Sample records for mature myostatin protein

  1. Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion.

    PubMed

    Sachdev, Rishibha; Kappes-Horn, Karin; Paulsen, Lydia; Duernberger, Yvonne; Pleschka, Catharina; Denner, Philip; Kundu, Bishwajit; Reimann, Jens; Vorberg, Ina

    2018-03-15

    Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.

  2. Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice.

    PubMed

    Welle, Stephen; Burgess, Kerri; Mehta, Sangeeta

    2009-03-01

    Knocking out myostatin activity during development increases the rate of muscle protein synthesis. The present study was done to determine whether postdevelopmental loss of myostatin activity stimulates myofibrillar protein synthesis and the phosphorylation of some of the proteins involved in regulation of protein synthesis rate. Myostatin activity was inhibited for 4 days, in 4- to 5-mo-old male mice, with injections of an anti-myostatin antibody (JA16). The mean myofibrillar synthesis rate increased 19% (P < 0.01) relative to the mean rate in saline-treated mice, as determined by incorporation of deuterium-labeled phenylalanine. JA16 increased phosphorylation of p70 S6 kinase (S6K) and ribosomal protein S6 (rpS6) 1.9-fold (P < 0.05). It did not affect phosphorylation of eukaryotic initiation factor 4E-binding protein-1 or Akt. Microarrays and real-time PCR analyses indicated that JA16 administration did not selectively enrich levels of mRNAs encoding myofibrillar proteins, ribosomal proteins, or translation initiation and elongation factors. Rapamycin treatment did not affect the rate of myofibrillar protein synthesis whether or not the mice received JA16 injections, although it eliminated the phosphorylation of S6K and rpS6. We conclude that the normal level of myostatin activity in mature muscle is sufficient to inhibit myofibrillar synthesis rate and phosphorylation of S6K and rpS6. Reversal of the inhibition of myofibrillar synthesis with an anti-myostatin antibody is not dependent on mTOR activation.

  3. Placental expression of myostatin and follistatin-like-3 protein in a model of developmental programming.

    PubMed

    Peiris, Hassendrini N; Ponnampalam, Anna P; Osepchook, Claire C; Mitchell, Murray D; Green, Mark P

    2010-04-01

    Maternal undernutrition during gestation is known to be detrimental to fetal development, leading to a propensity for metabolic disorders later in the adult lives of the offspring. Identifying possible mediators and physiological processes involved in modulating nutrient transport within the placenta is essential to prevent and/or develop treatments for the effects of aberrant nutrition, nutrient transfer, and detrimental changes to fetal development. A potential role for myostatin as a mediator of nutrient uptake and transport from the mother to the fetus was shown through the recent finding that myostatin acts within the human placenta to modulate glucose uptake and therefore homeostasis. The mRNA and protein expression of myostatin and its inhibitor, follistatin-like-3 (FSTL3), was studied in the placenta and skeletal muscle of a transgenerational Wistar rat model of gestational maternal undernutrition in which the F2 offspring postweaning consumed a high-fat (HF) diet. Alterations in placental characteristics and offspring phenotype, specifically glucose homeostasis, were evident in the transgenerationally undernourished (UNAD) group. Myostatin and FSTL3 protein expression were also higher (P < 0.05) in the placentae of the UNAD compared with the control group. At maturity, UNAD HF-fed animals had higher (P < 0.05) skeletal muscle expression of FSTL3 than control animals. In summary, maternal undernutrition during gestation results in the aberrant regulation of myostatin and FSTL3 in the placenta and skeletal muscle of subsequent generations. Myostatin, through the disruption of maternal nutrient supply to the fetus, may thus be a potential mediator of offspring phenotype.

  4. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2

    PubMed Central

    Szláma, György; Trexler, Mária; Patthy, László

    2013-01-01

    Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem 283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2

  5. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ

    PubMed Central

    Gardner, Brandon B.; Gao, Quan Q.; Hadhazy, Michele; Vo, Andy H.; Wren, Lisa; Molkentin, Jeffery D.; McNally, Elizabeth M.

    2016-01-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression. PMID:27148972

  6. Overexpression of Latent TGFβ Binding Protein 4 in Muscle Ameliorates Muscular Dystrophy through Myostatin and TGFβ.

    PubMed

    Lamar, Kay-Marie; Bogdanovich, Sasha; Gardner, Brandon B; Gao, Quan Q; Miller, Tamari; Earley, Judy U; Hadhazy, Michele; Vo, Andy H; Wren, Lisa; Molkentin, Jeffery D; McNally, Elizabeth M

    2016-05-01

    Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.

  7. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents.

    PubMed

    Manfredi, L H; Paula-Gomes, S; Zanon, N M; Kettelhut, I C

    2017-10-19

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle.

  8. Myostatin promotes distinct responses on protein metabolism of skeletal and cardiac muscle fibers of rodents

    PubMed Central

    Manfredi, L.H.; Paula-Gomes, S.; Zanon, N.M.; Kettelhut, I.C.

    2017-01-01

    Myostatin is a novel negative regulator of skeletal muscle mass. Myostatin expression is also found in heart in a much less extent, but it can be upregulated in pathological conditions, such as heart failure. Myostatin may be involved in inhibiting protein synthesis and/or increasing protein degradation in skeletal and cardiac muscles. Herein, we used cell cultures and isolated muscles from rats to determine protein degradation and synthesis. Muscles incubated with myostatin exhibited an increase in proteolysis with an increase of Atrogin-1, MuRF1 and LC3 genes. Extensor digitorum longus muscles and C2C12 myotubes exhibited a reduction in protein turnover. Cardiomyocytes showed an increase in proteolysis by activating autophagy and the ubiquitin proteasome system, and a decrease in protein synthesis by decreasing P70S6K. The effect of myostatin on protein metabolism is related to fiber type composition, which may be associated to the extent of atrophy mediated effect of myostatin on muscle. PMID:29069231

  9. Decorin binds myostatin and modulates its activity to muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Takayuki; Kishioka, Yasuhiro; Wakamatsu, Jun-ichi

    2006-02-10

    Myostatin, a member of TGF-{beta} superfamily of growth factors, acts as a negative regulator of skeletal muscle mass. The mechanism whereby myostatin controls the proliferation and differentiation of myogenic cells is mostly clarified. However, the regulation of myostatin activity to myogenic cells after its secretion in the extracellular matrix (ECM) is still unknown. Decorin, a small leucine-rich proteoglycan, binds TGF-{beta} and regulates its activity in the ECM. Thus, we hypothesized that decorin could also bind to myostatin and participate in modulation of its activity to myogenic cells. In order to test the hypothesis, we investigated the interaction between myostatin andmore » decorin by surface plasmon assay. Decorin interacted with mature myostatin in the presence of concentrations of Zn{sup 2+} greater than 10 {mu}M, but not in the absence of Zn{sup 2+}. Kinetic analysis with a 1:1 binding model resulted in dissociation constants (K {sub D}) of 2.02 x 10{sup -8} M and 9.36 x 10{sup -9} M for decorin and the core protein of decorin, respectively. Removal of the glycosaminoglycan chain by chondroitinase ABC digestion did not affect binding, suggesting that decorin could bind to myostatin with its core protein. Furthermore, we demonstrated that immobilized decorin could rescue the inhibitory effect of myostatin on myoblast proliferation in vitro. These results suggest that decorin could trap myostatin and modulate its activity to myogenic cells in the ECM.« less

  10. Myostatin inhibits eEF2K-eEF2 by regulating AMPK to suppress protein synthesis.

    PubMed

    Deng, Zhao; Luo, Pei; Lai, Wen; Song, Tongxing; Peng, Jian; Wei, Hong-Kui

    2017-12-09

    Growth of skeletal muscle is dependent on the protein synthesis, and the rate of protein synthesis is mainly regulated in the stage of translation initiation and elongation. Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a negative regulator of protein synthesis. C2C12 myotubes was incubated with 0, 0.01, 0.1, 1, 2, 3 μg/mL myostatin recombinant protein, and then we detected the rates of protein synthesis by the method of SUnSET. We found that high concentrations of myostatin (2 and 3 μg/mL) inhibited protein synthesis by blocking mTOR and eEF2K-eEF2 pathway, while low concentration of myostatin (0.01, 0.1 and 1 μg/mL) regulated eEF2K-eEF2 pathway activity to block protein synthesis without affected mTOR pathway, and myostatin inhibited eEF2K-eEF2 pathway through regulating AMPK pathway to suppress protein synthesis. It provided a new mechanism for myostatin regulating protein synthesis and treating muscle atrophy. Copyright © 2017. Published by Elsevier Inc.

  11. Retraction: Myostatin Induces Degradation of Sarcomeric Proteins through a Smad3 Signaling Mechanism During Skeletal Muscle Wasting

    PubMed Central

    Lokireddy, Sudarsanareddy; McFarlane, Craig; Ge, Xiaojia; Zhang, Huoming; Sze, Siu Kwan; Sharma, Mridula

    2011-01-01

    Ubiquitination-mediated proteolysis is a hallmark of skeletal muscle wasting manifested in response to negative growth factors, including myostatin. Thus, the characterization of signaling mechanisms that induce the ubiquitination of intracellular and sarcomeric proteins during skeletal muscle wasting is of great importance. We have recently characterized myostatin as a potent negative regulator of myogenesis and further demonstrated that elevated levels of myostatin in circulation results in the up-regulation of the muscle-specific E3 ligases, Atrogin-1 and muscle ring finger protein 1 (MuRF1). However, the exact signaling mechanisms by which myostatin regulates the expression of Atrogin-1 and MuRF1, as well as the proteins targeted for degradation in response to excess myostatin, remain to be elucidated. In this report, we have demonstrated that myostatin signals through Smad3 (mothers against decapentaplegic homolog 3) to activate forkhead box O1 and Atrogin-1 expression, which further promotes the ubiquitination and subsequent proteasome-mediated degradation of critical sarcomeric proteins. Smad3 signaling was dispensable for myostatin-dependent overexpression of MuRF1. Although down-regulation of Atrogin-1 expression rescued approximately 80% of sarcomeric protein loss induced by myostatin, only about 20% rescue was seen when MuRF1 was silenced, implicating that Atrogin-1 is the predominant E3 ligase through which myostatin manifests skeletal muscle wasting. Furthermore, we have highlighted that Atrogin-1 not only associates with myosin heavy and light chain, but it also ubiquitinates these sarcomeric proteins. Based on presented data we propose a model whereby myostatin induces skeletal muscle wasting through targeting sarcomeric proteins via Smad3-mediated up-regulation of Atrogin-1 and forkhead box O1. PMID:21964591

  12. Myostatin-like proteins regulate synaptic function and neuronal morphology.

    PubMed

    Augustin, Hrvoje; McGourty, Kieran; Steinert, Joern R; Cochemé, Helena M; Adcott, Jennifer; Cabecinha, Melissa; Vincent, Alec; Halff, Els F; Kittler, Josef T; Boucrot, Emmanuel; Partridge, Linda

    2017-07-01

    Growth factors of the TGFβ superfamily play key roles in regulating neuronal and muscle function. Myostatin (or GDF8) and GDF11 are potent negative regulators of skeletal muscle mass. However, expression of myostatin and its cognate receptors in other tissues, including brain and peripheral nerves, suggests a potential wider biological role. Here, we show that Myoglianin (MYO), the Drosophila homolog of myostatin and GDF11, regulates not only body weight and muscle size, but also inhibits neuromuscular synapse strength and composition in a Smad2-dependent manner. Both myostatin and GDF11 affected synapse formation in isolated rat cortical neuron cultures, suggesting an effect on synaptogenesis beyond neuromuscular junctions. We also show that MYO acts in vivo to inhibit synaptic transmission between neurons in the escape response neural circuit of adult flies. Thus, these anti-myogenic proteins act as important inhibitors of synapse function and neuronal growth. © 2017. Published by The Company of Biologists Ltd.

  13. Myostatin propeptide mutation of the hypermuscular Compact mice decreases the formation of myostatin and improves insulin sensitivity.

    PubMed

    Kocsis, Tamas; Trencsenyi, Gyorgy; Szabo, Kitti; Baan, Julia Aliz; Muller, Geza; Mendler, Luca; Garai, Ildiko; Reinauer, Hans; Deak, Ferenc; Dux, Laszlo; Keller-Pinter, Aniko

    2017-03-01

    The TGFβ family member myostatin (growth/differentiation factor-8) is a negative regulator of skeletal muscle growth. The hypermuscular Compact mice carry the 12-bp Mstn(Cmpt-dl1Abc) deletion in the sequence encoding the propeptide region of the precursor promyostatin, and additional modifier genes of the Compact genetic background contribute to determine the full expression of the phenotype. In this study, by using mice strains carrying mutant or wild-type myostatin alleles with the Compact genetic background and nonmutant myostatin with the wild-type background, we studied separately the effect of the Mstn(Cmpt-dl1Abc) mutation or the Compact genetic background on morphology, metabolism, and signaling. We show that both the Compact myostatin mutation and Compact genetic background account for determination of skeletal muscle size. Despite the increased musculature of Compact s, the absolute size of heart and kidney is not influenced by myostatin mutation; however, the Compact genetic background increases them. Both Compact myostatin and genetic background exhibit systemic metabolic effects. The Compact mutation decreases adiposity and improves whole body glucose uptake, insulin sensitivity, and 18 FDG uptake of skeletal muscle and white adipose tissue, whereas the Compact genetic background has the opposite effect. Importantly, the mutation does not prevent the formation of mature myostatin; however, a decrease in myostatin level was observed, leading to altered activation of Smad2, Smad1/5/8, and Akt, and an increased level of p-AS160, a Rab-GTPase-activating protein responsible for GLUT4 translocation. Based on our analysis, the Compact genetic background strengthens the effect of myostatin mutation on muscle mass, but those can compensate for each other when systemic metabolic effects are compared. Copyright © 2017 the American Physiological Society.

  14. Structural Basis for the Effective Myostatin Inhibition of the Mouse Myostatin Prodomain-Derived Minimum Peptide.

    PubMed

    Asari, Tomo; Takayama, Kentaro; Nakamura, Akari; Shimada, Takahiro; Taguchi, Akihiro; Hayashi, Yoshio

    2017-01-12

    Myostatin inhibition is one of the promising strategies for treating muscle atrophic disorders, including muscular dystrophy. It is well-known that the myostatin prodomain derived from the myostatin precursor acts as an inhibitor of mature myostatin. In our previous study, myostatin inhibitory minimum peptide 1 (WRQNTRYSRIEAIKIQILSKLRL-amide) was discovered from the mouse myostatin prodomain. In the present study, alanine scanning of 1 demonstrated that the key amino acid residues for the effective inhibitory activity are rodent-specific Tyr and C-terminal aliphatic residues, in addition to N-terminal Trp residue. Subsequently, we designed five Pro-substituted peptides and examined the relationship between secondary structure and inhibitory activity. As a result, we found that Pro-substitutions of Ala or Gln residues around the center of 1 significantly decreased both α-helicity and inhibitory activity. These results suggested that an α-helical structure possessing hydrophobic faces formed around the C-terminus is important for inhibitory activity.

  15. Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting.

    PubMed

    Lokireddy, Sudarsanareddy; Wijesoma, Isuru Wijerupage; Sze, Siu Kwan; McFarlane, Craig; Kambadur, Ravi; Sharma, Mridula

    2012-09-01

    Atrogin-1, a muscle-specific E3 ligase, targets MyoD for degradation through the ubiquitin-proteasome-mediated system. Myostatin, a member of the transforming growth factor-β superfamily, potently inhibits myogenesis by lowering MyoD levels. While atrogin-1 is upregulated by myostatin, it is currently unknown whether atrogin-1 plays a role in mediating myostatin signaling to regulate myogenesis. In this report, we have confirmed that atrogin-1 increasingly interacts with MyoD upon recombinant human myostatin (hMstn) treatment. The absence of atrogin-1, however, led to elevated MyoD levels and permitted the differentiation of atrogin-1(-/-) primary myoblast cultures despite the presence of exogenous myostatin. Furthermore, inactivation of atrogin-1 rescued myoblasts from growth inhibition by hMstn. Therefore, these results highlight the central role of atrogin-1 in regulating myostatin signaling during myogenesis. Currently, there are only two known targets of atrogin-1. Thus, we next characterized the associated proteins of atrogin-1 in control and hMstn-treated C2C12 cell cultures by stably expressing tagged atrogin-1 in myoblasts and myotubes, and sequencing the coimmunoprecipitated proteome. We found that atrogin-1 putatively interacts with sarcomeric proteins, transcriptional factors, metabolic enzymes, components of translation, and spliceosome formation. In addition, we also identified that desmin and vimentin, two components of the intermediate filament in muscle, directly interacted with and were degraded by atrogin-1 in response to hMstn. In summary, the muscle wasting effects of the myostatin-atrogin-1 axis are not only limited to the degradation of MyoD and eukaryotic translation initiation factor 3 subunit f, but also encompass several proteins that are involved in a wide variety of cellular activities in the muscle.

  16. Myostatin signaling is up-regulated in female patients with advanced heart failure.

    PubMed

    Ishida, Junichi; Konishi, Masaaki; Saitoh, Masakazu; Anker, Markus; Anker, Stefan D; Springer, Jochen

    2017-07-01

    Myostatin, a negative regulator of skeletal muscle mass, is up-regulated in the myocardium of heart failure (HF) and increased myostatin is associated with weight loss in animal models with HF. Although there are disparities in pathophysiology and epidemiology between male and female patients with HF, it remains unclear whether there is gender difference in myostatin expression and whether it is associated with weight loss in HF patients. Heart tissue samples were collected from patients with advanced heart failure (n=31, female n=5) as well as healthy control donors (n=14, female n=6). Expression levels of myostatin and its related proteins in the heart were evaluated by western blotting analysis. Body mass index was significantly lower in female HF patients than in male counterparts (20.0±4.2 in female vs 25.2±3.8 in male, p=0.04). In female HF patients, both mature myostatin and pSmad2 were significantly up-regulated by 1.9 fold (p=0.05) and 2.5 fold (p<0.01) respectively compared to female donors, while expression of pSmad2 was increased by 2.8 times in male HF patients compared to male healthy subjects, but that of myostatin was not. There was no significant difference in protein expression related to myostatin signaling between male and female patients. In this study, myostatin and pSmad2 were significantly up-regulated in the failing heart of female patients, but not male patients, and female patients displayed lower body mass index. Enhanced myostatin signaling in female failing heart may causally contribute to pathogenesis of HF and cardiac cachexia. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin-proteasome pathway-mediated loss of sarcomeric proteins.

    PubMed

    Lokireddy, Sudarsanareddy; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi; McFarlane, Craig

    2011-12-01

    Myostatin is a negative regulator of skeletal muscle growth and in fact acts as a potent inducer of "cachectic-like" muscle wasting in mice. The mechanism of action of myostatin in promoting muscle wasting has been predominantly studied in murine models. Despite numerous reports linking elevated levels of myostatin to human skeletal muscle wasting conditions, little is currently known about the signaling mechanism(s) through which myostatin promotes human skeletal muscle wasting. Therefore, in this present study we describe in further detail the mechanisms behind myostatin regulation of human skeletal muscle wasting using an in vitro human primary myotube atrophy model. Treatment of human myotube populations with myostatin promoted dramatic myotubular atrophy. Mechanistically, myostatin-induced myotube atrophy resulted in reduced p-AKT concomitant with the accumulation of active dephosphorylated Forkhead Box-O (FOXO1) and FOXO3. We further show that addition of myostatin results in enhanced activation of atrogin-1 and muscle-specific RING finger protein 1 (MURF1) and reduced expression of both myosin light chain (MYL) and myosin heavy chain (MYH). In addition, we found that myostatin-induced loss of MYL and MYH proteins is dependent on the activity of the proteasome and mediated via SMAD3-dependent regulation of FOXO1 and atrogin-1. Therefore, these data suggest that the mechanism through which myostatin promotes muscle wasting is very well conserved between species, and that myostatin-induced human myotube atrophy is mediated through inhibition of insulin-like growth factor (IGF)/phosphoinositide 3-kinase (PI3-K)/AKT signaling and enhanced activation of the ubiquitin-proteasome pathway and elevated protein degradation.

  18. Changes in Lean Mass and Serum Myostatin with Habitual Protein Intake and High-Velocity Resistance Training.

    PubMed

    Binns, A; Gray, M; Henson, A C; Fort, I L

    2017-01-01

    Examine the associations between dietary protein intake, lean mass (LM), and serum myostatin (Mstn) levels among community-dwelling older adults participating in a 20-week high-velocity resistance training (HVRT) program. This longitudinal study consisted of 33 community-dwelling, older adults (mean age 77.0 years, SD = 6.4); all of which obtained physician clearance prior to study participation. Twenty-five females and eight males were randomized to a control (CON) or HVRT group. Anthropometric measures were obtained via dual energy x-ray absorptiometry (DXA) and peripheral venous blood draw used for serum myostatin analysis. Exercise was performed twice per week for 20 consecutive weeks. Food intake estimation with a diet history questionnaire (DHQ) was used for protein intake comparison to the recommended dietary allowance (RDA). All measures were recorded both prior to and following study participation. Altogether, protein was consumed in amounts more generous (1.01 ± 0.47 g·kg-1·d-1) than that of the RDA (0.8 g·kg-1·d-1). As a result of significant LM differences among men and women (p < 0.01), additional data were analyzed specific to sex. Serum myostatin was greater among females (6681.8 ± 3155.0 pg·mL-1) than males (5560.0 ± 2946.1 pg·mL-1); however, these values were not significantly different (p = 0.39). Combined, protein consumption and serum myostatin did not significantly influence LM among males (p = 0.09) or females (p = 0.71). Irrespective of training group, significant changes were not exhibited in dietary intake patterns, LM, or serum myostatin. Contrary to the proposed hypothesis, results suggest protein consumption and circulating serum myostatin levels did not significantly influence LM among older adults. Although HVRT positively impacts LM, neither exercise group displayed significant changes in LM. Therefore, further research is needed examining dietary intake, exercise modality, and myostatin downregulation as non

  19. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benny Klimek, Margaret E.; Aydogdu, Tufan; Link, Majik J.

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely.more » The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia.« less

  20. Acute inhibition of myostatin-family proteins preserves skeletal muscle in mouse models of cancer cachexia.

    PubMed

    Benny Klimek, Margaret E; Aydogdu, Tufan; Link, Majik J; Pons, Marianne; Koniaris, Leonidas G; Zimmers, Teresa A

    2010-01-15

    Cachexia, progressive loss of fat and muscle mass despite adequate nutrition, is a devastating complication of cancer associated with poor quality of life and increased mortality. Myostatin is a potent tonic muscle growth inhibitor. We tested how myostatin inhibition might influence cancer cachexia using genetic and pharmacological approaches. First, hypermuscular myostatin null mice were injected with Lewis lung carcinoma or B16F10 melanoma cells. Myostatin null mice were more sensitive to tumor-induced cachexia, losing more absolute mass and proportionately more muscle mass than wild-type mice. Because myostatin null mice lack expression from development, however, we also sought to manipulate myostatin acutely. The histone deacetylase inhibitor Trichostatin A has been shown to increase muscle mass in normal and dystrophic mice by inducing the myostatin inhibitor, follistatin. Although Trichostatin A administration induced muscle growth in normal mice, it failed to preserve muscle in colon-26 cancer cachexia. Finally we sought to inhibit myostatin and related ligands by administration of the Activin receptor extracellular domain/Fc fusion protein, ACVR2B-Fc. Systemic administration of ACVR2B-Fc potently inhibited muscle wasting and protected adipose stores in both colon-26 and Lewis lung carcinoma cachexia, without affecting tumor growth. Enhanced cachexia in myostatin knockouts indicates that host-derived myostatin is not the sole mediator of muscle wasting in cancer. More importantly, skeletal muscle preservation with ACVR2B-Fc establishes that targeting myostatin-family ligands using ACVR2B-Fc or related molecules is an important and potent therapeutic avenue in cancer cachexia. Copyright 2009 Elsevier Inc. All rights reserved.

  1. Myostatin inhibits porcine intramuscular preadipocyte differentiation in vitro.

    PubMed

    Sun, W X; Dodson, M V; Jiang, Z H; Yu, S G; Chu, W W; Chen, J

    2016-04-01

    This study assessed the effect of myostatin on adipogenesis by porcine intramuscular preadipocytes. Intramuscular preadipocytes were isolated from the longissimus dorsi muscle of newborn pigs. Myostatin inhibited intramuscular preadipocyte differentiation in a dose-dependent manner. Myostatin treatment during preadipocyte differentiation significantly (P < 0.05) inhibited the expression of the adipogenic marker genes CCAAT/enhancer-binding protein β, CCAAT/enhancer-binding protein α, peroxisome proliferator-activated receptor γ, sterol regulatory element-binding protein-1c, fatty acid-binding protein, and adiponectin. Myostatin also significantly (P < 0.05) reduced the release of glycerol and decreased both adipose triglyceride lipase and hormone-sensitive lipase expression in intramuscular adipocytes. Our study suggests that myostatin acts as an extrinsic regulatory factor in regulating intramuscular adipogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Transcript characteristic of myostatin in sheep fibroblasts.

    PubMed

    Lu, Jian; Ren, Hangxing; Sheng, Xihui; Zhang, Xiaoning; Li, Shangang; Zhao, Fuping; Zhou, Xinlei; Zhang, Li; Wei, Caihong; Ding, Jiatong; Li, Bichun; Du, Lixin

    2012-08-01

    Myostatin, a secreted growth factor highly expressed in skeletal muscle, negatively regulates skeletal muscle growth and differentiation. Recently, myostatin is emerged as a potential target for anti-atrophy and anti-fibrotic therapies. Therefore, to investigate the regulation of myostatin in sheep adult fibroblasts, we used the RNA interference mediated by lentiviral vector to gene silence myostatin. Simultaneously, we also had constructed the sheep myostatin overexpression vector to further explore the function of myostatin in fibroblasts. The results here demonstrated that the lentiviral vector could significantly reduce myostatin gene both at mRNA and protein level by 71% and 67%, respectively (P < 0.01). Inhibition of myostatin also resulted in a remarkable increase of activin receptor 2B (ACV2B), p21, PPARγ, leptin, C/EBPβ, and MEF2A expression, and a decrease of Akt1, CDK2, MEF2C, and Myf5 expression. Ectopic myostatin mRNA and protein were also present in the fibroblasts transfection. Furthermore, we observed that overexpression of myostatin contributed to an increase of Akt1, CDK2, Myf5 and PPARγ, and a decrease of p21, C/EBPα and leptin at the transcript level. These results suggested that myostatin positively regulated Akt1, CDK2, Myf5, leptin, and C/EBPα, but negatively regulated p21 mRNA expression in adult fibroblasts, and it also expanded our understanding of the regulation mechanism of myostatin. Moreover, the lentiviral system inactivated myostatin gene in fibroblasts would be used to generate transgenic sheep and to ameliorate muscle fibrosis and atrophy by gene therapy in the future. Copyright © 2012 Wiley Periodicals, Inc.

  3. Modulation of follistatin and myostatin propeptide by anabolic steroids and gender.

    PubMed

    Mosler, S; Geisler, S; Hengevoss, J; Schiffer, T; Piechotta, M; Adler, M; Diel, P

    2013-07-01

    The purpose of this pilot study was to investigate the impact of training, anabolic steroids and endogenous hormones on myostatin-interacting proteins in order to identify manipulations of myostatin signalling. To identify whether analysis of the myostatin interacting proteins follistatin and myostatin propeptide is suitable to detect the abuse of anabolic steroids, their serum concentrations were monitored in untrained males, bodybuilders using anabolic steroids and natural bodybuilders. In addition, we analysed follistatin and myostatin propeptide serum proteins in females during menstrual cycle. Our results showed increased follistatin concentrations in response to anabolic steroids. Furthermore, variations of sex steroid levels during the menstrual cycle had no impact on the expression of follistatin and myostatin propetide. In addition, we identified gender differences in the basal expression of the investigated proteins. In general, follistatin and myostatin propeptide concentrations were relatively stable within the same individual both in males and females. In conclusion, the current findings provide an insight into gender differences in myostatin-interacting proteins and their regulation in response to anabolic steroids and endogenous hormones. Therefore our data provide new aspects for the development of doping prevention strategies. © Georg Thieme Verlag KG Stuttgart · New York.

  4. [Myostatin blockade therapy for muscular atrophy].

    PubMed

    Sunada, Yoshihide

    2011-11-01

    Myostatin, a member of the muscle-specific transforming growth factor (TGF)-β family, negatively regulates skeletal muscle growth. It inhibits muscle stem cell proliferation and differentiation and attenuates adult muscle fiber protein accretion, resulting in decreased skeletal muscle mass. As such, it has been considered a therapeutic target of muscular dystrophy. Notably, administration of a blocking antibody against myostatin ameliorated the pathophysiology of dystrophin-deficient mdx mice. Although a clinical trial of anti-myostatin antibody MYO-029 failed to achieve a significant outcome in patients with muscular dystrophies, various distinct approaches have been taken to establish anti-myostatin therapy, including myostatin decoy receptor ACE-031, small-molecule inhibitors against the myostatin receptor, and myostatin short intertering RNA with collagen-derived carrier particles. The clinical application of anti-myostatin therapeutics in treatment of patients with muscular dystrophy needs further evaluation for safety and specification of the target disease types among the various muscular dystrophies. In addition, myostatin inhibition could be effective for muscle-wasting conditions other than muscular dystrophy- for instance, steroid-induced myopathy, mitochondrial myopathy, or sarcopenia in elderly patients. Moreover, considerable evidence shows that myostatin regulates energy metabolism and that its inhibition can significantly attenuate the progression of obesity and diabetes. It may also be applicable for the prevention of metabolic syndrome. Thus, safe and potent anti-myostatin therapy will have a wide variety of applications in modern medicine.

  5. Discovery of a Mammalian Splice Variant of Myostatin That Stimulates Myogenesis

    PubMed Central

    Jeanplong, Ferenc; Falconer, Shelley J.; Oldham, Jenny M.; Thomas, Mark; Gray, Tarra S.; Hennebry, Alex; Matthews, Kenneth G.; Kemp, Frederick C.; Patel, Ketan; Berry, Carole; Nicholas, Gina; McMahon, Christopher D.

    2013-01-01

    Myostatin plays a fundamental role in regulating the size of skeletal muscles. To date, only a single myostatin gene and no splice variants have been identified in mammals. Here we describe the splicing of a cryptic intron that removes the coding sequence for the receptor binding moiety of sheep myostatin. The deduced polypeptide sequence of the myostatin splice variant (MSV) contains a 256 amino acid N-terminal domain, which is common to myostatin, and a unique C-terminus of 65 amino acids. Western immunoblotting demonstrated that MSV mRNA is translated into protein, which is present in skeletal muscles. To determine the biological role of MSV, we developed an MSV over-expressing C2C12 myoblast line and showed that it proliferated faster than that of the control line in association with an increased abundance of the CDK2/Cyclin E complex in the nucleus. Recombinant protein made for the novel C-terminus of MSV also stimulated myoblast proliferation and bound to myostatin with high affinity as determined by surface plasmon resonance assay. Therefore, we postulated that MSV functions as a binding protein and antagonist of myostatin. Consistent with our postulate, myostatin protein was co-immunoprecipitated from skeletal muscle extracts with an MSV-specific antibody. MSV over-expression in C2C12 myoblasts blocked myostatin-induced Smad2/3-dependent signaling, thereby confirming that MSV antagonizes the canonical myostatin pathway. Furthermore, MSV over-expression increased the abundance of MyoD, Myogenin and MRF4 proteins (P<0.05), which indicates that MSV stimulates myogenesis through the induction of myogenic regulatory factors. To help elucidate a possible role in vivo, we observed that MSV protein was more abundant during early post-natal muscle development, while myostatin remained unchanged, which suggests that MSV may promote the growth of skeletal muscles. We conclude that MSV represents a unique example of intra-genic regulation in which a splice variant

  6. PPARγ and MyoD are differentially regulated by myostatin in adipose-derived stem cells and muscle satellite cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Feng; Deng, Bing; Wen, Jianghui

    2015-03-06

    Myostatin (MSTN) is a secreted protein belonging to the transforming growth factor-β (TGF-β) family that is primarily expressed in skeletal muscle and also functions in adipocyte maturation. Studies have shown that MSTN can inhibit adipogenesis in muscle satellite cells (MSCs) but not in adipose-derived stem cells (ADSCs). However, the mechanism by which MSTN differently regulates adipogenesis in these two cell types remains unknown. Peroxisome proliferator-activated receptor-γ (PPARγ) and myogenic differentiation factor (MyoD) are two key transcription factors in fat and muscle cell development that influence adipogenesis. To investigate whether MSTN differentially regulates PPARγ and MyoD, we analyzed PPARγ and MyoDmore » expression by assessing mRNA, protein and methylation levels in ADSCs and MSCs after treatment with 100 ng/mL MSTN for 0, 24, and 48 h. PPARγ mRNA levels were downregulated after 24 h and upregulated after 48 h of treatment in ADSCs, whereas in MSCs, PPARγ levels were downregulated at both time points. MyoD expression was significantly increased in ADSCs and decreased in MSCs. PPARγ and MyoD protein levels were upregulated in ADSCs and downregulated in MSCs. The CpG methylation levels of the PPARγ and MyoD promoters were decreased in ADSCs and increased in MSCs. Therefore, this study demonstrated that the different regulatory adipogenic roles of MSTN in ADSCs and MSCs act by differentially regulating PPARγ and MyoD expression. - Highlights: • PPARγ and MyoD mRNA and protein levels are upregulated by myostatin in ADSCs. • PPARγ and MyoD mRNA and protein levels are downregulated by myostatin in MSCs. • PPARγ exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • MyoD exhibited different methylation levels in myostatin-treated ADSCs and MSCs. • PPARγ and MyoD are differentially regulated by myostatin in ADSCs and MSCs.« less

  7. Myostatin regulates energy homeostasis in the heart and prevents heart failure.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Wietelmann, Astrid; Hermann, Sven; Schäfers, Michael; Krüger, Marcus; Boettger, Thomas; Borchardt, Thilo; Braun, Thomas

    2014-07-07

    Myostatin is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes, including enhanced insulin sensitivity. However, the function of myostatin in the heart is barely understood, although it is upregulated in the myocardium under several pathological conditions. Here, we aimed to decipher the role of myostatin and myostatin-dependent signaling pathways for cardiac function and cardiac metabolism in adult mice. To avoid potential counterregulatory mechanisms occurring in constitutive and germ-line-based myostatin mutants, we generated a mouse model that allows myostatin inactivation in adult cardiomyocytes. Cardiac MRI revealed that genetic inactivation of myostatin signaling in the adult murine heart caused cardiac hypertrophy and heart failure, partially recapitulating effects of the age-dependent decline of the myostatin paralog growth and differentiation factor 11. We found that myostatin represses AMP-activated kinase activation in the heart via transforming growth factor-β-activated kinase 1, thereby preventing a metabolic switch toward glycolysis and glycogen accumulation. Furthermore, myostatin stimulated expression of regulator of G-protein signaling 2, a GTPase-activating protein that restricts Gaq and Gas signaling and thereby protects against cardiac failure. Inhibition of AMP-activated kinase in vivo rescued cardiac hypertrophy and prevented enhanced glycolytic flow and glycogen accumulation after inactivation of myostatin in cardiomyocytes. Our results uncover an important role of myostatin in the heart for maintaining cardiac energy homeostasis and preventing cardiac hypertrophy. © 2014 American Heart Association, Inc.

  8. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage.

    PubMed

    Wang, Ruxia; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Lin, Hai

    2016-01-01

    Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (P<0.05) protein synthesis rates while increasing the abundance of myostatin. DEX increased (P<0.05) the level of phospho-FoxO1/3a (Thr 24/32) and the expression of MuRF1. In contrast, DEX treatment had no detectable effect on atrogin-1 protein levels (P>0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (P<0.05). Follistatin treatment inhibited the DEX-induced increase in myostatin (P<0.05) and the activation of phosphor-FoxO1/3a (Thr 24/32) (P< 0.05) and MuRF1 (P<0.05). Follistatin treatment had no influence on the protein synthesis rate or on the phosphorylation levels of mTOR (Ser 2448) and p70S6K (Thr 389) (P> 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids.

  9. Glucocorticoids Enhance Muscle Proteolysis through a Myostatin-Dependent Pathway at the Early Stage

    PubMed Central

    Wang, Ruxia; Jiao, Hongchao; Zhao, Jingpeng; Wang, Xiaojuan; Lin, Hai

    2016-01-01

    Myostatin, a member of the TGF-β superfamily of secreted proteins, is expressed primarily in skeletal muscle. It negatively regulates muscle mass and is associated with glucocorticoid-induced muscle atrophy. However, it remains unclear whether myostatin is involved in glucocorticoid-induced muscle protein turnover. The aim of the present study was to investigate the role of myostatin in protein metabolism during dexamethasone (DEX) treatment. Protein synthesis rates and the expression of the genes for myostatin, ubiquitin-proteasome atrogin-1, MuRF1, FoxO1/3a and mTOR/p70S6K were determined. The results show that DEX decreased (P<0.05) protein synthesis rates while increasing the abundance of myostatin. DEX increased (P<0.05) the level of phospho-FoxO1/3a (Thr 24/32) and the expression of MuRF1. In contrast, DEX treatment had no detectable effect on atrogin-1 protein levels (P>0.05). The phosphorylation levels of mTOR and p70S6K were decreased by DEX treatment (P<0.05). Follistatin treatment inhibited the DEX-induced increase in myostatin (P<0.05) and the activation of phosphor-FoxO1/3a (Thr 24/32) (P< 0.05) and MuRF1 (P<0.05). Follistatin treatment had no influence on the protein synthesis rate or on the phosphorylation levels of mTOR (Ser 2448) and p70S6K (Thr 389) (P> 0.05). In conclusion, the present study suggests that the myostatin signalling pathway is associated with glucocorticoid-induced muscle protein catabolism at the beginning of exposure. Myostatin is not a main pathway associated with the suppression of muscle protein synthesis by glucocorticoids. PMID:27227776

  10. Myostatin: expanding horizons.

    PubMed

    Sharma, Mridula; McFarlane, Craig; Kambadur, Ravi; Kukreti, Himani; Bonala, Sabeera; Srinivasan, Shruti

    2015-08-01

    Myostatin is a secreted growth and differentiation factor that belongs to the TGF-β superfamily. Myostatin is predominantly synthesized and expressed in skeletal muscle and thus exerts a huge impact on muscle growth and function. In keeping with its negative role in myogenesis, myostatin expression is tightly regulated at several levels including epigenetic, transcriptional, post-transcriptional, and post-translational. New revelations regarding myostatin regulation also offer mechanisms that could be exploited for developing myostatin antagonists. Increasingly, it is becoming clearer that besides its conventional role in muscle, myostatin plays a critical role in metabolism. Hence, molecular mechanisms by which myostatin regulates several key metabolic processes need to be further explored. © 2015 International Union of Biochemistry and Molecular Biology.

  11. Human myostatin negatively regulates human myoblast growth and differentiation

    PubMed Central

    McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; XiaoJia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D.; Sharma, Mridula

    2011-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway. PMID:21508334

  12. Human myostatin negatively regulates human myoblast growth and differentiation.

    PubMed

    McFarlane, Craig; Hui, Gu Zi; Amanda, Wong Zhi Wei; Lau, Hiu Yeung; Lokireddy, Sudarsanareddy; Xiaojia, Ge; Mouly, Vincent; Butler-Browne, Gillian; Gluckman, Peter D; Sharma, Mridula; Kambadur, Ravi

    2011-07-01

    Myostatin, a member of the transforming growth factor-β superfamily, has been implicated in the potent negative regulation of myogenesis in murine models. However, little is known about the mechanism(s) through which human myostatin negatively regulates human skeletal muscle growth. Using human primary myoblasts and recombinant human myostatin protein, we show here that myostatin blocks human myoblast proliferation by regulating cell cycle progression through targeted upregulation of p21. We further show that myostatin regulates myogenic differentiation through the inhibition of key myogenic regulatory factors including MyoD, via canonical Smad signaling. In addition, we have for the first time demonstrated the capability of myostatin to regulate the Notch signaling pathway during inhibition of human myoblast differentiation. Treatment with myostatin results in the upregulation of Hes1, Hes5, and Hey1 expression during differentiation; moreover, when we interfere with Notch signaling, through treatment with the γ-secretase inhibitor L-685,458, we find enhanced myotube formation despite the presence of excess myostatin. Therefore, blockade of the Notch pathway relieves myostatin repression of differentiation, and myostatin upregulates Notch downstream target genes. Immunoprecipitation studies demonstrate that myostatin treatment of myoblasts results in enhanced association of Notch1-intracellular domain with Smad3, providing an additional mechanism through which myostatin targets and represses the activity of the myogenic regulatory factor MyoD. On the basis of these results, we suggest that myostatin function and mechanism of action are very well conserved between species, and that myostatin regulation of postnatal myogenesis involves interactions with numerous downstream signaling mediators, including the Notch pathway.

  13. Expression of Myostatin in Intrauterine Growth Restriction and Preeclampsia Complicated Pregnancies and Alterations to Cytokine Production by First-Trimester Placental Explants Following Myostatin Treatment.

    PubMed

    Peiris, Hassendrini N; Georgiou, Harry; Lappas, Martha; Kaitu'u-Lino, Tu'uhevaha; Salomón, Carlos; Vaswani, Kanchan; Rice, Gregory E; Mitchell, Murray D

    2015-10-01

    Preeclampsia (PE) and intrauterine growth restriction (IUGR) are major obstetric health problems. Higher levels of T-helper (Th) 1 (proinflammatory) cytokines have been observed in pregnancies complicated with PE and IUGR; this is in contrast to the predominant Th2 (anti-inflammatory) cytokine environment found in uncomplicated pregnancies. Myostatin is best known as a negative regulator of muscle development and reportedly has a role in fat deposition, glucose metabolism, and cytokine modulation (outside the placenta). Myostatin concentrations in plasma and protein expression in placental tissue are significantly higher in women with PE. Expression of myostatin in IUGR and PE-IUGR and the effect of this protein on the cytokine production from the placenta is unknown. In the current study, significant differences were identified in the expression of myostatin in pregnancies complicated with IUGR, PE, and PE with IUGR. Furthermore, cytokine production by first-trimester placental tissues was altered following myostatin treatment. © The Author(s) 2015.

  14. Expression of recombinant myostatin propeptide pPIC9K-Msp plasmid in Pichia pastoris.

    PubMed

    Du, W; Xia, J; Zhang, Y; Liu, M J; Li, H B; Yan, X M; Zhang, J S; Li, N; Zhou, Z Y; Xie, W Z

    2015-12-28

    Myostatin propeptide can inhibit the biological activity of myostatin protein and promote muscle growth. To express myostatin propeptide in vitro with a higher biological activity, we performed codon optimization on the sheep myostatin propeptide gene sequence, and mutated aspartic acid-76 to alanine based on the codon usage bias of Pichia pastoris and the enhanced biological activity of myostatin propeptide mutant. Modified myostatin propeptide gene was cloned into the pPIC9K plasmid to form the recombinant plasmid pPIC9K-Msp. Recombinant plasmid pPIC9K-Msp was transformed into Pichia pastoris GS115 by electrotransformation. Transformed cells were screened, and methanol was used to induce expression. SDS-PAGE and western blotting were used to verify the successful expression of myostatin propeptide with biological activity in Pichia pastoris, providing the basis for characterization of this protein.

  15. Myostatin in the placentae of pregnancies complicated with gestational diabetes mellitus.

    PubMed

    Peiris, H N; Lappas, M; Georgiou, H M; Vaswani, K; Salomon, C; Rice, G E; Mitchell, M D

    2015-01-01

    Gestational diabetes mellitus (GDM) is characterised by maternal glucose intolerance and insulin resistance during pregnancy. Myostatin, initially identified as a negative regulator of muscle development may also function in the regulation of placental development and glucose uptake. Myostatin expression in placentae of GDM complicated pregnancies is unknown. However, higher myostatin levels occur in placentae of pregnancies complicated with preeclampsia. We hypothesise that myostatin will be differentially expressed in GDM complicated pregnancies. Myostatin concentrations (ELISA) were evaluated in plasma of presymptomatic women who later developed GDM and compared to plasma of normal glucose tolerant (NGT) women. Furthermore, myostatin protein expression (Western blot) was studied in placentae of pregnant women with GDM (treated with diet or insulin) compared to placentae of NGT women. No significant difference in myostatin concentration was seen in plasma of pre-symptomatic GDM women compared to NGT women. In placenta significant differences in myostatin protein expressions (higher precursor; p < 0.05and lower dimer: p < 0.005) were observed in GDM complicated compared to NGT pregnancies. Furthermore, placentae of GDM women treated with insulin compared to diet have higher dimer (p < 0.005) and lower precursor (p < 0.05). Compared to lean women, placentae of obese NGT women were lower in myostatin dimer expression (p < 0.05). Myostatin expression in placental tissue is altered under stress conditions (e.g. obesity and abnormal glucose metabolism) found in pregnancies complicated with GDM. We hypothesise that myostatin is active in these placentae and could affect glucose homoeostasis and/or cytokine production thereby altering the function of the placenta. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Over-Expression of Porcine Myostatin Missense Mutant Leads to A Gender Difference in Skeletal Muscle Growth between Transgenic Male and Female Mice.

    PubMed

    Ma, Dezun; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Jiang, Shengwang; Xiao, Gaojun; Cui, Wentao

    2015-08-24

    Myostatin, a transforming growth factor-β family member, is a negative regulator of skeletal muscle development and growth. Piedmontese cattle breeds have a missense mutation, which results in a cysteine to tyrosine substitution in the mature myostatin protein (C313Y). This loss-of-function mutation in myostatin results in a double-muscled phenotype in cattle. Myostatin propeptide is an inhibitor of myostatin activity and is considered a potential agent to stimulate muscle growth in livestock. In this study, we generated transgenic mice overexpressing porcine myostatin missense mutant (pmMS), C313Y, and wild-type porcine myostatin propeptide (ppMS), respectively, to examine their effects on muscle growth in mice. Enhanced muscle growth was observed in both pmMS and ppMS transgenic female mice and also in ppMS transgenic male mice. However, there was no enhanced muscle growth observed in pmMS transgenic male mice. To explore why there is such a big difference in muscle growth between pmMS and ppMS transgenic male mice, the expression level of androgen receptor (AR) mutant AR45 was measured by Western blot. Results indicated that AR45 expression significantly increased in pmMS transgenic male mice while it decreased dramatically in ppMS transgenic male mice. Our data demonstrate that both pmMS and ppMS act as myostatin inhibitors in the regulation of muscle growth, but the effect of pmMS in male mice is reversed by an increased AR45 expression. These results provide useful insight and basic theory to future studies on improving pork quality by genetically manipulating myostatin expression or by regulating myostatin activity.

  17. Reduced serum myostatin concentrations associated with genetic muscle disease progression.

    PubMed

    Burch, Peter M; Pogoryelova, Oksana; Palandra, Joe; Goldstein, Richard; Bennett, Donald; Fitz, Lori; Guglieri, Michela; Bettolo, Chiara Marini; Straub, Volker; Evangelista, Teresinha; Neubert, Hendrik; Lochmüller, Hanns; Morris, Carl

    2017-03-01

    Myostatin is a highly conserved protein secreted primarily from skeletal muscle that can potently suppress muscle growth. This ability to regulate skeletal muscle mass has sparked intense interest in the development of anti-myostatin therapies for a wide array of muscle disorders including sarcopenia, cachexia and genetic neuromuscular diseases. While a number of studies have examined the circulating myostatin concentrations in healthy and sarcopenic populations, very little data are available from inherited muscle disease patients. Here, we have measured the myostatin concentration in serum from seven genetic neuromuscular disorder patient populations using immunoaffinity LC-MS/MS. Average serum concentrations of myostatin in all seven muscle disease patient groups were significantly less than those measured in healthy controls. Furthermore, circulating myostatin concentrations correlated with clinical measures of disease progression for five of the muscle disease patient populations. These findings greatly expand the understanding of myostatin in neuromuscular disease and suggest its potential utility as a biomarker of disease progression.

  18. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways.

    PubMed

    Rodriguez, J; Vernus, B; Chelh, I; Cassar-Malek, I; Gabillard, J C; Hadj Sassi, A; Seiliez, I; Picard, B; Bonnieu, A

    2014-11-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin-proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin-proteasome and the autophagy-lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.

  19. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  20. The effect of myostatin silencing by lentiviral-mediated RNA interference on goat fetal fibroblasts.

    PubMed

    Lu, Jian; Wei, Caihong; Zhang, Xiaoning; Xu, Lingyang; Zhang, Shifang; Liu, Jiasen; Cao, Jiaxue; Zhao, Fuping; Zhang, Li; Li, Bichun; Du, Lixin

    2013-06-01

    Myostatin is a transforming growth factor-β family member that acts as a negative regulator of skeletal muscle mass. To identify possible myostatin inhibitors that may promote muscle growth, we used RNA interference mediated by a lentiviral vector to knockdown myostatin in goat fetal fibroblast cells. We also investigated the expression changes in relevant myogenic regulatory factors (MRFs) and adipogenic regulatory factors in the absence of myostatin in goat fetal fibroblasts. Quantitative RT-PCR revealed that myostatin transcripts were significantly reduced by 75 % (P < 0.01). Western blot showed that myostatin protein expression was reduced by 95 % (P < 0.01). We also found that the mRNA expression of activin receptor IIB (ACVR2B) significantly increased by 350 % (P < 0.01), and p21 increased 172 % (P < 0.01). Furthermore, myostatin inhibition decreased Myf5 and increased MEF2C mRNA expression in goat fetal fibroblasts, suggesting that myostatin regulates MRFs differently in fibroblasts compared to muscle. In addition, the expression of adipocyte marker genes peroxisome proliferator-activated receptor (PPAR) γ and leptin, but not CCAAT/enhance-binding protein (C/EBP) α and C/EBPβ, were upregulated at the transcript level after myostatin silencing. These results suggest that we have generated a novel way to block myostatin in vitro, which could be used to improve livestock meat production and gene therapy of musculoskeletal diseases. This also suggests that myostatin plays a negative role in regulating the expression of adipogenesis related genes in goat fetal fibroblasts.

  1. Myostatin induces mitochondrial metabolic alteration and typical apoptosis in cancer cells

    PubMed Central

    Liu, Y; Cheng, H; Zhou, Y; Zhu, Y; Bian, R; Chen, Y; Li, C; Ma, Q; Zheng, Q; Zhang, Y; Jin, H; Wang, X; Chen, Q; Zhu, D

    2013-01-01

    Myostatin, a member of the transforming growth factor-β superfamily, regulates the glucose metabolism of muscle cells, while dysregulated myostatin activity is associated with a number of metabolic disorders, including muscle cachexia, obesity and type II diabetes. We observed that myostatin induced significant mitochondrial metabolic alterations and prolonged exposure of myostatin induced mitochondria-dependent apoptosis in cancer cells addicted to glycolysis. To address the underlying mechanism, we found that the protein levels of Hexokinase II (HKII) and voltage-dependent anion channel 1 (VDAC1), two key regulators of glucose metabolisms as well as metabolic stress-induced apoptosis, were negatively correlated. In particular, VDAC1 was dramatically upregulated in cells that are sensitive to myostatin treatment whereas HKII was downregulated and dissociated from mitochondria. Myostatin promoted the translocation of Bax from cytosol to mitochondria, and knockdown of VDAC1 inhibited myostatin-induced Bax translocation and apoptosis. These apoptotic changes can be partially rescued by repletion of ATP, or by ectopic expression of HKII, suggesting that perturbation of mitochondrial metabolism is causally linked with subsequent apoptosis. Our findings reveal novel function of myostatin in regulating mitochondrial metabolism and apoptosis in cancer cells. PMID:23412387

  2. Expression and function of myostatin in obesity, diabetes, and exercise adaptation.

    PubMed

    Allen, David L; Hittel, Dustin S; McPherron, Alexandra C

    2011-10-01

    Myostatin is a member of the transforming growth factor-β/bone morphogenetic protein (TGF-β/BMP) superfamily of secreted factors that functions as a potent inhibitor of skeletal muscle growth. Moreover, considerable evidence has accumulated that myostatin also regulates metabolism and that its inhibition can significantly attenuate the progression of obesity and diabetes. Although at least part of these effects on metabolism can be attributable to myostatin's influence over skeletal muscle growth and therefore on the total volume of metabolically active lean body mass, there is mounting evidence that myostatin affects the growth and metabolic state of other tissues, including the adipose and the liver. In addition, recent work has explored the role of myostatin in substrate mobilization, uptake, and/or utilization of muscle independent of its effects on body composition. Finally, the effects of both endurance and resistance exercise on myostatin expression, as well as the potential role of myostatin in the beneficial metabolic adaptations occurring in response to exercise, have also begun to be delineated in greater detail. The purpose of this review was to summarize the work to date on the expression and function of myostatin in obesity, diabetes, and exercise adaptation.

  3. Myostatin as a Marker for Doxorubicin Induced Cardiac Damage.

    PubMed

    Kesik, Vural; Honca, Tevfik; Gulgun, Mustafa; Uysal, Bulent; Kurt, Yasemin Gulcan; Cayci, Tuncer; Babacan, Oguzhan; Gocgeldi, Ercan; Korkmazer, Nadir

    2016-01-01

    Doxorubicin (DXR) is an effective chemotherapeutic agent but causes severe cardiac failure over known doses. Thus, early detection and prevention of cardiac damage is important. Various markers have been tested for early detection of cardiac damage. Myostatin is a protein produced in skeletal muscle cells inhibits muscle differentiation and growth during myogenesis. We evaluated the role of myostatin as a marker for showing DXR induced cardiac damage and compared with well known cardiac markers like NT-proBNP, hs-TnT and CK in a rat model of chronic DXR cardiotoxicity. Myostatin, NT-proBNP, and hs-TnT but not CK rose significantly during DXR treatment. Myostatin can be used as an early marker of DXR induced cardiotoxicity. © 2016 by the Association of Clinical Scientists, Inc.

  4. Exercise training leads to a reduction of elevated myostatin levels in patients with chronic heart failure.

    PubMed

    Lenk, Karsten; Erbs, Sandra; Höllriegel, Robert; Beck, Ephraim; Linke, Axel; Gielen, Stephan; Winkler, Sven Möbius; Sandri, Marcus; Hambrecht, Rainer; Schuler, Gerhard; Adams, Volker

    2012-06-01

    In chronic heart failure (CHF), cardiac cachexia is often associated with the terminal stage of this disease. In animal studies it has been demonstrated that myostatin, a key regulator of skeletal muscle mass, is elevated in advanced stages of this syndrome. The aim of the present study was to investigate the expression of myostatin in patients with late stage CHF (NYHA IIIb) in comparison to healthy subjects. Furthermore the effects of physical exercise on myostatin were analyzed. Twenty-four patients were either randomized to a sedentary control group (CHF-S) or exercise training (CHF-E). At baseline and after 12 weeks mRNA and myostatin protein in the peripheral skeletal muscle as well as myostatin serum concentration were measured. Furthermore 12 age-matched healthy men were compared to all patients at baseline (HC). CHF patients showed a two-fold increase of myostatin mRNA (p = 0.05) and a 1.7-fold (p = 0.01) augmentation of protein content in skeletal muscle compared to healthy subjects. In late-stage CHF, exercise training led to a 36% reduction of the mRNA and a 23% decrease of the myostatin protein compared to baseline. The serum concentration of myostatin revealed no significant alteration between the groups. In the skeletal muscle, myostatin increases significantly in the course of CHF. The observed effects of a significant reduction of myostatin in skeletal muscle after 12 weeks of exercise training demonstrate the reversibility of molecular changes that might be able to halt the devastating process of muscle wasting in chronic heart failure.

  5. Myostatin Attenuation In Vivo Reduces Adiposity, but Activates Adipogenesis.

    PubMed

    Li, Naisi; Yang, Qiyuan; Walker, Ryan G; Thompson, Thomas B; Du, Min; Rodgers, Buel D

    2016-01-01

    A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn(-/-) (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn(-/-) BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn(-/-) animals results from nutrient partitioning away from fat and in support of muscle.

  6. Expression and Function of Myostatin in Obesity, Diabetes, and Exercise Adaptation

    PubMed Central

    Allen, David L.; Hittel, Dustin S.; McPherron, Alexandra C.

    2011-01-01

    Myostatin is a member of the transforming growth factor-beta/bone morphogenetic protein (TGF-β/BMP) super-family of secreted factors that functions as a potent inhibitor of skeletal muscle growth. Moreover, considerable evidence has accumulated that myostatin also regulates metabolism and that its inhibition can significantly attenuate the progression of obesity and diabetes. While at least part of these effects on metabolism can be attributable to myostatin’s influence over skeletal muscle growth and therefore on the total volume of metabolically active lean body mass, there is mounting evidence that myostatin affects the growth and metabolic state of other tissues, including the adipose and the liver. In addition, recent work has explored the role of myostatin in substrate mobilization, uptake and/or utilization of muscle independent of its effects on body composition. Finally, the effects of both endurance and resistance exercise on myostatin expression, as well as the potential role of myostatin in the beneficial metabolic adaptations occurring in response to exercise, have also begun to be delineated in greater detail. The purpose of this review is to summarize the work to date on the expression and function of myostatin in obesity, diabetes, and exercise adaptation. PMID:21364474

  7. Identification of the minimum peptide from mouse myostatin prodomain for human myostatin inhibition.

    PubMed

    Takayama, Kentaro; Noguchi, Yuri; Aoki, Shin; Takayama, Shota; Yoshida, Momoko; Asari, Tomo; Yakushiji, Fumika; Nishimatsu, Shin-ichiro; Ohsawa, Yutaka; Itoh, Fumiko; Negishi, Yoichi; Sunada, Yoshihide; Hayashi, Yoshio

    2015-02-12

    Myostatin, an endogenous negative regulator of skeletal muscle mass, is a therapeutic target for muscle atrophic disorders. Here, we identified minimum peptides 2 and 7 to effectively inhibit myostatin activity, which consist of 24 and 23 amino acids, respectively, derived from mouse myostatin prodomain. These peptides, which had the propensity to form α-helix structure, interacted to myostatin with KD values of 30-36 nM. Moreover, peptide 2 significantly increased muscle mass in Duchenne muscular dystrophy model mice.

  8. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease.

    PubMed

    Zhang, Liping; Rajan, Vik; Lin, Eugene; Hu, Zhaoyong; Han, H Q; Zhou, Xiaolan; Song, Yanping; Min, Hosung; Wang, Xiaonan; Du, Jie; Mitch, William E

    2011-05-01

    Chronic kidney disease (CKD) and several other catabolic conditions are characterized by increased circulating inflammatory cytokines, defects in IGF-1 signaling, abnormal muscle protein metabolism, and progressive muscle atrophy. In these conditions, no reliable treatments successfully block the development of muscle atrophy. In mice with CKD, we found a 2- to 3-fold increase in myostatin expression in muscle. Its pharmacological inhibition by subcutaneous injections of an anti-myostatin peptibody into CKD mice (IC(50) ∼1.2 nM) reversed the loss of body weight (≈5-7% increase in body mass) and muscle mass (∼10% increase in muscle mass) and suppressed circulating inflammatory cytokines vs. results from CKD mice injected with PBS. Pharmacological myostatin inhibition also decreased the rate of protein degradation (16.38 ± 1.29%; P<0.05), increased protein synthesis in extensor digitorum longus muscles (13.21 ± 1.09%; P<0.05), markedly enhanced satellite cell function, and improved IGF-1 intracellular signaling. In cultured muscle cells, TNF-α increased myostatin expression via a NF-κB-dependent pathway, whereas muscle cells exposed to myostatin stimulated IL-6 production via p38 MAPK and MEK1 pathways. Because IL-6 stimulates muscle protein breakdown, we conclude that CKD increases myostatin through cytokine-activated pathways, leading to muscle atrophy. Myostatin antagonism might become a therapeutic strategy for improving muscle growth in CKD and other conditions with similar characteristics.

  9. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease

    PubMed Central

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems. PMID:26448817

  10. Myostatin Activates the Ubiquitin-Proteasome and Autophagy-Lysosome Systems Contributing to Muscle Wasting in Chronic Kidney Disease.

    PubMed

    Wang, Dong-Tao; Yang, Ya-Jun; Huang, Ren-Hua; Zhang, Zhi-Hua; Lin, Xin

    2015-01-01

    Our evidence demonstrated that CKD upregulated the expression of myostatin, TNF-α, and p-IkBa and downregulated the phosphorylation of PI3K, Akt, and FoxO3a, which were also associated with protein degradation and muscle atrophy. The autophagosome formation and protein expression of autophagy-related genes were increased in muscle of CKD rats. The mRNA level and protein expression of MAFbx and MuRF-1 were also upregulated in CKD rats, as well as proteasome activity of 26S. Moreover, activation of myostatin elicited by TNF-α induces C2C12 myotube atrophy via upregulating the expression of autophagy-related genes, including MAFbx and MuRF1 and proteasome subunits. Inactivation of FoxO3a triggered by PI3K inhibitor LY294002 prevented the myostatin-induced increase of expression of MuRF1, MAFbx, and LC3-II protein in C2C12 myotubes. The findings were further consolidated by using siRNA interference and overexpression of myostatin. Additionally, expression of myostatin was activated by TNF-α via a NF-κB dependent pathway in C2C12 myotubes, while inhibition of NF-κB activity suppressed myostatin and improved myotube atrophy. Collectively, myostatin mediated CKD-induced muscle catabolism via coordinate activation of the autophagy and the ubiquitin-proteasome systems.

  11. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease

    PubMed Central

    Zhang, Liping; Rajan, Vik; Lin, Eugene; Hu, Zhaoyong; Han, H. Q.; Zhou, Xiaolan; Song, Yanping; Min, Hosung; Wang, Xiaonan; Du, Jie; Mitch, William E.

    2011-01-01

    Chronic kidney disease (CKD) and several other catabolic conditions are characterized by increased circulating inflammatory cytokines, defects in IGF-1 signaling, abnormal muscle protein metabolism, and progressive muscle atrophy. In these conditions, no reliable treatments successfully block the development of muscle atrophy. In mice with CKD, we found a 2- to 3-fold increase in myostatin expression in muscle. Its pharmacological inhibition by subcutaneous injections of an anti-myostatin peptibody into CKD mice (IC50 ∼1.2 nM) reversed the loss of body weight (≈5–7% increase in body mass) and muscle mass (∼10% increase in muscle mass) and suppressed circulating inflammatory cytokines vs. results from CKD mice injected with PBS. Pharmacological myostatin inhibition also decreased the rate of protein degradation (16.38±1.29%; P<0.05), increased protein synthesis in extensor digitorum longus muscles (13.21±1.09%; P<0.05), markedly enhanced satellite cell function, and improved IGF-1 intracellular signaling. In cultured muscle cells, TNF-α increased myostatin expression via a NF-κB-dependent pathway, whereas muscle cells exposed to myostatin stimulated IL-6 production via p38 MAPK and MEK1 pathways. Because IL-6 stimulates muscle protein breakdown, we conclude that CKD increases myostatin through cytokine-activated pathways, leading to muscle atrophy. Myostatin antagonism might become a therapeutic strategy for improving muscle growth in CKD and other conditions with similar characteristics.—Zhang, L., Rajan, V., Lin, E., Hu, Z., Han, H.Q., Zhou, X., Song, Y., Min, H., Wang, X., Du, J., Mitch, W. E. Pharmacological inhibition of myostatin suppresses systemic inflammation and muscle atrophy in mice with chronic kidney disease. PMID:21282204

  12. Bone Morphogenetic Proteins and myostatin pathways: key mediator of human sarcopenia.

    PubMed

    Scimeca, Manuel; Piccirilli, Eleonora; Mastrangeli, Francesca; Rao, Cecilia; Feola, Maurizio; Orlandi, Augusto; Gasbarra, Elena; Bonanno, Elena; Tarantino, Umberto

    2017-02-15

    Sarcopenia, osteoporosis and osteoarthritis are the most frequent musculoskeletal disorders affecting older people. The main aim of this study was to test the hypothesis that the balance between BMPs and myostatin pathways regulates the age-related muscle degeneration in OP and OA patients. To this end, we investigated the relationship among the expression of BMP-2/4-7, myostatin and phosphorylated Smads1-5-8 and the muscle quality, evaluated in term of fibers atrophy and satellite cells activity. In this retrospective study, we collected 123 biopsies of vastus lateralis: 48 biopsies from patients who underwent hip arthroplasty for subcapital fractures of the femur (OP), 55 biopsies from patients who underwent hip arthroplasty for osteoarthritis (OA) and 20 biopsies from patients who underwent hip arthroplasty for high-energy hip fractures (CTRL). Muscle biopsies were fixed in 4% paraformaldehyde and paraffin embedded. Serial sections were used for morphometrical and immunohistochemical analysis (BMP/2/4-7, myostatin, Smads1-5-8, Pax7 and myogenin). In addition, 1 mm 3 of muscle tissue of each patient was embedded in epon for ultrastructural study. Morphometric data indicated an increase of the number of atrophic fibers in OP patients compare to OA. In line with these data, we found an high regenerative potential in muscle tissues of OA patients due to the significant amount of both Pax7 and myogenin positive satellite cells detected in OA group. In addition, our data showed the decrease of BMP2/4 and -7 expression in OP patients compared to both OA group and CTRL. Conversely, OP patients were characterized by high levels of myostatin expression. A different expression profile was also found for phosphorylated Smad1-5-8 between OP and OA patients. In particular, OP patients showed a low number of positive phosphorylated Smad1-5-8 nuclei. The identification of molecular pathways involved in the pathogenesis of sarcopenia open new prospective for the development of

  13. Alternative Binding Modes Identified for Growth and Differentiation Factor-associated Serum Protein (GASP) Family Antagonism of Myostatin*

    PubMed Central

    Walker, Ryan G.; Angerman, Elizabeth B.; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B.

    2015-01-01

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. PMID:25657005

  14. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle

    PubMed Central

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-01

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle. PMID:27992376

  15. Myostatin-deficiency in mice increases global gene expression at the Dlk1-Dio3 locus in the skeletal muscle.

    PubMed

    Hitachi, Keisuke; Tsuchida, Kunihiro

    2017-01-24

    Myostatin, a member of the transforming growth factor-beta superfamily, is a negative regulator of skeletal muscle growth and development. Myostatin inhibition leads to increased skeletal muscle mass in mammals; hence, myostatin is considered a potential therapeutic target for skeletal muscle wasting. However, downstream molecules of myostatin in the skeletal muscle have not been fully elucidated. Here, we identified the Dlk1-Dio3 locus at the mouse chromosome 12qF1, also called as the callipyge locus in sheep, as a novel downstream target of myostatin. In skeletal muscle of myostatin knockout mice, the expression of mature miRNAs at the Dlk1-Dio3 locus was significantly increased. The increased miRNA levels are caused by the transcriptional activation of the Dlk1-Dio3 locus, because a significant increase in the primary miRNA transcript was observed in myostatin knockout mice. In addition, we found increased expression of coding and non-coding genes (Dlk1, Gtl2, Rtl1/Rtl1as, and Rian) at the Dlk1-Dio3 locus in myostatin-deficient skeletal muscle. Moreover, epigenetic changes, associated with the regulation of the Dlk1-Dio3 locus, were observed in myostatin knockout mice. Taken together, this is the first report demonstrating the role of myostatin in regulating the Dlk1-Dio3 (the callipyge) locus in the skeletal muscle.

  16. Myostatin inhibition therapy for insulin-deficient type 1 diabetes.

    PubMed

    Coleman, Samantha K; Rebalka, Irena A; D'Souza, Donna M; Deodhare, Namita; Desjardins, Eric M; Hawke, Thomas J

    2016-09-01

    While Type 1 Diabetes Mellitus (T1DM) is characterized by hypoinsulinemia and hyperglycemia, persons with T1DM also develop insulin resistance. Recent studies have demonstrated that insulin resistance in T1DM is a primary mediator of the micro and macrovascular complications that invariably develop in this chronic disease. Myostatin acts to attenuate muscle growth and has been demonstrated to be elevated in streptozotocin-induced diabetic models. We hypothesized that a reduction in mRNA expression of myostatin within a genetic T1DM mouse model would improve skeletal muscle health, resulting in a larger, more insulin sensitive muscle mass. To that end, Akita diabetic mice were crossed with Myostatin(Ln/Ln) mice to ultimately generate a novel mouse line. Our data support the hypothesis that decreased skeletal muscle expression of myostatin mRNA prevented the loss of muscle mass observed in T1DM. Furthermore, reductions in myostatin mRNA increased Glut1 and Glut4 protein expression and glucose uptake in response to an insulin tolerance test (ITT). These positive changes lead to significant reductions in resting blood glucose levels as well as pronounced reductions in associated diabetic symptoms, even in the absence of exogenous insulin. Taken together, this study provides a foundation for considering myostatin inhibition as an adjuvant therapy in T1DM as a means to improve insulin sensitivity and blood glucose management.

  17. Myostatin and carbohydrate disturbances.

    PubMed

    Assyov, Yavor S; Velikova, Tsvetelina V; Kamenov, Zdravko A

    2017-05-01

    Purpose/aim of the study: Myostatin is a myokine that has been shown to inhibit muscle growth and to have potentially deleterious effects on metabolism. The aim of the current study was to compare its circulating serum levels in subjects from the whole spectrum of carbohydrate disturbances leading to diabetes. A total of 159 age-, sex-, and BMI-matched subjects participated in the study - 50 had normal glucose tolerance (NGT), 60 had prediabetes (PreDM), and 49 had type 2 diabetes mellitus (T2D). Oral glucose tolerance testing was used to determine glucose tolerance. Serum myostatin was quantified by means of ELISA. Circulating serum myostatin levels were highest in patients with T2D, lower in subjects with prediabetes, and lowest in subjects with normoglycemia (all p < 0.05). Myostatin was shown to be positively associated with fasting plasma glucose, HOMA-IR, hepatic enzymes, uric acid, and FINDRISC questionnaire scores in both sexes. ROC analyses determined circulating myostatin levels to be of value for differentiating subjects with T2D (AUC = 0.72, p = 0.002 in men; AUC = 0.70, p = 0.004 in women) in the study population. After adjustment for potential confounders, in a multiple binary logistic regression model, serum myostatin added further information to traditional risk estimates in distinguishing subjects with T2D. Serum myostatin levels are higher with deterioration of carbohydrate tolerance. Furthermore, circulating myostatin is positively associated with traditional biochemical estimates of poor metabolic health. These data add to evidence of the involvement of this myokine in the pathogenesis of T2D.

  18. Myostatin Attenuation In Vivo Reduces Adiposity, but Activates Adipogenesis

    PubMed Central

    Li, Naisi; Yang, Qiyuan; Walker, Ryan G.; Thompson, Thomas B.; Du, Min

    2016-01-01

    A potentially novel approach for treating obesity includes attenuating myostatin as this increases muscle mass and decreases fat mass. Notwithstanding, conflicting studies report that myostatin stimulates or inhibits adipogenesis and it is unknown whether reduced adiposity with myostatin attenuation results from changes in fat deposition or adipogenesis. We therefore quantified changes in the stem, transit amplifying and progenitor cell pool in white adipose tissue (WAT) and brown adipose tissue (BAT) using label-retaining wild-type and mstn−/− (Jekyll) mice. Muscle mass was larger in Jekyll mice, WAT and BAT mass was smaller and label induction was equal in all tissues from both wild-type and Jekyll mice. The number of label-retaining cells, however, dissipated quicker in WAT and BAT of Jekyll mice and was only 25% and 17%, respectively, of wild-type cell counts 1 month after induction. Adipose cell density was significantly higher in Jekyll mice and increased over time concomitant with label-retaining cell disappearance, which is consistent with enhanced expansion and differentiation of the stem, transit amplifying and progenitor pool. Stromal vascular cells from Jekyll WAT and BAT differentiated into mature adipocytes at a faster rate than wild-type cells and although Jekyll WAT cells also proliferated quicker in vitro, those from BAT did not. Differentiation marker expression in vitro, however, suggests that mstn−/− BAT preadipocytes are far more sensitive to the suppressive effects of myostatin. These results suggest that myostatin attenuation stimulates adipogenesis in vivo and that the reduced adiposity in mstn−/− animals results from nutrient partitioning away from fat and in support of muscle. PMID:26580671

  19. Alternative binding modes identified for growth and differentiation factor-associated serum protein (GASP) family antagonism of myostatin.

    PubMed

    Walker, Ryan G; Angerman, Elizabeth B; Kattamuri, Chandramohan; Lee, Yun-Sil; Lee, Se-Jin; Thompson, Thomas B

    2015-03-20

    Myostatin, a member of the TGF-β family of ligands, is a strong negative regulator of muscle growth. As such, it is a prime therapeutic target for muscle wasting disorders. Similar to other TGF-β family ligands, myostatin is neutralized by binding one of a number of structurally diverse antagonists. Included are the antagonists GASP-1 and GASP-2, which are unique in that they specifically antagonize myostatin. However, little is known from a structural standpoint describing the interactions of GASP antagonists with myostatin. Here, we present the First low resolution solution structure of myostatin-free and myostatin-bound states of GASP-1 and GASP-2. Our studies have revealed GASP-1, which is 100 times more potent than GASP-2, preferentially binds myostatin in an asymmetrical 1:1 complex, whereas GASP-2 binds in a symmetrical 2:1 complex. Additionally, C-terminal truncations of GASP-1 result in less potent myostatin inhibitors that form a 2:1 complex, suggesting that the C-terminal domains of GASP-1 are the primary mediators for asymmetric complex formation. Overall, this study provides a new perspective on TGF-β antagonism, where closely related antagonists can utilize different ligand-binding strategies. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Fibronectin-based scaffold domain proteins that bind myostatin: a patent evaluation of WO2014043344.

    PubMed

    Walker, Ryan G; Thompson, Thomas B

    2015-05-01

    Muscular dystrophies (MD) are commonly characterized by progressive loss of muscle mass and function. It is hypothesized that therapeutic blockade of the TGF-β ligand myostatin, a negative regulator of muscle mass, will stimulate muscle growth and restore muscle function. Although many anti-myostatin targets are currently being pursued in the clinical setting, the efficacies of the tested molecules have shown mixed results. The patent WO2014043344 describes a novel approach for myostatin inhibition using a modified fibronectin type III domain that could potentially be used to treat MD and other muscle-related pathologies.

  1. Insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 mediate TGF-{beta}- and myostatin-induced suppression of proliferation in porcine embryonic myogenic cell cultures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamanga-Sollo, E.; Pampusch, M.S.; White, M.E.

    2005-11-15

    We have previously shown that cultured porcine embryonic myogenic cells (PEMC) produce both insulin-like growth factor binding protein (IGFBP)-3 and IGFBP-5 and secrete these proteins into their media. Exogenously added recombinant porcine (rp) IGFBP-3 and rpIGFBP-5 act via IGF-dependent and IGF-independent mechanisms to suppress proliferation of PEMC cultures. Furthermore, immunoneutralization of endogenous IGFBP-3 and IGFBP-5 in the PEMC culture medium results in increased DNA synthesis rate suggesting that endogenous IGFBP-3 and IGFBP-5 suppress PEMC proliferation. TGF-{beta} superfamily members myostatin and TGF-{beta}{sub 1} have also been shown to suppress proliferation of myogenic cells, and treatment of cultured PEMC with either TGF-{beta}{submore » 1} or myostatin significantly (P < 0.01) increases levels of IGFBP-3 and -5 mRNA. We have previously shown that immunoneutralization of IGFBP-3 decreases the proliferation-suppressing activity of TGF-{beta}{sub 1} and myostatin. Here, we show that immunoneutralization of IGFBP-5 also significantly (P < 0.05) decreases the DNA synthesis-suppressing activity of these molecules. Simultaneous immunoneutralization of both IGFBP-3 and IGFBP-5 in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures restores Long-R3-IGF-I-stimulated DNA synthesis rates to 90% of the levels observed in control cultures receiving no TGF-{beta}{sub 1} or myostatin treatment (P < 0.05). Even though immunoneutralization of IGFBP-3 and -5 increased DNA synthesis rates in TGF-{beta}{sub 1} or myostatin-treated PEMC cultures, phosphosmad2 levels in these cultures were not affected. These findings strongly suggest that IGFBP-3 and IGFBP-5 affect processes downstream from receptor-mediated Smad phosphorylation that facilitate the ability of TGF-{beta} and myostatin to suppress proliferation of PEMC.« less

  2. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders.

    PubMed

    Smith, Rosamund C; Lin, Boris K

    2013-12-01

    This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume.In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient.Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders.

  3. INVITED REVIEW: Inhibitors of myostatin as methods of enhancing muscle growth and development.

    PubMed

    Chen, P R; Lee, K

    2016-08-01

    With the increasing demand for affordable, high-quality meat, livestock and poultry producers must continually find ways to maximize muscle growth in their animals without compromising palatability of the meat products. Muscle mass relies on myoblast proliferation during prenatal or prehatch stages and fiber hypertrophy through protein synthesis and nuclei donation by satellite cells after birth or hatch. Therefore, understanding the cellular and molecular mechanisms of myogenesis and muscle development is of great interest. Myostatin is a well-known negative regulator of muscle growth and development that inhibits proliferation and differentiation in myogenic cells as well as protein synthesis in existing muscle fibers. In this review, various inhibitors of myostatin activity or signaling are examined that may be used in animal agriculture for enhancing muscle growth. Myostatin inhibitors are relevant as potential therapies for muscle-wasting diseases and muscle weakness in humans and animals. Currently, there are no commercial myostatin inhibitors for agriculture or biomedical purposes because the safest and most effective option has yet to be identified. Further investigation of myostatin inhibitors and administration strategies may revolutionize animal production and the medical field.

  4. The cAMP Response Element Binding protein (CREB) is activated by Insulin-like Growth Factor-1 (IGF-1) and regulates myostatin gene expression in skeletal myoblast

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuloaga, R.; Fuentes, E.N.; Molina, A.

    2013-10-18

    Highlights: •IGF-1 induces the activation of CREB via IGF-1R/PI3K/PLC signaling pathway. •Calcium dependent signaling pathways regulate myostatin gene expression. •IGF-1 regulates myostatin gene expression via CREB transcription in skeletal myoblast. -- Abstract: Myostatin, a member of the Transforming Growth Factor beta (TGF-β) superfamily, plays an important role as a negative regulator of skeletal muscle growth and differentiation. We have previously reported that IGF-1 induces a transient myostatin mRNA expression, through the activation of the Nuclear Factor of Activated T cells (NFAT) in an IP{sub 3}/calcium-dependent manner. Here we examined the activation of CREB transcription factor as downstream targets of IGF-1more » during myoblast differentiation and its role as a regulator of myostatin gene expression. In cultured skeletal myoblast, IGF-1 induced the phosphorylation and transcriptional activation of CREB via IGF-1 Receptor/Phosphatidylinositol 3-Kinase (PI3K)/Phospholipase C gamma (PLC γ), signaling pathways. Also, IGF-1 induced calcium-dependent molecules such as Calmodulin Kinase II (CaMK II), Extracellular signal-regulated Kinases (ERK), Protein Kinase C (PKC). Additionally, we examined myostatin mRNA levels and myostatin promoter activity in differentiated myoblasts stimulated with IGF-1. We found a significant increase in mRNA contents of myostatin and its reporter activity after treatment with IGF-1. The expression of myostatin in differentiated myoblast was downregulated by the transfection of siRNA–CREB and by pharmacological inhibitors of the signaling pathways involved in CREB activation. By using pharmacological and genetic approaches together these data demonstrate that IGF-1 regulates the myostatin gene expression via CREB transcription factor during muscle cell differentiation.« less

  5. Myostatin is a novel tumoral factor that induces cancer cachexia

    PubMed Central

    Lokireddy, Sudarsanareddy; Wijesoma, Isuru Wijerupage; Bonala, Sabeera; Wei, Meng; Sze, Siu Kwan; McFarlane, Craig; Kambadur, Ravi; Sharma, Mridula

    2012-01-01

    Humoral and tumoral factors collectively promote cancer-induced skeletal muscle wasting by increasing protein degradation. Although several humoral proteins, namely TNFα (tumour necrosis factor α) and IL (interleukin)-6, have been shown to induce skeletal muscle wasting, there is a lack of information regarding the tumoral factors that contribute to the atrophy of muscle during cancer cachexia. Therefore, in the present study, we have characterized the secretome of C26 colon cancer cells to identify the tumoral factors involved in cancer-induced skeletal muscle wasting. In the present study, we show that myostatin, a procachectic TGFβ (transforming growth factor β) superfamily member, is abundantly secreted by C26 cells. Consistent with myostatin signalling during cachexia, treating differentiated C2C12 myotubes with C26 CM (conditioned medium) resulted in myotubular atrophy due to the up-regulation of muscle-specific E3 ligases, atrogin-1 and MuRF1 (muscle RING-finger protein 1), and enhanced activity of the ubiquitin–proteasome pathway. Furthermore, the C26 CM also activated ActRIIB (activin receptor type II B)/Smad and NF-κB (nuclear factor κB) signalling, and reduced the activity of the IGF-I (insulin-like growth factor 1)/PI3K (phosphoinositide 3-kinase)/Akt pathway, three salient molecular features of myostatin action in skeletal muscles. Antagonists to myostatin prevented C26 CM-induced wasting in muscle cell cultures, further confirming that tumoral myostatin may be a key contributor in the pathogenesis of cancer cachexia. Finally, we show that treatment with C26 CM induced the autophagy–lysosome pathway and reduced the number of mitochondria in myotubes. These two previously unreported observations were recapitulated in skeletal muscles collected from C26 tumour-bearing mice. PMID:22621320

  6. Dystrophin-deficient dogs with reduced myostatin have unequal muscle growth and greater joint contractures.

    PubMed

    Kornegay, Joe N; Bogan, Daniel J; Bogan, Janet R; Dow, Jennifer L; Wang, Jiahui; Fan, Zheng; Liu, Naili; Warsing, Leigh C; Grange, Robert W; Ahn, Mihye; Balog-Alvarez, Cynthia J; Cotten, Steven W; Willis, Monte S; Brinkmeyer-Langford, Candice; Zhu, Hongtu; Palandra, Joe; Morris, Carl A; Styner, Martin A; Wagner, Kathryn R

    2016-01-01

    Myostatin (Mstn) is a negative regulator of muscle growth whose inhibition promotes muscle growth and regeneration. Dystrophin-deficient mdx mice in which myostatin is knocked out or inhibited postnatally have a less severe phenotype with greater total mass and strength and less fibrosis and fatty replacement of muscles than mdx mice with wild-type myostatin expression. Dogs with golden retriever muscular dystrophy (GRMD) have previously been noted to have increased muscle mass and reduced fibrosis after systemic postnatal myostatin inhibition. Based partly on these results, myostatin inhibitors are in development for use in human muscular dystrophies. However, persisting concerns regarding the effects of long-term and profound myostatin inhibition will not be easily or imminently answered in clinical trials. To address these concerns, we developed a canine (GRippet) model by crossbreeding dystrophin-deficient GRMD dogs with Mstn-heterozygous (Mstn (+/-)) whippets. A total of four GRippets (dystrophic and Mstn (+/-)), three GRMD (dystrophic and Mstn wild-type) dogs, and three non-dystrophic controls from two litters were evaluated. Myostatin messenger ribonucleic acid (mRNA) and protein levels were downregulated in both GRMD and GRippet dogs. GRippets had more severe postural changes and larger (more restricted) maximal joint flexion angles, apparently due to further exaggeration of disproportionate effects on muscle size. Flexors such as the cranial sartorius were more hypertrophied on magnetic resonance imaging (MRI) in the GRippets, while extensors, including the quadriceps femoris, underwent greater atrophy. Myostatin protein levels negatively correlated with relative cranial sartorius muscle cross-sectional area on MRI, supporting a role in disproportionate muscle size. Activin receptor type IIB (ActRIIB) expression was higher in dystrophic versus control dogs, consistent with physiologic feedback between myostatin and ActRIIB. However, there was no

  7. Myocardial myostatin in spontaneously hypertensive rats with heart failure.

    PubMed

    Damatto, R L; Lima, A R R; Martinez, P F; Cezar, M D M; Okoshi, K; Okoshi, M P

    2016-07-15

    Myostatin has been shown to regulate skeletal and cardiac muscle growth. However, its status on long-term hypertrophied myocardium has not been addressed. The purpose of this study was to evaluate the expression of myocardial myostatin and its antagonist follistatin in spontaneously hypertensive rats (SHR) with heart failure. Eighteen-month-old SHR were evaluated to identify clinical features of heart failure such as tachypnea/labored respiration and weight loss. After heart failure was detected, rats were subjected to echocardiogram and euthanized. Age-matched normotensive Wistar-Kyoto (WKY) rats were used as controls. Myostatin and follistatin protein expression was assessed by Western blotting. Statistical analysis was performed by Student's t test. All SHR (n=8) presented right ventricular hypertrophy and five had lung congestion. SHR had left chambers hypertrophy and dilation (left atrial diameter: WKY 5.73±0.59; SHR 7.28±1.17mm; p=0.004; left ventricular (LV) diastolic diameter/body weight ratio: WKY 19.6±3.1; SHR 27.7±4.7mm/kg; p=0.001), and LV systolic dysfunction (midwall fractional shortening: WKY 34.9±3.31; SHR 24.8±3.20%; p=0.003). Myocyte diameter (WKY 23.1±1.50, SHR 25.5±1.33μm; p=0.004) and myocardial interstitial collagen fraction (WKY 4.86±0.01; SHR 8.36±0.02%; p<0.001) were increased in the SHR. Myostatin (WKY 1.00±0.16; SHR 0.77±0.23 arbitrary units; p=0.035) and follistatin (WKY 1.00±0.35; SHR 0.49±0.18 arbitrary units; p=0.002) expression was lower in SHR. Myostatin and follistatin expression negatively correlated with LV diastolic diameter-to-body weight ratio and LV systolic diameter, and positively correlated with midwall fractional shortening. Myostatin and follistatin protein expression is reduced in the long-term hypertrophied myocardium from spontaneously hypertensive rats with heart failure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Inhibition of myostatin signaling through Notch activation following acute resistance exercise.

    PubMed

    MacKenzie, Matthew G; Hamilton, David Lee; Pepin, Mark; Patton, Amy; Baar, Keith

    2013-01-01

    Myostatin is a TGFβ family member and negative regulator of muscle size. Due to the complexity of the molecular pathway between myostatin mRNA/protein and changes in transcription, it has been difficult to understand whether myostatin plays a role in resistance exercise-induced skeletal muscle hypertrophy. To circumvent this problem, we determined the expression of a unique myostatin target gene, Mighty, following resistance exercise. Mighty mRNA increased by 6 h (82.9 ± 24.21%) and remained high out to 48 h (56.5 ± 19.67%) after resistance exercise. Further examination of the soleus, plantaris and tibialis anterior muscles showed that the change in Mighty mRNA at 6 h correlated with the increase in muscle size associated with this protocol (R(2) = 0.9996). The increase in Mighty mRNA occurred both independent of Smad2 phosphorylation and in spite of an increase in myostatin mRNA (341.8 ± 147.14% at 3 h). The myostatin inhibitor SKI remained unchanged. However, activated Notch, another potential inhibitor of TGFβ signaling, increased immediately following resistance exercise (83 ± 11.2%) and stayed elevated out to 6 h (78 ± 16.6%). Electroportion of the Notch intracellular domain into the tibialis anterior resulted in an increase in Mighty mRNA (63 ± 13.4%) that was equivalent to the canonical Notch target HES-1 (94.4 ± 7.32%). These data suggest that acute resistance exercise decreases myostatin signaling through the activation of the TGFβ inhibitor Notch resulting in a decrease in myostatin transcriptional activity that correlates well with muscle hypertrophy.

  9. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice

    USDA-ARS?s Scientific Manuscript database

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue...

  10. Preliminary Investigation into a Potential Role for Myostatin and Its Receptor (ActRIIB) in Lean and Obese Horses and Ponies

    PubMed Central

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity is a widespread problem across the leisure population of horses and ponies in industrialised nations. Skeletal muscle is a major contributor to whole body resting energy requirements and communicates with other tissues through the secretion of myokines into the circulation. Myostatin, a myokine and negative regulator of skeletal muscle mass, has been implicated in obesity development in other species. This study evaluated gene and protein expression of myostatin and its receptor, ActRIIB in adipose tissues and skeletal muscles and serum myostatin concentrations in six lean and six obese animals to explore putative associations between these factors and obesity in horses and ponies. Myostatin mRNA expression was increased while ActRIIB mRNA was decreased in skeletal muscles of obese animals but these differences were absent at the protein level. Myostatin mRNA was increased in crest fat of obese animals but neither myostatin nor ActRIIB proteins were detected in this tissue. Mean circulating myostatin concentrations were significantly higher in obese than in lean groups; 4.98 ng/ml (±2.71) and 9.00 ng/ml (±2.04) for the lean and obese groups, respectively. In addition, there was a significant positive association between these levels and myostatin gene expression in skeletal muscles (average R2 = 0.58; p<0.05). Together, these results provide further basis for the speculation that myostatin and its receptor may play a role in obesity in horses and ponies. PMID:25390640

  11. Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin.

    PubMed

    Szláma, György; Vásárhelyi, Viktor; Trexler, Mária; Patthy, László

    2016-12-01

    The NTR domain of WFIKKN1 protein has been shown to have significant affinity for the prodomain regions of promyostatin and latent myostatin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that WFIKKN1 inhibits the release of myostatin from promyostatin and/or latent myostatin. WFIKKN1 was found to have no effect on processing of promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, however, was significantly enhanced in the presence of WFIKKN1 and this enhancer activity was superstimulated by heparin. Unexpectedly, WFIKKN1 was also cleaved by BMP1 and our studies have shown that the KKN1 fragment generated by BMP1-cleavage of WFIKKN1 contributes most significantly to the observed enhancer activity. Analysis of a pro-TGF-β -based homology model of homodimeric latent myostatin revealed that the BMP1-cleavage sites are buried and not readily accessible to BMP1. In view of this observation, the most plausible explanation for the BMP1-enhancer activity of the KKN1 fragment is that it shifts a conformational equilibrium of latent myostatin from the closed circular structure of the homodimer to a more open form, making the cleavage sites more accessible to BMP1. On the other hand, the observation that the enhancer activity of KKN1 is superstimulated in the presence of heparin is explained by the fact KKN1, latent myostatin, and BMP1 have affinity for heparin and these interactions with heparin increase the local concentrations of the reactants thereby facilitating the action of BMP1. Furin: EC 3.4.21.75; BMP1, bone morphogentic protein 1 or procollagen C-endopeptidase: EC 3.4.24.19. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  12. Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders

    PubMed Central

    Smith, Rosamund C.; Lin, Boris K.

    2013-01-01

    Purpose of review This review summarizes recent progress in the development of myostatin inhibitors for the treatment of muscle wasting disorders. It also focuses on findings in myostatin biology that may have implications for the development of antimyostatin therapies. Recent findings There has been progress in evaluating antimyostatin therapies in animal models of muscle wasting disorders. Some programs have progressed into clinical development with initial results showing positive impact on muscle volume. In normal mice myostatin deficiency results in enlarged muscles with increased total force but decreased specific force (total force/total mass). An increase in myofibrillar protein synthesis without concomitant satellite cell proliferation and fusion leads to muscle hypertrophy with unchanged myonuclear number. A specific force reduction is not observed when atrophied muscle, the predominant therapeutic target of myostatin inhibitor therapy, is made myostatindeficient. Myostatin has been shown to be expressed by a number of tumor cell lines in mice and man. Summary Myostatin inhibition remains a promising therapeutic strategy for a range of muscle wasting disorders. PMID:24157714

  13. Immunolocalization of Myostatin (GDF-8) Following Musculoskeletal Injury and the Effects of Exogenous Myostatin on Muscle and Bone Healing

    PubMed Central

    Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang

    2012-01-01

    The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a “pool” of intense myostatin staining was observed among injured skeletal muscle fibers 12–24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. PMID:22205678

  14. Immunolocalization of myostatin (GDF-8) following musculoskeletal injury and the effects of exogenous myostatin on muscle and bone healing.

    PubMed

    Elkasrawy, Moataz; Immel, David; Wen, Xuejun; Liu, Xiaoyan; Liang, Li-Fang; Hamrick, Mark W

    2012-01-01

    The time course and cellular localization of myostatin expression following musculoskeletal injury are not well understood; therefore, the authors evaluated the temporal and spatial localization of myostatin during muscle and bone repair following deep penetrant injury in a mouse model. They then used hydrogel delivery of exogenous myostatin in the same injury model to determine the effects of myostatin exposure on muscle and bone healing. Results showed that a "pool" of intense myostatin staining was observed among injured skeletal muscle fibers 12-24 hr postsurgery and that myostatin was also expressed in the soft callus chondrocytes 4 days following osteotomy. Hydrogel delivery of 10 or 100 µg/ml recombinant myostatin decreased fracture callus cartilage area relative to total callus area in a dose-dependent manner by 41% and 80% (p<0.05), respectively, compared to vehicle treatment. Myostatin treatment also decreased fracture callus total bone volume by 30.6% and 38.8% (p<0.05), with the higher dose of recombinant myostatin yielding the greatest decrease in callus bone volume. Finally, exogenous myostatin treatment caused a significant dose-dependent increase in fibrous tissue formation in skeletal muscle. Together, these findings suggest that early pharmacological inhibition of myostatin is likely to improve the regenerative potential of both muscle and bone following deep penetrant musculoskeletal injury. © The Author(s) 2012

  15. A myostatin and activin decoy receptor enhances bone formation in mice.

    PubMed

    Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J

    2014-03-01

    Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. Copyright © 2013 The Authors

  16. Myostatin gene inactivation prevents skeletal muscle wasting in cancer.

    PubMed

    Gallot, Yann S; Durieux, Anne-Cécile; Castells, Josiane; Desgeorges, Marine M; Vernus, Barbara; Plantureux, Léa; Rémond, Didier; Jahnke, Vanessa E; Lefai, Etienne; Dardevet, Dominique; Nemoz, Georges; Schaeffer, Laurent; Bonnieu, Anne; Freyssenet, Damien G

    2014-12-15

    Cachexia is a muscle-wasting syndrome that contributes significantly to morbidity and mortality of many patients with advanced cancers. However, little is understood about how the severe loss of skeletal muscle characterizing this condition occurs. In the current study, we tested the hypothesis that the muscle protein myostatin is involved in mediating the pathogenesis of cachexia-induced muscle wasting in tumor-bearing mice. Myostatin gene inactivation prevented the severe loss of skeletal muscle mass induced in mice engrafted with Lewis lung carcinoma (LLC) cells or in Apc(Min) (/+) mice, an established model of colorectal cancer and cachexia. Mechanistically, myostatin loss attenuated the activation of muscle fiber proteolytic pathways by inhibiting the expression of atrophy-related genes, MuRF1 and MAFbx/Atrogin-1, along with autophagy-related genes. Notably, myostatin loss also impeded the growth of LLC tumors, the number and the size of intestinal polyps in Apc(Min) (/+) mice, thus strongly increasing survival in both models. Gene expression analysis in the LLC model showed this phenotype to be associated with reduced expression of genes involved in tumor metabolism, activin signaling, and apoptosis. Taken together, our results reveal an essential role for myostatin in the pathogenesis of cancer cachexia and link this condition to tumor growth, with implications for furthering understanding of cancer as a systemic disease. ©2014 American Association for Cancer Research.

  17. Oral administration of myostatin-specific recombinant Saccharomyces cerevisiae vaccine in rabbit.

    PubMed

    Liu, Zhongtian; Zhou, Gang; Ren, Chonghua; Xu, Kun; Yan, Qiang; Li, Xinyi; Zhang, Tingting; Zhang, Zhiying

    2016-04-29

    Yeast is considered as a simple and cost-effective host for protein expression, and our previous studies have proved that Saccharomyces cerevisiae can deliver recombinant protein and DNA into mouse dendritic cells and can further induce immune responses as novel vaccines. In order to know whether similar immune responses can be induced in rabbit by oral administration of such recombinant S. cerevisiae vaccine, we orally fed the rabbits with heat-inactivated myostatin-recombinant S. cerevisiae for 5 weeks, and then myostatin-specific antibody in serum was detected successfully by western blotting and ELISA assay. The rabbits treated with myostatin-recombinant S. cerevisiae vaccine grew faster and their muscles were much heavier than that of the control group. As a common experimental animal and a meat livestock with great economic value, rabbit was proved to be the second animal species that have been successfully orally immunized by recombinant S. cerevisiae vaccine after mice. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Genetics Home Reference: myostatin-related muscle hypertrophy

    MedlinePlus

    ... Conditions Myostatin-related muscle hypertrophy Myostatin-related muscle hypertrophy Printable PDF Open All Close All Enable Javascript ... the expand/collapse boxes. Description Myostatin-related muscle hypertrophy is a rare condition characterized by reduced body ...

  19. Serum irisin and myostatin levels after 2 weeks of high-altitude climbing.

    PubMed

    Śliwicka, Ewa; Cisoń, Tomasz; Kasprzak, Zbigniew; Nowak, Alicja; Pilaczyńska-Szcześniak, Łucja

    2017-01-01

    Exposure to high-altitude hypoxia causes physiological and metabolic adaptive changes by disturbing homeostasis. Hypoxia-related changes in skeletal muscle affect the closely interconnected energy and regeneration processes. The balance between protein synthesis and degradation in the skeletal muscle is regulated by several molecules such as myostatin, cytokines, vitamin D, and irisin. This study investigates changes in irisin and myostatin levels in male climbers after a 2-week high-altitude expedition, and their association with 25(OH)D and indices of inflammatory processes. The study was performed in 8 men aged between 23 and 31 years, who participated in a 2-week climbing expedition in the Alps. The measurements of body composition and serum concentrations of irisin, myostatin, 25(OH)D, interleukin-6, myoglobin, high-sensitivity C-reactive protein, osteoprotegerin, and high-sensitivity soluble receptor activator of NF-κB ligand (sRANKL) were performed before and after expedition. A 2-week exposure to hypobaric hypoxia caused significant decrease in body mass, body mass index (BMI), free fat mass and irisin, 25-Hydroxyvitamin D levels. On the other hand, significant increase in the levels of myoglobin, high-sensitivity C-reactive protein, interleukin-6, and osteoprotegerin were noted. The observed correlations of irisin with 25(OH)D levels, as well as myostatin levels with inflammatory markers and the OPG/RANKL ratio indicate that these myokines may be involved in the energy-related processes and skeletal muscle regeneration in response to 2-week exposure to hypobaric hypoxia.

  20. Myostatin--the holy grail for muscle, bone, and fat?

    PubMed

    Buehring, B; Binkley, N

    2013-12-01

    Myostatin, a member of the transforming growth factor beta (TGF-β) superfamily, was first described in 1997. Since then, myostatin has gained growing attention because of the discovery that myostatin inhibition leads to muscle mass accrual. Myostatin not only plays a key role in muscle homeostasis, but also affects fat and bone. This review will focus on the impact of myostatin and its inhibition on muscle mass/function, adipose tissue and bone density/geometry in humans. Although existing data are sparse, myostatin inhibition leads to increased lean mass and 1 study found a decrease in fat mass and increase in bone formation. In addition, myostatin levels are increased in sarcopenia, cachexia and bed rest whereas they are increased after resistance training, suggesting physiological regulatory of myostatin. Increased myostatin levels have also been found in obesity and levels decrease after weight loss from caloric restriction. Knowledge on the relationship of myostatin with bone is largely based on animal data where elevated myostatin levels lead to decreased BMD and myostatin inhibition improved BMD. In summary, myostatin appears to be a key factor in the integrated physiology of muscle, fat, and bone. It is unclear whether myostatin directly affects fat and bone, or indirectly via muscle. Whether via direct or indirect effects, myostatin inhibition appears to increase muscle and bone mass and decrease fat tissue-a combination that truly appears to be a holy grail. However, at this time, human data for both efficacy and safety are extremely limited. Moreover, whether increased muscle mass also leads to improved function remains to be determined. Ultimately potential beneficial effects of myostatin inhibition will need to be determined based on hard outcomes such as falls and fractures.

  1. Myostatin inhibition by a follistatin-derived peptide ameliorates the pathophysiology of muscular dystrophy model mice.

    PubMed

    Tsuchida, K

    2008-07-01

    Gene-targeted therapies, such as adeno-associated viral vector (AAV)-mediated gene therapy and cell-mediated therapy using myogenic stem cells, are hopeful molecular strategies for muscular dystrophy. In addition, drug therapies based on the pathophysiology of muscular dystrophy patients are desirable. Multidisciplinary approaches to drug design would offer promising therapeutic strategies. Myostatin, a member of the transforming growth factor-beta superfamily, is predominantly produced by skeletal muscle and negatively regulates the growth and differentiation of cells of the skeletal muscle lineage. Myostatin inhibition would increase the skeletal muscle mass and prevent muscle degeneration, regardless of the type of muscular dystrophy. Myostatin inhibitors include myostatin antibodies, myostatin propeptide, follistatin and follistatin-related protein. Although follistatin possesses potent myostatin-inhibiting activity, it works as an efficient inhibitor of activins. Unlike myostatin, activins regulate the growth and differentiation of nearly all cell types, including cells of the gonads, pituitary gland and skeletal muscle. We have developed a myostatin-specific inhibitor derived from follistatin, designated FS I-I. Transgenic mice expressing this myostatin-inhibiting peptide under the control of a skeletal muscle-specific promoter showed increased skeletal muscle mass and strength. mdx mice were crossed with FS I-I transgenic mice and any improvement of the pathological signs was investigated. The resulting mdx/FS I-I mice exhibited increased skeletal muscle mass and reduced cell infiltration in muscles. Muscle strength was also recovered in mdx/FS I-I mice. Our data indicate that myostatin inhibition by this follistatin-derived peptide has therapeutic potential for muscular dystrophy.

  2. Myostatin, follistatin and activin type II receptors are highly expressed in adenomyosis.

    PubMed

    Carrarelli, Patrizia; Yen, Chih-Fen; Arcuri, Felice; Funghi, Lucia; Tosti, Claudia; Wang, Tzu-Hao; Huang, Joseph S; Petraglia, Felice

    2015-09-01

    To evaluate the expression pattern of activins and related growth factor messenger RNA (mRNA) levels in adenomyotic nodules and in their endometrium. Prospective study. University hospital. Symptomatic premenopausal women scheduled to undergo hysterectomy for adenomyosis. Samples from adenomyotic nodules and homologous endometria were collected. Endometrial tissue was also obtained from a control group. Quantitative real-time polymerase chain reaction (PCR) analysis and immunohistochemical localization of activin-related growth factors (activin A, activin B, and myostatin), binding protein (follistatin), antagonists (inhibin-α, cripto), and receptors (ActRIIa, ActRIIb) were performed. Myostatin mRNA levels in adenomyotic nodule were higher than in eutopic endometrium and myostatin, activin A, and follistatin concentrations were higher than in control endometrium. No difference was observed for inhibin-α, activin B, and cripto mRNA levels. Increased mRNA levels of ActRIIa and ActRIIb were observed in adenomyotic nodules compared with eutopic endometrium and control endometrium. Immunofluorescent staining for myostatin and follistatin confirmed higher protein expression in both glands and stroma of patients with adenomyosis than in controls. The present study showed for the first time that adenomyotic tissues express high levels of myostatin, follistatin, and activin A (growth factors involved in proliferation, apoptosis, and angiogenesis). Increased expression of their receptors supports the hypothesis of a possible local effect of these growth factors in adenomyosis. The augmented expression of ActRIIa, ActRIIb, and follistatin in the endometrium of these patients may play a role in adenomyosis-related infertility. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Purification and Crystallization of Murine Myostatin: A Negative Regulator of Muscle Mass

    NASA Technical Reports Server (NTRS)

    Hong, Young S.; Adamek, Daniel; Bridge, Kristi; Malone, Christine C.; Young, Ronald B.; Miller, Teresa; Karr, Laurel

    2004-01-01

    Myostatin (MSTN) has been crystallized and its preliminary X-ray diffraction data were collected. MSTN is a negative regulator of muscle growt/differentiation and suppressor of fat accumulation. It is a member of TGF-b family of proteins. Like other members of this family, the regulation of MSTN is critically tied to its process of maturation. This process involves the formation of a homodimer followed by two proteolytic steps. The first proteolytic cleavage produces a species where the n-terminal portion of the dimer is covalently separated from, but remains non-covalently bound to, the c-terminal, functional, portion of the protein. The protein is activated upon removal of the n-terminal "pro-segment" by a second n-terminal proteolytic cut by BMP-1 in vivo, or by acid treatment in vitro. Understanding the structural nature and physical interactions involved in these regulatory processes is the objective of our studies. Murine MSTN was purified from culture media of genetically engineered Chinese Hamster Ovary cells by multicolumn purification process and crystallized using the vapor diffusion method.

  4. Cloning and characterization of largemouth bass ( Micropterus salmoides) myostatin encoding gene and its promoter

    NASA Astrophysics Data System (ADS)

    Li, Shengjie; Bai, Junjie; Wang, Lin

    2008-08-01

    Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.

  5. Exercise alters myostatin protein expression in sedentary and exercised streptozotocin-diabetic rats.

    PubMed

    Bassi, Daniela; Bueno, Patricia de Godoy; Nonaka, Keico Okino; Selistre-Araujo, Heloisa Sobreiro; Leal, Angela Merice de Oliveira

    2015-04-01

    The aim of this study was to analyze the effect of exercise on the pattern of muscle myostatin (MSTN) protein expression in two important metabolic disorders, i.e., obesity and diabetes mellitus. MSTN, is a negative regulator of skeletal muscle mass. We evaluated the effect of exercise on MSTN protein expression in diabetes mellitus and high fat diet-induced obesity. MSTN protein expression in gastrocnemius muscle was analyzed by Western Blot. P < 0.05 was assumed. Exercise induced a significant decrease in glycemia in both diabetic and obese animals. The expression of precursor and processed protein forms of MSTN and the weight of gastrocnemius muscle did not vary in sedentary or exercised obese animals. Diabetes reduced gastrocnemius muscle weight in sedentary animals. However, gastrocnemius muscle weight increased in diabetic exercised animals. Both the precursor and processed forms of muscle MSTN protein were significantly higher in sedentary diabetic rats than in control rats. The precursor form was significantly lower in diabetic exercised animals than in diabetic sedentary animals. However, the processed form did not change. These results demonstrate that exercise can modulate the muscle expression of MSTN protein in diabetic rats and suggest that MSTN may be involved in energy homeostasis.

  6. Inhibition of adipogenic differentiation by myostatin is alleviated by arginine supplementation in porcine-muscle-derived mesenchymal stem cells.

    PubMed

    Lei, Hulong; Yu, Bing; Yang, Xuerong; Liu, Zehui; Huang, Zhiqing; Mao, Xiangbing; Tian, Gang; He, Jun; Han, Guoquan; Chen, Hong; Mao, Qian; Chen, Daiwen

    2011-10-01

    Porcine mesenchymal stem cells in postnatal muscle have been demonstrated to differentiate into adipocytes. This increases adipocyte number and lipid accumulation, and is thought to be the origin of intramuscular fat. In this study, the effects of myostatin and arginine on adipogenic differentiation in mesenchymal stem cells derived from porcine muscle (pMDSCs) were investigated in vitro. Intracellular triglyceride levels were reduced by exogenous myostatin and increased by arginine supplementation or myostatin antibody (P<0.01). The inhibition of lipid accumulation by myostatin in pMDSCs was alleviated by arginine supplementation (P<0.01). Expression patterns of adipogenic transcription factors showed that exogenous myostatin suppressed PPARγ2 and aP2 expression (P<0.01), while supplemental arginine or myostatin antibody promoted ADD1 expression (P<0.01). Furthermore, compared with the addition of either myostatin protein or antibody alone, ADD1 and PPARδ expression were promoted by the combination of arginine and myostatin (P<0.01), and arginine combined with myostatin antibody promoted the expression of ADD1, PPARδ, C/EBPα, PPARγ2 and LPL in pMDSCs (P<0.05). These results suggest that myostatin inhibits adipogenesis in pMDSCs, and that this can be alleviated by arginine supplementation, at least in part, through promoting ADD1 and PPARδ expression.

  7. Myostatin signaling regulates Akt activity via the regulation of miR-486 expression.

    PubMed

    Hitachi, Keisuke; Nakatani, Masashi; Tsuchida, Kunihiro

    2014-02-01

    Myostatin, also known as growth and differentiation factor-8, is a pivotal negative regulator of skeletal muscle mass and reduces muscle protein synthesis by inhibiting the insulin-like growth factor-1 (IGF-1)/Akt/mammalian target of rapamycin (mTOR) pathway. However, the precise mechanism by which myostatin inhibits the IGF-1/Akt/mTOR pathway remains unclear. In this study, we investigated the global microRNA expression profile in myostatin knockout mice and identified miR-486, a positive regulator of the IGF-1/Akt pathway, as a novel target of myostatin signaling. In myostatin knockout mice, the expression level of miR-486 in skeletal muscle was significantly increased. In addition, we observed increased expression of the primary transcript of miR-486 (pri-miR-486) and Ankyrin 1.5 (Ank1.5), the host gene of miR-486, in myostatin knockout mice. In C2C12 cells, myostatin negatively regulated the expression of Ank1.5. Moreover, canonical myostatin signaling repressed the skeletal muscle-specific promoter activity of miR-486/Ank1.5. This repression was partially mediated by the E-box elements in the proximal region of the promoter. We also show that overexpression of miR-486 induced myotube hypertrophy in vitro and that miR-486 was essential to maintain skeletal muscle size both in vitro and in vivo. In addition, inhibition of miR-486 led to a decrease in Akt activity in C2C12 myotubes. Our findings indicate that miR-486 is one of the intermediary molecules connecting myostatin signaling and the IGF-1/Akt/mTOR pathway in the regulation of skeletal muscle size. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Undernutrition regulates the expression of a novel splice variant of myostatin and insulin-like growth factor 1 in ovine skeletal muscle.

    PubMed

    Jeanplong, F; Osepchook, C C; Falconer, S J; Smith, H K; Bass, J J; McMahon, C D; Oldham, J M

    2015-07-01

    Undernutrition suppresses the growth of skeletal muscles and alters the expression of insulin-like growth factor 1 (IGF1), a key mitogen, and myostatin, a potent inhibitor of myogenesis. These changes can explain, at least in part, the reduced growth of skeletal muscles in underfed lambs. We have recently identified a myostatin splice variant (MSV) that binds to and antagonizes the canonical signaling of myostatin. In the present study, we hypothesized that the expression of MSV would be reduced in conjunction with myostatin and IGF1 in response to underfeeding in skeletal muscles of sheep. Young growing ewes were fed either ad libitum or an energy-restricted diet (30% of maintenance requirements) for 28 d. This regime of underfeeding resulted in a 24% reduction in body mass (P < 0.001) and a 36% reduction in the mass of the semitendinosus muscles relative to controls (P < 0.001) by day 28. The concentrations of MSV and IGF1 messenger RNA (mRNA) were reduced (both P < 0.001), but myostatin mRNA was not altered in semitendinosus muscles. Unlike the reduced expression of mRNA, the abundance of MSV protein was increased (P < 0.05) and there was no change in the abundance of myostatin protein. Our results suggest that undernutrition for 28 d decreases the signaling of myostatin by increasing the abundance of MSV protein. Although this action may reduce the growth inhibitory activity of myostatin, it cannot prevent the loss of growth of skeletal muscles during undernutrition. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. MatureP: prediction of secreted proteins with exclusive information from their mature regions.

    PubMed

    Orfanoudaki, Georgia; Markaki, Maria; Chatzi, Katerina; Tsamardinos, Ioannis; Economou, Anastassios

    2017-06-12

    More than a third of the cellular proteome is non-cytoplasmic. Most secretory proteins use the Sec system for export and are targeted to membranes using signal peptides and mature domains. To specifically analyze bacterial mature domain features, we developed MatureP, a classifier that predicts secretory sequences through features exclusively computed from their mature domains. MatureP was trained using Just Add Data Bio, an automated machine learning tool. Mature domains are predicted efficiently with ~92% success, as measured by the Area Under the Receiver Operating Characteristic Curve (AUC). Predictions were validated using experimental datasets of mutated secretory proteins. The features selected by MatureP reveal prominent differences in amino acid content between secreted and cytoplasmic proteins. Amino-terminal mature domain sequences have enhanced disorder, more hydroxyl and polar residues and less hydrophobics. Cytoplasmic proteins have prominent amino-terminal hydrophobic stretches and charged regions downstream. Presumably, secretory mature domains comprise a distinct protein class. They balance properties that promote the necessary flexibility required for the maintenance of non-folded states during targeting and secretion with the ability of post-secretion folding. These findings provide novel insight in protein trafficking, sorting and folding mechanisms and may benefit protein secretion biotechnology.

  10. Effects of the activin A-myostatin-follistatin system on aging bone and muscle progenitor cells

    PubMed Central

    Bowser, Matthew; Herberg, Samuel; Arounleut, Phonepasong; Shi, Xingming; Fulzele, Sadanand; Hill, William D.; Isales, Carlos M.; Hamrick, Mark W.

    2013-01-01

    The activin A-myostatin-follistatin system is thought to play an important role in the regulation of muscle and bone mass throughout growth, development, and aging; however, the effects of these ligands on progenitor cell proliferation and differentiation in muscle and bone are not well understood. In addition, age-associated changes in the relative expression of these factors in musculoskeletal tissues have not been described. We therefore examined changes in protein levels of activin A, follistatin, and myostatin (GDF-8) in both muscle and bone with age in C57BL6 mice using ELISA. We then investigated the effects of activin A, myostatin and follistatin on the proliferation and differentiation of primary myoblasts and mouse bone marrow stromal cells (BMSCs) in vitro. Myostatin levels and the myostatin:follistatin ratio increased with age in the primarily slow-twitch mouse soleus muscle, whereas the pattern was reversed with age in the fast-twitch extensor digitorum longus muscle. Myostatin levels and the myostatin: follistatin ratio increased significantly (+75%) in mouse bone marrow with age, as did activin A levels (+17%). Follistatin increased the proliferation of primary myoblasts from both young and aged mice, whereas myostatin increased proliferation of younger myoblasts but decreased proliferation of older myoblasts. Myostatin reduced proliferation of both young and aged BMSCs in a dose-dependent fashion, and activin A increased mineralization in both young and aged BMSCs. Together these data suggest that aging in mice is accompanied by changes in the expression of activin A and myostatin, as well as changes in the response of bone and muscle progenitor cells to these factors. Myostatin appears to play a particularly important role in the impaired proliferative capacity of muscle and bone progenitor cells from aged mice. PMID:23178301

  11. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation.

    PubMed

    Walker, Ryan G; Poggioli, Tommaso; Katsimpardi, Lida; Buchanan, Sean M; Oh, Juhyun; Wattrus, Sam; Heidecker, Bettina; Fong, Yick W; Rubin, Lee L; Ganz, Peter; Thompson, Thomas B; Wagers, Amy J; Lee, Richard T

    2016-04-01

    Growth differentiation factor 11 (GDF11) and myostatin (or GDF8) are closely related members of the transforming growth factor β superfamily and are often perceived to serve similar or overlapping roles. Yet, despite commonalities in protein sequence, receptor utilization and signaling, accumulating evidence suggests that these 2 ligands can have distinct functions in many situations. GDF11 is essential for mammalian development and has been suggested to regulate aging of multiple tissues, whereas myostatin is a well-described negative regulator of postnatal skeletal and cardiac muscle mass and modulates metabolic processes. In this review, we discuss the biochemical regulation of GDF11 and myostatin and their functions in the heart, skeletal muscle, and brain. We also highlight recent clinical findings with respect to a potential role for GDF11 and/or myostatin in humans with heart disease. Finally, we address key outstanding questions related to GDF11 and myostatin dynamics and signaling during development, growth, and aging. © 2016 American Heart Association, Inc.

  12. Myostatin, a profibrotic factor and the main inhibitor of striated muscle mass, is present in the penile and vascular smooth muscle.

    PubMed

    Kovanecz, I; Masouminia, M; Gelfand, R; Vernet, D; Rajfer, J; Gonzalez-Cadavid, N F

    2017-09-01

    Myostatin is present in striated myofibers but, except for myometrial cells, has not been reported within smooth muscle cells (SMC). We investigated in the rat whether myostatin is present in SMC within the penis and the vascular wall and, if so, whether it is transcriptionally expressed and associated with the loss of corporal SMC occurring in certain forms of erectile dysfunction (ED). Myostatin protein was detected by immunohistochemistry/fluorescence and western blots in the perineal striated muscles, and also in the SMC of the penile corpora, arteries and veins, and aorta. Myostatin was found in corporal SMC cultures, and its transcriptional expression (and its receptor) was shown there by DNA microarrays. Myostatin protein was measured by western blots in the penile shaft of rats subjected to bilateral cavernosal nerve resection (BCNR), that were left untreated, or treated (45 days) with muscle-derived stem cells (MDSC), or concurrent daily low-dose sildenafil. Myostatin was not increased by BCNR (compared with sham operated animals), but over expressed after treatment with MDSC. This was reduced by concurrent sildenafil. The presence of myostatin in corporal and vascular SMC, and its overexpression in the corpora by MDSC therapy, may have relevance for the stem cell treatment of corporal fibrosis and ED.

  13. [Role of myostatin in wasting syndrome associated with chronic diseases].

    PubMed

    Zamora, Elisabet; Galán, Amparo; Simó, Rafael

    2008-11-01

    Muscle wasting is a common process of numerous chronic diseases. Sarcopenia is associated with poor prognosis independently of the outcome of the disease. To date, the mechanisms by which sarcopenia induces these alterations are unknown, but the complexity of muscular metabolism anticipates that many factors can be involved. Myostatin, a new family member of transforming growth factor beta, was initially described from the observation of significant muscular growing in knock out mice for myostatin. Numerous experimental and clinical studies have provided insights in the physiologic knowledge of this protein and its implication in muscle wasting conditions. In recent years different substances have been described that counteract myostatin through numerous physiopathological mecanisms and, therefore, they might be novel therapeutic strategies against the wasting syndrome associated with chronic diseases. In spite of that, more studies are needed to improve the knowledge of all processes involved in muscle wasting in order to prevent its devastating consequences.

  14. Expression of myostatin is not altered in lines of poultry exhibiting myofiber hyper- and hypoplasia.

    PubMed

    Mott, I; Ivarie, R

    2002-06-01

    Decades of selective breeding have yielded lines of poultry with substantial myofiber hyperplasia, vet little is known about what genes have been altered during the course of selection. Myostatin is a strong negative regulator of muscle mass in mice and cattle and could have been one of many genetic factors contributing to increased myofiber deposition in growth-selected lines of poultry. To test this hypothesis, the sequence and expression patterns of myostatin were analyzed in growth-selected lines of chickens and quail. The sequence of broiler myostatin cDNA, amplified via reverse transcription (RT)-PCR from embryonic muscle RNA, contained no missense mutations in the coding sequence when compared to that of White Leghorn layers, although two silent single nucleotide polymorphisms (SNP) were found. Northern analysis of myostatin transcripts from embryonic pectoralis and quadriceps showed no significant differences in expression levels between broiler and layer muscle RNA. However, levels of myostatin transcripts were greatly reduced in muscles of posthatch chicks compared to embryonic muscle. Myostatin protein was also present in broiler and layer embryonic muscle at similar levels. No significant polymorphisms or differences in RNA expression levels were found in embryonic muscles of divergently selected lines of Japanese quail. These results indicate that intense artificial selection in these growth-selected lines of poultry has neither silenced the expression of myostatin nor created null alleles via mutation in the lines analyzed.

  15. Serum Myostatin Is Reduced in Individuals with Metabolic Syndrome

    PubMed Central

    Chiang, Chih-Kang; Tseng, Fen-Yu; Tseng, Ping-Huei; Chen, Chi-Ling; Wu, Kwan-Dun; Yang, Wei-Shiung

    2014-01-01

    Aims Myostatin is a negative regulator of skeletal muscle mass and may also modulate energy metabolism secondarily. We aim to investigate the relationship between serum myostatin and the metabolic variables in diabetic (DM) and non-diabetic subjects. Materials and Methods A cross-sectional study recruiting 246 consecutive DM patients and 82 age- and gender-matched non-diabetic individuals at a medical center was conducted. The variables of anthropometry and blood chemistry were obtained. Serum myostatin level was measured with enzyme immunoassay. Results DM group had lower serum myostatin compared with non-diabetics (7.82 versus 9.28 ng/ml, p<0.01). Sixty-two percent of the recruited individuals had metabolic syndrome (MetS). The patients with MetS had significantly lower serum myostatin than those without (7.39 versus 9.49 ng/ml, p<0.001). The serum myostatin level decreased with increasing numbers of the MetS components (p for trend<0.001). The patients with higher body mass index, larger abdominal girth, lower high-density lipoprotein cholesterol (HDL-C), and higher triglycerides had lower serum myostatin than those without. The serum myostatin level was independently negatively related to larger abdominal girth, higher triglycerides, and lower HDL-C after adjustment. The odds ratios for MetS, central obesity, low HDL-C, high triglycerides, and DM were 0.85, 0.88, 0.89, 0.85, and 0.92, respectively, when serum myostatin increased per 1 ng/mL, in the binary logistic regression models. Conclusions Lower serum myostatin independently associated with MetS, central obesity, low HDL-C, and high triglycerides after adjustment. Higher serum myostatin is associated with favorable metabolic profiles. PMID:25254550

  16. Absence of hyperplasia in Gasp-1 overexpressing mice is dependent on myostatin up-regulation.

    PubMed

    Brun, Caroline; Périé, Luce; Baraige, Fabienne; Vernus, Barbara; Bonnieu, Anne; Blanquet, Véronique

    2014-01-01

    Overexpression of Gasp-1, an inhibitor of myostatin, leads to a hypermuscular phenotype due to hypertrophy rather than hyperplasia in mice. However to date, the cellular and molecular mechanisms underlying this phenotype are not investigated. Skeletal muscles of overexpressing Gasp-1 mice, called Tg(Gasp-1) mice, were analyzed by histological methods. Satellite cell-derived myoblasts from these mice were used to investigate the molecular mechanisms. We demonstrated that hypertrophy in Tg(Gasp-1) mice was related to a myonuclear accretion during the first 3 postnatal weeks and an activation of the pro-hypertrophic Akt/mTORC/p70S6K signaling. In accordance with these results, we showed that overexpressing Gasp-1 primary myoblasts proliferated faster and myonuclei average per myotube was increased during differentiation. Molecular analysis revealed that Gasp-1 overexpression resulted in increased myostatin expression related to its auto-regulation. Despite its inhibition, myostatin led to Pax7 deregulation through its non-canonical Erk1/2 signaling pathway. Consistent with this, inhibition of Erk1/2 signaling pathway as well as neutralization of secreted myostatin rescue the Pax7 expression in overexpressing Gasp-1 myoblasts. Our study shows that myostatin is able to act independently of its canonical pathway to regulate the Pax7 expression. Altogether, our results indicate that myostatin could regulate muscle development despite its protein inhibition. © 2014 S. Karger AG, Basel.

  17. Estradiol In Females May Negate Skeletal Muscle Myostatin Mrna Expression And Serum Myostatin Propeptide Levels After Eccentric Muscle Contractions

    PubMed Central

    Willoughby, Darryn S.; Wilborn, Colin D.

    2006-01-01

    Eccentric contractions produce a significant degree of inflammation and muscle injury that may increase the expression of myostatin. Due to its anti- oxidant and anti-flammatory effects, circulating 17-β estradiol (E2) may attenuate myostatin expression. Eight males and eight females performed 7 sets of 10 reps of eccentric contractions of the knee extensors at 150% 1-RM. Each female performed the eccentric exercise bout on a day that fell within her mid-luteal phase (d 21-23 of her 28-d cycle). Blood and muscle samples were obtained before and 6 and 24 h after exercise, while additional blood samples were obtained at 48 and 72 h after exercise. Serum E2 and myostatin LAP/propeptide (LAP/pro) levels were determined with ELISA, and myostatin mRNA expression determined using RT-PCR. Data were analyzed with two-way ANOVA and bivariate correlations (p < 0.05). Females had greater levels of serum E2 throughout the 72- h sampling period (p < 0.05). While males had greater body mass and fat-free mass, neither was correlated to the pre-exercise levels of myostatin mRNA and LAP/pro for either gender (p > 0.05). Compared to pre-exercise, males had significant increases (p < 0.05) in LAP/propetide and mRNA of 78% and 28%, respectively, at 24 h post-exercise, whereas females underwent respective decreases of 10% and 21%. E2 and LAP/propeptide were correlated at 6 h (r = -0.804, p = 0.016) and 24 h post- exercise (r = -0.841, p = 0.009) in males, whereas in females E2 levels were correlated to myostatin mRNA at 6 h (r =0.739, p = 0.036) and 24 h (r = 0.813, p = 0.014) post-exercise and LAP/propeptide at 6 h (r = 0.713, p = 0.047) and 24 h (r = 0.735, p = 0.038). In females, myostatin mRNA expression and serum LAP/propeptide levels do not appear to be significantly up-regulated following eccentric exercise, and may be due to higher levels of circulating E2. Key Points The pre-exercise levels of myostatin mRNA and propeptide were not significantly different between genders, and

  18. Myostatin inhibits proliferation of human urethral rhabdosphincter satellite cells.

    PubMed

    Akita, Yasuyuki; Sumino, Yasuhiro; Mori, Ken-ichi; Nomura, Takeo; Sato, Fuminori; Mimata, Hiromitsu

    2013-05-01

    Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of myogenesis in skeletal muscle. We examined the effect of myostatin and myostatin inhibition by an antagonistic agent, follistatin, on growth of human urethral rhabdosphincter satellite cells (muscle stem cells) to develop a new strategy for treatment of stress urinary incontinence. Rhabdosphincter satellite cells were cultured and selected by magnetic affinity cell sorting using an anti-neural cell adhesion molecule antibody. The cells were transfected with simian virus-40 antigen to extend their lifespan. A cell proliferation assay, a cell cycle analysis and an investigation of signal transduction were carried out. The autocrine action of endogenous myostatin by western blotting, real-time reverse transcription polymerase chain reaction and immunoneutralization using an anti-myostatin antibody was also evaluated. Selectively cultured cells expressed markers of striated muscles and successfully differentiated into myotubes. Myostatin inhibited proliferation of these cells through Smad2 phosphorylation and cell cycle arrest. Inhibitory effects of myostatin were reversed by addition of follistatin. However, rhabdosphincter satellite cells did not appear to use autocrine secretion of myostatin to regulate their proliferation. Inhibition of myostatin function might be a useful pathway in the development of novel strategies for stimulating rhabdosphincter cells regeneration to treat stress urinary incontinence. © 2012 The Japanese Urological Association.

  19. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy

    PubMed Central

    Ohsawa, Yutaka; Takayama, Kentaro; Nishimatsu, Shin-ichiro; Okada, Tadashi; Fujino, Masahiro; Fukai, Yuta; Murakami, Tatsufumi; Hagiwara, Hiroki; Itoh, Fumiko; Tsuchida, Kunihiro; Hayashi, Yoshio; Sunada, Yoshihide

    2015-01-01

    Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings. PMID:26226340

  20. The Inhibitory Core of the Myostatin Prodomain: Its Interaction with Both Type I and II Membrane Receptors, and Potential to Treat Muscle Atrophy.

    PubMed

    Ohsawa, Yutaka; Takayama, Kentaro; Nishimatsu, Shin-ichiro; Okada, Tadashi; Fujino, Masahiro; Fukai, Yuta; Murakami, Tatsufumi; Hagiwara, Hiroki; Itoh, Fumiko; Tsuchida, Kunihiro; Hayashi, Yoshio; Sunada, Yoshihide

    2015-01-01

    Myostatin, a muscle-specific transforming growth factor-β (TGF-β), negatively regulates skeletal muscle mass. The N-terminal prodomain of myostatin noncovalently binds to and suppresses the C-terminal mature domain (ligand) as an inactive circulating complex. However, which region of the myostatin prodomain is required to inhibit the biological activity of myostatin has remained unknown. We identified a 29-amino acid region that inhibited myostatin-induced transcriptional activity by 79% compared with the full-length prodomain. This inhibitory core resides near the N-terminus of the prodomain and includes an α-helix that is evolutionarily conserved among other TGF-β family members, but suppresses activation of myostatin and growth and differentiation factor 11 (GDF11) that share identical membrane receptors. Interestingly, the inhibitory core co-localized and co-immunoprecipitated with not only the ligand, but also its type I and type II membrane receptors. Deletion of the inhibitory core in the full-length prodomain removed all capacity for suppression of myostatin. A synthetic peptide corresponding to the inhibitory core (p29) ameliorates impaired myoblast differentiation induced by myostatin and GDF11, but not activin or TGF-β1. Moreover, intramuscular injection of p29 alleviated muscle atrophy and decreased the absolute force in caveolin 3-deficient limb-girdle muscular dystrophy 1C model mice. The injection suppressed activation of myostatin signaling and restored the decreased numbers of muscle precursor cells caused by caveolin 3 deficiency. Our findings indicate a novel concept for this newly identified inhibitory core of the prodomain of myostatin: that it not only suppresses the ligand, but also prevents two distinct membrane receptors from binding to the ligand. This study provides a strong rationale for the use of p29 in the amelioration of skeletal muscle atrophy in various clinical settings.

  1. Quantitative Evaluation of Myostatin Gene in Stably Transfected Caprine Fibroblast Cells by Anti-Myostatin shRNA.

    PubMed

    Jain, Sudhir Kumar; Jain, Hemlata; Kumar, Dharmendra; Bedekar, Megha Kadam; Pandey, Akhilesh Kumar; Sarkhel, Bikash Chandra

    2015-09-01

    Skeletal muscle is the major component of lean tissue that is used for consumption, and myostatin is a negative regulator of skeletal muscle growth. Downregulation of this gene therefore offers a strategy for developing superior animals with enhanced muscle growth. Knockdown of myostatin was achieved by RNA interference technology. The anti-myostatin shRNA were designed and stably transfected in caprine fibroblast cells. The reduced expression of target gene was achieved and measured in clonal fibroblast cells by real-time PCR. Two single-cell clones induced significant decrease of myostatin gene expression by 73.96 and 72.66 %, respectively (P < 0.05). To ensure the appropriate growth of transfected cell, seven media were tested. The best suited media was used for transfected fibroblast cell proliferation. The findings suggest that shRNA provides a novel potential tool for gene knockdown and these stably transfected cells can be used as the donor cells for animal cloning.

  2. Propeptide-mediated inhibition of myostatin increases muscle mass through inhibiting proteolytic pathways in aged mice.

    PubMed

    Collins-Hooper, Henry; Sartori, Roberta; Macharia, Raymond; Visanuvimol, Korntip; Foster, Keith; Matsakas, Antonios; Flasskamp, Hannah; Ray, Steve; Dash, Philip R; Sandri, Marco; Patel, Ketan

    2014-09-01

    Mammalian aging is accompanied by a progressive loss of skeletal muscle, a process called sarcopenia. Myostatin, a secreted member of the transforming growth factor-β family of signaling molecules, has been shown to be a potent inhibitor of muscle growth. Here, we examined whether muscle growth could be promoted in aged animals by antagonizing the activity of myostatin through the neutralizing activity of the myostatin propeptide. We show that a single injection of an AAV8 virus expressing the myostatin propeptide induced an increase in whole body weights and all muscles examined within 7 weeks of treatment. Our cellular studies demonstrate that muscle enlargement was due to selective fiber type hypertrophy, which was accompanied by a shift toward a glycolytic phenotype. Our molecular investigations elucidate the mechanism underpinning muscle hypertrophy by showing a decrease in the expression of key genes that control ubiquitin-mediated protein breakdown. Most importantly, we show that the hypertrophic muscle that develops as a consequence of myostatin propeptide in aged mice has normal contractile properties. We suggest that attenuating myostatin signaling could be a very attractive strategy to halt and possibly reverse age-related muscle loss. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Myostatin-induced inhibition of the long noncoding RNA Malat1 is associated with decreased myogenesis.

    PubMed

    Watts, Rani; Johnsen, Virginia L; Shearer, Jane; Hittel, Dustin S

    2013-05-15

    Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily of secreted proteins, is a potent negative regulator of myogenesis. Free myostatin induces the phosphorylation of the Smad family of transcription factors, which, in turn, regulates gene expression, via the canonical TGF-β signaling pathway. There is, however, emerging evidence that myostatin can regulate gene expression independent of Smad signaling. As such, we acquired global gene expression data from the gastrocnemius muscle of C57BL/6 mice following a 6-day treatment with recombinant myostatin compared with vehicle-treated animals. Of the many differentially expressed genes, the myostatin-associated decrease (-11.20-fold; P < 0.05) in the noncoding metastasis-associated lung adenocarcinoma transcript 1 (Malat1) was the most significant and the most intriguing because of numerous reports describing its novel role in regulating cell growth. We therefore sought to further characterize the role of Malat1 expression in skeletal muscle myogenesis. RT-PCR-based quantification of C2C12 and primary human skeletal muscle cells revealed a significant and persistent upregulation (4- to 7-fold; P < 0.05) of Malat1 mRNA during the differentiation of myoblasts into myotubes. Conversely, targeted knockdown of Malat1 using siRNA suppressed myoblast proliferation by arresting cell growth in the G(0)/G(1) phase. These results reveal Malat1 as novel downstream target of myostatin with a considerable ability to regulate myogenesis. The identification of new targets of myostatin will have important repercussions for regenerative biology through inhibition and/or reversal of muscle atrophy and wasting diseases.

  4. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease

    PubMed Central

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E.; Zhang, Liping

    2016-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD) but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We have identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. PMID:27653838

  5. Myostatin serum concentrations are correlated with the severity of knee osteoarthritis.

    PubMed

    Zhao, Chang; Shao, Yan; Lin, Chuangxin; Zeng, Chun; Fang, Hang; Pan, Jianying; Cai, Daozhang

    2017-09-01

    Myostatin, a member of the transforming growth factor-β family, contributes to joint deterioration in mice. Thus, we aimed to assess the correlation of myostatin concentrations with the presence and severity of knee osteoarthritis (OA). We determined serum and synovial fluid (SF) myostatin concentrations in a population of 184 patients with knee OA and 109 healthy controls. The knee OA group presented with higher serum myostatin concentrations than the controls. Knee OA patients with KL grade 4 showed higher serum and SF myostatin concentrations compared with those with KL grade 2 and 3. Knee OA patients with KL grade 3 had higher serum and SF myostatin concentrations compared with those with KL grade 2. Serum and SF myostatin concentrations were significantly correlated with KL grading. Serum and SF myostatin concentrations were correlated with the presence and severity of knee OA. © 2016 Wiley Periodicals, Inc.

  6. Nfix Regulates Temporal Progression of Muscle Regeneration through Modulation of Myostatin Expression.

    PubMed

    Rossi, Giuliana; Antonini, Stefania; Bonfanti, Chiara; Monteverde, Stefania; Vezzali, Chiara; Tajbakhsh, Shahragim; Cossu, Giulio; Messina, Graziella

    2016-03-08

    Nfix belongs to a family of four highly conserved proteins that act as transcriptional activators and/or repressors of cellular and viral genes. We previously showed a pivotal role for Nfix in regulating the transcriptional switch from embryonic to fetal myogenesis. Here, we show that Nfix directly represses the Myostatin promoter, thus controlling the proper timing of satellite cell differentiation and muscle regeneration. Nfix-null mice display delayed regeneration after injury, and this deficit is reversed upon in vivo Myostatin silencing. Conditional deletion of Nfix in satellite cells results in a similar delay in regeneration, confirming the functional requirement for Nfix in satellite cells. Moreover, mice lacking Nfix show reduced myofiber cross sectional area and a predominant slow twitching phenotype. These data define a role for Nfix in postnatal skeletal muscle and unveil a mechanism for Myostatin regulation, thus providing insights into the modulation of its complex signaling pathway. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Myostatin - From the Mighty Mouse to cardiovascular disease and cachexia.

    PubMed

    Dschietzig, Thomas Bernd

    2014-06-10

    In 1997, McPherron et al. created the so-called Mighty Mouse: owing to the knock-out of a new member of the TGF-β superfamily of peptides, this mouse line was extremely hypermuscular and also characterized by very low body fat. The new peptide, a powerful negative muscle regulator, was named myostatin. Apart from regulating skeletal muscle growth, myostatin has recently been reported to be significantly involved in different cardio-vascular and metabolic pathologies. This review is focused on these non-muscular myostatin actions. First, myostatin is intricately involved in regulating metabolism: it causes insulin resistance, and the advantageous metabolic profile achieved by myostatin inhibition is mainly attributable to its effects on skeletal muscle. Myostatin is further expressed in myocardium where it exerts anti-hypertrophic, but pro-fibrotic effects. Circulating and local myostatin is elevated in chronic heart failure and poses a major player in cardiac cachexia. Eventually, the current body of evidence regarding myostatin's significant involvement in different entities of the cachexia syndrome is summarized. Activin type-2 receptor antagonism and/or inhibitory myostatin antibodies have emerged as a promising therapeutic approach to treat the cachexia syndrome although the general applicability of this therapeutic approach to the human clinical situation has still to be demonstrated. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Synergistic and Antagonistic Interplay between Myostatin Gene Expression and Physical Activity Levels on Gene Expression Patterns in Triceps Brachii Muscles of C57/BL6 Mice

    PubMed Central

    Caetano-Anollés, Kelsey; Mishra, Sanjibita; Rodriguez-Zas, Sandra L.

    2015-01-01

    Levels of myostatin expression and physical activity have both been associated with transcriptome dysregulation and skeletal muscle hypertrophy. The transcriptome of triceps brachii muscles from male C57/BL6 mice corresponding to two genotypes (wild-type and myostatin-reduced) under two conditions (high and low physical activity) was characterized using RNA-Seq. Synergistic and antagonistic interaction and ortholog modes of action of myostatin genotype and activity level on genes and gene pathways in this skeletal muscle were uncovered; 1,836, 238, and 399 genes exhibited significant (FDR-adjusted P-value < 0.005) activity-by-genotype interaction, genotype and activity effects, respectively. The most common differentially expressed profiles were (i) inactive myostatin-reduced relative to active and inactive wild-type, (ii) inactive myostatin-reduced and active wild-type, and (iii) inactive myostatin-reduced and inactive wild-type. Several remarkable genes and gene pathways were identified. The expression profile of nascent polypeptide-associated complex alpha subunit (Naca) supports a synergistic interaction between activity level and myostatin genotype, while Gremlin 2 (Grem2) displayed an antagonistic interaction. Comparison between activity levels revealed expression changes in genes encoding for structural proteins important for muscle function (including troponin, tropomyosin and myoglobin) and for fatty acid metabolism (some linked to diabetes and obesity, DNA-repair, stem cell renewal, and various forms of cancer). Conversely, comparison between genotype groups revealed changes in genes associated with G1-to-S-phase transition of the cell cycle of myoblasts and the expression of Grem2 proteins that modulate the cleavage of the myostatin propeptide. A number of myostatin-feedback regulated gene products that are primarily regulatory were uncovered, including microRNA impacting central functions and Piezo proteins that make cationic current

  9. Plasma and Muscle Myostatin in Relation to Type 2 Diabetes

    PubMed Central

    Brandt, Claus; Nielsen, Anders R.; Fischer, Christian P.; Hansen, Jakob; Pedersen, Bente K.; Plomgaard, Peter

    2012-01-01

    Objective Myostatin is a secreted growth factor expressed in skeletal muscle tissue, which negatively regulates skeletal muscle mass. Recent animal studies suggest a role for myostatin in insulin resistance. We evaluated the possible metabolic role of myostatin in patients with type 2 diabetes and healthy controls. Design 76 patients with type 2 diabetes and 92 control subjects were included in the study. They were matched for age, gender and BMI. Plasma samples and biopsies from the vastus lateralis muscle were obtained to assess plasma myostatin and expression of myostatin in skeletal muscle. Results Patients with type 2 diabetes had higher fasting glucose (8.9 versus 5.1 mmol/L, P<0.001), plasma insulin (68.2 versus 47.2 pmol/L, P<0.002) and HOMA2-IR (1.6 versus 0.9, P<0.0001) when compared to controls. Patients with type 2 diabetes had 1.4 (P<0.01) higher levels of muscle myostatin mRNA content than the control subjects. Plasma myostatin concentrations did not differ between patients with type 2 diabetes and controls. In healthy controls, muscle myostatin mRNA correlated with HOMA2-IR (r = 0.30, P<0.01), plasma IL-6 (r = 0.34, P<0.05) and VO2 max (r = −0.26, P<0.05), however, no correlations were observed in patients with type 2 diabetes. Conclusions This study supports the idea that myostatin may have a negative effect on metabolism. However, the metabolic effect of myostatin appears to be overruled by other factors in patients with type 2 diabetes. PMID:22615949

  10. The pathway to muscle fibrosis depends on myostatin stimulating the differentiation of fibro/adipogenic progenitor cells in chronic kidney disease.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Chen, Zihong; Mitch, William E; Zhang, Liping

    2017-01-01

    Fibrosis in skeletal muscle develops after injury or in response to chronic kidney disease (CKD), but the origin of cells becoming fibrous tissue and the initiating and sustaining mechanisms causing muscle fibrosis are unclear. We identified muscle fibro/adipogenic progenitor cells (FAPs) that potentially differentiate into adipose tissues or fibrosis. We also demonstrated that CKD stimulates myostatin production in muscle. Therefore, we tested whether CKD induces myostatin, which stimulates fibrotic differentiation of FAPs leading to fibrosis in skeletal muscles. We isolated FAPs from mouse muscles and found that myostatin stimulates their proliferation and conversion into fibrocytes. In vivo, FAPs isolated from EGFP-transgenic mice (FAPs-EGFP) were transplanted into muscles of mice with CKD or into mouse muscles that were treated with myostatin. CKD or myostatin stimulated FAPs-EGFP proliferation in muscle and increased α-smooth muscle actin expression in FAP-EGFP cells. When myostatin was inhibited with a neutralizing peptibody (a chimeric peptide-Fc fusion protein), the FAP proliferation and muscle fibrosis induced by CKD were both suppressed. Knocking down Smad3 in cultured FAPs interrupted their conversion into fibrocytes, indicating that myostatin directly converts FAPs into fibrocytes. Thus, counteracting myostatin may be a strategy for preventing the development of fibrosis in skeletal muscles of patients with CKD. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. Myostatin inhibitors in sports drug testing: Detection of myostatin-neutralizing antibodies in plasma/serum by affinity purification and Western blotting.

    PubMed

    Walpurgis, Katja; Thomas, Andreas; Schänzer, Wilhelm; Thevis, Mario

    2016-02-01

    Myostatin is a key regulator of skeletal muscle growth and inhibition of its signaling pathway results in an increased muscle mass and function. The aim of this study was to develop a qualitative detection assay for myostatin-neutralizing antibodies for doping control purposes by using immunological approaches. To detect different types of myostatin-neutralizing antibodies irrespective of their amino acid sequence, an immunological assay specific for antibodies directed against myostatin and having a human Fc domain was established. Affinity purification and Western blotting strategies were combined to allow extracting and identifying relevant analytes from 200 μL of plasma/serum in a non-targeted approach. The assay was characterized regarding specificity, linearity, precision, robustness, and recovery. The assay was found to be highly specific, robust, and linear from 0.1 to 1 μg/mL. The precision was successfully specified at three different concentrations and the recovery of the affinity purification was 58%. Within this study, an immunological detection assay for myostatin-neutralizing antibodies present in plasma/serum specimens was developed and successfully characterized. The presented approach can easily be modified to include other therapeutic antibodies and serves as proof-of-concept for the detection of antibody-based myostatin inhibitors in doping control samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Structure of myostatin·follistatin-like 3: N-terminal domains of follistatin-type molecules exhibit alternate modes of binding.

    PubMed

    Cash, Jennifer N; Angerman, Elizabeth B; Kattamuri, Chandramohan; Nolan, Kristof; Zhao, Huaying; Sidis, Yisrael; Keutmann, Henry T; Thompson, Thomas B

    2012-01-06

    TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.

  13. The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss

    PubMed Central

    Galt, Nicholas J.; Froehlich, Jacob Michael; Remily, Ethan A.; Romero, Sinibaldo R.; Biga, Peggy R.

    2014-01-01

    Glucocorticoids (GCs) strongly regulate myostatin transcript levels in mammals via glucocorticoid response elements (GREs) in the myostatin promoter, and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In rainbow trout (Oncorhynchus mykiss), two genome duplication events have produced three putatively functional myostatin genes, myostatin-1a, -1b and -2a, which are ubiquitously and differentially expressed. In addition, in silico promoter analyses of the rainbow trout myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the relationship between this glucocorticoid and myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes. PMID:24875565

  14. Inhibition of the myostatin/Smad signaling pathway by short decorin-derived peptides.

    PubMed

    El Shafey, Nelly; Guesnon, Mickaël; Simon, Françoise; Deprez, Eric; Cosette, Jérémie; Stockholm, Daniel; Scherman, Daniel; Bigey, Pascal; Kichler, Antoine

    2016-02-15

    Myostatin, also known as growth differentiation factor 8, is a member of the transforming growth factor-beta superfamily that has been shown to play a key role in the regulation of the skeletal muscle mass. Indeed, while myostatin deletion or loss of function induces muscle hypertrophy, its overexpression or systemic administration causes muscle atrophy. Since myostatin blockade is effective in increasing skeletal muscle mass, myostatin inhibitors have been actively sought after. Decorin, a member of the small leucine-rich proteoglycan family is a metalloprotein that was previously shown to bind and inactivate myostatin in a zinc-dependent manner. Furthermore, the myostatin-binding site has been shown to be located in the decorin N-terminal domain. In the present study, we investigated the anti-myostatin activity of short and soluble fragments of decorin. Our results indicate that the murine decorin peptides DCN48-71 and 42-65 are sufficient for inactivating myostatin in vitro. Moreover, we show that the interaction of mDCN48-71 to myostatin is strictly zinc-dependent. Binding of myostatin to activin type II receptor results in the phosphorylation of Smad2/3. Addition of the decorin peptide 48-71 decreased in a dose-dependent manner the myostatin-induced phosphorylation of Smad2 demonstrating thereby that the peptide inhibits the activation of the Smad signaling pathway. Finally, we found that mDCN48-71 displays a specificity towards myostatin, since it does not inhibit other members of the transforming growth factor-beta family. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Signals of Ezh2, Src, and Akt Involve in Myostatin-Pax7 Pathways Regulating the Myogenic Fate Determination during the Sheep Myoblast Proliferation and Differentiation

    PubMed Central

    Li, Li; Liu, Ruizao; Zhang, Li; Zhao, Fuping; Lu, Jian; Zhang, Xiaoning; Du, Lixin

    2015-01-01

    Myostatin and Pax7 have been well documented individually, however, the mechanism by which Myostatin regulates Pax7 is seldom reported. Here, based on muscle transcriptome analysis in Texel (Myostatin mutant) and Ujumqin (wild type) sheep across the five fetal stages, we constructed and examined the Myostatin-Pax7 pathways in muscle. Then we validated the signals by RNAi in the proliferating and differentiating sheep myoblasts in vitro at mRNA, protein, and cell morphological levels. We reveal that Myostatin signals to Pax7 at least through Ezh2, Src, and Akt during the sheep myoblast proliferation and differentiation. Other signals such as p38MAPK, mTOR, Erk1/2, Wnt, Bmp2, Smad, Tgfb1, and p21 are most probably involved in the Myostatin-affected myogenic events. Myostatin knockdown significantly reduces the counts of nucleus and myotube, but not the fusion index of myoblasts during cell differentiation. In addition, findings also indicate that Myostatin is required for normal myogenic differentiation of the sheep myoblasts, which is different from the C2C12 myoblasts. We expand the regulatory network of Myostatin-Pax7 pathways and first illustrate that Myostatin as a global regulator participates in the epigenetic events involved in myogenesis, which contributes to understand the molecular mechanism of Myostatin in regulation of myogenesis. PMID:25811841

  16. Loss-of-function myostatin mutation increases insulin sensitivity and browning of white fat in Meishan pigs.

    PubMed

    Cai, Chunbo; Qian, Lili; Jiang, Shengwang; Sun, Youde; Wang, Qingqing; Ma, Dezun; Xiao, Gaojun; Li, Biao; Xie, Shanshan; Gao, Ting; Chen, Yaoxing; Liu, Jie; An, Xiaorong; Cui, Wentao; Li, Kui

    2017-05-23

    Myostatin-deficient mice showed a remarkable hypertrophy of skeletal muscle, with a decreased fat mass and enhanced insulin sensitivity. Currently, it is unclear if the inhibition of myostatin could be used as an approach to treat human obesity and insulin resistance. In this study, we investigated if the inhibition of porcine myostatin has any effect on fat deposition and insulin sensitivity using genetically engineered Meishan pigs containing a myostatin loss-of-function mutation (Mstn -/- ). Our results indicated that, when compared with wild-type pigs, the amount of subcutaneous fat and leaf fat of Mstn -/- pigs were significantly decreased mainly due to the browning of subcutaneous adipose tissue. Additionally, the serum insulin level decreased and the insulin sensitivity increased significantly in Mstn -/- pigs. Moreover, we found a significant increase in levels of insulin receptor and insulin receptor substrate proteins in skeletal muscle of Mstn -/- pigs, which then activating the insulin signaling pathway. Irisin-mediated regulation is not the only pathway for the activation of insulin signal in Mstn -/- skeletal muscle. This study provides valuable insight for the treatment of human obesity and diabetes mellitus.

  17. Insulin-like growth factor-1 suppresses the Myostatin signaling pathway during myogenic differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Retamales, A.; Zuloaga, R.; Valenzuela, C.A.

    Myogenic differentiation is a complex and well-coordinated process for generating mature skeletal muscle fibers. This event is autocrine/paracrine regulated by growth factors, principally Myostatin (MSTN) and Insulin-like Growth Factor-1 (IGF-1). Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth in vertebrates that exerts its inhibitory function by activating Smad transcription factors. In contrast, IGF-1 promotes the differentiation of skeletal myoblasts by activating the PI3K/Akt signaling pathway. This study reports on a novel functional crosstalk between the IGF-1 and MSTN signaling pathways, as mediated through interaction between PI3K/Akt and Smad3. Stimulation of skeletalmore » myoblasts with MSTN resulted in a transient increase in the pSmad3:Smad3 ratio and Smad-dependent transcription. Moreover, MSTN inhibited myod gene expression and myoblast fusion in an Activin receptor-like kinase/Smad3-dependent manner. Preincubation of skeletal myoblasts with IGF-1 blocked MSTN-induced Smad3 activation, promoting myod expression and myoblast differentiation. This inhibitory effect of IGF-1 on the MSTN signaling pathway was dependent on IGF-1 receptor, PI3K, and Akt activities. Finally, immunoprecipitation assay analysis determined that IGF-1 pretreatment increased Akt and Smad3 interaction. These results demonstrate that the IGF-1/PI3K/Akt pathway may inhibit MSTN signaling during myoblast differentiation, providing new insight to existing knowledge on the complex crosstalk between both growth factors. - Highlights: • IGF-1 inhibits Myostatin canonical signaling pathway through IGF-1R/PI3K/Akt pathway. • IGF-1 promotes myoblast differentiation through a direct blocking of Myostatin signaling pathway. • IGF-1 induces the interaction of Akt with Smad3 in skeletal myoblast.« less

  18. MicroRNA-27a promotes myoblast proliferation by targeting myostatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Zhiqing; Chen, Xiaoling; Yu, Bing

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We identified a myogenic role for miR-27a and a new target, myostatin. Black-Right-Pointing-Pointer The miR-27a was confirmed to target myostatin 3 Prime UTR. Black-Right-Pointing-Pointer miR-27a is upregulated and myostatin is downregulated during myoblast proliferation. Black-Right-Pointing-Pointer miR-27a promotes myoblast proliferation by reducing the expression of myostatin. -- Abstract: MicroRNAs (miRNAs) are a class of endogenous non-coding RNAs that play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. However, the role of miRNAs in myoblast proliferation remains poorly understood. Here we found that the expression of miR-27a was increased during proliferationmore » of C2C12 myoblasts. Moreover, overexpression of miR-27a in C2C12 cells promoted myoblast proliferation by reducing the expression of myostatin, a critical inhibitor of skeletal myogenesis. In addition, the miR-27a was confirmed to target myostatin 3 Prime UTR by a luciferase reporter analysis. Together, these results suggest that miR-27a promotes myoblast proliferation through targeting myostatin.« less

  19. Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway.

    PubMed

    Lee, Se-Jin; Huynh, Thanh V; Lee, Yun-Sil; Sebald, Suzanne M; Wilcox-Adelman, Sarah A; Iwamori, Naoki; Lepper, Christoph; Matzuk, Martin M; Fan, Chen-Ming

    2012-08-28

    Myostatin and activin A are structurally related secreted proteins that act to limit skeletal muscle growth. The cellular targets for myostatin and activin A in muscle and the role of satellite cells in mediating muscle hypertrophy induced by inhibition of this signaling pathway have not been fully elucidated. Here we show that myostatin/activin A inhibition can cause muscle hypertrophy in mice lacking either syndecan4 or Pax7, both of which are important for satellite cell function and development. Moreover, we show that muscle hypertrophy after pharmacological blockade of this pathway occurs without significant satellite cell proliferation and fusion to myofibers and without an increase in the number of myonuclei per myofiber. Finally, we show that genetic ablation of Acvr2b, which encodes a high-affinity receptor for myostatin and activin A specifically in myofibers is sufficient to induce muscle hypertrophy. All of these findings are consistent with satellite cells playing little or no role in myostatin/activin A signaling in vivo and render support that inhibition of this signaling pathway can be an effective therapeutic approach for increasing muscle growth even in disease settings characterized by satellite cell dysfunction.

  20. The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss.

    PubMed

    Galt, Nicholas J; Froehlich, Jacob Michael; Remily, Ethan A; Romero, Sinibaldo R; Biga, Peggy R

    2014-09-01

    Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the effects on myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. IGF1 stimulates greater muscle hypertrophy in the absence of myostatin in male mice.

    PubMed

    Hennebry, Alexander; Oldham, Jenny; Shavlakadze, Tea; Grounds, Miranda D; Sheard, Philip; Fiorotto, Marta L; Falconer, Shelley; Smith, Heather K; Berry, Carole; Jeanplong, Ferenc; Bracegirdle, Jeremy; Matthews, Kenneth; Nicholas, Gina; Senna-Salerno, Mônica; Watson, Trevor; McMahon, Christopher D

    2017-08-01

    Insulin-like growth factors (IGFs) and myostatin have opposing roles in regulating the growth and size of skeletal muscle, with IGF1 stimulating, and myostatin inhibiting, growth. However, it remains unclear whether these proteins have mutually dependent, or independent, roles. To clarify this issue, we crossed myostatin null ( Mstn -/- ) mice with mice overexpressing Igf1 in skeletal muscle ( Igf1 + ) to generate six genotypes of male mice; wild type ( Mstn +/+ ), Mstn +/- , Mstn -/- , Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + Overexpression of Igf1 increased the mass of mixed fibre type muscles (e.g. Quadriceps femoris ) by 19% over Mstn +/+ , 33% over Mstn +/- and 49% over Mstn -/- ( P  < 0.001). By contrast, the mass of the gonadal fat pad was correspondingly reduced with the removal of Mstn and addition of Igf1 Myostatin regulated the number, while IGF1 regulated the size of myofibres, and the deletion of Mstn and Igf1 + independently increased the proportion of fast type IIB myosin heavy chain isoforms in T. anterior (up to 10% each, P  < 0.001). The abundance of AKT and rpS6 was increased in muscles of Mstn -/- mice , while phosphorylation of AKT S473 was increased in Igf1 + mice ( Mstn +/+ :Igf1 + , Mstn +/- :Igf1 + and Mstn -/- :Igf1 + ). Our results demonstrate that a greater than additive effect is observed on the growth of skeletal muscle and in the reduction of body fat when myostatin is absent and IGF1 is in excess. Finally, we show that myostatin and IGF1 regulate skeletal muscle size, myofibre type and gonadal fat through distinct mechanisms that involve increasing the total abundance and phosphorylation status of AKT and rpS6. © 2017 Society for Endocrinology.

  2. Glycoproteomics Reveals Decorin Peptides With Anti-Myostatin Activity in Human Atrial Fibrillation.

    PubMed

    Barallobre-Barreiro, Javier; Gupta, Shashi K; Zoccarato, Anna; Kitazume-Taneike, Rika; Fava, Marika; Yin, Xiaoke; Werner, Tessa; Hirt, Marc N; Zampetaki, Anna; Viviano, Alessandro; Chong, Mei; Bern, Marshall; Kourliouros, Antonios; Domenech, Nieves; Willeit, Peter; Shah, Ajay M; Jahangiri, Marjan; Schaefer, Liliana; Fischer, Jens W; Iozzo, Renato V; Viner, Rosa; Thum, Thomas; Heineke, Joerg; Kichler, Antoine; Otsu, Kinya; Mayr, Manuel

    2016-09-13

    Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of

  3. Factors Associated with the Serum Myostatin Level in Patients Undergoing Peritoneal Dialysis: Potential Effects of Skeletal Muscle Mass and Vitamin D Receptor Activator Use.

    PubMed

    Yamada, Shunsuke; Tsuruya, Kazuhiko; Yoshida, Hisako; Tokumoto, Masanori; Ueki, Kenji; Ooboshi, Hiroaki; Kitazono, Takanari

    2016-07-01

    Myostatin is a member of the transforming growth factor-β family, which regulates synthesis and degradation of skeletal muscle proteins and is associated with the development of sarcopenia. It is up-regulated in the skeletal muscle of chronic kidney disease patients and is considered to be involved in the development of uremic sarcopenia. However, serum myostatin levels have rarely been determined, and the relationship between serum myostatin levels with clinical and metabolic factors remains unknown. This cross-sectional study investigated the association between serum myostatin level and clinical factors in 69 outpatients undergoing peritoneal dialysis. Serum myostatin level was determined by commercially available enzyme-linked immunosorbent assay (ELISA). Univariable and multivariable analysis were conducted to determine factors associated with serum myostatin levels. The factors included age, sex, diabetes mellitus, dialysis history, body mass index, residual kidney function, peritoneal dialysate volume, serum biochemistries, and the use of vitamin D receptor activators (VDRAs). Mean serum myostatin level was 7.59 ± 3.37 ng/mL. There was no association between serum myostatin level and residual kidney function. Serum myostatin levels were significantly and positively associated with lean body mass measured by the creatinine kinetic method and negatively associated with the use of VDRAs after adjustment for potential confounding factors. Our study indicated that serum myostatin levels are associated with skeletal muscle mass and are lower in patients treated with VDRAs. Further studies are necessary to determine the significance of measuring serum myostatin level in patients undergoing peritoneal dialysis.

  4. Modulation of Myostatin/Hepatocyte Growth Factor Balance by Different Hemodialysis Modalities.

    PubMed

    Esposito, Pasquale; La Porta, Edoardo; Calatroni, Marta; Grignano, Maria Antonietta; Milanesi, Samantha; Verzola, Daniela; Battaglia, Yuri; Gregorini, Marilena; Libetta, Carmelo; Garibotto, Giacomo; Rampino, Teresa

    2017-01-01

    Background. In this study we investigated the relevance of myostatin and Hepatocyte Growth Factor (HGF) in patients undergoing hemodialysis HD and the influence of different HD modalities on their levels. Methods. We performed a prospective crossover study in which HD patients were randomized to undergo 3-month treatment periods with bicarbonate hemodialysis (BHD) followed by online hemodiafiltration (HDF). Clinical data, laboratory parameters, and myostatin and HGF serum levels were collected and compared. Results. Ten patients and six controls (C) were evaluated. In any experimental condition myostatin and HGF levels were higher in HD than in C. At enrollment and after BHD there were not significant correlations, whereas at the end of the HDF treatment period myostatin and HGF were inversely correlated ( r   -0.65, p < 0.05), myostatin serum levels inversely correlated with transferrin ( r   -0.73, p < 0.05), and HGF levels that resulted positively correlated with BMI ( r 0.67, p < 0.05). Moving from BHD to HDF, clinical and laboratory parameters were unchanged, as well as serum HGF, whereas myostatin levels significantly decreased (6.3 ± 4.1 versus 4.3 ± 3.1 ng/ml, p < 0.05). Conclusions. Modulation of myostatin levels and myostatin/HGF balance by the use of different HD modalities might represent a novel approach to the prevention and treatment of HD-related muscle wasting syndrome.

  5. Building muscle, browning fat and preventing obesity by inhibiting myostatin.

    PubMed

    Lebrasseur, N K

    2012-01-01

    The obesity epidemic is an overwhelming global health concern. Interventions to improve body weight and composition aim to restore balance between nutrient intake and energy expenditure. Myostatin, a powerful negative regulator of skeletal muscle mass, has emerged as a potential therapeutic target for obesity and type 2 diabetes mellitus because of the prominent role skeletal muscle plays in metabolic rate and insulin-mediated glucose disposal. In fact, inhibition of myostatin by genetic manipulation or pharmacological means leads to a hypermuscular and very lean build in mice. The resistance of myostatin-null mice to diet-induced obesity, fat mass accumulation and metabolic dysfunction has been presumed to be a result of their large skeletal muscle mass; however, in this issue of Diabetologia, Zhang et al. (doi: 10.1007/s00125-011-2304-4 ) provide evidence that myostatin inhibition also significantly impacts the phenotype of white adipose tissue (WAT). The authors reveal elevated expression of key metabolic genes of fatty acid transport and oxidation and, intriguingly, the presence of brown adipose tissue-like cells in WAT of myostatin-null mice. They also show that pharmacological inhibition of myostatin replicates several of the protective benefits conveyed by its genetic inactivation. Herein, these data, areas in need of further investigation and the evidence that implicates myostatin as a target for obesity and type 2 diabetes mellitus are discussed.

  6. The central role of myostatin in skeletal muscle and whole body homeostasis.

    PubMed

    Elliott, B; Renshaw, D; Getting, S; Mackenzie, R

    2012-07-01

    Myostatin is a powerful negative regulator of skeletal muscle mass in mammalian species. It plays a key role in skeletal muscle homeostasis and has now been well described since its discovery. Myostatin is capable of inducing muscle atrophy via its inhibition of myoblast proliferation, increasing ubiquitin-proteasomal activity and downregulating activity of the IGF-Akt pathway. These well-recognized effects are seen in multiple atrophy causing situations, including injury, diseases such as cachexia, disuse and space flight, demonstrating the importance of the myostatin signalling mechanism. Based on this central role, significant work has been pursued to inhibit myostatin's actions in vivo. Importantly, several new studies have uncovered roles for myostatin distinct from skeletal muscle size. Myostatin has been suggested to play a role in cardiomyocyte homeostasis, glucose metabolism and adipocyte proliferation, all of which are examined in detail below. Based on these effects, myostatin inhibition has potential to be widely utilized in many Western diseases such as chronic obstructive pulmonary disease, type II diabetes and obesity. However, if myostatin inhibitors are to successfully translate from bench-top to bedside in the near future, awareness must be raised on these non-traditional effects of myostatin away from skeletal muscle. Indeed, further research into these novel areas is required. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  7. Systemic myostatin inhibition via liver-targeted gene transfer in normal and dystrophic mice.

    PubMed

    Morine, Kevin J; Bish, Lawrence T; Pendrak, Klara; Sleeper, Meg M; Barton, Elisabeth R; Sweeney, H Lee

    2010-02-11

    Myostatin inhibition is a promising therapeutic strategy to maintain muscle mass in a variety of disorders, including the muscular dystrophies, cachexia, and sarcopenia. Previously described approaches to blocking myostatin signaling include injection delivery of inhibitory propeptide domain or neutralizing antibodies. Here we describe a unique method of myostatin inhibition utilizing recombinant adeno-associated virus to overexpress a secretable dominant negative myostatin exclusively in the liver of mice. Systemic myostatin inhibition led to increased skeletal muscle mass and strength in control C57 Bl/6 mice and in the dystrophin-deficient mdx model of Duchenne muscular dystrophy. The mdx soleus, a mouse muscle more representative of human fiber type composition, demonstrated the most profound improvement in force production and a shift toward faster myosin-heavy chain isoforms. Unexpectedly, the 11-month-old mdx diaphragm was not rescued by long-term myostatin inhibition. Further, mdx mice treated for 11 months exhibited cardiac hypertrophy and impaired function in an inhibitor dose-dependent manner. Liver-targeted gene transfer of a myostatin inhibitor is a valuable tool for preclinical investigation of myostatin blockade and provides novel insights into the long-term effects and shortcomings of myostatin inhibition on striated muscle.

  8. The structure of myostatin:follistatin 288: insights into receptor utilization and heparin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cash, Jennifer N.; Rejon, Carlis A.; McPherron, Alexandra C.

    2009-09-29

    Myostatin is a member of the transforming growth factor-{beta} (TGF-{beta}) family and a strong negative regulator of muscle growth. Here, we present the crystal structure of myostatin in complex with the antagonist follistatin 288 (Fst288). We find that the prehelix region of myostatin very closely resembles that of TGF-{beta} class members and that this region alone can be swapped into activin A to confer signalling through the non-canonical type I receptor Alk5. Furthermore, the N-terminal domain of Fst288 undergoes conformational rearrangements to bind myostatin and likely acts as a site of specificity for the antagonist. In addition, a unique continuousmore » electropositive surface is created when myostatin binds Fst288, which significantly increases the affinity for heparin. This translates into stronger interactions with the cell surface and enhanced myostatin degradation in the presence of either Fst288 or Fst315. Overall, we have identified several characteristics unique to myostatin that will be paramount to the rational design of myostatin inhibitors that could be used in the treatment of muscle-wasting disorders.« less

  9. Combination Antisense Treatment for Destructive Exon Skipping of Myostatin and Open Reading Frame Rescue of Dystrophin in Neonatal mdx Mice.

    PubMed

    Lu-Nguyen, Ngoc B; Jarmin, Susan A; Saleh, Amer F; Popplewell, Linda; Gait, Michael J; Dickson, George

    2015-08-01

    The fatal X-linked Duchenne muscular dystrophy (DMD), characterized by progressive muscle wasting and muscle weakness, is caused by mutations within the DMD gene. The use of antisense oligonucleotides (AOs) modulating pre-mRNA splicing to restore the disrupted dystrophin reading frame, subsequently generating a shortened but functional protein has emerged as a potential strategy in DMD treatment. AO therapy has recently been applied to induce out-of-frame exon skipping of myostatin pre-mRNA, knocking-down expression of myostatin protein, and such an approach is suggested to enhance muscle hypertrophy/hyperplasia and to reduce muscle necrosis. Within this study, we investigated dual exon skipping of dystrophin and myostatin pre-mRNAs using phosphorodiamidate morpholino oligomers conjugated with an arginine-rich peptide (B-PMOs). Intraperitoneal administration of B-PMOs was performed in neonatal mdx males on the day of birth, and at weeks 3 and 6. At week 9, we observed in treated mice (as compared to age-matched, saline-injected controls) normalization of muscle mass, a recovery in dystrophin expression, and a decrease in muscle necrosis, particularly in the diaphragm. Our data provide a proof of concept for antisense therapy combining dystrophin restoration and myostatin inhibition for the treatment of DMD.

  10. Myostatin: a novel insight into its role in metabolism, signal pathways, and expression regulation.

    PubMed

    Huang, Zhiqing; Chen, Xiaoling; Chen, Daiwen

    2011-09-01

    Myostatin, a member of the transforming growth factor-β (TGF-β) superfamily, is a critical autocrine/paracrine inhibitor of skeletal muscle growth. Since the first observed double-muscling phenotype was reported in myostatin-null animals, a functional role of myostatin has been demonstrated in the control of skeletal muscle development. However, beyond the confines of its traditional role in muscle growth inhibition, myostatin has recently been shown to play an important role in metabolism. During the past several years, it has been well established that Smads are canonical mediators of signals for myostatin from the receptors to the nucleus. However, growing evidence supports the notion that Non-Smad signal pathways also participate in myostatin signaling. Myostatin expression is increased in muscle atrophy and metabolic disorders, suggesting that changes in endogenous expression of myostatin may provide therapeutic benefit for these diseases. MicroRNAs (miRNAs) are a class of non-coding RNAs that negatively regulate gene expression and recent evidence has accumulated supporting a role for miRNAs in the regulation of myostatin expression. This review highlights some of these areas in myostatin research: a novel role in metabolism, signal pathways, and miRNA-mediated expression regulation. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts

    PubMed Central

    Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng

    2014-01-01

    Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645

  12. Functional verification of a porcine myostatin propeptide mutant.

    PubMed

    Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao

    2015-10-01

    Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.

  13. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    PubMed

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  14. Autophagy proteins are not universally required for phagosome maturation.

    PubMed

    Cemma, Marija; Grinstein, Sergio; Brumell, John H

    2016-09-01

    Phagocytosis plays a central role in immunity and tissue homeostasis. After internalization of cargo into single-membrane phagosomes, these compartments undergo a maturation sequences that terminates in lysosome fusion and cargo degradation. Components of the autophagy pathway have recently been linked to phagosome maturation in a process called LC3-associated phagocytosis (LAP). In this process, autophagy machinery is thought to conjugate LC3 directly onto the phagosomal membrane to promote lysosome fusion. However, a recent study has suggested that ATG proteins may in fact impair phagosome maturation to promote antigen presentation. Here, we examined the impact of ATG proteins on phagosome maturation in murine cells using FCGR2A/FcγR-dependent phagocytosis as a model. We show that phagosome maturation is not affected in Atg5-deficient mouse embryonic fibroblasts, or in Atg5- or Atg7-deficient bone marrow-derived macrophages using standard assays of phagosome maturation. We propose that ATG proteins may be required for phagosome maturation under some conditions, but are not universally required for this process.

  15. Myostatin signals through Pax7 to regulate satellite cell self-renewal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McFarlane, Craig; Department of Biological Sciences, University of Waikato, Hamilton; Hennebry, Alex

    2008-01-15

    Myostatin, a Transforming Growth Factor-beta (TGF-{beta}) super-family member, has previously been shown to negatively regulate satellite cell activation and self-renewal. However, to date the mechanism behind Myostatin function in satellite cell biology is not known. Here we show that Myostatin signals via a Pax7-dependent mechanism to regulate satellite cell self-renewal. While excess Myostatin inhibited Pax7 expression via ERK1/2 signaling, an increase in Pax7 expression was observed following both genetic inactivation and functional antagonism of Myostatin. As a result, we show that either blocking or inactivating Myostatin enhances the partitioning of the fusion-incompetent self-renewed satellite cell lineage (high Pax7 expression, lowmore » MyoD expression) from the pool of actively proliferating myogenic precursor cells. Consistent with this result, over-expression of Pax7 in C2C12 myogenic cells resulted in increased self-renewal through a mechanism which slowed both myogenic proliferation and differentiation. Taken together, these results suggest that increased expression of Pax7 promotes satellite cell self-renewal, and furthermore Myostatin may control the process of satellite cell self-renewal through regulation of Pax7. Thus we speculate that, in addition to the intrinsic factors (such as Pax7), extrinsic factors both positive and negative in nature, will play a major role in determining the stemness of skeletal muscle satellite cells.« less

  16. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus).

    PubMed

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L

    2015-07-01

    Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.

  17. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus)

    PubMed Central

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.

    2015-01-01

    ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736

  18. The Vicious Cycle of Myostatin Signaling in Sarcopenic Obesity: Myostatin Role in Skeletal Muscle Growth, Insulin Signaling and Implications for Clinical Trials.

    PubMed

    Consitt, L A; Clark, B C

    2018-01-01

    The age-related loss of skeletal muscle (sarcopenia) is a major health concern as it is associated with physical disability, metabolic impairments, and increased mortality. The coexistence of sarcopenia with obesity, termed 'sarcopenic obesity', contributes to skeletal muscle insulin resistance and the development of type 2 diabetes, a disease prevalent with advancing age. Despite this knowledge, the mechanisms contributing to sarcopenic obesity remain poorly understood, preventing the development of targeted therapeutics. This article will discuss the clinical and physiological consequences of sarcopenic obesity and propose myostatin as a potential candidate contributing to this condition. A special emphasis will be placed on examining the role of myostatin signaling in impairing both skeletal muscle growth and insulin signaling. In addition, the role of myostatin in regulating muscle-to fat cross talk, further exacerbating metabolic dysfunction in the elderly, will be highlighted. Lastly, we discuss how this knowledge has implications for the design of myostatin-inhibitor clinical trials.

  19. Matrix Metalloproteinase Responsive Delivery of Myostatin Inhibitors.

    PubMed

    Braun, Alexandra C; Gutmann, Marcus; Ebert, Regina; Jakob, Franz; Gieseler, Henning; Lühmann, Tessa; Meinel, Lorenz

    2017-01-01

    The inhibition of myostatin - a member of the transforming growth factor (TGF-β) family - drives regeneration of functional skeletal muscle tissue. We developed a bioresponsive drug delivery system (DDS) linking release of a myostatin inhibitor (MI) to inflammatory flares of myositis to provide self-regulated MI concentration gradients within tissues of need. A protease cleavable linker (PCL) - responding to MMP upregulation - is attached to the MI and site-specifically immobilized on microparticle surfaces. The PCL disintegrated in a matrix metalloproteinase (MMP) 1, 8, and particularly MMP-9 concentration dependent manner, with MMP-9 being an effective surrogate biomarker correlating with the activity of myositis. The bioactivity of particle-surface bound as well as released MI was confirmed by luciferase suppression in stably transfected HEK293 cells responding to myostatin induced SMAD phosphorylation. We developed a MMP-responsive DDS for MI delivery responding to inflammatory flare of a diseased muscle matching the kinetics of MMP-9 upregulation, with MMP-9 kinetics matching (patho-) physiological myostatin levels. ᅟ: Graphical Abstract Schematic illustration of the matrix metalloproteinase responsive delivery system responding to inflammatory flares of muscle disease. The protease cleavable linker readily disintegrates upon entry into the diseased tissue, therby releasing the mystatin inhibitor.

  20. A novel mechanism of myostatin regulation by its alternative splicing variant during myogenesis in avian species.

    PubMed

    Shin, Sangsu; Song, Yan; Ahn, Jinsoo; Kim, Eunsoo; Chen, Paula; Yang, Shujin; Suh, Yeunsu; Lee, Kichoon

    2015-11-15

    Myostatin (MSTN) is a key negative regulator of muscle growth and development, and an increase of muscle mass is achieved by inhibiting MSTN signaling. In the current study, five alternative splicing isoforms of MSTN mRNAs in avian species were identified in various tissues. Among these five, three truncated forms of myostatin, MSTN-B, -C, and -E created premature stop codons and produced partial MSTN prodomains encoded from exon 1. MSTN-B is the second dominant isoform following full-length MSTN-A, and their expression was dynamically regulated during muscle development of chicken, turkey, and quail in vivo and in vitro. To clarify the function of MSTN-B, two stable cell lines of quail myoblasts (QM7) were generated to overexpress MSTN-A or MSTN-B. Interestingly, MSTN-B promoted both cell proliferation and differentiation similar to the function of the MSTN prodomain to counteract the negative role of MSTN on myogenesis. The coimmunoprecipitation assay revealed that MSTN-B binds to MSTN-A and reduces the generation of mature MSTN. Furthermore, the current study demonstrated that the partial prodomain encoded from exon 1 is critical for binding of MSTN-B to MSTN-A. Altogether, these data imply that alternative splicing isoforms of MSTN could negatively regulate pro-myostatin processing in muscle cells and prevent MSTN-mediated inhibition of myogenesis in avian species. Copyright © 2015 the American Physiological Society.

  1. The Compact Mutation of Myostatin Causes a Glycolytic Shift in the Phenotype of Fast Skeletal Muscles

    PubMed Central

    Baán, Júlia Aliz; Kocsis, Tamás; Keller-Pintér, Anikó; Müller, Géza; Zádor, Ernö; Dux, László

    2013-01-01

    Myostatin is an important negative regulator of skeletal muscle growth. The hypermuscular Compact (Cmpt) mice carry a 12-bp natural mutation in the myostatin propeptide, with additional modifier genes being responsible for the phenotype. Muscle cellularity of the fast-type tibialis anterior (TA) and extensor digitorum longus (EDL) as well as the mixed-type soleus (SOL) muscles of Cmpt and wild-type mice was examined by immunohistochemical staining of the myosin heavy chain (MHC) proteins. In addition, transcript levels of MHC isoforms were quantified by qPCR. Based on our results, all investigated muscles of Cmpt mice were significantly larger compared with that of wild-type mice, as characterized by fiber hyperplasia of different grades. Fiber hypertrophy was not present in TA; however, EDL muscles showed specific IIB fiber hypertrophy while the (I and IIA) fibers of SOL muscles were generally hypertrophied. Both the fast TA and EDL muscles of Cmpt mice contained significantly more glycolytic IIB fibers accompanied by a decreased number of IIX and IIA fibers; however, this was not the case for SOL muscles. In summary, despite the variances found in muscle cellularity between the different myostatin mutant mice, similar glycolytic shifts were observed in Cmpt fast muscles as in muscles from myostatin knockout mice. PMID:23979839

  2. Adipose tissue-derived stem cell secreted IGF-1 protects myoblasts from the negative effect of myostatin.

    PubMed

    Gehmert, Sebastian; Wenzel, Carina; Loibl, Markus; Brockhoff, Gero; Huber, Michaela; Krutsch, Werner; Nerlich, Michael; Gosau, Martin; Klein, Silvan; Schreml, Stephan; Prantl, Lukas; Gehmert, Sanga

    2014-01-01

    Myostatin, a TGF-β family member, is associated with inhibition of muscle growth and differentiation and might interact with the IGF-1 signaling pathway. Since IGF-1 is secreted at a bioactive level by adipose tissue-derived mesenchymal stem cells (ASCs), these cells (ASCs) provide a therapeutic option for Duchenne Muscular Dystrophy (DMD). But the protective effect of stem cell secreted IGF-1 on myoblast under high level of myostatin remains unclear. In the present study murine myoblasts were exposed to myostatin under presence of ASCs conditioned medium and investigated for proliferation and apoptosis. The protective effect of IGF-1 was further examined by using IGF-1 neutralizing and receptor antibodies as well as gene silencing RNAi technology. MyoD expression was detected to identify impact of IGF-1 on myoblasts differentiation when exposed to myostatin. IGF-1 was accountable for 43.6% of the antiapoptotic impact and 48.8% for the proliferative effect of ASCs conditioned medium. Furthermore, IGF-1 restored mRNA and protein MyoD expression of myoblasts under risk. Beside fusion and transdifferentiation the beneficial effect of ASCs is mediated by paracrine secreted cytokines, particularly IGF-1. The present study underlines the potential of ASCs as a therapeutic option for Duchenne muscular dystrophy and other dystrophic muscle diseases.

  3. Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function.

    PubMed

    Murphy, Kate T; Koopman, René; Naim, Timur; Léger, Bertrand; Trieu, Jennifer; Ibebunjo, Chikwendu; Lynch, Gordon S

    2010-11-01

    Sarcopenia is the progressive loss of skeletal muscle mass and function with advancing age, leading to reduced mobility and quality of life. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the decline in mass and function of muscles of aged mice and that apoptosis would be reduced. Eighteen-month-old C57BL/6 mice were treated for 14 wk with a once-weekly injection of saline (control, n=9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n=12). PF-354 prevented the age-related reduction in body mass and increased soleus, gastrocnemius, and quadriceps muscle mass (P<0.05). PF-354 increased fiber cross-sectional area by 12% and enhanced maximum in situ force of tibialis anterior (TA) muscles by 35% (P<0.05). PF-354 increased the proportion of type IIa fibers by 114% (P<0.01) and enhanced activity of oxidative enzymes (SDH) by 39% (P<0.01). PF-354 reduced markers of apoptosis in TA muscle cross-sections by 56% (P<0.03) and reduced caspase3 mRNA by 65% (P<0.04). Antibody-directed myostatin inhibition attenuated the decline in mass and function of muscles of aging mice, in part, by reducing apoptosis. These observations identify novel roles for myostatin in regulation of muscle mass and highlight the therapeutic potential of antibody-directed myostatin inhibition for sarcopenia.

  4. Genome walk of an unknown upstream region of myostatin gene in Spanish goats

    USDA-ARS?s Scientific Manuscript database

    Myostatin (MSTN) gene product also known as growth differentiation factor (GDF8) is a member of the TGF-ß family of secreted proteins. It is shown to be a negative regulator of muscle mass development. Mutations in the MSTN gene have been reported in mice, cattle and humans that lead to muscular hyp...

  5. Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides)

    PubMed Central

    Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh

    2017-01-01

    Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection. PMID:29036192

  6. Viral infection upregulates myostatin promoter activity in orange-spotted grouper (Epinephelus coioides).

    PubMed

    Chen, Yi-Tien; Lin, Chao-Fen; Chen, Young-Mao; Lo, Chih-En; Chen, Wan-Erh; Chen, Tzong-Yueh

    2017-01-01

    Myostatin is a negative regulator of myogenesis and has been suggested to be an important factor in the development of muscle wasting during viral infection. The objective of this study was to characterize the main regulatory element of the grouper myostatin promoter and to study changes in promoter activity due to viral stimulation. In vitro and in vivo experiments indicated that the E-box E6 is a positive cis-and trans-regulation motif, and an essential binding site for MyoD. In contrast, the E-box E5 is a dominant negative cis-regulatory. The characteristics of grouper myostatin promoter are similar in regulation of muscle growth to that of other species, but mainly through specific regulatory elements. According to these results, we conducted a study to investigate the effect of viral infection on myostatin promoter activity and its regulation. The nervous necrosis virus (NNV) treatment significantly induced myostatin promoter activity. The present study is the first report describing that specific myostatin motifs regulate promoter activity and response to viral infection.

  7. Myostatin regulates proliferation and extracellular matrix mRNA expression in NIH3T3 fibroblasts.

    PubMed

    Z Hosaka, Yoshinao; Ishibashi, Mika; Wakamatsu, Jun-Ichi; Uehara, Masato; Nishimura, Takanori

    2012-12-01

    The aim of this study was to clarify the effects of myostatin, which is a negative regulator of skeletal muscle mass, on the proliferation of NIH3T3 fibroblasts and the synthesis of extracellular matrix (ECM) by them. A proliferation assay revealed that myostatin attenuated cell growth at any of the doses used. High doses of myostatin strongly inhibited cell proliferation. Moreover, myostatin receptor, activin receptor type-2B (ActRIIB), was found to be distributed on cells and it was also clarified that myostatin increased the expression of cyclin-dependent kinase inhibitor p21 (p21). These results suggested that a high dose of myostatin inhibits fibroblast proliferation by the same mechanism as that for inhibition of myoblast proliferation. We then examined the effects of myostatin on the mRNA expression of ECM molecules (decorin, biglycan, type I collagen, type III collagen, type IV collagen and type V collagen) by real-time PCR. Real-time PCR showed that myostatin increased the mRNA of decorin, biglycan and collagen (types I, IV and V) in fibroblasts. The results suggest that myostatin regulates ECM synthesis in cultured fibroblasts.

  8. Myostatin inhibits osteoblastic differentiation by suppressing osteocyte-derived exosomal microRNA-218: A novel mechanism in muscle-bone communication.

    PubMed

    Qin, Yiwen; Peng, Yuanzhen; Zhao, Wei; Pan, Jianping; Ksiezak-Reding, Hanna; Cardozo, Christopher; Wu, Yingjie; Divieti Pajevic, Paola; Bonewald, Lynda F; Bauman, William A; Qin, Weiping

    2017-06-30

    Muscle and bone are closely associated in both anatomy and function, but the mechanisms that coordinate their synergistic action remain poorly defined. Myostatin, a myokine secreted by muscles, has been shown to inhibit muscle growth, and the disruption of the myostatin gene has been reported to cause muscle hypertrophy and increase bone mass. Extracellular vesicle-exosomes that carry microRNA (miRNA), mRNA, and proteins are known to perform an important role in cell-cell communication. We hypothesized that myostatin may play a crucial role in muscle-bone interactions and may promote direct effects on osteocytes and on osteocyte-derived exosomal miRNAs, thereby indirectly influencing the function of other bone cells. We report herein that myostatin promotes expression of several bone regulators such as sclerostin (SOST), DKK1, and RANKL in cultured osteocytic (Ocy454) cells, concomitant with the suppression of miR-218 in both parent Ocy454 cells and derived exosomes. Exosomes produced by Ocy454 cells that had been pretreated with myostatin could be taken up by osteoblastic MC3T3 cells, resulting in a marked reduction of Runx2, a key regulator of osteoblastic differentiation, and in decreased osteoblastic differentiation via the down-regulation of the Wnt signaling pathway. Importantly, the inhibitory effect of myostatin-modified osteocytic exosomes on osteoblast differentiation is completely reversed by expression of exogenous miR-218, through a mechanism involving miR-218-mediated inhibition of SOST. Together, our findings indicate that myostatin directly influences osteocyte function and thereby inhibits osteoblastic differentiation, at least in part, through the suppression of osteocyte-derived exosomal miR-218, suggesting a novel mechanism in muscle-bone communication. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Double muscling in cattle due to mutations in the myostatin gene

    PubMed Central

    McPherron, Alexandra C.; Lee, Se-Jin

    1997-01-01

    Myostatin (GDF-8) is a member of the transforming growth factor β superfamily of secreted growth and differentiation factors that is essential for proper regulation of skeletal muscle mass in mice. Here we report the myostatin sequences of nine other vertebrate species and the identification of mutations in the coding sequence of bovine myostatin in two breeds of double-muscled cattle, Belgian Blue and Piedmontese, which are known to have an increase in muscle mass relative to conventional cattle. The Belgian Blue myostatin sequence contains an 11-nucleotide deletion in the third exon which causes a frameshift that eliminates virtually all of the mature, active region of the molecule. The Piedmontese myostatin sequence contains a missense mutation in exon 3, resulting in a substitution of tyrosine for an invariant cysteine in the mature region of the protein. The similarity in phenotypes of double-muscled cattle and myostatin null mice suggests that myostatin performs the same biological function in these two species and is a potentially useful target for genetic manipulation in other farm animals. PMID:9356471

  10. Myostatin regulates miR-431 expression via the Ras-Mek-Erk signaling pathway.

    PubMed

    Wu, Rimao; Li, Hu; Li, Tingting; Zhang, Yong; Zhu, Dahai

    2015-05-29

    MicroRNAs (miRNAs) play critical regulatory roles in controlling myogenic development both in vitro and in vivo; however, the molecular mechanisms underlying transcriptional regulation of miRNA genes in skeletal muscle cells are largely unknown. Here, using a microarray hybridization approach, we identified myostatin-regulated miRNA genes in skeletal muscle tissues by systematically searching miRNAs that are differentially expressed between wild-type and myostatin-null mice during development. We found that 116 miRNA genes were differentially expressed in muscles between these mice across different developmental stages. We further characterized myostatin-regulated miR-431 was upregulated in skeletal muscle tissues of myostatin-null mice. In functional studies, we found that overexpression of miR-431 in C2C12 myoblast cells attenuated myostatin-induced suppression of myogenic differentiation. Mechanistic studies further demonstrated that myostatin acted through the Ras-Mek-Erk signaling pathway to transcriptionally regulate miR-431 expression C2C12 cells. Our findings provide new insight into the mechanisms underlying transcriptional regulation of miRNA genes by myostatin during skeletal muscle development. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Genetic myostatin decrease in the golden retriever muscular dystrophy model does not significantly affect the ubiquitin proteasome system despite enhancing the severity of disease.

    PubMed

    Cotten, Steven W; Kornegay, Joe N; Bogan, Daniel J; Wadosky, Kristine M; Patterson, Cam; Willis, Monte S

    2013-01-01

    Recent studies suggest that inhibiting the protein myostatin, a negative regulator of skeletal muscle mass, may improve outcomes in patients with Duchenne muscular dystrophy by enhancing muscle mass. When the dystrophin-deficient golden retriever muscular dystrophy (GRMD) dog was bred with whippets having a heterozygous mutation for the myostatin gene, affected GRMD dogs with decreased myostatin (GRippets) demonstrated an accelerated physical decline compared to related affected GRMD dogs with full myostatin. To examine the role of the ubiquitin proteasome and calpain systems in this accelerated decline, we determined the expression of the muscle ubiquitin ligases MuRF1, Atrogin-1, RNF25, RNF11, and CHIP: the proteasome subunits PSMA6, PSMB4, and PSME1: and calpain 1/2 by real time PCR in the cranial sartorius and vastus lateralis muscles in control, affected GRMD, and GRippet dogs. While individual affected GRMD and GRippet dogs contributed to an increased variability seen in ubiquitin ligase expression, neither group was significantly different from the control group. The affected GRMD dogs demonstrated significant increases in caspase-like and trypsin-like activity in the cranial sartorius; however, all three proteasome activities in the GRippet muscles did not differ from controls. Increased variability in calpain 1 and calpain 2 expression and activity in the affected GRMD and GRippet groups were identified, but no statistical differences from the control group were seen. These studies suggest a role of myostatin in the disease progression of GRMD, which does not significantly involve key components of the ubiquitin proteasome and calpain systems involved in the protein quality control of sarcomere and other structural skeletal muscle proteins.

  12. Role of Activin-A and Myostatin and Their Signaling Pathway in Human Myometrial and Leiomyoma Cell Function

    PubMed Central

    Islam, Md Soriful; Catherino, William H.; Protic, Olga; Janjusevic, Milijana; Gray, Peter Clarke; Giannubilo, Stefano Raffaele; Ciavattini, Andrea; Lamanna, Pasquale; Tranquilli, Andrea Luigi; Petraglia, Felice

    2014-01-01

    Context: Uterine leiomyomas are highly prevalent benign tumors of premenopausal women and the most common indication for hysterectomy. However, the exact etiology of this tumor is not fully understood. Objective: The objective of the study was to evaluate the role of activin-A and myostatin and their signaling pathways in human myometrial and leiomyoma cells. Design: This was a laboratory study. Setting: Myometrial and leiomyoma cells (primary and cell lines) were cultured in vitro. Patients: The study included premenopausal women who were admitted to the hospital for myomectomy or hysterectomy. Interventions: Primary myometrial and leiomyoma cells and/or cell lines were treated with activin-A (4 nM) and myostatin (4 nM) for different days of interval (to measure proliferation rate) or 30 minutes (to measure signaling molecules) or 48 hours to measure proliferating markers, extracellular matrix mRNA, and/or protein expression by real-time PCR, Western blot, and/or immunocytochemistry. Results: We found that activin-A and myostatin significantly reduce cell proliferation in primary myometrial cells but not in leiomyoma cells as measured by a CyQUANT cell proliferation assay kit. Reduced expression of proliferating cell nuclear antigen and Ki-67 were also observed in myometrial cells in response to activin-A and myostatin treatment. Activin-A also significantly increased mRNA expression of fibronectin, collagen1A1, and versican in primary leiomyoma cells. Finally, we found that activin-A and myostatin activate Smad-2/3 signaling but do not affect ERK or p38 signaling in both myometrial and leiomyoma cells. Conclusions: This study results suggest that activin-A and myostatin can exert antiproliferative and/or fibrotic effects on these cell types via Smad-2/3 signaling. PMID:24606069

  13. Functional effect of mir-27b on myostatin expression: a relationship in piedmontese cattle with double-muscled phenotype

    PubMed Central

    2013-01-01

    Background In Piedmontese cattle the double-muscled phenotype is an inherited condition associated to a point mutation in the myostatin (MSTN) gene. The Piedmontese MSTN missense mutation G938A is translated to C313Y myostatin protein. This mutation alters MSTN function as a negative regulator of muscle growth, thereby inducing muscle hypertrophy. MiRNAs could play a role in skeletal muscle hypertrophy modulation by down-regulating gene expression. Results After identifying a 3′-UTR consensus sequence of several negative and positive modulator genes involved in the skeletal muscle hypertrophy pathway, such as IGF1, IGF1R, PPP3CA, NFATc1, MEF2C, GSK3b, TEAD1 and MSTN, we screened miRNAs matching to it. This analysis led to the identification of miR-27b, miR-132, miR-186 and miR-199b-5p as possible candidates. We collected samples of longissimus thoracis from twenty Piedmontese and twenty Friesian male bovines. In Piedmontese group miR-27b was up-regulated 7.4-fold (p < 0.05). Further, we report that the level of MSTN mRNA was about 5-fold lower in Piedmontese cattle vs Friesian cattle (p < 0.0001) and that less mature MSTN protein was detected in the Piedmontese one (p < 0.0001). Cotransfection of miR-27b and psi-check2 vector with the luciferase reporter gene linked to the bovine wild-type 3′-UTR of MSTN strongly inhibited the luciferase activity (79%, p < 0.0001). Conclusions These data demonstrate that bovine MSTN is a specific target of miR-27b and that miRNAs contribute to explain additive phenotypic hypertrophy in Piedmontese cattle selected for the MSTN gene mutation, possibly outlining a more precise genetic signature able to elucidate differences in muscle conformation. PMID:23510267

  14. Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation.

    PubMed

    Mendias, Christopher L; Kayupov, Erdan; Bradley, Joshua R; Brooks, Susan V; Claflin, Dennis R

    2011-07-01

    Myostatin (MSTN) is a member of the transforming growth factor-β superfamily of cytokines and is a negative regulator of skeletal muscle mass. Compared with MSTN(+/+) mice, the extensor digitorum longus muscles of MSTN(-/-) mice exhibit hypertrophy, hyperplasia, and greater maximum isometric force production (F(o)), but decreased specific maximum isometric force (sF(o); F(o) normalized by muscle cross-sectional area). The reason for the reduction in sF(o) was not known. Studies in myotubes indicate that inhibiting myostatin may increase muscle mass by decreasing the expression of the E3 ubiquitin ligase atrogin-1, which could impact the force-generating capacity and size of muscle fibers. To gain a greater understanding of the influence of myostatin on muscle contractility, we determined the impact of myostatin deficiency on the contractility of permeabilized muscle fibers and on the levels of atrogin-1 and ubiquitinated myosin heavy chain in whole muscle. We hypothesized that single fibers from MSTN(-/-) mice have a greater F(o), but no difference in sF(o), and a decrease in atrogin-1 and ubiquitin-tagged myosin heavy chain levels. The results indicated that fibers from MSTN(-/-) mice have a greater cross-sectional area, but do not have a greater F(o) and have a sF(o) that is significantly lower than fibers from MSTN(+/+) mice. The extensor digitorum longus muscles from MSTN(-/-) mice also have reduced levels of atrogin-1 and ubiquitinated myosin heavy chain. These findings suggest that myostatin inhibition in otherwise healthy muscle increases the size of muscle fibers and decreases atrogin-1 levels, but does not increase the force production of individual muscle fibers.

  15. Myostatin from the heart: local and systemic actions in cardiac failure and muscle wasting

    PubMed Central

    Breitbart, Astrid; Auger-Messier, Mannix; Molkentin, Jeffery D.

    2011-01-01

    A significant proportion of heart failure patients develop skeletal muscle wasting and cardiac cachexia, which is associated with a very poor prognosis. Recently, myostatin, a cytokine from the transforming growth factor-β (TGF-β) family and a known strong inhibitor of skeletal muscle growth, has been identified as a direct mediator of skeletal muscle atrophy in mice with heart failure. Myostatin is mainly expressed in skeletal muscle, although basal expression is also detectable in heart and adipose tissue. During pathological loading of the heart, the myocardium produces and secretes myostatin into the circulation where it inhibits skeletal muscle growth. Thus, genetic elimination of myostatin from the heart reduces skeletal muscle atrophy in mice with heart failure, whereas transgenic overexpression of myostatin in the heart is capable of inducing muscle wasting. In addition to its endocrine action on skeletal muscle, cardiac myostatin production also modestly inhibits cardiomyocyte growth under certain circumstances, as well as induces cardiac fibrosis and alterations in ventricular function. Interestingly, heart failure patients show elevated myostatin levels in their serum. To therapeutically influence skeletal muscle wasting, direct inhibition of myostatin was shown to positively impact skeletal muscle mass in heart failure, suggesting a promising strategy for the treatment of cardiac cachexia in the future. PMID:21421824

  16. Irisin and Myostatin Levels in Patients with Graves' Disease.

    PubMed

    Yalcin, Mehmet Muhittin; Akturk, Mujde; Tohma, Yusuf; Cerit, Ethem Turgay; Altinova, Alev Eroglu; Arslan, Emre; Yetkin, Ilhan; Toruner, Fusun Balos

    2016-08-01

    Skeletal muscle system, which is one of the primary targets for thyroid hormones, has an important role in energy metabolism. Some myokines such as irisin and myostatin have considerable effects on energy metabolism in addition to the musculoskeletal system. Our aim was to investigate circulating irisin and myostatin levels in patients with Graves' Disease (GD). This study included 41 patients with GD who were in overt hyperthyroid status and 44 healthy subjects. Serum irisin levels were higher in patients with hyperthyroidism than in control group (p = 0.003). However, there was no statistical difference in myostatin levels between groups (p = 0.21). Irisin levels were positively correlated with free triiodothyronine (FT3), free thyroxine (FT4), thyrotropin receptor antibody (TRAb) (p = 0.03, p = 0.02, p = 0.02, respectively) and negatively correlated with thyroid-stimulating hormone (TSH) (p = 0.006) in both groups. In multiple regression analysis, the presence of GD was the only significant factor associated with serum irisin levels (β = 0.29, p = 0.01). Myostatin levels were positively correlated with age, body mass index (BMI), FT4, HOMA-IR (p = 0.001, p = 0.04, p = 0.003, p = 0.03, respectively) and negatively correlated with TSH (p = 0.01). Multiple regression analysis also revealed that age and FT4 were the significant factors associated with circulating myostatin levels (β = 0.27, p = 0.02; β = 0.22, p = 0.04, respectively). Our results suggest that increased irisin levels might contribute to altered energy metabolism in hyperthyroidism. Further studies to determine whether myostatin is affected due to hyperthyroidism are needed. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  17. Myostatin and sarcopenia: opportunities and challenges - a mini-review.

    PubMed

    White, Thomas A; LeBrasseur, Nathan K

    2014-01-01

    The progressive loss of skeletal muscle mass, strength and/or function with advancing age, termed sarcopenia, poses a major threat to independence and quality of life. Therefore, there is significant merit in better understanding the biology of sarcopenia and developing therapeutic interventions to prevent, slow or reverse its progression. Since the discovery of myostatin, a potent negative regulator of growth that is highly enriched in skeletal muscle, there has been great interest in it as a potential mediator of sarcopenia as well as a therapeutic target. The complex biology of myostatin, the promise of myostatin inhibition as an effective means to counter sarcopenia, and the challenges facing its clinical translation are reviewed herein. © 2014 S. Karger AG, Basel.

  18. Serum reference value of two potential doping candidates-myostatin and insulin-like growth factor-I in the healthy young male.

    PubMed

    Han, Der-Sheng; Huang, Chi-Huang; Chen, Ssu-Yuan; Yang, Wei-Shiung

    2017-01-01

    Myostatin negatively regulates muscle growth, and its inhibition by suitable proteins can increase muscle bulk and exercise performance. However, the reference values of serum myostatin in athletes performing strength training are still lacking. A cross-sectional study recruiting28 male collegiate athletes performing strength training and 29 age-matched normal controls was conducted. The serum concentration of myostatin and insulin-like growth factor 1 (IGF-1), grip strength, and body composition were the main outcome measures. We used regression models to analyze the correlation between serum markers and the physiological parameters. The athlete group had greater height, weight, body mass index (BMI), fat mass percentage, fat-free mass, muscle mass, waist girth, grip strength, and estimated daily energy expenditure. The IGF-1 concentration was higher in the athlete group (324 ± 80 vs. 263 ± 134 ng/ml), but the myostatin levels did not differ (12.1 ± 3.7 vs. 12.4 ± 3.5 ng/ml). The reference value for IGF-1 among the healthy young males was 293 ± 114 ng/ml, correlated with age and height; the value for myostatin was 12.3 ± 3.6 ng/ml, correlated negatively with BMI, fat mass percentage, and waist girth after adjustment for age. Myostatin level is negatively related to fat percentage, and serum IGF-1 is positively related to height. The reference values could provide a basis for future doping-related study.

  19. Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches.

    PubMed

    Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Patra, Swagat Kumar; Mohapatra, Shibani D; Nayak, Swapnarani; Jena, Sasmita; Sundaray, Jitendra Kumar; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2016-01-01

    The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies.

  20. Muscle-specific transgenic expression of porcine myostatin propeptide enhances muscle growth in mice.

    PubMed

    Wang, Kaiyun; Li, Zicong; Li, Yang; Zeng, Jinyong; He, Chang; Yang, Jinzeng; Liu, Dewu; Wu, Zhenfang

    2013-10-01

    Myostatin is a well-known negative regulator of skeletal muscle growth. Inhibition of myostatin activity results in increased muscle mass. Myostatin propeptide, as a myostatin antagonist, could be applied to promote meat production in livestock such as pigs. In this study, we generated a transgenic mouse model expressing porcine myostatin propeptide under the control of muscle-specific regulatory elements. The mean body weight of transgenic mice from a line expressing the highest level of porcine myostatin propeptide was increased by 5.4 % (P = 0.023) and 3.2 % (P = 0.031) in males and females, respectively, at 8 weeks of age. Weight of carcass, fore limb and hind limb was respectively increased by 6.0 % (P = 0.038), 9.0 % (P = 0.014), 8.7 % (P = 0.036) in transgenic male mice, compared to wild-type male controls at the age of 9 weeks. Similarly, carcass, fore limb and hind limb of transgenic female mice was 11.4 % (P = 0.002), 14.5 % (P = 0.006) and 14.5 % (P = 0.03) respectively heavier than that of wild-type female mice. The mean cross-section area of muscle fiber was increased by 17 % (P = 0.002) in transgenic mice, in comparison with wild-type controls. These results demonstrated that porcine myostatin propeptide is effective in enhancement of muscle growth. The present study provided useful information for future study on generation of transgenic pigs overexpressing porcine myostatin propeptide for improvement of muscle mass.

  1. Correction to: The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-05-31

    The article "The NMR contribution to protein-protein networking in Fe-S protein maturation", written by Lucia Banci, Francesca Camponeschi, Simone Ciofi‑Baffoni, Mario Piccioli was originally published electronically on the publisher's internet portal (currently SpringerLink) on 22 March, 2018 without open access.

  2. The methyltransferase SMYD3 mediates the recruitment of transcriptional cofactors at the myostatin and c-Met genes and regulates skeletal muscle atrophy

    PubMed Central

    Proserpio, Valentina; Fittipaldi, Raffaella; Ryall, James G.; Sartorelli, Vittorio; Caretti, Giuseppina

    2013-01-01

    Elucidating the epigenetic mechanisms underlying muscle mass determination and skeletal muscle wasting holds the potential of identifying molecular pathways that constitute possible drug targets. Here, we report that the methyltransferase SMYD3 modulates myostatin and c-Met transcription in primary skeletal muscle cells and C2C12 myogenic cells. SMYD3 targets the myostatin and c-Met genes and participates in the recruitment of the bromodomain protein BRD4 to their regulatory regions through protein–protein interaction. By recruiting BRD4, SMYD3 favors chromatin engagement of the pause–release factor p-TEFb (positive transcription elongation factor) and elongation of Ser2-phosphorylated RNA polymerase II (PolIISer2P). Reducing SMYD3 decreases myostatin and c-Met transcription, thus protecting from glucocorticoid-induced myotube atrophy. Supporting functional relevance of the SMYD3/BRD4 interaction, BRD4 pharmacological blockade by the small molecule JQ1 prevents dexamethasone-induced myostatin and atrogene up-regulation and spares myotube atrophy. Importantly, in a mouse model of dexamethasone-induced skeletal muscle atrophy, SMYD3 depletion prevents muscle loss and fiber size decrease. These findings reveal a mechanistic link between SMYD3/BRD4-dependent transcriptional regulation, muscle mass determination, and skeletal muscle atrophy and further encourage testing of small molecules targeting specific epigenetic regulators in animal models of muscle wasting. PMID:23752591

  3. Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease.

    PubMed

    Ju, Chun-Rong; Chen, Miao; Zhang, Jian-Heng; Lin, Zhi-Ya; Chen, Rong-Chang

    2016-01-01

    To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05). Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05. Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD.

  4. Higher Plasma Myostatin Levels in Cor Pulmonale Secondary to Chronic Obstructive Pulmonary Disease

    PubMed Central

    Ju, Chun-rong; Chen, Miao; Zhang, Jian-heng; Lin, Zhi-ya; Chen, Rong-chang

    2016-01-01

    Objective To analyze plasma myostatin levels and investigate their relationship with right ventricular (RV) function in patients with cor pulmonale secondary to chronic obstructive pulmonary disease (COPD). Methods The study recruited 81 patients with advanced COPD and 40 age-matched controls. The patients were divided into two groups: those with cor pulmonale and those without. Echocardiography was used to evaluate RV function and morphology, and the value of tricuspid annular plane systolic excursion (TAPSE) less than 16 mm was considered RV dysfunction. Plasma myostatin levels were analyzed by enzyme-linked immunosorbent assay, and B-type natriuretic peptide (BNP) levels were analyzed as a comparison of myostatin. Results The data detected cor pulmonale in 39/81 patients, with the mean value of TAPSE of 14.3 mm. Plasma myostatin levels (ng/mL) were significantly higher in patients with cor pulmonale (16.68 ± 2.95) than in those without (13.56 ± 3.09), and much higher than in controls (8.79±2.79), with each p<0.01. Significant differences were also found in plasma BNP levels among the three groups (p<0.05). Multivariate regression analysis suggested that myostatin levels were significantly correlated with the values of TAPSE and RV myocardium performance index among the COPD patients, and that BNP levels were significantly correlated only with systolic pulmonary arterial pressure, with each p<0.05. Conclusions Plasma myostatin levels are increased in COPD patients who have cor pulmonale. Stronger correlations of plasma myostatin levels with echocardiographic indexes of the right heart suggest that myostatin might be superior to BNP in the early diagnosis of cor pulmonale in COPD. PMID:26998756

  5. Myostatin acts as an autocrine/paracrine negative regulator in myoblast differentiation from human induced pluripotent stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Kishida, Tsunao; Ejima, Akika

    Highlights: ► iPS-derived cells express myostatin and its receptor upon myoblast differentiation. ► Myostatin inhibits myoblast differentiation by inhibiting MyoD and Myo5a induction. ► Silencing of myostatin promotes differentiation of human iPS cells into myoblasts. -- Abstract: Myostatin, also known as growth differentiation factor (GDF-8), regulates proliferation of muscle satellite cells, and suppresses differentiation of myoblasts into myotubes via down-regulation of key myogenic differentiation factors including MyoD. Recent advances in stem cell biology have enabled generation of myoblasts from pluripotent stem cells, but it remains to be clarified whether myostatin is also involved in regulation of artificial differentiation of myoblastsmore » from pluripotent stem cells. Here we show that the human induced pluripotent stem (iPS) cell-derived cells that were induced to differentiate into myoblasts expressed myostatin and its receptor during the differentiation. An addition of recombinant human myostatin (rhMyostatin) suppressed induction of MyoD and Myo5a, resulting in significant suppression of myoblast differentiation. The rhMyostatin treatment also inhibited proliferation of the cells at a later phase of differentiation. RNAi-mediated silencing of myostatin promoted differentiation of human iPS-derived embryoid body (EB) cells into myoblasts. These results strongly suggest that myostatin plays an important role in regulation of myoblast differentiation from iPS cells of human origin. The present findings also have significant implications for potential regenerative medicine for muscular diseases.« less

  6. Postsurgical Acute Phase Reaction is Associated with Decreased Levels of Circulating Myostatin.

    PubMed

    Åkerfeldt, Torbjörn; Helmersson-Karlqvist, Johanna; Gunningberg, Lena; Swenne, Christine Leo; Larsson, Anders

    2015-08-01

    Muscle strength is of importance for postsurgical rehabilitation. Myostatin is a growth factor that regulates the size of muscles and could thus influence muscle mass and function in the postsurgical period. The aim of the present study was to study the changes in myostatin levels during the postsurgical inflammatory period. Myostatin was analysed in serum samples from two elective surgery groups, orthopaedic surgery (n = 24) and coronary bypass patients (n = 21). The samples were collected prior to surgery and 4 and 30 days after surgery. In the orthopaedic group, the median myostatin levels decreased from 3582 ng/L prior to surgery to 774 ng/L at day 4 (p < 0.001) and to 2016 ng/L at day 30 (p < 0.001). Median CRP increased from 2.35 mg/L preoperatively to 117 mg/L at day 4 and decreased to 5.5 mg/L at day 30 in the same group. The coronary bypass group showed a similar pattern with a decrease in myostatin from 4212 ng/L to 2574 ng/L at day 4 (p < 0.001) and to 2808 ng/L at day 30 (p = 0.002). Median CRP increased from 1.80 mg/L preoperatively to 136 mg/L at day 4 and returned to 6.12 mg/L at day 30 in the coronary bypass group. There was a significant decrease in myostatin concentrations both in the early and late postsurgical period. The lowest myostatin concentration time point coincided with the highest CRP concentration time point.

  7. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-{beta} family signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Tetsuya; Department of Cardiovascular Medicine, Kyoto Prefectural University of Medicine, Kyoto 602-8566; Ueyama, Tomomi

    2008-01-25

    The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-{beta} family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activinmore » A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle.« less

  8. Inhibition of myostatin reverses muscle fibrosis through apoptosis.

    PubMed

    Bo Li, Zhao; Zhang, Jiangyang; Wagner, Kathryn R

    2012-09-01

    Skeletal muscle fibrosis is a defining feature of the muscular dystrophies in which contractile myofibers are replaced by fibroblasts, adipocytes and extracellular matrix. This maladaptive response of muscle to repetitive injury is progressive, self-perpetuating and thus far, has been considered irreversible. We have previously shown that myostatin, a known endogenous modulator of muscle growth, stimulates normal muscle fibroblasts to proliferate. Here, we demonstrate that myostatin also regulates the proliferation of dystrophic muscle fibroblasts, and increases resistance of fibroblasts to apoptosis through Smad and MAPK signaling. Inhibition of myostatin signaling pathways with a soluble activin IIB receptor (ActRIIB.Fc) reduces resistance of muscle fibroblasts to apoptosis in vitro. Systemic administration of ActRIIB.Fc in senescent mdx mice, a model of muscular dystrophy, significantly increases the number of muscle fibroblasts undergoing apoptosis. This leads to the reversal of pre-existing muscle fibrosis as determined by histological, biochemical and radiographical criteria. These results demonstrate that skeletal muscle fibrosis can be pharmacologically reversed through induction of fibroblast apoptosis.

  9. Myostatin Suppression of Akirin1 Mediates Glucocorticoid-Induced Satellite Cell Dysfunction

    PubMed Central

    Dong, Yanjun; Pan, Jenny S.; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production. PMID:23516508

  10. Myostatin suppression of Akirin1 mediates glucocorticoid-induced satellite cell dysfunction.

    PubMed

    Dong, Yanjun; Pan, Jenny S; Zhang, Liping

    2013-01-01

    Glucocorticoids production is increased in many pathological conditions that are associated with muscle loss, but their role in causing muscle wasting is not fully understood. We have demonstrated a new mechanism of glucocorticoid-induced muscle atrophy: Dexamethasone (Dex) suppresses satellite cell function contributing to the development of muscle atrophy. Specifically, we found that Dex decreases satellite cell proliferation and differentiation in vitro and in vivo. The mechanism involved Dex-induced upregulation of myostatin and suppression of Akirin1, a promyogenic gene. When myostatin was inhibited in Dex-treated mice, Akirin1 expression increased as did satellite cell activity, muscle regeneration and muscle growth. In addition, silencing myostatin in myoblasts or satellite cells prevented Dex from suppressing Akirin1 expression and cellular proliferation and differentiation. Finally, overexpression of Akirin1 in myoblasts increased their expression of MyoD and myogenin and improved cellular proliferation and differentiation, theses improvements were no longer suppressed by Dex. We conclude that glucocorticoids stimulate myostatin which inhibits Akirin1 expression and the reparative functions of satellite cells. These responses attribute to muscle atrophy. Thus, inhibition of myostatin or increasing Akirin1 expression could lead to therapeutic strategies for improving satellite cell activation and enhancing muscle growth in diseases associated with increased glucocorticoid production.

  11. Molecular Cloning, Identification, and Expression Patterns of Myostatin Gene in Water Buffalo (Bubalus Bubalis).

    PubMed

    Zhu, Peng; Li, Haiyang; Huang, Guiting; Cui, Jiayu; Zhang, Ruimen; Cui, Kuiqing; Yang, Sufang; Shi, Deshun

    2018-01-02

    Myostatin (MSTN), also named growth differentiation factor 8 (GDF8), is a transforming growth factor-β (TGF-β) family member with a key role in the negative regulation of skeletal muscle growth. However, its role in ovarian folliculogenesis remains unclear. To provide us with a basis for understanding this role, we cloned MSTN and examined its expression patterns in water buffalo (Bubalus bubalis). The complete ORF of the water buffalo MSTN gene is 1,128 nucleotides, which encode a 375 amino acid protein and sharing 99% identity at the deducted amino acid level with that of Bos taurus. Protein sequence analysis showed that MSTN is a weakly acerbic extracellular protein, consisting of signal peptides at 18-19 sites, a TGF-β propeptide, and a TGF-β domain. RT-PCR analyses demonstrated that water buffalo MSTN was expressed in multiple tissues but not limited to muscle. Immunohistochemistry staining confirmed the presence of MSTN in oocytes and granulosal cells. To our knowledge, this is the first study to confirm the expression of MSTN in the water buffalo ovary, suggesting an additional role of MSTN in water buffalo folliculogenesis, along with its role in skeletal muscle growth regulation. Further study of the regulatory mechanism of MSTN in water buffalo reproduction is warranted. MSTN, myostatin; ORF, open reading frame.

  12. Plasma myostatin is only a weak predictor for weight maintenance in obese adults.

    PubMed

    Tsioga, M N; Oikonomou, D; Vittas, S; Kalscheuer, H; Roeder, E; Wintgens, K F; Nawroth, P P; Wolfrum, C; Rudofsky, G

    2015-09-01

    Predicting an individual's success in a non-surgical weight loss approach is a demanding need since obesity is becoming an epidemic burden. A possible predictive marker is myostatin, a member of the transforming growth factor b superfamily, which has been shown to be an important regulator of muscle homeostasis. In the present study, we analyzed myostatin as a marker to predict weight loss of patients that participated in a 2 phased weight reduction program, comprising a weight loss period of 12 weeks and a weight stabilization period of 40 weeks. Therefore, 62 obese individuals with a mean BMI of 40.6 kg/m(2) were included. Plasma myostatin was measured with ELISA at the beginning (T0), after weight loss (T1) and at the end of the program (T2). Although significant weight loss of -23.9±14.9 kg was achieved, myostatin did not change significantly during the program (T0>T1: p=0.46; T1>T2: p=0.70; T0>T2: p=0.57). Myostatin at baseline did neither negatively correlate with the achieved weight loss in the weight reduction phase (T0>T1: r=0.27, p=0.16) nor with weight loss during the whole program (T0>T2: r=0.20, p=0.29). Only a minor correlation with myostatin levels after weight loss with weight regain during maintenance period was detected. (T1>T2: r=-0.37, p=0.05). Plasma myostatin might be suitable in predicting weight regain after marked weight loss, but no association with weight loss was observed in patients undergoing a non-surgical weight loss program. Therefore, myostatin does not seem to be a predictor for success in non-surgical weight loss approaches. © Georg Thieme Verlag KG Stuttgart · New York.

  13. Identification of proteins derived from Listeria monocytogenes inducing human dendritic cell maturation.

    PubMed

    Mirzaei, Reza; Saei, Azad; Torkashvand, Fatemeh; Azarian, Bahareh; Jalili, Ahmad; Noorbakhsh, Farshid; Vaziri, Behrouz; Hadjati, Jamshid

    2016-08-01

    Dendritic cells (DCs) are potent antigen-presenting cells (APCs) that can promote antitumor immunity when pulsed with tumor antigens and then matured by stimulatory agents. Despite apparent progress in DC-based cancer immunotherapy, some discrepancies were reported in generating potent DCs. Listeria monocytogenes as an intracellular microorganism is able to effectively activate DCs through engaging pattern-recognition receptors (PRRs). This study aimed to find the most potent components derived from L. monocytogenes inducing DC maturation. The preliminary results demonstrated that the ability of protein components is higher than DNA components to promote DC maturation and activation. Protein lysate fractionation demonstrated that fraction 2 HIC (obtained by hydrophobic interaction chromatography) was able to efficiently mature DCs. F2HIC-matured DCs are able to induce allogeneic CD8(+) T cells proliferation better than LPS-matured DCs and induce IFN-γ producing CD8(+) T cells. Mass spectrometry results showed that F2HIC contains 109 proteins. Based on the bioinformatics analysis for these 109 proteins, elongation factor Tu (EF-Tu) could be considered as a PRR ligand for stimulating DC maturation.

  14. Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches

    PubMed Central

    Rasal, Kiran Dashrath; Chakrapani, Vemulawada; Patra, Swagat Kumar; Mohapatra, Shibani D.; Nayak, Swapnarani; Jena, Sasmita; Sundaray, Jitendra Kumar; Jayasankar, Pallipuram; Barman, Hirak Kumar

    2016-01-01

    The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies. PMID:27019850

  15. Myostatin deficiency but not anti-myostatin blockade induces marked proteomic changes in mouse skeletal muscle.

    PubMed

    Salzler, Robert R; Shah, Darshit; Doré, Anthony; Bauerlein, Roy; Miloscio, Lawrence; Latres, Esther; Papadopoulos, Nicholas J; Olson, William C; MacDonald, Douglas; Duan, Xunbao

    2016-07-01

    Pharmacologic blockade of the myostatin (Mstn)/activin receptor pathway is being pursued as a potential therapy for several muscle wasting disorders. The functional benefits of blocking this pathway are under investigation, in particular given the findings that greater muscle hypertrophy results from Mstn deficiency arising from genetic ablation compared to post-developmental Mstn blockade. Using high-resolution MS coupled with SILAC mouse technology, we quantitated the relative proteomic changes in gastrocnemius muscle from Mstn knockout (Mstn(-/-) ) and mice treated for 2-weeks with REGN1033, an anti-Mstn antibody. Relative to wild-type animals, Mstn(-/-) mice had a two-fold greater muscle mass and a >1.5-fold change in expression of 12.0% of 1137 quantified muscle proteins. In contrast, mice treated with REGN1033 had minimal changes in muscle proteome (0.7% of 1510 proteins >1.5-fold change, similar to biological difference 0.5% of 1310) even though the treatment induced significant 20% muscle mass increase. Functional annotation of the altered proteins in Mstn(-/-) mice corroborates the mutiple physiological changes including slow-to-fast fiber type switch. Thus, the proteome-wide protein expression differs between Mstn(-/-) mice and mice subjected to specific Mstn blockade post-developmentally, providing molecular-level insights to inform mechanistic hypotheses to explain the observed functional differences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice.

    PubMed

    Dankbar, Berno; Fennen, Michelle; Brunert, Daniela; Hayer, Silvia; Frank, Svetlana; Wehmeyer, Corinna; Beckmann, Denise; Paruzel, Peter; Bertrand, Jessica; Redlich, Kurt; Koers-Wunrau, Christina; Stratis, Athanasios; Korb-Pap, Adelheid; Pap, Thomas

    2015-09-01

    Myostatin (also known as growth and differentiation factor 8) is a secreted member of the transforming growth factor-β (TGF-β) family that is mainly expressed in skeletal muscle, which is also its primary target tissue. Deletion of the myostatin gene (Mstn) in mice leads to muscle hypertrophy, and animal studies support the concept that myostatin is a negative regulator of muscle growth and regeneration. However, myostatin deficiency also increases bone formation, mainly through loading-associated effects on bone. Here we report a previously unknown direct role for myostatin in osteoclastogenesis and in the progressive loss of articular bone in rheumatoid arthritis (RA). We demonstrate that myostatin is highly expressed in the synovial tissues of RA subjects and of human tumor necrosis factor (TNF)-α transgenic (hTNFtg) mice, a model for human RA. Myostatin strongly accelerates receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclast formation in vitro through transcription factor SMAD2-dependent regulation of nuclear factor of activated T-cells (NFATC1). Myostatin deficiency or antibody-mediated inhibition leads to an amelioration of arthritis severity in hTNFtg mice, chiefly reflected by less bone destruction. Consistent with these effects in hTNFtg mice, the lack of myostatin leads to increased grip strength and less bone erosion in the K/BxN serum-induced arthritis model in mice. The results strongly suggest that myostatin is a potent therapeutic target for interfering with osteoclast formation and joint destruction in RA.

  17. Activin-A, transforming growth factor-beta, and myostatin signaling pathway in experimental dilated cardiomyopathy.

    PubMed

    Mahmoudabady, Maryam; Mathieu, Myrielle; Dewachter, Laurence; Hadad, Ielham; Ray, Lynn; Jespers, Pascale; Brimioulle, Serge; Naeije, Robert; McEntee, Kathleen

    2008-10-01

    The pathogenic mechanisms of dilated cardiomyopathy are still uncertain. A number of cytokines and growth factors participate in the remodeling process of the disease. We investigated the cardiac myostatin, transforming growth factor (TGF)beta, and activin-A/Smad growth inhibitory signaling pathway in experimental dilated cardiomyopathy. Transvenous endomyocardial biopsies of the interventricular septum were taken weekly in 15 beagle dogs during the development of heart failure (HF) induced by rapid pacing over a period of 7 weeks. Genes involved in the myostatin-TGFbeta-activin-A/Smad signaling pathway and the cardiac hypertrophic process were quantified by real-time quantitative polymerase chain reaction. Left ventricular volume, function, and mass were evaluated by echocardiography. Overpacing was associated with increased left ventricular volumes and decreased ejection fraction, whereas the left ventricular mass remained unchanged. TGFbeta was increased in moderate HF. Activin-A mRNA expression was 4-fold higher in overt congestive HF than at baseline. A 2-fold decrease of activin type II receptors and activin receptor interacting protein 2 gene expressions were observed, as well as a transient decrease of follistatin. Activin type I receptors, activin receptor interacting protein 1, follistatin-related gene, and myostatin remained unchanged. The inhibitory Smad 7, a negative feedback loop regulator of the Smad pathway, was overexpressed in severe HF. Gene expression of the cyclin-dependent kinase inhibitor p21, a direct target gene of the Smad pathway, was 8-fold up-regulated in HF, whereas cyclin D1 was down-regulated. We conclude that tachycardia-induced dilated cardiomyopathy is characterized by gene overexpression of the TGFbeta-activin-A/Smad signaling pathway and their target gene p21 and by the absence of ventricular hypertrophy.

  18. Lack of myostatin results in excessive muscle growth but impaired force generation.

    PubMed

    Amthor, Helge; Macharia, Raymond; Navarrete, Roberto; Schuelke, Markus; Brown, Susan C; Otto, Anthony; Voit, Thomas; Muntoni, Francesco; Vrbóva, Gerta; Partridge, Terence; Zammit, Peter; Bunger, Lutz; Patel, Ketan

    2007-02-06

    The lack of myostatin promotes growth of skeletal muscle, and blockade of its activity has been proposed as a treatment for various muscle-wasting disorders. Here, we have examined two independent mouse lines that harbor mutations in the myostatin gene, constitutive null (Mstn(-/-)) and compact (Berlin High Line, BEH(c/c)). We report that, despite a larger muscle mass relative to age-matched wild types, there was no increase in maximum tetanic force generation, but that when expressed as a function of muscle size (specific force), muscles of myostatin-deficient mice were weaker than wild-type muscles. In addition, Mstn(-/-) muscle contracted and relaxed faster during a single twitch and had a marked increase in the number of type IIb fibers relative to wild-type controls. This change was also accompanied by a significant increase in type IIB fibers containing tubular aggregates. Moreover, the ratio of mitochondrial DNA to nuclear DNA and mitochondria number were decreased in myostatin-deficient muscle, suggesting a mitochondrial depletion. Overall, our results suggest that lack of myostatin compromises force production in association with loss of oxidative characteristics of skeletal muscle.

  19. The protein-protein interface evolution acts in a similar way to antibody affinity maturation.

    PubMed

    Li, Bohua; Zhao, Lei; Wang, Chong; Guo, Huaizu; Wu, Lan; Zhang, Xunming; Qian, Weizhu; Wang, Hao; Guo, Yajun

    2010-02-05

    Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniques to evaluate prediction success rates of the computational method in affinity improvement in four different systems: antibody-receptor, antibody-peptide, receptor-membrane ligand, and receptor-soluble ligand. It was interesting to find that the same evolutionary information could improve the prediction success rates in all the four protein-protein complexes with an exceptional high accuracy (>57%). One of the most striking findings in our present study is that not only in the antibody-combining site but in other protein-protein interfaces almost all of the affinity-enhancing mutations are located at the germline hotspot sequences (RGYW or WA), indicating that DNA hot spot mechanisms may be widely used in the evolution of protein-protein interfaces. Our data suggest that the evolution of distinct protein-protein interfaces may use the same basic strategy under selection pressure to maintain interactions. Additionally, our data indicate that classical simulation techniques incorporating the evolutionary information derived from in vivo antibody affinity maturation can be utilized as a powerful tool to improve the binding affinity of protein-protein complex with a high accuracy.

  20. Myostatin inhibition prevents skeletal muscle pathophysiology in Huntington's disease mice.

    PubMed

    Bondulich, Marie K; Jolinon, Nelly; Osborne, Georgina F; Smith, Edward J; Rattray, Ivan; Neueder, Andreas; Sathasivam, Kirupa; Ahmed, Mhoriam; Ali, Nadira; Benjamin, Agnesska C; Chang, Xiaoli; Dick, James R T; Ellis, Matthew; Franklin, Sophie A; Goodwin, Daniel; Inuabasi, Linda; Lazell, Hayley; Lehar, Adam; Richard-Londt, Angela; Rosinski, Jim; Smith, Donna L; Wood, Tobias; Tabrizi, Sarah J; Brandner, Sebastian; Greensmith, Linda; Howland, David; Munoz-Sanjuan, Ignacio; Lee, Se-Jin; Bates, Gillian P

    2017-10-27

    Huntington's disease (HD) is an inherited neurodegenerative disorder of which skeletal muscle atrophy is a common feature, and multiple lines of evidence support a muscle-based pathophysiology in HD mouse models. Inhibition of myostatin signaling increases muscle mass, and therapeutic approaches based on this are in clinical development. We have used a soluble ActRIIB decoy receptor (ACVR2B/Fc) to test the effects of myostatin/activin A inhibition in the R6/2 mouse model of HD. Weekly administration from 5 to 11 weeks of age prevented body weight loss, skeletal muscle atrophy, muscle weakness, contractile abnormalities, the loss of functional motor units in EDL muscles and delayed end-stage disease. Inhibition of myostatin/activin A signaling activated transcriptional profiles to increase muscle mass in wild type and R6/2 mice but did little to modulate the extensive Huntington's disease-associated transcriptional dysregulation, consistent with treatment having little impact on HTT aggregation levels. Modalities that inhibit myostatin signaling are currently in clinical trials for a variety of indications, the outcomes of which will present the opportunity to assess the potential benefits of targeting this pathway in HD patients.

  1. Muscle hypertrophy induced by myostatin inhibition accelerates degeneration in dysferlinopathy.

    PubMed

    Lee, Yun-Sil; Lehar, Adam; Sebald, Suzanne; Liu, Min; Swaggart, Kayleigh A; Talbot, C Conover; Pytel, Peter; Barton, Elisabeth R; McNally, Elizabeth M; Lee, Se-Jin

    2015-10-15

    Myostatin is a secreted signaling molecule that normally acts to limit muscle growth. As a result, there is extensive effort directed at developing drugs capable of targeting myostatin to treat patients with muscle loss. One potential concern with this therapeutic approach in patients with muscle degenerative diseases like muscular dystrophy is that inducing hypertrophy may increase stress on dystrophic fibers, thereby accelerating disease progression. To investigate this possibility, we examined the effect of blocking the myostatin pathway in dysferlin-deficient (Dysf(-/-)) mice, in which membrane repair is compromised, either by transgenic expression of follistatin in skeletal muscle or by systemic administration of the soluble form of the activin type IIB receptor (ACVR2B/Fc). Here, we show that myostatin inhibition by follistatin transgene expression in Dysf(-/-) mice results in early improvement in histopathology but ultimately exacerbates muscle degeneration; this effect was not observed in dystrophin-deficient (mdx) mice, suggesting that accelerated degeneration induced by follistatin transgene expression is specific to mice lacking dysferlin. Dysf(-/-) mice injected with ACVR2B/Fc showed significant increases in muscle mass and amelioration of fibrotic changes normally seen in 8-month-old Dysf(-/-) mice. Despite these potentially beneficial effects, ACVR2B/Fc treatment caused increases in serum CK levels in some Dysf(-/-) mice, indicating possible muscle damage induced by hypertrophy. These findings suggest that depending on the disease context, inducing muscle hypertrophy by myostatin blockade may have detrimental effects, which need to be weighed against the potential gains in muscle growth and decreased fibrosis. © The Author 2015. Published by Oxford University Press.

  2. Local overexpression of the myostatin propeptide increases glucose transporter expression and enhances skeletal muscle glucose disposal.

    PubMed

    Cleasby, M E; Jarmin, S; Eilers, W; Elashry, M; Andersen, D K; Dickson, G; Foster, K

    2014-04-01

    Insulin resistance (IR) in skeletal muscle is a prerequisite for type 2 diabetes and is often associated with obesity. IR also develops alongside muscle atrophy in older individuals in sarcopenic obesity. The molecular defects that underpin this syndrome are not well characterized, and there is no licensed treatment. Deletion of the transforming growth factor-β family member myostatin, or sequestration of the active peptide by overexpression of the myostatin propeptide/latency-associated peptide (ProMyo) results in both muscle hypertrophy and reduced obesity and IR. We aimed to establish whether local myostatin inhibition would have a paracrine/autocrine effect to enhance glucose disposal beyond that simply generated by increased muscle mass, and the mechanisms involved. We directly injected adeno-associated virus expressing ProMyo in right tibialis cranialis/extensor digitorum longus muscles of rats and saline in left muscles and compared the effects after 17 days. Both test muscles were increased in size (by 7 and 11%) and showed increased radiolabeled 2-deoxyglucose uptake (26 and 47%) and glycogen storage (28 and 41%) per unit mass during an intraperitoneal glucose tolerance test. This was likely mediated through increased membrane protein levels of GLUT1 (19% higher) and GLUT4 (63% higher). Interestingly, phosphorylation of phosphoinositol 3-kinase signaling intermediates and AMP-activated kinase was slightly decreased, possibly because of reduced expression of insulin-like growth factor-I in these muscles. Thus, myostatin inhibition has direct effects to enhance glucose disposal in muscle beyond that expected of hypertrophy alone, and this approach may offer potential for the therapy of IR syndromes.

  3. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues

    PubMed Central

    Dong, Yanlan; Chen, Fang; Mitch, William E.; Zhang, Liping

    2015-01-01

    Background/Objective In mice, a high fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. Subjects/Methods C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using ShRNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their reponses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or Irisin. Isolated peritoneal macrophages were treated with myostatin or Irisin to determine if myostatin or Irisin induce inflammatory mechanisms. Results In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In mice fed the HFD, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue (BAT) while stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by Irisin. Myostatin inhibition increased PGC-1α expression and Irisin production in muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. Concusion these results uncover a metabolic pathway from an increase in myostatin that suppresses Irisin leading to activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well as the shortage of brown

  4. Inhibition of myostatin in mice improves insulin sensitivity via irisin-mediated cross talk between muscle and adipose tissues.

    PubMed

    Dong, Jiangling; Dong, Yanjun; Dong, Yanlan; Chen, Fang; Mitch, William E; Zhang, Liping

    2016-03-01

    In mice, a high-fat diet (HFD) induces obesity, insulin resistance and myostatin production. We tested whether inhibition of myostatin in mice can reverse these HFD-induced abnormalities. C57BL/6 mice were fed a HFD for 16 weeks including the final 4 weeks some mice were treated with an anti-myostatin peptibody. Body composition, the respiratory exchange ratio plus glucose and insulin tolerance tests were examined. Myostatin knock down in C2C12 cells was performed using small hairpin RNA lentivirus. Adipose tissue-derived stem cells were cultured to measure their responses to conditioned media from C2C12 cells lacking myostatin, or to recombinant myostatin or irisin. Isolated peritoneal macrophages were treated with myostatin or irisin to determine whether myostatin or irisin induce inflammatory mechanisms. In HFD-fed mice, peptibody treatment stimulated muscle growth and improved insulin resistance. The improved glucose and insulin tolerances were confirmed when we found increased muscle expression of p-Akt and the glucose transporter, Glut4. In HFD-fed mice, the peptibody suppressed macrophage infiltration and the expression of proinflammatory cytokines in both the muscle and adipocytes. Inhibition of myostatin caused the conversion of white (WAT) to brown adipose tissue, whereas stimulating fatty acid oxidation and increasing energy expenditure. The related mechanism is a muscle-to-fat cross talk mediated by irisin. Myostatin inhibition increased peroxisome proliferator-activated receptor gamma, coactivator 1α expression and irisin production in the muscle. Irisin then stimulated WAT browning. Irisin also suppresses inflammation and stimulates macrophage polarization from M1 to M2 types. These results uncover a metabolic pathway from an increase in myostatin that suppresses irisin leading to the activation of inflammatory cytokines and insulin resistance. Thus, myostatin is a potential therapeutic target to treat insulin resistance of type II diabetes as well

  5. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB–mediated mechanism

    PubMed Central

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L.; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E.; McDonald, Christine; Stark, George R.; Welle, Stephen; Naga Prasad, Sathyamangla V.; Dasarathy, Srinivasan

    2013-01-01

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB–dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients. PMID:24145431

  6. Hyperammonemia in cirrhosis induces transcriptional regulation of myostatin by an NF-κB-mediated mechanism.

    PubMed

    Qiu, Jia; Thapaliya, Samjhana; Runkana, Ashok; Yang, Yu; Tsien, Cynthia; Mohan, Maradumane L; Narayanan, Arvind; Eghtesad, Bijan; Mozdziak, Paul E; McDonald, Christine; Stark, George R; Welle, Stephen; Naga Prasad, Sathyamangla V; Dasarathy, Srinivasan

    2013-11-05

    Loss of muscle mass, or sarcopenia, is nearly universal in cirrhosis and adversely affects patient outcome. The underlying cross-talk between the liver and skeletal muscle mediating sarcopenia is not well understood. Hyperammonemia is a consistent abnormality in cirrhosis due to impaired hepatic detoxification to urea. We observed elevated levels of ammonia in both plasma samples and skeletal muscle biopsies from cirrhotic patients compared with healthy controls. Furthermore, skeletal muscle from cirrhotics had increased expression of myostatin, a known inhibitor of skeletal muscle accretion and growth. In vivo studies in mice showed that hyperammonemia reduced muscle mass and strength and increased myostatin expression in wild-type compared with postdevelopmental myostatin knockout mice. We postulated that hyperammonemia is an underlying link between hepatic dysfunction in cirrhosis and skeletal muscle loss. Therefore, murine C2C12 myotubes were treated with ammonium acetate resulting in intracellular concentrations similar to those in cirrhotic muscle. In this system, we demonstrate that hyperammonemia stimulated myostatin expression in a NF-κB-dependent manner. This finding was also observed in primary murine muscle cell cultures. Hyperammonemia triggered activation of IκB kinase, NF-κB nuclear translocation, binding of the NF-κB p65 subunit to specific sites within the myostatin promoter, and stimulation of myostatin gene transcription. Pharmacologic inhibition or gene silencing of NF-κB abolished myostatin up-regulation under conditions of hyperammonemia. Our work provides unique insights into hyperammonemia-induced myostatin expression and suggests a mechanism by which sarcopenia develops in cirrhotic patients.

  7. Myostatin inhibits myosatellite cell proliferation and consequently activates differentiation: evidence for endocrine-regulated transcript processing.

    PubMed

    Garikipati, Dilip K; Rodgers, Buel D

    2012-10-01

    Myostatin is a potent negative regulator of muscle growth in mammals. Despite high structural conservation, functional conservation in nonmammalian species is only assumed. This is particularly true for fish due to the presence of several myostatin paralogs: two in most species and four in salmonids (MSTN-1a, -1b, -2a, and -2b). Rainbow trout are a rich source of primary myosatellite cells as hyperplastic muscle growth occurs even in adult fish. These cells were therefore used to determine myostatin's effects on proliferation whereas our earlier studies reported its effects on quiescent cells. As in mammals, recombinant myostatin suppressed proliferation with no changes in cell morphology. Expression of MSTN-1a was several fold higher than the other paralogs and was autoregulated by myostatin, which also upregulated the expression of key differentiation markers: Myf5, MyoD1, myogenin, and myosin light chain. Thus, myostatin-stimulated cellular growth inhibition activates rather than represses differentiation. IGF-1 stimulated proliferation but had minimal and delayed effects on differentiation and its actions were suppressed by myostatin. However, IGF-1 upregulated MSTN-2a expression and the processing of its transcript, which is normally unprocessed. Myostatin therefore appears to partly mediate IGF-stimulated myosatellite differentiation in rainbow trout. This also occurs in mammals, although the IGF-stimulated processing of MSTN-2a transcripts is highly unique and is indicative of subfunctionalization within the gene family. These studies also suggest that the myokine's actions, including its antagonistic relationship with IGF-1, are conserved and that the salmonid gene family is functionally diverging.

  8. Possible role of TIEG1 as a feedback regulator of myostatin and TGF-{beta} in myoblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyake, Masato; Hayashi, Shinichiro; Iwasaki, Shunsuke

    2010-03-19

    Myostatin and TGF-{beta} negatively regulate skeletal muscle development and growth. Both factors signal through the Smad2/3 pathway. However, the regulatory mechanism of myostatin and TGF-{beta} signaling remains unclear. TGF-{beta} inducible early gene (TIEG) 1 is highly expressed in skeletal muscle and has been implicated in the modulation of TGF-{beta} signaling. These findings prompted us to investigate the effect of TIEG1 on myostatin and TGF-{beta} signaling using C2C12 myoblasts. Myostatin and TGF-{beta} induced the expression of TIEG1 and Smad7 mRNAs, but not TIEG2 mRNA, in proliferating C2C12 cells. When differentiating C2C12 myoblasts were stimulated by myostatin, TIEG1 mRNA was up-regulated atmore » a late stage of differentiation. In contrast, TGF-{beta} enhanced TIEG1 expression at an early stage. Overexpression of TIEG1 prevented the transcriptional activation of Smad by myostatin and TGF-{beta} in both proliferating or differentiating C2C12 cells, but the expression of Smad2 and Smad7 mRNAs was not affected. Forced expression of TIEG1 inhibited myogenic differentiation but did not cause more inhibition than the empty vector in the presence of myostatin or TGF-{beta}. These results demonstrate that TIEG1 is one possible feedback regulator of myostatin and TGF-{beta} that prevents excess action in myoblasts.« less

  9. Serum myostatin levels are independently associated with skeletal muscle wasting in patients with heart failure.

    PubMed

    Furihata, Takaaki; Kinugawa, Shintaro; Fukushima, Arata; Takada, Shingo; Homma, Tsuneaki; Masaki, Yoshihiro; Abe, Takahiro; Yokota, Takashi; Oba, Koji; Okita, Koichi; Tsutsui, Hiroyuki

    2016-10-01

    It has been reported that skeletal muscle mass and strength are decreased in patients with heart failure (HF), and HF is associated with both reduced exercise capacity and adverse clinical outcomes. Myostatin has been known as a negative regulator of muscle growth, follistatin as the myostatin antagonist, maintaining tissue homeostasis. We thus determined serum myostatin levels in HF patients and whether they are associated with skeletal muscle wasting. Forty one consecutive HF patients (58±15years old, New York Heart Association class I-III) and 30 age-matched healthy subjects as controls (53±8years old) were studied. Serum myostatin levels were significantly lower in HF patients than controls (18.7±7.4 vs. 23.6±5.2ng/mL, P<0.001). Circumference of the thickest part of the right thigh was significantly small (468±72 vs. 559±37mm, P=0.001) and lower extremity muscular strength was lower in patients with HF (129±55 vs. 219±52N×m, P<0.001). Fourteen HF patients (34%) had muscle wasting. By univariate analysis, higher age, higher serum follistatin, and lower serum myostatin were significantly associated with the presence of muscle wasting. By multivariate analysis, serum myostatin levels were independently associated with muscle wasting (OR=0.77, 95% CI [0.58, 0.93], P=0.02). Serum myostatin levels were significantly decreased in HF patients and associated with lower extremity muscle wasting, suggesting that myostatin may be an important factor for maintaining skeletal muscle mass and strength in HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. The effect of myostatin on proliferation and lipid accumulation in 3T3-L1 preadipocytes.

    PubMed

    Zhu, Hui Juan; Pan, Hui; Zhang, Xu Zhe; Li, Nai Shi; Wang, Lin Jie; Yang, Hong Bo; Gong, Feng Ying

    2015-06-01

    Myostatin is a critical negative regulator of skeletal muscle development, and has been reported to be involved in the progression of obesity and diabetes. In the present study, we explored the effects of myostatin on the proliferation and differentiation of 3T3-L1 preadipocytes by using 3-[4,5-dimethylthiazol-2-yl] 2,5-diphenyl tetrazolium bromide spectrophotometry, intracellular triglyceride (TG) assays, and real-time quantitative RT-PCR methods. The results indicated that recombinant myostatin significantly promoted the proliferation of 3T3-L1 preadipocytes and the expression of proliferation-related genes, including Cyclin B2, Cyclin D1, Cyclin E1, Pcna, and c-Myc, and IGF1 levels in the medium of 3T3-L1 were notably upregulated by 35.2, 30.5, 20.5, 33.4, 51.2, and 179% respectively (all P<0.01) in myostatin-treated 3T3-L1 cells. Meanwhile, the intracellular lipid content of myostatin-treated cells was notably reduced as compared with the non-treated cells. Additionally, the mRNA levels of Pparγ, Cebpα, Gpdh, Dgat, Acs1, Atgl, and Hsl were significantly downregulated by 22-76% in fully differentiated myostatin-treated adipocytes. Finally, myostatin regulated the mRNA levels and secretion of adipokines, including Adiponectin, Resistin, Visfatin, and plasminogen activator inhibitor-1 (PAI-1) in 3T3-L1 adipocytes (all P<0.001). Above all, myostatin promoted 3T3-L1 proliferation by increasing the expression of cell-proliferation-related genes and by stimulating IGF1 secretion. Myostatin inhibited 3T3-L1 adipocyte differentiation by suppressing Pparγ and Cebpα expression, which consequently deceased lipid accumulation in 3T3-L1 cells by inhibiting the expression of critical lipogenic enzymes and by promoting the expression of lipolytic enzymes. Finally, myostatin modulated the expression and secretion of adipokines in fully differentiated 3T3-L1 adipocytes. © 2015 Society for Endocrinology.

  11. Myostatin in relation to physical activity and dysglycaemia and its effect on energy metabolism in human skeletal muscle cells.

    PubMed

    Hjorth, M; Pourteymour, S; Görgens, S W; Langleite, T M; Lee, S; Holen, T; Gulseth, H L; Birkeland, K I; Jensen, J; Drevon, C A; Norheim, F

    2016-05-01

    Some health benefits of exercise may be explained by an altered secretion of myokines. Because previous focus has been on upregulated myokines, we screened for downregulated myokines and identified myostatin. We studied the expression of myostatin in relation to exercise and dysglycaemia in skeletal muscle, adipose tissue and plasma. We further examined some effects of myostatin on energy metabolism in primary human muscle cells and Simpson-Golabi-Behmel syndrome (SGBS) adipocytes. Sedentary men with or without dysglycaemia underwent a 45-min acute bicycle test before and after 12 weeks of combined endurance and strength training. Blood samples and biopsies from m. vastus lateralis and adipose tissue were collected. Myostatin mRNA expression was reduced in skeletal muscle after acute as well as long-term exercise and was even further downregulated by acute exercise on top of 12-week training. Furthermore, the expression of myostatin at baseline correlated negatively with insulin sensitivity. Myostatin expression in the adipose tissue increased after 12 weeks of training and correlated positively with insulin sensitivity markers. In cultured muscle cells but not in SGBS cells, myostatin promoted an insulin-independent increase in glucose uptake. Furthermore, muscle cells incubated with myostatin had an enhanced rate of glucose oxidation and lactate production. Myostatin was differentially expressed in the muscle and adipose tissue in relation to physical activity and dysglycaemia. Recombinant myostatin increased the consumption of glucose in human skeletal muscle cells, suggesting a complex regulatory role of myostatin in skeletal muscle homeostasis. © 2015 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody.

    PubMed

    Apgar, James R; Mader, Michelle; Agostinelli, Rita; Benard, Susan; Bialek, Peter; Johnson, Mark; Gao, Yijie; Krebs, Mark; Owens, Jane; Parris, Kevin; St Andre, Michael; Svenson, Kris; Morris, Carl; Tchistiakova, Lioudmila

    2016-10-01

    Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall "humanness" was increased for both the light and heavy chain variable regions.

  13. Beyond CDR-grafting: Structure-guided humanization of framework and CDR regions of an anti-myostatin antibody

    PubMed Central

    Apgar, James R.; Mader, Michelle; Agostinelli, Rita; Benard, Susan; Bialek, Peter; Johnson, Mark; Gao, Yijie; Krebs, Mark; Owens, Jane; Parris, Kevin; St. Andre, Michael; Svenson, Kris; Morris, Carl; Tchistiakova, Lioudmila

    2016-01-01

    ABSTRACT Antibodies are an important class of biotherapeutics that offer specificity to their antigen, long half-life, effector function interaction and good manufacturability. The immunogenicity of non-human-derived antibodies, which can be a major limitation to development, has been partially overcome by humanization through complementarity-determining region (CDR) grafting onto human acceptor frameworks. The retention of foreign content in the CDR regions, however, is still a potential immunogenic liability. Here, we describe the humanization of an anti-myostatin antibody utilizing a 2-step process of traditional CDR-grafting onto a human acceptor framework, followed by a structure-guided approach to further reduce the murine content of CDR-grafted antibodies. To accomplish this, we solved the co-crystal structures of myostatin with the chimeric (Protein Databank (PDB) id 5F3B) and CDR-grafted anti-myostatin antibody (PDB id 5F3H), allowing us to computationally predict the structurally important CDR residues as well as those making significant contacts with the antigen. Structure-based rational design enabled further germlining of the CDR-grafted antibody, reducing the murine content of the antibody without affecting antigen binding. The overall “humanness” was increased for both the light and heavy chain variable regions. PMID:27625211

  14. Highly Specific Detection of Myostatin Prodomain by an Immunoradiometric Sandwich Assay in Serum of Healthy Individuals and Patients

    PubMed Central

    Widera, Christian; Gottlieb, Jens; Vogel, Arndt; Schmidt, Sebastian; Brandes, Gudrun; Heuft, Hans-Gert; Lichtinghagen, Ralf; Kempf, Tibor; Wollert, Kai C.; Bauersachs, Johann; Heineke, Joerg

    2013-01-01

    Background Myostatin is a muscle derived factor that functions as a negative regulator of skeletal muscle growth. Induction of myostatin expression was observed in rodent models of muscle wasting and in cachectic patients with cancer or pulmonary disease. Therefore, there is an increasing interest to use serum myostatin as a biomarker. Methods We established an immunoradiometric sandwich assay (IRMA), which uses a commercially available chicken polyclonal, affinity purified antibody directed against human myostatin prodomain. We determined the serum concentrations of myostatin prodomain in 249 healthy individuals as well as 169 patients with heart failure, 53 patients with cancer and 44 patients with chronic pulmonary disease. Results The IRMA had a detection limit of 0.7ng/ml, an intraassay imprecision of ≤14.1% and an interassay imprecision of ≤ 18.9%. The specificity of our assay was demonstrated by size exclusion chromatography, detection of myostatin by Western-blotting and a SMAD-dependent transcriptional-reporter assay in the signal-rich serum fractions, as well as lack of interference by unspecific substances like albumin, hemoglobin or lipids. Myostatin prodomain was stable at room temperature and resistant to freeze-thaw cycles. Apparently healthy individuals over the age of 55 had a median myostatin prodomain serum concentration of 3.9ng/ml (25th-75th percentiles, 2-7ng/ml) and we could not detect increased levels in patients with stable chronic heart failure or cancer related weight loss. In contrast, we found strongly elevated concentrations of myostatin prodomain (median 26.9ng/ml, 25th-75th percentiles, 7-100ng/ml) in the serum of underweight patients with chronic pulmonary disease. Conclusions We established a highly specific IRMA for the quantification of myostatin prodomain concentration in human serum. Our assay could be useful to study myostatin as a biomarker for example in patients with chronic pulmonary disease, as we detected highly

  15. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice.

    PubMed

    Sumner, Charlotte J; Wee, Claribel D; Warsing, Leigh C; Choe, Dong W; Ng, Andrew S; Lutz, Cathleen; Wagner, Kathryn R

    2009-09-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-beta family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn(-/-)) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA.

  16. Myostatin downregulates the expression of basic fibroblast growth factor gene in HeLa cells.

    PubMed

    Liu, H Z; Luo, P; Chen, S H; Shang, J H

    2012-01-01

    Basic fibroblast growth factor (bFGF or FGF-2), a potent tumorigenic cytokine, improves cells proliferation and angiogenesis in tumor and also plays vital roles in tumor growth, metastasis as well as prognosis. Screening and application of effective cytokines against bFGF tumorigenic activity would be helpful to oncologic therapy. Myostatin, a member of transforming growth factor β superfamily, recently showed an antitumor activity and was reported to induce HeLa cells apoptosis through mitochondrion pathway. The above data raised our assumption that expression level of endogenous bFGF gene may be suppressed by exogenous myostatin in myostatin-treated HeLa cells. To test the hypothesis, myostatin was employed to stimulate HeLa cells and expressional level of endogenous bFGF gene in HeLa cells was detected with real-time RT-PCR and ELISA. Results of the suppressed expression level of bFGF gene in Hela cells implied that myostatin may be regarded as an effective cytokine against bFGF to treat certain cancers (Fig. 3, Ref. 26).

  17. Comparative analysis of myostatin gene and promoter sequences of Qinchuan and Red Angus cattle.

    PubMed

    He, Y L; Wu, Y H; Quan, F S; Liu, Y G; Zhang, Y

    2013-09-04

    To better understand the function of the myostatin gene and its promoter region in bovine, we amplified and sequenced the myostatin gene and promoter from the blood of Qinchuan and Red Angus cattle by using polymerase chain reaction. The sequences of Qinchuan and Red Angus cattle were compared with those of other cattle breeds available in GenBank. Exon splice sites were confirmed by mRNA sequencing. Compared to the published sequence (GenBank accession No. AF320998), 69 single nucleotide polymorphisms (SNPs) were identified in the Qinchuan myostatin gene, only one of which was an insertion mutation in Qinchuan cattle. There was a 16-bp insertion in the first 705-bp intron in 3 Qinchuan cattle. A total of 7 SNPs were identified in exon 3, in which the mutation occurred in the third base of the codon and was synonymous. On comparing the Qinchuan myostatin gene sequence to that of Red Angus cattle, a total of 50 SNPs were identified in the first and third exons. In addition, there were 18 SNPs identified in the Qinchuan cattle promoter region compared with those of other cattle compared to the Red Angus cattle myostatin promoter region. breeds (GenBank accession No. AF348479), but only 14 SNPs when compared to the Red Angus cattle myostatin promoter region.

  18. Myostatin Promotes Interleukin-1β Expression in Rheumatoid Arthritis Synovial Fibroblasts through Inhibition of miR-21-5p.

    PubMed

    Hu, Sung-Lin; Chang, An-Chen; Huang, Chien-Chung; Tsai, Chun-Hao; Lin, Cheng-Chieh; Tang, Chih-Hsin

    2017-01-01

    Rheumatoid arthritis (RA) is characterized by the infiltration of a number of pro-inflammatory cytokines into synovial fluid and patients with RA often develop joint destruction and deficits in muscle mass. The growth factor myostatin is a key regulator linking muscle mass and bone structure. We sought to determine whether myostatin regulates rheumatoid synovial fibroblast activity and inflammation in RA. We found that levels of myostatin and interleukin (IL)-1β (a key pro-inflammatory cytokine in RA) in synovial fluid from RA patients were overexpressed and positively correlated. In in vitro investigations, we found that myostatin dose-dependently regulated IL-1β expression through the ERK, JNK, and AP-1 signal-transduction pathways. Computational analysis confirmed that miR-21-5p directly targets the expression of the 3' untranslated region (3' UTR) of IL-1β. Treatment of cells with myostatin inhibited miR-21-5p expression and miR-21-5p mimic prevented myostatin-induced enhancement of IL-1β expression, showing an inverse correlation between miR-21-5p and IL-1β expression during myostatin treatment. We also found significantly increased paw swelling in an animal model of collagen-induced arthritis (CIA), compared with controls; immunohistochemistry staining revealed substantially higher levels of myostatin and IL-1β expression in CIA tissue. Our evidence indicates that myostatin regulates IL-1β production. Thus, targeting myostatin may represent a potential therapeutic target for RA.

  19. Relationship between myostatin and irisin in type 2 diabetes mellitus: a compensatory mechanism to an unfavourable metabolic state?

    PubMed

    García-Fontana, Beatriz; Reyes-García, Rebeca; Morales-Santana, Sonia; Ávila-Rubio, Verónica; Muñoz-Garach, Araceli; Rozas-Moreno, Pedro; Muñoz-Torres, Manuel

    2016-04-01

    Myostatin and irisin are two myokines related to energy metabolism, acting on skeletal muscle and recently suggested on adipose tissue in mice. However, the exact role of these myokines in humans has not been fully established. Our aim was to evaluate the relationship between serum levels of myostatin and irisin in type 2 diabetes mellitus patients and non-diabetic controls and to explore its links with metabolic parameters. Case-control study including 73 type 2 diabetes mellitus patients and 55 non-diabetic subjects as control group. Circulating myostatin and irisin levels were measured by enzyme-linked immunosorbent assays. Type 2 diabetes mellitus patients showed significantly lower myostatin levels (p = 0.001) and higher irisin levels (p = 0.036) than controls. An inverse relationship was observed between myostatin and irisin levels (p = 0.002). Moreover, in type 2 diabetes mellitus patients, after adjusting by confounder factors, myostatin was negatively related to fasting plasma glucose (p = 0.005) and to triglyceride levels (p = 0.028) while irisin showed a positive association with these variables (p = 0.017 and p = 0.006 respectively). A linear regression analysis showed that irisin and fasting plasma glucose levels were independently associated to myostatin levels and that myostatin and triglyceride levels were independently associated to irisin concentrations in type 2 diabetes mellitus patients. Our results suggest that serum levels of myostatin and irisin are related in patients with type 2 diabetes. Triglyceride and glucose levels could modulate myostatin and irisin concentrations as a compensatory mechanism to improve the metabolic state in these patients although further studies are needed to elucidate whether the action of these myokines represents an adaptative response.

  20. Effect of N-Terminal Acylation on the Activity of Myostatin Inhibitory Peptides.

    PubMed

    Takayama, Kentaro; Nakamura, Akari; Rentier, Cédric; Mino, Yusaku; Asari, Tomo; Saga, Yusuke; Taguchi, Akihiro; Yakushiji, Fumika; Hayashi, Yoshio

    2016-04-19

    Inhibition of myostatin, which negatively regulates skeletal muscle growth, is a promising strategy for the treatment of muscle atrophic disorders, such as muscular dystrophy, cachexia and sarcopenia. Recently, we identified peptide A (H-WRQNTRYSRIEAIKIQILSKLRL-NH2 ), the 23-amino-acid minimum myostatin inhibitory peptide derived from mouse myostatin prodomain, and highlighted the importance of its N-terminal tryptophan residue for the effective inhibition. In this study, we synthesized a series of acylated peptide derivatives focused on the tryptophan residue to develop potent myostatin inhibitors. As a result of the investigation, a more potent derivative of peptide A was successfully identified in which the N-terminal tryptophan residue is replaced with a 2-naphthyloxyacetyl moiety to give an inhibitory peptide three times (1.19±0.11 μm) more potent than parent peptide A (3.53±0.25 μm). This peptide could prove useful as a new starting point for the development of improved inhibitory peptides. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Changes in skeletal muscle and tendon structure and function following genetic inactivation of myostatin in rats

    PubMed Central

    Mendias, Christopher L; Lynch, Evan B; Gumucio, Jonathan P; Flood, Michael D; Rittman, Danielle S; Van Pelt, Douglas W; Roche, Stuart M; Davis, Carol S

    2015-01-01

    Myostatin is a negative regulator of skeletal muscle and tendon mass. Myostatin deficiency has been well studied in mice, but limited data are available on how myostatin regulates the structure and function of muscles and tendons of larger animals. We hypothesized that, in comparison to wild-type (MSTN+/+) rats, rats in which zinc finger nucleases were used to genetically inactivate myostatin (MSTNΔ/Δ) would exhibit an increase in muscle mass and total force production, a reduction in specific force, an accumulation of type II fibres and a decrease and stiffening of connective tissue. Overall, the muscle and tendon phenotype of myostatin-deficient rats was markedly different from that of myostatin-deficient mice, which have impaired contractility and pathological changes to fibres and their extracellular matrix. Extensor digitorum longus and soleus muscles of MSTNΔ/Δ rats demonstrated 20–33% increases in mass, 35–45% increases in fibre number, 20–57% increases in isometric force and no differences in specific force. The insulin-like growth factor-1 pathway was activated to a greater extent in MSTNΔ/Δ muscles, but no substantial differences in atrophy-related genes were observed. Tendons of MSTNΔ/Δ rats had a 20% reduction in peak strain, with no differences in mass, peak stress or stiffness. The general morphology and gene expression patterns were similar between tendons of both genotypes. This large rodent model of myostatin deficiency did not have the negative consequences to muscle fibres and extracellular matrix observed in mouse models, and suggests that the greatest impact of myostatin in the regulation of muscle mass may not be to induce atrophy directly, but rather to block hypertrophy signalling. PMID:25640143

  2. Stable suppression of myostatin gene expression in goat fetal fibroblast cells by lentiviral vector-mediated RNAi.

    PubMed

    Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G

    2015-01-01

    Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.

  3. Inhibition of myostatin does not ameliorate disease features of severe spinal muscular atrophy mice

    PubMed Central

    Sumner, Charlotte J.; Wee, Claribel D.; Warsing, Leigh C.; Choe, Dong W.; Ng, Andrew S.; Lutz, Cathleen; Wagner, Kathryn R.

    2009-01-01

    There is currently no treatment for the inherited motor neuron disease, spinal muscular atrophy (SMA). Severe SMA causes lower motor neuron loss, impaired myofiber development, profound muscle weakness and early mortality. Myostatin is a transforming growth factor-β family member that inhibits muscle growth. Loss or blockade of myostatin signaling increases muscle mass and improves muscle strength in mouse models of primary muscle disease and in the motor neuron disease, amyotrophic lateral sclerosis. In this study, we evaluated the effects of blocking myostatin signaling in severe SMA mice (hSMN2/delta7SMN/mSmn−/−) by two independent strategies: (i) transgenic overexpression of the myostatin inhibitor follistatin and (ii) post-natal administration of a soluble activin receptor IIB (ActRIIB-Fc). SMA mice overexpressing follistatin showed little increase in muscle mass and no improvement in motor function or survival. SMA mice treated with ActRIIB-Fc showed minimal improvement in motor function, and no extension of survival compared with vehicle-treated mice. Together these results suggest that inhibition of myostatin may not be a promising therapeutic strategy in severe forms of SMA. PMID:19477958

  4. Gene Expression and Polymorphism of Myostatin Gene and its Association with Growth Traits in Chicken.

    PubMed

    Dushyanth, K; Bhattacharya, T K; Shukla, R; Chatterjee, R N; Sitaramamma, T; Paswan, C; Guru Vishnu, P

    2016-10-01

    Myostatin is a member of TGF-β super family and is directly involved in regulation of body growth through limiting muscular growth. A study was carried out in three chicken lines to identify the polymorphism in the coding region of the myostatin gene through SSCP and DNA sequencing. A total of 12 haplotypes were observed in myostatin coding region of chicken. Significant associations between haplogroups with body weight at day 1, 14, 28, and 42 days, and carcass traits at 42 days were observed across the lines. It is concluded that the coding region of myostatin gene was polymorphic, with varied levels of expression among lines and had significant effects on growth traits. The expression of MSTN gene varied during embryonic and post hatch development stage.

  5. Properties of the [NiFe]-hydrogenase maturation protein HypD.

    PubMed

    Blokesch, Melanie; Böck, August

    2006-07-24

    A mutational screen of amino acid residues of hydrogenase maturation protein HypD from Escherichia coli disclosed that seven conserved cysteine residues located in three different motifs in HypD are essential. Evidence is presented for potential functions of these motifs in the maturation process.

  6. Reductions in expression of growth regulating genes in skeletal muscle with age in wild type and myostatin null mice.

    PubMed

    Jones, Jennifer C; Kroscher, Kellie A; Dilger, Anna C

    2014-03-28

    Genes that decline in expression with age and are thought to coordinate growth cessation have been identified in various organs, but their expression in skeletal muscle is unknown. Therefore, our objective was to determine expression of these genes (Ezh2, Gpc3, Mdk, Mest, Mycn, Peg3, and Plagl1) in skeletal muscle from birth to maturity. We hypothesized that expression of these genes would decline with age in skeletal muscle but differ between sexes and between wild type and myostatin null mice. Female and male wild type and myostatin null mice (C57BL/6J background) were sacrificed by carbon dioxide asphyxiation followed by decapitation at d -7, 0, 21, 42, and 70 days of age. Whole bodies at d -7, all muscles from both hind limbs at d 0, and bicep femoris muscle from d 21, 42 and 70 were collected. Gene expression was determined by quantitative real-time PCR. In general, expression of these growth-regulating genes was reduced at d 21 compared with day 0 and d -7. Expression of Gpc3, Mest, and Peg3 was further reduced at d 42 and 70 compared with d 21, however the expression of Mycn increased from d 21 to d 42 and 70. Myostatin null mice, as expected, were heavier with increased biceps femoris weight at d 70. However, with respect to sex and genotype, there were few differences in expression. Expression of Ezh2 was increased at d 70 and expression of Mdk was increased at d 21 in myostatin null mice compared with wild type, but no other genotype effects were present. Expression of Mdk was increased in females compared to males at d 70, but no other sex effects were present. Overall, these data suggest the downregulation of these growth-regulating genes with age might play a role in the coordinated cessation of muscle growth similar to organ growth but likely have a limited role in the differences between sexes or genotypes.

  7. Effects of Concentric and Eccentric Muscle Actions on Serum Myostatin and Follistatin-Like Related Gene Levels

    PubMed Central

    Willoughby, Darryn S.; Taylor, Lemuel

    2004-01-01

    The present study determined the effects of concentric and eccentric muscle actions on the contents of serum myostatin and follistatin-like related gene (FLRG). Eight untrained males performed one exercise bout with each leg, separated by three weeks. One bout consisted of 7 sets of 10 repetitions of eccentric muscle actions of the knee extensors at 150% of the concentric 1-RM while the other bout consisted of 7 sets of 10 repetitions of concentric muscle actions at 75% 1-RM. The legs used and the bouts performed were randomized. Five days prior to each exercise bout, baseline measurements were taken for muscle strength. For both bouts, a venous blood sample was obtained immediately prior to exercise and again at 6, 24, and 48 hr post-exercise. Data were analyzed with 2 X 4 (bout x test) ANOVA (p < 0.05). Increases in serum myostatin and FLRG occurred with each exercise bout and, excluding 48 hr post-exercise, were significantly correlated to one another (p < 0.05). After eccentric exercise, peak increases of 68% and 50% (p < 0.05) were observed for myostatin and FLRG, respectively. Similar increases of 54% and 44% (p < 0.05) were observed after concentric muscle actions. There was no significant difference in expression of myostatin or FLRG as a function of muscle action type. Our results suggest that a single bout of exercise with either eccentric or concentric muscle actions appear to elicit a similar increase in serum myostatin and FLRG. Therefore, the type of muscle action may not be as much a mitigating factor for increasing serum myostatin and FLRG rather than the muscle action per se. Key Points Eccentric muscle actions do not preferentially increase serum myostatin. Increases in serum myostatin in response to eccentric muscle actions are associated with increase in serum FLRG. Increases in serum myostatin and FLRG in response to eccentric muscle actions are not correlated to serum cortisol. PMID:24624007

  8. Development of a small-molecule screening method for inhibitors of cellular response to myostatin and activin A.

    PubMed

    Cash, Jennifer N; Angerman, Elizabeth B; Kirby, R Jason; Merck, Lisa; Seibel, William L; Wortman, Matthew D; Papoian, Ruben; Nelson, Sandra; Thompson, Thomas B

    2013-08-01

    Myostatin, a member of the transforming growth factor (TGF)-β family of secreted ligands, is a strong negative regulator of muscle growth. As such, therapeutic inhibitors of myostatin are actively being investigated for their potential in the treatment of muscle-wasting diseases such as muscular dystrophy and sarcopenia. Here, we sought to develop a high-throughput screening (HTS) method for small-molecule inhibitors that target myostatin. We created a HEK293 stable cell line that expresses the (CAGA)12-luciferase reporter construct and robustly responds to signaling of certain classes of TGF-β family ligands. After optimization and miniaturization of the assay to a 384-well format, we successfully screened a library of compounds for inhibition of myostatin and the closely related activin A. Selection of some of the tested compounds was directed by in silico screening against myostatin, which led to an enrichment of target hits as compared with random selection. Altogether, we present an HTS method that will be useful for screening potential inhibitors of not only myostatin but also many other ligands of the TGF-β family.

  9. Characterization of a molt-related myostatin gene (FmMstn) from the banana shrimp Fenneropenaeus merguiensis.

    PubMed

    Zhuo, Rui Qun; Zhou, Ting Ting; Yang, Shi Ping; Chan, Siuming Francis

    2017-07-01

    Myostatin is an important member of the transforming growth factor (TGF) family that functions to regulate muscle growth in animals. In this study, the myostatin gene (FmMstn) and two slightly different (short and long forms) cDNAs of the banana shrimp Fenneropenaeus merguiensis were cloned and characterized. Similar to Mstn gene of the scallop, fish and mammal, FmMstn gene consists of 3 exons and 2 introns. The 2kb upstream promoter region of the FmMstn gene consists of putative response elements for myocyte enhancing factor (MEF2) and E-box factors. The longest open reading frame of the short Mstn consists of 1260bp encoding for a protein with 420 amino acid residues. The long FmMstn is almost identical to the short FmMstn with the exception of 8 amino acid insertions. FmMstn is most similar to the Mstn of Litopenaeus vannamei and Penaeus monodon sharing >92-98% amino acid sequence identity. Multiple sequence alignment results revealed high degree of amino acid conservation of the cysteine residues and mature peptide of the FmMstn with Mstn from other animals. FmMstn transcript was detected in the heart, muscle, optic nerve and thoracic ganglion. FmMstn transcript level in muscle is higher in early postmolt, decreases in intermolt and increases again towards ecdysis. Higher expression level of FmMstn is also observed in smaller shrimp of the same age. Knock-down of FmMstn gene by RNAi can cause a significant increase in molt cycle duration and failure of some shrimp to undergo ecdysis. Direct DNA sequencing results revealed that FmMstn gene is highly polymorphic and several potential SNPs have been identified. Some SNPs are associated with the size difference of the shrimp. In summary, the result of this study indicates that shrimp FmMstn gene is molt/growth-related and the presence of SNP suggests that it could be a candidate gene for shrimp genetic improvement research. Copyright © 2017. Published by Elsevier Inc.

  10. Joint dysfunction and functional decline in middle age myostatin null mice.

    PubMed

    Guo, Wen; Miller, Andrew D; Pencina, Karol; Wong, Siu; Lee, Amanda; Yee, Michael; Toraldo, Gianluca; Jasuja, Ravi; Bhasin, Shalender

    2016-02-01

    Since its discovery as a potent inhibitor for muscle development, myostatin has been actively pursued as a drug target for age- and disease-related muscle loss. However, potential adverse effects of long-term myostatin deficiency have not been thoroughly investigated. We report herein that male myostatin null mice (mstn(-/-)), in spite of their greater muscle mass compared to wild-type (wt) mice, displayed more significant functional decline from young (3-6months) to middle age (12-15months) than age-matched wt mice, measured as gripping strength and treadmill endurance. Mstn(-/-) mice displayed markedly restricted ankle mobility and degenerative changes of the ankle joints, including disorganization of bone, tendon and peri-articular connective tissue, as well as synovial thickening with inflammatory cell infiltration. Messenger RNA expression of several pro-osteogenic genes was higher in the Achilles tendon-bone insertion in mstn(-/-) mice than wt mice, even at the neonatal age. At middle age, higher plasma concentrations of growth factors characteristic of excessive bone remodeling were found in mstn(-/-) mice than wt controls. These data collectively indicate that myostatin may play an important role in maintaining ankle and wrist joint health, possibly through negative regulation of the pro-osteogenic WNT/BMP pathway. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Serum myostatin in central south Chinese postmenopausal women: Relationship with body composition, lipids and bone mineral density.

    PubMed

    Ma, Yulin; Li, Xianping; Zhang, Hongbin; Ou, Yangna; Zhang, Zhimin; Li, Shuang; Wu, Feng; Sheng, Zhifeng; Liao, Eryuan

    2016-08-01

    Previous data suggest that myostatin has direct effects on the proliferation and differentiation of osteoprogenitor cells. The relationships between serum myostatin, body composition lipids and bone mineral density in postmenopausal women remain unclear. The aim of this study is to elucidate the relationships between serum myostatin, body composition, lipids and bone mineral density in central south Chinese postmenopausal women. A cross-sectional study was conducted in 175 healthy postmenopausal women, aged 51-75 years old. Bone mineral density (BMD) and body composition were measured by double energy X-ray absorptiometry (DXA). Serum myostatin, 25-dihydroxyvitamin D(25OH-D), parathyroid hormone (PTH), bone alkaline phosphatase (BAP) and carboxy-terminal telopeptide of type I collagen (CTX) were measured by enzyme-linked immunoabsorbent assay (ELISA). In contrast to the osteoporotic women, the women without osteoporosis had higher BMI, fat mass and lean mass (P<0.01). The osteoporotic women were older than women without osteoporosis (P<0.01). There were no differences between two groups with regard to serum BAP, CTX, (25OH-D), PTH, lipids and myostatin after adjusted by age. BMD at each site was positively correlated with age at menopause, fat mass and lean mass, and also negatively correlated with age and serum BAP. Serum myostatin was positively correlated with tryglicerides, not correlated with either body composition or BMD at each site. Our data indicated that serum myostatin concentration did not correlate with muscle and bone mass. Further studies are needed to demonstrate the role of myostatin in regulating the bone metabolism.

  12. Plasma myostatin levels are related to the extent of right ventricular dysfunction in exacerbation of chronic obstructive pulmonary disease.

    PubMed

    Ju, Chun-Rong; Zhang, Jian-Heng; Chen, Miao; Chen, Rong-Chang

    To investigate the relationship between plasma myostatin levels and right ventricle (RV) dysfunction (RVD) in acute exacerbation of chronic obstructive pulmonary disease (AECOPD). The study recruited 84 patients with AECOPD. Plasma myostatin was analyzed and tricuspid annular plane systolic excursion (TAPSE) < 16 mm was used as the main indicator for RVD. Plasma myostatin levels were significantly higher in 47 patients with RVD than 37 ones without (P < 0.005). Multivariate regression analysis revealed that myostatin levels correlated significantly with TAPSE values and RV myocardial performance index (p < 0.001) among the study patients. Plasma myostatin is a potential biomarker for improving diagnosis of RVD in AECOPD.

  13. MicroRNA-128 targets myostatin at coding domain sequence to regulate myoblasts in skeletal muscle development.

    PubMed

    Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua

    2015-09-01

    MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Healthy community-living older men differ from women in associations between myostatin levels and skeletal muscle mass.

    PubMed

    Peng, Li-Ning; Lee, Wei-Ju; Liu, Li-Kuo; Lin, Ming-Hsien; Chen, Liang-Kung

    2018-04-13

    Myostatin is a negative regulator of muscle growth but the relationship between serum myostatin levels and muscle mass is unclear. This study investigated the association between serum myostatin levels and skeletal muscle mass among healthy older community residents in Taiwan, to evaluate the potential of serum myostatin as a biomarker for diagnosing sarcopenia and/or evaluating the effect of its treatment. Study data were excerpted from a random subsample of the I-Lan Longitudinal Aging Study population. Serum myostatin levels were determined and categorized into tertiles (low, medium, high). Relative appendicular skeletal muscle mass (RASM) was calculated as appendicular lean body mass by dual-energy X-ray absorptiometry divided by height squared (kg/m 2 ). Low muscle mass was defined as recommended by the Asian Working Group for Sarcopenia. The analytic study sample comprised 463 adults (mean age: 69.1 years; 49.5% men). Compared with subjects with normal RASM, those with lower RASM were older and frailer, with significantly higher prevalence of malnutrition, lower serum dehydroepiandrosterone (DHEA) levels, and were more likely to have low serum myostatin status. Multivariable logistic regression analysis showed that male sex (OR 3.60, 95% CI 1.30-9.92), malnutrition (OR 4.39, 95% CI 1.56-12.36), DHEA (OR 0.99, 95% CI 0.99-1.00), and low myostatin (OR 3.23, 95% CI 1.49-7.01) were all independent risk factors for low RASM (all P < 0.05). In men, DHEA (OR 0.99, 95% CI 0.98-1.00) and low myostatin (OR 4.89, 95% CI 1.79-13.37) were significantly associated with low RASM (both P < 0.05); however, only malnutrition was associated with low RASM in women (OR 13.59, 95% CI 2.22-83.25, P < 0.05). Among healthy community-living older adults, low serum myostatin levels were associated with low skeletal muscle mass in men, but not in women. Our results do not support using serum myostatin levels to diagnose sarcopenia, or to monitor how it responds to treatments

  15. Acute loading and aging effects on myostatin pathway biomarkers in human skeletal muscle after three sequential bouts of resistance exercise.

    PubMed

    Dalbo, Vincent J; Roberts, Michael D; Sunderland, Kyle L; Poole, Chris N; Stout, Jeff R; Beck, Travis W; Bemben, Mike; Kerksick, Chad M

    2011-08-01

    To determine the influence of age and resistance exercise on myostatin pathway-related genes, younger (n = 10; 28 ± 5 years) and older (n = 10; 68 ± 6 years) men underwent four testing conditions (T1-T4). A baseline (T1) muscle sample was obtained, whereas the second and third biopsies were obtained 48 hours following the first and second training sessions (T2, T3), and a final biopsy was taken 24 hours following T3. The training sessions consisted of 3 sets of 10 repetitions (80% of one repetition maximum) on leg press, hack squat, and leg extension exercises. Follistatin (FST) messenger RNA was greater in older compared with younger men at T1 and T2 (p < .05). Follistatin-like 3 (FSTL3) messenger RNA was greater in older compared with younger men at T1 and T4 (p < .05). In older men, there was a significant decrease in myostatin (MSTN) messenger RNA at T4 (p < .05). Older men contained less active (Ser-425 phosphorylated) SMAD3 (p-SMAD3) protein than younger men at T3 and T4 (p < .05).Although it is well known that younger individuals possess a greater hypertrophic potential to resistance exercise, it appears that older individuals may paradoxically possess a more favorable resistance exercise response regarding myostatin pathway-related genes and a protein marker of pathway activity. Future research is warranted to examine the physiological significance of this age-dependent mechanism.

  16. Myostatin propeptide gene delivery by gene gun ameliorates muscle atrophy in a rat model of botulinum toxin-induced nerve denervation.

    PubMed

    Tsai, Sen-Wei; Tung, Yu-Tang; Chen, Hsiao-Ling; Yang, Shang-Hsun; Liu, Chia-Yi; Lu, Michelle; Pai, Hui-Jing; Lin, Chi-Chen; Chen, Chuan-Mu

    2016-02-01

    Muscle atrophy is a common symptom after nerve denervation. Myostatin propeptide, a precursor of myostatin, has been documented to improve muscle growth. However, the mechanism underlying the muscle atrophy attenuation effects of myostatin propeptide in muscles and the changes in gene expression are not well established. We investigated the possible underlying mechanisms associated with myostatin propeptide gene delivery by gene gun in a rat denervation muscle atrophy model, and evaluated gene expression patterns. In a rat botulinum toxin-induced nerve denervation muscle atrophy model, we evaluated the effects of wild-type (MSPP) and mutant-type (MSPPD75A) of myostatin propeptide gene delivery, and observed changes in gene activation associated with the neuromuscular junction, muscle and nerve. Muscle mass and muscle fiber size was moderately increased in myostatin propeptide treated muscles (p<0.05). And enhancement of the gene expression of the muscle regulatory factors, neurite outgrowth factors (IGF-1, GAP43) and acetylcholine receptors was observed. Our results demonstrate that myostatin propeptide gene delivery, especially the mutant-type of MSPPD75A, attenuates muscle atrophy through myogenic regulatory factors and acetylcholine receptor regulation. Our data concluded that myostatin propeptide gene therapy may be a promising treatment for nerve denervation induced muscle atrophy. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Myostatin deficiency partially rescues the bone phenotype of osteogenesis imperfecta model mice.

    PubMed

    Oestreich, A K; Carleton, S M; Yao, X; Gentry, B A; Raw, C E; Brown, M; Pfeiffer, F M; Wang, Y; Phillips, C L

    2016-01-01

    Mice with osteogenesis imperfecta (+/oim), a disorder of bone fragility, were bred to mice with muscle over growth to test whether increasing muscle mass genetically would improve bone quality and strength. The results demonstrate that femora from mice carrying both mutations have greater mechanical integrity than their +/oim littermates. Osteogenesis imperfecta is a heritable connective tissue disorder due primarily to mutations in the type I collagen genes resulting in skeletal deformity and fragility. Currently, there is no cure, and therapeutic strategies encompass the use of antiresorptive pharmaceuticals and surgical bracing, with limited success and significant potential for adverse effects. Bone, a mechanosensing organ, can respond to high mechanical loads by increasing new bone formation and altering bone geometry to withstand increased forces. Skeletal muscle is a major source of physiological loading on bone, and bone strength is proportional to muscle mass. To test the hypothesis that congenic increases in muscle mass in the osteogenesis imperfecta murine model mouse (oim) will improve their compromised bone quality and strength, heterozygous (+/oim) mice were bred to mice deficient in myostatin (+/mstn), a negative regulator of muscle growth. The resulting adult offspring were evaluated for hindlimb muscle mass, and bone microarchitecture, physiochemistry, and biomechanical integrity. +/oim mice deficient in myostatin (+/mstn +/oim) were generated and demonstrated that myostatin deficiency increased body weight, muscle mass, and biomechanical strength in +/mstn +/oim mice as compared to +/oim mice. Additionally, myostatin deficiency altered the physiochemical properties of the +/oim bone but did not alter bone remodeling. Myostatin deficiency partially improved the reduced femoral bone biomechanical strength of adult +/oim mice by increasing muscle mass with concomitant improvements in bone microarchitecture and physiochemical properties.

  18. Long-term systemic myostatin inhibition via liver-targeted gene transfer in golden retriever muscular dystrophy.

    PubMed

    Bish, Lawrence T; Sleeper, Meg M; Forbes, Sean C; Morine, Kevin J; Reynolds, Caryn; Singletary, Gretchen E; Trafny, Dennis; Pham, Jennifer; Bogan, Janet; Kornegay, Joe N; Vandenborne, Krista; Walter, Glenn A; Sweeney, H Lee

    2011-12-01

    Duchenne muscular dystrophy (DMD) is a lethal, X-linked recessive disease affecting 1 in 3,500 newborn boys for which there is no effective treatment or cure. One novel strategy that has therapeutic potential for DMD is inhibition of myostatin, a negative regulator of skeletal muscle mass that may also promote fibrosis. Therefore, our goal in this study was to evaluate systemic myostatin inhibition in the golden retriever model of DMD (GRMD). GRMD canines underwent liver-directed gene transfer of a self-complementary adeno-associated virus type 8 vector designed to express a secreted dominant-negative myostatin peptide (n = 4) and were compared with age-matched, untreated GRMD controls (n = 3). Dogs were followed with serial magnetic resonance imaging (MRI) for 13 months to assess cross-sectional area and volume of skeletal muscle, then euthanized so that tissue could be harvested for morphological and histological analysis. We found that systemic myostatin inhibition resulted in increased muscle mass in GRMD dogs as assessed by MRI and confirmed at tissue harvest. We also found that hypertrophy of type IIA fibers was largely responsible for the increased muscle mass and that reductions in serum creatine kinase and muscle fibrosis were associated with long-term myostatin inhibition in GRMD. This is the first report describing the effects of long-term, systemic myostatin inhibition in a large-animal model of DMD, and we believe that the simple and effective nature of our liver-directed gene-transfer strategy makes it an ideal candidate for evaluation as a novel therapeutic approach for DMD patients.

  19. Systematic characterization of maturation time of fluorescent proteins in living cells

    PubMed Central

    Balleza, Enrique; Kim, J. Mark; Cluzel, Philippe

    2017-01-01

    Slow maturation time of fluorescent proteins limits accurate measurement of rapid gene expression dynamics and effectively reduces fluorescence signal in growing cells. We used high-precision time-lapse microscopy to characterize, at two different temperatures in E. coli, the maturation kinetics of 50 FPs that span the visible spectrum. We identified fast-maturing FPs that yield the highest signal-to-noise ratio and temporal resolution in individual growing cells. PMID:29320486

  20. AAV-Mediated Administration of Myostatin Pro-Peptide Mutant in Adult Ldlr Null Mice Reduces Diet-Induced Hepatosteatosis and Arteriosclerosis

    PubMed Central

    Guo, Wen; Wong, Siu; Bhasin, Shalender

    2013-01-01

    Genetic disruption of myostatin or its related signaling is known to cause strong protection against diet-induced metabolic disorders. The translational value of these prior findings, however, is dependent on whether such metabolically favorable phenotype can be reproduced when myostatin blockade begins at an adult age. Here, we reported that AAV-mediated delivery of a myostatin pro-peptide D76A mutant in adult mice attenuates the development of hepatic steatosis and arteriosclerosis, two common diet-induced metabolic diseases. A single dose of AAV-D76A in adult Ldlr null mice resulted in sustained expression of myostatin pro-peptide in the liver. Compared to vehicle-treated mice, D76A-treated mice gained similar amount of lean and fat mass when fed a high fat diet. However, D76A-treated mice displayed significantly reduced aortic lesions and liver fat, in association with a reduction in hepatic expression of lipogenic genes and improvement in liver insulin sensitivity. This suggests that muscle and fat may not be the primary targets of treatment under our experimental condition. In support to this argument, we show that myostatin directly up-regulated lipogenic genes and increased fat accumulation in cultured liver cells. We also show that both myostatin and its receptor were abundantly expressed in mouse aorta. Cultured aortic endothelial cells responded to myostatin with a reduction in eNOS phosphorylation and an increase in ICAM-1 and VCAM-1 expression. Conclusions: AAV-mediated expression of myostatin pro-peptide D76A mutant in adult Ldlr null mice sustained metabolic protection without remarkable impacts on body lean and fat mass. Further investigations are needed to determine whether direct impact of myostatin on liver and aortic endothelium may contribute to the related metabolic phenotypes. PMID:23936482

  1. Recovery of Red Fluorescent Protein Chromophore Maturation Deficiency through Rational Design

    PubMed Central

    Moore, Matthew M.; Oteng-Pabi, Samuel K.; Pandelieva, Antonia T.; Mayo, Stephen L.; Chica, Roberto A.

    2012-01-01

    Red fluorescent proteins (RFPs) derived from organisms in the class Anthozoa have found widespread application as imaging tools in biological research. For most imaging experiments, RFPs that mature quickly to the red chromophore and produce little or no green chromophore are most useful. In this study, we used rational design to convert a yellow fluorescent mPlum mutant to a red-emitting RFP without reverting any of the mutations causing the maturation deficiency and without altering the red chromophore’s covalent structure. We also created an optimized mPlum mutant (mPlum-E16P) that matures almost exclusively to the red chromophore. Analysis of the structure/function relationships in these proteins revealed two structural characteristics that are important for efficient red chromophore maturation in DsRed-derived RFPs. The first is the presence of a lysine residue at position 70 that is able to interact directly with the chromophore. The second is an absence of non-bonding interactions limiting the conformational flexibility at the peptide backbone that is oxidized during red chromophore formation. Satisfying or improving these structural features in other maturation-deficient RFPs may result in RFPs with faster and more complete maturation to the red chromophore. PMID:23285050

  2. The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Long; Lok, Shee-Mei; Yu, I-Mei

    2008-09-17

    Many viruses go through a maturation step in the final stages of assembly before being transmitted to another host. The maturation process of flaviviruses is directed by the proteolytic cleavage of the precursor membrane protein (prM), turning inert virus into infectious particles. We have determined the 2.2 angstrom resolution crystal structure of a recombinant protein in which the dengue virus prM is linked to the envelope glycoprotein E. The structure represents the prM-E heterodimer and fits well into the cryo-electron microscopy density of immature virus at neutral pH. The pr peptide {beta}-barrel structure covers the fusion loop in E, preventingmore » fusion with host cell membranes. The structure provides a basis for identifying the stages of its pH-directed conformational metamorphosis during maturation, ending with release of pr when budding from the host.« less

  3. A baculovirus polyhedron envelope protein: immunogold localization in infected cells and mature polyhedra.

    PubMed

    Russell, R L; Rohrmann, G F

    1990-01-01

    A polyclonal antiserum against a trpE fusion protein containing the complete open reading frame of the polyhedron envelope (PE) protein from the nuclear polyhedrosis virus of Orgyia pseudotsugata (OpMNPV) was used for immunogold staining and electron microscopic examination of polyhedra, isolated polyhedron envelopes, and infected insect cells at selected times postinfection. The antiserum specifically stained the peripheral envelope of mature polyhedra and also stained the envelope structure which remained after polyhedra were dissolved in dilute alkaline solutions. In OpMNPV-infected Lymantria dispar cells, the PE protein was detected by 48 hr postinfection (hr p.i.) but specific localization and staining of developing polyhedra were not evident. However, by 72 hr p.i. substantial and preferential staining of the periphery of developing polyhedra was evident even though a distinct polyhedron envelope was not yet observed. In addition, the periphery of fibrillar structures was stained by the PE antiserum. By 96 hr p.i., mature envelopes surrounded polyhedra and these polyhedron envelopes were stained with the PE antibody. The progression of PE protein staining during polyhedron morphogenesis indicates that the PE protein accumulates and becomes associated with developing polyhedra in the nucleus between 48 and 72 hr p.i. Very late in infection the mature polyhedron envelope forms on the polyhedron surface. The apparent affinity of the PE protein for the surface of maturing polyhedra suggests that it may be a major component of the polyhedron envelope or may form the matrix for the deposition of other components which contribute to the mature envelope. Immunogold staining and protease digestion experiments indicate that protein is an essential component of the polyhedron envelope.

  4. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta

    PubMed Central

    Oestreich, Arin K.; Kamp, William M.; McCray, Marcus G.; Carleton, Stephanie M.; Karasseva, Natalia; Lenz, Kristin L.; Jeong, Youngjae; Daghlas, Salah A.; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M.; Ellersieck, Mark R.; Schulz, Laura C.; Phillips, Charlotte L.

    2016-01-01

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstntm1Sjl/+) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstntm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2oim), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2oim/+ offspring from natural mating of Mstntm1Sjl/+ dams to Col1a2oim/+sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2oim/+ dams to Col1a2oim/+ sires. Finally, increased bone biomechanical strength of Col1a2oim/+ offspring that had been transferred into Mstntm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta. PMID:27821779

  5. Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice.

    PubMed

    Zhang, C; McFarlane, C; Lokireddy, S; Masuda, S; Ge, X; Gluckman, P D; Sharma, M; Kambadur, R

    2012-01-01

    Although myostatin-null (Mstn (-/-)) mice fail to accumulate fat in adipose tissue when fed a high-fat diet (HFD), little is known about the molecular mechanism(s) behind this phenomenon. We therefore sought to identify the signalling pathways through which myostatin regulates accumulation and/or utilisation of fat. Wild-type, Mstn (-/-) and wild-type mice treated with soluble activin type IIB receptor (sActRIIB) were fed a control chow diet or an HFD for 12 weeks. Changes in gene expression were measured by microarray and quantitative PCR. Histological changes in white adipose tissue were assessed together with peripheral tissue fatty acid oxidation and changes in circulating hormones following HFD feeding. Our results demonstrate that inactivation of myostatin results in reduced fat accumulation in mice on an HFD. Molecular analysis revealed that metabolic benefits, due to lack of myostatin, are mediated through at least two independent mechanisms. First, lack of myostatin increased fatty acid oxidation in peripheral tissues through induction of enzymes involved in lipolysis and in fatty acid oxidation in mitochondria. Second, inactivation of myostatin also enhanced brown adipose formation in white adipose tissue of Mstn (-/-) mice. Consistent with the above, treatment of HFD-fed wild-type mice with the myostatin antagonist, sActRIIB, reduced the obesity phenotype. We conclude that absence of myostatin results in enhanced peripheral tissue fatty acid oxidation and increased thermogenesis, culminating in increased fat utilisation and reduced adipose tissue mass. Taken together, our data suggest that anti-myostatin therapeutics could be beneficial in alleviating obesity.

  6. High-fat diet reduces local myostatin-1 paralog expression and alters skeletal muscle lipid content in rainbow trout, Oncorhynchus mykiss

    PubMed Central

    Galt, Nicholas J.; Froehlich, Jacob Michael; Meyer, Ben M.; Barrows, Frederic T.; Biga, Peggy R.

    2014-01-01

    Muscle growth is an energetically demanding process that is reliant on intramuscular fatty acid depots in most fishes. The complex mechanisms regulating this growth and lipid metabolism are of great interest for human health and aquaculture applications. It is well established that the skeletal muscle chalone, myostatin, plays a role in lipid metabolism and adipogenesis in mammals; however, this function has not been fully assessed in fishes. We therefore examined the interaction between dietary lipid levels and myostatin expression in rainbow trout (Oncorhynchus mykiss). Five-weeks of high-fat (HFD; 25% lipid) dietary intake increased white muscle lipid content, and decreased circulating glucose levels and hepatosomatic index when compared to low-fat diet (LFD; 10% lipid) intake. In addition HFD intake reduced myostatin-1a and -1b expression in white muscle and myostatin-1b expression in brain tissue. Characterization of the myostatin-1a, -1b, and -2a promoters revealed putative binding sites for a subset of transcription factors associated with lipid metabolism. Taken together, these data suggest that HFD may regulate myostatin expression through cis-regulatory elements sensitive to increased lipid intake. Further, these findings provide a framework for future investigations of mechanisms describing the relationships between myostatin and lipid metabolism in fish. PMID:24264425

  7. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial

    USDA-ARS?s Scientific Manuscript database

    BACKGROUND: Myostatin inhibits skeletal muscle growth. The humanised monoclonal antibody LY2495655 (LY) binds and neutralises myostatin. We aimed to test whether LY increases appendicular lean body mass (aLBM) and improves physical performance in older individuals who have had recent falls and low m...

  8. Chromophore maturation and fluorescence fluctuation spectroscopy of fluorescent proteins in a cell-free expression system

    PubMed Central

    Macdonald, Patrick J.; Chen, Yan; Mueller, Joachim D.

    2012-01-01

    Cell-free synthesis, a method for the rapid expression of proteins, is increasingly used to study interactions of complex biological systems. GFP and its variants have become indispensable for fluorescence studies in live cells and are equally attractive as reporters for cell-free systems. This work investigates the use of fluorescence fluctuation spectroscopy (FFS) as a tool for quantitative analysis of protein interactions in cell-free expression systems. We also explore chromophore maturation of fluorescent proteins, which is of crucial importance for fluorescence studies. A droplet sample protocol was developed that ensured sufficient oxygenation for chromophore maturation and ease of manipulation for titration studies. The kinetics of chromophore maturation of EGFP, EYFP, and mCherry were analyzed as a function of temperature. A strong increase in the rate from room temperature to 37 °C was observed. We further demonstrate that all EGFP proteins fully mature in the cell-free solution and that brightness is a robust parameter specifying stoichiometry. Finally, FFS is applied to study the stoichiometry of the nuclear transport factor 2 in a cell-free system over a broad concentration range. We conclude that combining cell-free expression and FFS provides a powerful technique for quick, quantitative study of chromophore maturation and protein-protein interaction. PMID:22093611

  9. Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets

    PubMed Central

    Chelh, Ilham; Meunier, Bruno; Picard, Brigitte; Reecy, Mark James; Chevalier, Catherine; Hocquette, Jean-François; Cassar-Malek, Isabelle

    2009-01-01

    Background Myostatin (MSTN), a member of the TGF-β superfamily, has been identified as a negative regulator of skeletal muscle mass. Inactivating mutations in the MSTN gene are responsible for the development of a hypermuscular phenotype. In this study, we performed transcriptomic and proteomic analyses to detect altered expression/abundance of genes and proteins. These differentially expressed genes and proteins may represent new molecular targets of MSTN and could be involved in the regulation of skeletal muscle mass. Results Transcriptomic analysis of the Quadriceps muscles of 5-week-old MSTN-null mice (n = 4) and their controls (n = 4) was carried out using microarray (human and murine oligonucleotide sequences) of 6,473 genes expressed in muscle. Proteomic profiles were analysed using two-dimensional gel electrophoresis coupled with mass spectrometry. Comparison of the transcriptomic profiles revealed 192 up- and 245 down- regulated genes. Genes involved in the PI3K pathway, insulin/IGF pathway, carbohydrate metabolism and apoptosis regulation were up-regulated. Genes belonging to canonical Wnt, calcium signalling pathways and cytokine-receptor cytokine interaction were down-regulated. Comparison of the protein profiles revealed 20 up- and 18 down-regulated proteins spots. Knockout of the MSTN gene was associated with up-regulation of proteins involved in glycolytic shift of the muscles and down-regulation of proteins involved in oxidative energy metabolism. In addition, an increased abundance of survival/anti-apoptotic factors were observed. Conclusion All together, these results showed a differential expression of genes and proteins related to the muscle energy metabolism and cell survival/anti-apoptotic pathway (e.g. DJ-1, PINK1, 14-3-3ε protein, TCTP/GSK-3β). They revealed the PI3K and apoptotic pathways as MSTN targets and are in favour of a role of MSTN as a modulator of cell survival in vivo. PMID:19397818

  10. A comparative evaluation of crowding stress on muscle HSP90 and myostatin expression in salmonids

    USGS Publications Warehouse

    Galt, Nicholas J.; Froehlich, Jacob Michael; McCormick, Stephen; Biga, Peggy R.

    2018-01-01

    Stress is a major factor that contributes to poor production and animal welfare concerns in aquaculture. As such, a thorough understanding of mechanisms involved in the stress response is imperative to developing strategies to mitigate the negative side effects of stressors, including the impact of high stocking densities on growth. The purpose of this study was to determine how the muscle growth inhibitor, myostatin, and the stress-responsive gene HSP90 are regulated in response to crowding stress in rainbow trout (Oncorhynchus mykiss), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar). All species exhibited higher cortisol and glucose levels following the handling stress, indicating physiological response to the treatment. Additionally, all species, except rainbow trout, exhibited higher HSP90 levels in muscle after a 48 h crowding stress. Crowding stress resulted in a decrease of myostatin-1ain brook trout white muscle but not red muscle, while, myostatin-1a and -2a levels increased in white muscle and myostatin-1b levels increased in red muscle in Atlantic salmon. In rainbow trout, no significant changes were detected in either muscle type, but myostatin-1awas upregulated in both white and red skeletal muscle in the closely related cutthroat trout. The variation in response to crowding suggests a complex and species-specific interaction between stress and the muscle gene regulation in these salmonids. Only Atlantic salmon and cutthroat trout exhibited increased muscle myostatin transcription, and also exhibited the largest increase in circulating glucose in response to crowding. These results suggest that species-specific farming practices should be carefully examined in order to optimize low stress culture conditions.

  11. Decreasing maternal myostatin programs adult offspring bone strength in a mouse model of osteogenesis imperfecta.

    PubMed

    Oestreich, Arin K; Kamp, William M; McCray, Marcus G; Carleton, Stephanie M; Karasseva, Natalia; Lenz, Kristin L; Jeong, Youngjae; Daghlas, Salah A; Yao, Xiaomei; Wang, Yong; Pfeiffer, Ferris M; Ellersieck, Mark R; Schulz, Laura C; Phillips, Charlotte L

    2016-11-22

    During fetal development, the uterine environment can have effects on offspring bone architecture and integrity that persist into adulthood; however, the biochemical and molecular mechanisms remain unknown. Myostatin is a negative regulator of muscle mass. Parental myostatin deficiency (Mstn tm1Sjl/+ ) increases muscle mass in wild-type offspring, suggesting an intrauterine programming effect. Here, we hypothesized that Mstn tm1Sjl/+ dams would also confer increased bone strength. In wild-type offspring, maternal myostatin deficiency altered fetal growth and calvarial collagen content of newborn mice and conferred a lasting impact on bone geometry and biomechanical integrity of offspring at 4 mo of age, the age of peak bone mass. Second, we sought to apply maternal myostatin deficiency to a mouse model with osteogenesis imperfecta (Col1a2 oim ), a heritable connective tissue disorder caused by abnormalities in the structure and/or synthesis of type I collagen. Femora of male Col1a2 oim/+ offspring from natural mating of Mstn tm1Sjl/+ dams to Col1a2 oim/+ sires had a 15% increase in torsional ultimate strength, a 29% increase in tensile strength, and a 24% increase in energy to failure compared with age, sex, and genotype-matched offspring from natural mating of Col1a2 oim/+ dams to Col1a2 oim/+ sires. Finally, increased bone biomechanical strength of Col1a2 oim/+ offspring that had been transferred into Mstn tm1Sjl/+ dams as blastocysts demonstrated that the effects of maternal myostatin deficiency were conferred by the postimplantation environment. Thus, targeting the gestational environment, and specifically prenatal myostatin pathways, provides a potential therapeutic window and an approach for treating osteogenesis imperfecta.

  12. Effect of Postnatal Myostatin Inhibition on Bite Mechanics in Mice.

    PubMed

    Williams, Susan H; Lozier, Nicholas R; Montuelle, Stéphane J; de Lacalle, Sonsoles

    2015-01-01

    As a negative regulator of muscle size, myostatin (Mstn) impacts the force-production capabilities of skeletal muscles. In the masticatory system, measures of temporalis-stimulated bite forces in constitutive myostatin KOs suggest an absolute, but not relative, increase in jaw-muscle force. Here, we assess the phenotypic and physiologic impact of postnatal myostatin inhibition on bite mechanics using an inducible conditional KO mouse in which myostatin is inhibited with doxycycline (DOX). Given the increased control over the timing of gene inactivation in this model, it may be more clinically-relevant for developing interventions for age-associated changes in the musculoskeletal system. DOX was administered for 12 weeks starting at age 4 months, during which time food intake was monitored. Sex, age and strain-matched controls were given the same food without DOX. Bite forces were recorded just prior to euthanasia after which muscle and skeletal data were collected. Food intake did not differ between control or DOX animals within each sex. DOX males were significantly larger and had significantly larger masseters than controls, but DOX and control females did not differ. Although there was a tendency towards higher absolute bite forces in DOX animals, this was not significant, and bite forces normalized to masseter mass did not differ. Mechanical advantage for incisor biting increased in the DOX group due to longer masseter moment arms, likely due to a more anteriorly-placed masseter insertion. Despite only a moderate increase in bite force in DOX males and none in DOX females, the increase in masseter mass in males indicates a potentially positive impact on jaw muscles. Our data suggest a sexual dimorphism in the role of mstn, and as such investigations into the sex-specific outcomes is warranted.

  13. Aerobic exercise + weight loss decreases skeletal muscle myostatin expression and improves insulin sensitivity in older adults.

    PubMed

    Ryan, A S; Li, G; Blumenthal, J B; Ortmeyer, H K

    2013-07-01

    To determine whether aerobic exercise training + weight loss (AEX + WL) would affect the expression of myostatin and its relationship with insulin sensitivity in a longitudinal, clinical intervention study. Thirty-three obese sedentary postmenopausal women and men (n = 17 and 16, age: 61 ± 1 years, body mass index: 31 ± 1 kg/m(2) , VO2 max: 21.9 ± 1.0 mL/kg/min, X ± Standard error of the mean (SEM)) completed 6 months of 3 days/week AEX + WL. During an 80 mU m(-2) min(-1) hyperinsulinemic-euglycemic clamp, we measured glucose utilization (M), myostatin, myogenin, and MyoD gene expression by real-time RT-PCR in vastus lateralis muscle at baseline and 2 h. Body weight (-8%) and fat mass (-17%) decreased after AEX + WL (P < 0.001). Fat-free mass (FFM) and mid-thigh muscle area by computed tomography did not change but muscle attenuation increased (P < 0.05). VO2 max increased 14% (P < 0.001). AEX + WL increased M by 18% (P < 0.01). Myostatin gene expression decreased 19% after AEX + WL (P < 0.05). Basal mRNA myostatin levels were negatively associated with M before the intervention (r = -0.43, P < 0.05). Insulin infusion increased myoD and myogenin expression before and after AEX + WL (both P < 0.001) but basal levels did not change. The insulin effect on myostatin expression was associated with the change in M after AEX + WL (r = 0.56, P < 0.005). Exercise and weight loss results in a downregulation of myostatin mRNA and an improvement in insulin sensitivity in obese older men and women. Copyright © 2012 The Obesity Society.

  14. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice.

    PubMed

    Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi; Moreira, Gabriela V; Jurczak, Michael J; Friedman, Glenn; Haqq, Christopher M; Petersen, Kitt Falk; Shulman, Gerald I

    2016-02-23

    Sarcopenia, or skeletal muscle atrophy, is a debilitating comorbidity of many physiological and pathophysiological processes, including normal aging. There are no approved therapies for sarcopenia, but the antihypertrophic myokine myostatin is a potential therapeutic target. Here, we show that treatment of young and old mice with an anti-myostatin antibody (ATA 842) for 4 wk increased muscle mass and muscle strength in both groups. Furthermore, ATA 842 treatment also increased insulin-stimulated whole body glucose metabolism in old mice, which could be attributed to increased insulin-stimulated skeletal muscle glucose uptake as measured by a hyperinsulinemic-euglycemic clamp. Taken together, these studies provide support for pharmacological inhibition of myostatin as a potential therapeutic approach for age-related sarcopenia and metabolic disease.

  15. Pharmacological inhibition of myostatin protects against skeletal muscle atrophy and weakness after anterior cruciate ligament tear.

    PubMed

    Wurtzel, Caroline Nw; Gumucio, Jonathan P; Grekin, Jeremy A; Khouri, Roger K; Russell, Alan J; Bedi, Asheesh; Mendias, Christopher L

    2017-11-01

    Anterior cruciate ligament (ACL) tears are among the most frequent knee injuries in sports medicine, with tear rates in the US up to 250,000 per year. Many patients who suffer from ACL tears have persistent atrophy and weakness even after considerable rehabilitation. Myostatin is a cytokine that directly induces muscle atrophy, and previous studies rodent models and patients have demonstrated an upregulation of myostatin after ACL tear. Using a preclinical rat model, our objective was to determine if the use of a bioneutralizing antibody against myostatin could prevent muscle atrophy and weakness after ACL tear. Rats underwent a surgically induced ACL tear and were treated with either a bioneutralizing antibody against myostatin (10B3, GlaxoSmithKline) or a sham antibody (E1-82.15, GlaxoSmithKline). Muscles were harvested at either 7 or 21 days after induction of a tear to measure changes in contractile function, fiber size, and genes involved in muscle atrophy and hypertrophy. These time points were selected to evaluate early and later changes in muscle structure and function. Compared to the sham antibody group, 7 days after ACL tear, myostatin inhibition reduced the expression of proteolytic genes and induced the expression of hypertrophy genes. These early changes in gene expression lead to a 22% increase in muscle fiber cross-sectional area and a 10% improvement in maximum isometric force production that were observed 21 days after ACL tear. Overall, myostatin inhibition lead to several favorable, although modest, changes in molecular biomarkers of muscle regeneration and reduced muscle atrophy and weakness following ACL tear. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2499-2505, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. The NMR contribution to protein-protein networking in Fe-S protein maturation.

    PubMed

    Banci, Lucia; Camponeschi, Francesca; Ciofi-Baffoni, Simone; Piccioli, Mario

    2018-03-22

    Iron-sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe-S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe-2S], [3Fe-4S] and [4Fe-4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe-S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe-S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of "Fe-S interactomics". This contribution was particularly effective when protein-protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.

  17. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    PubMed

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  18. Role for a Novel Usher Protein Complex in Hair Cell Synaptic Maturation

    PubMed Central

    Zallocchi, Marisa; Meehan, Daniel T.; Delimont, Duane; Rutledge, Joseph; Gratton, Michael Anne; Flannery, John; Cosgrove, Dominic

    2012-01-01

    The molecular mechanisms underlying hair cell synaptic maturation are not well understood. Cadherin-23 (CDH23), protocadherin-15 (PCDH15) and the very large G-protein coupled receptor 1 (VLGR1) have been implicated in the development of cochlear hair cell stereocilia, while clarin-1 has been suggested to also play a role in synaptogenesis. Mutations in CDH23, PCDH15, VLGR1 and clarin-1 cause Usher syndrome, characterized by congenital deafness, vestibular dysfunction and retinitis pigmentosa. Here we show developmental expression of these Usher proteins in afferent spiral ganglion neurons and hair cell synapses. We identify a novel synaptic Usher complex comprised of clarin-1 and specific isoforms of CDH23, PCDH15 and VLGR1. To establish the in vivo relevance of this complex, we performed morphological and quantitative analysis of the neuronal fibers and their synapses in the Clrn1−/− mouse, which was generated by incomplete deletion of the gene. These mice showed a delay in neuronal/synaptic maturation by both immunostaining and electron microscopy. Analysis of the ribbon synapses in Ames waltzerav3J mice also suggests a delay in hair cell synaptogenesis. Collectively, these results show that, in addition to the well documented role for Usher proteins in stereocilia development, Usher protein complexes comprised of specific protein isoforms likely function in synaptic maturation as well. PMID:22363448

  19. Drug evaluation: bevirimat--HIV Gag protein and viral maturation inhibitor.

    PubMed

    Temesgen, Zelalem; Feinberg, Judith E

    2006-08-01

    Panacos Pharmaceuticals Inc is developing the HIV Gag protein and viral maturation inhibitor bevirimat for the potential oral treatment of HIV infection. Phase II clinical trials are underway and phase III trials expected to commence in 2007.

  20. Post-Mortem Stability of RNA in Skeletal Muscle and Adipose Tissue and the Tissue-Specific Expression of Myostatin, Perilipin and Associated Factors in the Horse

    PubMed Central

    Morrison, Philippa K.; Bing, Chen; Harris, Patricia A.; Maltin, Charlotte A.; Grove-White, Dai; Argo, Caroline McG.

    2014-01-01

    Obesity, a major concern for equine welfare, is highly prevalent in the leisure horse population. Skeletal-muscle and adipose tissues are important determinants of maintenance energy requirements. The myostatin and perilipin pathways play key roles in the regulation of muscle mass and lipolysis respectively and have both been associated with obesity predisposition in other mammalian species. High quality samples, suitable for molecular biology, are an essential prerequisite for detailed investigations of gene and protein expression. Hence, this study has evaluated a) the post-mortem stability of RNA extracted from skeletal-muscle and adipose-tissues collected under commercial conditions and b) the tissue-specific presence of myostatin, the moystatin receptor (activin receptor IIB, ActRIIB), follistatin and perilipin, genes and proteins across a range of equine tissues. Objectives were addressed using tissues from 7 Thoroughbred horses presented for slaughter at a commercial abattoir; a) samples were collected at 7 time-points from Masseter muscle and perirenal adipose from 5 minutes to 6 hours post-mortem. Extracted RN was appraised by Optical Density analysis and agarose-gel electrophoresis. b) Quantitative real time PCR and Western Blotting were used to evaluate gene and protein expression in anatomically-defined samples collected from 17 tissues (6 organs, 4 skeletal muscles and 7 discrete adipose depots). The results indicate that, under the present collection conditions, intact, good quality RNA could be extracted from skeletal-muscle for up to 2 hours post-mortem. However, RNA from adipose tissue may be more susceptible to degradation/contamination and samples should be collected no later than 30 minutes post-mortem. The data also show that myostatin and ActRIIB genes and proteins were almost exclusively expressed in skeletal muscle. The follistatin gene showed a more diverse gene expression profile, with expression evident in several organs, adipose tissue

  1. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes

    PubMed Central

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-01-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)1 not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. PMID:27215607

  2. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes.

    PubMed

    Virant-Klun, Irma; Leicht, Stefan; Hughes, Christopher; Krijgsveld, Jeroen

    2016-08-01

    Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142. © 2016 by The American Society for Biochemistry and Molecular Biology

  3. Smad3 induces atrogin-1, inhibits mTOR and protein synthesis, and promotes muscle atrophy in vivo.

    PubMed

    Goodman, Craig A; McNally, Rachel M; Hoffmann, F Michael; Hornberger, Troy A

    2013-11-01

    Myostatin, a member of the TGF superfamily, is sufficient to induce skeletal muscle atrophy. Myostatin-induced atrophy is associated with increases in E3-ligase atrogin-1 expression and protein degradation and decreases in Akt/mechanistic target of rapamycin (mTOR) signaling and protein synthesis. Myostatin signaling activates the transcription factor Smad3 (Small Mothers Against Decapentaplegic), which has been shown to be necessary for myostatin-induced atrogin-1 expression and atrophy; however, it is not known whether Smad3 is sufficient to induce these events or whether Smad3 simply plays a permissive role. Thus, the aim of this study was to address these questions with an in vivo model. To accomplish this goal, in vivo transfection of plasmid DNA was used to create transient transgenic mouse skeletal muscles, and our results show for the first time that Smad3 expression is sufficient to stimulate atrogin-1 promoter activity, inhibit Akt/mTOR signaling and protein synthesis, and induce muscle fiber atrophy. Moreover, we propose that Akt/mTOR signaling is inhibited by a Smad3-induced decrease in microRNA-29 (miR-29) expression and a subsequent increase in the translation of phosphatase and tensin homolog (PTEN) mRNA. Smad3 is also sufficient to inhibit peroxisome proliferator-activated receptor-γ coactivator-1α (PGC1α) promoter activity and to increase FoxO (Forkhead Box Protein, Subclass O)-mediated signaling and the promoter activity of plasminogen activator inhibitor 1 (PAI-1). Combined, this study provides the first evidence that Smad3 is sufficient to regulate many of the events associated with myostatin-induced atrophy and therefore suggests that Smad3 signaling may be a viable target for therapies aimed at preventing myostatin-induced muscle atrophy.

  4. The role of myostatin and activin receptor IIB in the regulation of unloading-induced myofiber type-specific skeletal muscle atrophy.

    PubMed

    Babcock, Lyle W; Knoblauch, Mark; Clarke, Mark S F

    2015-09-15

    Chronic unloading induces decrements in muscle size and strength. This adaptation is governed by a number of molecular factors including myostatin, a potent negative regulator of muscle mass. Myostatin must first be secreted into the circulation and then bind to the membrane-bound activin receptor IIB (actRIIB) to exert its atrophic action. Therefore, we hypothesized that myofiber type-specific atrophy observed after hindlimb suspension (HLS) would be related to myofiber type-specific expression of myostatin and/or actRIIB. Wistar rats underwent HLS for 10 days, after which the tibialis anterior was harvested for frozen cross sectioning. Simultaneous multichannel immunofluorescent staining combined with differential interference contrast imaging was employed to analyze myofiber type-specific expression of myostatin and actRIIB and myofiber type cross-sectional area (CSA) across fiber types, myonuclei, and satellite cells. Hindlimb suspension (HLS) induced significant myofiber type-specific atrophy in myosin heavy chain (MHC) IIx (P < 0.05) and MHC IIb myofibers (P < 0.05). Myostatin staining associated with myonuclei was less in HLS rats compared with controls, while satellite cell staining for myostatin remained unchanged. In contrast, the total number myonuclei and satellite cells per myofiber was reduced in HLS compared with ambulatory control rats (P < 0.01). Sarcoplasmic actRIIB staining differed between myofiber types (I < IIa < IIx < IIb) independent of loading conditions. Myofiber types exhibiting the greatest cytoplasmic staining of actRIIB corresponded to those exhibiting the greatest degree of atrophy following HLS. Our data suggest that differential expression of actRIIB may be responsible for myostatin-induced myofiber type-selective atrophy observed during chronic unloading. Copyright © 2015 the American Physiological Society.

  5. Haploinsufficiency of myostatin protects against aging-related declines in muscle function and enhances the longevity of mice.

    PubMed

    Mendias, Christopher L; Bakhurin, Konstantin I; Gumucio, Jonathan P; Shallal-Ayzin, Mark V; Davis, Carol S; Faulkner, John A

    2015-08-01

    The molecular mechanisms behind aging-related declines in muscle function are not well understood, but the growth factor myostatin (MSTN) appears to play an important role in this process. Additionally, epidemiological studies have identified a positive correlation between skeletal muscle mass and longevity. Given the role of myostatin in regulating muscle size, and the correlation between muscle mass and longevity, we tested the hypotheses that the deficiency of myostatin would protect oldest-old mice (28-30 months old) from an aging-related loss in muscle size and contractility, and would extend the maximum lifespan of mice. We found that MSTN(+/-) and MSTN(-/-) mice were protected from aging-related declines in muscle mass and contractility. While no differences were detected between MSTN(+/+) and MSTN(-/-) mice, MSTN(+/-) mice had an approximately 15% increase in maximal lifespan. These results suggest that targeting myostatin may protect against aging-related changes in skeletal muscle and contribute to enhanced longevity. © 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

  6. Knock down of the myostatin gene by RNA interference increased body weight in chicken.

    PubMed

    Bhattacharya, T K; Shukla, R; Chatterjee, R N; Dushyanth, K

    2017-01-10

    Myostatin is a negative regulator of muscular growth in poultry and other animals. Of several approaches, knocking down the negative regulator is an important aspect to augment muscular growth in chicken. Knock down of myostatin gene has been performed by shRNA acting against the expression of gene in animals. Two methods of knock down of gene in chicken such as embryo manipulation and sperm mediated method have been performed. The hatching percentage in embryo manipulation and sperm mediated method of knock down was 58.0 and 41.5%, respectively. The shRNA in knock down chicken enhanced body weight at 6 weeks by 26.9%. The dressing percentage and serum biochemical parameters such as SGPT and alkaline phosphatase differed significantly (P<0.05) between knock down and control birds. It is concluded that knocking down the myostatin gene successfully augmented growth in chicken. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Acute antibody-directed myostatin inhibition attenuates disuse muscle atrophy and weakness in mice.

    PubMed

    Murphy, Kate T; Cobani, Vera; Ryall, James G; Ibebunjo, Chikwendu; Lynch, Gordon S

    2011-04-01

    Counteracting the atrophy of skeletal muscle associated with disuse has significant implications for minimizing the wasting and weakness in plaster casting, joint immobilization, and other forms of limb unloading, with relevance to orthopedics, sports medicine, and plastic and reconstructive surgery. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the loss of muscle mass and functional capacity in mice during 14 or 21 days of unilateral hindlimb casting. Twelve-week-old C57BL/10 mice were subjected to unilateral hindlimb plaster casting or served as controls. Mice received subcutaneous injections of saline or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg; n = 6-9) on days 0 and 7 and were tested for muscle function on day 14, or were treated on days 0, 7, and 14 and tested for muscle function on day 21. Hindlimb casting reduced muscle mass, fiber size, and function of isolated soleus and extensor digitorum longus (EDL) muscles (P < 0.05). PF-354 attenuated the loss of muscle mass, fiber size, and function with greater effects after 14 days than after 21 days of casting, when wasting and weakness had plateaued (P < 0.05). Antibody-directed myostatin inhibition therefore attenuated the atrophy and loss of functional capacity in muscles from mice subjected to unilateral hindlimb casting with reductions in muscle size and strength being most apparent during the first 14 days of disuse. These findings highlight the therapeutic potential of antibody-directed myostatin inhibition for disuse atrophy especially within the first 2 wk of disuse.

  8. The effects of Candida albicans cell wall protein fraction on dendritic cell maturation.

    PubMed

    Roudbary, Maryam; Roudbar Mohammadi, Shahla; Bozorgmehr, Mahmood; Moazzeni, Seyed Mohammad

    2009-06-01

    Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, beta glucans and chitins, and proteins that partially modulate the host immune responses. Dendritic cells (DC), as the most important antigen-presenting cells of the immune system, play a critical role in inducing immune responses against different pathogens. We investigated the effect of the cell wall protein fraction (CPF) of C. albicans on DC maturation. The CPF of C. albicans cells was extracted by a lysis buffer containing sodium dodecyl sulphate, 2-mercaptoethanol and phosphate-buffered saline. The extract was dialyzed and its protein pattern was evaluated by electrophoresis. Dendritic cells were purified from Balb/c mice spleens through a three-step method including mononuclear cell separation, as well as 2-h and overnight cultures. The purified CPF was added at different concentrations to DC. The purity and maturation status of DC were determined by flow cytometry using monoclonal antibodies against CD11c, MHC-II, CD40 and CD86. Treatment of DC with 10 microg/ml of CPF increased the expression of maturation markers including MHC-II, CD86 and CD40 on DC compared to the control group. In this study we used C. albicans CPF with the molecular weight of 40-45 kDa for pulsing and maturation of dendritic cells. Since according to our results CPF significantly increased the expression of maturation markers on DC, we suggest that CPF may act as an efficient immunomodulator, or may be used as a potential adjuvant to boost the host immune system against infections.

  9. A myostatin inhibitor (propeptide-Fc) increases muscle mass and muscle fiber size in aged mice but does not increase bone density or bone strength.

    PubMed

    Arounleut, Phonepasong; Bialek, Peter; Liang, Li-Fang; Upadhyay, Sunil; Fulzele, Sadanand; Johnson, Maribeth; Elsalanty, Mohammed; Isales, Carlos M; Hamrick, Mark W

    2013-09-01

    Loss of muscle and bone mass with age are significant contributors to falls and fractures among the elderly. Myostatin deficiency is associated with increased muscle mass in mice, dogs, cows, sheep and humans, and mice lacking myostatin have been observed to show increased bone density in the limb, spine, and jaw. Transgenic overexpression of myostatin propeptide, which binds to and inhibits the active myostatin ligand, also increases muscle mass and bone density in mice. We therefore sought to test the hypothesis that in vivo inhibition of myostatin using an injectable myostatin propeptide (GDF8 propeptide-Fc) would increase both muscle mass and bone density in aged (24 mo) mice. Male mice were injected weekly (20 mg/kg body weight) with recombinant myostatin propeptide-Fc (PRO) or vehicle (VEH; saline) for four weeks. There was no difference in body weight between the two groups at the end of the treatment period, but PRO treatment significantly increased mass of the tibialis anterior muscle (+ 7%) and increased muscle fiber diameter of the extensor digitorum longus (+ 16%) and soleus (+ 6%) muscles compared to VEH treatment. Bone volume relative to total volume (BV/TV) of the femur calculated by microCT did not differ significantly between PRO- and VEH-treated mice, and ultimate force (Fu), stiffness (S), toughness (U) measured from three-point bending tests also did not differ significantly between groups. Histomorphometric assays also revealed no differences in bone formation or resorption in response to PRO treatment. These data suggest that while developmental perturbation of myostatin signaling through either gene knockout or transgenic inhibition may alter both muscle and bone mass in mice, pharmacological inhibition of myostatin in aged mice has a more pronounced effect on skeletal muscle than on bone. © 2013. Published by Elsevier Inc. All rights reserved.

  10. Myostatin inhibition in muscle, but not adipose tissue, decreases fat mass and improves insulin sensitivity.

    PubMed

    Guo, Tingqing; Jou, William; Chanturiya, Tatyana; Portas, Jennifer; Gavrilova, Oksana; McPherron, Alexandra C

    2009-01-01

    Myostatin (Mstn) is a secreted growth factor expressed in skeletal muscle and adipose tissue that negatively regulates skeletal muscle mass. Mstn(-/-) mice have a dramatic increase in muscle mass, reduction in fat mass, and resistance to diet-induced and genetic obesity. To determine how Mstn deletion causes reduced adiposity and resistance to obesity, we analyzed substrate utilization and insulin sensitivity in Mstn(-/-) mice fed a standard chow. Despite reduced lipid oxidation in skeletal muscle, Mstn(-/-) mice had no change in the rate of whole body lipid oxidation. In contrast, Mstn(-/-) mice had increased glucose utilization and insulin sensitivity as measured by indirect calorimetry, glucose and insulin tolerance tests, and hyperinsulinemic-euglycemic clamp. To determine whether these metabolic effects were due primarily to the loss of myostatin signaling in muscle or adipose tissue, we compared two transgenic mouse lines carrying a dominant negative activin IIB receptor expressed specifically in adipocytes or skeletal muscle. We found that inhibition of myostatin signaling in adipose tissue had no effect on body composition, weight gain, or glucose and insulin tolerance in mice fed a standard diet or a high-fat diet. In contrast, inhibition of myostatin signaling in skeletal muscle, like Mstn deletion, resulted in increased lean mass, decreased fat mass, improved glucose metabolism on standard and high-fat diets, and resistance to diet-induced obesity. Our results demonstrate that Mstn(-/-) mice have an increase in insulin sensitivity and glucose uptake, and that the reduction in adipose tissue mass in Mstn(-/-) mice is an indirect result of metabolic changes in skeletal muscle. These data suggest that increasing muscle mass by administration of myostatin antagonists may be a promising therapeutic target for treating patients with obesity or diabetes.

  11. Myostatin inhibitory region of fish (Paralichthys olivaceus) myostatin-1 propeptide.

    PubMed

    Lee, Sang Beum; Kim, Jeong Hwan; Jin, Deuk-Hee; Jin, Hyung-Joo; Kim, Yong Soo

    2016-01-01

    Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth, and its activity is suppressed by MSTN propeptide (MSTNpro), the N-terminal part of MSTN precursor cleaved during post-translational MSTN processing. The current study examined which region of flatfish (Paralichthys olivaceus) MSTN-1 propeptide (MSTN1pro) is critical for MSTN inhibition. Six different truncated forms of MSTN1pro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in Escherichia coli, and partially purified by an affinity chromatography for MSTN-inhibitory activity examination. Peptides covering different regions of flatfish MSTN1pro were also synthesized for MSTN-inhibitory activity examination. A MBP-fused MSTN1pro region consisting of residues 45-100 had the same MSTN-inhibitory potency as the full sequence flatfish MSTN1pro (residues 23-265), indicating that the region of flatfish MSTN1pro consisting of residues 45-100 is sufficient to maintain the full MSTN-inhibitory capacity. A MBP-fused MSTN1pro region consisting of residues 45-80 (Pro45-80) also showed MSTN-inhibitory activity with a lower potency, and the Pro45-80 demonstrated its MSTN binding capacity in a pull-down assay, indicating that the MSTN-inhibitory capacity of Pro45-80 is due to its binding to MSTN. Flatfish MSTN1pro synthetic peptides covering residues 45-65, 45-70, and 45-80 demonstrated MSTN-inhibitory activities, but not the synthetic peptide covering residues 45-54, indicating that residues 45-65 of flatfish MSTN1pro are essential for MSTN inhibition. In conclusion, current study show that like the mammalian MSTNpro, the MSTN-inhibitory region of flatfish MSTN1pro resides near its N-terminus, and imply that smaller sizes of MSTNpro can be effectively used in various applications designed for MSTN inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Polymorphisms of the myostatin gene and its relationship with reproduction traits in the Bian chicken.

    PubMed

    Zhang, Genxi; Zhang, Li; Wei, Yue; Wang, Jinyu; Ding, Fuxiang; Dai, Guojun; Xie, Kaizhou

    2012-01-01

    Myostatin, or growth and differentiation factor 8, is a member of the transforming growth factor-β superfamily; it functions as a negative regulator of skeletal muscle development and growth in mammals. In this study, single nucleotide polymorphisms in the 5' regulatory region and exon 1 of the myostatin gene were detected by PCR-SSCP in the Bian, Jinghai, Youxi, and Arbor Acre chickens, and the associations of the polymorphisms with reproduction traits were analyzed. Seven SNPs (A326G, C334G, C1346T, G1375A, A1473G, G1491A, and G2283A) were found in the myostatin gene. Association analysis showed that the G2283A were significantly associated with reproduction traits. Bian chickens of the GG genotype had a greater age at first egg than those of the GA and AA genotypes (P<0.01). Correspondingly, Bian chickens of the GA and AA genotypes had larger egg number at 300 days than those of the GG genotype (P<0.05 and P<0.01, respectively). Bian chickens of the AA genotype had significantly higher body weight at 300 days than those of the GG genotype (P<0.05). These results suggested that the myostatin gene may have certain effects on reproduction traits other than merely as a negative regulator of skeletal muscle development and growth in mammals previously reported.

  13. Expression Levels of Myostatin and Matrix Metalloproteinase 14 mRNAs in Uterine Leiomyoma are Correlated With Dysmenorrhea.

    PubMed

    Tsigkou, Anastasia; Reis, Fernando M; Ciarmela, Pasquapina; Lee, Meng H; Jiang, Bingjie; Tosti, Claudia; Shen, Fang-Rong; Shi, Zhendan; Chen, You-Guo; Petraglia, Felice

    2015-12-01

    Uterine leiomyoma is the most common benign neoplasm of female reproductive system, found in about 50% of women in reproductive age. The mechanisms of leiomyoma growth include cell proliferation, which is modulated by growth factors, and deposition of extracellular matrix (ECM). Activin A and myostatin are growth factors that play a role in proliferation of leiomyoma cells. Matrix metalloproteinases (MMPs) are known for their ability to remodel the ECM in different biological systems. The aim of this study was to evaluate the expression levels of activin βA-subunit, myostatin, and MMP14 messenger RNAs (mRNAs) in uterine leiomyomas and the possible correlation of these factors with clinical features of the disease. Matrix metalloproteinase 14 was highly expressed in uterine leiomyoma and correlated with myostatin and activin A mRNA expression. Moreover, MMP14 and myostatin mRNA expression correlated significantly and directly with the intensity of dysmenorrhea. Overall, the present findings showed that MMP14 mRNA is highly expressed in uterine leiomyoma, where it correlates with the molecular expression of growth factors and is further increased in cases of intense dysmenorrhea. © The Author(s) 2015.

  14. Characterization of the post-translational modification of recombinant human BMP-15 mature protein

    PubMed Central

    Saito, Seiji; Yano, Keiichi; Sharma, Shweta; McMahon, Heather E.; Shimasaki, Shunichi

    2008-01-01

    Bone morphogenetic protein-15 (BMP-15) is an oocyte-secreted factor critical for the regulation of ovarian physiology. When recombinant human BMP-15 (rhBMP-15) produced in human embryonic kidney 293 cells was subjected to SDS-PAGE analysis, two mature protein forms corresponding to 16 kDa (P16) and 17 kDa (P17) were observed. Despite the physiological relevance and critical function of BMP-15 in female reproduction, little is known about the structure of rhBMP-15. Here, we have analyzed the structure of the rhBMP-15 mature proteins (P16 and P17) using state-of-the-art proteomics technology. Our findings are as follows: (1) the N-terminal amino acid of P16 and P17 is pyroglutamic acid; (2) the Ser residue at the sixth position of P16 is phosphorylated; (3) P17 is O-glycosylated at Thr10; and (4) the C-terminal amino acid of P16 and P17 is truncated. These findings are the first knowledge of the structure of rhBMP-15 mature protein toward understanding the molecular basis of BMP-15 function and could provide an important contribution to the rapidly progressing research area involving oocyte-specific growth factors in modulation of female fertility. PMID:18227435

  15. Protein profile of mature soybean seeds and prepared soybean milk.

    PubMed

    Capriotti, Anna Laura; Caruso, Giuseppe; Cavaliere, Chiara; Samperi, Roberto; Stampachiacchiere, Serena; Zenezini Chiozzi, Riccardo; Laganà, Aldo

    2014-10-08

    The soybean (Glycine max (L.) Merrill) is economically the most important bean in the world, providing a wide range of vegetable proteins. Soybean milk is a colloidal solution obtained as water extract from swelled and ground soybean seeds. Soybean proteins represent about 35-40% on a dry weight basis and they are receiving increasing attention with respect to their health effects. However, the soybean is a well-recognized allergenic food, and therefore, it is urgent to define its protein components responsible for the allergenicity in order to develop hypoallergenic soybean products for sensitive people. The main aim of this work was the characterization of seed and milk soybean proteome and their comparison in terms of protein content and specific proteins. Using a shotgun proteomics approach, 243 nonredundant proteins were identified in mature soybean seeds.

  16. Follistatin-mediated skeletal muscle hypertrophy is regulated by Smad3 and mTOR independently of myostatin

    PubMed Central

    Winbanks, Catherine E.; Weeks, Kate L.; Thomson, Rachel E.; Sepulveda, Patricio V.; Beyer, Claudia; Qian, Hongwei; Chen, Justin L.; Allen, James M.; Lancaster, Graeme I.; Febbraio, Mark A.; Harrison, Craig A.; McMullen, Julie R.; Chamberlain, Jeffrey S.

    2012-01-01

    Follistatin is essential for skeletal muscle development and growth, but the intracellular signaling networks that regulate follistatin-mediated effects are not well defined. We show here that the administration of an adeno-associated viral vector expressing follistatin-288aa (rAAV6:Fst-288) markedly increased muscle mass and force-producing capacity concomitant with increased protein synthesis and mammalian target of rapamycin (mTOR) activation. These effects were attenuated by inhibition of mTOR or deletion of S6K1/2. Furthermore, we identify Smad3 as the critical intracellular link that mediates the effects of follistatin on mTOR signaling. Expression of constitutively active Smad3 not only markedly prevented skeletal muscle growth induced by follistatin but also potently suppressed follistatin-induced Akt/mTOR/S6K signaling. Importantly, the regulation of Smad3- and mTOR-dependent events by follistatin occurred independently of overexpression or knockout of myostatin, a key repressor of muscle development that can regulate Smad3 and mTOR signaling and that is itself inhibited by follistatin. These findings identify a critical role of Smad3/Akt/mTOR/S6K/S6RP signaling in follistatin-mediated muscle growth that operates independently of myostatin-driven mechanisms. PMID:22711699

  17. [Expression of goat IL-18 mature protein in insect/baculovirus and determination of bioactivity of the recombinant protein].

    PubMed

    Wang, Ting-Ting; Wang, Xi-Hui; Fan, Zhong-Ling; Chen, Jin-Long; Cao, Bing-Lei; Kong, Na; Hu, Jing-Dong; Zhao, Hong-Kun

    2011-02-01

    To express goat IL-18 in insect/baculovirus and detect the bioactivity of the recombinant protein. The mature goat interleukin-18(gIL-18) gene was cloned into the baculovirus transfer vector pFastBac Dual, and then the resulting eukaryotic expression plasmid pFastBac Dual-gIL18 was transformed into DH10Bac, followed by the identification of Bacmid-gIL18 recombinat plosmid by three antibiotics and blue-white patch. Finally, the recombinant bacmid was transfected into sf9 insect cells by Cellfectin and the transfected cells were harvested at different times. Then the expressed protein was identified by SDS-PAGE, Western blot and bioactivity assay. The recombinant protein recognized and bound to its specific antibody. Bioactivity assay showed that the recombinant protein stimulated the proliferation of lymphocytes and induced IFN-γproduction in spleen lymphocytes. The mature gIL-18 protein has been expressed successfully in insect/baculovirus expression system, and have good immunogenicity and bioactivity. The study paves a way for application of gIL-18 as an immunomodulator or immune adjuvant.

  18. Critical roles for WDR72 in calcium transport and matrix protein removal during enamel maturation

    PubMed Central

    Wang, Shih-Kai; Hu, Yuanyuan; Yang, Jie; Smith, Charles E; Nunez, Stephanie M; Richardson, Amelia S; Pal, Soumya; Samann, Andrew C; Hu, Jan C-C; Simmer, James P

    2015-01-01

    Defects in WDR72 (WD repeat-containing protein 72) cause autosomal recessive hypomaturation amelogenesis imperfecta. We generated and characterized Wdr72-knockout/lacZ-knockin mice to investigate the role of WDR72 in enamel formation. In all analyses, enamel formed by Wdr72 heterozygous mice was indistinguishable from wild-type enamel. Without WDR72, enamel mineral density increased early during the maturation stage but soon arrested. The null enamel layer was only a tenth as hard as wild-type enamel and underwent rapid attrition following eruption. Despite the failure to further mineralize enamel deposited during the secretory stage, ectopic mineral formed on the enamel surface and penetrated into the overlying soft tissue. While the proteins in the enamel matrix were successfully degraded, the digestion products remained inside the enamel. Interactome analysis of WDR72 protein revealed potential interactions with clathrin-associated proteins and involvement in ameloblastic endocytosis. The maturation stage mandibular incisor enamel did not stain with methyl red, indicating that the enamel did not acidify beneath ruffle-ended ameloblasts. Attachment of maturation ameloblasts to the enamel layer was weakened, and SLC24A4, a critical ameloblast calcium transporter, did not localize appropriately along the ameloblast distal membrane. Fewer blood vessels were observed in the papillary layer supporting ameloblasts. Specific WDR72 expression by maturation stage ameloblasts explained the observation that enamel thickness and rod decussation (established during the secretory stage) are normal in the Wdr72 null mice. We conclude that WDR72 serves critical functions specifically during the maturation stage of amelogenesis and is required for both protein removal and enamel mineralization. PMID:26247047

  19. The effect of caloric restriction on the forelimb skeletal muscle fibers of the hypertrophic myostatin null mice.

    PubMed

    Elashry, Mohamed I; Matsakas, Antonios; Wenisch, Sabine; Arnhold, Stefan; Patel, Ketan

    2017-06-01

    Skeletal muscle mass loss has a broad impact on body performance and physical activity. Muscle wasting occurs due to genetic mutation as in muscular dystrophy, age-related muscle loss (sarcopenia) as well as in chronic wasting disorders as in cancer cachexia. Food restriction reduces muscle mass underpinned by increased muscle protein break down. However the influence of dietary restriction on the morphometry and phenotype of forelimb muscles in a genetically modified myostatin null mice are not fully characterized. The effect of a five week dietary limitation on five anatomically and structurally different forelimb muscles was examined. C57/BL6 wild type (Mstn +/+ ) and myostatin null (Mstn -/- ) mice were either given a standard rodent normal daily diet ad libitum (ND) or 60% food restriction (FR) for a 5 week period. M. triceps brachii Caput laterale (T.lateral), M. triceps brachii Caput longum (T.long), M. triceps brachii Caput mediale (T.medial), M. extensor carpi ulnaris (ECU) and M. flexor carpi ulnaris (FCU) were dissected, weighted and processed for immunohistochemistry. Muscle mass, fibers cross sectional areas (CSA) and myosin heavy chain types IIB, IIX, IIA and type I were analyzed. We provide evidence that caloric restriction results in muscle specific weight reduction with the fast myofibers being more prone to atrophy. We show that slow fibers are less liable to dietary restriction induced muscle atrophy. The effect of dietary restriction was more pronounced in Mstn -/- muscles to implicate the oxidative fibers compared to Mstn +/+ . Furthermore, peripherally located myofibers are more susceptible to dietary induced reduction compared to deep fibers. We additionally report that dietary restriction alters the glycolytic phenotype of the Mstn -/- into the oxidative form in a muscle dependent manner. In summary our study shows that calorie restriction alters muscle fiber profile of forelimb muscles of Myostatin null mice. Copyright © 2017 Elsevier Gmb

  20. Food proteins and maturation of small intestinal microvillus membranes (MVM). III. Food protein binding and MVM proteins in rats from newborn to young adult age.

    PubMed

    Stern, M; Gellermann, B; Wieser, H

    1990-10-01

    To investigate postnatal maturational profiles of functional and biochemical properties of rat small intestinal microvillus membranes (MVM), we did a longitudinal study in rats from birth to the age of 12 weeks. In parallel, we studied binding of cow's milk proteins and of the wheat gliadin peptide B 3142, as well as MVM proteins (SDS-PAGE). Changes in MVM fluidity and lipid composition exhibited early (0-4 weeks) and intermediate and late (6-12 weeks) patterns, as has been published earlier. Postnatal changes of food protein and peptide binding occurred early during the observation period, not related to weaning. There was not much further change in binding after 6-8 weeks. Developmental profiles of MVM protein and some lipid changes resembled, but did not equal, changes in food protein binding. We conclude that changes in MVM biochemical composition affect MVM binding characteristics. In particular, high molecular weight MVM proteins (susceptible to trypsin treatment) appear to play a role in postnatal maturational differences in MVM food protein binding.

  1. A comparative examination of cortisol effects on muscle myostatin and HSP90 gene expression in salmonids.

    PubMed

    Galt, Nicholas J; McCormick, Stephen D; Froehlich, Jacob Michael; Biga, Peggy R

    2016-10-01

    Cortisol, the primary corticosteroid in teleost fishes, is released in response to stressors to elicit local functions, however little is understood regarding muscle-specific responses to cortisol in these fishes. In mammals, glucocorticoids strongly regulate the muscle growth inhibitor, myostatin, via glucocorticoid response elements (GREs) leading to muscle atrophy. Bioinformatics methods suggest that this regulatory mechanism is conserved among vertebrates, however recent evidence suggests some fishes exhibit divergent regulation. Therefore, the aim of this study was to evaluate the conserved actions of cortisol on myostatin and hsp90 expression to determine if variations in cortisol interactions have emerged in salmonid species. Representative salmonids; Chinook salmon (Oncorhynchus tshawytscha), cutthroat trout (Oncorhynchus clarki), brook trout (Salvelinus fontinalis), and Atlantic salmon (Salmo salar); were injected intraperitoneally with a cortisol implant (50μg/g body weight) and muscle gene expression was quantified after 48h. Plasma glucose and cortisol levels were significantly elevated by cortisol in all species, demonstrating physiological effectiveness of the treatment. HSP90 mRNA levels were elevated by cortisol in brook trout, Chinook salmon, and Atlantic salmon, but were decreased in cutthroat trout. Myostatin mRNA levels were affected in a species, tissue (muscle type), and paralog specific manner. Cortisol treatment increased myostatin expression in brook trout (Salvelinus) and Atlantic salmon (Salmo), but not in Chinook salmon (Oncorhynchus) or cutthroat trout (Oncorhynchus). Interestingly, the VC alone increased myostatin mRNA expression in Chinook and Atlantic salmon, while the addition of cortisol blocked the response. Taken together, these results suggest that cortisol affects muscle-specific gene expression in species-specific manners, with unique Oncorhynchus-specific divergence observed, that are not predictive solely based upon

  2. Recombinant myostatin (GDF-8) propeptide enhances the repair and regeneration of both muscle and bone in a model of deep penetrant musculoskeletal injury.

    PubMed

    Hamrick, Mark W; Arounleut, Phonepasong; Kellum, Ethan; Cain, Matthew; Immel, David; Liang, Li-Fang

    2010-09-01

    Myostatin (GDF-8) is known as a potent inhibitor of muscle growth and development, and myostatin is also expressed early in the fracture healing process. The purpose of this study was to test the hypothesis that a new myostatin inhibitor, a recombinant myostatin propeptide, can enhance the repair and regeneration of both muscle and bone in cases of deep penetrant injury. We used a fibula osteotomy model with associated damage to lateral compartment muscles (fibularis longus and brevis) in mice to test the hypothesis that blocking active myostatin with systemic injections of a recombinant myostatin propeptide would improve muscle and bone repair. Mice were assigned to two treatment groups after undergoing a fibula osteotomy: those receiving either vehicle (saline) or recombinant myostatin propeptide (20 mg/kg). Mice received one injection on the day of surgery, another injection 5 days after surgery, and a third injection 10 days after surgery. Mice were killed 15 days after the osteotomy procedure. Bone repair was assessed using microcomputed tomography (micro-CT) and histologic evaluation of the fracture callus. Muscle healing was assessed using Masson trichrome staining of the injury site, and image analysis was used to quantify the degree of fibrosis and muscle regeneration. Three propeptide injections over a period of 15 days increased body mass by 7% and increased muscle mass by almost 20% (p < 0.001). Micro-CT analysis of the osteotomy site shows that by 15 days postosteotomy, bony callus tissue was observed bridging the osteotomy gap in 80% of the propeptide-treated mice but only 40% of the control (vehicle)-treated mice (p < 0.01). Micro-CT quantification shows that bone volume of the fracture callus was increased by ∼ 30% (p < 0.05) with propeptide treatment, and the increase in bone volume was accompanied by a significant increase in cartilage area (p = 0.01). Propeptide treatment significantly decreased the fraction of fibrous tissue in the wound site

  3. Fundamental study of detection of muscle hypertrophy-oriented gene doping by myostatin knock down using RNA interference.

    PubMed

    Takemasa, Tohru; Yakushiji, Naohisa; Kikuchi, Dale Manjiro; Deocaris, Custer; Widodo; Machida, Masanao; Kiyosawa, Hidenori

    2012-01-01

    To investigate the feasibility of developing a method for detection of gene doping in power-athletes, we devised an experimental model system. Myostatin is a potent negative regulator of skeletal muscle development and growth, and myostatin-knockout mice exhibit a double-muscle phenotype. To achieve knockdown, we constructed plasmids expressing short hairpin interfering RNAs (shRNAs) against myostatin. These shRNAs were transfected into C2C12 cultured cells or injected into the tibialis anterior (TA) muscle of adult mice. By performing in vitro and in vivo experiments, we found that some shRNAs effectively reduced the expression of myostatin, and that the TA muscle showed hypertrophy of up to 27.9%. Then, using real-time PCR, we tried to detect the shRNA plasmid in the serum or muscles of mice into which it had been injected. Although we were unable to detect the plasmid in serum samples, it was detectable in the treated muscle at least four weeks after induction. We were also able to detect the plasmid in muscle in the vicinity of the TA. This gene doping model system will be useful for further studies aimed at doping control. Key pointsUsing a myostatin knockdown plasmid, we have succeeded in creating a model system for gene doping using mice that resulted in muscle hypertrophy greater than that reported previously.We confirmed that there was a limit of gene doping detection using real-time PCR, either from serum or muscle smple.This model experimental system can be utilized for examining indirect methods of gene doping detection such as immune responses to gene transfer or a profiling approach using DNA microarray.

  4. Fundamental Study of Detection of Muscle Hypertrophy-Oriented Gene Doping by Myostatin Knock Down Using RNA Interference

    PubMed Central

    Takemasa, Tohru; Yakushiji, Naohisa; Kikuchi, Dale Manjiro; Deocaris, Custer; Widodo; Machida, Masanao; Kiyosawa, Hidenori

    2012-01-01

    To investigate the feasibility of developing a method for detection of gene doping in power-athletes, we devised an experimental model system. Myostatin is a potent negative regulator of skeletal muscle development and growth, and myostatin-knockout mice exhibit a double-muscle phenotype. To achieve knockdown, we constructed plasmids expressing short hairpin interfering RNAs (shRNAs) against myostatin. These shRNAs were transfected into C2C12 cultured cells or injected into the tibialis anterior (TA) muscle of adult mice. By performing in vitro and in vivo experiments, we found that some shRNAs effectively reduced the expression of myostatin, and that the TA muscle showed hypertrophy of up to 27.9%. Then, using real-time PCR, we tried to detect the shRNA plasmid in the serum or muscles of mice into which it had been injected. Although we were unable to detect the plasmid in serum samples, it was detectable in the treated muscle at least four weeks after induction. We were also able to detect the plasmid in muscle in the vicinity of the TA. This gene doping model system will be useful for further studies aimed at doping control. Key pointsUsing a myostatin knockdown plasmid, we have succeeded in creating a model system for gene doping using mice that resulted in muscle hypertrophy greater than that reported previously.We confirmed that there was a limit of gene doping detection using real-time PCR, either from serum or muscle smple.This model experimental system can be utilized for examining indirect methods of gene doping detection such as immune responses to gene transfer or a profiling approach using DNA microarray. PMID:24149203

  5. Differential effects of myostatin deficiency on motor and sensory axons.

    PubMed

    Jones, Maria R; Villalón, Eric; Northcutt, Adam J; Calcutt, Nigel A; Garcia, Michael L

    2017-12-01

    Deletion of myostatin in mice (MSTN -/- ) alters structural properties of peripheral axons. However, properties like axon diameter and myelin thickness were analyzed in mixed nerves, so it is unclear whether loss of myostatin affects motor, sensory, or both types of axons. Using the MSTN -/- mouse model, we analyzed the effects of increasing the number of muscle fibers on axon diameter, myelin thickness, and internode length in motor and sensory axons. Axon diameter and myelin thickness were increased in motor axons of MSTN -/- mice without affecting internode length or axon number. The number of sensory axons was increased without affecting their structural properties. These results suggest that motor and sensory axons establish structural properties by independent mechanisms. Moreover, in motor axons, instructive cues from the neuromuscular junction may play a role in co-regulating axon diameter and myelin thickness, whereas internode length is established independently. Muscle Nerve 56: E100-E107, 2017. © 2017 Wiley Periodicals, Inc.

  6. Expression of G protein estrogen receptor (GPER) on membrane of mouse oocytes during maturation.

    PubMed

    Li, Yi-Ran; Ren, Chun-E; Zhang, Quan; Li, Ji-Chun; Chian, Ri-Cheng

    2013-02-01

    To determine expression of G-protein estrogen receptor (GPER) in mouse oocyte membrane during maturation. The expression of GPER from different maturation stages of oocytes, in vivo and in vitro matured oocytes as well as aging oocytes was examined by immune-fluorescence GPR30 antibody and the images were analyzed by laser scanning confocal microscope. Further confirmation was performed by Western blots for cell fractionation. Significant fluorescent signal was observed on the surface of mouse oocytes. The image expression was lower in germinal vesicle (GV) stage than mature metaphase-II (M-II) stage oocytes. There was high expression in in-vivo matured oocytes compared to in vitro matured oocytes. The highest expression was observed in aging oocytes compared with other oocytes. The changes of expression of GPER on mouse oocytes plasma membrane confirm oocyte membrane maturation, suggesting that those changes of GPER may be related to the functional role of oocyte maturation.

  7. Antibody-directed myostatin inhibition enhances muscle mass and function in tumor-bearing mice.

    PubMed

    Murphy, Kate T; Chee, Annabel; Gleeson, Ben G; Naim, Timur; Swiderski, Kristy; Koopman, René; Lynch, Gordon S

    2011-09-01

    Cancer cachexia describes the progressive skeletal muscle wasting and weakness in many cancer patients and accounts for >20% of cancer-related deaths. We tested the hypothesis that antibody-directed myostatin inhibition would attenuate the atrophy and loss of function in muscles of tumor-bearing mice. Twelve-week-old C57BL/6 mice received a subcutaneous injection of saline (control) or Lewis lung carcinoma (LLC) tumor cells. One week later, mice received either once weekly injections of saline (control, n = 12; LLC, n = 9) or a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg·kg⁻¹·wk⁻¹, LLC+PF-354, n = 11) for 5 wk. Injection of LLC cells reduced muscle mass and maximum force of tibialis anterior (TA) muscles by 8-10% (P < 0.05), but the muscle atrophy and weakness were prevented with PF-354 treatment (P > 0.05). Maximum specific (normalized) force of diaphragm muscle strips was reduced with LLC injection (P < 0.05) but was not improved with PF-354 treatment (P > 0.05). PF-354 enhanced activity of oxidative enzymes in TA and diaphragm muscles of tumor-bearing mice by 118% and 89%, respectively (P < 0.05). Compared with controls, apoptosis that was not of myofibrillar or satellite cell origin was 140% higher in TA muscle cross sections from saline-treated LLC tumor-bearing mice (P < 0.05) but was not different in PF-354-treated tumor-bearing mice (P > 0.05). Antibody-directed myostatin inhibition attenuated the skeletal muscle atrophy and loss of muscle force-producing capacity in a murine model of cancer cachexia, in part by reducing apoptosis. The improvements in limb muscle mass and function highlight the therapeutic potential of antibody-directed myostatin inhibition for cancer cachexia.

  8. Overexpression of caveolin-3-enhanced protein synthesis rather than proteolysis inhibition in C2C12 myoblasts: relationship with myostatin activity.

    PubMed

    Hadj Sassi, Abdessattar; Monteil, Julien; Sauvant, Patrick; Atgié, Claude

    2012-12-01

    Caveolin-3 (cav-3), which is involved in the regulation of signal transduction and vesicular trafficking, could interact with activin receptor IIB to inhibit myostatin (MSTN) activity and may therefore play a role in muscle development and hypertrophy. MSTN is a member of the transforming growth factor-β family, identified as a negative regulator of skeletal muscle mass. The expression of MSTN is fiber-type specific and the greatest amount of MSTN is present in fiber, which is composed of myosin heavy chain (MHC) type IIb. MSTN acts through the activin receptor IIB to activate smad2/3 which leads to an increase in gene transcription involved in muscle atrophy. Muscle hypertrophy is a consequence of two mechanisms: (1) the inhibition of proteolysis such as the calcium-dependent proteolytic system calpains and calpastatin and (2) an increase in protein synthesis through the Akt/mTOR/p70s6K pathway. In order to determine which of the two processes predominates in inhibition of MSTN activity in a cav-3 context, we transfected a C2C12 cell line with plasmids containing mstn or cav-3 wild genes. The results reported in this study demonstrate that inhibition of MSTN activity by overexpression of cav-3 induces an activation of protein synthesis rather than an inhibition of proteolysis through the calcium proteolytic system. The inhibition of phosphorylation of smad-3 due to overexpression of cav-3 causes an increase in the phosphorylation of the ribosomal protein S6, promoting the synthesis of MHC type II, probably through activation of Akt/mTOR/p70s6K. These data highlight the role of protein synthesis as the predominant mechanism in muscle hypertrophy observed when the expression of MSTN is altered and confirm the value of studying the physiological role of MSTN in the growing processes of skeletal muscle.

  9. Antibody-directed myostatin inhibition improves diaphragm pathology in young but not adult dystrophic mdx mice.

    PubMed

    Murphy, Kate T; Ryall, James G; Snell, Sarah M; Nair, Lawrence; Koopman, René; Krasney, Philip A; Ibebunjo, Chikwendu; Holden, Kathryn S; Loria, Paula M; Salatto, Christopher T; Lynch, Gordon S

    2010-05-01

    Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle wasting and weakness, leading to premature death from respiratory and/or cardiac failure. A clinically relevant question is whether myostatin inhibition can improve function of the diaphragm, which exhibits a severe and progressive pathology comparable with that in DMD. We hypothesized that antibody-directed myostatin inhibition would improve the pathophysiology of diaphragm muscle strips from young mdx mice (when the pathology is mild) and adult mdx mice (when the pathology is quite marked). Five weeks treatment with a mouse chimera of anti-human myostatin antibody (PF-354, 10 mg/kg/week) increased muscle mass (P < 0.05) and increased diaphragm median fiber cross-sectional area (CSA, P < 0.05) in young C57BL/10 and mdx mice, compared with saline-treated controls. PF-354 had no effect on specific force (sPo, maximum force normalized to muscle CSA) of diaphragm muscle strips from young C57BL/10 mice, but increased sPo by 84% (P < 0.05) in young mdx mice. In contrast, 8 weeks of PF-354 treatment did not improve muscle mass, median fiber CSA, collagen infiltration, or sPo of diaphragm muscle strips from adult mdx mice. PF-354 antibody-directed myostatin inhibition completely restored the functional capacity of diaphragm strips to control levels when treatment was initiated early, but not in the later stages of disease progression, suggesting that such therapies may only have a limited window of efficacy for DMD and related conditions.

  10. Expression of porcine myostatin prodomain genomic sequence leads to a decrease in muscle growth, but significant intramuscular fat accretion in transgenic pigs.

    USDA-ARS?s Scientific Manuscript database

    Myostatin, a member of TGF-beta superfamily, is a dominant inhibitor of skeletal muscle development and growth. Previously, skeletal muscle-specific over-expression of myostatin prodomain cDNA (5’-region 886 nucleotide) dramatically increased growth performance and muscle mass in transgenic mice. I...

  11. The LGI1–ADAM22 protein complex directs synapse maturation through regulation of PSD-95 function

    PubMed Central

    Lovero, Kathryn L.; Fukata, Yuko; Granger, Adam J.; Fukata, Masaki; Nicoll, Roger A.

    2015-01-01

    Synapse development is coordinated by a number of transmembrane and secreted proteins that come together to form synaptic organizing complexes. Whereas a variety of synaptogenic proteins have been characterized, much less is understood about the molecular networks that support the maintenance and functional maturation of nascent synapses. Here, we demonstrate that leucine-rich, glioma-inactivated protein 1 (LGI1), a secreted protein previously shown to modulate synaptic AMPA receptors, is a paracrine signal released from pre- and postsynaptic neurons that acts specifically through a disintegrin and metalloproteinase protein 22 (ADAM22) to set postsynaptic strength. We go on to describe a novel role for ADAM22 in maintaining excitatory synapses through PSD-95/Dlg1/zo-1 (PDZ) domain interactions. Finally, we show that in the absence of LGI1, the mature synapse scaffolding protein PSD-95, but not the immature synapse scaffolding protein SAP102, is unable to modulate synaptic transmission. These results indicate that LGI1 and ADAM22 form an essential synaptic organizing complex that coordinates the maturation of excitatory synapses by regulating the functional incorporation of PSD-95. PMID:26178195

  12. IGF and myostatin pathways are respectively induced during the earlier and the later stages of skeletal muscle hypertrophy induced by clenbuterol, a β₂-adrenergic agonist.

    PubMed

    Abo, Tokuhisa; Iida, Ryo-Hei; Kaneko, Syuhei; Suga, Takeo; Yamada, Hiroyuki; Hamada, Yoshiki; Yamane, Akira

    2012-12-01

    Clenbuterol, a β₂-adrenergic agonist, increases the hypertrophy of skeletal muscle. Insulin-like growth factor (IGF) is reported to work as a potent positive regulator in the clenbuterol-induced hypertrophy of skeletal muscles. However, the precise regulatory mechanism for the hypertrophy of skeletal muscle induced by clenbuterol is unknown. Myostatin, a member of the TGFβ super family, is a negative regulator of muscle growth. The aim of the present study is to elucidate the function of myostatin and IGF in the hypertrophy of rat masseter muscle induced by clenbuterol. To investigate the function of myostatin and IGF in regulatory mechanism for the clenbuterol-induced hypertrophy of skeletal muscles, we analysed the expression of myostatin and phosphorylation levels of myostatin and IGF signaling components in the masseter muscle of rat to which clenbuterol was orally administered for 21 days. Hypertrophy of the rat masseter muscle was induced between 3 and 14 days of oral administration of clenbuterol and was terminated at 21 days. The expression of myostatin and the phosphorylation of smad2/3 were elevated at 21 days. The phosphorylation of IGF receptor 1 (IGFR1) and akt1 was elevated at 3 and 7 days. These results suggest that myostatin functions as a negative regulator in the later stages in the hypertrophy of rat masseter muscle induced by clenbuterol, whereas IGF works as a positive regulator in the earlier stages. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program.

    PubMed

    Lee, Eun Ju; Jan, Arif Tasleem; Baig, Mohammad Hassan; Ashraf, Jalaluddin Mohammad; Nahm, Sang-Soep; Kim, Yong-Woon; Park, So-Young; Choi, Inho

    2016-08-01

    Differentiation of muscle satellite cells (MSCs) involves interaction of the proteins present in the extracellular matrix (ECM) with MSCs to regulate their activity, and therefore phenotype. Herein, we report fibromodulin (FMOD), a member of the proteoglycan family participating in the assembly of ECM, as a novel regulator of myostatin (MSTN) during myoblast differentiation. In addition to having a pronounced effect on the expression of myogenic marker genes [myogenin (MYOG) and myosin light chain 2 (MYL2)], FMOD was found to maintain the transcriptional activity of MSTN Moreover, coimmunoprecipitation and in silico studies performed to investigate the interaction of FMOD helped confirm that it antagonizes MSTN function by distorting its folding and preventing its binding to activin receptor type IIB. Furthermore, in vivo studies revealed that FMOD plays an active role in healing by increasing satellite cell recruitment to sites of injury. Together, these findings disclose a hitherto unrecognized regulatory role for FMOD in MSCs and highlight new mechanisms whereby FMOD circumvents the inhibitory effects of MSTN and triggers myoblast differentiation. These findings offer a basis for the design of novel MSTN inhibitors that promote muscle regeneration after injury or for the development of pharmaceutical agents for the treatment of different muscle atrophies.-Lee, E. J., Jan, A. T., Baig, M. H., Ashraf, J. M., Nahm, S.-S., Kim, Y.-W., Park, S.-Y., Choi, I. Fibromodulin: a master regulator of myostatin controlling progression of satellite cells through a myogenic program. © FASEB.

  14. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease.

    PubMed

    Rodino-Klapac, Louise R; Haidet, Amanda M; Kota, Janaiah; Handy, Chalonda; Kaspar, Brian K; Mendell, Jerry R

    2009-03-01

    In most cases, pharmacologic strategies to treat genetic muscle disorders and certain acquired disorders, such as sporadic inclusion body myositis, have produced modest clinical benefits. In these conditions, inhibition of the myostatin pathway represents an alternative strategy to improve functional outcomes. Preclinical data that support this approach clearly demonstrate the potential for blocking the myostatin pathway. Follistatin has emerged as a powerful antagonist of myostatin that can increase muscle mass and strength. Follistatin was first isolated from the ovary and is known to suppress follicle-stimulating hormone. This raises concerns for potential adverse effects on the hypothalamic-pituitary-gonadal axis and possible reproductive capabilities. In this review we demonstrate a strategy to bypass off-target effects using an alternatively spliced cDNA of follistatin (FS344) delivered by adeno-associated virus (AAV) to muscle. The transgene product is a peptide of 315 amino acids that is secreted from the muscle and circulates in the serum, thus avoiding cell-surface binding sites. Using this approach our translational studies show increased muscle size and strength in species ranging from mice to monkeys. Adverse effects are avoided, and no organ system pathology or change in reproductive capabilities has been seen. These findings provide the impetus to move toward gene therapy clinical trials with delivery of AAV-FS344 to increase size and function of muscle in patients with neuromuscular disease.

  15. Myostatin genetic inactivation inhibits myogenesis by muscle-derived stem cells in vitro but not when implanted in the mdx mouse muscle

    PubMed Central

    2013-01-01

    Introduction Stimulating the commitment of implanted dystrophin+ muscle-derived stem cells (MDSCs) into myogenic, as opposed to lipofibrogenic lineages, is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). Methods To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor, would help this process, we compared the in vitro myogenic and fibrogenic capacity of MDSCs from wild-type (WT) and myostatin knockout (Mst KO) mice under various modulators, the expression of key stem cell and myogenic genes, and the capacity of these MDSCs to repair the injured gastrocnemius in aged dystrophic mdx mice with exacerbated lipofibrosis. Results Surprisingly, the potent in vitro myotube formation by WT MDSCs was refractory to modulators of myostatin expression or activity, and the Mst KO MDSCs failed to form myotubes under various conditions, despite both MDSC expressing Oct 4 and various stem cell genes and differentiating into nonmyogenic lineages. The genetic inactivation of myostatin in MDSCs was associated with silencing of critical genes for early myogenesis (Actc1, Acta1, and MyoD). WT MDSCs implanted into the injured gastrocnemius of aged mdx mice significantly improved myofiber repair and reduced fat deposition and, to a lesser extent, fibrosis. In contrast to their in vitro behavior, Mst KO MDSCs in vivo also significantly improved myofiber repair, but had few effects on lipofibrotic degeneration. Conclusions Although WT MDSCs are very myogenic in culture and stimulate muscle repair after injury in the aged mdx mouse, myostatin genetic inactivation blocks myotube formation in vitro, but the myogenic capacity is recovered in vivo under the influence of the myostatin+ host-tissue environment, presumably by reactivation of key genes originally silenced in the Mst KO MDSCs. PMID:23295128

  16. AgRP Neurons Control Systemic Insulin Sensitivity via Myostatin Expression in Brown Adipose Tissue.

    PubMed

    Steculorum, Sophie M; Ruud, Johan; Karakasilioti, Ismene; Backes, Heiko; Engström Ruud, Linda; Timper, Katharina; Hess, Martin E; Tsaousidou, Eva; Mauer, Jan; Vogt, Merly C; Paeger, Lars; Bremser, Stephan; Klein, Andreas C; Morgan, Donald A; Frommolt, Peter; Brinkkötter, Paul T; Hammerschmidt, Philipp; Benzing, Thomas; Rahmouni, Kamal; Wunderlich, F Thomas; Kloppenburg, Peter; Brüning, Jens C

    2016-03-24

    Activation of Agouti-related peptide (AgRP) neurons potently promotes feeding, and chronically altering their activity also affects peripheral glucose homeostasis. We demonstrate that acute activation of AgRP neurons causes insulin resistance through impairment of insulin-stimulated glucose uptake into brown adipose tissue (BAT). AgRP neuron activation acutely reprograms gene expression in BAT toward a myogenic signature, including increased expression of myostatin. Interference with myostatin activity improves insulin sensitivity that was impaired by AgRP neurons activation. Optogenetic circuitry mapping reveals that feeding and insulin sensitivity are controlled by both distinct and overlapping projections. Stimulation of AgRP → LHA projections impairs insulin sensitivity and promotes feeding while activation of AgRP → anterior bed nucleus of the stria terminalis (aBNST)vl projections, distinct from AgRP → aBNSTdm projections controlling feeding, mediate the effect of AgRP neuron activation on BAT-myostatin expression and insulin sensitivity. Collectively, our results suggest that AgRP neurons in mice induce not only eating, but also insulin resistance by stimulating expression of muscle-related genes in BAT, revealing a mechanism by which these neurons rapidly coordinate hunger states with glucose homeostasis. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1.

    PubMed

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian; Rowe, Cliff; Naisbitt, Dean J; Goldring, Christopher E; Park, B Kevin

    2009-07-15

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency at inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p<0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.

  18. Role of protein haptenation in triggering maturation events in the dendritic cell surrogate cell line THP-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Megherbi, Rym; Kiorpelidou, Evanthia; Foster, Brian

    Dendritic cell (DC) maturation in response to contact sensitizers is a crucial step in the induction of sensitization reactions; however the underlying mechanism of activation remains unknown. To test whether the extent of protein haptenation is a determinant in DC maturation, we tested the effect of five dinitrophenyl (DNP) analogues of different reactivity, on maturation markers in the cell line, THP-1. The potencies of the test compounds in upregulating CD54 levels, inducing IL-8 release and triggering p38 MAPK phosphorylation did not correlate with their ability to deplete intracellular glutathione (GSH) levels or cause cell toxicity. However, the compounds' potency atmore » inducing p38 phosphorylation was significantly associated with the amount of intracellular protein adducts formed (p < 0.05). Inhibition experiments show that, at least for DNFB, p38 MAP kinase signalling controls compound-specific changes in CD54 expression and IL-8 release. 2D-PAGE analysis revealed that all the DNP analogues appeared to bind similar proteins. The analogues failed to activate NFkB, however, they activated Nrf2, which was used as a marker of oxidative stress. Neither GSH depletion, by use of buthionine sulfoximine, nor treatment with the strongly lysine-reactive hapten penicillin elicited maturation. We conclude that protein haptenation, probably through reactive cysteine residues may be a trigger for maturation events in this in vitro model and that p38 activation may be a discriminatory marker for the classification of potency of chemical sensitizers.« less

  19. Contribution of myostatin gene polymorphisms to normal variation in lean mass, fat mass and peak BMD in Chinese male offspring.

    PubMed

    Yue, Hua; He, Jin-wei; Zhang, Hao; Wang, Chun; Hu, Wei-wei; Gu, Jie-mei; Ke, Yao-hua; Fu, Wen-zhen; Hu, Yun-qiu; Li, Miao; Liu, Yu-juan; Wu, Song-hua; Zhang, Zhen-lin

    2012-05-01

    Myostatin gene is a member of the transforming growth factor-β (TGF-β) family that negatively regulates skeletal muscle growth. Genetic polymorphisms in Myostatin were found to be associated with the peak bone mineral density (BMD) in Chinese women. The purpose of this study was to investigate whether myostatin played a role in the normal variation in peak BMD, lean mass (LM), and fat mass (FM) of Chinese men. Four hundred male-offspring nuclear families of Chinese Han ethnic group were recruited. Anthropometric measurements, including the peak BMD, body LM and FM were measured using dual-energy X-ray absorptiometry (DXA). The single nucleotide polymorphisms (SNPs) studied were tag-SNPs selected by sequencing. Both rs2293284 and +2278GA were genotyped using TaqMan assay, and rs3791783 was genotyped with PCR-restriction fragment length polymorphism (RFLP) analysis. The associations of the SNPs with anthropometric variations were analyzed using the quantitative transmission disequilibrium test (QTDT). Using QTDT to detect within-family associations, neither single SNP nor haplotype was found to be associated with peak BMD at any bone site. However, rs3791783 was found to be significantly associated with fat mass of the trunk (P<0.001). Moreover, for within-family associations, haplotypes AGG, AAA, and TGG were found to be significantly associated with the trunk fat mass (all P<0.001). Our results suggest that genetic variation within myostatin may play a role in regulating the variation in fat mass in Chinese males. Additionally, the myostatin gene may be a candidate that determines body fat mass in Chinese men.

  20. Selection of dietary protein and carbohydrate by rats: Changes with maturation

    NASA Technical Reports Server (NTRS)

    Yokogoshi, Hidehiko; Theall, Cynthia L.; Wurtman, Richard J.

    1985-01-01

    Weaning (21-day-old; 40-50 g) male rats given simultaneous access to foods, containing 18 percent casein and 15 or 70 percent carbohydrate (dextrin), tended to consume only 29-35 percent as much protein as carbohydrate (i.e., protein/carbohydrate ratios were 0.29-0.35). With maturation, when animals weighed 100 g or more, about half continued this pattern of nutrient choice, but the others abruptly began to consume considerably larger proportions of protein, exhibiting protein/carbohydrate ratios as high as 0.80-1.00. Each adult animal's protein/carbohydrate ratio tended to vary only slightly (s.e. = 3 percent of means). Adult protein/carbohydrate ratios were not correlated with fasting brain 5-HT or 5-HIAA levels. These marked differences among rats in eating behavior would not be observed when--as is usually the case--animals are given access to only one diet.

  1. Structural basis for the fast maturation of Arthropoda green fluorescent protein

    PubMed Central

    Evdokimov, Artem G; Pokross, Matthew E; Egorov, Nikolay S; Zaraisky, Andrey G; Yampolsky, Ilya V; Merzlyak, Ekaterina M; Shkoporov, Andrey N; Sander, Ian; Lukyanov, Konstantin A; Chudakov, Dmitriy M

    2006-01-01

    Since the cloning of Aequorea victoria green fluorescent protein (GFP) in 1992, a family of known GFP-like proteins has been growing rapidly. Today, it includes more than a hundred proteins with different spectral characteristics cloned from Cnidaria species. For some of these proteins, crystal structures have been solved, showing diversity in chromophore modifications and conformational states. However, we are still far from a complete understanding of the origin, functions and evolution of the GFP family. Novel proteins of the family were recently cloned from evolutionarily distant marine Copepoda species, phylum Arthropoda, demonstrating an extremely rapid generation of fluorescent signal. Here, we have generated a non-aggregating mutant of Copepoda fluorescent protein and solved its high-resolution crystal structure. It was found that the protein β-barrel contains a pore, leading to the chromophore. Using site-directed mutagenesis, we showed that this feature is critical for the fast maturation of the chromophore. PMID:16936637

  2. LAMP proteins account for the maturation delay during the establishment of the Coxiella burnetii-containing vacuole.

    PubMed

    Schulze-Luehrmann, Jan; Eckart, Rita A; Ölke, Martha; Saftig, Paul; Liebler-Tenorio, Elisabeth; Lührmann, Anja

    2016-02-01

    The obligate intracellular pathogen Coxiella burnetii replicates in a large phagolysosomal-like vacuole. Currently, both host and bacterial factors required for creating this replicative parasitophorous C. burnetii-containing vacuole (PV) are poorly defined. Here, we assessed the contributions of the most abundant proteins of the lysosomal membrane, LAMP-1 and LAMP-2, to the establishment and maintenance of the PV. Whereas these proteins were not critical for uptake of C. burnetii, they influenced the intracellular replication of C. burnetii. In LAMP-1/2 double-deficient fibroblasts as well as in LAMP-1/2 knock-down cells, C. burnetii establishes a significantly smaller, yet faster maturing vacuole, which harboured more bacteria. The accelerated maturation of PVs in LAMP double-deficient fibroblasts, which was partially or fully reversed by ectopic expression of LAMP-1 or LAMP-2, respectively, was characterized by an increased fusion rate with endosomes, lysosomes and bead-containing phagosomes, but not by different fusion kinetics with autophagy vesicles. These findings establish that LAMP proteins are critical for the maturation delay of PVs. Unexpectedly, neither the creation of the spacious vacuole nor the delay in maturation was found to be prerequisites for the intracellular replication of C. burnetii. © 2015 John Wiley & Sons Ltd.

  3. Paxillin and embryonic PolyAdenylation Binding Protein (ePABP) engage to regulate androgen-dependent Xenopus laevis oocyte maturation - A model of kinase-dependent regulation of protein expression.

    PubMed

    Miedlich, Susanne U; Taya, Manisha; Young, Melissa Rasar; Hammes, Stephen R

    2017-06-15

    Steroid-triggered Xenopus laevis oocyte maturation is an elegant physiologic model of nongenomic steroid signaling, as it proceeds completely independent of transcription. We previously demonstrated that androgens are the main physiologic stimulator of oocyte maturation in Xenopus oocytes, and that the adaptor protein paxillin plays a crucial role in mediating this process through a positive feedback loop in which paxillin first enhances Mos protein translation, ensued by Erk2 activation and Erk-dependent phosphorylation of paxillin on serine residues. Phosphoserine-paxillin then further augments Mos protein translation and downstream Erk2 activation, resulting in meiotic progression. We hypothesized that paxillin enhances Mos translation by interacting with embryonic PolyAdenylation Binding Protein (ePABP) on polyadenylated Mos mRNA. Knockdown of ePABP phenocopied paxillin knockdown, with reduced Mos protein expression, Erk2 and Cdk1 activation, as well as oocyte maturation. In both Xenopus oocytes and mammalian cells (HEK-293), paxillin and ePABP constitutively interacted. Testosterone (Xenopus) or EGF (HEK-293) augmented ePABP-paxillin binding, as well as ePABP binding to Mos mRNA (Xenopus), in an Erk-dependent fashion. Thus, ePABP and paxillin work together in an Erk-dependent fashion to enhance Mos protein translation and promote oocyte maturation. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Formation and Maturation of Phase Separated Liquid Droplets by RNA Binding Proteins

    PubMed Central

    Lin, Yuan; Protter, David S. W.; Rosen, Michael K.; Parker, Roy

    2015-01-01

    Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components, and the full-length granule protein hnRNPA1, can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules. PMID:26412307

  5. Boca-dependent maturation of β-propeller/EGF modules in low-density lipoprotein receptor proteins

    PubMed Central

    Culi, Joaquim; Springer, Timothy A; Mann, Richard S

    2004-01-01

    The extracellular portions of cell surface receptor proteins are often comprised of independently folding protein domains. As they are translated into the endoplasmic reticulum (ER), some of these domains require protein chaperones to assist in their folding. Members of the low-density lipoprotein receptor (LDLR) family require the chaperone called Boca in Drosophila or its ortholog, Mesoderm development, in the mouse. All LDLRs have at least one six-bladed β-propeller domain, which is immediately followed by an epidermal growth factor (EGF) repeat. We show here that Boca is specifically required for the maturation of these β-propeller/EGF modules through the secretory pathway, but is not required for other LDLR domains. Protein interaction data suggest that as LDLRs are translated into the ER, Boca binds to the β-propeller. Subsequently, once the EGF repeat is translated, the β-propeller/EGF module achieves a more mature state that has lower affinity for Boca. We also show that Boca-dependent β-propeller/EGF modules are found not only throughout the LDLR family but also in the precursor to the mammalian EGF ligand. PMID:15014448

  6. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    PubMed

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  7. P protein in the phloem of Cucurbita. II. The P protein of mature sieve elements.

    PubMed

    Cronshaw, J; Esau, K

    1968-08-01

    During maturation of sieve elements in Cucurbita maxima Duchesne, the P-protein bodies (slime bodies) usually disperse in the tonoplast-free cell. In some sieve elements the P-protein bodies fail to disperse. The occurrence of dispersal or nondispersal of P-protein bodies can be related to the position of the sieve elements in the stem or petiole. In the sieve elements within the vascular bundle the bodies normally disperse; in the extrafascicular sieve elements the bodies often fail to disperse. Extrafascicular sieve elements showing partial dispersal also occur. The appearance of the sieve plate in fixed material is related to the degree of dispersal or nondispersal of the P-protein bodies. In sieve elements in which complete dispersal occurs the sieve plate usually has a substantial deposit of callose, and the sieve-plate pores are filled with P protein. In sieve elements containing nondispersing P-protein bodies the sieve plate bears little or no callose, and its pores usually are essentially "open." The dispersed P-protein components may aggregate into loosely organized "strands," which sometimes extend vertically through the cell and continue through the sieve-plate pores; but they may be oriented otherwise in the cell, even transversely.

  8. Myostatin inhibitor ACE-031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo-controlled clinical trial.

    PubMed

    Campbell, Craig; McMillan, Hugh J; Mah, Jean K; Tarnopolsky, Mark; Selby, Kathryn; McClure, Ty; Wilson, Dawn M; Sherman, Matthew L; Escolar, Diana; Attie, Kenneth M

    2017-04-01

    ACE-031 is a fusion protein of activin receptor type IIB and IgG1-Fc, which binds myostatin and related ligands. It aims to disrupt the inhibitory effect on muscle development and provide potential therapy for myopathies like Duchenne muscular dystrophy (DMD). ACE-031 was administered subcutaneously every 2-4 weeks to DMD boys in a randomized, double-blind, placebo-controlled, ascending-dose trial. The primary objective was safety evaluation. Secondary objectives included characterization of pharmacokinetics and pharmacodynamics. ACE-031 was not associated with serious or severe adverse events. The study was stopped after the second dosing regimen due to potential safety concerns of epistaxis and telangiectasias. A trend for maintenance of the 6-minute walk test (6MWT) distance in the ACE-031 groups compared with a decline in the placebo group (not statistically significant) was noted, as was a trend for increased lean body mass and bone mineral density (BMD) and reduced fat mass. ACE-031 use demonstrated trends for pharmacodynamic effects on lean mass, fat mass, BMD, and 6MWT. Non-muscle-related adverse events contributed to the decision to discontinue the study. Myostatin inhibition is a promising therapeutic approach for DMD. Muscle Nerve 55: 458-464, 2017. © 2016 Wiley Periodicals, Inc.

  9. Extreme muscle development in sheep heterozygous for both myostatin and callipyge mutations

    USDA-ARS?s Scientific Manuscript database

    Two mutations causing increased muscle size and decreased fat content in sheep have been described. The callipyge (CLPG) syndrome is only exhibited after 4 to 6 weeks of age in animals inheriting the mutation solely from their sire. In contrast, a mutation of the myostatin gene (MSTN) in the Texel...

  10. TALENs-mediated gene disruption of myostatin produces a larger phenotype of medaka with an apparently compromised immune system.

    PubMed

    Chiang, Yi-An; Kinoshita, Masato; Maekawa, Shun; Kulkarni, Amod; Lo, Chu-Fang; Yoshiura, Yasutoshi; Wang, Han-Ching; Aoki, Takashi

    2016-01-01

    Although myostatin, a suppressor of skeletal muscle development and growth, has been well studied in mammals, its function in fish remains unclear. In this study, we used a popular genome editing tool with high efficiency and target specificity (TALENs; transcription activator-like effector nucleases) to mutate the genome sequence of myostatin (MSTN) in medaka (Oryzias latipes). After the TALEN pair targeting OlMyostatin was injected into fertilized medaka eggs, mutant G0 fish carrying different TALENs-induced frameshifts in the OlMSTN coding sequence were mated together in order to transmit the mutant sequences to the F1 generation. Two F1 mutants with frameshifted myostatin alleles were then mated to produce the F2 generation, and these F2 OlMSTN null (MSTN(-/-)) medaka were evaluated for growth performance. The F2 fish showed significantly increased body length and weight compared to the wild type fish at the juvenile and post-juvenile stages. At the post-juvenile stage, the average body weight of the MSTN(-/-) medaka was ∼25% greater than the wild type. However, we also found that when the F3 generation were challenged with red spotted grouper nervous necrosis virus (RGNNV), the expression levels of the interferon-stimulated genes were lower than in the wild type, and the virus copy number was maintained at a high level. We therefore conclude that although the MSTN(-/-) medaka had a larger phenotype, their immune system appeared to be at least partially suppressed or undeveloped. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effect of propolis ethanol extract on myostatin gene expression and muscle morphometry of Nile tilapia in net cages.

    PubMed

    Buck, E L; Mizubuti, I Y; Alfieri, A A; Otonel, R A A; Buck, L Y; Souza, F P; Prado-Calixto, O P; Poveda-Parra, A R; Alexandre Filho, L; Lopera-Barrero, N M

    2017-03-16

    Propolis can be used as growth enhancer due to its antimicrobial, antioxidant, and immune-stimulant properties, but its effects on morphometry and muscle gene expression are largely unknown. The present study evaluates the influence of propolis on muscle morphometry and myostatin gene expression in Nile tilapia (Oreochromis niloticus) bred in net cages. Reversed males (GIFT strain) with an initial weight of 170 ± 25 g were distributed in a (2 x 4) factorial scheme, with two diets (DPRO, commercial diet with 4% propolis ethanol extract and DCON, commercial diet without propolis, control) and four assessment periods (0, 35, 70, and 105 experimental days). Muscles were evaluated at each assessment period. Histomorphometric analysis classified the fiber diameters into four groups: <20 μm; 20-30 μm; 30-50 μm; and > 50 μm. RT-qPCR was performed to assess myostatin gene expression. Fibers < 20 µm diameter were more frequent in DPRO than in DCON at all times. Fiber percentages >30 µm (30-50 and > 50 µm) at 70 days were 25.39% and 40.07% for DPRO and DCON, respectively. There was greater myostatin gene expression at 105 days, averaging 1.93 and 1.89 for DCON and DPRO, respectively, with no significant difference in any of the analyzed periods. Propolis ethanol extract did not affect the diameter of muscle fibers or the gene expression of myostatin. Future studies should describe the mechanisms of natural products' effects on muscle growth and development since these factors are highly relevant for fish production performance.

  12. Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Schjerling, P; Haddad, F; Langberg, H; Baldwin, K M; Kjaer, M

    2007-02-01

    In skeletal muscle, an increased expression of insulin like growth factor-I isoforms IGF-IEa and mechano-growth factor (MGF) combined with downregulation of myostatin is thought to be essential for training-induced hypertrophy. However, the specific effects of different contraction types on regulation of these factors in muscle are still unclear, and in tendon the functions of myostatin, IGF-IEa, and MGF in relation to training are unknown. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric, or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve during general anesthesia. mRNA levels for myostatin, IGF-IEa, and MGF in muscle and Achilles' tendon were measured by real-time RT-PCR. Muscle myostatin mRNA decreased in response to all types of training (2- to 8-fold) (P < 0.05), but the effect of eccentric training was greater than concentric and isometric training (P < 0.05). In tendon, myostatin mRNA was detected, but no changes were seen after exercise. IGF-IEa and MGF increased in muscle (up to 15-fold) and tendon (up to 4-fold) in response to training (P < 0.01). In tendon no difference was seen between training types, but in muscle the effect of eccentric training was greater than concentric training for both IGF-IEa and MGF (P < 0.05), and for IGF-IEa isometric training had greater effect than concentric (P < 0.05). The results indicate a possible role for IGF-IEa and MGF in adaptation of tendon to training, and the combined changes in myostatin and IGF-IEa/MGF expression could explain the important effect of eccentric actions for muscle hypertrophy.

  13. Bone Morphogenetic Protein 15 in the Pro-Mature Complex Form Enhances Bovine Oocyte Developmental Competence

    PubMed Central

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L.; Ritter, Lesley J.; White, Melissa A.; Mottershead, David G.; Thompson, Jeremy G.; Gilchrist, Robert B.

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/− FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/− FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies. PMID:25058588

  14. Bone morphogenetic protein 15 in the pro-mature complex form enhances bovine oocyte developmental competence.

    PubMed

    Sudiman, Jaqueline; Sutton-McDowall, Melanie L; Ritter, Lesley J; White, Melissa A; Mottershead, David G; Thompson, Jeremy G; Gilchrist, Robert B

    2014-01-01

    Developmental competence of in vitro matured (IVM) oocytes needs to be improved and this can potentially be achieved by adding recombinant bone morphogenetic protein 15 (BMP15) or growth differentiation factor (GDF9) to IVM. The aim of this study was to determine the effect of a purified pro-mature complex form of recombinant human BMP15 versus the commercially available bioactive forms of BMP15 and GDF9 (both isolated mature regions) during IVM on bovine embryo development and metabolic activity. Bovine cumulus oocyte complexes (COCs) were matured in vitro in control medium or treated with 100 ng/ml pro-mature BMP15, mature BMP15 or mature GDF9 +/- FSH. Metabolic measures of glucose uptake and lactate production from COCs and autofluorescence of NAD(P)H, FAD and GSH were measured in oocytes after IVM. Following in vitro fertilisation and embryo culture, day 8 blastocysts were stained for cell numbers. COCs matured in medium +/- FSH containing pro-mature BMP15 displayed significantly improved blastocyst development (57.7±3.9%, 43.5±4.2%) compared to controls (43.3±2.4%, 28.9±3.7%) and to mature GDF9+FSH (36.1±3.0%). The mature form of BMP15 produced intermediate levels of blastocyst development; not significantly different to control or pro-mature BMP15 levels. Pro-mature BMP15 increased intra-oocyte NAD(P)H, and reduced glutathione (GSH) levels were increased by both forms of BMP15 in the absence of FSH. Exogenous BMP15 in its pro-mature form during IVM provides a functional source of oocyte-secreted factors to improve bovine blastocyst development. This form of BMP15 may prove useful for improving cattle and human artificial reproductive technologies.

  15. Protease-Mediated Maturation of HIV: Inhibitors of Protease and the Maturation Process.

    PubMed

    Adamson, Catherine S

    2012-01-01

    Protease-mediated maturation of HIV-1 virus particles is essential for virus infectivity. Maturation occurs concomitant with immature virus particle release and is mediated by the viral protease (PR), which sequentially cleaves the Gag and Gag-Pol polyproteins into mature protein domains. Maturation triggers a second assembly event that generates a condensed conical capsid core. The capsid core organizes the viral RNA genome and viral proteins to facilitate viral replication in the next round of infection. The fundamental role of proteolytic maturation in the generation of mature infectious particles has made it an attractive target for therapeutic intervention. Development of small molecules that target the PR active site has been highly successful and nine protease inhibitors (PIs) have been approved for clinical use. This paper provides an overview of their development and clinical use together with a discussion of problems associated with drug resistance. The second-half of the paper discusses a novel class of antiretroviral drug termed maturation inhibitors, which target cleavage sites in Gag not PR itself. The paper focuses on bevirimat (BVM) the first-in-class maturation inhibitor: its mechanism of action and the implications of naturally occurring polymorphisms that confer reduced susceptibility to BVM in phase II clinical trials.

  16. Effects and interactions of myostatin and callipyge mutations: I. Growth and carcass traits

    USDA-ARS?s Scientific Manuscript database

    Objectives were to document effects of the Texel myostatin mutation (MSTN) on growth and carcass traits and also test whether or not interactions with the callipyge mutation (CLPG) could be detected. Twelve rams heterozygous at both loci on the two different chromosomes were mated to 215 terminal-si...

  17. Internal Proteins of the Procapsid and Mature Capsids of Herpes Simplex Virus 1 Mapped by Bubblegram Imaging

    PubMed Central

    Wu, Weimin; Newcomb, William W.; Cheng, Naiqian; Aksyuk, Anastasia; Winkler, Dennis C.

    2016-01-01

    ABSTRACT The herpes simplex virus 1 (HSV-1) capsid is a huge assembly, ∼1,250 Å in diameter, and is composed of thousands of protein subunits with a combined mass of ∼200 MDa, housing a 100-MDa genome. First, a procapsid is formed through coassembly of the surface shell with an inner scaffolding shell; then the procapsid matures via a major structural transformation, triggered by limited proteolysis of the scaffolding proteins. Three mature capsids are found in the nuclei of infected cells. A capsids are empty, B capsids retain a shrunken scaffolding shell, and C capsids—which develop into infectious virions—are filled with DNA and ostensibly have expelled the scaffolding shell. The possible presence of other internal proteins in C capsids has been moot as, in cryo-electron microscopy (cryo-EM), they would be camouflaged by the surrounding DNA. We have used bubblegram imaging to map internal proteins in all four capsids, aided by the discovery that the scaffolding protein is exceptionally prone to radiation-induced bubbling. We confirmed that this protein forms thick-walled inner shells in the procapsid and the B capsid. C capsids generate two classes of bubbles: one occupies positions beneath the vertices of the icosahedral surface shell, and the other is distributed throughout its interior. A likely candidate is the viral protease. A subpopulation of C capsids bubbles particularly profusely and may represent particles in which expulsion of scaffold and DNA packaging are incomplete. Based on the procapsid structure, we propose that the axial channels of hexameric capsomers afford the pathway via which the scaffolding protein is expelled. IMPORTANCE In addition to DNA, capsids of tailed bacteriophages and their distant relatives, herpesviruses, contain internal proteins. These proteins are often essential for infectivity but are difficult to locate within the virion. A novel adaptation of cryo-EM based on detecting gas bubbles generated by radiation

  18. Protein Export by the Mycobacterial SecA2 System Is Determined by the Preprotein Mature Domain

    PubMed Central

    Feltcher, Meghan E.; Gibbons, Henry S.; Ligon, Lauren S.

    2013-01-01

    At the core of the bacterial general secretion (Sec) pathway is the SecA ATPase, which powers translocation of unfolded preproteins containing Sec signal sequences through the SecYEG membrane channel. Mycobacteria have two nonredundant SecA homologs: SecA1 and SecA2. While the essential SecA1 handles “housekeeping” export, the nonessential SecA2 exports a subset of proteins and is required for Mycobacterium tuberculosis virulence. Currently, it is not understood how SecA2 contributes to Sec export in mycobacteria. In this study, we focused on identifying the features of two SecA2 substrates that target them to SecA2 for export, the Ms1704 and Ms1712 lipoproteins of the model organism Mycobacterium smegmatis. We found that the mature domains of Ms1704 and Ms1712, not the N-terminal signal sequences, confer SecA2-dependent export. We also demonstrated that the lipid modification and the extreme N terminus of the mature protein do not impart the requirement for SecA2 in export. We further showed that the Ms1704 mature domain can be efficiently exported by the twin-arginine translocation (Tat) pathway. Because the Tat system exports only folded proteins, this result implies that SecA2 substrates can fold in the cytoplasm and suggests a putative role of SecA2 in enabling export of such proteins. Thus, the mycobacterial SecA2 system may represent another way that bacteria solve the problem of exporting proteins that can fold in the cytoplasm. PMID:23204463

  19. Adaptor Protein Complex 2 (AP-2) Mediated, Clathrin Dependent Endocytosis, And Related Gene Activities, Are A Prominent Feature During Maturation Stage Amelogenesis

    PubMed Central

    LACRUZ, Rodrigo S.; BROOKES, Steven J.; WEN, Xin; JIMENEZ, Jaime M.; VIKMAN, Susanna; HU, Ping; WHITE, Shane N.; LYNGSTADAAS, S. Petter; OKAMOTO, Curtis T.; SMITH, Charles E.; PAINE, Michael L.

    2012-01-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real time PCR, we show that the expression of clathrin and adaptor protein subunits are up-regulated in maturation stage rodent enamel organ cells. AP-2 is the most up-regulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin dependent endocytosis, thus implying the likelihood of a specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also up-regulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1), cluster of differentiation 63 and 68 (Cd63 and Cd68), ATPase, H+ transporting, lysosomal V0 subunit D2 (Atp6v0d2), ATPase, H+ transporting, lysosomal V1 subunit B2 (Atp6v1b2), chloride channel, voltage-sensitive 7 (Clcn7) and cathepsin K (Ctsk). Immunohistological data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain® showed up-regulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor regulated pathway for the endocytosis of enamel matrix proteins. These data together

  20. Retrovirus maturation-an extraordinary structural transformation.

    PubMed

    Mattei, Simone; Schur, Florian Km; Briggs, John Ag

    2016-06-01

    Retroviruses such as HIV-1 assemble and bud from infected cells in an immature, non-infectious form. Subsequently, a series of proteolytic cleavages catalysed by the viral protease leads to a spectacular structural rearrangement of the viral particle into a mature form that is competent to fuse with and infect a new cell. Maturation involves changes in the structures of protein domains, in the interactions between protein domains, and in the architecture of the viral components that are assembled by the proteins. Tight control of proteolytic cleavages at different sites is required for successful maturation, and the process is a major target of antiretroviral drugs. Here we will describe what is known about the structures of immature and mature retrovirus particles, and about the maturation process by which one transitions into the other. Despite a wealth of available data, fundamental questions about retroviral maturation remain unanswered. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Effect of constitutive inactivation of the myostatin gene on the gain in muscle strength during postnatal growth in two murine models.

    PubMed

    Stantzou, Amalia; Ueberschlag-Pitiot, Vanessa; Thomasson, Remi; Furling, Denis; Bonnieu, Anne; Amthor, Helge; Ferry, Arnaud

    2017-02-01

    The effect of constitutive inactivation of the gene encoding myostatin on the gain in muscle performance during postnatal growth has not been well characterized. We analyzed 2 murine myostatin knockout (KO) models, (i) the Lee model (KO Lee ) and (ii) the Grobet model (KO Grobet ), and measured the contraction of tibialis anterior muscle in situ. Absolute maximal isometric force was increased in 6-month-old KO Lee and KO Grobet mice, as compared to wild-type mice. Similarly, absolute maximal power was increased in 6-month-old KO Lee mice. In contrast, specific maximal force (relative maximal force per unit of muscle mass was decreased in all 6-month-old male and female KO mice, except in 6-month-old female KO Grobet mice, whereas specific maximal power was reduced only in male KO Lee mice. Genetic inactivation of myostatin increases maximal force and power, but in return it reduces muscle quality, particularly in male mice. Muscle Nerve 55: 254-261, 2017. © 2016 Wiley Periodicals, Inc.

  2. Quantitative Evaluation of Serum Proteins Uncovers a Protein Signature Related to Maturity-Onset Diabetes of the Young (MODY).

    PubMed

    Tuerxunyiming, Muhadasi; Xian, Feng; Zi, Jin; Yimamu, Yilihamujiang; Abuduwayite, Reshalaiti; Ren, Yan; Li, Qidan; Abudula, Abulizi; Liu, SiQi; Mohemaiti, Patamu

    2018-01-05

    Maturity-onset diabetes of the young (MODY) is an inherited monogenic type of diabetes. Genetic mutations in MODY often cause nonsynonymous changes that directly lead to the functional distortion of proteins and the pathological consequences. Herein, we proposed that the inherited mutations found in a MODY family could cause a disturbance of protein abundance, specifically in serum. The serum samples were collected from a Uyghur MODY family through three generations, and the serum proteins after depletion treatment were examined by quantitative proteomics to characterize the MODY-related serum proteins followed by verification using target quantification of proteomics. A total of 32 serum proteins were preliminarily identified as the MODY-related. Further verification test toward the individual samples demonstrated the 12 candidates with the significantly different abundance in the MODY patients. A comparison of the 12 proteins among the sera of type 1 diabetes, type 2 diabetes, MODY, and healthy subjects was conducted and revealed a protein signature related with MODY composed of the serum proteins such as SERPINA7, APOC4, LPA, C6, and F5.

  3. Food proteins and maturation of small intestinal microvillus membranes (MVM). I. Binding characteristics of cow's milk proteins and concanavalin A to MVM from newborn and adult rats.

    PubMed

    Stern, M; Gellermann, B

    1988-01-01

    To study maturational changes of food protein and lectin binding to rat small intestinal microvillus membranes (MVM), MVM were prepared from newborn and adult animals by a modified CaCl2 precipitation technique. Radiolabeled cow's milk proteins [alpha-lactalbumin, alpha-casein, beta-lactoglobulin, bovine serum albumin (BSA)] and the lectin concanavalin A (Con A) were used for incubations. Binding assays were done using miniature ultracentrifugation for separation of unbound material. Binding of Con A to MVM from newborn and adult rats was strong, specific, and saturable. Binding of Con A was inhibited by cold Con A and by the sugar ligand polymer mannan. Adult MVM bound more Con A than newborn preparations. Unlike Con A, binding of cow's milk proteins by MVM was weak, nonspecific, and noninhibitable. Newborn MVM bound more cow's milk proteins than adult controls. This was true for all the proteins tested (p less than 0.001). Binding rose with decreased molecular weight of cow's milk proteins, but molecular weight was not the only determining factor for binding. Trypsin treatment of MVM caused a marked increase of BSA binding in adult but not in newborn preparations. This finding indicated the importance of protein components of MVM for cow's milk protein binding. Maturational changes in protein-lipid interactions and membrane fluidity possibly influence nonspecific cow's milk protein binding to MVM. Differences in binding between newborns and adults were not directly related to maturational shifts in membrane glycosylation that are indicated by differential Con A binding. Increased cow's milk protein binding in newborn individuals might increase the potential risk to develop an adverse reaction to food proteins.

  4. Binocular pattern deprivation interferes with the expression of proteins involved in primary visual cortex maturation in the cat.

    PubMed

    Laskowska-Macios, Karolina; Nys, Julie; Hu, Tjing-Tjing; Zapasnik, Monika; Van der Perren, Anke; Kossut, Malgorzata; Burnat, Kalina; Arckens, Lutgarde

    2015-08-14

    Binocular pattern deprivation from eye opening (early BD) delays the maturation of the primary visual cortex. This delay is more pronounced for the peripheral than the central visual field representation within area 17, particularly between the age of 2 and 4 months [Laskowska-Macios, Cereb Cortex, 2014]. In this study, we probed for related dynamic changes in the cortical proteome. We introduced age, cortical region and BD as principal variables in a 2-D DIGE screen of area 17. In this way we explored the potential of BD-related protein expression changes between central and peripheral area 17 of 2- and 4-month-old BD (2BD, 4BD) kittens as a valid parameter towards the identification of brain maturation-related molecular processes. Consistent with the maturation delay, distinct developmental protein expression changes observed for normal kittens were postponed by BD, especially in the peripheral region. These BD-induced proteomic changes suggest a negative regulation of neurite outgrowth, synaptic transmission and clathrin-mediated endocytosis, thereby implicating these processes in normal experience-induced visual cortex maturation. Verification of the expression of proteins from each of the biological processes via Western analysis disclosed that some of the transient proteomic changes correlate to the distinct behavioral outcome in adult life, depending on timing and duration of the BD period [Neuroscience 2013;255:99-109]. Taken together, the plasticity potential to recover from BD, in relation to ensuing restoration of normal visual input, appears to rely on specific protein expression changes and cellular processes induced by the loss of pattern vision in early life.

  5. Comparative proteomic exploration of whey proteins in human and bovine colostrum and mature milk using iTRAQ-coupled LC-MS/MS.

    PubMed

    Yang, Mei; Cao, Xueyan; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing; Wu, Junrui

    2017-09-01

    Whey, an essential source of dietary nutrients, is widely used in dairy foods for infants. A total of 584 whey proteins in human and bovine colostrum and mature milk were identified and quantified by the isobaric tag for relative and absolute quantification (iTRAQ) proteomic method. The 424 differentially expressed whey proteins were identified and analyzed according to gene ontology (GO) annotation, Kyoto encyclopedia of genes and genomes (KEGG) pathway, and multivariate statistical analysis. Biological processes principally involved biological regulation and response to stimulus. Major cellular components were extracellular region part and extracellular space. The most prevalent molecular function was protein binding. Twenty immune-related proteins and 13 proteins related to enzyme regulatory activity were differentially expressed in human and bovine milk. Differentially expressed whey proteins participated in many KEGG pathways, including major complement and coagulation cascades and in phagosomes. Whey proteins show obvious differences in expression in human and bovine colostrum and mature milk, with consequences for biological function. The results here increase our understanding of different whey proteomes, which could provide useful information for the development and manufacture of dairy products and nutrient food for infants. The advanced iTRAQ proteomic approach was used to analyze differentially expressed whey proteins in human and bovine colostrum and mature milk.

  6. G-protein coupled estrogen receptor (GPER) inhibits final oocyte maturation in common carp, Cyprinus carpio.

    PubMed

    Majumder, Suravi; Das, Sumana; Moulik, Sujata Roy; Mallick, Buddhadev; Pal, Puja; Mukherjee, Dilip

    2015-01-15

    GPR-30, now named as GPER (G protein-coupled estrogen receptor) was first identified as an orphan receptor and subsequently shown to be required for estrogen-mediated signaling in certain cancer cells. Later studies demonstrated that GPER has the characteristics of a high affinity estrogen membrane receptor on Atlantic croaker and zebra fish oocytes and mediates estrogen inhibition of oocyte maturation in these two distantly related teleost. To determine the broad application of these findings to other teleost, expression of GPER mRNA and its involvement in 17β-estradiol mediated inhibition of oocyte maturation in other cyprinid, Cyprinus carpio was investigated. Carp oocytes at pre-vitellogenic, late-vitellogenic and post-vitellogenic stages of development contained GPER mRNA and its transcribed protein with a maximum at late-vitellogenic oocytes. Ovarian follicular cells did not express GPER mRNA. Carp oocytes GPER mRNA was essentially identical to that found in other perciformes and cyprinid fish oocytes. Both spontaneous and 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P)-induced oocyte maturation in carp was significantly decreased when they were incubated with either E2, or GPER agonist G-1. On the other hand spontaneous oocyte maturation was significantly increased when carp ovarian follicles were incubated with an aromatase inhibitor, fadrozole, GPER antagonist, G-15 and enzymatic removal of the ovarian follicle cell layers. This increase in oocyte maturation was partially reversed by co-treatment with E2. Consistent with previous findings with human and fish GPR30, E2 treatment in carp oocytes caused increase in cAMP production and simultaneously decrease in oocyte maturation, which was inhibited by the addition of 17,20β-P. The results suggest that E2 and GPER play a critical role in regulating re-entry in to meiotic cell cycle in carp oocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. [Protein content in urine of male and female water vole (Arvicola amphibious) at the period of spring growth and sexual maturation].

    PubMed

    Nazarova, G G; Proskurniak, L P

    2012-01-01

    The study was carried out on the captive bread water voles Arvicola amphibious kept in vivarium. At the first decade of January, March, and June, the body length and anogenital distance were measured, the body mass was determined, and urine was collected for determination of its protein content. The obtained results have shown that the protein content depends on sex of the animals and is connected with the reproductive status of males and their dimension-weight characteristics. The urinary protein excretion level in females remained stable at different months, whereas in males its sharp rise was noted at the period of spring growth and sexual maturation. The significant sexual differences were established in March and enhanced in June. In March the urine protein content in males was noted to correlate positively with the body mass and length and with the anogenital distance. The males reached sexual maturity at the earlier calendar terms than the females did; in sexually mature males the urine protein content was significantly higher than in the sexually immature ones.

  8. Mechanisms of lipase maturation

    PubMed Central

    Péterfy, Miklós

    2010-01-01

    Lipases are acyl hydrolases that represent a diverse group of enzymes present in organisms ranging from prokaryotes to humans. This article focuses on an evolutionarily related family of extracellular lipases that include lipoprotein lipase, hepatic lipase and endothelial lipase. As newly synthesized proteins, these lipases undergo a series of co- and post-translational maturation steps occurring in the endoplasmic reticulum, including glycosylation and glycan processing, and protein folding and subunit assembly. This article identifies and discusses mechanisms that direct early and late events in lipase folding and assembly. Lipase maturation employs the two general chaperone systems operating in the endoplasmic reticulum, as well as a recently identified lipase-specific chaperone termed lipase maturation factor 1. We propose that the two general chaperone systems act in a coordinated manner early in lipase maturation in order to help create partially folded monomers; lipase maturation factor 1 then facilitates final monomer folding and subunit assembly into fully functional homodimers. Once maturation is complete, the lipases exit the endoplasmic reticulum and are secreted to extracellular sites, where they carry out a number of functions related to lipoprotein and lipid metabolism. PMID:20543905

  9. Denervation atrophy is independent from Akt and mTOR activation and is not rescued by myostatin inhibition.

    PubMed

    MacDonald, Elizabeth M; Andres-Mateos, Eva; Mejias, Rebeca; Simmers, Jessica L; Mi, Ruifa; Park, Jae-Sung; Ying, Stephanie; Hoke, Ahmet; Lee, Se-Jin; Cohn, Ronald D

    2014-04-01

    The purpose of our study was to compare two acquired muscle atrophies and the use of myostatin inhibition for their treatment. Myostatin naturally inhibits skeletal muscle growth by binding to ActRIIB, a receptor on the cell surface of myofibers. Because blocking myostatin in an adult wild-type mouse induces profound muscle hypertrophy, we applied a soluble ActRIIB receptor to models of disuse (limb immobilization) and denervation (sciatic nerve resection) atrophy. We found that treatment of immobilized mice with ActRIIB prevented the loss of muscle mass observed in placebo-treated mice. Our results suggest that this protection from disuse atrophy is regulated by serum and glucocorticoid-induced kinase (SGK) rather than by Akt. Denervation atrophy, however, was not protected by ActRIIB treatment, yet resulted in an upregulation of the pro-growth factors Akt, SGK and components of the mTOR pathway. We then treated the denervated mice with the mTOR inhibitor rapamycin and found that, despite a reduction in mTOR activation, there is no alteration of the atrophy phenotype. Additionally, rapamycin prevented the denervation-induced upregulation of the mTORC2 substrates Akt and SGK. Thus, our studies show that denervation atrophy is not only independent from Akt, SGK and mTOR activation but also has a different underlying pathophysiological mechanism than disuse atrophy.

  10. The Mitochondrion-Targeted PENTATRICOPEPTIDE REPEAT78 Protein Is Required for nad5 Mature mRNA Stability and Seed Development in Maize.

    PubMed

    Zhang, Ya-Feng; Suzuki, Masaharu; Sun, Feng; Tan, Bao-Cai

    2017-10-09

    Pentatricopepetide repeat (PPR) proteins are a large family of RNA-binding proteins involved in RNA metabolism in plant organelles. Although many PPR proteins have been functionally studied, few of them are identified with a function in mitochondrial RNA stability. By using a reverse genetic approach, we characterized the role of the mitochondrion-targeted PPR78 protein in nad5 mature mRNA stability and maize (Zea mays) seed development. Loss of PPR78 function leads to a dramatic reduction in the steady-state level of mitochondrial nad5 mature mRNA, blocks the assembly of complex I in the electron transport chain, and causes an arrest in embryogenesis and endosperm development. Characterization of a second strong allele confirms the function of PPR78 in nad5 mRNA accumulation and maize seed development. The generation of mature nad5 requires the assembly of three distinct precursor RNAs via trans-splicing reactions, and the accumulation of nad5T1 precursor is reduced in the ppr78 mutants. However, it is the instability of mature nad5 rather than nad5T1 causing loss of the full-length nad5 transcript, and degradation of nad5 losing both translation start and stop codons is enriched in the mutant. Our data imply the assembly of mature nad5 mRNA precedes the protection of PPR78. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  11. The protein domains of the Dictyostelium microprocessor that are required for correct subcellular localization and for microRNA maturation.

    PubMed

    Kruse, Janis; Meier, Doreen; Zenk, Fides; Rehders, Maren; Nellen, Wolfgang; Hammann, Christian

    2016-10-02

    The maturation pathways of microRNAs (miRNAs) have been delineated for plants and several animals, belonging to the evolutionary supergroups of Archaeplastida and Opisthokonta, respectively. Recently, we reported the discovery of the microprocessor complex in Dictyostelium discoideum of the Amoebozoa supergroup. The complex is composed of the Dicer DrnB and the dsRBD (double-stranded RNA binding domain) containing protein RbdB. Both proteins localize at nucleoli, where they physically interact, and both are required for miRNA maturation. Here we show that the miRNA phenotype of a ΔdrnB gene deletion strain can be rescued by ectopic expression of a series of DrnB GFP fusion proteins, which consistently showed punctate perinucleolar localization in fluorescence microscopy. These punctate foci appear surprisingly stable, as they persist both disintegration of nucleoli and degradation of cellular nucleic acids. We observed that DrnB expression levels influence the number of microprocessor foci and alter RbdB accumulation. An investigation of DrnB variants revealed that its newly identified nuclear localization signal is necessary, but not sufficient for the perinucleolar localization. Biogenesis of miRNAs, which are RNA Pol II transcripts, is correlated with that localization. Besides its bidentate RNase III domains, DrnB contains only a dsRBD, which surprisingly is dispensable for miRNA maturation. This dsRBD can, however, functionally replace the homologous domain in RbdB. Based on the unique setup of the Dictyostelium microprocessor with a subcellular localization similar to plants, but a protein domain composition similar to animals, we propose a model for the evolutionary origin of RNase III proteins acting in miRNA maturation.

  12. Olfactory marker protein is critical for functional maturation of olfactory sensory neurons and development of mother preference

    PubMed Central

    Lee, Anderson C.; He, Jiwei; Ma, Minghong

    2011-01-01

    Survival of many altricial animals critically depends on the sense of smell. Curiously, the olfactory system is rather immature at birth and undergoes a maturation process, which is poorly understood. Using patch clamp technique on mouse olfactory sensory neurons (OSNs) with a defined odorant receptor (OR), we demonstrate that OSNs exhibit functional maturation during the first month of postnatal life by developing faster response kinetics, higher sensitivity, and most intriguingly, higher selectivity. OSNs expressing the receptor MOR23 are relatively broadly tuned in neonates and become selective detectors for the cognate odorant within two weeks. Remarkably, these changes are prevented by genetic ablation of olfactory marker protein (OMP), which is exclusively expressed in mature OSNs. Biochemical and pharmacological evidence supports that alteration in odorant-induced phosphorylation of signaling proteins underlie some of the OMP−/− phenotypes. Furthermore, in a novel behavioral assay in which the mouse pups are given a choice between the biological mother and another unfamiliar lactating female, wild-type pups prefer the biological mother, while OMP knockout pups fail to show preference. These results reveal that OSNs undergo an OMP-dependant functional maturation process that coincides with early development of the smell function, which is essential for pups to form preference for their mother. PMID:21414919

  13. Structure, function and dynamics in adenovirus maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangel, Walter F.; San Martín, Carmen

    2014-11-21

    Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core ismore » more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation. In conclusion, possible roles for maturation of the terminal protein are discussed.« less

  14. Thymocyte Maturation Is Regulated by the Activity of the Helix-Loop-Helix Protein, E47

    PubMed Central

    Bain, Gretchen; Quong, Melanie W.; Soloff, Rachel S.; Hedrick, Stephen M.; Murre, Cornelis

    1999-01-01

    The E2A proteins, E12 and E47, are required for progression through multiple developmental pathways, including early B and T lymphopoiesis. Here, we provide in vitro and in vivo evidence demonstrating that E47 activity regulates double-positive thymocyte maturation. In the absence of E47 activity, positive selection of both major histocompatibility complex (MHC) class I– and class II–restricted T cell receptors (TCRs) is perturbed. Additionally, development of CD8 lineage T cells in an MHC class I–restricted TCR transgenic background is sensitive to the dosage of E47. Mice deficient for E47 display an increase in production of mature CD4 and CD8 lineage T cells. Furthermore, ectopic expression of an E2A inhibitor helix-loop-helix protein, Id3, promotes the in vitro differentiation of an immature T cell line. These results demonstrate that E2A functions as a regulator of thymocyte positive selection. PMID:10587351

  15. Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System.

    PubMed

    Khalil, Karim; Elayat, Medhat; Khalifa, Elsayed; Daghash, Samer; Elaswad, Ahmed; Miller, Michael; Abdelrahman, Hisham; Ye, Zhi; Odin, Ramjie; Drescher, David; Vo, Khoi; Gosh, Kamal; Bugg, William; Robinson, Dalton; Dunham, Rex

    2017-08-04

    The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88-100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p < 0.001) than controls, and the mean body weight of gene-edited fry increased by 29.7%. The nucleic acid alignment of the mutated sequences against the wild-type sequence revealed multiple insertions and deletions. These results demonstrate that CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.

  16. Cleavage of precursors by the mitochondrial processing peptidase requires a compatible mature protein or an intermediate octapeptide

    PubMed Central

    1991-01-01

    Many precursors of mitochondrial proteins are processed in two successive steps by independent matrix peptidases (MPP and MIP), whereas others are cleaved in a single step by MPP alone. To explain this dichotomy, we have constructed deletions of all or part of the octapeptide characteristic of a twice cleaved precursor (human ornithine transcarbamylase [pOTC]), have exchanged leader peptide sequences between once-cleaved (human methylmalonyl-CoA mutase [pMUT]; yeast F1ATPase beta-subunit [pF1 beta]) and twice-cleaved (pOTC; rat malate dehydrogenase (pMDH); Neurospora ubiquinol-cytochrome c reductase iron-sulfur subunit [pFe/S]) precursors, and have incubated these proteins with purified MPP and MIP. When the octapeptide of pOTC was deleted, or when the entire leader peptide of a once-cleaved precursor (pMUT or pF1 beta) was joined to the mature amino terminus of a twice-cleaved precursor (pOTC or pFe/S), no cleavage was produced by either protease. Cleavage of these constructs by MPP was restored by re- inserting as few as two amino-terminal residues of the octapeptide or of the mature amino terminus of a once-cleaved precursor. We conclude that the mature amino terminus of a twice-cleaved precursor is structurally incompatible with cleavage by MPP; such proteins have evolved octapeptides cleaved by MIP to overcome this incompatibility. PMID:1672532

  17. The DNA Maturation Domain of gpA, the DNA Packaging Motor Protein of Bacteriophage Lambda, Contains an ATPase Site Associated with Endonuclease Activity

    PubMed Central

    Ortega, Marcos E.; Gaussier, Helene; Catalano, Carlos E.

    2007-01-01

    Summary Terminase enzymes are common to double-stranded DNA (dsDNA) viruses and are responsible for packaging viral DNA into the confines of an empty capsid shell. In bacteriophage lambda the catalytic terminase subunit is gpA, which is responsible for maturation of the genome end prior to packaging and subsequent translocation of the matured DNA into the capsid. DNA packaging requires an ATPase catalytic site situated in the N-terminus of the protein. A second ATPase catalytic site associated with the DNA maturation activities of the protein has been proposed; however, direct demonstration of this putative second site is lacking. Here we describe biochemical studies that define protease-resistant peptides of gpA and expression of these putative domains in E. coli. Biochemical characterization of gpA-ΔN179, a construct in which the N-terminal 179 residues of gpA have been deleted, indicates that this protein encompasses the DNA maturation domain of gpA. The construct is folded, soluble and possesses an ATP-dependent nuclease activity. Moreover, the construct binds and hydrolyzes ATP despite the fact that the DNA packaging ATPase site in the N-terminus of gpA has been deleted. Mutation of lysine 497, which alters the conserved lysine in a predicted Walker A “P-loop” sequence, does not affect ATP binding but severely impairs ATP hydrolysis. Further, this mutation abrogates the ATP-dependent nuclease activity of the protein. These studies provide direct evidence for the elusive nucleotide-binding site in gpA that is directly associated with the DNA maturation activity of the protein. The implications of these results with respect to the two roles of the terminase holoenzyme – DNA maturation and DNA packaging – are discussed. PMID:17870092

  18. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared

    2006-03-15

    The Nipah virus fusion (F) protein is proteolytically processed to F{sub 1} + F{sub 2} subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsinsmore » can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form.« less

  19. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration

    PubMed Central

    Pasteuning-Vuhman, Svitlana; Boertje-van der Meulen, Johanna W.; van Putten, Maaike; Overzier, Maurice; ten Dijke, Peter; Kiełbasa, Szymon M.; Arindrarto, Wibowo; Wolterbeek, Ron; Lezhnina, Ksenia V.; Ozerov, Ivan V.; Aliper, Aleksandr M.; Hoogaars, Willem M.; Aartsma-Rus, Annemieke; Loomans, Cindy J. M.

    2017-01-01

    Skeletal muscle fibrosis and impaired muscle regeneration are major contributors to muscle wasting in Duchenne muscular dystrophy (DMD). Muscle growth is negatively regulated by myostatin (MSTN) and activins. Blockage of these pathways may improve muscle quality and function in DMD. Antisense oligonucleotides (AONs) were designed specifically to block the function of ALK4, a key receptor for the MSTN/activin pathway in skeletal muscle. AON-induced exon skipping resulted in specific Alk4 down-regulation, inhibition of MSTN activity, and increased myoblast differentiation in vitro. Unexpectedly, a marked decrease in muscle mass (10%) was found after Alk4 AON treatment in mdx mice. In line with in vitro results, muscle regeneration was stimulated, and muscle fiber size decreased markedly. Notably, when Alk4 was down-regulated in adult wild-type mice, muscle mass decreased even more. RNAseq analysis revealed dysregulated metabolic functions and signs of muscle atrophy. We conclude that ALK4 inhibition increases myogenesis but also regulates the tight balance of protein synthesis and degradation. Therefore, caution must be used when developing therapies that interfere with MSTN/activin pathways.—Pasteuning-Vuhman, S., Boertje-van der Meulen, J. W., van Putten, M., Overzier, M., ten Dijke, P., Kiełbasa, S. M., Arindrarto, W., Wolterbeek, R., Lezhnina, K. V., Ozerov, I. V., Aliper, A. M., Hoogaars, W. M., Aartsma-Rus, A., Loomans, C. J. M. New function of the myostatin/activin type I receptor (ALK4) as a mediator of muscle atrophy and muscle regeneration. PMID:27733450

  20. Bicarbonate Transport During Enamel Maturation.

    PubMed

    Yin, Kaifeng; Paine, Michael L

    2017-11-01

    Amelogenesis (tooth enamel formation) is a biomineralization process consisting primarily of two stages (secretory stage and maturation stage) with unique features. During the secretory stage, the inner epithelium of the enamel organ (i.e., the ameloblast cells) synthesizes and secretes enamel matrix proteins (EMPs) into the enamel space. The protein-rich enamel matrix forms a highly organized architecture in a pH-neutral microenvironment. As amelogenesis transitions to maturation stage, EMPs are degraded and internalized by ameloblasts through endosomal-lysosomal pathways. Enamel crystallite formation is initiated early in the secretory stage, however, during maturation stage the more rapid deposition of calcium and phosphate into the enamel space results in a rapid expansion of crystallite length and mineral volume. During maturation-stage amelogenesis, the pH value of enamel varies considerably from slightly above neutral to acidic. Extracellular acid-base balance during enamel maturation is tightly controlled by ameloblast-mediated regulatory networks, which include significant synthesis and movement of bicarbonate ions from both the enamel papillary layer cells and ameloblasts. In this review we summarize the carbonic anhydrases and the carbonate transporters/exchangers involved in pH regulation in maturation-stage amelogenesis. Proteins that have been shown to be instrumental in this process include CA2, CA6, CFTR, AE2, NBCe1, SLC26A1/SAT1, SLC26A3/DRA, SLC26A4/PDS, SLC26A6/PAT1, and SLC26A7/SUT2. In addition, we discuss the association of miRNA regulation with bicarbonate transport in tooth enamel formation.

  1. The Native Form and Maturation Process of Hepatitis C Virus Core Protein

    PubMed Central

    Yasui, Kohichiroh; Wakita, Takaji; Tsukiyama-Kohara, Kyoko; Funahashi, Shin-Ichi; Ichikawa, Masumi; Kajita, Tadahiro; Moradpour, Darius; Wands, Jack R.; Kohara, Michinori

    1998-01-01

    The maturation and subcellular localization of hepatitis C virus (HCV) core protein were investigated with both a vaccinia virus expression system and CHO cell lines stably transformed with HCV cDNA. Two HCV core proteins, with molecular sizes of 21 kDa (p21) and 23 kDa (p23), were identified. The C-terminal end of p23 is amino acid 191 of the HCV polyprotein, and p21 is produced as a result of processing between amino acids 174 and 191. The subcellular localization of the HCV core protein was examined by confocal laser scanning microscopy. Although HCV core protein resided predominantly in the cytoplasm, it was also found in the nucleus and had the same molecular size as p21 in both locations, as determined by subcellular fractionation. The HCV core proteins had different immunoreactivities to a panel of monoclonal antibodies. Antibody 5E3 stained core protein in both the cytoplasm and the nucleus, C7-50 stained core protein only in the cytoplasm, and 499S stained core protein only in the nucleus. These results clearly indicate that the p23 form of HCV core protein is processed to p21 in the cytoplasm and that the core protein in the nucleus has a higher-order structure different from that of p21 in the cytoplasm. HCV core protein in sera of patients with HCV infection was analyzed in order to determine the molecular size of genuinely processed HCV core protein. HCV core protein in sera was found to have exactly the same molecular weight as the p21 protein. These results suggest that p21 core protein is a component of native viral particles. PMID:9621068

  2. Genetic Control of Lyme Arthritis by Borrelia burgdorferi Arthritis-Associated Locus 1 Is Dependent on Localized Differential Production of IFN-β and Requires Upregulation of Myostatin.

    PubMed

    Paquette, Jackie K; Ma, Ying; Fisher, Colleen; Li, Jinze; Lee, Sang Beum; Zachary, James F; Kim, Yong Soo; Teuscher, Cory; Weis, Janis J

    2017-11-15

    Previously, using a forward genetic approach, we identified differential expression of type I IFN as a positional candidate for an expression quantitative trait locus underlying Borrelia burgdorferi arthritis-associated locus 1 ( Bbaa1 ). In this study, we show that mAb blockade revealed a unique role for IFN-β in Lyme arthritis development in B6.C3- Bbaa1 mice. Genetic control of IFN-β expression was also identified in bone marrow-derived macrophages stimulated with B. burgdorferi , and it was responsible for feed-forward amplification of IFN-stimulated genes. Reciprocal radiation chimeras between B6.C3- Bbaa1 and C57BL/6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and confirmed the contribution of type I IFN genes to Lyme arthritis. RNA sequencing of resident CD45 - joint cells from advanced interval-specific recombinant congenic lines identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development, and myostatin expression was linked to IFN-β production. Inhibition of myostatin in vivo suppressed Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of the joint-specific inflammatory response to B. burgdorferi . Copyright © 2017 by The American Association of Immunologists, Inc.

  3. Inhibition of HIV-1 Maturation via Small-Molecule Targeting of the Amino-Terminal Domain in the Viral Capsid Protein.

    PubMed

    Wang, Weifeng; Zhou, Jing; Halambage, Upul D; Jurado, Kellie A; Jamin, Augusta V; Wang, Yujie; Engelman, Alan N; Aiken, Christopher

    2017-05-01

    The human immunodeficiency virus type 1 (HIV-1) capsid protein is an attractive therapeutic target, owing to its multifunctionality in virus replication and the high fitness cost of amino acid substitutions in capsids to HIV-1 infectivity. To date, small-molecule inhibitors have been identified that inhibit HIV-1 capsid assembly and/or impair its function in target cells. Here, we describe the mechanism of action of the previously reported capsid-targeting HIV-1 inhibitor, Boehringer-Ingelheim compound 1 (C1). We show that C1 acts during HIV-1 maturation to prevent assembly of a mature viral capsid. However, unlike the maturation inhibitor bevirimat, C1 did not significantly affect the kinetics or fidelity of Gag processing. HIV-1 particles produced in the presence of C1 contained unstable capsids that lacked associated electron density and exhibited impairments in early postentry stages of infection, most notably reverse transcription. C1 inhibited assembly of recombinant HIV-1 CA in vitro and induced aberrant cross-links in mutant HIV-1 particles capable of spontaneous intersubunit disulfide bonds at the interhexamer interface in the capsid lattice. Resistance to C1 was conferred by a single amino acid substitution within the compound-binding site in the N-terminal domain of the CA protein. Our results demonstrate that the binding site for C1 represents a new pharmacological vulnerability in the capsid assembly stage of the HIV-1 life cycle. IMPORTANCE The HIV-1 capsid protein is an attractive but unexploited target for clinical drug development. Prior studies have identified HIV-1 capsid-targeting compounds that display different mechanisms of action, which in part reflects the requirement for capsid function at both the efferent and afferent phases of viral replication. Here, we show that one such compound, compound 1, interferes with assembly of the conical viral capsid during virion maturation and results in perturbations at a specific protein-protein

  4. The effects of selecting for the myostatin F94L polymorphism on reproductive traits in pubertal heifers

    USDA-ARS?s Scientific Manuscript database

    The myostatin F94L polymorphism influences carcass traits in steers; however, the influence of this polymorphism on female reproductive performance should be characterized as part of using it for marker assisted selection. Results from USMARC indicate that heifers that are homozygous for the L allel...

  5. Ultrastructural and biochemical evidence for the presence of mature steroidogenic acute regulatory protein (StAR) in the cytoplasm of human luteal cells.

    PubMed

    Sierralta, Walter D; Kohen, Paulina; Castro, Olga; Muñoz, Alex; Strauss, Jerome F; Devoto, Luigi

    2005-10-20

    The distribution of the steroidogenic acute regulatory protein (StAR) inside thecal and granulosa-lutein cells of human corpus luteum (CL) was assessed by immunoelectron microscopy. We found greater levels of StAR immunolabeling in steroidogenic cells from early- and mid-than in late luteal phase CL and lower levels in cells from women treated with a GnRH antagonist in the mid-luteal phase. Immunoelectron microscopy revealed significant levels of StAR antigen in the mitochondria and in the cytoplasm of luteal cells. The 30 kDa mature StAR protein was present in both mitochondria and cytosol (post-mitochondrial) fractions from homogenates of CL at different ages, whereas cytochrome c and mitochondrial HSP70 were detected only in the mitochondrial fraction. Therefore, we hypothesized that either appreciable processing of StAR 37 kDa pre-protein occurs outside the mitochondria, or mature StAR protein is selectively released into the cytoplasm after mitochondrial processing. The presence of mature StAR in the cytoplasm is consonant with the notion that StAR acts on the outer mitochondrial membrane to effect sterol import, and that StAR may interact with other cytoplasmic proteins involved in cholesterol metabolism, including hormone sensitive lipase.

  6. Proteomic changes during intestinal cell maturation in vivo

    PubMed Central

    Chang, Jinsook; Chance, Mark R.; Nicholas, Courtney; Ahmed, Naseem; Guilmeau, Sandra; Flandez, Marta; Wang, Donghai; Byun, Do-Sun; Nasser, Shannon; Albanese, Joseph M.; Corner, Georgia A.; Heerdt, Barbara G.; Wilson, Andrew J.; Augenlicht, Leonard H.; Mariadason, John M.

    2008-01-01

    Intestinal epithelial cells undergo progressive cell maturation as they migrate along the crypt-villus axis. To determine molecular signatures that define this process, proteins differentially expressed between the crypt and villus were identified by 2D-DIGE and MALDI-MS. Forty-six differentially expressed proteins were identified, several of which were validated by immunohistochemistry. Proteins upregulated in the villus were enriched for those involved in brush border assembly and lipid uptake, established features of differentiated intestinal epithelial cells. Multiple proteins involved in glycolysis were also upregulated in the villus, suggesting increased glycolysis is a feature of intestinal cell differentiation. Conversely, proteins involved in nucleotide metabolism, and protein processing and folding were increased in the crypt, consistent with functions associated with cell proliferation. Three novel paneth cell markers, AGR2, HSPA5 and RRBP1 were also identified. Notably, significant correlation was observed between overall proteomic changes and corresponding gene expression changes along the crypt-villus axis, indicating intestinal cell maturation is primarily regulated at the transcriptional level. This proteomic profiling analysis identified several novel proteins and functional processes differentially induced during intestinal cell maturation in vivo. Integration of proteomic, immunohistochemical, and parallel gene expression datasets demonstrate the coordinated manner in which intestinal cell maturation is regulated. PMID:18824147

  7. Dissecting the proteome of pea mature seeds reveals the phenotypic plasticity of seed protein composition.

    PubMed

    Bourgeois, Michael; Jacquin, Françoise; Savois, Vincent; Sommerer, Nicolas; Labas, Valérie; Henry, Céline; Burstin, Judith

    2009-01-01

    Pea (Pisum sativum L.) is the most cultivated European pulse crop and the pea seeds mainly serve as a protein source for monogastric animals. Because the seed protein composition impacts on seed nutritional value, we aimed at identifying the determinants of its variability. This paper presents the first pea mature seed proteome reference map, which includes 156 identified proteins (http://www.inra.fr/legumbase/peaseedmap/). This map provides a fine dissection of the pea seed storage protein composition revealing a large diversity of storage proteins resulting both from gene diversity and post-translational processing. It gives new insights into the pea storage protein processing (especially 7S globulins) as a possible adaptation towards progressive mobilization of the proteins during germination. The nonstorage seed proteome revealed the presence of proteins involved in seed defense together with proteins preparing germination. The plasticity of the seed proteome was revealed for seeds produced in three successive years of cultivation, and 30% of the spots were affected by environmental variations. This work pinpoints seed proteins most affected by environment, highlighting new targets to stabilize storage protein composition that should be further analyzed.

  8. Gonadotropin-dependent oocyte maturational competence requires activation of the protein kinase A pathway and synthesis of RNA and protein in ovarian follicles of Nibe, Nibea mitsukurii (Teleostei, Sciaenidae)

    USGS Publications Warehouse

    Yoshizaki, G.; Shusa, M.; Takeuchi, T.; Patino, R.

    2002-01-01

    Luteinizing hormone- (LH)-dependent ovarian follicle maturation has been recently described in two stages for teleost fishes. The oocyte's ability to respond to the steroidal maturation-inducing hormone (MIH), also known as oocyte maturational competence (OMC), is acquired during the first stage; whereas the MIH-dependent resumption of meiosis occurs during the second stage. However, studies directly addressing OMC have been performed with a limited number of species and therefore the general relevance of the two-stage model and its mechanisms remain uncertain. In this study, we examined the hormonal regulation of OMC and its basic transduction mechanisms in ovarian follicles of the sciaenid teleost, Nibe (Nibea mitsukurii). Exposure to MIH [17,20??-dihydroxy-4-pregnen-3-one or 17,20??,21-trihydroxy-4-pregnen-3-one] stimulated germinal vesicle breakdown (index of meiotic resumption) in full-grown follicles primed with human chorionic gonadotropin (HCG, an LH-like gonadotropin) but not in those pre-cultured in plain incubation medium. The induction of OMC by HCG was mimicked by protein kinase A (PKA) activators (forskolin and dibutyryl cyclic AMP), and blocked by specific inhibitors of PKA (H89 and H8) as well as inhibitors of RNA (actinomycin D) and protein (cycloheximide) synthesis. Forskolin-induced OMC was also inhibited by actinomycin D and cycloheximide. A strong activator of protein kinase C, PMA, inhibited HCG-dependent OMC. In conclusion, OMC in Nibe ovarian follicles is gonadotropin-dependent and requires activation of the PKA pathway followed by gene transcription and translation events. These observations are consistent with the two-stage model of ovarian follicle maturation proposed for other teleosts, and suggest that Nibe can be used as new model species for mechanistic studies of ovarian follicle differentiation and maturation in fishes.

  9. Enamel proteins mitigate mechanical and structural degradations in mature human enamel during acid attack

    NASA Astrophysics Data System (ADS)

    Lubarsky, Gennady V.; Lemoine, Patrick; Meenan, Brian J.; Deb, Sanjukta; Mutreja, Isha; Carolan, Patrick; Petkov, Nikolay

    2014-04-01

    A hydrazine deproteination process was used to investigate the role of enamel proteins in the acid erosion of mature human dental enamel. Bright field high resolution transmission electron micrographs and x-ray diffraction analysis show no crystallographic changes after the hydrazine treatment with similar nanoscale hydroxyapatite crystallite size and orientation for sound and de-proteinated enamel. However, the presence of enamel proteins reduces the erosion depth, the loss of hardness and the loss of structural order in enamel, following exposure to citric acid. Nanoindentation creep is larger for sound enamel than for deproteinated enamel but it reduces in sound enamel after acid attack. These novel results are consistent with calcium ion-mediated visco-elasticty in enamel matrix proteins as described previously for nacre, bone and dental proteins. They are also in good agreement with a previous double layer force spectroscopy study by the authors which found that the proteins electrochemically buffer enamel against acid attack. Finally, this suggests that acid attack, and more specifically dental erosion, is influenced by ionic permeation through the enamel layer and that it is mitigated by the enamel protein matrix.

  10. A mouse anti-myostatin antibody increases muscle mass and improves muscle strength and contractility in the mdx mouse model of Duchenne muscular dystrophy and its humanized equivalent, domagrozumab (PF-06252616), increases muscle volume in cynomolgus monkeys.

    PubMed

    St Andre, Michael; Johnson, Mark; Bansal, Prashant N; Wellen, Jeremy; Robertson, Andrew; Opsahl, Alan; Burch, Peter M; Bialek, Peter; Morris, Carl; Owens, Jane

    2017-11-09

    The treatments currently approved for Duchenne muscular dystrophy (DMD), a progressive skeletal muscle wasting disease, address the needs of only a small proportion of patients resulting in an urgent need for therapies that benefit all patients regardless of the underlying mutation. Myostatin is a member of the transforming growth factor-β (TGF-β) family of ligands and is a negative regulator of skeletal muscle mass. Loss of myostatin has been shown to increase muscle mass and improve muscle function in both normal and dystrophic mice. Therefore, myostatin blockade via a specific antibody could ameliorate the muscle weakness in DMD patients by increasing skeletal muscle mass and function, thereby reducing patients' functional decline. A murine anti-myostatin antibody, mRK35, and its humanized analog, domagrozumab, were developed and their ability to inhibit several TGB-β ligands was measured using a cell-based Smad-activity reporter system. Normal and mdx mice were treated with mRK35 to examine the antibody's effect on body weight, lean mass, muscle weights, grip strength, ex vivo force production, and fiber size. The humanized analog (domagrozumab) was tested in non-human primates (NHPs) for changes in skeletal muscle mass and volume as well as target engagement via modulation of circulating myostatin. Both the murine and human antibodies are specific and potent inhibitors of myostatin and GDF11. mRK35 is able to increase body weight, lean mass, and muscle weights in normal mice. In mdx mice, mRK35 significantly increased body weight, muscle weights, grip strength, and ex vivo force production in the extensor digitorum longus (EDL) muscle. Further, tibialis anterior (TA) fiber size was significantly increased. NHPs treated with domagrozumab demonstrated a dose-dependent increase in lean mass and muscle volume and exhibited increased circulating levels of myostatin demonstrating target engagement. We demonstrated that the potent anti-myostatin antibody mRK35 and

  11. Inhibition of myostatin gene expression in skeletal muscle of fish by in vivo electrically mediated dsRNA and shRNAi delivery.

    PubMed

    Terova, Genciana; Rimoldi, Simona; Bernardini, Giovanni; Saroglia, Marco

    2013-06-01

    Myostatin (MSTN), previously referred to as growth differentiation factor 8 (GDF8), is a negative regulator of skeletal muscle growth. In accordance with this role, natural mutations that inactivate the gene disrupting the function of the protein are associated with excessive muscle growth and double-muscling phenotype in several mammalian species. Recent studies using transgenic MSTN deficient zebrafish and medaka support the idea that this gene inhibits skeletal muscle growth even in fish. If the atrophic actions of mammalian MSTN are indeed conserved in fish, strategies capable of inhibiting the expression of this gene could be applied to enhance growth performance in livestock production. Gene silencing by RNA interference has emerged as a promising new method of inhibiting the expression of targeted genes and inducing knockdown of associated proteins both in vitro and in vivo. Accordingly, we investigated here whether double-stranded RNA (dsRNA) or different plasmids expressing short-hairpin interfering RNAs (shRNAs) against myostatin and transduced by in vivo electroporation would increase skeletal muscle mass in reared European sea bass. After 7 weeks of intramuscular injections on a weekly basis followed by in vivo electrically mediated dsRNA delivery, no increase in the condition factor (K) of fish was observed as compared to the controls. Analogously, mean body weight and K of sea bass injected with three shRNAs were not higher than those of the control fish. On the other hand, MSTN transcript quantification via real-time RT-PCR revealed a significant inhibition of gene expression in the muscle of the dsRNA-injected fish and in the muscle of fish injected with one of the three tested shRNA-expressing vector constructs. In conclusion, in vivo electric-mediated delivery of dsRNA- or shRNA-expressing vectors against MSTN inhibits MSTN gene expression in adult sea bass muscle, but this is associated with an inconsistent double-muscle phenotype.

  12. Activation of maturation promoting factor in Bufo arenarum oocytes: injection of mature cytoplasm and germinal vesicle contents.

    PubMed

    Toranzo, G Sánchez; Bonilla, F; Zelarayán, L; Oterino, J; Bühler, M I

    2006-11-01

    Although progesterone is the established maturation inducer in amphibians, Bufo arenarum oocytes obtained during the reproductive period (spring-summer) resume meiosis with no need of an exogenous hormonal stimulus if deprived of their enveloping follicle cells, a phenomenon called spontaneous maturation. In this species it is possible to obtain oocytes competent and incompetent to undergo spontaneous maturation according to the seasonal period in which animals are captured. Reinitiation of meiosis is regulated by maturation promoting factor (MPF), a complex of the cyclin-dependent kinase p34cdc2 and cyclin B. Although the function and molecule of MPF are common among species, the formation and activation mechanisms of MPF differ according to species. This study was undertaken to evaluate the presence of pre-MPF in Bufo arenarum oocytes incompetent to mature spontaneously and the effect of the injection of mature cytoplasm or germinal vesicle contents on the resumption of meiosis. The results of our treatment of Bufo arenarum immature oocytes incompetent to mature spontaneously with sodium metavanadate (NaVO3) and dexamethasone (DEX) indicates that these oocytes have a pre-MPF, which activates and induces germinal vesicle breakdown (GVBD) by dephosphorylation on Thr-14/Tyr-15 by cdc25 phosphatase and without cyclin B synthesis. The injection of cytoplasm containing active MPF is sufficient to activate an amplification loop that requires the activation of cdc25 and protein kinase C, the decrease in cAMP levels, and is independent of protein synthesis. However, the injection of germinal vesicle content also induces GVBD in the immature receptor oocyte, a process dependent on protein synthesis but not on cdc25 phosphatase or PKC activity.

  13. The effect of myostatin genotype on body temperature during extreme temperature events.

    PubMed

    Howard, J T; Kachman, S D; Nielsen, M K; Mader, T L; Spangler, M L

    2013-07-01

    Extreme heat and cold events can create deleterious physiological changes in cattle as they attempt to cope. The genetic background of animals can influence their response to these events. The objective of the current study was to determine the impact of myostatin genotype (MG) on body temperature during periods of heat and cold stress. Two groups of crossbred steers and heifers of unknown pedigree and breed fraction with varying percentages of Angus, Simmental, and Piedmontese were placed in a feedlot over 2 summers and 2 winters. Before arrival, animals were genotyped for the Piedmontese-derived myostatin mutation (C313Y) to determine their MG as either homozygous normal (0 copy; n = 84), heterozygous (1 copy; n = 96), or homozygous for inactive myostatin (2 copy; n = 59). Hourly tympanic and vaginal temperature measurements were collected for steers and heifers, respectively, for 5 d during times of anticipated heat and cold stress. Mean (±SD) ambient temperature for summer and winter stress events were 24.4 (±4.64) and -1.80 (±11.71), respectively. A trigonometric function (sine + cosine) with periods of 12 and 24 h was used to describe the diurnal cyclical pattern. Hourly body temperature was analyzed within a season, and fixed effects included MG, group, trigonometric functions nested within group, and interaction of MG with trigonometric functions nested within group; random effects were animal and residual (Model [I]). A combined analysis of season and group was also investigated with the inclusion of season as a main effect and the nesting of effects within both group and season (Model [C]). In both models, the residual was fitted using an autoregressive covariance structure. A 3-way interaction of MG, season, and trigonometric function periodicities of 24 h (P < 0.001) and 12 h (P < 0.02) for Model [C] indicate that a genotype × environment interaction exists for MG. For MG during summer stress events the additive estimate was 0.10°C (P < 0.01) and

  14. Polymorphisms in the Myostatin-1 gene and their association with growth traits in Ancherythroculter nigrocauda

    NASA Astrophysics Data System (ADS)

    Sun, Yanhong; Li, Qing; Wang, Guiying; Zhu, Dongmei; Chen, Jian; Li, Pei; Tong, Jingou

    2017-05-01

    Myostatin ( MSTN) is a member of the transforming growth factor-β gene superfamily that negatively regulates skeletal muscle development and growth. In the present study, partial genomic fragments of Myostatin-1 ( MSTN-1) in two commercial hatchery populations of Ancherythroculter nigrocauda, an economically important freshwater fish, were screened for single nucleotide polymorphisms (SNPs) and then genotyped by direct sequencing of PCR products. Five SNPs were identified in intron 1 and exon 2, including a non-synonymous mutation causing an amino acid change (Val to Ile) at position 180. Association analyses based on 300 individuals revealed that the g.1129T>C SNP locus was significantly associated with total length (TL), body length (BL), body height (BH) and body weight (BW) in 6- and 18-month-old populations, while the g.1289G>A locus was significantly associated with BH and BW in the 6-month-old population. Haplotype analyses revealed that fish with the genotype combinations TC/TC or TC/GA showed better growth performance. Our results suggest that g.1129T>C and g.1289G>A have positive effects on growth traits and may be candidate gene markers for marker-assisted selection in A. nigrocauda.

  15. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ‘procapsid’) built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: an asymmetric assembly in the procapsid (PC-portal) that is competent for high affinity binding to the large terminase packaging protein, and a symmetric ring in the mature virion (MV-portal) that has negligible affinitymore » for the packaging motor. Modelling studies indicate the structure of PC-portal is incompatible with DNA coaxially spooled around the portal vertex, suggesting that newly packaged DNA triggers the switch from PC- to MV-conformation. Thus, we propose the signal for termination of ‘Headful Packaging’ is a DNA-dependent symmetrization of portal protein.« less

  16. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  17. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep.

    PubMed

    Clop, Alex; Marcq, Fabienne; Takeda, Haruko; Pirottin, Dimitri; Tordoir, Xavier; Bibé, Bernard; Bouix, Jacques; Caiment, Florian; Elsen, Jean-Michel; Eychenne, Francis; Larzul, Catherine; Laville, Elisabeth; Meish, Françoise; Milenkovic, Dragan; Tobin, James; Charlier, Carole; Georges, Michel

    2006-07-01

    Texel sheep are renowned for their exceptional meatiness. To identify the genes underlying this economically important feature, we performed a whole-genome scan in a Romanov x Texel F2 population. We mapped a quantitative trait locus with a major effect on muscle mass to chromosome 2 and subsequently fine-mapped it to a chromosome interval encompassing the myostatin (GDF8) gene. We herein demonstrate that the GDF8 allele of Texel sheep is characterized by a G to A transition in the 3' UTR that creates a target site for mir1 and mir206, microRNAs (miRNAs) that are highly expressed in skeletal muscle. This causes translational inhibition of the myostatin gene and hence contributes to the muscular hypertrophy of Texel sheep. Analysis of SNP databases for humans and mice demonstrates that mutations creating or destroying putative miRNA target sites are abundant and might be important effectors of phenotypic variation.

  18. Proteomic analysis of mature and immature ejaculated spermatozoa from fertile men

    PubMed Central

    Cui, Zhihong; Sharma, Rakesh; Agarwal, Ashok

    2016-01-01

    Dysfunctional spermatozoa maturation is the main reason for the decrease in sperm motility and morphology in infertile men. Ejaculated spermatozoa from healthy fertile men were separated into four fractions using three-layer density gradient. Proteins were extracted and bands were digested on a LTQ-Orbitrap Elite hybrid mass spectrometer system. Functional annotations of proteins were obtained using bioinformatics tools and pathway databases. Western blotting was performed to verify the expression levels of the proteins of interest. 1469 proteins were identified in four fractions of spermatozoa. The number of detected proteins decreased according to the maturation level of spermatozoa. During spermatozoa maturation, proteins involved in gamete generation, cell motility, energy metabolism and oxidative phosphorylation processes showed increasing expression levels and those involved in protein biosynthesis, protein transport, protein ubiquitination, and response to oxidative stress processes showed decreasing expression levels. We validated four proteins (HSP 70 1A, clusterin, tektin 2 and tektin 3) by Western blotting. The study shows protein markers that may provide insight into the ejaculated spermatozoa proteins in different stages of sperm maturation that may be altered or modified in infertile men. PMID:26510506

  19. Differential expression of poliovirus receptor, regulator of G-protein signaling 11 and erythrocyte protein band 4.1-like 3 in human granulosa cells during follicular growth and maturation.

    PubMed

    Barzilay, Eran; Yung, Yuval; Shapira, Lev; Haas, Jigal; Ophir, Libby; Yerushalmi, Gil M; Maman, Ettie; Hourvitz, Ariel

    2014-09-01

    Poliovirus receptor (PVR), regulator of G-protein signaling-11 (RGS11), and erythrocyte protein band-4.1-like 3 (EPB41L3) have been proposed to function in follicular maturation in mouse models. We have examined their expression in human mural (mGCs) and cumulus granulosa cells (CCs). Expression of PVR and RGS11 in mGCs decreased in medium-sized follicles compared to small follicles of IVM cycles and increased again in large follicles. Luteinization caused decreased expression of both PVR and RGS11. In vitro incubation of mGCs with progesterone-rich conditioned media decreased expression of RGS11 without affecting PVR levels. Inhibition of progesterone signaling enhanced expression of both RGS11 and PVR. Expression in CCs was examined by means of global transcriptome sequencing analysis RGS11 and EPB41L3 increased in CCs during follicular maturation while PVR levels did not change. In conclusion, during human follicular maturation there are significant changes in expression of PVR, RGS11 and EPB41L3, possibly regulated by progesterone.

  20. Multivesicular bodies: co-ordinated progression to maturity

    PubMed Central

    Woodman, Philip G; Futter, Clare E

    2008-01-01

    Multivesicular endosomes/bodies (MVBs) sort endocytosed proteins to different destinations. Many lysosomally directed membrane proteins are sorted onto intralumenal vesicles, whilst recycling proteins remain on the perimeter membrane from where they are removed via tubular extensions. MVBs move to the cell centre during this maturation process and, when all recycling proteins have been removed, fuse with lysosomes. Recent advances have identified endosomal-sorting complex required for transport (ESCRT)-dependent and ESCRT-independent pathways in intralumenal vesicle formation and mechanisms for sorting recycling cargo into tubules. Cytoskeletal motors, through interactions with these machineries and by regulating MVB movement, help to co-ordinate events leading to a mature, fusion-competent MVB. PMID:18502633

  1. The early mature part of bacterial twin-arginine translocation (Tat) precursor proteins contributes to TatBC receptor binding.

    PubMed

    Ulfig, Agnes; Freudl, Roland

    2018-05-11

    The twin-arginine translocation (Tat) pathway transports folded proteins across bacterial membranes. Tat precursor proteins possess a conserved twin-arginine (RR) motif in their signal peptides that is involved in the binding of the proteins to the membrane-associated TatBC receptor complex. In addition, the hydrophobic region in the Tat signal peptides also contributes to TatBC binding, but whether regions beyond the signal-peptide cleavage site are involved in this process is unknown. Here, we analyzed the contribution of the early mature protein part of the Escherichia coli trimethylamine N -oxide reductase (TorA) to productive TatBC receptor binding. We identified substitutions in the 30 amino acids immediately following the TorA signal peptide (30aa-region) that restored export of a transport-defective TorA[KQ]-30aa-MalE precursor, in which the RR residues had been replaced by a lysine-glutamine pair. Some of these substitutions increased the hydrophobicity of the N-terminal part of the 30aa-region and thereby likely enhanced hydrophobic substrate-receptor interactions within the hydrophobic TatBC substrate-binding cavity. Another class of substitutions increased the positive net charge of the region's C-terminal part, presumably leading to strengthened electrostatic interactions between the mature substrate part and the cytoplasmic TatBC regions. Furthermore, we identified substitutions in the C-terminal domains of TatB following the transmembrane segment that restored transport of various transport-defective TorA-MalE derivatives. Some of these substitutions most likely affected the orientation or conformation of the flexible, carboxy-proximal helices of TatB. Therefore, we propose that a tight accommodation of the folded mature region by TatB contributes to productive binding of Tat substrates to TatBC. © 2018 Ulfig and Freudl.

  2. Additive effect of multiple pharmacological chaperones on maturation of CFTR processing mutants

    PubMed Central

    Wang, Ying; Loo, Tip W.; Bartlett, M. Claire; Clarke, David M.

    2007-01-01

    The most common cause of CF (cystic fibrosis) is the deletion of Phe508 (ΔF508) in the CFTR [CF TM (transmembrane) conductance regulator] chloride channel. One major problem with ΔF508 CFTR is that the protein is defective in folding so that little mature protein is delivered to the cell surface. Expression of ΔF508 CFTR in the presence of small molecules known as correctors or pharmacological chaperones can increase the level of mature protein. Unfortunately, the efficiency of corrector-induced maturation of ΔF508 CFTR is probably too low to have therapeutic value and approaches are needed to increase maturation efficiency. We postulated that expression of ΔF508 CFTR in the presence of multiple correctors that bound to different sites may have an additive effect on maturation. In support of this mechanism, we found that expression of P-glycoprotein (CFTR's sister protein) processing mutants in the presence of two compounds that bind to different sites (rhodamine B and Hoechst 33342) had an additive effect on maturation. Therefore we tested whether expression of ΔF508 CFTR in the presence of combinations of three different classes of corrector molecules would increase its maturation efficiency. It was found that the combination of the quinazoline VRT-325 together with the thiazole corr-2b or bisaminomethylbithiazole corr-4a doubled the steady-state maturation efficiency of ΔF508 CFTR (approx. 40% of total CFTR was mature protein) compared with expression in the presence of a single compound. The additive effect of the correctors on ΔF508 CFTR maturation suggests that they directly interact at different sites of the protein. PMID:17535157

  3. Does Skeletal Muscle Mass Influence Breast Cancer? Evaluating Mammary Tumorigenesis and Progression Genetically Hyper-Muscular Mice

    DTIC Science & Technology

    2006-07-01

    the skeletal muscle-specific muscle growth inhibitor myostatin and mice expressing a dominant negative form of the myostatin receptor, Activin...and rates of breast cancer initiation and progression. 15. SUBJECT TERMS Breast cancer, skeletal muscle, myostatin , MPA, DMBA, Activin receptor 16...including interleukins, Insulin-like Growth Factor (IGF) isoforms, IGF-binding proteins and myostatin . To determine the effect of skeletal muscle mass

  4. Inhibition of in vitro and in vivo brown fat differentiation program by myostatin.

    PubMed

    Braga, Melissa; Pervin, Shehla; Norris, Keith; Bhasin, Shalender; Singh, Rajan

    2013-06-01

    Obesity arises mainly due to the imbalance between energy storage and its expenditure. Metabolically active brown adipose tissue (BAT) has recently been detected in humans and has been proposed as a new target for anti-obesity therapy because of its unique capacity to regulate energy expenditure. Myostatin (Mst), a negative regulator of muscle mass, has been identified as a potential target to regulate overall body composition. Although the beneficial effects of Mst inhibition on muscle mass are well known, its role in the regulation of lipid metabolism, and energy expenditure is not very clear. We tested the effects of Mst inhibition on the gene regulatory networks that control BAT differentiation using both in vivo and in vitro model systems. PRDM16 and UCP1, two key regulators of brown fat differentiation were significantly up regulated in levator-ani (LA) and gastrocnemius (Gastroc) muscles as well as in epididymal (Epi) and subcutaneous (SC) fat pads isolated from Mst knock out (Mst KO) male mice compared with wild type (WT) mice. Using mouse embryonic fibroblast (MEFs) primary cultures obtained from Mst KO group compared to the WT group undergoing adipogenic differentiation, we also demonstrate a significant increase in select genes and proteins that improve lipid metabolism and energy expenditure. Treatment of Mst KO MEFs with recombinant Mst protein significantly inhibited the gene expression levels of UCP1, PRDM16, PGC1-α/β as well as BMP7. Future studies to extend these findings and explore the therapeutic potential of Mst inhibition on metabolic disorders are warranted. Copyright © 2012 The Obesity Society.

  5. Oligodendroglial Maturation Is Dependent on Intracellular Protein Shuttling

    PubMed Central

    Göttle, Peter; Sabo, Jennifer K.; Heinen, André; Venables, Gene; Torres, Klintsy; Tzekova, Nevena; Parras, Carlos M.; Kremer, David; Hartung, Hans-Peter; Cate, Holly S.

    2015-01-01

    Multiple sclerosis is an autoimmune disease of the CNS resulting in degeneration of myelin sheaths and loss of oligodendrocytes, which means that protection and electrical insulation of axons and rapid signal propagation are impaired, leading to axonal damage and permanent disabilities. Partial replacement of lost oligodendrocytes and remyelination can occur as a result of activation and recruitment of resident oligodendroglial precursor cells. However, the overall remyelination capacity remains inefficient because precursor cells often fail to generate new oligodendrocytes. Increasing evidence points to the existence of several molecular inhibitors that act on these cells and interfere with their cellular maturation. The p57kip2 gene encodes one such potent inhibitor of oligodendroglial differentiation and this study sheds light on the underlying mode of action. We found that subcellular distribution of the p57kip2 protein changed during differentiation of rat, mouse, and human oligodendroglial cells both in vivo and in vitro. Nuclear export of p57kip2 was correlated with promoted myelin expression, higher morphological phenotypes, and enhanced myelination in vitro. In contrast, nuclear accumulation of p57kip2 resulted in blocked oligodendroglial differentiation. Experimental evidence suggests that the inhibitory role of p57kip2 depends on specific interactions with binding proteins such as LIMK-1, CDK2, Mash1, and Hes5 either by controlling their site of action or their activity. Because functional restoration in demyelinating diseases critically depends on the successful generation of oligodendroglial cells, a therapeutic need that is currently unmet, the regulatory mechanism described here might be of particular interest for identifying suitable drug targets and devising novel therapeutic approaches. PMID:25609610

  6. In vitro maturation of dromedary (Camelus dromedarius) oocytes: effect of different protein supplementations and epidermal growth factor*.

    PubMed

    Wani, Na; Wernery, U

    2010-10-01

    The present experiment was aimed to compare the effect of different protein supplementation sources, foetal calf serum (FCS), oestrous dromedary serum (EDS) and BSA, in experiment 1, and the effect of different concentrations of epidermal growth factor (EGF), in experiment 2, on in vitro nuclear maturation of the dromedary oocytes. Cumulus oocyte complexes (COCs) were harvested from the ovaries collected from a local slaughterhouse by aspirating the visible follicles in PBS supplemented with 5% FCS. Pooled COCs were randomly distributed to 4-well culture plates containing 500 μl of the maturation medium and cultured at 38.5 °C in an atmosphere of 5% CO(2) in air for 32-36 h. The basic maturation medium consisted of TCM-199 supplemented with 0.1 mg/ml L-glutamine, 0.8 mg/ml sodium bicarbonate, 0.25 mg/ml pyruvate, 50 μg/ml gentamicin, 10 μg/ml bFSH, 10 μg/ml bLH and 1 μg/ml estradiol. In experiment 1, this medium was supplemented with 10% FCS, 10% EDS or 0.4% BSA, whereas in experiment 2, it was supplemented with 0.4% BSA and 0, 10, 20 or 50 ng/ml of EGF. The oocytes were fixed, stained with 1% aceto-orcein stain and their nuclear status was evaluated. Oocytes were classified as germinal vesicle, diakinesis, metaphase-I, anaphase-I (A-I), metaphase-II (M-II) and those with degenerated, fragmented, scattered, activated or without visible chromatin as others. There was no difference (p > 0.05) observed in the proportion of oocytes reaching M-II stage between the media supplemented with FCS (71.5 ± 4.8), EDS (72.8 ± 2.9) and BSA (72.7 ± 6.2). In experiment 2, a higher proportion (p < 0.05) of oocytes reached M-II stage when the medium was supplemented with 20 ng/ml of EGF (81.4 ± 3.2) when compared with the media supplemented with 10 ng/ml (66.9 ± 4.1) and control (67.2 ± 7.1) groups. It may be concluded that the maturation media for dromedary camel oocytes can be supplemented with any of the three protein sources, i.e. FCS, EDS and BSA without any

  7. Quantitative proteomic analysis of whey proteins in the colostrum and mature milk of yak (Bos grunniens).

    PubMed

    Yang, Yongxin; Zhao, Xiaowei; Yu, Shumin; Cao, Suizhong

    2015-02-01

    Yak (Bos grunniens) is an important natural resource in mountainous regions. To date, few studies have addressed the differences in the protein profiles of yak colostrum and milk. We used quantitative proteomics to compare the protein profiles of whey from yak colostrum and milk. Milk samples were collected from 21 yaks after calving (1 and 28 d). Whey protein profiles were generated through isobaric tag for relative and absolute quantification (iTRAQ)-labelled proteomics. We identified 183 proteins in milk whey; of these, the expression levels of 86 proteins differed significantly between the whey from colostrum and milk. Haemoglobin expression showed the greatest change; its levels were significantly higher in the whey from colostrum than in mature milk whey. Functional analysis revealed that many of the differentially expressed proteins were associated with biological regulation and response to stimuli. Further, eight differentially expressed proteins involved in the complement and coagulation cascade pathway were enriched in milk whey. These findings add to the general understanding of the protein composition of yak milk, suggest potential functions of the differentially expressed proteins, and provide novel information on the role of colostral components in calf survival. © 2014 Society of Chemical Industry.

  8. Pharmacological inhibition of myostatin/TGF-β receptor/pSmad3 signaling rescues muscle regenerative responses in mouse model of type 1 diabetes.

    PubMed

    Jeong, Jaemin; Conboy, Michael J; Conboy, Irina M

    2013-08-01

    To study the influence of acute experimental diabetes on the regenerative potential of muscle stem (satellite) cells in mice. Male C57BL/6 young mice were injected with a single dose of streptozotocin (STZ, 180 mg/kg, ip) to induce diabetes. The diabetic mice were treated with insulin (0.75 U/kg, ip), follistatin (12 μg/kg, im) or Alk5 inhibitor (5 μmol/L per kg, sc) once a day. On the first day when high glucose levels were found, cardiotoxin (CTX) was focally injected into tibialis anterior and gastronemius muscles of the mice. The muscles were harvested 3 d and 5 d after CTX injection, and myofibers and satellite cells were isolated. Quantitative ex-vivo and in-vivo assays of myogenic potential were used to evaluate the muscle regenerative responses. The satellite cells from the diabetic mice 3 d after CTX injection fail to activate, and the repair of muscle deteriorates, resembling that observed in old control mice. Furthermore, the satellite cells have excessive levels of myostatin, TGF-β receptor 1, pSmad3 and the cell cycle inhibitor p15, while the level of TGF-β1 remain unchanged. Treatment of the diabetic mice with insulin rescued muscle regenerative responses, and restored the expression levels of myostatin, TGF-β receptor 1, pSmad3, and p15 to those similar of healthy controls. Treatment of the diabetic mice with the myostatin antagonist follistatin, or with the Alk5 inhibitor of TGF-β receptor 1 (which did not diminish the blood glucose levels) rescued muscle regenerative responses and attenuated the myostatin/TGFβ receptor/pSmad3 signaling. The muscle regenerative responses are incapacitated and repair of the tissue fails within hours after the initiation of hyperglycemia in a mouse model of type 1 diabetes, but stem cell function is rescued by insulin, as well as follistatin or an Alk5 inhibitor that blocks TGF-β receptor signaling.

  9. Bovine milk proteome in the first 9 days: protein interactions in maturation of the immune and digestive system of the newborn.

    PubMed

    Zhang, Lina; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; Hettinga, Kasper

    2015-01-01

    In order to better understand the milk proteome and its changes from colostrum to mature milk, samples taken at seven time points in the first 9 days from 4 individual cows were analyzed using proteomic techniques. Both the similarity in changes from day 0 to day 9 in the quantitative milk proteome, and the differences in specific protein abundance, were observed among four cows. One third of the quantified proteins showed a significant decrease in concentration over the first 9 days after calving, especially in the immune proteins (as much as 40 fold). Three relative high abundant enzymes (XDH, LPL, and RNASE1) and cell division and proliferation protein (CREG1) may be involved in the maturation of the gastro-intestinal tract. In addition, high correlations between proteins involved in complement and blood coagulation cascades illustrates the complex nature of biological interrelationships between milk proteins. The linear decrease of protease inhibitors and proteins involved in innate and adaptive immune system implies a protective role for protease inhibitor against degradation. In conclusion, the results found in this study not only improve our understanding of the role of colostrum in both host defense and development of the newborn calf but also provides guidance for the improvement of infant formula through better understanding of the complex interactions between milk proteins.

  10. Proteomic analysis of 'Zaosu' pear (Pyrus bretschneideri Rehd.) and its early-maturing bud sport.

    PubMed

    Liu, Xueting; Zhai, Rui; Feng, Wenting; Zhang, Shiwei; Wang, Zhigang; Qiu, Zonghao; Zhang, Junke; Ma, Fengwang; Xu, Lingfei

    2014-07-01

    Maturation of fruits involves a series of physiological, biochemical, and organoleptic changes that eventually make fleshy fruits attractive, palatable, and nutritional. In order to understand the mature mechanism of the early-maturing bud sport of 'Zaosu' pear, we analyzed the differences of proteome expression between the both pears in different mature stages by the methods of a combination of two-dimensional electrophoresis (2-DE) and matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Seventy-five differential expressed protein spots (p<0.05) were obtained between 'Zaosu' pear and its early-maturing bud sport, but only sixty-eight were demonstratively identified in the database of NCBI and uniprot. The majority of proteins were linked to metabolism, energy, stress response/defense and cell structure. Additionally, our data confirmed an increase of proteins related to cell-wall modification, oxidative stress and pentose phosphate metabolism and a decrease of proteins related to photosynthesis and glycolysis during the development process of both pears, but all these proteins increased or decreased faster in the early-maturing bud sport. This comparative analysis between both pears showed that these proteins were closely associated with maturation and could provide more detailed characteristics of the maturation process of both pears. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Neurotrophin and FGF Signaling Adapter Proteins, FRS2 and FRS3, Regulate Dentate Granule Cell Maturation and Excitatory Synaptogenesis.

    PubMed

    Nandi, Sayan; Alviña, Karina; Lituma, Pablo J; Castillo, Pablo E; Hébert, Jean M

    2018-01-15

    Dentate granule cells (DGCs) play important roles in cognitive processes. Knowledge about how growth factors such as FGFs and neurotrophins contribute to the maturation and synaptogenesis of DGCs is limited. Here, using brain-specific and germline mouse mutants we show that a module of neurotrophin and FGF signaling, the FGF Receptor Substrate (FRS) family of intracellular adapters, FRS2 and FRS3, are together required for postnatal brain development. In the hippocampus, FRS promotes dentate gyrus morphogenesis and DGC maturation during developmental neurogenesis, similar to previously published functions for both neurotrophins and FGFs. Consistent with a role in DGC maturation, two-photon imaging revealed that Frs2,3-double mutants have reduced numbers of dendritic branches and spines in DGCs. Functional analysis further showed that double-mutant mice exhibit fewer excitatory synaptic inputs onto DGCs. These observations reveal roles for FRS adapters in DGC maturation and synaptogenesis and suggest that FRS proteins may act as an important node for FGF and neurotrophin signaling in postnatal hippocampal development. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Targeted inhibition of oncogenic miR-21 maturation with designed RNA-binding proteins

    PubMed Central

    Chen, Yu; Yang, Fan; Zubovic, Lorena; Pavelitz, Tom; Yang, Wen; Godin, Katherine; Walker, Matthew; Zheng, Suxin; Macchi, Paolo; Varani, Gabriele

    2016-01-01

    The RNA Recognition Motif (RRM) is the largest family of eukaryotic RNA-binding proteins. Engineered RRMs with new specificity would provide valuable tools and an exacting test of our understanding of specificity. We have achieved the first successful re-design of the specificity of an RRM using rational methods and demonstrated re-targeting of activity in cells. We engineered the conserved RRM of human Rbfox proteins to specifically bind to the terminal loop of miR-21 precursor with high affinity and inhibit its processing by Drosha and Dicer. We further engineered Giardia Dicer by replacing its PAZ domain with the designed RRM. The reprogrammed enzyme degrades pre-miR-21 specifically in vitro and suppresses mature miR-21 levels in cells, which results in increased expression of PDCD4 and significantly decreased viability for cancer cells. The results demonstrate the feasibility of engineering the sequence-specificity of RRMs and of using this ubiquitous platform for diverse biological applications. PMID:27428511

  13. Regulation of hippocampus-dependent memory by the zinc finger protein Zbtb20 in mature CA1 neurons.

    PubMed

    Ren, Anjing; Zhang, Huan; Xie, Zhifang; Ma, Xianhua; Ji, Wenli; He, David Z Z; Yuan, Wenjun; Ding, Yu-Qiang; Zhang, Xiao-Hui; Zhang, Weiping J

    2012-10-01

    The mammalian hippocampus harbours neural circuitry that is crucial for associative learning and memory. The mechanisms that underlie the development and regulation of this complex circuitry are not fully understood. Our previous study established an essential role for the zinc finger protein Zbtb20 in the specification of CA1 field identity in the developing hippocampus. Here, we show that conditionally deleting Zbtb20 specifically in mature CA1 pyramidal neurons impaired hippocampus-dependent memory formation, without affecting hippocampal architecture or the survival, identity and basal excitatory synaptic activity of CA1 pyramidal neurons. We demonstrate that mature CA1-specific Zbtb20 knockout mice exhibited reductions in long-term potentiation (LTP) and NMDA receptor (NMDAR)-mediated excitatory post-synaptic currents. Furthermore, we show that activity-induced phosphorylation of ERK and CREB is impaired in the hippocampal CA1 of Zbtb20 mutant mice. Collectively, these results indicate that Zbtb20 in mature CA1 plays an important role in LTP and memory by regulating NMDAR activity, and activation of ERK and CREB.

  14. Parallel comparative proteomics and phosphoproteomics reveal that cattle myostatin regulates phosphorylation of key enzymes in glycogen metabolism and glycolysis pathway

    PubMed Central

    Yang, Shuping; Li, Xin; Liu, Xinfeng; Ding, Xiangbin; Xin, Xiangbo; Jin, Congfei; Zhang, Sheng; Li, Guangpeng; Guo, Hong

    2018-01-01

    MSTN-encoded myostatin is a negative regulator of skeletal muscle development. Here, we utilized the gluteus tissues from MSTN gene editing and wild type Luxi beef cattle which are native breed of cattle in China, performed tandem mass tag (TMT) -based comparative proteomics and phosphoproteomics analyses to investigate the regulatory mechanism of MSTN related to cellular metabolism and signaling pathway in muscle development. Out of 1,315 proteins, 69 differentially expressed proteins (DEPs) were found in global proteomics analysis. Meanwhile, 149 differentially changed phosphopeptides corresponding to 76 unique phosphorylated proteins (DEPPs) were detected from 2,600 identified phosphopeptides in 702 phosphorylated proteins. Bioinformatics analyses suggested that majority of DEPs and DEPPs were closely related to glycolysis, glycogenolysis, and muscle contractile fibre processes. The global discovery results were validated by Multiple Reaction Monitoring (MRM)-based targeted peptide quantitation analysis, western blotting, and muscle glycogen content measurement. Our data revealed that increase in abundance of key enzymes and phosphorylation on their regulatory sites appears responsible for the enhanced glycogenolysis and glycolysis in MSTN−/−. The elevated glycogenolysis was assocaited with an enhanced phosphorylation of Ser1018 in PHKA1, and Ser641/Ser645 in GYS1, which were regulated by upstream phosphorylated AKT-GSK3β pathway and highly consistent with the lower glycogen content in gluteus of MSTN−/−. Collectively, this study provides new insights into the regulatory mechanisms of MSTN involved in energy metabolism and muscle growth. PMID:29541418

  15. G protein-coupled estrogen receptor (GPER) in adult boar testes, epididymis and spermatozoa during epididymal maturation.

    PubMed

    Krejčířová, Romana; Maňasová, Marie; Sommerová, Veronika; Langhamerová, Eva; Rajmon, Radko; Maňásková-Postlerová, Pavla

    2018-05-04

    The G protein-coupled estrogen receptor (GPER) is a transmembrane receptor considered as a mediator of rapid non-genomic responses. GPER has been found in the male reproductive tract of many mammalian species. However, in adult boars, GPER has been reported only in ejaculated spermatozoa. Therefore, we focused on GPER detection in testicular and epididymal tissues and sperm cells in adult boars. We found GPER in Leydig cells and seminiferous tubules of boar testes and in the secretory epithelium of epididymis. A weaker signal was visible in smooth muscle cells and spermatozoa in the epididymal tubule. In spermatozoa isolated from epididymal parts, GPER was found to localize mainly in the sperm acrosome and flagellum. We immunodetected several protein bands in the extracts of the tissues and epididymal spermatozoa. A significantly higher amount of GPER mRNA was detected in the spermatozoa from caput epididymis, whereas the mRNA expression was lower in tissues of testes and caput epididymal. Our results showed the first evidence of GPER in boar epididymal spermatozoa. Moreover, the GPER localization in adult boar testes, epididymis, and mature spermatozoa suggests the involvement of estrogens via transmembrane receptor and rapid non-genomic signaling in both the sperm development and post-testicular maturation. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Comparative proteomics of milk fat globule membrane in goat colostrum and mature milk.

    PubMed

    Lu, Jing; Liu, Lu; Pang, Xiaoyang; Zhang, Shuwen; Jia, Zhenhu; Ma, Changlu; Zhao, Lili; Lv, Jiaping

    2016-10-15

    As an important nutrient source in large area of world, the composition and nutritional value of goat milk are not well deliberated. Detailed annotation of protein composition is essential to address the physiological and nutritional value of goat milk. In the present study, 423 colostrum and mature goat milk fat globule membrane (MFGM) proteins were identified. The abundance of 189 proteins was significantly different between colostrums and mature milk MFGM. The acute phase proteins were higher in colostrums MFGM than those in mature milk MFGM which protected newborns at the beginning of life. Proteins related to synthesis and secretion were conserved through lactation to ensure the milk production. Of note, long term depression (LTD) proteins were observed in colostrum and mature milk MFGM. Milk LTD proteins could be potential biomarkers for diagnosis of lactation related depressive syndromes and should be taken into considerations of their effects on newborns. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Adeno-associated virus-mediated expression of myostatin propeptide improves the growth of skeletal muscle and attenuates hyperglycemia in db/db mice.

    PubMed

    Jiang, J G; Shen, G F; Li, J; Qiao, C; Xiao, B; Yan, H; Wang, D W; Xiao, X

    2017-03-01

    Inhibition of myostatin, a negative growth modulator for muscle, can functionally enhance muscle mass and improve glucose and fat metabolism in myostatin propeptide (MPRO) transgenic mice. This study was to investigate whether myostatin inhibition by adeno-associated virus (AAV)-mediated gene delivery of MPRO could improve muscle mass and achieve therapeutic effects on glucose regulation and lipid metabolism in the db/db mice and the mechanisms involved in that process. Eight-week-old male db/db mice were administered saline, AAV-GFP and AAV-MPRO/Fc vectors and monitored random blood glucose levels and body weight for 36 weeks. Body weight gain was not different during follow-up among the groups, but AAV-MPRO/Fc vectors resulted high level of MPRO in the blood companied by an increase in skeletal muscle mass and muscle hypertrophy. In addition, AAV-MPRO/Fc-treated db/db mice showed significantly lower blood glucose and insulin levels and significantly increased glucose tolerance and insulin sensitivity compared with the control groups (P<0.05). Moreover, these mice exhibited lower triglyceride (TG) and free fatty acid (FFA) content in the skeletal muscle, although no difference was observed in fat pad weights and serum TG and FFA levels. Finally, AAV-MPRO/Fc-treated mice had enhanced insulin signaling in the skeletal muscle. These data suggest that AAV-mediated MPRO therapy may provide an important clue for potential clinical applications to prevent type II diabetes, and these studies confirm that MPRO is a therapeutic target for type II diabetes.

  18. Role of arachidonic acid and protein kinase C during maturation-inducing hormone-dependent meiotic resumption and ovulation in ovarian follicles of Atlantic croaker

    USGS Publications Warehouse

    Patino, R.; Yoshizaki, G.; Bolamba, D.; Thomas, P.

    2003-01-01

    The roles of arachidonic acid (AA) and protein kinase C (PKC) during in vitro maturation-inducing hormone (MIH)-dependent meiotic resumption (maturation) and ovulation were studied in ovarian follicles of Atlantic croaker (Micropogonias undulatus). The requirement for cyclooxygenase (COX) metabolites of AA was examined using a nonspecific COX inhibitor, indomethacin (IM), as well as two COX products, prostaglandin (PG) F2?? and PGE2, whereas the role of lipoxygenase (LOX) was investigated using a specific LOX inhibitor, nordihydroguaiaretic acid (NDGA). The involvement of PKC was examined using phorbol 12-myristate 13-acetate (PMA), a PKC activator, as well as GF109203X (GF), a specific inhibitor of PKC and 1-(5-isoquin- olinesulfonyl)-2-methylpiperazine (H7), nonspecific inhibitor of protein kinases. Genomic mechanisms were examined with the transcription-inhibitor actinomycin D (ActD) and the functionality of heterologous (oocyte-granulosa) gap junctions (GJ) with a dye transfer assay. The AA (100 ??M) and PGF2?? (5 ??M) did not induce maturation, and NDGA (10 ??M) did not affect MIH-dependent maturation. However, IM (100 ??M) partially inhibited MIH-dependent maturation. Conversely, AA and both PGs induced, and IM and NDGA inhibited, MIH-dependent ovulation in matured follicles. The PMA (1 ??g/ml) did not induce maturation but caused ovulation in matured follicles, whereas PKC inhibitors (GF, 5 ??M; H7, 50??M) did not affect MIH-dependent maturation but inhibited MIH- and PMA-dependent ovulation. The PMA-dependent ovulation was inhibited by IM but not by NDGA. In addition, ActD (5 ??M) blocked MIH-dependent, but not PMA-dependent, ovulation, and PGF2?? restored MIH-dependent ovulation in ActD-blocked follicles. The AA and PGs did not induce, and GF did not inhibit, MIH-dependent heterologous GJ uncoupling. In conclusion, AA and PKC mediate MIH-dependent ovulation but not meiotic resumption or heterologous GJ uncoupling in croaker follicles, but a permissive role

  19. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k

    PubMed Central

    Condezo, Gabriela N.; Marabini, Roberto; Ayora, Silvia; Carazo, José M.; Alba, Raúl; Chillón, Miguel

    2015-01-01

    ABSTRACT Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. IMPORTANCE Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in

  20. Phosphorylation of the Tight Junction Protein Occludin Regulates Epithelial Monolayer Proliferation and Maturation

    NASA Astrophysics Data System (ADS)

    Bolinger, Mark Thomas

    Barriers against the external environment are crucial for sustaining life in multicellular organisms, and form following convergent growth and development of cell-cell junctions. At least four types of epithelial cell-cell junctions exist, the most apical of which is known as the tight junction (TJ). A specific transmembrane protein known as occludin is highly phosphorylated on its C-terminal coiled-coil, and certain sites have been found to regulate specific aspects of TJ function, including the response to certain cytokines. Previously, our lab discovered a novel phosphosite at serine 471 that is located at a contact site with an important central organizer of the TJ, zonula occludens-1. Phosphoinhibitory, serine to alanine (S471A) occludin point mutant MDCK cell lines demonstrate that S471A monolayers are poorly organized compared to WT occludin (WT Occ) or phosphomimetic, serine to aspartic acid (S471D) lines. Additionally, S471A monolayers are composed of fewer, larger cells than controls, and exhibit proliferative arrest almost immediately following confluency, in contrast to control lines, which go through at least one additional round of proliferation. This phenotype can be recapitulated with a cell cycle inhibitor, demonstrating that confluent proliferation or cell packing is necessary for barrier maturation. G-protein coupled receptor kinase (GRK) was confirmed to be an S471 kinase by inhibitor experiments from a bioinformatically compiled candidate kinase list, and GRK inhibitors were able to recapitulate the phenotype of S471A lines. Finally, S471A expression perturbed purified coiled-coil stability as determined by NMR. Modeling of inter-coil interactions identified several possible hydrogen bonds that differ between the phosphorylated and non-phosphorylated forms. Expression of S471N (asparagine) transgenic occludin in vitro demonstrated highly organized border organization despite the lack of a negative charge at the S471 position. This result

  1. Maturation of the Hepatitis A Virus Capsid Protein VP1 Is Not Dependent on Processing by the 3Cpro Proteinase

    PubMed Central

    Martin, Annette; Bénichou, Danièle; Chao, Shih-Fong; Cohen, Lisette M.; Lemon, Stanley M.

    1999-01-01

    Most details of the processing of the hepatitis A virus (HAV) polyprotein are known. Unique among members of the family Picornaviridae, the primary cleavage of the HAV polyprotein is mediated by 3Cpro, the only proteinase known to be encoded by the virus, at the 2A/2B junction. All other cleavages of the polyprotein have been considered to be due to 3Cpro, although the precise location and mechanism responsible for the VP1/2A cleavage have been controversial. Here we present data that argue strongly against the involvement of the HAV 3Cpro proteinase in the maturation of VP1 from its VP1-2A precursor. Using a heterologous expression system based on recombinant vaccinia viruses directing the expression of full-length or truncated capsid protein precursors, we show that the C terminus of the mature VP1 capsid protein is located near residue 764 of the polyprotein. However, a proteolytically active HAV 3Cpro that was capable of directing both VP0/VP3 and VP3/VP1 cleavages in vaccinia virus-infected cells failed to process the VP1-2A precursor. Using site-directed mutagenesis of an infectious molecular clone of HAV, we modified potential VP1/2A cleavage sites that fit known 3Cpro recognition criteria and found that a substitution that ablates the presumed 3Cpro dipeptide recognition sequence at Glu764-Ser765 abolished neither infectivity nor normal VP1 maturation. Altered electrophoretic mobility of VP1 from a viable mutant virus with an Arg764 substitution indicated that this residue is present in VP1 and that the VP1/2A cleavage occurs downstream of this residue. These data indicate that maturation of the HAV VP1 capsid protein is not dependent on 3Cpro processing and may thus be uniquely dependent on a cellular proteinase. PMID:10400711

  2. COPI selectively drives maturation of the early Golgi

    PubMed Central

    Papanikou, Effrosyni; Day, Kasey J; Austin, Jotham; Glick, Benjamin S

    2015-01-01

    COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generate partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins. DOI: http://dx.doi.org/10.7554/eLife.13232.001 PMID:26709839

  3. COPI selectively drives maturation of the early Golgi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Papanikou, Effrosyni; Day, Kasey J.; Austin, II, Jotham

    COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generatemore » partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Lastly, our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins.« less

  4. COPI selectively drives maturation of the early Golgi

    DOE PAGES

    Papanikou, Effrosyni; Day, Kasey J.; Austin, II, Jotham; ...

    2015-12-28

    COPI coated vesicles carry material between Golgi compartments, but the role of COPI in the secretory pathway has been ambiguous. Previous studies of thermosensitive yeast COPI mutants yielded the surprising conclusion that COPI was dispensable both for the secretion of certain proteins and for Golgi cisternal maturation. To revisit these issues, we optimized the anchor-away method, which allows peripheral membrane proteins such as COPI to be sequestered rapidly by adding rapamycin. Video fluorescence microscopy revealed that COPI inactivation causes an early Golgi protein to remain in place while late Golgi proteins undergo cycles of arrival and departure. These dynamics generatemore » partially functional hybrid Golgi structures that contain both early and late Golgi proteins, explaining how secretion can persist when COPI has been inactivated. Lastly, our findings suggest that cisternal maturation involves a COPI-dependent pathway that recycles early Golgi proteins, followed by multiple COPI-independent pathways that recycle late Golgi proteins.« less

  5. Effect of Metformin on Handgrip Strength, Gait Speed, Myostatin Serum Level, and Health-related Quality of Life: A Double Blind Randomized Controlled Trial among Non-diabetic Pre-frail Elderly Patients.

    PubMed

    Laksmi, Purwita Wijaya; Setiati, Siti; Tamin, Tirza Z; Soewondo, Pradana; Rochmah, Wasilah; Nafrialdi, Nafrialdi; Prihartono, Joedo

    2017-04-01

    sarcopenia contributes to the development of frailty syndrome. Frailty syndrome is potentially improved by modifying insulin resistance, inflammation, and myostatin level. This study is aimed to investigate the effect of metformin on handgrip strength, gait speed, myostatin serum level, and health-related quality of life (HR-QoL) among non-diabetic pre-frail elderly patients. a double blind randomized controlled trial study was conducted on non-diabetic elderly outpatients aged ≥ 60 years with pre-frail status based on phenotype and/ or index criteria (Cardiovascular Health Study and/ or Frailty Index 40 items) consecutively recruited from March 2015 to June 2016 at Cipto Mangunkusumo Hospital. One-hundred-twenty subjects who met the research criteria were randomized and equally assigned into 3 x 500 mg metformin or placebo group. The study outcomes were measured at baseline and after 16 weeks of intervention. out of 120 subjects, 43 subjects in metformin group and 48 subjects in placebo group who completed the intervention. There was a significant improvement on the mean gait speed of metformin group by 0.39 (0.77) second or 0.13 (0.24) meter/second that remained significant after adjusting for important prognostic factors (p = 0.024). There was no significant difference on handgrip strength, myostatin serum level, and HR-QoL between both groups. 3 x 500 mg metformin for 16 weeks was statistically significant and clinically important in improving usual gait speed as one of the HR-QoL dimensions, but did not significantly improve the EQ-5D index score, handgrip strength, nor myostatin serum level.

  6. Changes in chemical components and cytotoxicity at different maturity stages of Pleurotus eryngii fruiting body.

    PubMed

    Cui, Fengjie; Li, Yunhong; Yang, Yan; Sun, Wenjing; Wu, Di; Ping, Lifeng

    2014-12-31

    The present study investigated the changes of the chemical components and cytotoxicity potency at 5 developmental stages of Pleurotus eryngii fruiting body. The carbohydrate and protein contents increased along the maturity of fruiting body while fat content decreased. By comparison, the polysaccharide-protein fractions had the highest antiproliferative effect on SGC-7901 and HepG-2 cells in vitro and increasing activity with growing maturity of P. eryngii fruiting body.The maturation process increased the protein content and acid property through the enhanced relative abundance of Asp, Thr, and Glu in polysaccharide-protein fractions. Further purification and electrophoresis identified that the polysaccharide-protein PEG-1with three subunits possibly was the target cytotoxical component. Our findings proved that mature fruiting body of P. eryngii containing these polysaccharide-proteins possessed highly nutritional values and therapeutical benefits.

  7. The Src-like adaptor protein regulates GM-CSFR signaling and monocytic dendritic cell maturation.

    PubMed

    Liontos, Larissa M; Dissanayake, Dilan; Ohashi, Pamela S; Weiss, Arthur; Dragone, Leonard L; McGlade, C Jane

    2011-02-15

    GM-CSF is an important cytokine involved in myeloid differentiation and inflammatory processes. Signaling through the GM-CSFR also plays a critical role in the generation of monocyte-derived dendritic cells (DC). In this article, we report that the Src-like adaptor protein (SLAP) functions as a negative regulator of the GM-CSFR. In bone marrow-derived DC (BM-DC) lacking SLAP and the closely related SLAP2, downregulation of GM-CSFRβ is impaired, leading to enhanced phosphorylation of Jak2 and prolonged activation of Akt and Erk1/2 in response to GM-CSF stimulation. Compared with wild-type bone marrow, SLAP/SLAP2(-/-) bone marrow gave rise to similar numbers of CD11c(+) and CD11b(+) DC, but SLAP/SLAP2(-/-) BM-DC failed to acquire high levels of MHC class II, CD80, and CD86, indicating an impairment in maturation. Furthermore, MHC class II expression in SLAP/SLAP2(-/-) BM-DC was rescued by decreasing GM-CSF concentration, suggesting that enhanced GM-CSF signaling mediates the block in maturation. In addition, SLAP/SLAP2(-/-) BM-DC produced less IL-12 and TNF-α in response to LPS compared with controls and failed to stimulate T cells in an MLR. Ag-specific T cell activation assays showed that SLAP/SLAP2(-/-) BM-DC were less robust at inducing IFN-γ secretion by DO11.10 T cells. These results indicated that SLAP-mediated GM-CSFR regulation is important for the generation of functionally mature monocytic DC.

  8. Preprotein mature domains contain translocase targeting signals that are essential for secretion.

    PubMed

    Chatzi, Katerina E; Sardis, Marios Frantzeskos; Tsirigotaki, Alexandra; Koukaki, Marina; Šoštarić, Nikolina; Konijnenberg, Albert; Sobott, Frank; Kalodimos, Charalampos G; Karamanou, Spyridoula; Economou, Anastassios

    2017-05-01

    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as pre proteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion. © 2017 Chatzi et al.

  9. Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.

    PubMed

    Hulmi, Juha J; Oliveira, Bernardo M; Silvennoinen, Mika; Hoogaars, Willem M H; Pasternack, Arja; Kainulainen, Heikki; Ritvos, Olli

    2013-07-15

    The importance of adequate levels of muscle size and function and physical activity is widely recognized. Myostatin/activin blocking increases skeletal muscle mass but may decrease muscle oxidative capacity and can thus be hypothesized to affect voluntary physical activity. Soluble activin receptor IIB (sActRIIB-Fc) was produced to block myostatin/activins. Modestly dystrophic mdx mice were injected with sActRIIB-Fc or PBS with or without voluntary wheel running exercise for 7 wk. Healthy mice served as controls. Running for 7 wk attenuated the sActRIIB-Fc-induced increase in body mass by decreasing fat mass. Running also enhanced/restored the markers of muscle oxidative capacity and autophagy in mdx mice to or above the levels of healthy mice. Voluntary running activity was decreased by sActRIIB-Fc during the first 3-4 wk correlating with increased body mass. Home cage physical activity of mice, quantified from the force plate signal, was decreased by sActRIIB-Fc the whole 7-wk treatment in sedentary mice. To understand what happens during the first weeks after sActRIIB-Fc administration, when mice are less active, healthy mice were injected with sActRIIB-Fc or PBS for 2 wk. During the sActRIIB-Fc-induced rapid 2-wk muscle growth period, oxidative capacity and autophagy were reduced, which may possibly explain the decreased running activity. These results show that increased muscle size and decreased markers of oxidative capacity and autophagy during the first weeks of myostatin/activin blocking are associated with decreased voluntary activity levels. Voluntary exercise in dystrophic mice enhances the markers of oxidative capacity and autophagy to or above the levels of healthy mice.

  10. The Role of Capsid Maturation on Adenovirus Priming for Sequential Uncoating*

    PubMed Central

    Pérez-Berná, Ana J.; Ortega-Esteban, Alvaro; Menéndez-Conejero, Rosa; Winkler, Dennis C.; Menéndez, Margarita; Steven, Alasdair C.; Flint, S. Jane; de Pablo, Pedro J.; San Martín, Carmen

    2012-01-01

    Adenovirus assembly concludes with proteolytic processing of several capsid and core proteins. Immature virions containing precursor proteins lack infectivity because they cannot properly uncoat, becoming trapped in early endosomes. Structural studies have shown that precursors increase the network of interactions maintaining virion integrity. Using different biophysical techniques to analyze capsid disruption in vitro, we show that immature virions are more stable than the mature ones under a variety of stress conditions and that maturation primes adenovirus for highly cooperative DNA release. Cryoelectron tomography reveals that under mildly acidic conditions mimicking the early endosome, mature virions release pentons and peripheral core contents. At higher stress levels, both mature and immature capsids crack open. The virus core is completely released from cracked capsids in mature virions, but it remains connected to shell fragments in the immature particle. The extra stability of immature adenovirus does not equate with greater rigidity, because in nanoindentation assays immature virions exhibit greater elasticity than the mature particles. Our results have implications for the role of proteolytic maturation in adenovirus assembly and uncoating. Precursor proteins favor assembly by establishing stable interactions with the appropriate curvature and preventing premature ejection of contents by tightly sealing the capsid vertices. Upon maturation, core organization is looser, particularly at the periphery, and interactions preserving capsid curvature are weakened. The capsid becomes brittle, and pentons are more easily released. Based on these results, we hypothesize that changes in core compaction during maturation may increase capsid internal pressure to trigger proper uncoating of adenovirus. PMID:22791715

  11. A Catalog of Proteins Expressed in the AG Secreted Fluid during the Mature Phase of the Chinese Mitten Crabs (Eriocheir sinensis)

    PubMed Central

    He, Lin; Li, Qing; Liu, Lihua; Wang, Yuanli; Xie, Jing; Yang, Hongdan; Wang, Qun

    2015-01-01

    The accessory gland (AG) is an important component of the male reproductive system of arthropods, its secretions enhance fertility, some AG proteins bind to the spermatozoa and affect its function and properties. Here we report the first comprehensive catalog of the AG secreted fluid during the mature phase of the Chinese mitten crab (Eriocheir sinensis). AG proteins were separated by one-dimensional gel electrophoresis and analyzed by reverse phase high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS). Altogether, the mass spectra of 1173 peptides were detected (1067 without decoy and contaminants) which allowed for the identification of 486 different proteins annotated upon the NCBI database (http://www.ncbi.nlm.nih.gov/) and our transcritptome dataset. The mass spectrometry proteomics data have been deposited at the ProteomeXchange with identifier PXD000700. An extensive description of the AG proteome will help provide the basis for a better understanding of a number of reproductive mechanisms, including potentially spermatophore breakdown, dynamic functional and morphological changes in sperm cells and sperm acrosin enzyme vitality. Thus, the comprehensive catalog of proteins presented here can serve as a valuable reference for future studies of sperm maturation and regulatory mechanisms involved in crustacean reproduction. PMID:26305468

  12. Controlled expression of nif and isc iron-sulfur protein maturation components reveals target specificity and limited functional replacement between the two systems.

    PubMed

    Dos Santos, Patricia C; Johnson, Deborah C; Ragle, Brook E; Unciuleac, Mihaela-Carmen; Dean, Dennis R

    2007-04-01

    The nitrogen-fixing organism Azotobacter vinelandii contains at least two systems that catalyze formation of [Fe-S] clusters. One of these systems is encoded by nif genes, whose products supply [Fe-S] clusters required for maturation of nitrogenase. The other system is encoded by isc genes, whose products are required for maturation of [Fe-S] proteins that participate in general metabolic processes. The two systems are similar in that they include an enzyme for the mobilization of sulfur (NifS or IscS) and an assembly scaffold (NifU or IscU) upon which [Fe-S] clusters are formed. Normal cellular levels of the Nif system, which supplies [Fe-S] clusters for the maturation of nitrogenase, cannot also supply [Fe-S] clusters for the maturation of other cellular [Fe-S] proteins. Conversely, when produced at the normal physiological levels, the Isc system cannot supply [Fe-S] clusters for the maturation of nitrogenase. In the present work we found that such target specificity for IscU can be overcome by elevated production of NifU. We also found that NifU, when expressed at normal levels, is able to partially replace the function of IscU if cells are cultured under low-oxygen-availability conditions. In contrast to the situation with IscU, we could not establish conditions in which the function of IscS could be replaced by NifS. We also found that elevated expression of the Isc components, as a result of deletion of the regulatory iscR gene, improved the capacity for nitrogen-fixing growth of strains deficient in either NifU or NifS.

  13. Chronic activity-based therapy does not improve body composition, insulin-like growth factor-I, adiponectin, or myostatin in persons with spinal cord injury

    PubMed Central

    Harness, Eric T.; Witzke, Kara A.

    2015-01-01

    Spinal cord injury (SCI) induces dramatic changes in body composition including reductions in fat-free mass (FFM) and increases in fat mass (FM). Objective To examine changes in body composition in response to chronic activity-based therapy (ABT) in persons with SCI. Design Longitudinal exercise intervention. Methods Seventeen men and women with SCI (mean age = 36.1 ± 11.5 years) completed 6 months of supervised ABT consisting of load bearing, resistance training, locomotor training, and functional electrical stimulation. At baseline and after 3 and 6 months of ABT, body weight, body fat, and FFM were assessed using dual-energy X-ray absorptiometry, and fasting blood samples were obtained to assess changes in insulin-like growth factor-I (IGF-I), adiponectin, and myostatin. Results Across all subjects, there was no change (P > 0.05) in body weight, percent body fat, or FFM of the leg, arm, or trunk, whereas whole-body FFM declined (P = 0.02, 50.4 ± 8.4 to 49.2 ± 7.4 kg). No changes (P = 0.21–0.41) were demonstrated in IGF-I, adiponectin, or myostatin during the study. Conclusions Chronic ABT focusing on the lower extremity does not slow muscle atrophy or alter body fat, body mass, or regional depots of FFM in persons with SCI. Further, it does not induce beneficial changes in adiponectin, myostatin, or IGF-I. Alternative exercise-based therapies are needed in SCI to reverse muscle atrophy and minimize the onset of related health risks. PMID:25130192

  14. Maturation of Black Cherry Fruits in Central Mississippi

    Treesearch

    F.T. Bonner

    1975-01-01

    Black cherry (Prunus serotina Ehrh.) in central Mississippi grew in size and weight from early May until maturity in late June. In early June, crude fat, protein-nitrogen, and calcium concentrations increased; moisture content decreased; endocarps hardened; and embryo tissues became firm. From mid-June to maturity mesocarp growth was prominent as...

  15. Comparative Proteomic and Transcriptomic Analysis of Follistatin-Induced Skeletal Muscle Hypertrophy.

    PubMed

    Barbé, Caroline; Bray, Fabrice; Gueugneau, Marine; Devassine, Stéphanie; Lause, Pascale; Tokarski, Caroline; Rolando, Christian; Thissen, Jean-Paul

    2017-10-06

    Skeletal muscle, the most abundant body tissue, plays vital roles in locomotion and metabolism. Myostatin is a negative regulator of skeletal muscle mass. In addition to increasing muscle mass, Myostatin inhibition impacts muscle contractility and energy metabolism. To decipher the mechanisms of action of the Myostatin inhibitors, we used proteomic and transcriptomic approaches to investigate the changes induced in skeletal muscles of transgenic mice overexpressing Follistatin, a physiological Myostatin inhibitor. Our proteomic workflow included a fractionation step to identify weakly expressed proteins and a comparison of fast versus slow muscles. Functional annotation of altered proteins supports the phenotypic changes induced by Myostatin inhibition, including modifications in energy metabolism, fiber type, insulin and calcium signaling, as well as membrane repair and regeneration. Less than 10% of the differentially expressed proteins were found to be also regulated at the mRNA level but the Biological Process annotation, and the KEGG pathways analysis of transcriptomic results shows a great concordance with the proteomic data. Thus this study describes the most extensive omics analysis of muscle overexpressing Follistatin, providing molecular-level insights to explain the observed muscle phenotypic changes.

  16. Changes over lactation in breast milk serum proteins involved in the maturation of immune and digestive system of the infant.

    PubMed

    Zhang, Lina; de Waard, Marita; Verheijen, Hester; Boeren, Sjef; Hageman, Jos A; van Hooijdonk, Toon; Vervoort, Jacques; van Goudoever, Johannes B; Hettinga, Kasper

    2016-09-16

    To objective of this study was to better understand the biological functions of breast milk proteins in relation to the growth and development of infants over the first six months of life. Breast milk samples from four individual women collected at seven time points in the first six months after delivery were analyzed by filter aided sample preparation and dimethyl labeling combined with liquid chromatography tandem mass spectrometry. A total of 247 and 200 milk serum proteins were identified and quantified, respectively. The milk serum proteome showed a high similarity (80% overlap) on the qualitative level between women and over lactation. The quantitative changes in milk serum proteins were mainly caused by three groups of proteins, enzymes, and transport and immunity proteins. Of these 21 significantly changed proteins, 30% were transport proteins, such as serum albumin and fatty acid binding protein, which are both involved in transporting nutrients to the infant. The decrease of the enzyme bile salt-activated lipase as well as the immunity proteins immunoglobulins and lactoferrin coincide with the gradual maturation of the digestive and immune system of infants. The human milk serum proteome didn't differ qualitatively but it did quantitatively, both between mothers and as lactation advanced. The changes of the breast milk serum proteome over lactation corresponded with the development of the digestive and immune system of infants. Breast milk proteins provide nutrition, but also contribute to healthy development of infants. Despite the previously reported large number of identified breast milk proteins and their changes over lactation, less is known on the changes of these proteins in individual mothers. This study is the first to determine the qualitative and quantitative changes of milk proteome over lactation between individual mothers. The results indicate that the differences in the milk proteome between individual mothers are more related to the

  17. Genomics of Mature and Immature Olfactory Sensory Neurons

    PubMed Central

    Nickell, Melissa D.; Breheny, Patrick; Stromberg, Arnold J.; McClintock, Timothy S.

    2014-01-01

    The continuous replacement of neurons in the olfactory epithelium provides an advantageous model for investigating neuronal differentiation and maturation. By calculating the relative enrichment of every mRNA detected in samples of mature mouse olfactory sensory neurons (OSNs), immature OSNs, and the residual population of neighboring cell types, and then comparing these ratios against the known expression patterns of >300 genes, enrichment criteria that accurately predicted the OSN expression patterns of nearly all genes were determined. We identified 847 immature OSN-specific and 691 mature OSN-specific genes. The control of gene expression by chromatin modification and transcription factors, and neurite growth, protein transport, RNA processing, cholesterol biosynthesis, and apoptosis via death domain receptors, were overrepresented biological processes in immature OSNs. Ion transport (ion channels), presynaptic functions, and cilia-specific processes were overrepresented in mature OSNs. Processes overrepresented among the genes expressed by all OSNs were protein and ion transport, ER overload response, protein catabolism, and the electron transport chain. To more accurately represent gradations in mRNA abundance and identify all genes expressed in each cell type, classification methods were used to produce probabilities of expression in each cell type for every gene. These probabilities, which identified 9,300 genes expressed in OSNs, were 96% accurate at identifying genes expressed in OSNs and 86% accurate at discriminating genes specific to mature and immature OSNs. This OSN gene database not only predicts the genes responsible for the major biological processes active in OSNs, but also identifies thousands of never before studied genes that support OSN phenotypes. PMID:22252456

  18. The heterodimeric association between the membrane proteins of Semliki Forest virus changes its sensitivity to low pH during virus maturation.

    PubMed Central

    Wahlberg, J M; Boere, W A; Garoff, H

    1989-01-01

    The budding and the fusion processes of the enveloped animal virus Semliki Forest virus serve the purpose of transporting its nucleocapsid, containing its genome, from the cytoplasm of an infected cell into that of an uninfected one. We show here that, in the infected cell, the viral membrane (spike) proteins p62 and E1 are organized as heterodimers which are very resistant to dissociation in acidic conditions. In contrast, the mature form of the heterodimer, E2E1, which is found in the virus particle and which is generated by proteolytic processing of p62, is very prone to dissociate upon treatment with mildly acidic buffers. We discuss the possibility that this difference in behavior of the intracellular precursor form and the mature form of the spike protein complex represents an important regulatory mechanism for the processes involving membrane binding around the nucleocapsid during budding and membrane release from the nucleocapsid at the stage of virus fusion. Images PMID:2479769

  19. The ubiquitin ligase Mdm2 controls oligodendrocyte maturation by intertwining mTOR with G protein-coupled receptor kinase 2 in the regulation of GPR17 receptor desensitization.

    PubMed

    Fumagalli, Marta; Bonfanti, Elisabetta; Daniele, Simona; Zappelli, Elisa; Lecca, Davide; Martini, Claudia; Trincavelli, Maria L; Abbracchio, Maria P

    2015-12-01

    During oligodendrocyte precursor cell (OPC) differentiation, defective control of the membrane receptor GPR17 has been suggested to block cell maturation and impair remyelination under demyelinating conditions. After the immature oligodendrocyte stage, to enable cells to complete maturation, GPR17 is physiologically down-regulated via phosphorylation/desensitization by G protein-coupled receptor kinases (GRKs); conversely, GRKs are regulated by the "mammalian target of rapamycin" mTOR. However, how GRKs and mTOR are connected to each other in modulating GPR17 function and oligodendrogenesis has remained elusive. Here we show, for the first time, a role for Murine double minute 2 (Mdm2), a ligase previously involved in ubiquitination/degradation of the onco-suppressor p53 protein. In maturing OPCs, both rapamycin and Nutlin-3, a small molecule inhibitor of Mdm2-p53 interactions, increased GRK2 sequestration by Mdm2, leading to impaired GPR17 down-regulation and OPC maturation block. Thus, Mdm2 intertwines mTOR with GRK2 in regulating GPR17 and oligodendrogenesis and represents a novel actor in myelination. © 2015 Wiley Periodicals, Inc.

  20. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy.

    PubMed

    Mobley, Christopher Brooks; Fox, Carlton D; Ferguson, Brian S; Amin, Rajesh H; Dalbo, Vincent J; Baier, Shawn; Rathmacher, John A; Wilson, Jacob M; Roberts, Michael D

    2014-01-01

    The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty expression mechanistically relates to

  1. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy

    PubMed Central

    2014-01-01

    Background The purpose of this study was to examine if L-leucine (Leu), β-hydroxy-β-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. Methods After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). Results MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p < 0.001). Leu, HMB and Crea prevented MSTN-induced atrophy. MSTN did not decrease MPS levels compared to DM/CTL myotubes, but MSTN treatment decreased the mRNA expression of Akirin-1/Mighty by 27% (p < 0.001) and MyoD by 26% (p < 0.01) compared to DM/CTL myotubes. shRNA experiments confirmed that Mighty mRNA knockdown reduced myotube size, linking MSTN treatment to atrophy independent of MPS. Remarkably, MSTN + Leu and MSTN + HMB myotubes had similar Akirin-1/Mighty and MyoD mRNA levels compared to DM/CTL myotubes. Furthermore, MSTN + Crea myotubes exhibited a 36% (p < 0.05) and 86% (p < 0.001) increase in Akirin-1/Mighty mRNA compared to DM/CTL and MSTN-only treated myotubes, respectively. Conclusions Leu, HMB and Crea may reduce MSTN-induced muscle fiber atrophy by influencing Akirin-1/Mighty mRNA expression patterns. Future studies are needed to examine if Leu, HMB and Crea independently or synergistically affect Akirin-1/Mighty expression, and how Akirin-1/Mighty

  2. [The maturation steps of human immunodeficiency virus and the role of proteolysis].

    PubMed

    Bukrinskaia, A G; Grigor'ev, V B; Korablina, E V; Gur'ev, E L; Vorkunova, G K

    2010-01-01

    HIV-1 virions are as immature noninfectious particles lacking a central core. Shortly after budding, virions temporally mature and acquire cores and infectious activity. The cause of maturation remains poorly studied. We have revealed that the virions produced early after infection following 24-36 hours, never mature and remain noninfectious, and only virions produced 48-72 hours after infection mature. The mature virions contain 3 times more genomic viral RNA than "early" virus. The "early" virions contain the same proteolytically cleaved Gag proteins as mature virions in contrast to the accepted version. The virus protease inhibitor Indinavir sulfate (IS) fully blocks infectivity when added early after infection. The early proteolysis of Gag precursor in the infected cells and inclusion into the virions of cellularly cleaved matrix protein (cMA) are shown in the IS-treated cells. cMA is associated with genomic viral RNA.

  3. Incomplete proteasomal degradation of green fluorescent proteins in the context of tandem fluorescent protein timers

    PubMed Central

    Khmelinskii, Anton; Meurer, Matthias; Ho, Chi-Ting; Besenbeck, Birgit; Füller, Julia; Lemberg, Marius K.; Bukau, Bernd; Mogk, Axel; Knop, Michael

    2016-01-01

    Tandem fluorescent protein timers (tFTs) report on protein age through time-dependent change in color, which can be exploited to study protein turnover and trafficking. Each tFT, composed of two fluorescent proteins (FPs) that differ in maturation kinetics, is suited to follow protein dynamics within a specific time range determined by the maturation rates of both FPs. So far, tFTs have been constructed by combining slower-maturing red fluorescent proteins (redFPs) with the faster-maturing superfolder green fluorescent protein (sfGFP). Toward a comprehensive characterization of tFTs, we compare here tFTs composed of different faster-maturing green fluorescent proteins (greenFPs) while keeping the slower-maturing redFP constant (mCherry). Our results indicate that the greenFP maturation kinetics influences the time range of a tFT. Moreover, we observe that commonly used greenFPs can partially withstand proteasomal degradation due to the stability of the FP fold, which results in accumulation of tFT fragments in the cell. Depending on the order of FPs in the timer, incomplete proteasomal degradation either shifts the time range of the tFT toward slower time scales or precludes its use for measurements of protein turnover. We identify greenFPs that are efficiently degraded by the proteasome and provide simple guidelines for the design of new tFTs. PMID:26609072

  4. Degradation of a Polyadenylated rRNA Maturation By-Product Involves One of the Three RRP6-Like Proteins in Arabidopsis thaliana▿

    PubMed Central

    Lange, Heike; Holec, Sarah; Cognat, Valérie; Pieuchot, Laurent; Le Ret, Monique; Canaday, Jean; Gagliardi, Dominique

    2008-01-01

    Yeast Rrp6p and its human counterpart, PM/Scl100, are exosome-associated proteins involved in the degradation of aberrant transcripts and processing of precursors to stable RNAs, such as the 5.8S rRNA, snRNAs, and snoRNAs. The activity of yeast Rrp6p is stimulated by the polyadenylation of its RNA substrates. We identified three RRP6-like proteins in Arabidopsis thaliana: AtRRP6L3 is restricted to the cytoplasm, whereas AtRRP6L1 and -2 have different intranuclear localizations. Both nuclear RRP6L proteins are functional, since AtRRP6L1 complements the temperature-sensitive phenotype of a yeast rrp6Δ strain and mutation of AtRRP6L2 leads to accumulation of an rRNA maturation by-product. This by-product corresponds to the excised 5′ part of the 18S-5.8S-25S rRNA precursor and accumulates as a polyadenylated transcript, suggesting that RRP6L2 is involved in poly(A)-mediated RNA degradation in plant nuclei. Interestingly, the rRNA maturation by-product is a substrate of AtRRP6L2 but not of AtRRP6L1. This result and the distinctive subcellular distribution of AtRRP6L1 to -3 indicate a specialization of RRP6-like proteins in Arabidopsis. PMID:18285452

  5. Amelogenin-Ameloblastin Spatial Interaction around Maturing Enamel Rods.

    PubMed

    Mazumder, P; Prajapati, S; Bapat, R; Moradian-Oldak, J

    2016-08-01

    Amelogenin and ameloblastin are 2 extracellular matrix proteins that are essential for the proper development of enamel. We recently reported that amelogenin and ameloblastin colocalized during the secretory stage of enamel formation when nucleation of enamel crystallites occurs. Direct interactions between the 2 proteins have been also demonstrated in our in vitro studies. Here, we explore interactions between their fragments during enamel maturation. We applied in vivo immunofluorescence imaging, quantitative co-localization analysis, and a new FRET (fluorescence resonance energy transfer) technique to demonstrate ameloblastin and amelogenin interaction in the maturing mouse enamel. Using immunochemical analysis of protein samples extracted from 8-d-old (P8) first molars from mice as a model for maturation-stage enamel, we identified the ~17-kDa ameloblastin (Ambn-N) and the TRAP (tyrosine-rich amelogenin peptide) fragments. We used Ambn-N18 and Ambn-M300 antibodies raised against the N-terminal and C-terminal segments of ameloblastin, as well as Amel-FL and Amel-C19 antibodies against full-length recombinant mouse amelogenin (rM179) and C-terminal amelogenin, respectively. In transverse sections, co-localization images of N-terminal fragments of amelogenin and ameloblastin around the prism boundary revealed the "fish net" pattern of the enamel matrix. Using in vivo FRET microscopy, we further demonstrated spatial interactions between amelogenin and ameloblastin N-terminal fragments. In the maturing mouse enamel, the association of these residual protein fragments created a discontinuity between enamel rods, which we suggest is important for support and maintenance of enamel rods and eventual contribution to unique enamel mechanical properties. We present data that support cooperative functions of enamel matrix proteins in mediating the structural hierarchy of enamel and that contribute to our efforts to design and develop enamel biomimetic material.

  6. Cloning of rat amelotin and localization of the protein to the basal lamina of maturation stage ameloblasts and junctional epithelium.

    PubMed

    Moffatt, Pierre; Smith, Charles E; St-Arnaud, René; Simmons, Darrin; Wright, J Timothy; Nanci, Antonio

    2006-10-01

    Formation of tooth enamel is a very complex process in which a specific set of proteins secreted by ameloblasts play a primordial role. As part of a screening procedure to identify novel proteins secreted by EO (enamel organ) cells of rat incisors, we isolated a partial cDNA fragment (EO-017) that is the homologue of the recently described mouse Amtn (amelotin) gene [Iwasaki, Bajenova, Somogyi-Ganss, Miller, Nguyen, Nourkeyhani, Gao, Wendel and Ganss (2005) J. Dent. Res. 84, 1127-1132]. Presented herein is the cloning of rat and pig full-length cDNAs with their deduced protein sequences. Detailed expression profiling by Northern-blot analysis and RT (reverse transcriptase)-PCR on rat and mouse tissues revealed highest expression in the mandible, more specifically in the maturation stage of the EO. Among all tissues tested, low expression was detected only in periodontal ligament, lung, thymus and gingiva. In silico analyses revealed that the Amtn gene is highly conserved in seven other mammals, but is absent from fish, birds and amphibians. The Amtn protein is enriched in proline, leucine, glutamine and threonine (52% of total) and contains a perfectly conserved protein kinase CK2 phosphorylation site. Transient transfection experiments in HEK-293 cells (human embryonic kidney cells) showed that secreted Amtn is post-translationally modified possibly through O-linked oligosaccharides on threonine residues. In concordance with its predominant expression site, immunofluorescence localization within the rat and mouse mandibles revealed Amtn localized to the basal lamina of maturation stage ameloblasts of incisors and unerupted molars. Intense Amtn protein expression was also detected in the internal basal lamina of junctional epithelium in molars. The peculiar and unique cellular localization of Amtn suggests a role in cell adhesion.

  7. Very low protein diets supplemented with keto-analogues in ESRD predialysis patients and its effect on vascular stiffness and AVF Maturation.

    PubMed

    David, Cristiana; Peride, Ileana; Niculae, Andrei; Constantin, Alexandra Maria; Checherita, Ionel Alexandru

    2016-09-20

    Native arteriovenous fistula (AVF) is the most appropriate type of vascular access for chronic dialysis. Its patency rates depend on vascular wall characteristics. Ketoacid analogues of essential amino acids (KA/EAA) are prescribed in end-stage renal disease (ESRD) pre-dialysis patients to lower toxic metabolic products generation and improve nutritional status. We hypothesized that very-low protein diet (VLPD) supplemented with KA/EAA may influence arterial wall stiffness and affect AVF maturation rates and duration in pre-dialysis ESRD patients. In a prospective, cohort, 3 years study we enrolled 67 consecutive non-diabetic early referral ESRD patients that underwent AVF creation in our hospital. Patients were divided in two groups based on their regimen 12 months prior to surgery: a VLPD supplemented with KA/EAA study group versus a low protein diet non-KA/EAA-supplemented control group. For each patient we performed serum analysis for the parameters of bone mineral disease, inflammation and nutritional status, one pulse wave velocity (PWV) measurement and one Doppler ultrasound (US) determination prior the surgery, followed by consequent Doppler US assessments at 4, 6, 8 and 12 weeks after it. Rates and duration of mature AVF achievement were noted. We used logistic regression to analyze the association between AVF maturation and KA/EAA administration, by comparing rates and durations between groups, unadjusted and adjusted for systolic blood pressure, C-reactive protein, PWV, phosphorus values. All parameters in the logistic model were transformed in binary variables. A p-value < α = 0.05 was considered significant; data were processed using SPSS 16 software and Excel. In the study group (n = 28, aged 57 ± 12.35, 13 females) we registered better serum phosphate (p = 0.022) and C-reactive protein control (p = 0.021), lower PWV (p = 0.007) and a higher percent of AVF creation success (33.3 % versus 17.8 %, p < 0.05). AVF

  8. Viewing pre-60S maturation at a minute’s timescale

    PubMed Central

    Zisser, Gertrude; Ohmayer, Uli; Mauerhofer, Christina; Mitterer, Valentin; Klein, Isabella; Rechberger, Gerald N; Wolinski, Heimo; Prattes, Michael; Pertschy, Brigitte; Milkereit, Philipp

    2018-01-01

    Abstract The formation of ribosomal subunits is a highly dynamic process that is initiated in the nucleus and involves more than 200 trans-acting factors, some of which accompany the pre-ribosomes into the cytoplasm and have to be recycled into the nucleus. The inhibitor diazaborine prevents cytoplasmic release and recycling of shuttling pre-60S maturation factors by inhibiting the AAA-ATPase Drg1. The failure to recycle these proteins results in their depletion in the nucleolus and halts the pathway at an early maturation step. Here, we made use of the fast onset of inhibition by diazaborine to chase the maturation path in real-time from 27SA2 pre-rRNA containing pre-ribosomes localized in the nucleolus up to nearly mature 60S subunits shortly after their export into the cytoplasm. This allows for the first time to put protein assembly and disassembly reactions as well as pre-rRNA processing into a chronological context unraveling temporal and functional linkages during ribosome maturation. PMID:29294095

  9. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein.

    PubMed

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E

    2010-09-10

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-beta (Abeta), the principal component of senile plaques. Abeta is an approximately 4-kDa peptide generated via cleavage of the amyloid-beta precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Abeta-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Abeta levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Abeta levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-beta pathology.

  10. Curcumin Decreases Amyloid-β Peptide Levels by Attenuating the Maturation of Amyloid-β Precursor Protein*

    PubMed Central

    Zhang, Can; Browne, Andrew; Child, Daniel; Tanzi, Rudolph E.

    2010-01-01

    Alzheimer disease (AD) is a devastating neurodegenerative disease with no cure. The pathogenesis of AD is believed to be driven primarily by amyloid-β (Aβ), the principal component of senile plaques. Aβ is an ∼4-kDa peptide generated via cleavage of the amyloid-β precursor protein (APP). Curcumin is a compound in the widely used culinary spice, turmeric, which possesses potent and broad biological activities, including anti-inflammatory and antioxidant activities, chemopreventative effects, and effects on protein trafficking. Recent in vivo studies indicate that curcumin is able to reduce Aβ-related pathology in transgenic AD mouse models via unknown molecular mechanisms. Here, we investigated the effects of curcumin on Aβ levels and APP processing in various cell lines and mouse primary cortical neurons. We show for the first time that curcumin potently lowers Aβ levels by attenuating the maturation of APP in the secretory pathway. These data provide a mechanism of action for the ability of curcumin to attenuate amyloid-β pathology. PMID:20622013

  11. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation

    PubMed Central

    Levet, Sandrine; Ciais, Delphine; Merdzhanova, Galina; Mallet, Christine; Zimmers, Teresa A.; Lee, Se-Jin; Navarro, Fabrice P.; Texier, Isabelle; Feige, Jean-Jacques; Bailly, Sabine

    2013-01-01

    Lymphatic vessels are critical for the maintenance of tissue fluid homeostasis and their dysfunction contributes to several human diseases. The activin receptor-like kinase 1 (ALK1) is a transforming growth factor-β family type 1 receptor that is expressed on both blood and lymphatic endothelial cells (LECs). Its high-affinity ligand, bone morphogenetic protein 9 (BMP9), has been shown to be critical for retinal angiogenesis. The aim of this work was to investigate whether BMP9 could play a role in lymphatic development. We found that Bmp9 deficiency in mice causes abnormal lymphatic development. Bmp9-knockout (KO) pups presented hyperplastic mesenteric collecting vessels that maintained LYVE-1 expression. In accordance with this result, we found that BMP9 inhibited LYVE-1 expression in LECs in an ALK1-dependent manner. Bmp9-KO pups also presented a significant reduction in the number and in the maturation of mesenteric lymphatic valves at embryonic day 18.5 and at postnatal days 0 and 4. Interestingly, the expression of several genes known to be involved in valve formation (Foxc2, Connexin37, EphrinB2, and Neuropilin1) was upregulated by BMP9 in LECS. Finally, we demonstrated that Bmp9-KO neonates and adult mice had decreased lymphatic draining efficiency. These data identify BMP9 as an important extracellular regulator in the maturation of the lymphatic vascular network affecting valve development and lymphatic vessel function. PMID:23741013

  12. Modulation of Stem Cell Differentiation and Myostatin as an Approach to Counteract Fibrosis in Muscle Dystrophy and Regeneration after Injury

    DTIC Science & Technology

    2011-03-01

    Duchenne muscular dystrophy (DMD). To examine whether counteracting myostatin, a negative regulator of muscle mass and a pro-lipofibrotic factor...extracellular matrix, and fat, characterizes muscle dystrophy , and in particular Duchenne muscular dystrophy (DMD) (1,2), as seen also in its animal model...stem cells (MDSC) into myogenic as opposed to lipofibrogenic lineages is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD). To

  13. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin.

    PubMed

    Ziccardi, Lucia; Vijayasarathy, Camasamudram; Bush, Ronald A; Sieving, Paul A

    2012-09-19

    Loss of retinoschisin (RS1) in Rs1 knock-out (Rs1-KO) retina produces a post-photoreceptor phenotype similar to X-linked retinoschisis in young males. However, Rs1 is expressed strongly in photoreceptors, and Rs1-KO mice have early reduction in the electroretinogram a-wave. We examined light-activated transducin and arrestin translocation in young Rs1-KO mice as a marker for functional abnormalities in maturing rod photoreceptors. We found a progressive reduction in luminance threshold for transducin translocation in wild-type (WT) retinas between postnatal days P18 and P60. At P21, the threshold in Rs1-KO retinas was 10-fold higher than WT, but it decreased to <2.5-fold higher by P60. Light-activated arrestin translocation and re-translocation of transducin in the dark were not affected. Rs1-KO rod outer segment (ROS) length was significantly shorter than WT at P21 but was comparable with WT at P60. These findings suggested a delay in the structural and functional maturation of Rs1-KO ROS. Consistent with this, transcription factors CRX and NRL, which are fundamental to maturation of rod protein expression, were reduced in ROS of Rs1-KO mice at P21 but not at P60. Expression of transducin was 15-30% lower in P21 Rs1-KO ROS and transducin GTPase hydrolysis was nearly twofold faster, reflecting a 1.7- to 2.5-fold increase in RGS9 (regulator of G-protein signaling) level. Transduction protein expression and activity levels were similar to WT at P60. Transducin translocation threshold elevation indicates photoreceptor functional abnormalities in young Rs1-KO mice. Rapid reduction in threshold coupled with age-related changes in transduction protein levels and transcription factor expression are consistent with delayed maturation of Rs1-KO photoreceptors.

  14. Maturation of high-density lipoproteins

    PubMed Central

    Shih, Amy Y.; Sligar, Stephen G.; Schulten, Klaus

    2009-01-01

    Human high-density lipoproteins (HDLs) are involved in the transport of cholesterol. The mechanism by which HDL assembles and functions is not well understood owing to a lack of structural information on circulating spherical HDL. Here, we report a series of molecular dynamics simulations that describe the maturation of discoidal HDL into spherical HDL upon incorporation of cholesterol ester as well as the resulting atomic level structure of a mature circulating spherical HDL particle. Sixty cholesterol ester molecules were added in a stepwise fashion to a discoidal HDL particle containing two apolipoproteins wrapped around a 160 dipalmitoylphosphatidylcholine lipid bilayer. The resulting matured particle, captured in a coarse-grained description, was then described in a consistent all-atom representation and analysed in chemical detail. The simulations show that maturation results from the formation of a highly dynamic hydrophobic core comprised of cholesterol ester surrounded by phospholipid and protein; the two apolipoprotein strands remain in a belt-like conformation as seen in the discoidal HDL particle, but with flexible N- and C-terminal helices and a central region stabilized by salt bridges. In the otherwise flexible lipoproteins, a less mobile central region provides an ideal location to bind lecithin cholesterol acyltransferase, the key enzyme that converts cholesterol to cholesterol ester during HDL maturation. PMID:19570799

  15. Modulation of dendritic cell maturation and function by the Tax protein of human T cell leukemia virus type 1

    PubMed Central

    Jain, Pooja; Ahuja, Jaya; Khan, Zafar K.; Shimizu, Saori; Meucci, Olimpia; Jennings, Stephen R.; Wigdahl, Brian

    2009-01-01

    Human T cell leukemia virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is characterized by the generation of an intense CTL cell response directed against the viral transactivator protein Tax. In addition, patients diagnosed with HAM/TSP exhibit rapid activation and maturation of dendritic cells (DC), likely contributing to the robust, Tax-specific CTL response. In this study, extracellular Tax has been shown to induce maturation and functional alterations in human monocyte-derived DC, critical observations being confirmed in freshly isolated myeloid DC. Tax was shown to promote the production of proinflammatory cytokines and chemokines involved in the DC activation process in a dose- and time-dependent manner. Furthermore, Tax induced the expression of DC activation (CD40, CD80, and CD86) and maturation (CD83) markers and enhanced the T cell proliferation capability of DC. Heat inactivation of Tax resulted in abrogation of these effects, indicating a requirement for the native structure of Tax, which was found to bind efficiently to the DC membrane and was internalized within a few hours, suggesting that extracellular Tax may possess an intracellular mechanism of action subsequent to entry. Finally, inhibitors of cellular signaling pathways, NF-κB, protein kinase, tyrosine kinase, and phospholipase C, were shown to inhibit Tax-mediated DC activation. This is the first study reporting the immunomodulatory effects of extracellular Tax in the DC compartment. These results suggest that DC, once exposed to Tax by uptake from the extracellular environment, can undergo activation, providing constant antigen presentation and costimulation to T cells, leading to the intense T cell proliferation and inflammatory responses underlying HAM/TSP. PMID:17442856

  16. Two Novel Rab2 Interactors Regulate Dense-core Vesicle Maturation

    PubMed Central

    Ailion, Michael; Hannemann, Mandy; Dalton, Susan; Pappas, Andrea; Watanabe, Shigeki; Hegermann, Jan; Liu, Qiang; Han, Hsiao-Fen; Gu, Mingyu; Goulding, Morgan Q.; Sasidharan, Nikhil; Schuske, Kim; Hullett, Patrick; Eimer, Stefan; Jorgensen, Erik M.

    2014-01-01

    Summary Peptide neuromodulators are released from a unique organelle: the dense-core vesicle. Dense-core vesicles are generated at the trans-Golgi, and then sort cargo during maturation before being secreted. To identify proteins that act in this pathway, we performed a genetic screen in Caenorhabditis elegans for mutants defective in dense-core vesicle function. We identified two conserved Rab2-binding proteins: RUND-1, a RUN domain protein, and CCCP-1, a coiled-coil protein. RUND-1 and CCCP-1 colocalize with RAB-2 at the Golgi, and rab-2, rund-1 and cccp-1 mutants have similar defects in sorting soluble and transmembrane dense-core vesicle cargos. RUND-1 also interacts with the Rab2 GAP protein TBC-8 and the BAR domain protein RIC-19, a RAB-2 effector. In summary, a new pathway of conserved proteins controls the maturation of dense-core vesicles at the trans-Golgi network. PMID:24698274

  17. Phosphoproteomics Profiling of Tobacco Mature Pollen and Pollen Activated in vitro *

    PubMed Central

    Fíla, Jan; Radau, Sonja; Matros, Andrea; Hartmann, Anja; Scholz, Uwe; Feciková, Jana; Mock, Hans-Peter; Čapková, Věra; Zahedi, René Peiman; Honys, David

    2016-01-01

    Tobacco mature pollen has extremely desiccated cytoplasm, and is metabolically quiescent. Upon re-hydration it becomes metabolically active and that results in later emergence of rapidly growing pollen tube. These changes in cytoplasm hydration and metabolic activity are accompanied by protein phosphorylation. In this study, we subjected mature pollen, 5-min-activated pollen, and 30-min-activated pollen to TCA/acetone protein extraction, trypsin digestion and phosphopeptide enrichment by titanium dioxide. The enriched fraction was subjected to nLC-MS/MS. We identified 471 phosphopeptides that carried 432 phosphorylation sites, position of which was exactly matched by mass spectrometry. These 471 phosphopeptides were assigned to 301 phosphoproteins, because some proteins carried more phosphorylation sites. Of the 13 functional groups, the majority of proteins were put into these categories: transcription, protein synthesis, protein destination and storage, and signal transduction. Many proteins were of unknown function, reflecting the fact that male gametophyte contains many specific proteins that have not been fully functionally annotated. The quantitative data highlighted the dynamics of protein phosphorylation during pollen activation; the identified phosphopeptides were divided into seven groups based on the regulatory trends. The major group comprised mature pollen-specific phosphopeptides that were dephosphorylated during pollen activation. Several phosphopeptides representing the same phosphoprotein had different regulation, which pinpointed the complexity of protein phosphorylation and its clear functional context. Collectively, we showed the first phosphoproteomics data on activated pollen where the position of phosphorylation sites was clearly demonstrated and regulatory kinetics was resolved. PMID:26792808

  18. Preprotein mature domains contain translocase targeting signals that are essential for secretion

    PubMed Central

    Tsirigotaki, Alexandra; Koukaki, Marina; Šoštarić, Nikolina; Konijnenberg, Albert; Sobott, Frank; Kalodimos, Charalampos G.; Karamanou, Spyridoula

    2017-01-01

    Secretory proteins are only temporary cytoplasmic residents. They are typically synthesized as preproteins, carrying signal peptides N-terminally fused to their mature domains. In bacteria secretion largely occurs posttranslationally through the membrane-embedded SecA-SecYEG translocase. Upon crossing the plasma membrane, signal peptides are cleaved off and mature domains reach their destinations and fold. Targeting to the translocase is mediated by signal peptides. The role of mature domains in targeting and secretion is unclear. We now reveal that mature domains harbor their own independent targeting signals (mature domain targeting signals [MTSs]). These are multiple, degenerate, interchangeable, linear or 3D hydrophobic stretches that become available because of the unstructured states of targeting-competent preproteins. Their receptor site on the cytoplasmic face of the SecYEG-bound SecA is also of hydrophobic nature and is located adjacent to the signal peptide cleft. Both the preprotein MTSs and their receptor site on SecA are essential for protein secretion. Evidently, mature domains have their own previously unsuspected distinct roles in preprotein targeting and secretion. PMID:28404644

  19. A proteomic insight into vitellogenesis during tick ovary maturation.

    PubMed

    Xavier, Marina Amaral; Tirloni, Lucas; Pinto, Antônio F M; Diedrich, Jolene K; Yates, John R; Mulenga, Albert; Logullo, Carlos; da Silva Vaz, Itabajara; Seixas, Adriana; Termignoni, Carlos

    2018-03-16

    Ticks are arthropod ectoparasites of importance for public and veterinary health. The understanding of tick oogenesis and embryogenesis could contribute to the development of novel control methods. However, to date, studies on the temporal dynamics of proteins during ovary development were not reported. In the present study we followed protein profile during ovary maturation. Proteomic analysis of ovary extracts was performed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) using shotgun strategy, in addition to dimethyl labelling-based protein quantification. A total of 3,756 proteins were identified, which were functionally annotated into 30 categories. Circa 80% of the annotated proteins belong to categories related to basal metabolism, such as protein synthesis and modification machineries, nuclear regulation, cytoskeleton, proteasome machinery, transcriptional machinery, energetic metabolism, extracellular matrix/cell adhesion, immunity, oxidation/detoxification metabolism, signal transduction, and storage. The abundance of selected proteins involved in yolk uptake and degradation, as well as vitellin accumulation during ovary maturation, was assessed using dimethyl-labelling quantification. In conclusion, proteins identified in this study provide a framework for future studies to elucidate tick development and validate candidate targets for novel control methods.

  20. Myostatin knockout using zinc-finger nucleases promotes proliferation of ovine primary satellite cells in vitro.

    PubMed

    Salabi, Fatemeh; Nazari, Mahmood; Chen, Qing; Nimal, Jonathan; Tong, Jianming; Cao, Wen G

    2014-12-20

    Myostatin (MSTN) has previously been shown to negatively regulate the proliferation and differentiation of skeletal muscle cells. Satellite cells are quiescent muscle stem cells that promote muscle growth and repair. Because the mechanism of MSTN in the biology of satellite cells is not well understood, this study was conducted to generate MSTN mono-allelic knockout satellite cells using the zinc-finger nuclease mRNA (MSTN-KO ZFN mRNA) and also to investigate the effect of this disruption on the proliferation and differentiation of sheep primary satellite cells (PSCs). Nineteen biallelic and four mono-allelic knockout cell clones were obtained after sequence analysis. The homologous mono-allelic knockout cells with 5-bp deletion were used to further evaluations. The results demonstrated that mono-allelic knockout of MSTN gene leads to translation inhibition. Real-time quantitative PCR results indicated that knockout of MSTN contributed to an increase in CDK2 and follistatin and a decrease in p21 at the transcript level in proliferation conditions. Moreover, MSTN knockout significantly increased the proliferation of mutant clones (P < 0.01). Consistent with the observed increase in CDK2 and decrease in p21 in cells lacking MSTN, cell cycle analysis showed that MSTN negatively regulated the G1 to S progression. In addition, knockout of myostatin resulted in a remarkable increase in MyoD and MyoG expression under differentiating conditions but had no effect on Myf5 expression. These results expanded our understanding of the regulation mechanism of MSTN. Furthermore, the MSTN-KO ZFN mRNA system in PSCs could be used to generate transgenic sheep in the future.

  1. Suppression of muscle wasting by the plant‐derived compound ursolic acid in a model of chronic kidney disease

    PubMed Central

    Yu, Rizhen; Chen, Ji‐an; Xu, Jing; Cao, Jin; Wang, Yanlin; Thomas, Sandhya S.

    2016-01-01

    Abstract Background Muscle wasting in chronic kidney disease (CKD) and other catabolic disorders contributes to morbidity and mortality, and there are no therapeutic interventions that regularly and safely block losses of muscle mass. We have obtained evidence that impaired IGF‐1/insulin signalling and increases in glucocorticoids, myostatin and/or inflammatory cytokines that contribute to the development of muscle wasting in catabolic disorders by activating protein degradation. Methods Using in vitro and in vivo models of muscle wasting associated with CKD or dexamethasone administration, we measured protein synthesis and degradation and examined mechanisms by which ursolic acid, derived from plants, could block the loss of muscle mass stimulated by CKD or excessive levels of dexamethasone. Results Using cultured C2C12 myotubes to study muscle wasting, we found that exposure to glucocorticoids cause loss of cell proteins plus an increase in myostatin; both responses are significantly suppressed by ursolic acid. Results from promoter and ChIP assays demonstrated a mechanism involving ursolic acid blockade of myostatin promoter activity that is related to CEBP/δ expression. In mouse models of CKD‐induced or dexamethasone‐induced muscle wasting, we found that ursolic acid blocked the loss of muscle mass by stimulating protein synthesis and decreasing protein degradation. These beneficial responses included decreased expression of myostatin and inflammatory cytokines (e.g. TGF‐β, IL‐6 and TNFα), which are initiators of muscle‐specific ubiquitin‐E3 ligases (e.g. Atrogin‐1, MuRF‐1 and MUSA1). Conclusions Ursolic acid improves CKD‐induced muscle mass by suppressing the expression of myostatin and inflammatory cytokines via increasing protein synthesis and reducing proteolysis. PMID:27897418

  2. A nine-country study of the protein content and amino acid composition of mature human milk

    PubMed Central

    Feng, Ping; Gao, Ming; Burgher, Anita; Zhou, Tian Hui; Pramuk, Kathryn

    2016-01-01

    Background Numerous studies have evaluated protein and amino acid levels in human milk. However, research in this area has been limited by small sample sizes and study populations with little ethnic or racial diversity. Objective Evaluate the protein and amino acid composition of mature (≥30 days) human milk samples collected from a large, multinational study using highly standardized methods for sample collection, storage, and analysis. Design Using a single, centralized laboratory, human milk samples from 220 women (30–188 days postpartum) from nine countries were analyzed for amino acid composition using Waters AccQ-Tag high-performance liquid chromatography and total nitrogen content using the LECO FP-528 nitrogen analyzer. Total protein was calculated as total nitrogen×6.25. True protein, which includes protein, free amino acids, and peptides, was calculated from the total amino acids. Results Mean total protein from individual countries (standard deviation [SD]) ranged from 1,133 (125.5) to 1,366 (341.4) mg/dL; the mean across all countries (SD) was 1,192 (200.9) mg/dL. Total protein, true protein, and amino acid composition were not significantly different across countries except Chile, which had higher total and true protein. Amino acid profiles (percent of total amino acids) did not differ across countries. Total and true protein concentrations and 16 of 18 amino acid concentrations declined with the stage of lactation. Conclusions Total protein, true protein, and individual amino acid concentrations in human milk steadily decline from 30 to 151 days of lactation, and are significantly higher in the second month of lactation compared with the following 4 months. There is a high level of consistency in the protein content and amino acid composition of human milk across geographic locations. The size and diversity of the study population and highly standardized procedures for the collection, storage, and analysis of human milk support the validity and

  3. Protein Tyrosine Kinase Signaling During Oocyte Maturation and Fertilization

    PubMed Central

    McGinnis, Lynda K.; Carroll, David J.; Kinsey, William H.

    2011-01-01

    The oocyte is a highly specialized cell capable of accumulating and storing energy supplies as well as maternal transcripts and pre-positioned signal transduction components needed for zygotic development, undergoing meiosis under control of paracrine signals from the follicle, fusing with a single sperm during fertilization, and zygotic development. The oocyte accomplishes this diverse series of events by establishing an array of signal transduction pathway components that include a select collection of protein tyrosine kinases (PTKs) that are expressed at levels significantly higher than most other cell types. This array of PTKs includes cytosolic kinases such as SRC-family PTKs (FYN and YES), and FAK kinases, as well as FER. These kinases typically exhibit distinct patterns of localization and in some cases are translocated from one subcellular compartment to another during meiosis. Significant differences exist in the extent to which PTK-mediated pathways are used by oocytes from species that fertilize externally versus internally. The PTK activation profiles as well as calcium signaling pattern seems to correlate with the extent to which a rapid block to polyspermy is required by the biology of each species. Suppression of each of the SRC-family PTKs as well as FER kinase results in failure of meiotic maturation or zygote development, indicating that these PTKs are important for oocyte quality and developmental potential. Future studies will hopefully reveal the extent to which these factors impact clinical assisted reproductive techniques in domestic animals and humans. PMID:21681843

  4. Myostatin gene mutated mice induced with tale nucleases.

    PubMed

    Zhou, Fangfang; Sun, Ruilin; Chen, Hongyan; Fei, Jian; Lu, Daru

    2015-01-01

    Myostain gene (MSTN) is expressed primarily in skeletal muscle, and negatively regulates skeletal muscle mass; it has been suggested that mice with MSTN inhibition have reduced adiposity and improved insulin sensitivity. Therefore, it is important to establish a fast and effective gene editing method. In this report, we established the myostatin mutated-mouse model by microinjection of Transcription Activator-Like Effector Nucleases (TALENs) mRNA within the mouse fertilized oocytes and achieved high rates of mutagenesis of the mouse MSTN in C57BL/6J. Six of 45 born mice carried target mutations and we appointed one as the parental mating with wild mouse to produce the F1 and backcross to produce the F2 generation. All the mutations of the mice were examined quickly and efficiently by high-resolution melting curve analysis (HRMA) and then verified by direct sequencing. We obtained the homozygous of the F2 generation which transmitted the mutant alleles to the progeny with 100% efficiency. Mutant mice exhibited increases in muscle mass comparable to those observed in wild-type mice. Therefore, combining TALEN-mediated gene targeting with HRMA technology is a superior method of constructing genetically modified mice through microinjection in the mouse fertilized oocytes with high efficiency and short time of selection.

  5. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition

    PubMed Central

    Condon, Jennifer C.; Jeyasuria, Pancharatnam; Faust, Julie M.; Mendelson, Carole R.

    2004-01-01

    Parturition is timed to begin only after the developing embryo is sufficiently mature to survive outside the womb. It has been postulated that the signal for the initiation of parturition arises from the fetus although the nature and source of this signal remain obscure. Herein, we provide evidence that this signal originates from the maturing fetal lung. In the mouse, secretion of the major lung surfactant protein, surfactant protein A (SP-A), was first detected in amniotic fluid (AF) at 17 days postcoitum, rising progressively to term (19 days postcoitum). Expression of IL-1β in AF macrophages and activation of NF-κB in the maternal uterus increased with the gestational increase in SP-A. SP-A stimulated IL-1β and NF-κB expression in cultured AF macrophages. Studies using Rosa 26 Lac-Z (B6;129S-Gt(rosa)26Sor) (Lac-Z) mice revealed that fetal AF macrophages migrate to the uterus with the gestational increase in AF SP-A. Intraamniotic (i.a.) injection of SP-A caused preterm delivery of fetuses within 6-24 h. By contrast, injection of an SP-A antibody or NF-κB inhibitor into AF delayed labor by >24 h. We propose that augmented production of SP-A by the fetal lung near term causes activation and migration of fetal AF macrophages to the maternal uterus, where increased production of IL-1β activates NF-κB, leading to labor. We have revealed a response pathway that ties augmented surfactant production by the maturing fetal lung to the initiation of labor. We suggest that SP-A secreted by the fetal lung serves as a hormone of parturition. PMID:15044702

  6. Effect of resistance exercise intensity on the expression of PGC-1α isoforms and the anabolic and catabolic signaling mediators, IGF-1 and myostatin, in human skeletal muscle.

    PubMed

    Schwarz, Neil A; McKinley-Barnard, Sarah K; Spillane, Mike B; Andre, Thomas L; Gann, Joshua J; Willoughby, Darryn S

    2016-08-01

    The purpose of this study was to investigate the acute messenger (mRNA) expression of the peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) isoforms, insulin-like growth factor-1Ea (IGF-1Ea), and myostatin in response to 2 resistance exercise intensities. In a uniform-balanced, crossover design, 10 participants performed 2 separate testing sessions involving a lower body resistance exercise component consisting of a lower intensity (50% of 1-repetition maximum; 1RM) protocol and a higher intensity (80% of 1RM) protocol of equal volumes. Muscle samples were obtained at before exercise, 45 min, 3 h, 24 h, and 48 h postexercise. Resistance exercise did not alter total PGC-1α mRNA expression; however, distinct responses of each PGC-1α isoform were observed. The response of each isoform was consistent between sessions, suggesting no effect of resistance exercise intensity on the complex transcriptional expression of the PGC-1α gene. IGF-1Ea mRNA expression significantly increased following the higher intensity session compared with pre-exercise and the lower intensity session. Myostatin mRNA expression was significantly reduced compared with pre-exercise values at all time points with no difference between exercise intensity. Further research is needed to determine the effects of the various isoforms of PGC-1α in human skeletal muscle on the translational level as well as their relation to the expression of IGF-1 and myostatin.

  7. Soy protein supplement intake for 12 months has no effect on sexual maturation and may improve nutritional status in pre-pubertal children.

    PubMed

    Duitama, Sandra M; Zurita, Javier; Cordoba, Diana; Duran, Paola; Ilag, Leopold; Mejia, Wilson

    2018-05-20

    To evaluate the intake of a soy protein-based supplement (SPS) and its effects on the sexual maturation and nutritional status of prepubertal children who consumed it for a year. Healthy children (n = 51) were recruited and randomly assigned to consume the lunch fruit juice with (n = 29) or without (n = 22) addition of 45 g of a commercial soy protein-based supplement (SPS) over 12 months. Nutritional assessment including anthropometry (bodyweight, height, triceps skinfold thickness, mid-upper arm circumference), body mass index (BMI), upper arm muscle area, arm muscle circumference, upper arm area, upper arm fat area data were derived from measures using usual procedures; age and gender-specific percentiles were used as reference. Sexual maturation was measured by Tanner stage. Isoflavones were quantified using liquid chromatography and tandem mass spectrometry. Height, BMI/age, weight/age and height/age were significantly different (P < 0.05) at 12 months between girls in the control and intervention groups. Statistically significant differences between groups by gender (P < 0.05) were found in boys in the control group for the triceps skinfold thickness and fat area. Nutritional status was adequate according to the World Health Organization parameters. On average, 0.130 mg/kg body weight/day of isoflavones were consumed by children, which did not show significant differences in their sexual maturation. Consumption of SPS for 12 months did not affect sexual maturation or the onset of puberty in prepubertal boys and girls; however, it may have induced an increase in height, BMI/age, height/age and weight/age of the girls, associated with variations in fat-free mass. © 2018 Paediatrics and Child Health Division (The Royal Australasian College of Physicians).

  8. Analysis of epididymal sperm maturation by MALDI profiling and top-down mass spectrometry.

    PubMed

    Labas, Valérie; Spina, Lucie; Belleannee, Clémence; Teixeira-Gomes, Ana-Paula; Gargaros, Audrey; Dacheux, Françoise; Dacheux, Jean-Louis

    2015-01-15

    The fertilization ability of male gametes is achieved after their transit through the epididymis where important post-gonadal differentiation occurs in different cellular compartments. Most of these maturational modifications occur at the protein level. The epididymal sperm maturation process was investigated using the ICM-MS (Intact Cell MALDI-TOF MS) approach on boar spermatozoa isolated from four different epididymal regions (immature to mature stage). Differential and quantitative MALDI-TOF profiling for whole cells or sub-cellular fractions was combined with targeted top-down MS in order to identify endogenous biomolecules. Using this approach, 172m/z peaks ranging between 2 and 20kDa were found to be modified during maturation of sperm. Using top-down MS, 62m/z were identified corresponding to peptidoforms/proteoforms with post-translational modifications (MS data are available via ProteomeXchange with identifier PXD001303). Many of the endogenous peptides were characterized as N-, C-terminal sequences or internal fragments of proteins presenting specific cleavages, suggesting the presence of sequential protease activities in the spermatozoa. This is the first time that such proteolytic activities could be evidenced for various sperm proteins through quantification of their proteolytic products. ICM-MS/top-down MS thus proved to be a valid approach for peptidome/degradome studies and provided new contributions to understanding of the maturation process of the male gamete involved in the development of male fertility. This peptidomic study (i) characterized the peptidome of epididymal spermatozoa from boar (Sus scrofa); (ii) established characteristic molecular phenotypes distinguishing degrees of maturation of spermatozoa during epididymal transit, and (iii) revealed that protease activities were at the origin of numerous peptides from known and unknown proteins involved in sperm maturation and/or fertility processes. Copyright © 2014 Elsevier B.V. All

  9. Haplotype diversity of the myostatin gene among beef cattle breeds

    PubMed Central

    Dunner, Susana; Miranda, M Eugenia; Amigues, Yves; Cañón, Javier; Georges, Michel; Hanset, Roger; Williams, John; Ménissier, François

    2003-01-01

    A total of 678 individuals from 28 European bovine breeds were both phenotyped and analysed at the myostatin locus by the Single Strand Conformation Polymorphism (SSCP) method. Seven new mutations were identified which contribute to the high polymorphism (1 SNP every 100 bp) present in this small gene; twenty haplotypes were described and a genotyping method was set up using the Oligonucleotide Ligation Assay (OLA) method. Some haplotypes appeared to be exclusive to a particular breed; this was the case for 5 in the Charolaise (involving mutation Q204X) and 7 in the Maine-Anjou (involving mutation E226X). The relationships between the different haplotypes were studied, thus allowing to test the earlier hypothesis on the origin of muscular hypertrophy in Europe: muscular hypertrophy (namely nt821(del11)) was mainly spread in different waves from northern Europe milk purpose populations in most breeds; however, other mutations (mostly disruptive) arose in a single breed, were highly selected and have since scarcely evolved to other populations. PMID:12605853

  10. BCR-crosslinking induces a transcription of protein phosphatase component G5PR that is required for mature B-cell survival

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huq Ronny, Faisal Mahmudul; Igarashi, Hideya; Core Research for Evolutional Science and Technology

    2006-02-03

    BCR-crosslinking triggers activation-induced cell death (AICD) selectively in the restricted stage of B-cell differentiation. We examined the transcription of a protein phosphatase subunit G5PR in immature and mature B-cells, because absence of this factor augmented cell sensitivity to AICD, associated with increased activation of JNK and Bim. BCR-crosslinking-induced G5pr transcription in AICD-resistant mature splenic IgM{sup lo}IgD{sup hi} B-cells but not in AICD susceptible immature IgM{sup hi}IgD{sup lo} B-cells. Thus, G5pr induction correlated with the prevention of AICD; High in mature splenic CD23{sup hi} B-cells but low in immature B-cells of neonatal mice, sub-lethally irradiated mice, or xid mice. Lack ofmore » G5pr upregulation was associated with the prolonged activation of JNK. The G5pr cDNA transfection protected an immature B-cell line WEHI-231 from BCR-mediated AICD. The differential expression of G5PR might be responsible for the antigen-dependent selection of B-cells.« less

  11. Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing

    PubMed Central

    Gehwolf, Renate; Wagner, Andrea; Lehner, Christine; Bradshaw, Amy D.; Scharler, Cornelia; Niestrawska, Justyna A.; Holzapfel, Gerhard A.; Bauer, Hans-Christian; Tempfer, Herbert; Traweger, Andreas

    2016-01-01

    Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc−/− tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc−/− tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons. PMID:27586416

  12. Proteome and phosphoproteome analysis of commensally induced dendritic cell maturation states.

    PubMed

    Korkmaz, Ali Giray; Popov, Todor; Peisl, Loulou; Codrea, Marius Cosmin; Nahnsen, Sven; Steimle, Alexander; Velic, Ana; Macek, Boris; von Bergen, Martin; Bernhardt, Joerg; Frick, Julia-Stefanie

    2018-05-30

    Dendritic cells (DCs) can shape the immune system towards an inflammatory or tolerant state depending on the bacterial antigens and the environment they encounter. In this study we provide a proteomic catalogue of differentially expressed proteins between distinct DC maturation states, brought about by bacteria that differ in their endotoxicity. To achieve this, we have performed proteomics and phosphoproteomics on murine DC cultures. Symbiont and pathobiont bacteria were used to direct dendritic cells into a semi-mature and fully-mature state, respectively. The comparison of semi-mature and fully-mature DCs revealed differential expression in 103 proteins and differential phosphorylation in 118 phosphosites, including major regulatory factors of central immune processes. Our analyses predict that these differences are mediated by upstream elements such as SOCS1, IRF3, ABCA1, TLR4, and PTGER4. Our analyses indicate that the symbiont bacterial strain affects DC proteome in a distinct way, by downregulating inflammatory proteins and activating anti-inflammatory upstream regulators. Biological significance In this study we have investigated the responses of immune cells to distinct bacterial stimuli. We have used the symbiont bacterial strain B. vulgatus and the pathobiont E. coli strain to stimulate cultured primary dendritic cells and performed a shotgun proteome analysis to investigate the protein expression and phosphorylation level differences on a genome level. We have observed expression and phosphorylation level differences in key immune regulators, transcription factors and signal transducers. Moreover, our subsequent bioinformatics analysis indicated regulation at several signaling pathways such as PPAR signaling, LXR/RXR activation and glucocorticoid signaling pathways, which are not studied in detail in an inflammation and DC maturation context. Our phosphoproteome analysis showed differential phosphorylation in 118 phosphosites including those belonging

  13. The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation

    PubMed Central

    Shi, Song-Hai; Cheng, Tong; Jan, Lily Yeh; Jan, Yuh-Nung

    2004-01-01

    In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-d-aspartate receptor and thus are “silent” at the resting membrane potential. As development progresses, synapses acquire α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular basis for this developmental change is not known. Here, we report that dendrite arborization and synapse maturation 1 (Dasm1), an Ig superfamily member, controls excitatory synapse maturation. Dasm1 is localized at the excitatory synapses. Suppression of Dasm1 expression by using RNA interference or expression of dominant negative deletion mutants of Dasm1 in hippocampal neurons at late developmental stage specifically impairs AMPA-R-mediated, but not N-methyl-d-aspartate receptor-mediated, synaptic transmission. The ability of Dasm1 to regulate synaptic AMPA-Rs requires its intracellular C-terminal PDZ domain-binding motif, which interacts with two synaptic PDZ domain-containing proteins involved in spine/synapse maturation, Shank and S-SCAM. Moreover, expression of dominant negative deletion mutants of Dasm1 leads to more immature silent synapses. These results suggest that Dasm1, as a transmembrane molecule, likely provides a link to bridge extracellular signals and intracellular signaling complexes in controlling excitatory synapse maturation. PMID:15340156

  14. Short-hairpin Mediated Myostatin Knockdown Resulted in Altered Expression of Myogenic Regulatory Factors with Enhanced Myoblast Proliferation in Fetal Myoblast Cells of Goats.

    PubMed

    Kumar, Rohit; Singh, Satyendra Pal; Mitra, Abhijit

    2018-01-02

    Myostatin (MSTN) is a well-known negative regulator of skeletal muscle development. Reduced expression due to natural mutations in the coding region and knockout as well as knockdown of MSTN results in an increase in the muscle mass. In the present study, we demonstrated as high as 60 and 52% downregulation (p < 0.01) of MSTN mRNA and protein in the primary fetal myoblast cells of goats using synthetic shRNAs (n = 3), without any interferon response. We, for the first time, evaluated the effect of MSTN knockdown on the expression of MRFs (namely, MyoD, Myf5), follistatin (FST), and IGFs (IGF-1 & IGF-2) in goat myoblast cells. MSTN knockdown caused an upregulation (p < 0.05) of MyoD and downregulation (p < 0.01) of MYf5 and FST expression. Moreover, we report up to ∼four fold (p < 0.001) enhanced proliferation in myoblasts after four days of culture. The anti-MSTN shRNA demonstrated in the present study could be used for the production of transgenic goats to increase the muscle mass.

  15. Characterization of Dedifferentiating Human Mature Adipocytes from the Visceral and Subcutaneous Fat Compartments: Fibroblast-Activation Protein Alpha and Dipeptidyl Peptidase 4 as Major Components of Matrix Remodeling

    PubMed Central

    Lessard, Julie; Pelletier, Mélissa; Biertho, Laurent; Biron, Simon; Marceau, Simon; Hould, Frédéric-Simon; Lebel, Stéfane; Moustarah, Fady; Lescelleur, Odette; Marceau, Picard; Tchernof, André

    2015-01-01

    Mature adipocytes can reverse their phenotype to become fibroblast-like cells. This is achieved by ceiling culture and the resulting cells, called dedifferentiated fat (DFAT) cells, are multipotent. Beyond the potential value of these cells for regenerative medicine, the dedifferentiation process itself raises many questions about cellular plasticity and the pathways implicated in cell behavior. This work has been performed with the objective of obtaining new information on adipocyte dedifferentiation, especially pertaining to new targets that may be involved in cellular fate changes. To do so, omental and subcutaneous mature adipocytes sampled from severely obese subjects have been dedifferentiated by ceiling culture. An experimental design with various time points along the dedifferentiation process has been utilized to better understand this process. Cell size, gene and protein expression as well as cytokine secretion were investigated. Il-6, IL-8, SerpinE1 and VEGF secretion were increased during dedifferentiation, whereas MIF-1 secretion was transiently increased. A marked decrease in expression of mature adipocyte transcripts (PPARγ2, C/EBPα, LPL and Adiponectin) was detected early in the process. In addition, some matrix remodeling transcripts (FAP, DPP4, MMP1 and TGFβ1) were rapidly and strongly up-regulated. FAP and DPP4 proteins were simultaneously induced in dedifferentiating mature adipocytes supporting a potential role for these enzymes in adipose tissue remodeling and cell plasticity. PMID:25816202

  16. An Eph receptor sperm-sensing control mechanism for oocyte meiotic maturation in Caenorhabditis elegans.

    PubMed

    Miller, Michael A; Ruest, Paul J; Kosinski, Mary; Hanks, Steven K; Greenstein, David

    2003-01-15

    During sexual reproduction in most animals, oocytes arrest in meiotic prophase and resume meiosis (meiotic maturation) in response to sperm or somatic cell signals. Despite progress in delineating mitogen-activated protein kinase (MAPK) and CDK/cyclin activation pathways involved in meiotic maturation, it is less clear how these pathways are regulated at the cell surface. The Caenorhabditis elegans major sperm protein (MSP) signals oocytes, which are arrested in meiotic prophase, to resume meiosis and ovulate. We used DNA microarray data and an in situ binding assay to identify the VAB-1 Eph receptor protein-tyrosine kinase as an MSP receptor. We show that VAB-1 and a somatic gonadal sheath cell-dependent pathway, defined by the CEH-18 POU-class homeoprotein, negatively regulate meiotic maturation and MAPK activation. MSP antagonizes these inhibitory signaling circuits, in part by binding VAB-1 on oocytes and sheath cells. Our results define a sperm-sensing control mechanism that inhibits oocyte maturation, MAPK activation, and ovulation when sperm are unavailable for fertilization. MSP-domain proteins are found in diverse animal taxa, where they may regulate contact-dependent Eph receptor signaling pathways.

  17. Maturation of the [Ni-4Fe-4S] active site of carbon monoxide dehydrogenases.

    PubMed

    Merrouch, Mériem; Benvenuti, Martino; Lorenzi, Marco; Léger, Christophe; Fourmond, Vincent; Dementin, Sébastien

    2018-02-14

    Nickel-containing enzymes are diverse in terms of function and active site structure. In many cases, the biosynthesis of the active site depends on accessory proteins which transport and insert the Ni ion. We review and discuss the literature related to the maturation of carbon monoxide dehydrogenases (CODH) which bear a nickel-containing active site consisting of a [Ni-4Fe-4S] center called the C-cluster. The maturation of this center has been much less studied than that of other nickel-containing enzymes such as urease and NiFe hydrogenase. Several proteins present in certain CODH operons, including the nickel-binding proteins CooT and CooJ, still have unclear functions. We question the conception that the maturation of all CODH depends on the accessory protein CooC described as essential for nickel insertion into the active site. The available literature reveals biological variations in CODH active site biosynthesis.

  18. Shark Attack: high affinity binding proteins derived from shark vNAR domains by stepwise in vitro affinity maturation.

    PubMed

    Zielonka, Stefan; Weber, Niklas; Becker, Stefan; Doerner, Achim; Christmann, Andreas; Christmann, Christine; Uth, Christina; Fritz, Janine; Schäfer, Elena; Steinmann, Björn; Empting, Martin; Ockelmann, Pia; Lierz, Michael; Kolmar, Harald

    2014-12-10

    A novel method for stepwise in vitro affinity maturation of antigen-specific shark vNAR domains is described that exclusively relies on semi-synthetic repertoires derived from non-immunized sharks. Target-specific molecules were selected from a CDR3-randomized bamboo shark (Chiloscyllium plagiosum) vNAR library using yeast surface display as platform technology. Various antigen-binding vNAR domains were easily isolated by screening against several therapeutically relevant antigens, including the epithelial cell adhesion molecule (EpCAM), the Ephrin type-A receptor 2 (EphA2), and the human serine protease HTRA1. Affinity maturation was demonstrated for EpCAM and HTRA1 by diversifying CDR1 of target-enriched populations which allowed for the rapid selection of nanomolar binders. EpCAM-specific vNAR molecules were produced as soluble proteins and more extensively characterized via thermal shift assays and biolayer interferometry. Essentially, we demonstrate that high-affinity binders can be generated in vitro without largely compromising the desirable high thermostability of the vNAR scaffold. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Whey protein processing influences formula-induced gut maturation in preterm pigs.

    PubMed

    Li, Yanqi; Østergaard, Mette V; Jiang, Pingping; Chatterton, Dereck E W; Thymann, Thomas; Kvistgaard, Anne S; Sangild, Per T

    2013-12-01

    Immaturity of the gut predisposes preterm infants to nutritional challenges potentially leading to clinical complications such as necrotizing enterocolitis. Feeding milk formulas is associated with greater risk than fresh colostrum or milk, probably due to loss of bioactive proteins (e.g., immunoglobulins, lactoferrin, insulin-like growth factor, transforming growth factor-β) during industrial processing (e.g., pasteurization, filtration, spray-drying). We hypothesized that the processing method for whey protein concentrate (WPC) would affect gut maturation in formula-fed preterm pigs used as a model for preterm infants. Fifty-five caesarean-delivered preterm pigs were distributed into 4 groups given 1 of 4 isoenergetic diets: formula containing conventional WPC (filtration, multi-pasteurization, standard spray-drying) (CF); formula containing gently treated WPC (reduced filtration and pasteurization, gentle spray-drying) (GF); formula containing minimally treated WPC (rennet precipitation, reduced filtration, heat treatment <40°C, freeze-drying) (MF); and bovine colostrum (used as a positive reference group) (BC). Relative to CF, GF, and MF pigs, BC pigs had greater villus heights, lactose digestion, and absorption and lower gut permeability (P < 0.05). MF and BC pigs had greater plasma citrulline concentrations than CF and GF pigs and intestinal interleukin-8 was lower in BC pigs than in the other groups (P < 0.05). MF pigs had lower concentrations of intestinal claudin-4, cleaved caspase-3, and phosphorylated c-Jun than CF pigs (P < 0.05). The conventional and gently treated WPCs had similar efficacy in stimulating proliferation of porcine intestinal epithelial cells. We conclude that processing of WPC affects intestinal structure, function, and integrity when included in formulas for preterm pigs. Optimization of WPC processing technology may be important to preserve the bioactivity and nutritional value of formulas for sensitive newborns.

  20. Comparative Analysis of Whey N-Glycoproteins in Human Colostrum and Mature Milk Using Quantitative Glycoproteomics.

    PubMed

    Cao, Xueyan; Song, Dahe; Yang, Mei; Yang, Ning; Ye, Qing; Tao, Dongbing; Liu, Biao; Wu, Rina; Yue, Xiqing

    2017-11-29

    Glycosylation is a ubiquitous post-translational protein modification that plays a substantial role in various processes. However, whey glycoproteins in human milk have not been completely profiled. Herein, we used quantitative glycoproteomics to quantify whey N-glycosylation sites and their alteration in human milk during lactation; 110 N-glycosylation sites on 63 proteins and 91 N-glycosylation sites on 53 proteins were quantified in colostrum and mature milk whey, respectively. Among these, 68 glycosylation sites on 38 proteins were differentially expressed in human colostrum and mature milk whey. These differentially expressed N-glycoproteins were highly enriched in "localization", "extracellular region part", and "modified amino acid binding" according to gene ontology annotation and mainly involved in complement and coagulation cascades pathway. These results shed light on the glycosylation sites, composition and biological functions of whey N-glycoproteins in human colostrum and mature milk, and provide substantial insight into the role of protein glycosylation during infant development.

  1. Molecular differences between mature and immature dental pulp cells: Bioinformatics and preliminary results.

    PubMed

    Chen, Long; Jiang, Yifeng; Du, Zhen

    2018-04-01

    Although previous studies have demonstrated that dental pulp stem cells (DPSCs) from mature and immature teeth exhibit potential for multi-directional differentiation, the molecular and biological difference between the DPSCs from mature and immature permanent teeth has not been fully investigated. In the present study, 500 differentially expressed genes from dental pulp cells (DPCs) in mature and immature permanent teeth were obtained from the Gene Expression Omnibus online database. Based on bioinformatics analysis using the Database for Annotation, Visualization and Integrated Discovery, these genes were divided into a number of subgroups associated with immunity, inflammation and cell signaling. The results of the present study suggest that immune features, response to infection and cell signaling may be different in DPCs from mature and immature permanent teeth; furthermore, DPCs from immature permanent teeth may be more suitable for use in tissue engineering or stem cell therapy. The Online Mendelian Inheritance in Man database stated that Sonic Hedgehog (SHH), a differentially expressed gene in DPCs from mature and immature permanent teeth, serves a crucial role in the development of craniofacial tissues, including teeth, which further confirmed that SHH may cause DPCs from mature and immature permanent teeth to exhibit different biological characteristics. The Search Tool for the Retrieval of Interacting Genes/Proteins database revealed that SHH has functional protein associations with a number of other proteins, including Glioma-associated oncogene (GLI)1, GLI2, growth arrest-specific protein 1, bone morphogenetic protein (BMP)2 and BMP4, in mice and humans. It was also demonstrated that SHH may interact with other genes to regulate the biological characteristics of DPCs. The results of the present study may provide a useful reference basis for selecting suitable DPSCs and molecules for the treatment of these cells to optimize features for tissue

  2. Downregulated Translation Initiation Signaling Predisposes Low-Birth-Weight Neonatal Pigs to Slower Rates of Muscle Protein Synthesis

    PubMed Central

    Chen, Ying; McCauley, Sydney R.; Johnson, Sally E.; Rhoads, Robert P.; El-Kadi, Samer W.

    2017-01-01

    Low-birth-weight (LBWT) neonates experience restricted muscle growth in their perinatal life. Our aim was to investigate the mechanisms that contribute to slower skeletal muscle growth of LBWT neonatal pigs. Twenty-four 1-day old male LBWT (816 ± 55 g) and normal-birth-weight (NBWT; 1,642 ± 55 g) littermates (n = 12) were euthanized to collect blood and longissimus dorsi (LD) muscle subsamples. Plasma glucose, insulin, and insulin-like growth factor-I (IGF-I) were lower in LBWT compared with NBWT pigs. Muscle IGF-I mRNA expression were lower in LBWT than NBWT pigs. However, IGF-I receptor mRNA and protein abundance was greater in LD of LBWT pigs. Abundance of myostatin and its receptors, and abundance and phosphorylation of smad3 were lower in LBWT LD by comparison with NBWT LD. Abundance of eukaryotic initiation factor (eIF) 4E binding protein 1 and mitogen-activated protein kinase-interacting kinases was lower in muscle of LBWT pigs compared with NBWT siblings, while eIF4E abundance and phosphorylation did not differ between the two groups. Furthermore, phosphorylation of ribosomal protein S6 kinase 1 (S6K1) was less in LBWT muscle, possibly due to lower eIF3e abundance. In addition, abundance and phosphorylation of eIF4G was reduced in LBWT pigs by comparison with NBWT littermates, suggesting translation initiation complex formation is compromised in muscle of LBWT pigs. In conclusion, diminished S6K1 activation and translation initiation signaling are likely the major contributors to impaired muscle growth in LBWT neonatal pigs. The upregulated IGF-I R expression and downregulated myostatin signaling seem to be compensatory responses for the reduction in protein synthesis signaling. PMID:28744224

  3. The Fc Region of an Antibody Impacts the Neutralization of West Nile Viruses in Different Maturation States

    PubMed Central

    Lee, Phong D.; Mukherjee, Swati; Edeling, Melissa A.; Dowd, Kimberly A.; Austin, S. Kyle; Manhart, Carolyn J.; Diamond, Michael S.; Fremont, Daved H.

    2013-01-01

    Flavivirus-infected cells secrete a structurally heterogeneous population of viruses because of an inefficient virion maturation process. Flaviviruses assemble as noninfectious, immature virions composed of trimers of envelope (E) and precursor membrane (prM) protein heterodimers. Cleavage of prM is a required process during virion maturation, although this often remains incomplete for infectious virus particles. Previous work demonstrated that the efficiency of virion maturation could impact antibody neutralization through changes in the accessibility of otherwise cryptic epitopes on the virion. In this study, we show that the neutralization potency of monoclonal antibody (MAb) E33 is sensitive to the maturation state of West Nile virus (WNV), despite its recognition of an accessible epitope, the domain III lateral ridge (DIII-LR). Comprehensive epitope mapping studies with 166 E protein DIII-LR variants revealed that the functional footprint of MAb E33 on the E protein differs subtly from that of the well-characterized DIII-LR MAb E16. Remarkably, aromatic substitutions at E protein residue 306 ablated the maturation state sensitivity of E33 IgG, and the neutralization efficacy of E33 Fab fragments was not affected by changes in the virion maturation state. We propose that E33 IgG binding on mature virions orients the Fc region in a manner that impacts subsequent antibody binding to nearby sites. This Fc-mediated steric constraint is a novel mechanism by which the maturation state of a virion modulates the efficacy of the humoral immune response to flavivirus infection. PMID:24109224

  4. ATP Depletion Blocks Herpes Simplex Virus DNA Packaging and Capsid Maturation

    PubMed Central

    Dasgupta, Anindya; Wilson, Duncan W.

    1999-01-01

    During herpes simplex virus (HSV) assembly, immature procapsids must expel their internal scaffold proteins, transform their outer shell to form mature polyhedrons, and become packaged with the viral double-stranded (ds) DNA genome. A large number of virally encoded proteins are required for successful completion of these events, but their molecular roles are poorly understood. By analogy with the dsDNA bacteriophage we reasoned that HSV DNA packaging might be an ATP-requiring process and tested this hypothesis by adding an ATP depletion cocktail to cells accumulating unpackaged procapsids due to the presence of a temperature-sensitive lesion in the HSV maturational protease UL26. Following return to permissive temperature, HSV capsids were found to be unable to package DNA, suggesting that this process is indeed ATP dependent. Surprisingly, however, the display of epitopes indicative of capsid maturation was also inhibited. We conclude that either formation of these epitopes directly requires ATP or capsid maturation is normally arrested by a proofreading mechanism until DNA packaging has been successfully completed. PMID:9971781

  5. Comparative proteomic analysis of somatic embryo maturation in Carica papaya L.

    PubMed Central

    2014-01-01

    Background Somatic embryogenesis is a complex process regulated by numerous factors. The identification of proteins that are differentially expressed during plant development could result in the development of molecular markers of plant metabolism and provide information contributing to the monitoring and understanding of different biological responses. In addition, the identification of molecular markers could lead to the optimization of protocols allowing the use of biotechnology for papaya propagation and reproduction. This work aimed to investigate the effects of polyethylene glycol (PEG) on somatic embryo development and the protein expression profile during somatic embryo maturation in papaya (Carica papaya L.). Results The maturation treatment supplemented with 6% PEG (PEG6) resulted in the greatest number of somatic embryos and induced differential protein expression compared with cultures grown under the control treatment. Among 135 spots selected for MS/MS analysis, 76 spots were successfully identified, 38 of which were common to both treatments, while 14 spots were unique to the control treatment, and 24 spots were unique to the PEG6 treatment. The identified proteins were assigned to seven categories or were unclassified. The most representative class of proteins observed in the control treatment was associated with the stress response (25.8%), while those under PEG6 treatment were carbohydrate and energy metabolism (18.4%) and the stress response (18.4%). Conclusions The differential expression of three proteins (enolase, esterase and ADH3) induced by PEG6 treatment could play an important role in maturation, and these proteins could be characterized as candidate biomarkers of somatic embryogenesis in papaya. PMID:25076862

  6. Association of the Myostatin gene with obesity, abdominal obesity and low lean body mass and in non-diabetic Asian Indians in north India.

    PubMed

    Bhatt, Surya Prakash; Nigam, Priyanka; Misra, Anoop; Guleria, Randeep; Luthra, Kalpana; Jain, S K; Qadar Pasha, M A

    2012-01-01

    To determine the association of the A55T and K153R polymorphisms of the Myostatin gene with obesity, abdominal obesity and lean body mass (LBM) in Asian Indians in north India. A total of 335 subjects (238 men and 97 women) were assessed for anthropometry, % body fat (BF), LBM and biochemical parameters. Associations of Myostatin gene polymorphisms were evaluated with anthropometric, body composition and biochemical parameters. In A55T polymorphism, BMI (p=0.04), suprailiac skinfold (p=0.05), total skinfold (p=0.008), %BF (p=0.002) and total fat mass (p=0.003) were highest and % LBM (p=0.03) and total LBM (Kg) were lowest (p=0.04) in subjects with Thr/Thr genotype as compared to other genotypes. Association analysis of K153R polymorphism showed that subjects with R/R genotype had significantly higher BMI (p=0.05), waist circumference (p=0.04), %BF (p=0.04) and total fat mass (p=0.03), and lower %LBM (p=0.02) and total LBM [(Kg), (p=0.04)] as compared to other genotypes. Using a multivariate logistic regression model after adjusting for age and sex, subjects with Thr/Thr genotype of A55T showed high risk for high %BF (OR, 3.92, 95% Cl: 2.61-12.41), truncal subcutaneous adiposity (OR, 2.9, 95% Cl: 1.57-6.60)] and low LBM (OR, 0.64, 95% CI: 0.33-0.89) whereas R/R genotype of K153R showed high risk of obesity (BMI; OR, 3.2, 95% CI: 1.2-12.9; %BF, OR, 3.6, 95% CI: 1.04-12.4), abdominal obesity (OR, 2.12, 95% CI: 2.71-14.23) and low LBM (OR, 0.61, 95% CI: 0.29-0.79). We report that variants of Myostatin gene predispose to obesity, abdominal obesity and low lean body mass in Asian Indians in north India.

  7. Combined Strategies for Maintaining Skeletal Muscle Mass and Function in Aging: Myostatin Inactivation and AICAR-Associated Oxidative Metabolism Induction.

    PubMed

    Pauly, Marion; Chabi, Béatrice; Favier, François Bertrand; Vanterpool, Frankie; Matecki, Stefan; Fouret, Gilles; Bonafos, Béatrice; Vernus, Barbara; Feillet-Coudray, Christine; Coudray, Charles; Bonnieu, Anne; Ramonatxo, Christelle

    2015-09-01

    Myostatin (mstn) blockade, resulting in muscle hypertrophy, is a promising therapy to counteract age-related muscle loss. However, oxidative and mitochondrial deficit observed in young mice with myostatin inhibition could be detrimental with aging. The aim of this study was (a) to bring original data on metabolic and mitochondrial consequences of mstn inhibition in old mice, and (b) to examine whether 4-weeks of AICAR treatment, a pharmacological compound known to upregulate oxidative metabolism, may be useful to improve exercise capacity and mitochondrial deficit of 20-months mstn KO versus wild-type (WT) mice. Our results show that despite the enlarged muscle mass, the oxidative and mitochondrial deficit associated with reduced endurance running capacity is maintained in old mstn KO mice but not worsened by aging. Importantly, AICAR treatment induced a significant beneficial effect on running limit time only in old mstn KO mice, with a marked increase in PGC-1α expression and slight beneficial effects on mitochondrial function. We showed that AICAR effects were autophagy-independent. This study underlines the relevance of aged muscle remodelling by complementary approaches that impact both muscle mass and function, and suggest that mstn inhibition and aerobic metabolism activators should be co-developed for delaying age-related deficits in skeletal muscle. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Expression of Rice Mature Carbonic Anhydrase Gene Increase E. coli Tolerance to Heat Stress.

    PubMed

    Tianpei, Xiuzi; Mao, Zhinang; Zhu, Yingguo; Li, Shaoqing

    2015-05-01

    Carbonic anhydrate is a zinc-containing metalloenzyme and involved in plant abiotic stress tolerance. In this study, we found that heat stress could induce rice mature carbonic anhydrate gene over-expression in rice plants. An Escherichia coli heterologous expression system was performed to identify the function of rice mature carbonic anhydrate in vitro. By sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), mature OsCA fusion protein was identified and proved to be soluble. The results of spot, survival rate, and growth curve assay demonstrated that the expression of the mature OsCA could enhance the thermo-tolerance of the induced mature OsCA recombinants in comparison with controls under heat stress. Meanwhile, compared with controls, the levels of reactive oxygen species in induced mature OsCA recombinants were apparently low under heat stress, and correspondingly, activities of the critical antioxidant enzymes including superoxide dismutase, catalase, and peroxidase in the induced mature OsCA recombinants were significantly increased. Additionally, relative to controls, the activity of the lactate dehydrogenase decreased in the induced mature OsCA recombinants under heat stress. Based on these results, we suggest that mature OsCA protein could confer the E. coli recombinants' tolerance to heat stress by a synergistic fashion of increasing the antioxidant enzymes' activities to reduce the oxidative damage and maintaining the lactate dehydrogenase (LDH) activity of E. coli.

  9. Survival of mature mouse olfactory sensory neurons labeled genetically perinatally.

    PubMed

    Holl, Anna-Maria

    2018-04-01

    The main olfactory epithelium (MOE) of an adult mouse harbors a few million mature olfactory sensory neurons (OSNs), which are traditionally defined as mature by their expression of the olfactory marker protein (OMP). Mature OSNs differentiate in situ from stem cells at the base of the MOE. The consensus view is that mature OSNs have a defined lifespan and then undergo programmed cell death, and that the adult MOE maintains homeostasis by generating new mature OSNs from stem cells. But there is also evidence for mature OSNs that are long-lived. Thus far modern genetic tools have not been applied to quantify survival of a population of OSNs that are mature at a given point in time. Here, a genetic strategy was developed to label irreversibly OMP-expressing OSNs in mice. A gene-targeted OMP-CreERT2 strain was generated in which mature OSNs express an enzymatically inactive version of the Cre recombinase. The fusion protein CreERT2 becomes transiently active when exposed to tamoxifen, and in the presence of a Cre reporter in the genome such as tdRFP, CreERT2-expressing cells become irreversibly labeled. A cohort of mice was generated with the same day of birth by in vitro fertilization and embryo transfer, and injected tamoxifen in their mothers at E18.5 of gestation. I counted RFP immunoreactive cells in the MOE and vomeronasal organ of 36 tamoxifen-exposed OMP-CreERT2 × tdRFP mice from 7 age groups: postnatal day (PD)1.5, PD3.5, PD6.5, 3 weeks, 9 weeks, 6 months, and 12 months. Approximately 7.8% of perinatally labeled cells remain at 12 months, confirming that some mature OSNs are indeed long-lived. The survival curve of the population of perinatally labeled MOE cells can be modeled with a mean half-life of 26 days for the population as a whole, excluding the long-lived cells. Copyright © 2018 The Author. Published by Elsevier Inc. All rights reserved.

  10. Virus maturation: dynamics and mechanism of a stabilizing structural transition that leads to infectivity.

    PubMed

    Steven, Alasdair C; Heymann, J Bernard; Cheng, Naiqian; Trus, Benes L; Conway, James F

    2005-04-01

    For many viruses, the final stage of assembly involves structural transitions that convert an innocuous precursor particle into an infectious agent. This process -- maturation -- is controlled by proteases that trigger large-scale conformational changes. In this context, protease inhibitor antiviral drugs act by blocking maturation. Recent work has succeeded in determining the folds of representative examples of the five major proteins -- major capsid protein, scaffolding protein, portal, protease and accessory protein -- that are typically involved in capsid assembly. These data provide a framework for detailed mechanistic investigations and elucidation of mutations that affect assembly in various ways. The nature of the conformational change has been elucidated: it entails rigid-body rotations and translations of the arrayed subunits that transfer the interactions between them to different molecular surfaces, accompanied by refolding and redeployment of local motifs. Moreover, it has been possible to visualize maturation at the submolecular level in movies based on time-resolved cryo-electron microscopy.

  11. Nickel trafficking system responsible for urease maturation in Helicobacter pylori

    PubMed Central

    Ge, Rui-Guang; Wang, Dong-Xian; Hao, Ming-Cong; Sun, Xue-Song

    2013-01-01

    Helicobacter pylori (H. pylori) is a common human pathogen responsible for various gastric diseases. This bacterium relies on the production of urease and hydrogenase to inhabit the acidic environment of the stomach. Nickel is an essential cofactor for urease and hydrogenase. H. pylori has to uptake sufficient nickel ions for the maturation of urease, and on the other way, to prevent the toxic effects of excessive nickel ions. Therefore, H. pylori has to strike a delicate balance between the import of nickel ions, its efficient intracellular storage, and delivery to nickel-dependent metalloenzymes when required. The assembly and maturation of the urease enzyme is a complex and timely ordered process, requiring various regulatory, uptake, chaperone and accessory proteins. In this review, we focus on several nickel trafficking proteins involved in urease maturation: NikR, NixA, HypAB, UreEFGH, HspA, Hpn and Hpnl. The work will deepen our understanding of how this pathogenic bacterium adapts to severe habitant environments in the host. PMID:24363511

  12. Maturation-Associated Destabilization of Hepatitis B Virus Nucleocapsid

    PubMed Central

    Cui, Xiuji; Ludgate, Laurie; Ning, Xiaojun

    2013-01-01

    The mature nucleocapsid (NC) of hepatitis B virus containing the relaxed circular (RC) DNA genome can be secreted extracellularly as virions after envelopment with the viral surface proteins or, alternatively, can be disassembled to release RC DNA (i.e., uncoating) into the host cell nucleus to form the covalently closed circular (CCC) DNA, which sustains viral replication and persistence. In contrast, immature NCs containing the viral single-stranded DNA or the pregenomic RNA are incompetent for either envelopment or uncoating. Little is currently known about how mature NCs, and not the immature ones, are specifically selected for these processes. Here, we have carried out a biochemical analysis of the different NC populations upon their separation through sucrose gradient centrifugation. We have found that the maturation of NCs is associated with their destabilization, manifested as increased protease and nuclease sensitivity, altered sedimentation during sucrose gradient centrifugation, and retarded mobility during native agarose gel electrophoresis. Also, three distinct populations of intracellular mature NCs could be differentiated based on these characteristics. Furthermore, mature NCs generated in vitro under cell-free conditions acquired similar properties. These results have thus revealed significant structural changes associated with NC maturation that likely play a role in the selective uncoating of the mature NC for CCC DNA formation and/or its preferential envelopment for virion secretion. PMID:23966388

  13. Quantitative mass spectrometry of human reticulocytes reveal proteome-wide modifications during maturation.

    PubMed

    Chu, Trang T T; Sinha, Ameya; Malleret, Benoit; Suwanarusk, Rossarin; Park, Jung E; Naidu, Renugah; Das, Rupambika; Dutta, Bamaprasad; Ong, Seow Theng; Verma, Navin K; Chan, Jerry K; Nosten, François; Rénia, Laurent; Sze, Siu K; Russell, Bruce; Chandramohanadas, Rajesh

    2018-01-01

    Erythropoiesis is marked by progressive changes in morphological, biochemical and mechanical properties of erythroid precursors to generate red blood cells (RBC). The earliest enucleated forms derived in this process, known as reticulocytes, are multi-lobular and spherical. As reticulocytes mature, they undergo a series of dynamic cytoskeletal re-arrangements and the expulsion of residual organelles, resulting in highly deformable biconcave RBCs (normocytes). To understand the significant, yet neglected proteome-wide changes associated with reticulocyte maturation, we undertook a quantitative proteomics approach. Immature reticulocytes (marked by the presence of surface transferrin receptor, CD71) and mature RBCs (devoid of CD71) were isolated from human cord blood using a magnetic separation procedure. After sub-fractionation into triton-extracted membrane proteins and luminal samples (isobaric tags for relative and absolute quantitation), quantitative mass spectrometry was conducted to identify more than 1800 proteins with good confidence and coverage. While most structural proteins (such as Spectrins, Ankyrin and Band 3) as well as surface glycoproteins were conserved, proteins associated with microtubule structures, such as Talin-1/2 and ß-Tubulin, were detected only in immature reticulocytes. Atomic force microscopy (AFM)-based imaging revealed an extended network of spectrin filaments in reticulocytes (with an average length of 48 nm), which shortened during reticulocyte maturation (average spectrin length of 41 nm in normocytes). The extended nature of cytoskeletal network may partly account for increased deformability and shape changes, as reticulocytes transform to normocytes. © 2017 John Wiley & Sons Ltd.

  14. Cellular phosphoinositides and the maturation of bluetongue virus, a non-enveloped capsid virus

    PubMed Central

    2013-01-01

    Background Bluetongue virus (BTV), a member of Orbivirus genus in the Reoviridae family is a double capsid virus enclosing a genome of 10 double-stranded RNA segments. A non-structural protein of BTV, NS3, which is associated with cellular membranes and interacts with outer capsid proteins, has been shown to be involved in virus morphogenesis in infected cells. In addition, studies have also shown that during the later stages of virus infection NS3 behaves similarly to HIV protein Gag, an enveloped viral protein. Since Gag protein is known to interact with membrane lipid phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2] and one of the known binding partners of NS3, cellular protein p11 also interacts with annexin a PI(4,5)P2 interacting protein, this study was designed to understand the role of this negatively charged membrane lipid in BTV assembly and maturation. Methods Over expression of cellular enzymes that either depleted cells of PI(4,5)P2 or altered the distribution of PI(4,5)P2, were used to analyze the effect of the lipid on BTV maturation at different times post-infection. The production of mature virus particles was monitored by plaque assay. Microscopic techniques such as confocal microscopy and electron microscopy (EM) were also undertaken to study localization of virus proteins and virus particles in cells, respectively. Results Initially, confocal microscopic analysis demonstrated that PI(4,5)P2 not only co-localized with NS3, but it also co-localized with VP5, one of the outer capsid proteins of BTV. Subsequently, experiments involving depletion of cellular PI(4,5)P2 or its relocation demonstrated an inhibitory effect on normal BTV maturation and it also led to a redistribution of BTV proteins within the cell. The data was supported further by EM visualization showing that modulation of PI(4,5)P2 in cells indeed resulted in less particle production. Conclusion This study to our knowledge, is the first report demonstrating involvement of PI(4,5)P2

  15. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins

    PubMed Central

    Lange, Heike; Lisowsky, Thomas; Gerber, Jana; Mühlenhoff, Ulrich; Kispal, Gyula; Lill, Roland

    2001-01-01

    Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Here, we identify the essential Erv1p of Saccharomyces cerevisia mitochondria as a novel component that is specifically required for the maturation of Fe/S proteins in the cytosol, but not in mitochondria. Furthermore, Erv1p was found to be important for cellular iron homeostasis. The homologous mammalian protein ALR (‘augmenter of liver regeneration’), also termed hepatopoietin, can functionally replace defects in Erv1p and thus represents the mammalian orthologue of yeast Erv1p. Previously, a fragment of ALR was reported to exhibit an activity as an extracellular hepatotrophic growth factor. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane space and represent the first components of this compartment with a role in the biogenesis of cytosolic Fe/S proteins. It is likely that Erv1p/ALR operates downstream of the mitochondrial ABC transporter Atm1p/ABC7/Sta1, which also executes a specific task in this essential biochemical process. PMID:11493598

  16. An essential function of the mitochondrial sulfhydryl oxidase Erv1p/ALR in the maturation of cytosolic Fe/S proteins.

    PubMed

    Lange, H; Lisowsky, T; Gerber, J; Mühlenhoff, U; Kispal, G; Lill, R

    2001-08-01

    Biogenesis of Fe/S clusters involves a number of essential mitochondrial proteins. Here, we identify the essential Erv1p of Saccharomyces cerevisia mitochondria as a novel component that is specifically required for the maturation of Fe/S proteins in the cytosol, but not in mitochondria. Furthermore, Erv1p was found to be important for cellular iron homeostasis. The homologous mammalian protein ALR ('augmenter of liver regeneration'), also termed hepatopoietin, can functionally replace defects in Erv1p and thus represents the mammalian orthologue of yeast Erv1p. Previously, a fragment of ALR was reported to exhibit an activity as an extracellular hepatotrophic growth factor. Both Erv1p and full-length ALR are located in the mitochondrial intermembrane space and represent the first components of this compartment with a role in the biogenesis of cytosolic Fe/S proteins. It is likely that Erv1p/ALR operates downstream of the mitochondrial ABC transporter Atm1p/ABC7/Sta1, which also executes a specific task in this essential biochemical process.

  17. Fatty Acid Synthesis and Oxidation in Cumulus Cells Support Oocyte Maturation in Bovine

    PubMed Central

    Sanchez-Lazo, Laura; Brisard, Daphné; Elis, Sébastien; Maillard, Virginie; Uzbekov, Rustem; Labas, Valérie; Desmarchais, Alice; Papillier, Pascal; Monget, Philippe

    2014-01-01

    Oocyte meiotic maturation requires energy from various substrates including glucose, amino acids, and lipids. Mitochondrial fatty acid (FA) β-oxidation (FAO) in the oocyte is required for meiotic maturation, which is accompanied by differential expression of numerous genes involved in FAs metabolism in surrounding cumulus cells (CCs) in vivo. The objective was to elucidate components involved in FAs metabolism in CCs during oocyte maturation. Twenty-seven genes related to lipogenesis, lipolysis, FA transport, and FAO were chosen from comparative transcriptome analysis of bovine CCs before and after maturation in vivo. Using real-time PCR, 22 were significantly upregulated at different times of in vitro maturation (IVM) in relation to oocyte meiosis progression from germinal vesicle breakdown to metaphase-II. Proteins FA synthase, acetyl-coenzyme-A carboxylase, carnitine palmitoyltransferase, perilipin 2, and FA binding protein 3 were detected by Western blot and immunolocalized to CCs and oocyte cytoplasm, with FA binding protein 3 concentrated around oocyte chromatin. By mass spectrometry, CCs lipid profiling was shown to be different before and after IVM. FAO inhibitors etomoxir and mildronate dose-dependently decreased the oocyte maturation rate in vitro. In terms of viability, cumulus enclosed oocytes were more sensitive to etomoxir than denuded oocytes. In CCs, etomoxir (150μM) led to downregulation of lipogenesis genes and upregulated lipolysis and FAO genes. Moreover, the number of lipid droplets decreased, whereas several lipid species were more abundant compared with nontreated CCs after IVM. In conclusion, FAs metabolism in CCs is important to maintain metabolic homeostasis and may influence meiosis progression and survival of enclosed oocytes. PMID:25058602

  18. The mechanism of oxidation in chromophore maturation of wild-type green fluorescent protein: a theoretical study.

    PubMed

    Ma, Yingying; Sun, Qiao; Smith, Sean C

    2017-05-24

    Oxidation is viewed as the second and rate-limiting step in the chromophore maturation process of the wild-type green fluorescent protein (GFP) under aerobic conditions. Molecular oxygen is the necessary oxidant for GFP chromophore biosynthesis. In this study, density functional theory (DFT) calculations were employed to study the mechanism of oxidation. Our results indicate that the deprotonation of the Tyr66 α-carbon is probably the rate-limiting step in the oxidation step. Electron transfer from the enolate form of the five-membered heterocycle (EFMH) to molecular oxygen, generating the triplet radical complex [EFMH˙O 2 - ˙] T , is an important step. This complex undergoes intersystem crossing to form an open-shell singlet diradical complex before it forms the closed-shell singlet hydroperoxy adduct. The formation of the hydroperoxy adduct is a proton-coupled electron transfer process. The energy barrier of H 2 O 2 elimination is 16.5 kcal mol -1 . The oxidation product IFMHH 2 O 2 that we discovered is a hydroxylated cyclic imine structure, which is consistent with the crystal structure trapped in the colorless Y66L variant. The relative energy of the oxidation product is -48.7 kcal mol -1 , which is in accordance with the experimental observation that the thermodynamically unfavourable cyclized product is trapped by oxidation. The results herein support the cyclization-oxidation-dehydration mechanism for the chromophore maturation of GFP.

  19. CryoEM structure of the mature dengue virus at 3.5-Å resolution

    PubMed Central

    Zhang, Xiaokang; Ge, Peng; Yu, Xuekui; Brannan, Jennifer M.; Bi, Guoqiang; Zhang, Qinfen; Schein, Stan; Zhou, Z. Hong

    2012-01-01

    Regulated by pH, membrane-anchored proteins E and M play a series of roles during dengue virus maturation and membrane fusion. Our atomic model of the whole virion from cryo electron microscopy at 3.5Å resolution reveals that in the mature virus at neutral extracellular pH, the N-terminal 20-amino acid segment of M (involving three pH-sensing histidines) latches and thereby prevents spring-loaded E fusion protein from prematurely exposing its fusion peptide. This M latch was fastened at an earlier stage, during maturation at acid pH in the trans-Golgi network. At a later stage, to initiate infection in response to acid pH in the late endosome, M releases the latch and exposes the fusion peptide. Thus, M serves as a multistep chaperone of E to control the conformational changes accompanying maturation and infection. These pH-sensitive interactions could serve as targets for drug discovery. PMID:23241927

  20. Nutrient signaling and developmental timing of maturation.

    PubMed

    Danielsen, E Thomas; Moeller, Morten E; Rewitz, Kim F

    2013-01-01

    In animals, developmental timing of sexual maturation is tightly linked to nutrition and growth. Maturation only occurs once the juvenile has acquired sufficient nutrients and completed enough growth to produce a reproductively mature adult with a genetically predefined body size. Animals therefore adjust the duration of juvenile development to the dietary conditions. When nutrients are scarce the juvenile growth phase is extended to compensate for slow growth. Conversely, development is accelerated in nutrient rich environments where animals rapidly reach their genetic target size. To achieve such flexibility, nutrient-dependent growth regulators must feed into the endocrine system that controls the timing of maturation. Work on the fruit fly Drosophila has revealed a central role of secreted signal molecules with similarity to the conserved insulin-like growth factors (IGFs) in the decision making process. These molecules are involved in checkpoints that allow the endocrine system to decide whether to release the steroid hormone, ecdysone, that triggers maturation or extent development, depending on nutrient levels and growth status. Importantly, different dietary components influence timing of maturation in Drosophila, with proteins having the greatest impact; fat and sugar play a minor role, at least within the limits of what can be considered a balanced diet. Remarkably, excess dietary sugar concentrations that mimic physiological conditions associated with diabetes, negatively affect growth and delays maturation. Altogether, this shows that the source of energy in the diet is important for timing and may provide a paradigm for understanding the emerging links between diet, obesity and diabetes, and the onset of puberty. Here, we provide an overview of the system underlying developmental timing of maturation in Drosophila and review recent success in understanding its coupling to nutrition and growth. © 2013 Elsevier Inc. All rights reserved.

  1. Mechanisms of intracellular calcium homeostasis in developing and mature bovine corpora lutea.

    PubMed

    Wright, Marietta F; Bowdridge, Elizabeth; McDermott, Erica L; Richardson, Samuel; Scheidler, James; Syed, Qaisar; Bush, Taylor; Inskeep, E Keith; Flores, Jorge A

    2014-03-01

    Although calcium (Ca(2+)) is accepted as an intracellular mediator of prostaglandin F2 alpha (PGF2alpha) actions on luteal cells, studies defining mechanisms of Ca(2+) homeostasis in bovine corpora lutea (CL) are lacking. The increase in intracellular Ca(2+) concentration ([Ca(2+)]i) induced by PGF2alpha in steroidogenic cells from mature CL is greater than in those isolated from developing CL. Our hypothesis is that differences in signal transduction associated with developing and mature CL contribute to the increased efficacy of PGF2alpha to induce a Ca(2+) signal capable of inducing regression in mature CL. To test this hypothesis, major genes participating in Ca(2+) homeostasis in the bovine CL were identified, and expression of mRNA, protein, or activity, in the case of phospholipase Cbeta (PLCbeta), in developing and mature bovine CL was compared. In addition, we examined the contribution of external and internal Ca(2+) to the PGF2alpha stimulated rise in [Ca(2+)]i in LLCs isolated from developing and mature bovine CL. Three differences were identified in mechanisms of calcium homeostasis between developing and mature CL, which could account for the lesser increase in [Ca(2+)]i in response to PGF2alpha in developing than in mature CL. First, there were lower concentrations of inositol 1,4,5-trisphosphate (IP3) after similar PGF2alpha challenge, indicating reduced phospholipase C beta (PLCbeta) activity, in developing than mature CL. Second, there was an increased expression of sorcin (SRI) in developing than in mature CL. This cytoplasmic Ca(2+) binding protein modulates the endoplasmic reticulum (ER) Ca(2+) release channel, ryanodine receptor (RyR), to be in the closed configuration. Third, there was greater expression of ATP2A2 or SERCA, which causes calcium reuptake into the ER, in developing than in mature CL. Developmental differences in expression detected in whole CL were confirmed by Western blots using protein samples from steroidogenic cells

  2. Correlation between dental maturity and cervical vertebral maturity.

    PubMed

    Chen, Jianwei; Hu, Haikun; Guo, Jing; Liu, Zeping; Liu, Renkai; Li, Fan; Zou, Shujuan

    2010-12-01

    The aim of this study was to investigate the association between dental and skeletal maturity. Digital panoramic radiographs and lateral skull cephalograms of 302 patients (134 boys and 168 girls, ranging from 8 to 16 years of age) were examined. Dental maturity was assessed by calcification stages of the mandibular canines, first and second premolars, and second molars, whereas skeletal maturity was estimated by the cervical vertebral maturation (CVM) stages. The Spearman rank-order correlation coefficient was used to measure the association between CVM stage and dental calcification stage of individual teeth. The mean chronologic age of girls was significantly lower than that of boys in each CVM stage. The Spearman rank-order correlation coefficients between dental maturity and cervical vertebral maturity ranged from 0.391 to 0.582 for girls and from 0.464 to 0.496 for boys (P < 0.05). In girls, the mandibular second molar had the highest and the canine the lowest correlation. In boys, the canine had the highest and the first premolar the lowest correlation. Tooth calcification stage was significantly correlated with cervical vertebral maturation stage. The development of the mandibular second molar in females and that of the mandibular canine in males had the strongest correlations with cervical vertebral maturity. Therefore, it is practical to consider the relationship between dental and skeletal maturity when planning orthodontic treatment. Copyright © 2010 Mosby, Inc. All rights reserved.

  3. Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells.

    PubMed

    Wang, Yufei; Whittall, Trevor; McGowan, Edward; Younson, Justine; Kelly, Charles; Bergmeier, Lesley A; Singh, Mahavir; Lehner, Thomas

    2005-03-15

    The 70-kDa microbial heat shock protein (mHSP70) has a profound effect on the immune system, interacting with the CD40 receptor on DC and monocytes to produce cytokines and chemokines. The mHSP70 also induces maturation of dendritic cells (DC) and thus acts as an alternative ligand to CD40L on T cells. In this investigation, we have identified a cytokine-stimulating epitope (peptide 407-426), by activating DC with overlapping synthetic peptides (20-mers) derived from the sequence of mHSP70. This peptide also significantly enhances maturation of DC stimulated by mHSP70 or CD40L. The epitope is located at the base of the peptide-binding groove of HSP70 and has five critical residues. Furthermore, an inhibitory epitope (p457-496) was identified downstream from the peptide-binding groove that inhibits cytokine production and maturation of DC stimulated by HSP70 or CD40L. The p38 MAP kinase phosphorylation is critical in the alternative CD40-HSP70 pathway and is inhibited by p457-496 but enhanced by p407-426.

  4. The flavinyl transferase ApbE of Pseudomonas stutzeri matures the NosR protein required for nitrous oxide reduction.

    PubMed

    Zhang, Lin; Trncik, Christian; Andrade, Susana L A; Einsle, Oliver

    2017-02-01

    The copper-containing enzyme nitrous oxide reductase (N 2 OR) catalyzes the transformation of nitrous oxide (N 2 O) to dinitrogen (N 2 ) in microbial denitrification. Several accessory factors are essential for assembling the two copper sites Cu A and Cu Z , and for maintaining the activity. In particular, the deletion of either the transmembrane iron-sulfur flavoprotein NosR or the periplasmic protein NosX, a member of the ApbE family, abolishes N 2 O respiration. Here we demonstrate through biochemical and structural studies that the ApbE protein from Pseudomonas stutzeri, where the nosX gene is absent, is a monomeric FAD-binding protein that can serve as the flavin donor for NosR maturation via covalent flavinylation of a threonine residue. The flavin transfer reaction proceeds both in vivo and in vitro to generate post-translationally modified NosR with covalently bound FMN. Only FAD can act as substrate and the reaction requires a divalent cation, preferably Mg 2+ that was also present in the crystal structure. In addition, the reaction is species-specific to a certain extent. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nfu facilitates the maturation of iron-sulfur proteins and participates in virulence in Staphylococcus aureus

    PubMed Central

    Mashruwala, Ameya A.; Pang, Yun Y.; Rosario-Cruz, Zuelay; Chahal, Harsimranjit K.; Benson, Meredith A.; Anzaldi-Mike, Laura L.; Skaar, Eric P.; Torres, Victor J.; Nauseef, William M.; Boyd, Jeffrey M.

    2015-01-01

    Summary The acquisition and metabolism of iron (Fe) by the human pathogen Staphylococcus aureus is critical for disease progression. S. aureus requires Fe to synthesize inorganic cofactors called iron-sulfur (Fe-S) clusters, which are required for functional Fe-S proteins. In this study we investigated the mechanisms utilized by S. aureus to metabolize Fe-S clusters. We identified that S. aureus utilizes the Suf biosynthetic system to synthesize Fe-S clusters and we provide genetic evidence suggesting that the sufU and sufB gene products are essential. Additional biochemical and genetic analyses identified Nfu as a Fe-S cluster carrier, which aids in the maturation of Fe-S proteins. We find that deletion of the nfu gene negatively impacts staphylococcal physiology and pathogenicity. A nfu mutant accumulates both increased intracellular non-incorporated Fe and endogenous reactive oxygen species (ROS) resulting in DNA damage. In addition, a strain lacking Nfu is sensitive to exogenously supplied ROS and reactive nitrogen species. Congruous with ex vivo findings, a nfu mutant strain is more susceptible to oxidative killing by human polymorphonuclear leukocytes and displays decreased tissue colonization in a murine model of infection. We conclude that Nfu is necessary for staphylococcal pathogenesis and establish Fe-S cluster metabolism as an attractive antimicrobial target. PMID:25388433

  6. Function of antioxidant enzymes and metabolites during maturation of pea fruits.

    PubMed

    Matamoros, Manuel A; Loscos, Jorge; Dietz, Karl-Josef; Aparicio-Tejo, Pedro M; Becana, Manuel

    2010-01-01

    In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 degrees C led to a decline in antioxidant activities and metabolites and in gamma-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate-glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development.

  7. Function of antioxidant enzymes and metabolites during maturation of pea fruits

    PubMed Central

    Matamoros, Manuel A.; Loscos, Jorge; Dietz, Karl-Josef; Aparicio-Tejo, Pedro M.; Becana, Manuel

    2010-01-01

    In plant cells, antioxidants keep reactive oxygen species at low concentrations, avoiding oxidative damage while allowing them to play crucial functions in signal transduction. However, little is known about the role of antioxidants during fruit maturation, especially in legumes. Snap pea (Pisum sativum) plants, which have edible fruits, were grown under nodulating and non-nodulating conditions. Fruits were classified in three maturity stages and antioxidants were determined in the seeds and seedless pods. Maturation or prolonged storage of fruits at 25 °C led to a decline in antioxidant activities and metabolites and in γ-glutamylcysteine synthetase protein. Notable exceptions were superoxide dismutase activity and glutathione peroxidase protein, which increased in one or both of these processes. During maturation, cytosolic peroxiredoxin decreased in seeds but increased in pods, and ascorbate oxidase activity was largely reduced in seeds. In stored fruits, ascorbate oxidase activity was nearly abolished in seeds but doubled in pods. It is concluded that symbiotic nitrogen fixation is as effective as nitrogen fertilization in maintaining the antioxidant capacity of pea fruits and that, contrary to climacteric fruits, a general decrease in antioxidants during maturation does not involve oxidative stress. Results underscore the importance of the antioxidant system in reproductive organs and point to ascorbate–glutathione metabolism and cytosolic peroxiredoxin as key players in pea fruit development. PMID:19822534

  8. A fragment of alpha-actinin promotes monocyte/macrophage maturation in vitro.

    PubMed

    Luikart, S; Wahl, D; Hinkel, T; Masri, M; Oegema, T

    1999-02-01

    Conditioned media (CM) from cultures of HL-60 myeloid leukemia cells grown on extracellular bone marrow matrix contains a factor that induces macrophage-like maturation of HL-60 cells. This factor was purified from the CM of HL-60 cells grown on bone marrow stroma by ammonium sulfate precipitation, then sequential chromatography on DEAE, affi-gel blue affinity, gel exclusion, and wheat germ affinity columns, followed by C-4 reverse phase HPLC, and SDS-PAGE. The maturation promoting activity of the CM was identified in a single 31 kD protein. Amino acid sequence analysis of four internal tryptic peptides of this protein confirmed significant homology with amino acid residues 48-60, 138-147, 215-220, and 221-236 of human cytoskeletal alpha-actinin. An immunoaffinity purified rabbit polyclonal anti-chicken alpha-actinin inhibited the activity of HL-60 conditioned media. A 27 kD amino-terminal fragment of alpha-actinin produced by thermolysin digestion of chicken gizzard alpha-actinin, but not intact alpha-actinin, had maturation promoting activity on several cell types, including blood monocytes, as measured by lysozyme secretion and tartrate-resistant acid phosphatase staining. We conclude that an extracellular alpha-actinin fragment can promote monocyte/macrophage maturation. This represents the first example of a fragment of a cytoskeletal component, which may be released during tissue remodeling and repair, playing a role in phagocyte maturation.

  9. Characterization of New Cationic N,N-Dimethyl[70]fulleropyrrolidinium Iodide Derivatives as Potent HIV-1 Maturation Inhibitors.

    PubMed

    Castro, Edison; Martinez, Zachary S; Seong, Chang-Soo; Cabrera-Espinoza, Andrea; Ruiz, Mauro; Hernandez Garcia, Andrea; Valdez, Federico; Llano, Manuel; Echegoyen, Luis

    2016-12-22

    HIV-1 maturation can be impaired by altering protease (PR) activity, the structure of the Gag-Pol substrate, or the molecular interactions of viral structural proteins. Here we report the synthesis and characterization of new cationic N,N-dimethyl[70]fulleropyrrolidinium iodide derivatives that inhibit more than 99% of HIV-1 infectivity at low micromolar concentrations. Analysis of the HIV-1 life cycle indicated that these compounds inhibit viral maturation by impairing Gag and Gag-Pol processing. Importantly, fullerene derivatives 2a-c did not inhibit in vitro PR activity and strongly interacted with HIV immature capsid protein in pull-down experiments. Furthermore, these compounds potently blocked infectivity of viruses harboring mutant PR that are resistant to multiple PR inhibitors or mutant Gag proteins that confer resistance to the maturation inhibitor Bevirimat. Collectively, our studies indicate fullerene derivatives 2a-c as potent and novel HIV-1 maturation inhibitors.

  10. The Ubiquitination of PINK1 Is Restricted to Its Mature 52-kDa Form.

    PubMed

    Liu, Yuhui; Guardia-Laguarta, Cristina; Yin, Jiang; Erdjument-Bromage, Hediye; Martin, Brittany; James, Michael; Jiang, Xuejun; Przedborski, Serge

    2017-07-05

    Along with Parkin, PINK1 plays a critical role in maintaining mitochondrial quality control. Although PINK1 is expressed constitutively, its level is kept low in healthy mitochondria by polyubiquitination and ensuing proteasomal degradation of its mature, 52 kDa, form. We show here that the target of PINK1 polyubiquitination is the mature form and is mediated by ubiquitination of a conserved lysine at position 137. Notably, the full-length protein also contains Lys-137 but is not ubiquitinated. On the basis of our data, we propose that cleavage of full-length PINK1 at Phe-104 disrupts the major hydrophobic membrane-spanning domain in the protein, inducing a conformation change in the resultant mature form that exposes Lys-137 to the cytosol for subsequent modification by the ubiquitination machinery. Thus, the balance between the full-length and mature PINK1 allows its levels to be regulated via ubiquitination of the mature form and ensures that PINK1 functions as a mitochondrial quality control factor. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Role of ataxia-telangiectasia mutated (ATM) in porcine oocyte in vitro maturation.

    PubMed

    Lin, Zi-Li; Kim, Nam-Hyung

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) is critical for the DNA damage response, cell cycle checkpoints, and apoptosis. Significant effort has focused on elucidating the relationship between ATM and other nuclear signal transducers; however, little is known about the connection between ATM and oocyte meiotic maturation. We investigated the function of ATM in porcine oocytes. ATM was expressed at all stages of oocyte maturation and localized predominantly in the nucleus. Furthermore, the ATM-specific inhibitor KU-55933 blocked porcine oocyte maturation, reducing the percentages of oocytes that underwent germinal vesicle breakdown (GVBD) and first polar body extrusion. KU-55933 also decreased the expression of DNA damage-related genes (breast cancer 1, budding uninhibited by benzimidazoles 1, and P53) and reduced the mRNA and protein levels of AKT and other cell cycle-regulated genes that are predominantly expressed during G2/M phase, including bone morphogenetic protein 15, growth differentiation factor 9, cell division cycle protein 2, cyclinB1, and AKT. KU-55933 treatment decreased the developmental potential of blastocysts following parthenogenetic activation and increased the level of apoptosis. Together, these data suggested that ATM influenced the meiotic and cytoplasmic maturation of porcine oocytes, potentially by decreasing their sensitivity to DNA strand breaks, stimulating the AKT pathway, and/or altering the expression of other maternal genes. © 2015 International Federation for Cell Biology.

  12. Proteolysis of mature HIV-1 p6 Gag protein by the insulin-degrading enzyme (IDE) regulates virus replication in an Env-dependent manner.

    PubMed

    Hahn, Friedrich; Schmalen, Adrian; Setz, Christian; Friedrich, Melanie; Schlößer, Stefan; Kölle, Julia; Spranger, Robert; Rauch, Pia; Fraedrich, Kirsten; Reif, Tatjana; Karius-Fischer, Julia; Balasubramanyam, Ashok; Henklein, Petra; Fossen, Torgils; Schubert, Ulrich

    2017-01-01

    There is a significantly higher risk for type II diabetes in HIV-1 carriers, albeit the molecular mechanism for this HIV-related pathology remains enigmatic. The 52 amino acid HIV-1 p6 Gag protein is synthesized as the C-terminal part of the Gag polyprotein Pr55. In this context, p6 promotes virus release by its two late (L-) domains, and facilitates the incorporation of the viral accessory protein Vpr. However, the function of p6 in its mature form, after proteolytic release from Gag, has not been investigated yet. We found that the mature p6 represents the first known viral substrate of the ubiquitously expressed cytosolic metalloendopeptidase insulin-degrading enzyme (IDE). IDE is sufficient and required for degradation of p6, and p6 is approximately 100-fold more efficiently degraded by IDE than its eponymous substrate insulin. This observation appears to be specific for HIV-1, as p6 proteins from HIV-2 and simian immunodeficiency virus, as well as the 51 amino acid p9 from equine infectious anaemia virus were insensitive to IDE degradation. The amount of virus-associated p6, as well as the efficiency of release and maturation of progeny viruses does not depend on the presence of IDE in the host cells, as it was shown by CRISPR/Cas9 edited IDE KO cells. However, HIV-1 mutants harboring IDE-insensitive p6 variants exhibit reduced virus replication capacity, a phenomenon that seems to depend on the presence of an X4-tropic Env. Furthermore, competing for IDE by exogenous insulin or inhibiting IDE by the highly specific inhibitor 6bK, also reduced virus replication. This effect could be specifically attributed to IDE since replication of HIV-1 variants coding for an IDE-insensitive p6 were inert towards IDE-inhibition. Our cumulative data support a model in which removal of p6 during viral entry is important for virus replication, at least in the case of X4 tropic HIV-1.

  13. Nickel trafficking system responsible for urease maturation in Helicobacter pylori.

    PubMed

    Ge, Rui-Guang; Wang, Dong-Xian; Hao, Ming-Cong; Sun, Xue-Song

    2013-12-07

    Helicobacter pylori (H. pylori) is a common human pathogen responsible for various gastric diseases. This bacterium relies on the production of urease and hydrogenase to inhabit the acidic environment of the stomach. Nickel is an essential cofactor for urease and hydrogenase. H. pylori has to uptake sufficient nickel ions for the maturation of urease, and on the other way, to prevent the toxic effects of excessive nickel ions. Therefore, H. pylori has to strike a delicate balance between the import of nickel ions, its efficient intracellular storage, and delivery to nickel-dependent metalloenzymes when required. The assembly and maturation of the urease enzyme is a complex and timely ordered process, requiring various regulatory, uptake, chaperone and accessory proteins. In this review, we focus on several nickel trafficking proteins involved in urease maturation: NikR, NixA, HypAB, UreEFGH, HspA, Hpn and Hpnl. The work will deepen our understanding of how this pathogenic bacterium adapts to severe habitant environments in the host. © 2013 Baishideng Publishing Group Co., Limited. All rights reserved.

  14. Expression of synapsin I correlates with maturation of the neuromuscular synapse.

    PubMed

    Lu, B; Czernik, A J; Popov, S; Wang, T; Poo, M M; Greengard, P

    1996-10-01

    Synapsins are a family of neuron-specific phosphoproteins that are localized within the presynaptic terminals in adult brain. Previous work has demonstrated that introduction of exogenous synapsins I(a + b) or IIa into Xenopus spinal neurons promoted maturation of the neuromuscular synapse in a nerve-muscle co-culture system. We have now studied the expression of endogenous Xenopus synapsin I during synaptic maturation in vivo and in culture, using a polyclonal antibody raised against Xenopus synapsin I. Immunoprecipitation experiments indicated that synapsin I was not detectable during the early phase of synaptogenesis in vivo, and exhibited a marked increase during the period of synaptic maturation. In contrast, the expression of synaptophysin, another synaptic vesicle protein, was detected at the start of nervous system formation, and remained at a high level thereafter. Similar expression profiles for the two proteins were also observed in immunocytochemical studies of Xenopus spinal neurons in culture: intense staining of synaptophysin was found on the first day, while synapsin I was not detected until after three days in culture. The expression of synapsin I correlated very well with the appearance of a bell-shaped amplitude distribution of spontaneous synaptic currents, a physiological parameter which reflects functional maturation of the neuromuscular synapse. In one-day-old cultures grown in the absence of laminin, an extracellular matrix protein known to be present at the neuromuscular junction, the amplitude distribution of virtually all synapses was skewed towards smaller values. In contrast, when laminin was used as a culture substrate, many synapses exhibited a bell-shaped amplitude distribution. Laminin treatment also induced synapsin I expression in one-day-old cultures. These results suggest that the expression of endogenous synapsin I may regulate maturation at neuromuscular synapses.

  15. Proteome analysis during pod, zygotic and somatic embryo maturation of Theobroma cacao.

    PubMed

    Niemenak, Nicolas; Kaiser, Edward; Maximova, Siela N; Laremore, Tatiana; Guiltinan, Mark J

    2015-05-15

    Two dimensional electrophoresis and nano-LC-MS were performed in order to identify alterations in protein abundance that correlate with maturation of cacao zygotic and somatic embryos. The cacao pod proteome was also characterized during development. The recently published cacao genome sequence was used to create a predicted proteolytic fragment database. Several hundred protein spots were resolved on each tissue analysis, of which 72 variable spots were subjected to MS analysis, resulting in 49 identifications. The identified proteins represent an array of functional categories, including seed storage, stress response, photosynthesis and translation factors. The seed storage protein was strongly accumulated in cacao zygotic embryos compared to their somatic counterpart. However, sucrose treatment (60 g L(-1)) allows up-regulation of storage protein in SE. A high similarity in the profiles of acidic proteins was observed in mature zygotic and somatic embryos. Differential expression in both tissues was observed in proteins having high pI. Several proteins were detected exclusively in fruit tissues, including a chitinase and a 14-3-3 protein. We also identified a novel cacao protein related to known mabinlin type sweet storage proteins. Moreover, the specific presence of thaumatin-like protein, another sweet protein, was also detected in fruit tissue. We discuss our observed correlations between protein expression profiles, developmental stage and stress responses. Copyright © 2015 Elsevier GmbH. All rights reserved.

  16. The effect of Bcr-Abl protein tyrosine kinase on maturation and proliferation of primitive haematopoietic cells.

    PubMed Central

    Buckle, A. M.; Mottram, R.; Pierce, A.; Lucas, G. S.; Russell, N.; Miyan, J. A.; Whetton, A. D.

    2000-01-01

    BACKGROUND: Chronic Myeloid Leukaemia (CML) is characterised by the chromosomal translocation resulting in expression of the Bcr-Abl protein tyrosine kinase (PTK) in early stem cells and their progeny. However the precise nature of Bcr-Abl effects in primitive CML stem cells remains a matter of active debate. MATERIALS AND METHODS: Extremely primitive Bcr-Abl fusion positive cells were purified from patients with CML using multiparameter flow cytometric analysis of CD34, Thy, and lineage marker (Lin) expression, plus rhodamine-123 (Rh-123) brightness. Progenitor cells of increasing maturity were examined for cycling status by flow cytometry and their proliferative status directly correlated with cell phenotype. The activation status of a key transcription factor, signal transducers and activators of transcription (STAT-5), was also analyzed by immunocytochemistry. RESULTS: The most primitive stem cells currently defined (CD34+Lin-Thy+ Rh-1231o) were present as a lower proportion of the stem cell compartment (CD34+Lin-) of CML patients at presentation than of normal individuals (2.3% +/- 0.4 compared with 5.1% +/- 0.6 respectively). Conversely there was a significantly higher proportion of the more mature cells (CD34+Lin-Thy-Rh-123 hi) in CML patients than in normal individuals (79.3 +/- 1.8 compared with 70.9 +/- 3.3). No primitive subpopulation of CML CD34+Lin- cells was cycling to a significantly greater degree than cells from normal donors, in fact, late progenitor cells (CD34+Lin+) were cycling significantly less in CML samples than normal samples. STAT5, however, was observed to be activated in CML cells. CONCLUSIONS: We conclude that no subpopulation of CML stem cells displays significantly increased cell cycling. Thus, increased cycling cannot be a direct consequence of Bcr-Abl PTK acquisition in highly enriched stem cells from patients with CML. In vivo CML need not be considered a disease of unbridled stem cell proliferation, but a subtle defect in the

  17. Developmental competence of mature yak vitrified-warmed oocytes is enhanced by IGF-I via modulation of CIRP during in vitro maturation.

    PubMed

    Pan, Yangyang; Cui, Yan; He, Honghong; Baloch, Abdul Rasheed; Fan, Jiangfeng; Xu, Gengquan; He, Junfeng; Yang, Kun; Li, Guyue; Yu, Sijiu

    2015-12-01

    The objective of this study was to investigate whether developmental competence of mature vitrified-warmed yak (Bos grunniens) oocytes can be enhanced by supplemented insulin-like growth factor I (IGF-1) during in vitro maturation (IVM), and its relationship with the expression of cold-inducible RNA-binding protein (CIRP). In experiment 1, immature yak oocytes were divided into four groups, and IVM supplemented with 0, 50, 100 and 200 ng/mL IGF-1 was evaluated; the mRNA and protein expression levels of CIRP in mature oocytes in the four groups were evaluated using quantitative real-time PCR and western blotting analyses. In experiment 2, the mature yak oocytes in the four groups were cryopreserved using the Cryotop (CT) method, followed by chemical activation and in vitro culture for two days and eight days to determine cleavage, blastocyst rates, and total cell number in the blastocysts. Mature yak oocytes without vitrification served as a control group. The outcomes were as following: (1) the expression of CIRP in the matured oocytes was up-regulated in the IGF-1 groups and was highest expression was observed in the 100 ng/mL IGF-1 treatment group. (2) In the vitrified-warmed groups, the rates of cleavage and blastocyst were also highest in the 100 ng/mL IGF-1 treatment group (81.04 ± 1.06%% and 32.16 ± 1.01%), which were close to the rates observed in groups without vitrification (83.25 ± 0.85% and 32.54 ± 0.34%). The rates of cleavage and blastocyst in the other vitrified-warmed groups were 70.92 ± 1.32% and 27.33 ± 1.31% (0 ng/mL); 72.73 ± 0.74% and 29.41 ± 0.84% (50 ng/mL); 72.43 ± 0.61% and 27.61 ± 0.59% (200 ng/mL), respectively. There was no significant difference in the total cell number per blastocysts between the vitrified-warmed groups and group without vitrification. Thus, we conclude that the enhancement in developmental competence of mature yak vitrified-warmed oocytes after the addition of IGF-1 during IVM might result from the regulation

  18. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans.

    PubMed

    Serwas, Daniel; Su, Tiffany Y; Roessler, Max; Wang, Shaohe; Dammermann, Alexander

    2017-06-05

    Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance. © 2017 Serwas et al.

  19. Centrioles initiate cilia assembly but are dispensable for maturation and maintenance in C. elegans

    PubMed Central

    Roessler, Max

    2017-01-01

    Cilia are cellular projections that assemble on centriole-derived basal bodies. While cilia assembly is absolutely dependent on centrioles, it is not known to what extent they contribute to downstream events. The nematode C. elegans provides a unique opportunity to address this question, as centrioles do not persist at the base of mature cilia. Using fluorescence microscopy and electron tomography, we find that centrioles degenerate early during ciliogenesis. The transition zone and axoneme are not completely formed at this time, indicating that cilia maturation does not depend on intact centrioles. The hydrolethalus syndrome protein HYLS-1 is the only centriolar protein known to remain at the base of mature cilia and is required for intraflagellar transport trafficking. Surprisingly, targeted degradation of HYLS-1 after initiation of ciliogenesis does not affect ciliary structures. Taken together, our results indicate that while centrioles are essential to initiate cilia formation, they are dispensable for cilia maturation and maintenance. PMID:28411189

  20. Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses.

    PubMed

    Wu, Gregory F; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E; Riese, Matthew J; Jordan, Martha S; Laufer, Terri M; Brown, Eric J; Maltzman, Jonathan S

    2011-07-01

    The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T-cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of WT SLP-76 protein in thymocytes. Here, we show that following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR-generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T-cell-mediated autoimmune disease experimental autoimmune encephalomyelitis. Altogether, our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T-cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Seed dehydration and the establishment of desiccation tolerance during seed maturation is altered in the Arabidopsis thaliana mutant atem6-1.

    PubMed

    Manfre, Alicia J; LaHatte, Gabrielle A; Climer, Cynthia R; Marcotte, William R

    2009-02-01

    The end of orthodox seed development is typified by a developmentally regulated period of dehydration leading to the loss of bulk water from the entire structure. When dehydration occurs, the cytoplasm condenses and intracellular components become more crowded, providing an environment amenable to numerous undesirable interactions that can lead to protein aggregation, denaturation and organelle-cell membrane fusion. Acquisition of desiccation tolerance, or the ability to withstand these very low water potentials and consequent molecular crowding, has been correlated with the accumulation of various protective compounds including proteins and sugars. Among these are the late embryogenesis abundant (LEA) proteins, a diverse class of highly abundant, heat-stable proteins that accumulate late in embryo maturation coincident with the acquisition of desiccation tolerance. Previous work led us to hypothesize that the protein ATEM6, one of the two Arabidopsis thaliana group 1 LEA proteins, is involved in regulating the rate at which water is lost from the maturing embryo; homozygous atem6-1 mutants display premature dehydration of seeds at the distal end of the silique. Here we demonstrate that rehydrated, mature seeds from atem6-1 mutant plants lose more water during subsequent air drying than wild-type seeds, consistent with a role for ATEM6 protein in water binding/loss during embryo maturation. In addition, and possibly as a result of premature dehydration, mutant seeds along the entire length of the silique acquire desiccation tolerance earlier than their wild-type counterparts. We further demonstrate precocious, and perhaps elevated, expression of the other A. thaliana group 1 LEA protein, ATEM1, that may compensate for loss or ATEM6 expression. However, this observation could also be consistent with acceleration of the entire normal maturation program in atem6-1 mutant embryos. Interestingly, ATEM6 protein does not appear to be required in mature seeds for viability

  2. Protein Biosynthesis and Maturation in the ER.

    PubMed

    Pedrazzini, Emanuela; Vitale, Alessandro

    2018-01-01

    The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system, or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labeling with radioactive amino acids, and immunoprecipitation in various conditions.

  3. A Molecular Approach Designed to Limit the Replication of Mature DENV2 in Host Cells.

    PubMed

    Raheel, Ummar; Jamal, Muhsin; Zaidi, Najam Us Sahar Sadaf

    2015-09-01

    Dengue virus (DENV) is an arthropod-borne virus, which belongs to the Flaviviridae family, and completes its life cycle in two hosts: humans and mosquitoes. For DENV maturation, the surface pre-membrane (prM) protein is cleaved to form a mature membrane protein (M) by furin, which is a cellular enzyme subsequently releasing the mature virus from the host dendritic cell. The objective of the current study was to inhibit mature DENV isotype 2 (DENV2) by RNA-interference in a Vero-81 cell line. Mature DENV2 was propagated in and isolated from U937 cells expressing dendritic cell-specific intracellular adhesion molecule-3-grabbing non-integrin. Maturation of DENV2 was confirmed by Western blot analysis, where virus stock lacking prM was considered mature. Inhibition studies were carried out by transfection of Vero-81 cells with six synthetic siRNAs along with a control siRNA. Reduction in cellular DENV2 was observed also by focus-reduction assay, immunofluorescence assay (IFA), and real-time quantitative polymerase chain reaction (RT-qPCR). Cells transfected with DENV2SsiRNA2, which was targeting the structural region M of mature DENV2, was able to reduce DENV2 titer by up to 85% in focus reduction assays. A significant reduction in mature DENV2 RNA load was observed by RT-qPCR, confirming the previous findings. IFA also revealed reduced levels of cellular DENV2. These results demonstrated that mature DENV2 can be effectively inhibited by synthetic siRNA targeting the structural region of the genome. Mature DENV2 can be successfully inhibited by siRNAs, and specifically high knock-down efficiency is observed by siRNAs against M region of mature DENV2. This study shows that M represents a potential target for RNAi based inhibitory approaches.

  4. Corticosteroids and fetal intervention interact to alter lung maturation in preterm lambs.

    PubMed

    Tabor, B L; Lewis, J F; Ikegami, M; Polk, D; Jobe, A H

    1994-04-01

    The relationship between cortisol infusion and time of fetal catheterization on postnatal lung function of prematurely delivered lambs was investigated with the hypothesis that the intervention of catheterization would alter fetal responsiveness to the maturational effects of corticosteroids. Fetal catheterization was performed on d 117 or on d 122 of gestation. Cortisol or saline control infusions were begun on d 126, with delivery 60 h later on d 128. The animals were ventilated for 1.25 h after delivery, and compliance, the ventilation efficiency index, labeled albumin leak into and out of the lungs, alveolar and lung saturated phosphatidylcholine and surfactant protein A were measured to evaluate lung performance and biochemical indicators of maturation. Cortisol improved compliance and ventilation efficiency and decreased labeled albumin recovery without changing alveolar saturated phosphatidylcholine or surfactant protein A in the animals catheterized at 122 d relative to 122-d saline-infused animals. However, the animals catheterized at 117 d and infused with saline were as mature as assessed by compliance and ventilation efficiency as the 122-d cortisol-treated animals. The 117-d cortisol-infused animals had significantly augmented lung function relative to either 117-d saline-infused or 122-d cortisol-treated lambs and were the only group that had increased alveolar surfactant protein A and lung saturated phosphatidylcholine pool sizes. This study demonstrates that the response of the fetal lung to a maturational agent such as cortisol is dependent on the history of previous fetal interventions.

  5. Getting ready to translate: cytoplasmic maturation of eukaryotic ribosomes.

    PubMed

    Panse, Vikram Govind

    2011-01-01

    The ribosome is the 'universal ribozyme' that is responsible for the final step of decoding genetic information into proteins. While the function of the ribosome is being elucidated at the atomic level, in comparison, little is known regarding its assembly in vivo and intracellular transport. In contrast to prokaryotic ribosomes, the construction of eukaryotic ribosomes, which begins in the nucleolus, requires >200 evolutionary conserved non-ribosomal trans-acting factors, which transiently associate with pre-ribosomal subunits at distinct assembly stages and perform specific maturation steps. Notably, pre-ribosomal subunits are transported to the cytoplasm in a functionally inactive state where they undergo maturation prior to entering translation. In this review, I will summarize our current knowledge of the eukaryotic ribosome assembly pathway with emphasis on cytoplasmic maturation events that render pre-ribosomal subunits translation competent.

  6. WFIKKN1 and WFIKKN2: "Companion" proteins regulating TGFB activity.

    PubMed

    Monestier, Olivier; Blanquet, Véronique

    2016-12-01

    The WFIKKN (WAP, Follistatin/kazal, Immunoglobulin, Kunitz and Netrin domain-containing) protein family is composed of two multidomain proteins: WFIKKN1 and WFIKKN2. They were formed by domain shuffling and are likely present in deuterostoms. The WFIKKN (also called GASP) proteins are well known for their function in muscle and skeletal tissues, namely, inhibition of certain members of the transforming growth factor beta (TGFB) superfamily such as myostatin (MSTN) and growth and differentiation factor 11 (GDF11). However, the role of the WFIKKN proteins in other tissues is still poorly understood in spite of evidence suggesting possible action in the inner ear, brain and reproduction. Further, several recent studies based on next generation technologies revealed differential expression of WFIKKN1 and WFIKKN2 in various tissues suggesting that their function is not limited to MSTN and GDF11 inhibition in musculoskeletal tissue. In this review, we summarize current knowledge about the WFIKKN proteins and propose that they are "companion" proteins for various growth factors by providing localized and sustained presentation of TGFB proteins to their respective receptors, thus regulating the balance between the activation of Smad and non-Smad pathways by TGFB. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  8. MicroRNA-Mediated Down-Regulation of M-CSF Receptor Contributes to Maturation of Mouse Monocyte-Derived Dendritic Cells

    PubMed Central

    Riepsaame, Joey; van Oudenaren, Adri; den Broeder, Berlinda J. H.; van IJcken, Wilfred F. J.; Pothof, Joris; Leenen, Pieter J. M.

    2013-01-01

    Dendritic cell (DC) maturation is a tightly regulated process that requires coordinated and timed developmental cues. Here we investigate whether microRNAs are involved in this process. We identify microRNAs in mouse GM-CSF-generated, monocyte-related DC (GM-DC) that are differentially expressed during both spontaneous and LPS-induced maturation and characterize M-CSF receptor (M-CSFR), encoded by the Csf1r gene, as a key target for microRNA-mediated regulation in the final step toward mature DC. MicroRNA-22, -34a, and -155 are up-regulated in mature MHCIIhi CD86hi DC and mediate Csf1r mRNA and protein down-regulation. Experimental inhibition of Csf1r-targeting microRNAs in vitro results not only in sustained high level M-CSFR protein expression but also in impaired DC maturation upon stimulation by LPS. Accordingly, over-expression of Csf1r in GM-DC inhibits terminal differentiation. Taken together, these results show that developmentally regulated microRNAs control Csf1r expression, supplementing previously identified mechanisms that regulate its transcription and protein surface expression. Furthermore, our data indicate a novel function for Csf1r in mouse monocyte-derived DC, showing that down-regulation of M-CSFR expression is essential for final DC maturation. PMID:24198819

  9. RNase MRP cleaves pre-tRNASer-Met in the tRNA maturation pathway.

    PubMed

    Saito, Yuichiro; Takeda, Jun; Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNA(Ser-Met). To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNA(Ser-Met), suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry-based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute "Domain 1" in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP.

  10. RNase MRP Cleaves Pre-tRNASer-Met in the tRNA Maturation Pathway

    PubMed Central

    Adachi, Kousuke; Nobe, Yuko; Kobayashi, Junya; Hirota, Kouji; Oliveira, Douglas V.; Taoka, Masato; Isobe, Toshiaki

    2014-01-01

    Ribonuclease mitochondrial RNA processing (RNase MRP) is a multifunctional ribonucleoprotein (RNP) complex that is involved in the maturation of various types of RNA including ribosomal RNA. RNase MRP consists of a potential catalytic RNA and several protein components, all of which are required for cell viability. We show here that the temperature-sensitive mutant of rmp1, the gene for a unique protein component of RNase MRP, accumulates the dimeric tRNA precursor, pre-tRNASer-Met. To examine whether RNase MRP mediates tRNA maturation, we purified the RNase MRP holoenzyme from the fission yeast Schizosaccharomyces pombe and found that the enzyme directly and selectively cleaves pre-tRNASer-Met, suggesting that RNase MRP participates in the maturation of specific tRNA in vivo. In addition, mass spectrometry–based ribonucleoproteomic analysis demonstrated that this RNase MRP consists of one RNA molecule and 11 protein components, including a previously unknown component Rpl701. Notably, limited nucleolysis of RNase MRP generated an active catalytic core consisting of partial mrp1 RNA fragments, which constitute “Domain 1” in the secondary structure of RNase MRP, and 8 proteins. Thus, the present study provides new insight into the structure and function of RNase MRP. PMID:25401760

  11. Melatonin accelerates maturation inducing hormone (MIH): induced oocyte maturation in carps.

    PubMed

    Chattoraj, Asamanja; Bhattacharyya, Sharmistha; Basu, Dipanjan; Bhattacharya, Shelley; Bhattacharya, Samir; Maitra, Saumen Kumar

    2005-02-01

    The present communication is an attempt to demonstrate the influence of melatonin on the action of maturation inducing hormone (MIH) on the maturation of oocytes in carps. The oocytes from gravid female major carp Labeo rohita were isolated and incubated separately in Medium 199 containing (a) only MIH (1 microg/ml), (b) only melatonin (at concentrations of 50, 100 or 500 pg/ml), and (c) both melatonin and MIH, but at different time intervals. In the latter group, melatonin was added to the incubating medium either (i) 4 h before addition of MIH, (ii) 2 h before addition of MIH, (iii) co-administered with MIH (0 h interval) or (iv) 2 h after addition of MIH. In each case, oocytes were further incubated for 4, 8, 12 or 16 h post- administration of MIH, and the effects of treatment on oocyte maturation were evaluated by considering the rate (%) of germinal vesicle breakdown (GVBD). Incubation of oocytes in a medium containing only melatonin did not result in GVBD of any oocyte. Nearly all the oocytes underwent GVBD when incubated with MIH for 16 h. Administration of melatonin along with MIH (at 0 h interval) or 2 h after addition of MIH did not result in any significant change in the rate of GVBD compared to that in a medium containing only MIH. However, it was quite interesting to observe that incubation of oocytes with melatonin especially 4 h prior to addition of MIH in the medium, led to an accelerated rate of GVBD in the oocytes. Experiments with the oocytes of another major carp Cyprinus carpio following an identical schedule depicted similar results except a difference in the optimum melatonin dose. In L. rohita, 50 pg/ml melatonin had maximum acceleratory effect on MIH-induced GVBD of oocytes, while it was 100 pg/ml in C. carpio. Further study revealed that pre-incubation with melatonin accelerates the action of MIH on the formation of a complex of two proteins (MPF), a regulatory component called cyclin B and the catalytic component protein kinase known as

  12. Selective stabilization of tau in axons and microtubule-associated protein 2C in cell bodies and dendrites contributes to polarized localization of cytoskeletal proteins in mature neurons.

    PubMed

    Hirokawa, N; Funakoshi, T; Sato-Harada, R; Kanai, Y

    1996-02-01

    In mature neurons, tau is abundant in axons, whereas microtubule-associated protein 2 (MAP2) and MAP2C are specifically localized in dendrites. Known mechanisms involved in the compartmentalization of these cytoskeletal proteins include the differential localization of mRNA (MAP2 mRNA in dendrites, MAP2C mRNA in cell body, and Tau mRNA in proximal axon revealed by in situ hybridization) (Garner, C.C., R.P. Tucker, and A. Matus. 1988. Nature (Lond.). 336:674-677; Litman, P., J. Barg, L. Rindzooski, and I. Ginzburg. 1993. Neuron. 10:627-638), suppressed transit of MAP2 into axons (revealed by cDNA transfection into neurons) (Kanai, Y., and N. Hirokawa. 1995. Neuron. 14:421-432), and differential turnover of MAP2 in axons vs dendrites (Okabe, S., and N. Hirokawa. 1989. Proc. Natl. Acad. Sci. USA. 86:4127-4131). To investigate whether differential turnover of MAPs contributes to localization of other major MAPs in general, we microinjected biotinylated tau, MAP2C, or MAP2 into mature spinal cord neurons in culture (approximately 3 wk) and then analyzed their fates by antibiotin immunocytochemistry. Initially, each was detected in axons and dendrites, although tau persisted only in axons, whereas MAP2C and MAP2 were restricted to cell bodies and dendrites. Injected MAP2C and MAP2 bound to dendritic microtubules more firmly than to microtubules in axons, while injected tau bound to axonal microtubules more firmly than to microtubules in dendrites. Thus, beyond contributions from mRNA localization and selective axonal transport, compartmentalization of each of the three major MAPs occurs through local differential turnover.

  13. Efficient modification of the myostatin gene in porcine somatic cells and generation of knockout piglets.

    PubMed

    Rao, Shengbin; Fujimura, Tatsuya; Matsunari, Hitomi; Sakuma, Tetsushi; Nakano, Kazuaki; Watanabe, Masahito; Asano, Yoshinori; Kitagawa, Eri; Yamamoto, Takashi; Nagashima, Hiroshi

    2016-01-01

    Myostatin (MSTN) is a negative regulator of myogenesis, and disruption of its function causes increased muscle mass in various species. Here, we report the generation of MSTN-knockout (KO) pigs using genome editing technology combined with somatic-cell nuclear transfer (SCNT). Transcription activator-like effector nuclease (TALEN) with non-repeat-variable di-residue variations, called Platinum TALEN, was highly efficient in modifying genes in porcine somatic cells, which were then used for SCNT to create MSTN KO piglets. These piglets exhibited a double-muscled phenotype, possessing a higher body weight and longissimus muscle mass measuring 170% that of wild-type piglets, with double the number of muscle fibers. These results demonstrate that loss of MSTN increases muscle mass in pigs, which may help increase pork production for consumption in the future. © 2015 Wiley Periodicals, Inc.

  14. Structure of UreG/UreF/UreH Complex Reveals How Urease Accessory Proteins Facilitate Maturation of Helicobacter pylori Urease

    PubMed Central

    Fong, Yu Hang; Wong, Ho Chun; Yuen, Man Hon; Lau, Pak Ho; Chen, Yu Wai; Wong, Kam-Bo

    2013-01-01

    Urease is a metalloenzyme essential for the survival of Helicobacter pylori in acidic gastric environment. Maturation of urease involves carbamylation of Lys219 and insertion of two nickel ions at its active site. This process requires GTP hydrolysis and the formation of a preactivation complex consisting of apo-urease and urease accessory proteins UreF, UreH, and UreG. UreF and UreH form a complex to recruit UreG, which is a SIMIBI class GTPase, to the preactivation complex. We report here the crystal structure of the UreG/UreF/UreH complex, which illustrates how UreF and UreH facilitate dimerization of UreG, and assembles its metal binding site by juxtaposing two invariant Cys66-Pro67-His68 metal binding motif at the interface to form the (UreG/UreF/UreH)2 complex. Interaction studies revealed that addition of nickel and GTP to the UreG/UreF/UreH complex releases a UreG dimer that binds a nickel ion at the dimeric interface. Substitution of Cys66 and His68 with alanine abolishes the formation of the nickel-charged UreG dimer. This nickel-charged UreG dimer can activate urease in vitro in the presence of the UreF/UreH complex. Static light scattering and atomic absorption spectroscopy measurements demonstrated that the nickel-charged UreG dimer, upon GTP hydrolysis, reverts to its monomeric form and releases nickel to urease. Based on our results, we propose a mechanism on how urease accessory proteins facilitate maturation of urease. PMID:24115911

  15. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes.

    PubMed

    Crispo, M; Mulet, A P; Tesson, L; Barrera, N; Cuadro, F; dos Santos-Neto, P C; Nguyen, T H; Crénéguy, A; Brusselle, L; Anegón, I; Menchaca, A

    2015-01-01

    While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (P<0.05) and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and

  16. Efficient Generation of Myostatin Knock-Out Sheep Using CRISPR/Cas9 Technology and Microinjection into Zygotes

    PubMed Central

    Crispo, M.; Mulet, A. P.; Tesson, L.; Barrera, N.; Cuadro, F.; dos Santos-Neto, P. C.; Nguyen, T. H.; Crénéguy, A.; Brusselle, L.; Anegón, I.; Menchaca, A.

    2015-01-01

    While CRISPR/Cas9 technology has proven to be a valuable system to generate gene-targeted modified animals in several species, this tool has been scarcely reported in farm animals. Myostatin is encoded by MSTN gene involved in the inhibition of muscle differentiation and growth. We determined the efficiency of the CRISPR/Cas9 system to edit MSTN in sheep and generate knock-out (KO) animals with the aim to promote muscle development and body growth. We generated CRISPR/Cas9 mRNAs specific for ovine MSTN and microinjected them into the cytoplasm of ovine zygotes. When embryo development of CRISPR/Cas9 microinjected zygotes (n = 216) was compared with buffer injected embryos (n = 183) and non microinjected embryos (n = 173), cleavage rate was lower for both microinjected groups (P<0.05) and neither was affected by CRISPR/Cas9 content in the injected medium. Embryo development to blastocyst was not affected by microinjection and was similar among the experimental groups. From 20 embryos analyzed by Sanger sequencing, ten were mutant (heterozygous or mosaic; 50% efficiency). To obtain live MSTN KO lambs, 53 blastocysts produced after zygote CRISPR/Cas9 microinjection were transferred to 29 recipient females resulting in 65.5% (19/29) of pregnant ewes and 41.5% (22/53) of newborns. From 22 born lambs analyzed by T7EI and Sanger sequencing, ten showed indel mutations at MSTN gene. Eight showed mutations in both alleles and five of them were homozygous for indels generating out-of frame mutations that resulted in premature stop codons. Western blot analysis of homozygous KO founders confirmed the absence of myostatin, showing heavier body weight than wild type counterparts. In conclusion, our results demonstrate that CRISPR/Cas9 system was a very efficient tool to generate gene KO sheep. This technology is quick and easy to perform and less expensive than previous techniques, and can be applied to obtain genetically modified animal models of interest for biomedicine and

  17. Induction of the Nitrate Assimilation nirA Operon and Protein-Protein Interactions in the Maturation of Nitrate and Nitrite Reductases in the Cyanobacterium Anabaena sp. Strain PCC 7120.

    PubMed

    Frías, José E; Flores, Enrique

    2015-07-01

    Nitrate is widely used as a nitrogen source by cyanobacteria, in which the nitrate assimilation structural genes frequently constitute the so-called nirA operon. This operon contains the genes encoding nitrite reductase (nirA), a nitrate/nitrite transporter (frequently an ABC-type transporter; nrtABCD), and nitrate reductase (narB). In the model filamentous cyanobacterium Anabaena sp. strain PCC 7120, which can fix N2 in specialized cells termed heterocysts, the nirA operon is expressed at high levels only in media containing nitrate or nitrite and lacking ammonium, a preferred nitrogen source. Here we examined the genes downstream of the nirA operon in Anabaena and found that a small open reading frame of unknown function, alr0613, can be cotranscribed with the operon. The next gene in the genome, alr0614 (narM), showed an expression pattern similar to that of the nirA operon, implying correlated expression of narM and the operon. A mutant of narM with an insertion mutation failed to produce nitrate reductase activity, consistent with the idea that NarM is required for the maturation of NarB. Both narM and narB mutants were impaired in the nitrate-dependent induction of the nirA operon, suggesting that nitrite is an inducer of the operon in Anabaena. It has previously been shown that the nitrite reductase protein NirA requires NirB, a protein likely involved in protein-protein interactions, to attain maximum activity. Bacterial two-hybrid analysis confirmed possible NirA-NirB and NarB-NarM interactions, suggesting that the development of both nitrite reductase and nitrate reductase activities in cyanobacteria involves physical interaction of the corresponding enzymes with their cognate partners, NirB and NarM, respectively. Nitrate is an important source of nitrogen for many microorganisms that is utilized through the nitrate assimilation system, which includes nitrate/nitrite membrane transporters and the nitrate and nitrite reductases. Many cyanobacteria

  18. CD44 Promotes Inflammation and Extracellular Matrix Production During Arteriovenous Fistula Maturation.

    PubMed

    Kuwahara, Go; Hashimoto, Takuya; Tsuneki, Masayuki; Yamamoto, Kota; Assi, Roland; Foster, Trenton R; Hanisch, Jesse J; Bai, Hualong; Hu, Haidi; Protack, Clinton D; Hall, Michael R; Schardt, John S; Jay, Steven M; Madri, Joseph A; Kodama, Shohta; Dardik, Alan

    2017-06-01

    Arteriovenous fistulae (AVF) remain the optimal conduit for hemodialysis access but continue to demonstrate poor patency and poor rates of maturation. We hypothesized that CD44, a widely expressed cellular adhesion molecule that serves as a major receptor for extracellular matrix components, promotes wall thickening and extracellular matrix deposition during AVF maturation. AVF were created via needle puncture in wild-type C57BL/6J and CD44 knockout mice. CD44 mRNA and protein expression was increased in wild-type AVF. CD44 knockout mice showed no increase in AVF wall thickness (8.9 versus 26.8 μm; P =0.0114), collagen density, and hyaluronic acid density, but similar elastin density when compared with control AVF. CD44 knockout mice also showed no increase in vascular cell adhesion molecule-1 expression, intercellular adhesion molecule-1 expression, and monocyte chemoattractant protein-1 expression in the AVF compared with controls; there were also no increased M2 macrophage markers (transglutaminase-2: 81.5-fold, P =0.0015; interleukin-10: 7.6-fold, P =0.0450) in CD44 knockout mice. Delivery of monocyte chemoattractant protein-1 to CD44 knockout mice rescued the phenotype with thicker AVF walls (27.2 versus 14.7 μm; P =0.0306), increased collagen density (2.4-fold; P =0.0432), and increased number of M2 macrophages (2.1-fold; P =0.0335). CD44 promotes accumulation of M2 macrophages, extracellular matrix deposition, and wall thickening during AVF maturation. These data show the association of M2 macrophages with wall thickening during AVF maturation and suggest that enhancing CD44 activity may be a strategy to increase AVF maturation. © 2017 American Heart Association, Inc.

  19. Calcineurin/Nfat signaling is required for perinatal lung maturation and function.

    PubMed

    Davé, Vrushank; Childs, Tawanna; Xu, Yan; Ikegami, Machiko; Besnard, Valérie; Maeda, Yutaka; Wert, Susan E; Neilson, Joel R; Crabtree, Gerald R; Whitsett, Jeffrey A

    2006-10-01

    Pulmonary surfactant proteins and lipids are required for lung function after birth. Lung immaturity and resultant surfactant deficiency cause respiratory distress syndrome, a common disorder contributing to morbidity and mortality in preterm infants. Surfactant synthesis increases prior to birth in association with formation of the alveoli that mediate efficient gas exchange. To identify mechanisms controlling perinatal lung maturation, the Calcineurin b1 (Cnb1) gene was deleted in the respiratory epithelium of the fetal mouse. Deletion of Cnb1 caused respiratory failure after birth and inhibited the structural maturation of the peripheral lung. Synthesis of surfactant and a lamellar body-associated protein, ABC transporter A3 (ABCA3), was decreased prior to birth. Nuclear factor of activated T cells (Nfat) calcineurin-dependent 3 (Nfatc3), a transcription factor modulated by calcineurin, was identified as a direct activator of Sftpa, Sftpb, Sftpc, Abca3, Foxa1, and Foxa2 genes. The calcineurin/Nfat pathway controls the morphologic maturation of lungs prior to birth and regulates expression of genes involved in surfactant homeostasis that are critical for adaptation to air breathing.

  20. Cassava root membrane proteome reveals activities during storage root maturation.

    PubMed

    Naconsie, Maliwan; Lertpanyasampatha, Manassawe; Viboonjun, Unchera; Netrphan, Supatcharee; Kuwano, Masayoshi; Ogasawara, Naotake; Narangajavana, Jarunya

    2016-01-01

    Cassava (Manihot esculenta Crantz) is one of the most important crops of Thailand. Its storage roots are used as food, feed, starch production, and be the important source for biofuel and biodegradable plastic production. Despite the importance of cassava storage roots, little is known about the mechanisms involved in their formation. This present study has focused on comparison of the expression profiles of cassava root proteome at various developmental stages using two-dimensional gel electrophoresis and LC-MS/MS. Based on an anatomical study using Toluidine Blue, the secondary growth was confirmed to be essential during the development of cassava storage root. To investigate biochemical processes occurring during storage root maturation, soluble and membrane proteins were isolated from storage roots harvested from 3-, 6-, 9-, and 12-month-old cassava plants. The proteins with differential expression pattern were analysed and identified to be associated with 8 functional groups: protein folding and degradation, energy, metabolism, secondary metabolism, stress response, transport facilitation, cytoskeleton, and unclassified function. The expression profiling of membrane proteins revealed the proteins involved in protein folding and degradation, energy, and cell structure were highly expressed during early stages of development. Integration of these data along with the information available in genome and transcriptome databases is critical to expand knowledge obtained solely from the field of proteomics. Possible role of identified proteins were discussed in relation with the activities during storage root maturation in cassava.

  1. Maturity Group Classification and Maturity Locus Genotyping of Early-Maturing Soybean Varieties from High-Latitude Cold Regions

    PubMed Central

    Lu, Wencheng; Hou, Wensheng; Sun, Shi; Yan, Hongrui; Han, Tianfu

    2014-01-01

    Background With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci. Methods Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15′, E 127°27′, H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4. Results The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity. Conclusion HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially. PMID:24740097

  2. Maturity group classification and maturity locus genotyping of early-maturing soybean varieties from high-latitude cold regions.

    PubMed

    Jia, Hongchang; Jiang, Bingjun; Wu, Cunxiang; Lu, Wencheng; Hou, Wensheng; Sun, Shi; Yan, Hongrui; Han, Tianfu

    2014-01-01

    With the migration of human beings, advances of agricultural sciences, evolution of planting patterns and global warming, soybeans have expanded to both tropical and high-latitude cold regions (HCRs). Unlike other regions, HCRs have much more significant and diverse photoperiods and temperature conditions over seasons or across latitudes, and HCR soybeans released there show rich diversity in maturity traits. However, HCR soybeans have not been as well classified into maturity groups (MGs) as other places. Therefore, it is necessary to identify MGs in HCRs and to genotype the maturity loci. Local varieties were collected from the northern part of Northeast China and the far-eastern region of Russia. Maturity group reference (MGR) soybeans of MGs MG000, MG00, and MG0 were used as references during field experiments. Both local varieties and MGR soybeans were planted for two years (2010-2011) in Heihe (N 50°15', E 127°27', H 168.5 m), China. The days to VE (emergence), R1 (beginning bloom) and R7 (beginning maturity) were recorded and statistically analyzed. Furthermore, some varieties were further genotyped at four molecularly-identified maturity loci E1, E2, E3 and E4. The HCR varieties were classified into MG0 or even more early-maturing. In Heihe, some varieties matured much earlier than MG000, which is the most early-maturing known MG, and clustered into a separate group. We designated the group as MG0000, following the convention of MGs. HCR soybeans had relatively stable days to beginning bloom from emergence. The HCR varieties diversified into genotypes of E1, E2, E3 and E4. These loci had different effects on maturity. HCRs diversify early-maturing MGs of soybean. MG0000, a new MG that matures much earlier than known MGs, was developed. HCR soybean breeding should focus more on shortening post-flowering reproductive growth. E1, E2, E3, and E4 function differentially.

  3. Cellular repressor of E1A-stimulated genes is a bona fide lysosomal protein which undergoes proteolytic maturation during its biosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaehs, Philipp; Weidinger, Petra; Probst, Olivia C.

    2008-10-01

    Cellular repressor of E1A-stimulated genes (CREG) has been reported to be a secretory glycoprotein implicated in cellular growth and differentiation. We now show that CREG is predominantly localized within intracellular compartments. Intracellular CREG was found to lack an N-terminal peptide present in the secreted form of the protein. In contrast to normal cells, CREG is largely secreted by fibroblasts missing both mannose 6-phosphate receptors. This is not observed in cells lacking only one of them. Mass spectrometric analysis of recombinant CREG revealed that the protein contains phosphorylated oligosaccharides at either of its two N-glycosylation sites. Cellular CREG was found tomore » cosediment with lysosomal markers upon subcellular fractionation by density-gradient centrifugation. In fibroblasts expressing a CREG-GFP fusion construct, the heterologous protein was detected in compartments containing lysosomal proteins. Immunolocalization of endogenous CREG confirmed that intracellular CREG is localized in lysosomes. Proteolytic processing of intracellular CREG involves the action of lysosomal cysteine proteinases. These results establish that CREG is a lysosomal protein that undergoes proteolytic maturation in the course of its biosynthesis, carries the mannose 6-phosphate recognition marker and depends on the interaction with mannose 6-phosphate receptors for efficient delivery to lysosomes.« less

  4. Skeletal muscle atrophy is attenuated in tumor-bearing mice under chemotherapy by treatment with fish oil and selenium

    PubMed Central

    Wang, Hang; Li, Tsung-Lin; Hsia, Simon; Su, I-Li; Chan, Yi-Lin; Wu, Chang-Jer

    2015-01-01

    Chemotherapy can cause cachexia, which is manifested by weight loss, inflammation and muscle atrophy. However, the mechanisms of tumor and chemotherapy on skeletal muscle proteolysis, remained unclear. In this report, we demonstrated that tumor-induced myostatin in turn induced TNF-α, thus activating calcium-dependent and proteasomal protein degradation. Chemotherapy activated myostatin-mediated proteolysis and muscle atrophy by elevating IL-6. In tumor-bearing mice under chemotherapy, supplementation with fish oil and selenium prevented a rise in IL-6, TNF-α and myostatin and muscle atrophy. The findings presented here allow us to better understand the molecular basis of cancer cachexia and potentiate nutrition supplementation in future cancer chemotherapy. PMID:25797259

  5. Quantitative proteomic analysis of milk fat globule membrane (MFGM) proteins in human and bovine colostrum and mature milk samples through iTRAQ labeling.

    PubMed

    Yang, Mei; Cong, Min; Peng, Xiuming; Wu, Junrui; Wu, Rina; Liu, Biao; Ye, Wenhui; Yue, Xiqing

    2016-05-18

    Milk fat globule membrane (MFGM) proteins have many functions. To explore the different proteomics of human and bovine MFGM, MFGM proteins were separated from human and bovine colostrum and mature milk, and analyzed by the iTRAQ proteomic approach. A total of 411 proteins were recognized and quantified. Among these, 232 kinds of differentially expressed proteins were identified. These differentially expressed proteins were analyzed based on multivariate analysis, gene ontology (GO) annotation and KEGG pathway. Biological processes involved were response to stimulus, localization, establishment of localization, and the immune system process. Cellular components engaged were the extracellular space, extracellular region parts, cell fractions, and vesicles. Molecular functions touched upon were protein binding, nucleotide binding, and enzyme inhibitor activity. The KEGG pathway analysis showed several pathways, including regulation of the actin cytoskeleton, focal adhesion, neurotrophin signaling pathway, leukocyte transendothelial migration, tight junction, complement and coagulation cascades, vascular endothelial growth factor signaling pathway, and adherens junction. These results enhance our understanding of different proteomes of human and bovine MFGM across different lactation phases, which could provide important information and potential directions for the infant milk powder and functional food industries.

  6. Polymorphism in exons of the myostatin gene and its relationship with body weight traits in the Bian chicken.

    PubMed

    Zhang, Genxi; Ding, Fuxiang; Wang, Jinyu; Dai, Guojun; Xie, Kaizhou; Zhang, Lijun; Wang, Wei; Zhou, Shenghua

    2011-02-01

    In our research, single nucleotide polymorphisms (SNPs) of exon regions of the myostatin gene were detected by PCR-SSCP in the Bian chicken and three reference chicken populations (Jinghai, Youxi, and Arbor Acre). Four novel SNPs (G2283A, C7552T, C7638T, and T7661A) were detected. The findings from the least square means showed that Bian chickens with EE and DE genotypes had significantly higher body weight, at 6-18 weeks of age, than those of the DD genotype (P < 0.05). The results suggest that the mutation G2283A, detected in exon 1, has potential as a genetic marker for body weight traits in the Bian chicken.

  7. Low-level laser irradiation promotes the proliferation and maturation of keratinocytes during epithelial wound repair

    PubMed Central

    Sperandio, Felipe F.; Simões, Alyne; Corrêa, Luciana; Aranha, Ana Cecília C.; Giudice, Fernanda S.; Hamblin, Michael R.; Sousa, Suzana C.O.M.

    2015-01-01

    Low-level laser therapy (LLLT) has been extensively employed to improve epithelial wound healing, though the exact response of epithelium maturation and stratification after LLLT is unknown. Thus, this study aimed to assess the in vitro growth and differentiation of keratinocytes (KCs) and in vivo wound healing response when treated with LLLT. Human KCs (HaCaT cells) showed an enhanced proliferation with all the employed laser energy densities (3, 6 and 12 J/cm2, 660nm, 100mW), together with an increased expression of Cyclin D1. Moreover, the immunoexpression of proteins related to epithelial proliferation and maturation (p63, CK10, CK14) all indicated a faster maturation of the migrating KCs in the LLLT-treated wounds. In that way, an improved epithelial healing was promoted by LLLT with the employed parameters; this improvement was confirmed by changes in the expression of several proteins related to epithelial proliferation and maturation. PMID:25411997

  8. Conditional deletion of SLP-76 in mature T cells abrogates peripheral immune responses1

    PubMed Central

    Wu, Gregory F.; Corbo, Evann; Schmidt, Michelle; Smith-Garvin, Jennifer E.; Riese, Matthew J.; Jordan, Martha S.; Laufer, Terri M.; Brown, Eric J.; Maltzman, Jonathan S.

    2011-01-01

    SUMMARY The adaptor protein Src homology 2 domain-containing leukocyte-specific protein of 76 kDa (SLP-76) is central to the organization of intracellular signaling downstream of the T cell receptor (TCR). Evaluation of its role in mature, primary T cells has been hampered by developmental defects that occur in the absence of wild-type SLP-76 protein in thymocytes. Following tamoxifen-regulated conditional deletion of SLP-76, mature, antigen-inexperienced T cells maintain normal TCR surface expression but fail to transduce TCR generated signals. Conditionally deficient T cells fail to proliferate in response to antigenic stimulation or a lymphopenic environment. Mice with induced deletion of SLP-76 are resistant to induction of the CD4+ T cell mediated autoimmune disease experimental autoimmune encephalomyelitis. Our findings demonstrate the critical role of SLP-76-mediated signaling in initiating T cell-directed immune responses both in vitro and in vivo and highlight the ability to analyze signaling processes in mature T cells in the absence of developmental defects. PMID:21469089

  9. Crystal structure of an HIV assembly and maturation switch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagner, Jonathan M.; Zadrozny, Kaneil K.; Chrustowicz, Jakub

    Virus assembly and maturation proceed through the programmed operation of molecular switches, which trigger both local and global structural rearrangements to produce infectious particles. HIV-1 contains an assembly and maturation switch that spans the C-terminal domain (CTD) of the capsid (CA) region and the first spacer peptide (SP1) of the precursor structural protein, Gag. The crystal structure of the CTD-SP1 Gag fragment is a goblet-shaped hexamer in which the cup comprises the CTD and an ensuing type II β-turn, and the stem comprises a 6-helix bundle. The β-turn is critical for immature virus assembly and the 6-helix bundle regulates proteolysismore » during maturation. This bipartite character explains why the SP1 spacer is a critical element of HIV-1 Gag but is not a universal property of retroviruses. Our results also indicate that HIV-1 maturation inhibitors suppress unfolding of the CA-SP1 junction and thereby delay access of the viral protease to its substrate.« less

  10. Identification of Mature Atherosclerotic Plaque Proteome Signatures Using Data-Independent Acquisition Mass Spectrometry.

    PubMed

    Hansmeier, Nicole; Buttigieg, Josef; Kumar, Pankaj; Pelle, Shaneen; Choi, Kyoo Yoon; Kopriva, David; Chao, Tzu-Chiao

    2018-01-05

    Atherosclerosis is a chronic inflammatory disease with complex pathobiology and one of the most common causes of cardiovascular events. The process is characterized by complex vascular remodeling processes that require the actions of numerous proteins. The composition of atherosclerotic plaque is increasingly recognized as a major factor governing the occurrence of cardiovascular or neurological symptoms. To gain deeper insights into the composition of atherosclerotic plaques, we created quantitative proteome profiles of advanced plaque tissues of six male patients undergoing carotid endarterectomy for stroke prevention. Using a quantitative, data-independent proteome approach, we identified 4181 proteins with an average protein coverage of 45%. An analysis of the quantitative composition of the tissue revealed key players of vascular remodeling processes. Moreover, compared with proximal arterial tissue, 20 proteins in mature plaques were enriched, whereas 52 proteins were found in lower quantities. Among the proteins with increased abundance were prominent extracellular matrix proteins such as biglycan and lumican, whereas cytoskeletal markers for contractile smooth muscle cells (SMCs) were decreased. Taken together, this study provides the most comprehensive quantitative assessment of mature human plaque tissue to date, which indicates a central role of SMCs in the structure of advanced atherosclerotic plaques.

  11. Acetylation contributes to hypertrophy-caused maturational delay of cardiac energy metabolism.

    PubMed

    Fukushima, Arata; Zhang, Liyan; Huqi, Alda; Lam, Victoria H; Rawat, Sonia; Altamimi, Tariq; Wagg, Cory S; Dhaliwal, Khushmol K; Hornberger, Lisa K; Kantor, Paul F; Rebeyka, Ivan M; Lopaschuk, Gary D

    2018-05-17

    A dramatic increase in cardiac fatty acid oxidation occurs following birth. However, cardiac hypertrophy secondary to congenital heart diseases (CHDs) delays this process, thereby decreasing cardiac energetic capacity and function. Cardiac lysine acetylation is involved in modulating fatty acid oxidation. We thus investigated what effect cardiac hypertrophy has on protein acetylation during maturation. Eighty-four right ventricular biopsies were collected from CHD patients and stratified according to age and the absence (n = 44) or presence of hypertrophy (n = 40). A maturational increase in protein acetylation was evident in nonhypertrophied hearts but not in hypertrophied hearts. The fatty acid β-oxidation enzymes, long-chain acyl CoA dehydrogenase (LCAD) and β-hydroxyacyl CoA dehydrogenase (βHAD), were hyperacetylated and their activities positively correlated with their acetylation after birth in nonhypertrophied hearts but not hypertrophied hearts. In line with this, decreased cardiac fatty acid oxidation and reduced acetylation of LCAD and βHAD occurred in newborn rabbits subjected to cardiac hypertrophy due to an aortocaval shunt. Silencing the mRNA of general control of amino acid synthesis 5-like protein 1 reduced acetylation of LCAD and βHAD as well as fatty acid oxidation rates in cardiomyocytes. Thus, hypertrophy in CHDs prevents the postnatal increase in myocardial acetylation, resulting in a delayed maturation of cardiac fatty acid oxidation.

  12. The Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation

    PubMed Central

    Félix, Romain; Crottès, David; Delalande, Anthony; Fauconnier, Jérémy; Lebranchu, Yvon; Le Guennec, Jean-Yves; Velge-Roussel, Florence

    2013-01-01

    Ca2+ signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca2+ signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca2+ stores that results in a store-operated Ca2+ entry (SOCE). This Ca2+ influx was inhibited by 2-APB and exhibited a Ca2+permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca2+ entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins. PMID:23700407

  13. Junctophilin-2 is necessary for T-tubule maturation during mouse heart development

    PubMed Central

    Reynolds, Julia O.; Chiang, David Y.; Wang, Wei; Beavers, David L.; Dixit, Sayali S.; Skapura, Darlene G.; Landstrom, Andrew P.; Song, Long-Sheng; Ackerman, Michael J.; Wehrens, Xander H.T.

    2013-01-01

    Aims Transverse tubules (TTs) provide the basic subcellular structures that facilitate excitation–contraction (EC) coupling, the essential process that underlies normal cardiac contractility. Previous studies have shown that TTs develop within the first few weeks of life in mammals but the molecular determinants of this development have remained elusive. This study aims to elucidate the role of junctophilin-2 (JPH2), a junctional membrane complex protein, in the maturation of TTs in cardiomyocytes. Methods and results Using a novel cardiac-specific short-hairpin-RNA-mediated JPH2 knockdown mouse model (Mus musculus; αMHC-shJPH2), we assessed the effects of the loss of JPH2 on the maturation of the ventricular TT structure. Between embryonic day (E) 10.5 and postnatal day (P) 10, JPH2 mRNA and protein levels were reduced by >70% in αMHC-shJPH2 mice. At P8 and P10, knockdown of JPH2 significantly inhibited the maturation of TTs, while expression levels of other genes implicated in TT development remained mostly unchanged. At the same time, intracellular Ca2+ handling was disrupted in ventricular myocytes from αMHC- shJPH2 mice, which developed heart failure by P10 marked by reduced ejection fraction, ventricular dilation, and premature death. In contrast, JPH2 transgenic mice exhibited accelerated TT maturation by P8. Conclusion Our findings suggest that JPH2 is necessary for TT maturation during postnatal cardiac development in mice. In particular, JPH2 may be critical in anchoring the invaginating sarcolemma to the sarcoplasmic reticulum, thereby enabling the maturation of the TT network. PMID:23715556

  14. A family of ParA-like ATPases promotes cell pole maturation by facilitating polar localization of chemotaxis proteins

    PubMed Central

    Ringgaard, Simon; Schirner, Kathrin; Davis, Brigid M.; Waldor, Matthew K.

    2011-01-01

    Stochastic processes are thought to mediate localization of membrane-associated chemotaxis signaling clusters in peritrichous bacteria. Here, we identified a new family of ParA-like ATPases (designated ParC [for partitioning chemotaxis]) encoded within chemotaxis operons of many polar-flagellated γ-proteobacteria that actively promote polar localization of chemotaxis proteins. In Vibrio cholerae, a single ParC focus is found at the flagellated old pole in newborn cells, and later bipolar ParC foci develop as the cell matures. The cell cycle-dependent redistribution of ParC occurs by its release from the old pole and subsequent relocalization at the new pole, consistent with a “diffusion and capture” model for ParC dynamics. Chemotaxis proteins encoded in the same cluster as ParC have a similar unipolar-to-bipolar transition; however, they reach the new pole after the arrival of ParC. Cells lacking ParC exhibit aberrantly localized foci of chemotaxis proteins, reduced chemotaxis, and altered motility, which likely accounts for their enhanced colonization of the proximal small intestine in an animal model of cholera. Collectively, our findings indicate that ParC promotes the efficiency of chemotactic signaling processes. In particular, ParC-facilitated development of a functional chemotaxis apparatus at the new pole readies this site for its development into a functional old pole after cell division. PMID:21764856

  15. Coffee cysteine proteinases and related inhibitors with high expression during grain maturation and germination

    PubMed Central

    2012-01-01

    Background Cysteine proteinases perform multiple functions in seeds, including participation in remodelling polypeptides and recycling amino acids during maturation and germination. Currently, few details exist concerning these genes and proteins in coffee. Furthermore, there is limited information on the cysteine proteinase inhibitors which influence the activities of these proteinases. Results Two cysteine proteinase (CP) and four cysteine proteinase inhibitor (CPI) gene sequences have been identified in coffee with significant expression during the maturation and germination of coffee grain. Detailed expression analysis of the cysteine proteinase genes CcCP1 and CcCP4 in Robusta using quantitative RT-PCR showed that these transcripts accumulate primarily during grain maturation and germination/post germination. The corresponding proteins were expressed in E. coli and purified, but only one, CcCP4, which has a KDDL/KDEL C-terminal sequence, was found to be active after a short acid treatment. QRT-PCR expression analysis of the four cysteine proteinase inhibitor genes in Robusta showed that CcCPI-1 is primarily expressed in developing and germinating grain and CcCPI-4 is very highly expressed during the late post germination period, as well as in mature, but not immature leaves. Transcripts corresponding to CcCPI-2 and CcCPI-3 were detected in most tissues examined at relatively similar, but generally low levels. Conclusions Several cysteine proteinase and cysteine proteinase inhibitor genes with strong, relatively specific expression during coffee grain maturation and germination are presented. The temporal expression of the CcCP1 gene suggests it is involved in modifying proteins during late grain maturation and germination. The expression pattern of CcCP4, and its close identity with KDEL containing CP proteins, implies this proteinase may play a role in protein and/or cell remodelling during late grain germination, and that it is likely to play a strong role

  16. Intraovarian markers of follicular and oocyte maturation.

    PubMed

    Pellicer, A; Diamond, M P; DeCherney, A H; Naftolin, F

    1987-08-01

    The use of ovulation induction for multiple follicular growth in in vitro fertilization (IVF) has introduced the problem of follicular asynchrony. As a consequence of the asynchrony, the parameters most commonly used by IVF groups to assess follicular and oocyte quality within those follicles are not sufficiently sensitive or specific. Thus, each follicle must be considered separately, and specific markers of follicular and/or oocyte maturation must be sought from within the follicle. In this review we analyze previous reports of potential markers of follicular and oocyte maturation. In regards to the follicular fluid constituents, the level of estradiol in follicular fluid correlates with fertilization and pregnancy in stimulated cycles. Other steroids are only helpful when specific stimulation protocols are used. The level of some follicular proteins such as alpha-1-antitrypsin and fibrinogen also correlates with fertilization and pregnancy outcome. Cyclic AMP levels in follicular fluid are significantly reduced in follicles leading to conception. Regulators of oocyte maturation, such as the Oocyte Maturation Inhibitor (OMI) or the Meiosis Inducing Substance (MIS) have also been correlated with IVF outcome, but their exact structure remains still unknown. In addition, other sophisticated parameters, such as chemotactic activity of human leukocytes, or simple methods, such as the presence of intrafollicular echoes, have also been used as successful markers in predicting IVF outcome.

  17. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum

    PubMed Central

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki

    2016-01-01

    ABSTRACT Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum, SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3′-to-5′ exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3′ maturation of 4.5S RNA in C. glutamicum. The mature form of 4.5S RNA was inefficiently formed in ΔrneG Δpnp mutant cells, suggesting the existence of an alternative pathway for the 3′ maturation of 4.5S RNA. Primer extension analysis also revealed that the 5′ mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δpnp, ΔrneG, and ΔybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum, which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3′ maturation of the SRP RNA (4

  18. Polynucleotide Phosphorylase, RNase E/G, and YbeY Are Involved in the Maturation of 4.5S RNA in Corynebacterium glutamicum.

    PubMed

    Maeda, Tomoya; Tanaka, Yuya; Wachi, Masaaki; Inui, Masayuki

    2017-03-01

    Corynebacterium glutamicum has been applied for the industrial production of various metabolites, such as amino acids. To understand the biosynthesis of the membrane protein in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP is found in all three domains of life and plays an important role in the membrane insertion of proteins. SRP RNA is initially transcribed as precursor molecules; however, relatively little is known about its maturation. In C. glutamicum , SRP consists of the Ffh protein and 4.5S RNA lacking an Alu domain. In this study, we found that 3'-to-5' exoribonuclease, polynucleotide phosphorylase (PNPase), and two endo-type RNases, RNase E/G and YbeY, are involved in the 3' maturation of 4.5S RNA in C. glutamicum The mature form of 4.5S RNA was inefficiently formed in Δ rneG Δ pnp mutant cells, suggesting the existence of an alternative pathway for the 3' maturation of 4.5S RNA. Primer extension analysis also revealed that the 5' mature end of 4.5S RNA corresponds to that of the transcriptional start site. Immunoprecipitated Ffh protein contained immature 4.5S RNA in Δ pnp , Δ rneG , and Δ ybeY mutants, suggesting that 4.5S RNA precursors can interact with Ffh. These results imply that the maturation of 4.5S RNA can be performed in the 4.5S RNA-Ffh complex. IMPORTANCE Overproduction of a membrane protein, such as a transporter, is useful for engineering of strains of Corynebacterium glutamicum , which is a workhorse of amino acid production. To understand membrane protein biogenesis in this bacterium, we investigated the process of signal recognition particle (SRP) assembly. SRP contains the Ffh protein and SRP RNA and plays an important role in the membrane insertion of proteins. Although SRP RNA is highly conserved among the three domains of life, relatively little is known about its maturation. We show that PNPase, RNase E/G, and YbeY are involved in the 3' maturation of the SRP RNA (4.5S RNA) in

  19. Postnatal PPARdelta activation and myostatin inhibition exert distinct yet complimentary effects on the metabolic profile of obese insulin-resistant mice.

    PubMed

    Bernardo, Barbara L; Wachtmann, Timothy S; Cosgrove, Patricia G; Kuhn, Max; Opsahl, Alan C; Judkins, Kyle M; Freeman, Thomas B; Hadcock, John R; LeBrasseur, Nathan K

    2010-06-25

    Interventions for T2DM have in part aimed to mimic exercise. Here, we have compared the independent and combined effects of a PPARdelta agonist and endurance training mimetic (GW501516) and a myostatin antibody and resistance training mimetic (PF-879) on metabolic and performance outcomes in obese insulin resistant mice. Male ob/ob mice were treated for 6 weeks with vehicle, GW501516, PF-879, or GW501516 in combination with PF-879. The effects of the interventions on body composition, glucose homeostasis, glucose tolerance, energy expenditure, exercise capacity and metabolic gene expression were compared at the end of study. GW501516 attenuated body weight and fat mass accumulation and increased the expression of genes of oxidative metabolism. In contrast, PF-879 increased body weight by driving muscle growth and altered the expression of genes involved in insulin signaling and glucose metabolism. Despite their differences, both interventions alone improved glucose homeostasis. Moreover, GW501516 more effectively improved serum lipids, and PF-879 uniquely increased energy expenditure, exercise capacity and adiponectin levels. When combined the robust effects of GW501516 and/or PF-879 on body weight, adiposity, muscle mass, glycemia, serum lipids, energy expenditure and exercise capacity were highly conserved. The data, for the first time, demonstrate postnatal inhibition of myostatin not only promotes gains in muscle mass similar to resistance training,but improves metabolic homeostasis. In several instances, these effects were either distinct from or complimentary to those of GW501516. The data further suggest that strategies to increase muscle mass, and not necessarily oxidative capacity, may effectively counter insulin resistance and T2DM.

  20. Spine Formation and Maturation in the Developing Rat Auditory Cortex

    PubMed Central

    Schachtele, Scott J.; Losh, Joe; Dailey, Michael E.; Green, Steven H.

    2013-01-01

    The rat auditory cortex is organized as a tonotopic map of sound frequency. This map is broadly tuned at birth and is refined during the first 3 weeks postnatal. The structural correlates underlying tonotopic map maturation and reorganization during development are poorly understood. We employed fluorescent dye ballistic labeling (“DiOlistics”) alone, or in conjunction with immunohistochemistry, to quantify synaptogenesis in the auditory cortex of normal hearing rats. We show that the developmental appearance of dendritic protrusions, which include both immature filopodia and mature spines, on layers 2/3, 4, and 5 pyramidal and layer 4 spiny nonpyramidal neurons occurs in three phases: slow addition of dendritic protrusions from postnatal day 4 (P4) to P9, rapid addition of dendritic protrusions from P9 to P19, and a final phase where mature protrusion density is achieved (>P21). Next, we combined DiOlistics with immunohistochemical labeling of bassoon, a presynaptic scaffolding protein, as a novel method to categorize dendritic protrusions as either filopodia or mature spines in cortex fixed in vivo. Using this method we observed an increase in the spine-to-filopodium ratio from P9–P16, indicating a period of rapid spine maturation. Previous studies report mature spines as being shorter in length compared to filopodia. We similarly observed a reduction in protrusion length between P9 and P16, corroborating our immunohistochemical spine maturation data. These studies show that dendritic protrusion formation and spine maturation occur rapidly at a time previously shown to correspond to auditory cortical tonotopic map refinement (P11–P14), providing a structural correlate of physiological maturation. PMID:21800311