous factors influencing on the mating system in seed orchards, clonal genetic contribution as male parent is uncertain, and it has major influence on the genetic composition in the seed orchard during the initial reproductive and seed production phase.

  1. Maturational and Non-Maturational Factors in Heritage Language Acquisition

    ERIC Educational Resources Information Center

    Moon, Ji Hye

    2012-01-01

    This dissertation aims to understand the maturational and non-maturational aspects of ear