Science.gov

Sample records for max planck research

  1. German science. Max Planck charts new path.

    PubMed

    Koenig, R

    2000-06-01

    Germany's premier basic research organization, the Max Planck Society, released a long-awaited blueprint for change during its annual meeting this week, recommending that the society's nearly 3000 scientists embrace more interdisciplinary and international projects in a range of new research priorities. The report, called Max Planck 2000-Plus, is the product of an 18-month-long internal review. Its recommendations were formulated by some two dozen Max Planck researchers and administrators, who sought input from every institute.

  2. [German research institute/Max-Planck Institute for psychiatry].

    PubMed

    Ploog, D

    1999-12-01

    The Deutsche Forschungsanstalt für Psychiatrie (DFA, German Institute for Psychiatric Research) in Munich was founded in 1917 bel Emil Kraepelin. For a long time it was the only institution in Germany entirely devoted to psychiatric research. Because of its strictly science-oriented and multidisciplinary approach it also became a model for institutions elsewhere. Kraepelin's ideas have certainly had a strong influence on psychiatry in the twentieth century. The fascinating and instructive history of the DFA reflects the central issues and determinants of psychiatric research. First, talented individuals are needed to conduct such research, and there was no lack in this regard. Second, the various topics chosen are dependent on the available methods and resources. And finally, the issues addressed and the ethical standards of the researchers are heavily dependent on the zeitgeist, as is evident in the three epochs of research at the DFA, from 1917 to 1933, from 1933 to 1945, and from the postwar period to the present. With the introduction of molecular biology and neuroimaging techniques into psychiatric research a change in paradigm took place and a new phase of the current epoch began.

  3. Report from the Third Annual Symposium of the RIKEN-Max Planck Joint Research Center for Systems Chemical Biology.

    PubMed

    Brunschweiger, Andreas

    2014-08-15

    The third Annual Symposium of the RIKEN-Max Planck Joint Research Center for Systems Chemical Biology was held at Ringberg castle, May 21-24, 2014. At this meeting 45 scientists from Japan and Germany presented the latest results from their research spanning a broad range of topics in chemical biology and glycobiology.

  4. Max-Planck-Institut für Astrophysik

    NASA Astrophysics Data System (ADS)

    Murdin, P.

    2000-11-01

    The Max-Planck-Institut für Astrophysik, now located in the town of Garching north of Munich in Germany, is one of the more than 70 autonomous research institutes of the Max-Planck-Gesellschaft. It was founded in 1958 under the direction of Ludwig Biermann as part of the Max-Planck-Institut für Physik und Astrophysik, directed at that time by Werner Heisenberg. In 1979, when the headquarters of t...

  5. The International Max Planck Research Schools for Molecular Biology and Neurosciences in Gttingen (Germany) as Examples for Joint Doctoral Training by a German University and Its Non-University Partners

    ERIC Educational Resources Information Center

    Burkhardt, Steffen; Neher, Erwin

    2008-01-01

    New concepts of higher education have recently been implemented through the MSc/PhD programmes in Molecular Biology and Neurosciences in the International Max Planck Research Schools, due to close cooperation between the University of Gttingen, three Max Planck Institutes and the German Primate Centre. The novel measures include a three stage…

  6. Max Planck and the ``black year'' of German physics

    NASA Astrophysics Data System (ADS)

    Mulligan, Joseph F.

    1994-12-01

    1994 is the hundredth anniversary of what Max Planck described in 1935 as the ``black year'' of German physics. In the eight months between January 1st and September 8th 1894, Heinrich Hertz, August Kundt, and Hermann von Helmholtz died. This article reviews the lives of these three important physicists, their research contributions, and their unique positions in the German physics community. In conclusion, the relationships of these three physicists to Planck are discussed, and Planck's evaluation of the impact of 1894 on physics in Germany is appraised from our perspective of one hundred years.

  7. The historical development of modern virus research in Germany, especially in the Kaiser-Wilhelm-/Max-Planck-Society, 1936--1954.

    PubMed

    Butenandt, A

    1977-01-01

    This is lecture on the historical development of modern virus research in Germany to introduce a symposium dedicated to Prof. Werner Schäfer, Tübingen, on the occasion of his 65th birthday. The author was set the task of relating from his memories the beginning of modern virus research in Germany. This research has, since 1936, essentially taken place in the Kaiser-Wilhelm/Max-Planck-Society and in 1954 led to the founding of the Max-Planck-Institute for Virus Research in Tübingen, an institute which to the present day owes its scientific reputation in considerable part to the activity of Werner Schäfer. Since the author personally experienced and participated in the Institute's development from 1936-1954, his remarks are predominantly influenced by personal recollections, which have been sharpended by a renewed study of old records in the 'Library and Archive of the History of the Max-Planck-Gesellschaft', Berlin-Dahlem.

  8. [Critical mass, explosive participation at the Max-Planck Institute about research of the living conditions of the scientific-technical world in Starnberg].

    PubMed

    Sonntag, Philipp

    2014-01-01

    Reviewers of the Max-Planck-Institut zur Erforschung der Lebensbedingungen der wissenschaftlich-technischen Welt (MPIL) did focus upon an abundance of vague reports of evaluative commissions, of benchmarking, of scientific modes. Thus it remained rather neglected, what staff actually had researched. An example: Progression and end of project AKR (Work-Consumption-Assessment) does display all kinds of related emotions at MPIL, and the sensitive guidance by Carl Friedrich von Weizsäcker.

  9. Max Planck Institute for Human Development and Education: Annual Report 1990.

    ERIC Educational Resources Information Center

    Max-Planck-Institut fuer Bildungsforschung, Berlin (West Germany).

    The Max Planck Institute for Human Development and Education in Germany consists of four research centers dealing with the following topics: sociology and the study of the life course; development and socialization; psychology and human development; and school systems and instruction. This English-language annual report of the Planck Institute,…

  10. Max Planck and the birth of the quantum hypothesis

    NASA Astrophysics Data System (ADS)

    Nauenberg, Michael

    2016-09-01

    Based on the functional dependence of entropy on energy, and on Wien's distribution for black-body radiation, Max Planck obtained a formula for this radiation by an interpolation relation that fitted the experimental measurements of thermal radiation at the Physikalisch Technishe Reichanstalt (PTR) in Berlin in the late 19th century. Surprisingly, his purely phenomenological result turned out to be not just an approximation, as would have been expected, but an exact relation. To obtain a physical interpretation for his formula, Planck then turned to Boltzmann's 1877 paper on the statistical interpretation of entropy, which led him to introduce the fundamental concept of energy discreteness into physics. A novel aspect of our account that has been missed in previous historical studies of Planck's discovery is to show that Planck could have found his phenomenological formula partially derived in Boltzmann's paper in terms of a variational parameter. But the dependence of this parameter on temperature is not contained in this paper, and it was first derived by Planck.

  11. NASA/Max Planck Institute Barium Ion Cloud Project.

    NASA Technical Reports Server (NTRS)

    Brence, W. A.; Carr, R. E.; Gerlach, J. C.; Neuss, H.

    1973-01-01

    NASA and the Max Planck Institute for Extraterrestrial Physics (MPE), Munich, Germany, conducted a cooperative experiment involving the release and study of a barium cloud at 31,500 km altitude near the equatorial plane. The release was made near local magnetic midnight on Sept. 21, 1971. The MPE-built spacecraft contained a canister of 16 kg of Ba CuO mixture, a two-axis magnetometer, and other payload instrumentation. The objectives of the experiment were to investigate the interaction of the ionized barium cloud with the ambient medium and to deduce the properties of electric fields in the proximity of the release. An overview of the project is given to briefly summarize the organization, responsibilities, objectives, instrumentation, and operational aspects of the project.

  12. The Emergence of a Root Metaphor in Modern Physics: Max Planck's "Quantum" Metaphor.

    ERIC Educational Resources Information Center

    Johnson-Sheehan, Richard D.

    1997-01-01

    Uses metaphorical analysis to determine whether or not Max Planck invented the quantum postulate. Demonstrates how metaphorical analysis can be used to analyze the rhetoric of revolutionary texts in science. Concludes that, in his original 1900 quantum paper, Planck considered the quantum postulate to be important, but not revolutionary. (PA)

  13. Stages in Educational Reform; The Max Planck Institute Has Produced a Report on Education.

    ERIC Educational Resources Information Center

    Pfeffer, Gottfried

    1981-01-01

    Outlines the Max Planck Institute's exhaustive report on West German educational trends since World War II. An analysis of the effects of changing social values and demographic factors on educational policy, school organization, enrollment trends, curriculum design, and teaching methods is included. (AM)

  14. [The meaning of "apology": the survivors of Nazi medical crimes and the Max Planck Society].

    PubMed

    Sachse, Carola

    2011-09-01

    Around the turn of the twenty-first century a new practice in international politics became established: representatives of political, economic and religious organisations apologised for the historical and political crimes of their own collectives, addressing the victims or the victims' descendants. At a public event in June 2001, a formal apology of this kind was made by the president of the Max Planck Society (MPS), who had previously launched an extensive programme of research into the National Socialist history of what was then the Kaiser Wilhelm Society. The majority of the eight invited survivors of human experimentation in Nazi concentration camps refused forgiveness. Instead, they called for the MPS not to content itself with historical research and analysis, but to ensure the continued remembrance of the victims and their suffering. Starting from this 2001 ritual of repentance, the paper examines the participants' diverse views of how to deal with the medical crimes of National Socialism, and asks about possibilities of going beyond historical retrospection to fulfil the imperative of remembrance.

  15. A Fruitful Collaboration between ESO and the Max Planck Computing and Data Facility

    NASA Astrophysics Data System (ADS)

    Fourniol, N.; Zampieri, S.; Panea, M.

    2016-06-01

    The ESO Science Archive Facility (SAF), contains all La Silla Paranal Observatory raw data, as well as, more recently introduced, processed data created at ESO with state-of-the-art pipelines or returned by the astronomical community. The SAF has been established for over 20 years and its current holding exceeds 700 terabytes. An overview of the content of the SAF and the preservation of its content is provided. The latest development to ensure the preservation of the SAF data, provision of an independent backup copy of the whole SAF at the Max Planck Computing and Data Facility in Garching, is described.

  16. [A utopian episode - Carl Friedrich von Weizsäcker in the networks of the Max-Planck Society].

    PubMed

    Kant, Horst; Renn, Jürgen

    2014-01-01

    Carl Friedrich von Weizsäcker was a key figure in the history of the Max Planck Society (MPS). This essay contextualises his work with the development of the MPS, highlighting the institutional and personal networks upon which it was based. Some of the stations addressed in the following are his role in the German Uranium Project, in preparing the Mainau Declaration, the Göttingen Manifesto, and the Memorandum of Tübingen as well as his involvement in the foundation of the Max Planck Institute (MPI) for Human Development and his own MPI for the Research of Living Conditions in the Modern World located in Starnberg. The relationship between Weizsäcker and Hellmut Becker, long-time friend and founding director of the MPI for Human Development, will be of particular interest. Another issue broached here is the connection between natural science and the humanities in Weizsäcker's work, and subsequently the relation between these two science cultures in the MPS. Finally, we look at the challenges Weizsäcker's work could present to the MPS today.

  17. [A utopian episode - Carl Friedrich von Weizsäcker in the networks of the Max-Planck Society].

    PubMed

    Kant, Horst; Renn, Jürgen

    2014-01-01

    Carl Friedrich von Weizsäcker was a key figure in the history of the Max Planck Society (MPS). This essay contextualises his work with the development of the MPS, highlighting the institutional and personal networks upon which it was based. Some of the stations addressed in the following are his role in the German Uranium Project, in preparing the Mainau Declaration, the Göttingen Manifesto, and the Memorandum of Tübingen as well as his involvement in the foundation of the Max Planck Institute (MPI) for Human Development and his own MPI for the Research of Living Conditions in the Modern World located in Starnberg. The relationship between Weizsäcker and Hellmut Becker, long-time friend and founding director of the MPI for Human Development, will be of particular interest. Another issue broached here is the connection between natural science and the humanities in Weizsäcker's work, and subsequently the relation between these two science cultures in the MPS. Finally, we look at the challenges Weizsäcker's work could present to the MPS today. PMID:24974604

  18. [Max Planck--an adversary of Christianity? The debate about Planck's attitude towards religion after World War II].

    PubMed

    Löhr, Gebhard

    2012-03-01

    The article discusses a debate which unfolded in the early 1950s and 1960s between East German Marxist philosophers and historians of science and West German theologians and scientists. The subject treated was the attitude towards religion of famous physicist Max Planck who had died a few years earlier, in 1947. The article analyses the different positions of the contributors, mainly with a view to developing a categorial framework usable in descriptions and analyses of the religious attitudes of natural scientists. Moreover the different stages of the debate are outlined in order to exhibit their connections to the larger historical context, i.e. the unfolding of the cold war. In the light of this the debate can be regarded as a religious or ideological war, albeit a cold one, on German soil, which fortunately did not escalate into a hot conflict. It ended, as can be illustrated in a late contribution to the debate, with the collapse of the GDR in 1989 or shortly thereafter.

  19. [Max Planck--an adversary of Christianity? The debate about Planck's attitude towards religion after World War II].

    PubMed

    Löhr, Gebhard

    2012-03-01

    The article discusses a debate which unfolded in the early 1950s and 1960s between East German Marxist philosophers and historians of science and West German theologians and scientists. The subject treated was the attitude towards religion of famous physicist Max Planck who had died a few years earlier, in 1947. The article analyses the different positions of the contributors, mainly with a view to developing a categorial framework usable in descriptions and analyses of the religious attitudes of natural scientists. Moreover the different stages of the debate are outlined in order to exhibit their connections to the larger historical context, i.e. the unfolding of the cold war. In the light of this the debate can be regarded as a religious or ideological war, albeit a cold one, on German soil, which fortunately did not escalate into a hot conflict. It ended, as can be illustrated in a late contribution to the debate, with the collapse of the GDR in 1989 or shortly thereafter. PMID:22586778

  20. [A failed experiment - Carl Friedrich von Weizsäcker, Jürgen Habermas and the Max-Planck Society].

    PubMed

    Leendertz, Ariane

    2014-01-01

    From 1970 to 1980 Carl Friedrich von Weizsäcker headed the Max-Planck-lnstitut zur Erforschung der Lebensbedingungen der wissenschaftlich-technischen Welt (MPI for the study of the living conditions of the world of science and technology) in Starnberg, jointly with Jürgen Habermas since 1971. From the start, the Max Planck Society regarded the new institute as an experiment that might perhaps be aborted a few years later. This is exactly what happened. With the retirement of Weizsäcker, his section was closed and the whole institute was renamed. In 1981. Habermas resigned, and then the institute was closed. This paper focusses on some of the problem constellations within the institute that partly explain its development and eventual closure: its birth out of the idea of scientific policy advice, the debates within the Max Planck Society and the complex relationship between Weizsäcker and Jürgen Habermas.

  1. ["A decision meaning a new foundation...": from the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics to the Max Planck Institute for Molecular Genetics].

    PubMed

    Sachse, Carola

    2011-01-01

    The Max Planck Institute for Molecular Genetics (MPIMG) in Berlin-Dahlem dates its establishment to 1964. Its homepage makes no mention of its predecessor institutes, the Kaiser Wilhelm Institute for Anthropology, Human Genetics and Eugenics (KWIA) and the subsequent MPI for Comparative Genetics and Hereditary Pathology (MPIVEE). This article traces the two critical phases of transition regarding the constellations of academic staff, institutional and epistemic ruptures and continuities specific to the era. Only one of the five department heads from the final war years, Hans Nachtsheim, remained a researcher within the Max Planck Society (MPG); he nevertheless continued to advocate the pre-war and wartime eugenic agenda in the life sciences and social policy. The generational change of 1959/60 became a massive struggle within the institute, in which microbial genetics (with Fritz Kaudewitz) was pitted against human genetics (with Friedrich Vogel) and managed to establish itself after a fresh change in personnel in 1964/65. For the Dahlem institute, this involved a far-reaching reorientation of its research, but for the genetically oriented life sciences in the Max Planck Society as a whole it only meant that molecular biology, which was already being pursued in the West German institutes, gained an additional facility. With this realignment of research traditions, the Society was able to draw a line under the Nazi past without having to address it head-on.

  2. The Center for Astrochemical Studies at the Max Planck Institute for Extraterrestrial Physics.

    NASA Astrophysics Data System (ADS)

    Lattanzi, Valerio; Bizzocchi, Luca; Laas, Jacob; Giuliano, Barbara Michela; Spezzano, Silvia; Endres, Christian; Caselli, Paola

    2016-06-01

    The Center for Astrochemical Studies (CAS), at the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, has been founded to incorporate scientists with different background to elucidate the physical-chemical processes that lead to the formation of stars and planets. The CAS group includes experts in observations (including millimetre and sub-millimetre interferometry, radio and infrared telescopes), theory (physical processes and dynamics, gas-grain chemical processes and dust evolution, molecular astrophysics and collisional/rate coefficients), and laboratory. The latter is mainly focused on spectroscopic characterisation of molecular species relevant in space, including ions, radicals and astronomically complex organic molecules. In this talk the laboratory group of the CAS will be briefly presented, including current projects and planned experiments.

  3. Dedicated Max-Planck beamline for the in situ investigation of interfaces and thin films

    SciTech Connect

    Stierle, A.; Steinhaeuser, A.; Ruehm, A.; Renner, F.U.; Weigel, R.; Kasper, N.; Dosch, H.

    2004-12-01

    A dedicated beamline for the Max-Planck-Institut fuer Metallforschung was recently taken into operation at the Angstroemquelle Karlsruhe (ANKA). Here we describe the layout of the beamline optics and the experimental end-station, consisting of a heavy duty multiple circle diffractometer. For both a new design was realized, combining a maximum flexibility in the beam properties [white, pink (focused) monochromatic, energy range 6-20 keV] with a special diffractometer for heavy sample environments up to 500 kg, that can be run in different geometrical modes. In addition the angular-reciprocal space transformations for the diffractometer in use are derived, which allows an operation of the instrument in the convenient six circle mode. As an example, results from surface x-ray diffraction on a Cu{sub 3}Au(111) single crystal are presented.

  4. Fokker-Planck equation in mirror research

    SciTech Connect

    Post, R.F.

    1983-08-11

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror.

  5. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes.

    PubMed

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wisniewski, Jacek R; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at http://www.mapuproteome.com using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools.

  6. MAPU: Max-Planck Unified database of organellar, cellular, tissue and body fluid proteomes

    PubMed Central

    Zhang, Yanling; Zhang, Yong; Adachi, Jun; Olsen, Jesper V.; Shi, Rong; de Souza, Gustavo; Pasini, Erica; Foster, Leonard J.; Macek, Boris; Zougman, Alexandre; Kumar, Chanchal; Wiśniewski, Jacek R.; Jun, Wang; Mann, Matthias

    2007-01-01

    Mass spectrometry (MS)-based proteomics has become a powerful technology to map the protein composition of organelles, cell types and tissues. In our department, a large-scale effort to map these proteomes is complemented by the Max-Planck Unified (MAPU) proteome database. MAPU contains several body fluid proteomes; including plasma, urine, and cerebrospinal fluid. Cell lines have been mapped to a depth of several thousand proteins and the red blood cell proteome has also been analyzed in depth. The liver proteome is represented with 3200 proteins. By employing high resolution MS and stringent validation criteria, false positive identification rates in MAPU are lower than 1:1000. Thus MAPU datasets can serve as reference proteomes in biomarker discovery. MAPU contains the peptides identifying each protein, measured masses, scores and intensities and is freely available at using a clickable interface of cell or body parts. Proteome data can be queried across proteomes by protein name, accession number, sequence similarity, peptide sequence and annotation information. More than 4500 mouse and 2500 human proteins have already been identified in at least one proteome. Basic annotation information and links to other public databases are provided in MAPU and we plan to add further analysis tools. PMID:17090601

  7. Apology, responsibility, memory. Coming to terms with Nazi medical crimes: the example of the Max Planck Society.

    PubMed

    Sachse, Carola

    2011-11-01

    In June 2001, the then president of the Max Planck Society addressed a formal apology to survivors of Nazi medical crimes. Starting from this ritual of repentance, the paper examines the participants' diverse views of how to deal with the medical crimes of National Socialism. In comparison with the DGPPN, it asks about possibilities of going beyond historical retrospection to fulfil the imperative of remembrance.

  8. De-anthropomorphizing energy and energy conservation: The case of Max Planck and Ernst Mach

    NASA Astrophysics Data System (ADS)

    Wegener, Daan

    Discussions on the relation between Mach and Planck usually focus on their famous controversy, a conflict between 'instrumentalist' and realist philosophies of science that revolved around the specific issue of the existence of atoms. This article approaches their relation from a different perspective, comparing their analyses of energy and energy conservation. It is argued that this reveals a number of striking similarities and differences. Both Mach and Planck agreed that the law was valid, and they sought to purge energy of its anthropomorphic elements. They did so in radically different ways, however, illustrating the differences between Mach's 'historical' and Planck's 'rationalistic' accounts of knowledge. Planck's attempt to de-anthropomorphize energy was part of his attempt to demarcate theoretical physics from other disciplines. Mach's attempt to de-anthropomorphize energy is placed in the context of fin-de-siècle Vienna. By doing so, this article also proposes a new interpretation of Mach as a philosopher, historian and sociologist of science.

  9. [The history of the Kaiser Wilhelm Society during the Third Reich. Interim reports of the president's commission of the Max Planck Society].

    PubMed

    Weber, M M

    2002-11-01

    In 1997 the Max Planck Society set up a presidential commission to do research on the historical development of its precursor organization, the Kaiser Wilhelm Society (KWG), during the Third Reich. This paper presents some of the important results given in the interim reports of this commission that are relevant to psychiatry. It focuses on brain research, anthropology, psychiatric genetics, and the role of the well-known biochemist Adolf Butenandt. In general, the interim reports reflect the numerous links between the biomedical research of the KWG and the institutions of the National Socialist (Nazi) state. However, they do not yet allow a final historical assessment as to the complex situation of this field of research during National Socialism.

  10. Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014.

    PubMed

    2015-06-12

    On July 9, 2014, Aeras and the Max Planck Institute for Infection Biology convened a workshop entitled "Whole Mycobacteria Cell Vaccines for Tuberculosis" at the Max Planck Institute for Infection Biology on the grounds of the Charité Hospital in Berlin, Germany, close to the laboratory where, in 1882, Robert Koch first identified Mycobacterium tuberculosis (Mtb) as the pathogen responsible for tuberculosis (TB). The purpose of the meeting was to discuss progress in the development of TB vaccines based on whole mycobacteria cells. Live whole cell TB vaccines discussed at this meeting were derived from Mtb itself, from Bacille Calmette-Guérin (BCG), the only licensed vaccine against TB, which was genetically modified to reduce pathogenicity and increase immunogenicity, or from commensal non-tuberculous mycobacteria. Inactivated whole cell TB and non-tuberculous mycobacterial vaccines, intended as immunotherapy or as safer immunization alternatives for HIV+ individuals, also were discussed. Workshop participants agreed that TB vaccine development is significantly hampered by imperfect animal models, unknown immune correlates of protection and the absence of a human challenge model. Although a more effective TB vaccine is needed to replace or enhance the limited effectiveness of BCG in all age groups, members of the workshop concurred that an effective vaccine would have the greatest impact on TB control when administered to adolescents and adults, and that use of whole mycobacteria cells as TB vaccine candidates merits greater support, particularly given the limited understanding of the specific Mtb antigens necessary to generate an immune response capable of preventing Mtb infection and/or disease.

  11. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    PubMed

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  12. Bringing ATLAS production to HPC resources - A use case with the Hydra supercomputer of the Max Planck Society

    NASA Astrophysics Data System (ADS)

    Kennedy, J. A.; Kluth, S.; Mazzaferro, L.; Walker, Rodney

    2015-12-01

    The possible usage of HPC resources by ATLAS is now becoming viable due to the changing nature of these systems and it is also very attractive due to the need for increasing amounts of simulated data. In recent years the architecture of HPC systems has evolved, moving away from specialized monolithic systems, to a more generic linux type platform. This change means that the deployment of non HPC specific codes has become much easier. The timing of this evolution perfectly suits the needs of ATLAS and opens a new window of opportunity. The ATLAS experiment at CERN will begin a period of high luminosity data taking in 2015. This high luminosity phase will be accompanied by a need for increasing amounts of simulated data which is expected to exceed the capabilities of the current Grid infrastructure. ATLAS aims to address this need by opportunistically accessing resources such as cloud and HPC systems. This paper presents the results of a pilot project undertaken by ATLAS and the MPP/RZG to provide access to the HYDRA supercomputer facility. Hydra is the supercomputer of the Max Planck Society, it is a linux based supercomputer with over 80000 cores and 4000 physical nodes located at the RZG near Munich. This paper describes the work undertaken to integrate Hydra into the ATLAS production system by using the Nordugrid ARC-CE and other standard Grid components. The customization of these components and the strategies for HPC usage are discussed as well as possibilities for future directions.

  13. Role of anthropogenic aerosols in the20th century surface solar radiation, temperature, and meridional heat transport in the Max Planck Earth System Model

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated, to what degree anthropogenic aerosols were affected surface temperatures - especially over sea surfaces - through alteration of surface solar radiation (SSR). Previous work using mixed-layer ocean equilibria corroborated the relevance of anthropogenic aerosols for surface temperature response patterns obtained. Here we complement these studies by fully coupled simulations with the Max Planck Earth System Model (MPI-ESM) in its CMIP5 version. Experiments comprise preindustrial control and historical as in CMIP5, as well as transient experiments 1850 - 2000 with either anthropogenic aerosols or well-mixed greenhouse gases (WMGHG) kept at 1850 levels. With this suite of experiments, we analyse the impact of anthropogenic aerosols and WMGHG on the global energy balance and provide estimates of atmospheric and oceanic meridional heat transport changes in our modeling setup. We find that Global mean surface temperature responses to single forcings are additive. Furthermore, spatial surface temperature response patterns in the WMGHG only experiment are more strongly correlated with the historical experiment than the aerosol only case. We compare transient and equilibrium responses and discuss potential implications of not allowing for cloud-aerosol interactions in the transient modeling set-up.

  14. Influence of gross versus net land-use transitions on the carbon cycle, land use emissions and fire regime in the Max-Planck-Institute Earth System Model

    NASA Astrophysics Data System (ADS)

    Wilkenskjeld, Stiig; Kloster, Silvia; Pongratz, Julia; Reick, Christian

    2013-04-01

    Since thousands of years mankind has altered the surface of the Earth by clearing forests for agricultural purposes and logging of wood for fuel and construction works. In total about half of the global land surface have at some point in history been altered by humans. Land use and land use changes (LULCC) have not only changed the physical surface properties of the Earth (albedo, roughness length) but also results in a release of carbon to the atmosphere (land use emissions, LUE). These fluxes have exceeded those from fossil fuel well into the 20th century and still amount to more than 10% of present day fossil fuel emissions. Thus quantification of the LUE is important for understanding the past and the prediction of the future climate. Therefore the last generation of Earth System Models (ESMs) used for the model intercomparison studies for the IPCC 5th assessment report include LULCC and LUE, but the implementation details and thus results are diverse. One important difference is whether sub-grid scale LULCC practices such as shifting cultivation (that is: clearing land, cultivating it for a few years then abandoning it again while clearing a new land piece), which is very important in certain regions of the world, is accounted for (gross transitions) or not (net transitions). The difference between the two approaches has been quantified using the ESM of the Max-Planck-Institute (MPI-ESM) by reducing the LULCC information which include shifting cultivation (gross transitions) to include net transitions only. Accumulated over the period 1850-2005 the LUE were about 85GtC (almost 40%) lower when accounting for net transitions only. Through differences in fuel availability also fire occurrence was changed, though only regionally important. Using the RCP-senarios, the results were projected until year 2100. The differences between the two transition implementations diminishes at different speed in the different RCPs but has (almost) vanished in 2100 in all

  15. Einstein and Planck

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  16. Providing Database Services in a Nationwide Research Organisation--Coexistence of Traditional Information Services and a Modern CD-ROM/Online Hybrid Solution.

    ERIC Educational Resources Information Center

    Bowman, Benjamin F.

    For the past two decades the central Information Retrieval Services of the Max Planck Society has been providing database searches for scientists in Max Planck Institutes and Research Groups throughout Germany. As a supplement to traditional search services offered by professional intermediaries, they have recently fostered the introduction of a…

  17. Max 1991: Flare Research at the Next Solar Maximum. Workshop 1: Scientific Objectives

    NASA Technical Reports Server (NTRS)

    Canfield, Richard C.; Dennis, Brian R.

    1988-01-01

    The purpose of the Max 1991 program is to gather coordinated sets of solar flare and active region data and to perform interpretive and theoretical research aimed at understanding flare energy storage and release, particle acceleration, flare energy transport, and the propagation of flare effects to Earth. The workshop was divided into four areas of concern: energy storage, energy release, particle acceleration, and energy transport.

  18. Research on 3D virtual campus scene modeling based on 3ds Max and VRML

    NASA Astrophysics Data System (ADS)

    Kang, Chuanli; Zhou, Yanliu; Liang, Xianyue

    2015-12-01

    With the rapid development of modem technology, the digital information management and the virtual reality simulation technology has become a research hotspot. Virtual campus 3D model can not only express the real world objects of natural, real and vivid, and can expand the campus of the reality of time and space dimension, the combination of school environment and information. This paper mainly uses 3ds Max technology to create three-dimensional model of building and on campus buildings, special land etc. And then, the dynamic interactive function is realized by programming the object model in 3ds Max by VRML .This research focus on virtual campus scene modeling technology and VRML Scene Design, and the scene design process in a variety of real-time processing technology optimization strategy. This paper guarantees texture map image quality and improve the running speed of image texture mapping. According to the features and architecture of Guilin University of Technology, 3ds Max, AutoCAD and VRML were used to model the different objects of the virtual campus. Finally, the result of virtual campus scene is summarized.

  19. Demokrit - Planck

    NASA Astrophysics Data System (ADS)

    Rompe, Robert; Treder, Hans-Jürgen

    Es gibt eine Physik, die an die Konstante h gebunden ist und die mit der Atomistik zusammenhängt. Diese h-Physik geht eindeutig auf Planck zurück. Aber, aus dieser Physik folgt die Atomistik als Existenz lokalisierter geladener Teilchen unterschiedlichen Massen nicht, vor allem nicht die des Ladungsquants, so daß also Demokrit mehr behauptet hat, als die Quantenphysik zu beantworten kompetent ist.Translated AbstractDemokrit - PlanckA branch of physics exists closely linked to the constant h and associated with atomism. It is this h-physics that Planck originated. But atomism like existence of localized, charged particles with different masses does not follow from this physics, especially the charge quant. Hence Demokrit asserted more then quantum physics is competent to answer.

  20. Planck 2010

    SciTech Connect

    2010-06-02

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  1. Planck 2010

    ScienceCinema

    None

    2016-07-12

    Planck 2010 From the Planck Scale to the ElectroWeak Scale The conference will be the twelfth one in a series of meetings on physics beyond the Standard Model, organized jointly by several European groups: Bonn, CERN, Ecole Polytechnique, ICTP, Madrid, Oxford, Padua, Pisa, SISSA and Warsaw as part of activities in the framework of the European network UNILHC.Topics to be discussed: Supersymmetry Supergravity & string phenomenology Extra dimensions Electroweak symmetry breaking LHC and Tevatron Physics Collider physics Flavor & neutrinos physics Astroparticle & cosmology Gravity & holography Strongly coupled physics & CFT Registration: registration will be open until May 1st. Registration fees amount to 150 CHF and cover the cost of the coffee breaks and the social dinner. Payment has to be made online. The deadline for registration has been postponed to May 7th. However, after May 3th, we shall not accept any talk request any more. The meeting will be partly supported by ° the Marie Curie Initial Training Network "UNILHC" PITN-GA-2009-23792, ° the ERC Advanced Grant "MassTeV" 226371, ° and the CERN-TH unit.

  2. Student Involvement in International Research -- The IRES Program at MAMI and MAX-lab

    NASA Astrophysics Data System (ADS)

    Briscoe, William; O'Rielly, Grant; Benmouna, Nawal

    2010-02-01

    Students associated with The George Washington University, Montgomery College, and the University of Massachusetts Dartmouth have the opportunity to participate in an international collaborative research at the Mainzer Mikrotron (MAMI) at the Johannes Gutenberg Universit"at in Mainz, Germany or MAX-lab at the Lund University in Lund, Sweden. This project supports up to six undergraduate students and two beginning graduate students each year. The student researchers are involved with all aspects of the experiments performed at the two laboratories. These experiments investigate the dynamics responsible for the internal structure of the nucleon and its excitations through the study of meson photoproduction off the nucleon. Along with the US co-PIs, members of the international collaborations contribute to the training and mentoring of the students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present a history, goals and outcomes of this program. )

  3. Undergraduate Student Involvement in International Research - The IRES Program at MAX-lab, Sweden

    NASA Astrophysics Data System (ADS)

    Briscoe, William; O'Rielly, Grant; Fissum, Kevin

    2014-03-01

    Undergraduate students associated with The George Washington University and UMass Dartmouth have had the opportunity to participate in nuclear physics research as a part of the PIONS@MAXLAB Collaboration performing experiments at MAX-lab at Lund University in Sweden. This project has supported thirteen undergraduate students during 2009 - 2011. The student researchers are involved with all aspects of the experiments performed at the laboratory, from set-up to analysis and presentation at national conferences. These experiments investigate the dynamics responsible for the internal structure of the nucleon through the study of pion photoproduction off the nucleon and high-energy Compton scattering. Along with the US and Swedish project leaders, members of the collaboration (from four different countries) have contributed to the training and mentoring of these students. This program provides students with international research experiences that prepare them to operate successfully in a global environment and encourages them to stay in areas of science, technology, engineering and math (STEM) that are crucial for our modern, technology-dependent society. We will present the history, goals and outcomes in both physics results and student success that have come from this program. This work supported by NSF OISE/IRES award 0553467.

  4. Planck stars

    NASA Astrophysics Data System (ADS)

    Rovelli, Carlo; Vidotto, Francesca

    2014-12-01

    Quantum-gravitational pressure can stop gravitational collapse and cause a bounce. We observe that: (i) due to the huge time dilation, the process can last micro-seconds in local proper time and billions of years observed from the outside; (ii) the bounce volume can be much larger than planckian, because the onset of quantum-gravity effects is governed by density, not size; (iii) the emerging object can then be bigger than planckian by a factor (m/mP)n, where m is the initial mass, mP is the Planck mass, and n positive; (iv) the interior of an evaporating hole can keep memory of the initial mass, providing an independent scale for the physics of the final explosion. If so, primordial black holes could produce a detectable signal of quantum gravitational origin, which we estimate, under some hypotheses, around the wavelength 10-14 cm.

  5. The Planck Telescope reflectors

    NASA Astrophysics Data System (ADS)

    Stute, Thomas

    2004-09-01

    The mechanical division of EADS-Astrium GmbH, Friedrichshafen is currently engaged with the development, manufacturing and testing of the advanced dimensionally stable composite reflectors for the ESA satellite borne telescope Planck. The objective of the ESA mission Planck is to analyse the first light that filled the universe, the cosmic microwave background radiation. Under contract of the Danish Space Research Institute and ESA EADS-Astrium GmbH is developing the all CFRP primary and secondary reflectors for the 1.5-metre telescope which is the main instrument of the Planck satellite. The operational frequency ranges from to 25 GHz to 1000 GHz. The demanding high contour accuracy and surface roughness requirements are met. The design provides the extreme dimensional stability required by the cryogenic operational environment at around 40 K. The elliptical off-axis reflectors display a classical lightweight sandwich design with CFRP core and facesheets. Isostatic mounts provide the interfaces to the telescope structure. Protected VDA provides the reflecting surface. The manufacturing is performed at the Friedrichshafen premises of EADS-Space Transportation GmbH, the former Dornier composite workshops. Advanced manufacturing technologies like true angle lay-up by CNC fibre placement and filament winding are utilized. The protected coating is applied at the CAHA facilities at the Calar Alto Observatory, Spain. The exhaustive environmental testing is performed at the facilities of IABG, Munich (mechanical testing) and for the cryo-optical tests at CSL Liege. The project is in advanced state with both Qualification Models being under environmental testing. The flight models will be delivered in 2004. The paper gives an overview over the requirements and the main structural features how these requirements are met. Special production aspects and available test results are reported.

  6. Planck, the Quantum, and the Historians

    NASA Astrophysics Data System (ADS)

    Gearhart, Clayton A.

    2002-05-01

    In late 1900, the German theoretical physicist Max Planck derived an expression for the spectrum of black-body radiation. That derivation was the first step in the introduction of quantum concepts into physics. But how did Planck think about his result in the early years of the twentieth century? Did he assume that his derivation was consistent with the continuous energies inherent in Maxwellian electrodynamics and Newtonian mechanics? Or did he see the beginnings, however tentative and uncertain, of the quantum revolution to come? Historians of physics have debated this question for over twenty years. In this article, I review that debate and, at the same time, present Planck's achievement in its historical context.

  7. Research on animation design of growing plant based on 3D MAX technology

    NASA Astrophysics Data System (ADS)

    Chen, Yineng; Fang, Kui; Bu, Weiqiong; Zhang, Xiaoling; Lei, Menglong

    In view of virtual plant has practical demands on quality, image and degree of realism animation in growing process of plant, this thesis design the animation based on mechanism and regularity of plant growth, and propose the design method based on 3D MAX technology. After repeated analysis and testing, it is concluded that there are modeling, rendering, animation fabrication and other key technologies in the animation design process. Based on this, designers can subdivid the animation into seed germination animation, plant growth prophase animation, catagen animation, later animation and blossom animation. This paper compounds the animation of these five stages by VP window to realize the completed 3D animation. Experimental result shows that the animation can realized rapid, visual and realistic simulatation the plant growth process.

  8. [Anatomical Vitamin C-Research during National Socialism and the Post-war Period: Max Clara's Human Experiments at the Munich Anatomical Institute].

    PubMed

    Schûtz, Mathias; Schochow, Maximilian; Waschke, Jens; Marckmann, Georg; Steger, Florian

    2014-01-01

    In autumn of 1942, Max Clara (1899-1966) became chairman of the anatomical institute Munich. There, he intensified his research concerning the proof of vitamin C with the bodies of executed prisoners which were delivered by the Munich-Stadelheim prison. This research on human organs was pursued by applying ascorbic acid (Cebion) to prisoners before their execution. The paper investigates this intensified and radicalized anatomical research through human experiments, which Max Clara conducted in Munich and published from Istanbul during the postwar years, as well as its scientific references from the Nazi period.

  9. [Anatomical Vitamin C-Research during National Socialism and the Post-war Period: Max Clara's Human Experiments at the Munich Anatomical Institute].

    PubMed

    Schûtz, Mathias; Schochow, Maximilian; Waschke, Jens; Marckmann, Georg; Steger, Florian

    2014-01-01

    In autumn of 1942, Max Clara (1899-1966) became chairman of the anatomical institute Munich. There, he intensified his research concerning the proof of vitamin C with the bodies of executed prisoners which were delivered by the Munich-Stadelheim prison. This research on human organs was pursued by applying ascorbic acid (Cebion) to prisoners before their execution. The paper investigates this intensified and radicalized anatomical research through human experiments, which Max Clara conducted in Munich and published from Istanbul during the postwar years, as well as its scientific references from the Nazi period. PMID:26288924

  10. Latest results from Planck

    NASA Astrophysics Data System (ADS)

    Tauber, Jan; sSubmitted Planck Collaboration

    2016-01-01

    This talk will present an overview of the most recent Planck data and results, with emphasis on polarization.The use of CMB polarization data from Planck confirms the best-fit Lambda-CDM model obtained with Planck temperature-only data, and improves the accuracy with which cosmological parameters are determined. The most recent results based on polarized E-mode and B-mode CMB power spectra at large angular scales will be presented, and their implications for the epoch of reionization and primordial gravitational waves.In this talk I will also present the latest analysis of polarized diffuse galactic foreground emissions based on Planck data. Both the synchrotron and dust emission maps obtained from Planck reveal new facets of the galactic interstellar medium. In particular dust emission holds the promise of providing a model of the large-scale 3D shape of the Galactic magnetic field, as well as its small scale behavior.

  11. Long-term MAX-DOAS measurement of trace gases and aerosol in the Environmental Research Station Schneefernerhaus

    NASA Astrophysics Data System (ADS)

    Wang, Zhuoru; Hao, Nan; Hendrick, François; Van Roozendael, Michel; Holla, Robert; Valks, Pieter

    2016-04-01

    The Environmental Research Station Schneefernerhaus (Umwelt Forschungsstation Schneefernerhaus, UFS) is located immediately under the summit of Zugspitze (2962 m), the highest mountain of Germany, at a height of 2650 m. The UFS is a rare observation site in Germany with mostly clean and unpolluted air. It is ideal for both stratospheric composition measurements and trace gas measurements in the free-troposphere. It is optimal for detecting pollution events in the free-troposphere, which are indications of short- or long-range transport of air pollutants. A MAX-DOAS instrument has been working in the UFS since February 2011. With the zenith spectrum of each cycle used as the reference, the differential slant column densities (DSCDs) of trace gases are calculated from the spectra with Differential Optical Absorption Spectroscopy (DOAS) method. The DSCDs of both O4 and NO2 are calculated in two different wavelength intervals, 338-370 nm in the UV region and 440-490 nm in the VIS region. For HCHO and HONO, optimal fitting windows have been determined in the UV region. A retrieval algorithm, based on the radiative transfer model LIDORT and the optimal estimation technique, is used to provide information on the vertical profiles and vertical column densities (VCDs) of aerosol and trace gases. Meanwhile, zenith-sky radiance spectra during twilight hours are analyzed using DOAS method to derive the total vertical column densities (VCDs) of O3 and NO2. A zenith spectrum measured in the noon of a summer day was chosen as the reference spectrum. The slant column densities (SCDs) of O3 and NO2, which are the direct product of the DOAS analysis, are then converted into VCDs using the air mass factors (AMFs) derived by radiative transfer calculations. This work presents the results of the MAX-DOAS measurement in the UFS from 2012 to 2015, including aerosol (derived from O4 measurement), NO2, HCHO, and HONO, etc. The vertical profiles as well as the seasonal and diurnal variation

  12. Integration of the Draft Sequence and Physical Map as a Framework for Genomic Research in Soybean (Glycine max (L.) Merr.) and Wild Soybean (Glycine soja Sieb. and Zucc.).

    PubMed

    Ha, Jungmin; Abernathy, Brian; Nelson, William; Grant, David; Wu, Xiaolei; Nguyen, Henry T; Stacey, Gary; Yu, Yeisoo; Wing, Rod A; Shoemaker, Randy C; Jackson, Scott A

    2012-03-01

    Soybean is a model for the legume research community because of its importance as a crop, densely populated genetic maps, and the availability of a genome sequence. Even though a whole-genome shotgun sequence and bacterial artificial chromosome (BAC) libraries are available, a high-resolution, chromosome-based physical map linked to the sequence assemblies is still needed for whole-genome alignments and to facilitate map-based gene cloning. Three independent G. max BAC libraries combined with genetic and gene-based markers were used to construct a minimum tiling path (MTP) of BAC clones. A total of 107,214 clones were assembled into 1355 FPC (FingerPrinted Contigs) contigs, incorporating 4628 markers and aligned to the G. max reference genome sequence using BAC end-sequence information. Four different MTPs were made for G. max that covered from 92.6% to 95.0% of the soybean draft genome sequence (gmax1.01). Because our purpose was to pick the most reliable and complete MTP, and not the MTP with the minimal number of clones, the FPC map and draft sequence were integrated and clones with unpaired BES were added to build a high-quality physical map with the fewest gaps possible (http://soybase.org). A physical map was also constructed for the undomesticated ancestor (G. soja) of soybean to explore genome variation between G. max and G. soja. 66,028 G. soja clones were assembled into 1053 FPC contigs covering approximately 547 Mbp of the G. max genome sequence. These physical maps for G. max and its undomesticated ancestor, G. soja, will serve as a framework for ordering sequence fragments, comparative genomics, cloning genes, and evolutionary analyses of legume genomes.

  13. The Planck Radiation Functions.

    ERIC Educational Resources Information Center

    Larsen, Russell D.

    1985-01-01

    Blackbody radiation is used as an example to illustrate that oversimplification in teaching quantum ideas can result in later misunderstanding. Although textbooks give Planck's distribution function in terms of wavelength, there are actually 12 different radiation functions. Some of the more interesting ones are given and discussed. (JN)

  14. The Planck Legacy Archive

    NASA Astrophysics Data System (ADS)

    Dupac, X.; Arviset, C.; Fernandez Barreiro, M.; Lopez-Caniego, M.; Tauber, J.

    2015-12-01

    The Planck Collaboration has released in 2015 their second major dataset through the Planck Legacy Archive (PLA). It includes cosmological, Extragalactic and Galactic science data in temperature (intensity) and polarization. Full-sky maps are provided with unprecedented angular resolution and sensitivity, together with a large number of ancillary maps, catalogues (generic, SZ clusters and Galactic cold clumps), time-ordered data and other information. The extensive cosmological likelihood package allows cosmologists to fully explore the plausible parameters of the Universe. A new web-based PLA user interface is made public since Dec. 2014, allowing easier and faster access to all Planck data, and replacing the previous Java-based software. Numerous additional improvements to the PLA are also being developed through the so-called PLA Added-Value Interface, making use of an external contract with the Planetek Hellas and Expert Analytics software companies. This will allow users to process time-ordered data into sky maps, separate astrophysical components in existing maps, simulate the microwave and infrared sky through the Planck Sky Model, and use a number of other functionalities.

  15. Beyond the Planck Scale

    SciTech Connect

    Giddings, Steven B.

    2009-12-15

    I outline motivations for believing that important quantum gravity effects lie beyond the Planck scale at both higher energies and longer distances and times. These motivations arise in part from the study of ultra-high energy scattering, and also from considerations in cosmology. I briefly summarize some inferences about such ultra-planckian physics, and clues we might pursue towards the principles of a more fundamental theory addressing the known puzzles and paradoxes of quantum gravity.

  16. Warming up for Planck

    SciTech Connect

    Bartrum, Sam; Berera, Arjun; Rosa, João G. E-mail: ab@ph.ed.ac.uk

    2013-06-01

    The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|n{sub t}|, where n{sub t} is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.

  17. Localizability and the planck mass

    SciTech Connect

    Ne`eman, Y. |

    1993-06-01

    The author combines the assumption of environmental decoherence, as the mechanism generating the classical (i.e. no quantum interferences) nature of spacetime, with the limit on its other classical feature, point-like continuity, namely Planck length. As a result, quantum extended objects with masses larger than Planck mass have to derive their quantum behavior from long-range correlations; objects with masses smaller than Planck mass cannot display classical behavior.

  18. Probing Planck's Law at Home

    ERIC Educational Resources Information Center

    Bonnet, I.; Gabelli, J.

    2010-01-01

    We report on the physics around an incandescent lamp. Using a consumer-grade digital camera, we combine electrical and optical measurements to explore Planck's law of black-body radiation. This simple teaching experiment is successfully used to measure both Stefan's and Planck's constants. Our measurements lead to a strikingly accurate value for…

  19. CMB anomalies after Planck

    NASA Astrophysics Data System (ADS)

    Schwarz, Dominik J.; Copi, Craig J.; Huterer, Dragan; Starkman, Glenn D.

    2016-09-01

    Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP and by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole moments with one another and with the motion and geometry of the solar system, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary ΛCDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.

  20. Planck constraints on monodromy inflation

    SciTech Connect

    Easther, Richard; Flauger, Raphael E-mail: flauger@ias.edu

    2014-02-01

    We use data from the nominal Planck mission to constrain modulations in the primordial power spectrum associated with monodromy inflation. The largest improvement in fit relative to the unmodulated model has Δχ{sup 2} ≈ 10 and we find no evidence for a primordial signal, in contrast to a previous analysis of the WMAP9 dataset, for which Δχ{sup 2} ≈ 20. The Planck and WMAP9 results are broadly consistent on angular scales where they are expected to agree as far as best-fit values are concerned. However, even on these scales the significance of the signal is reduced in Planck relative to WMAP, and is consistent with a fit to the ''noise'' associated with cosmic variance. Our results motivate both a detailed comparison between the two experiments and a more careful study of the theoretical predictions of monodromy inflation.

  1. String inflation after Planck 2013

    SciTech Connect

    Burgess, C.P.; Cicoli, M.; Quevedo, F. E-mail: mcicoli@ictp.it

    2013-11-01

    We briefly summarize the impact of the recent Planck measurements for string inflationary models, and outline what might be expected to be learned in the near future from the expected improvement in sensitivity to the primordial tensor-to-scalar ratio. We comment on whether these models provide sufficient added value to compensate for their complexity, and ask how they fare in the face of the new constraints on non-gaussianity and dark radiation. We argue that as a group the predictions made before Planck agree well with what has been seen, and draw conclusions from this about what is likely to mean as sensitivity to primordial gravitational waves improves.

  2. AuroraMAX!

    NASA Astrophysics Data System (ADS)

    Donovan, E.; Spanswick, E. L.; Chicoine, R.; Pugsley, J.; Langlois, P.

    2011-12-01

    AuroraMAX is a public outreach and education initiative that brings auroral images to the public in real time. AuroraMAX utilizes an observing station located just outside Yellowknife, Canada. The station houses a digital All-Sky Imager (ASI) that collects full-colour images of the night sky every six seconds. These images are then transmitted via satellite internet to our web server, where they are made instantly available to the public. Over the last two years this program has rapidly become one of the most successful outreach programs in the history of Space Science in Canada, with hundreds of thousands of distinct visitors to the CSA AuroraMAX website, thousands of followers on social media, and hundreds of newspaper, magazine, radio, and television spots. Over the next few years, the project will expand to include a high-resolution SLR delivering real-time auroral images (also from Yellowknife), as well as a program where astronauts on the ISS will take pictures of the aurora with a handheld SLR. The objectives of AuroraMAX are public outreach and education. The ASI design, operation, and software were based on infrastructure that was developed for the highly successful ASI component of the NASA THEMIS mission as well as the Canadian Space Agency (CSA) Canadian GeoSpace Monitoring (CGSM) program. So from an education and public outreach perspective, AuroraMAX is a single camera operating in the Canadian north. On the other hand, AuroraMAX is one of nearly 40 All-Sky Imagers that are operating across North America. The AuroraMAX camera produces data that is seamlessly integrated with the CGSM ASI data, and made widely available to the Space Science community through open-access web and FTP sites. One of our objectives in the next few years is to incorporate some of the data from the THEMIS and CGSM imagers into the AuroraMAX system, to maximize viewing opportunities and generate more real-time data for public outreach. This is an exemplar of a program that

  3. Primordial power spectrum from Planck

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Souradeep, Tarun E-mail: arman@apctp.org

    2014-11-01

    Using modified Richardson-Lucy algorithm we reconstruct the primordial power spectrum (PPS) from Planck Cosmic Microwave Background (CMB) temperature anisotropy data. In our analysis we use different combinations of angular power spectra from Planck to reconstruct the shape of the primordial power spectrum and locate possible features. Performing an extensive error analysis we found the dip near ℓ ∼ 750–850 represents the most prominent feature in the data. Feature near ℓ ∼ 1800–2000 is detectable with high confidence only in 217 GHz spectrum and is apparently consequence of a small systematic as described in the revised Planck 2013 papers. Fixing the background cosmological parameters and the foreground nuisance parameters to their best fit baseline values, we report that the best fit power law primordial power spectrum is consistent with the reconstructed form of the PPS at 2σ C.L. of the estimated errors (apart from the local features mentioned above). As a consistency test, we found the reconstructed primordial power spectrum from Planck temperature data can also substantially improve the fit to WMAP-9 angular power spectrum data (with respect to power-law form of the PPS) allowing an overall amplitude shift of ∼ 2.5%. In this context low-ℓ and 100 GHz spectrum from Planck which have proper overlap in the multipole range with WMAP data found to be completely consistent with WMAP-9 (allowing amplitude shift). As another important result of our analysis we do report the evidence of gravitational lensing through the reconstruction analysis. Finally we present two smooth form of the PPS containing only the important features. These smooth forms of PPS can provide significant improvements in fitting the data (with respect to the power law PPS) and can be helpful to give hints for inflationary model building.

  4. Primordial features and Planck polarization

    NASA Astrophysics Data System (ADS)

    Hazra, Dhiraj Kumar; Shafieloo, Arman; Smoot, George F.; Starobinsky, Alexei A.

    2016-09-01

    With the Planck 2015 Cosmic Microwave Background (CMB) temperature and polarization data, we search for possible features in the primordial power spectrum (PPS). We revisit the Wiggly Whipped Inflation (WWI) framework and demonstrate how generation of some particular primordial features can improve the fit to Planck data. WWI potential allows the scalar field to transit from a steeper potential to a nearly flat potential through a discontinuity either in potential or in its derivatives. WWI offers the inflaton potential parametrizations that generate a wide variety of features in the primordial power spectra incorporating most of the localized and non-local inflationary features that are obtained upon reconstruction from temperature and polarization angular power spectrum. At the same time, in a single framework it allows us to have a background parameter estimation with a nearly free-form primordial spectrum. Using Planck 2015 data, we constrain the primordial features in the context of Wiggly Whipped Inflation and present the features that are supported both by temperature and polarization. WWI model provides more than 13 improvement in χ2 fit to the data with respect to the best fit power law model considering combined temperature and polarization data from Planck and B-mode polarization data from BICEP and Planck dust map. We use 2-4 extra parameters in the WWI model compared to the featureless strict slow roll inflaton potential. We find that the differences between the temperature and polarization data in constraining background cosmological parameters such as baryon density, cold dark matter density are reduced to a good extent if we use primordial power spectra from WWI. We also discuss the extent of bispectra obtained from the best potentials in arbitrary triangular configurations using the BI-spectra and Non-Gaussianity Operator (BINGO).

  5. Planck Surveyor On Its Way to Orbit

    ScienceCinema

    Borrill, Julian

    2016-07-12

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.

  6. Planck Surveyor On Its Way to Orbit

    ScienceCinema

    None

    2016-07-12

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

  7. Planck Surveyor On Its Way to Orbit

    SciTech Connect

    2009-05-14

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center

  8. Planck Surveyor On Its Way to Orbit

    SciTech Connect

    Borrill, Julian

    2009-01-01

    An Ariane 5 rocket carried the Planck Surveyor and a companion satellite into space May 14, 2009 from the European Space Agency (ESA) base on the northwest coast of South America. Once in orbit beyond the moon, Planck will produce the most accurate measurements ever made of the relic radiation from the big bang, plus the largest set of CMB data ever recorded. Berkeley Labs long and continuing involvement with Planck began when George Smoot of the Physics Division proposed Plancks progenitor to ESA and continues with preparations for ongoing data analysis for the U.S. Planck team at NERSC, led by Julian Borrill, co-leader of the Computational Cosmology Center.

  9. Planck Visualization Project: Seeing and Hearing the Cosmic Microwave Background

    NASA Astrophysics Data System (ADS)

    van der Veen, J.

    2010-08-01

    The Planck Mission, launched May 14, 2009, will measure the sky over nine frequency channels, with temperature sensitivity of a few microKelvin, and angular resolution of up to 5 arc minutes. Planck is expected to provide the data needed to set tight constraints on cosmological parameters, study the ionization history of the Universe, probe the dynamics of the inflationary era, and test fundamental physics. The Planck Education and Public Outreach collaborators at NASA's Jet Propulsion Laboratory, the University of California, Santa Barbara and Purdue University are preparing a variety of materials to present the science goals of the Planck Mission to the public. Two products currently under development are an interactive simulation of the mission which can be run in a virtual reality environment, and an interactive presentation on interpreting the power spectrum of the Cosmic Microwave Background with music. In this paper we present a brief overview of CMB research and the Planck Mission, and discuss how to explain, to non-technical audiences, the theory of how we derive information about the early universe from the power spectrum of the CMB by using the physics of music.

  10. Inflationary paradigm after Planck 2013

    NASA Astrophysics Data System (ADS)

    Guth, Alan H.; Kaiser, David I.; Nomura, Yasunori

    2014-06-01

    Models of cosmic inflation posit an early phase of accelerated expansion of the universe, driven by the dynamics of one or more scalar fields in curved spacetime. Though detailed assumptions about fields and couplings vary across models, inflation makes specific, quantitative predictions for several observable quantities, such as the flatness parameter (Ωk = 1 - Ω) and the spectral tilt of primordial curvature perturbations (ns - 1 = dln ⁡PR / dln ⁡ k), among others-predictions that match the latest observations from the Planck satellite to very good precision. In the light of data from Planck as well as recent theoretical developments in the study of eternal inflation and the multiverse, we address recent criticisms of inflation by Ijjas, Steinhardt, and Loeb. We argue that their conclusions rest on several problematic assumptions, and we conclude that cosmic inflation is on a stronger footing than ever before.

  11. Comte, Mach, Planck, and Eddington: a study of influence across generations

    NASA Astrophysics Data System (ADS)

    Batten, Alan H.

    2016-04-01

    Auguste Comte is frequently ridiculed by astronomers for saying that human beings would never be able to know the physical nature and constitution of the stars. His philosophy, however, influenced scientists throughout his lifetime and for over a century after his death. That influence is traced here in the work of three outstanding scientists who spanned, roughly speaking, three successive generations after his own, namely, Ernst Mach, Max Planck and Arthur Stanley Eddington.

  12. The Planck Mission: Early Results

    SciTech Connect

    Marco Bersanelli

    2012-03-07

    The ESA Planck space mission, launched on May 14, 2009, is dedicated to high precision measurements of the cosmic microwave background (CMB), the first light of the universe, both in temperature and polarization. The satellite observes the full sky from a far-Earth orbit with two cryogenic instruments in the 30-850 GHz range at the focal plane of a 1.5-meter telescope. The primary objective of Planck is to measure with unprecedented precision the key cosmological parameters and to provide accurate tests of physics in the early universe. Planck has recently completed the fifth full-sky survey. The data analysis is underway. The first cosmology results are expected in early 2013 while a number of astrophysical results have been recently delivered to the community, including galactic and extragalactic astrophysics and a rich catalogue of radio and infrared sources. These results demonstrate the excellent in-orbit performance of the instruments and give excellent prospects for the forthcoming cosmological results.

  13. Planck 2013 results. XXXI. Consistency of the Planck data

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, D.; Pearson, T. J.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Scott, D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck design and scanning strategy provide many levels of redundancy that can be exploited to provide tests of internal consistency. One of the most important is the comparison of the 70 GHz (amplifier) and 100 GHz (bolometer) channels. Based on different instrument technologies, with feeds located differently in the focal plane, analysed independently by different teams using different software, and near the minimum of diffuse foreground emission, these channels are in effect two different experiments. The 143 GHz channel has the lowest noise level on Planck, and is near the minimum of unresolved foreground emission. In this paper, we analyse the level of consistency achieved in the 2013 Planck data. We concentrate on comparisons between the 70, 100, and 143 GHz channel maps and power spectra, particularly over the angular scales of the first and second acoustic peaks, on maps masked for diffuse Galactic emission and for strong unresolved sources. Difference maps covering angular scales from 8° to 15' are consistent with noise, and show no evidence of cosmic microwave background structure. Including small but important corrections for unresolved-source residuals, we demonstrate agreement (measured by deviation of the ratio from unity) between 70 and 100 GHz power spectra averaged over 70 ≤ ℓ ≤ 390 at the 0.8% level, and agreement between 143 and 100 GHz power spectra of 0.4% over the same ℓ range. These values are within and consistent with the overall uncertainties in calibration given in the Planck 2013 results. We also present results based on the 2013 likelihood analysis showing consistency at the 0.35% between the 100, 143, and 217 GHz power spectra. We analyse calibration procedures and beams to determine what fraction of these differences can be accounted for by known approximations or systematicerrors that could be controlled even better in the future, reducing uncertainties still further. Several possible small improvements are described

  14. Triangulum galaxy viewed by Planck

    NASA Astrophysics Data System (ADS)

    De Paolis, F.; Gurzadyan, V. G.; Nucita, A. A.; Chemin, L.; Qadir, A.; Kashin, A. L.; Khachatryan, H. G.; Sargsyan, S.; Yegorian, G.; Ingrosso, G.; Jetzer, Ph.; Vetrugno, D.

    2016-09-01

    We used Planck data to study the M 33 galaxy and find a substantial temperature asymmetry with respect to its minor axis projected onto the sky plane. This temperature asymmetry correlates well with the HI velocity field at 21 cm, at least within a galactocentric distance of 0.5°, and it is found to extend up to about 3° from the galaxy center. We conclude that the revealed effect, that is, the temperature asymmetry and its extension, implies that we detected the differential rotation of the M 33 galaxy and of its extended baryonic halo.

  15. Millikan's measurement of Planck's constant

    NASA Astrophysics Data System (ADS)

    Franklin, Allan

    2013-12-01

    Robert Millikan is famous for measuring the charge of the electron. His result was better than any previous measurement and his method established that there was a fundamental unit of charge, or charge quantization. He is less well-known for his measurement of Planck's constant, although, as discussed below, he is often mistakenly given credit for providing significant evidence in support of Einstein's photon theory of light.1 His Nobel Prize citation was "for his work on the elementary electric charge of electricity and the photoelectric effect," an indication of the significance of his work on the photoelectric effect.

  16. The Polarization of the CMB with Planck

    NASA Astrophysics Data System (ADS)

    Rocha, Graca; Planck Collaboration

    2016-06-01

    In this talk I will give an overview of Planck data and Cosmological results focusing on the analysis of polarized data. I will present new insights into the polarization of foregrounds rendered by the Planck satelite and an account of current constraints on the optical depth due to reionization, τ, and the scalar to tensor ratio, r.

  17. WMAP OBSERVATIONS OF PLANCK ESZ CLUSTERS

    SciTech Connect

    Ma Yinzhe; Hinshaw, Gary; Scott, Douglas

    2013-07-10

    We examine the Sunyaev-Zeldovich (SZ) effect in the seven year Wilkinson Microwave Anisotropy Probe (WMAP) data by cross-correlating it with the Planck Early-release Sunyaev-Zeldovich catalog. Our analysis proceeds in two parts. We first perform a stacking analysis in which the filtered WMAP data are averaged at the locations of the 175 Planck clusters. We then perform a regression analysis to compare the mean amplitude of the SZ signal, Y{sub 500}, in the WMAP data to the corresponding amplitude in the Planck data. The aggregate Planck clusters are detected in the seven year WMAP data with a signal-to-noise ratio of 16.3. In the regression analysis, we find that the SZ amplitude measurements agree to better than 25%: a = 1.23 {+-} 0.18 for the fit Y{sup wmap}{sub 500}= aY{sup planck}{sub 500}.

  18. The Planck Mission and its Products

    NASA Astrophysics Data System (ADS)

    Tauber, Jan A.

    2015-08-01

    Planck (http://www.esa.int/Planck) is an astronomical satellite part of the Scientific Programme of the European Space Agency, which was designed to image the anisotropies of the Cosmic Microwave Background (CMB) over the whole sky, with unprecedented sensitivity and angular resolution. Planck is a major source of information relevant to many cosmological and astrophysical issues. The ability to measure to high accuracy the angular power spectrum of the CMB fluctuations allows the determination of fundamental cosmological parameters with an uncertainty better than a percent. In addition to the main cosmological goals of the mission, the Planck sky survey can be used to study in detail the very sources of emission which "contaminate" the signal due to the CMB, and will result in a wealth of information on the properties of extragalactic sources, and on the dust and gas in our own galaxy.Planck was launched together with Herschel on 14 May 2009. Its payload surveyed the sky continuously between July 2009 and October 2013. In January 2011 the first Planck data product (the Early Release Compact Source Catalogue) and scientific results were released to the public. The second data release took place on March 2013, and included maps of the whole sky at nine frequencies as well as maps of the major physical emission components. The third data release is taking place between February and May 2015, and includes all the data acquired by Planck.I will present - on behalf of the Planck Collaboration - a very brief overview of the Planck mission, its scientific objectives, and also briefly describe its most recent scientific results. Next, I will concentrate on describing the Planck data products that have been publicly released, and how they can serve a wide community of users. This talk is intended to be an appropriate introduction to the IAU GA Focus Meeting “The Legacy of Planck”.

  19. The Sunyaev-Zeldovich Signal of the maxBCG SDSS Galaxy Clusters in WMAP

    SciTech Connect

    Draper, Patrick; Dodelson, Scott; Hao, Jiangang; Rozo, Eduardo

    2012-01-01

    The Planck Collaboration measured the Sunyaev-Zel'dovich (SZ) decrement of optically selected clusters from the Sloan Digital Sky Survey, finding that it falls significantly below expectations based on existing mass calibration of the maxBCG galaxy clusters. Resolving this tension requires either the data to go up, or the theoretical expectations to come down. Here, we use data from the Wilkinson Microwave Anisotropy Probe (WMAP) to perform an independent estimate of the SZ decrement of maxBCG clusters. The recovered signal is consistent with that obtained using Planck, though with larger error bars due to WMAP's larger beam size and smaller frequency range. Nevertheless, this detection serves as an independent confirmation of the magnitude of the effect, and demonstrates that the observed discrepancy must be theoretical in origin.

  20. Planck data and ultralight axions

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kaloper, Nemanja; Terning, John

    2015-06-01

    We examine the effects of photon-axion mixing on the CMB. We show that if there are very underdense regions between us and the last scattering surface which contain coherent magnetic fields (whose strength can be orders of magnitude weaker than the current bounds), then photon-axion mixing can induce observable deviations in the CMB spectrum. Specifically, we show that the mixing can give rise to non-thermal spots on the CMB sky. As an example we consider the well known CMB cold spot, which according to the Planck data has a weak distortion from a black body spectrum, that can be fit by our model. While this explanation of the non-thermality in the region of the cold spot is quite intriguing, photon-axion oscillations do not explain the temperature of the cold spot itself. Nevertheless we demonstrate the possible sensitivity of the CMB to ultralight axions which could be exploited by observers.

  1. Predicting a prior for Planck

    SciTech Connect

    Hertog, Thomas

    2014-02-01

    The quantum state of the universe combined with the structure of the landscape potential implies a prior that specifies predictions for observations. We compute the prior for CMB related observables given by the no-boundary wave function (NBWF) in a landscape model that includes a range of inflationary patches representative of relatively simple single-field models. In this landscape the NBWF predicts our classical cosmological background emerges from a region of eternal inflation associated with a plateau-like potential. The spectra of primordial fluctuations on observable scales are characteristic of concave potentials, in excellent agreement with the Planck data. By contrast, alternative theories of initial conditions that strongly favor inflation at high values of the potential are disfavored by observations in this landscape.

  2. Comparison of Hydrogel Produced by Radiation as Applied at the Research Center (Yazd Branch) With MaxGel and Routine Dressing for Second-Degree Burn Repair in Yazd Burn Hospital

    PubMed Central

    Noorbala, Mohammad Taghi; Noorbala, Mohammad; Dashti-Rahmatabadi, Mohammad Hossein; Noorbala, Mahdi; Noorbala, Roghaye; Mozaffary, Behare

    2016-01-01

    Background Recently, the radiation application research center for the atomic energy organization of Yazd (Iran) has developed a hydrogel dressing which was evaluated for quality and safety in 2008. Its efficacy for assisting in the wound healing process was approved for animal use, and its use has proven to be more effective than a related Syrian material. Objectives We have already confirmed the safety and efficacy of Irgel use on mice (1, 2), so this study was conducted in order to further evaluate its effectiveness on human burn wounds, and to compare its efficacy with MaxGel, another hydrogel. A randomized clinical trial study was conducted to compare the efficacy of hydrogel produced by the radiation application research center (Yazd Branch) with MaxGel and routine dressing on burn repair in the Yazd Burn hospital. Materials and Methods In this study, 90 patients with second-degree burn injuries who were admitted to the Yazd Burn hospital were randomly divided into three equal groups. In the negative control group, the wounds were covered with sterile vaseline gauze followed by double sterile dry gauze and ultimately bandaged. In the test group, the wounds were covered by an Iranian hydrogel sheet (Irgel) instead of vaseline gauze, while in the positive control group, the wounds were covered by MaxGel instead of Irgel. At each visit (every other day), each dressing was renewed by its respective method and the wound area, pain score, and body temperature were recorded. At the beginning and at the end of the first and second week, five milliliters of venous blood were taken from all patients to evaluate hematologic parameters such as peripheral blood cell count, liver function, blood urea nitrogen, and creatinine. Results Before the intervention, the extent of the burns and pain sensations were quite similar among the different groups, but at the second week, the burn areas and pain scores for the Irgel group were significantly less than those of the normal

  3. VizieR Online Data Catalog: Optical ident. and redshifts of Planck SZ sources (Planck+, 2016)

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Levy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Boehringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; De Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Dore, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Elsner, F.; Ensslin, T. A.; Eriksen, H. K.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Galli, S.; Ganga, K.; Genova-Santos, R. T.; Giard, M.; Gjerlow, E.; Gonzalez-Nuevo, J.; Gorski, K. M.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hempel, A.; Hernandez-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Keihaenen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Leon-Tavares, J.; Levrier, F.; Lietzen, H.; Liguori, M.; Lilje, P. B.; Linden-Vornle, M.; Lopez-Caniego, M.; Lubin, P. M.; Macias-Perez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martinez-Gonzalez, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschenes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen J. P.; Rebol, O. R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubino-Martin, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Stolyarov, V.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-04-01

    This article is a companion paper to the Planck catalogue of SZ sources (PSZ1) published in Planck Collaboration XXIX (2014, Cat. J/A+A/581/A14). It contains the results of approximately three years of observations with telescopes at the Canary Islands observatories (IAC80, NOT, INT, TNG, WHT, and GTC), as part of the general optical follow-up programme undertaken by the Planck Collaboration. (2 data files).

  4. Planck 2015 constraints on neutrino physics

    NASA Astrophysics Data System (ADS)

    Lattanzi, Massimiliano

    2016-05-01

    Anisotropies of the cosmic microwave background radiation represent a powerful probe of neutrino physics, complementary to laboratory experiments. Here I review constraints on neutrino properties from the recent 2015 data from the Planck satellite.

  5. Planck scale unification and dynamical symmetry breaking

    SciTech Connect

    Lykken, Joseph D.; Willenbrock, Scott

    1993-09-01

    We explore the possibility of unification of gauge couplings near the Planck scale in models of extended technicolor. We observe that models of the form G X SU(3)_c X SU(2)_L X U(1)_Y cannot be realized, due to the presence of massless neutral Goldstone bosons (axions) and light charged pseudo-Goldstone bosons; thus, unification of the known forces near the Planck scale cannot be achieved. The next simplest possibility, G X SU(4)_{PS} X SU(2)_L X U(1)_{T_{3R}}, cannot lead to unification of the Pati-Salam and weak gauge groups near the Planck scale. However, superstring theory provides relations between couplings at the Planck scale without the need for an underlying grand-unified gauge group, which allows unification of the SU(4)PS and SU(2)L couplings.

  6. HEALPix in Planck and beyond

    NASA Astrophysics Data System (ADS)

    Hivon, Eric; Reinecke, Martin; Gorski, Krzysztof M.

    2015-08-01

    The Hierarchical Equal Area iso-Latitude Pixelation of the Sphere (HEALPix, http://healpix.sf.net) is both a mathematical pixelation of the sphere and a suite of software tools implementing it in many different languages (C, C++, Fortran, IDL/GDL, Java, Python). It has been used in the simulation, observation and analysis of WMAP, Planck and many other CMB and astronomical missions and has become a standard tool used in many different astronomical fields, such as large galaxy surveys (eg, SDSS), 3D structure of the Galaxy (eg, GAIA), high energy cosmic rays (eg, Pierre Auger Observatory), ..., and is fully supported by many Virtual Observatory visualization tools (eg, Aladin).Third party developments have implemented new functionalities like wavelet analysis, Minkowski functionals, structures identification, and propose wrappings or translations of HEALPix functionalities in other languages (eg, Matlab/Octave, Yorick).This talk will review what is currently possible with HEALPix, in terms of simulations, Spherical Harmonics transforms, data processing, visualization, statistical analyses, search of local extrema, pixel queries, I/O, and the projected developments including database storage and queries, multi-resolution dataset (MOC),

  7. Planck Telescope: optical design and verification

    NASA Astrophysics Data System (ADS)

    Martin, Philippe; Riti, Jean-Bernard; de Chambure, Daniel

    2004-06-01

    The cornerstone mission of the European Space Agency (ESA) scientific program Herschel/Planck is currently in the design manufacturing phase (phase C/D). The Planck satellite will be launched in 2007, together with Herschel. Located around the L2 Lagrange point, Planck aims at obtaining very accurate images of the Cosmic Wave Background fluctuations. Working up to high frequency (857 GHz, i.e. 350 μm wavelength), Planck is expected to give sharper images than the recently launched WMAP satellite. The Planck Telescope is an off-axis (unobscured) Gregorian antenna, with a 1.5 m diameter pupil, a small F-number (~1) and a large FOV (+/-5° circular), owing to place a large number of detectors (bolometers) in the focal plane. This paper presents the optical design, performance, and verification concept of the Planck telescope. The custom made sequential Hartmann system is described. Working at 10.6 μm, it will directly measure the wavefront of the telescope in cryogenic environment i.e. at operational conditions. This will be a major milestone in the spacecraft development.

  8. Observational effects of a running Planck mass

    NASA Astrophysics Data System (ADS)

    Huang, Zhiqi

    2016-02-01

    We consider observational effects of a running effective Planck mass in the scalar-tensor gravity theory. At the background level, an increasing effective Planck mass allows a larger Hubble constant H0, which is more compatible with the local direct measurements. At the perturbative level, for cosmic microwave background (CMB) anisotropies, an increasing effective Planck mass (i) suppresses the unlensed CMB power at ℓ≲30 via the integrated Sachs-Wolfe effect and (ii) enhances CMB lensing power. Both effects slightly relax the tension between the current CMB data from the Planck satellite and the standard Λ CDM model predictions. However, these impacts on the CMB secondary anisotropies are subdominant, and the overall constraints are driven by the background measurements. Combining CMB data from the Planck satellite and an H0 prior from Riess et al., we find a ˜2 σ hint of a positive running of the effective Planck mass. However, the hint goes away when we add other low-redshift observational data including type Ia supernovae, baryon acoustic oscillations, and an estimation of the age of the Universe using the old stars.

  9. Inter-comparison of glyoxal retrievals from MAX-DOAS during the MAD-CAT campaign

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Wagner, Thomas; Lampel, Johannes; van Roozendael, Michel; Richter, Andreas; Sinha, Vinayak; Xie, Pinhua; Volkamer, Rainer

    2015-04-01

    Over the past few years the smallest α-dicarbonyl compound glyoxal (CHOCHO) has received attention in order to inform relevant atmospheric chemistry processes such as oxidative capacity and secondary organic aerosol (SOA) formation. A method to detect glyoxal in the atmosphere is through the Differential Optical Absorption Spectroscopy (DOAS) applied to solar scattered light passive remote sensing measurements on different platforms, including ground based, aircrafts, and satellites. Although these measurements are often described still many questions about DOAS fitting parameters need to be investigated. We present results from a comprehensive Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) comparison effort during the Multi Axis DOAS-Comparison campaign for Aerosols and Trace gases (MAD-CAT) held at the Max Planck institute for Chemistry in Mainz, Germany with an intensive operation period from June to August 2013. We evaluate the comparison for glyoxal differential Slant Column Densities (dSCD) from 6 different research groups during the MAD-CAT campaign. The data analysis is performed following three retrieval common settings. In general, good agreement between different groups is found, especially for days with low cloud coverage. Based on the diurnal variability of the glyoxal-to-formaldehyde ratio we identified that Mainz is influenced mostly by anthropogenic volatile organic compounds (AVOC) emission type. Also, for most of the days glyoxal was often clearly above the respective detection limits. We will present results of sensitivity studies in order to know influence of the wavelength window, dependence of the NO2 air mass factor, cross correlation with H2O, among others. Finally, synthetic spectra created with the SCIATRAN radiative transfer model using measurement related inputs are analysed and first results are presented.

  10. Reports and contributions of the Max-Planck Institute of Chemistry (Otto Hahn Institute)

    NASA Astrophysics Data System (ADS)

    Emrich, Ulrike; Gerwin, Robert

    In isotope cosmology and cosmochemistry, presolar nebulae and meteorites, the Earth-Moon system, Earth, and archeometric items were investigated. In geochemistry the chemical composition of the Earth mantle, physics and mineralogy at high pressures, the early development of the Earth mantle and the continental crust, and computer simulation of fluids were studied. Atmospheric chemistry investigations are summarized. In nuclear physics and medium-energy physics the polarizability of protons, the testing of exact theories using the deuteron, the unexplained polarization of X-ray bremsstrahlung, and a gamma-ray monochromator were investigated.

  11. The Fringe Reading Facility at the Max-Planck-Institut fuer Stroemungsforschung

    NASA Technical Reports Server (NTRS)

    Becker, F.; Meier, G. E. A.; Wegner, H.; Timm, R.; Wenskus, R.

    1987-01-01

    A Mach-Zehnder interferometer is used for optical flow measurements in a transonic wind tunnel. Holographic interferograms are reconstructed by illumination with a He-Ne-laser and viewed by a video camera through wide angle optics. This setup was used for investigating industrial double exposure holograms of truck tires in order to develop methods of automatic recognition of certain manufacturing faults. Automatic input is achieved by a transient recorder digitizing the output of a TV camera and transferring the digitized data to a PDP11-34. Interest centered around sequences of interferograms showing the interaction of vortices with a profile and subsequent emission of sound generated by this process. The objective is the extraction of quantitative data which relates to the emission of noise.

  12. Molecular beams entwined with quantum theory: A bouquet for Max Planck

    NASA Astrophysics Data System (ADS)

    Herschbach, D.

    2001-01-01

    In an era when the fledgling quantum theory was uncertain and even gave contradictory answers, Otto Stern undertook to employ molecular beams to test directly fundamental aspects of the theory. During 1921-1935, this led to five decisive experiments reviewed here, resulting in the discovery or demonstration of space quantization, de Broglie matter waves, anomalous magnetic moments of the proton and neutron, recoil of an atom on emission of a photon, and the limitation of scattering cross-sections for molecular collisions imposed by the uncertainty principle.

  13. Intercomparison of MAX-DOAS NO2 retrieval algorithms

    NASA Astrophysics Data System (ADS)

    Peters, Enno; Pinardi, Gaia; Bösch, Tim; Wittrock, Folkard; Richter, Andreas; Burrows, John P.; Van Roozendael, Michel; Piters, Ankie; Wagner, Thomas; Drosoglou, Theano; Bais, Alkis; Wang, Shanshan; Saiz-Lopez, Alfonso

    2016-04-01

    Ground-based Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) measurements are a powerful method for monitoring of atmospheric composition in an automated way. The number of instruments and sites operated has been rapidly increasing over the last years. However, integrating the measurements from all these instruments into a consistent data set necessitates careful homogenization of measurements and data retrieval procedures. For this reason, several MAX-DOAS intercomparison campaigns have been carried out in the last years. Mostly, slant columns measured by different instruments and retrieved by different software were intercompared, i.e. observed differences were potentially caused by both, the instrument and/or the retrieval. In contrast, the approach presented here is a pure intercomparison of MAX-DOAS retrievals. In total, 16 international groups and institutes working in the field of MAX-DOAS participated. The work was performed as part of the EU-funded QA4ECV project. The intercomparison exercise is based on data recorded by the IUP-Bremen MAX-DOAS instrument during the MAD-CAT campaign (Multi-Axis DOAS comparison campaign for Aerosols and Trace gases), which was carried out at the Max-Planck-Institute of Chemistry in Mainz, Germany, in summer 2013. Each group participating in the exercise presented here performed MAX-DOAS fits using their own retrieval software but common input (IUP-Bremen spectra, same cross-sections, and same fit settings). The resulting slant columns show in general an excellent agreement (correlation coefficient > 99.9%). Surprisingly, the correlation is substantially smaller when using sequential Fraunhofer reference spectra instead of a noon reference indicating that groups calculate the sequential reference differently. Further differences were found to arise from treatment of the slit function and subsequent convolution of cross-sections as well as from wavelength calibration. The results indicate overall a high

  14. Small-molecule modulators of c-Myc/Max and Max/Max interactions.

    PubMed

    Berg, Thorsten

    2011-01-01

    The transcription factor c-Myc is overexpressed in many tumors in human beings and has been identified as a highly promising target for cancer therapy. Most biological functions of c-Myc require heterodimerization with its activation partner Max. Inhibition of the protein-protein interactions between c-Myc and Max by small molecules has been shown to be a feasible and powerful approach toward the inhibition of c-Myc functions. More recently, stabilization of Max homodimers to reduce the amount of Max available for activating c-Myc has also been demonstrated to counteract Myc activity. This review summarizes our current knowledge on small organic molecules that inhibit c-Myc by modulating protein-protein interactions relevant for the biological function of this important oncoprotein.

  15. Inter-Comparison of Nitrogen Dioxide Column Densities Retrieved by Ground-Based Max-Doas Under Different Instrumental Conditions Over Mainz

    NASA Astrophysics Data System (ADS)

    Bruchkouski, I.; Dziomin, V.; Ortega, I.; Volkamer, R.; Krasouski, A.

    2013-12-01

    This study is dedicated to the instrumental differences between ground-based MAX-DOAS measurement devices. Our MAX-DOAS instrument, which has been developed at the National Ozone Monitoring Research & Education Center of the Belarusian State University for the purpose of nitrogen dioxide and other atmospheric trace gases monitoring over Belarus, features a rotating mirror and a telescope directly connected to the spectrometer with a two-dimensional CCD detector. Using a mirror instead of an optical fibre makes it possible to change the field of view of the telescope, and the whole instrument is rather compact and all its components are placed outdoors in the open air. However, this makes it quite difficult to ensure a top-quality thermostabilization. In the course of the MAX-DOAS campaign, which took place in the Max Planck Institute for Chemistry in Mainz, Germany in summer of 2013, we had a great opportunity to compare our instrument with other devices of different types. In the present study we make a comparison of nitrogen dioxide slant column densities (SCDs) during several days obtained by our instrument with that measured by the device from the Department of Chemistry and Biochemistry, University of Colorado (Boulder), which has a thermostabilization level of about 0.01 degrees Celsius. We investigate the influence of the spectrometer parts thermostabilization on nitrogen dioxide SCDs retrieval. Furthermore, it was possible to modify the telescope field of view for our instrument from 0.005 to 1.3 degrees, so we performed nitrogen dioxide SCDs retrieval for different fields of view at the same angle of elevation. We analyze these measurement results and obtain an optimal field of view with the aim to achieve the highest possible signal to noise ratio.

  16. Emissivity spectra estimated with the MaxEnTES algorithm

    NASA Astrophysics Data System (ADS)

    Barducci, A.; Guzzi, D.; Lastri, C.; Nardino, V.; Pippi, I.; Raimondi, V.

    2014-10-01

    Temperature and Emissivity Separation (TES) applied to multispectral or hyperspectral Thermal Infrared (TIR) images of the Earth is a relevant issue for many remote sensing applications. The TIR spectral radiance can be modeled by means of the well-known Planck's law, as a function of the target temperature and emissivity. The estimation of these target's parameters (i.e. the Temperature Emissivity Separation, aka TES) is hindered by the circumstance that the number of measurements is less than the unknown number. Existing TES algorithms implement a temperature estimator in which the uncertainty is removed by adopting some a priori assumption that conditions the retrieved temperature and emissivity. Due to its mathematical structure, the Maximum Entropy formalism (MaxEnt) seems to be well suited for carrying out this complex TES operation. The main advantage of the MaxEnt statistical inference is the absence of any external hypothesis, which is instead characterizes most of the existing the TES algorithms. In this paper we describe the performance of the MaxEnTES (Maximum Entropy Temperature Emissivity Separation) algorithm as applied to ten TIR spectral channels of a MIVIS dataset collected over Italy. We compare the temperature and emissivity spectra estimated by this algorithm with independent estimations achieved with two previous TES methods (the Grey Body Emissivity (GBE), and the Model Emittance Calculation (MEC)). We show that MaxEnTES is a reliable algorithm in terms of its higher output Signal-to-Noise Ratio and the negligibility of systematic errors that bias the estimated temperature in other TES procedures.

  17. Composite inflation confronts BICEP2 and PLANCK

    NASA Astrophysics Data System (ADS)

    Karwan, Khamphee; Channuie, Phongpichit

    2014-06-01

    We examine observational constraints on single-field inflation in which the inflaton is a composite field stemming from a four-dimensional strongly interacting field theory. We confront the predictions with the Planck and very recent BICEP2 data. In the large non-minimal coupling regions, we discover for the minimal composite inflationary model that the predictions lie well inside the joint 68% CL for the Planck data, but is in tension with the recent BICEP2 observations. In the case of the glueball inflationary model, the predictions satisfy the Planck results. However, this model can produce a large tensor-to-scalar ratio consistent with the recent BICEP2 observations if the number of e-foldings is slightly smaller than the range commonly used. For a super Yang-Mills paradigm, we discover that the predictions satisfy the Planck data, and surprisingly a large tensor-to-scalar ratio consistent with the BICEP2 results can also be produced for an acceptable range of the number of e-foldings and of the confining scale. In the small non-minimal coupling regions, all of the models can satisfy the BICEP2 results. However, the predictions of the glueball and superglueball inflationary models cannot satisfy the observational bound on the amplitude of the curvature perturbation launched by Planck, and the techni-inflaton self-coupling in the minimal composite inflationary model is constrained to be extremely small.

  18. Halo and subhalo demographics with Planck cosmological parameters: Bolshoi-Planck and MultiDark-Planck simulations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Puebla, Aldo; Behroozi, Peter; Primack, Joel; Klypin, Anatoly; Lee, Christoph; Hellinger, Doug

    2016-10-01

    We report and provide fitting functions for the abundance of dark matter haloes and subhaloes as a function of mass, circular velocity, and redshift from the new Bolshoi-Planck and MultiDark-Planck ΛCDM cosmological simulations, based on the Planck parameters. We also report halo mass accretion rates and concentrations. We show that the higher cosmological matter density of the Planck parameters compared with the WMAP parameters leads to higher abundance of massive haloes at high redshifts. We find that the median halo spin parameter {λ _B}= J(√{2}M_virR_virV_vir)^{-1} is nearly independent of redshift, leading to predicted evolution of galaxy sizes that is consistent with observations, while the significant decrease with redshift in median {λ _P}= J|E|^{-1/2}G^{-1}M^{-5/2} predicts more decrease in galaxy sizes than is observed. Using the Tully-Fisher and Faber-Jackson relations between galaxy velocity and mass, we show that a simple model of how galaxy velocity is related to halo maximum circular velocity leads to increasing overprediction of cosmic stellar mass density as redshift increases beyond z ˜ 1, implying that such velocity-mass relations must change at z ≳ 1. By making a realistic model of how observed galaxy velocities are related to halo circular velocity, we show that recent optical and radio observations of the abundance of galaxies are in good agreement with our ΛCDM simulations. Our halo demographics are based on updated versions of the ROCKSTAR and CONSISTENT TREES codes, and this paper includes appendices explaining all of their outputs. This paper is an introduction to a series of related papers presenting other analyses of the Bolshoi-Planck and MultiDark-Planck simulations.

  19. Cosmological constraints on neutrinos with Planck data

    SciTech Connect

    Spinelli, M.

    2015-07-15

    Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.

  20. Cosmological constraints on neutrinos with Planck data

    NASA Astrophysics Data System (ADS)

    Spinelli, M.

    2015-07-01

    Neutrinos take part in the dance of the evolving Universe influencing its history from leptogenesis, to Big Bang nucleosynthesis, until late time structure formation. This makes cosmology, and in particular one of its primary observables the Cosmic Microwave Background (CMB), an unusual but valuable tool for testing Neutrino Physics. The best measurement to date of full-sky CMB anisotropies comes from the Planck satellite launched in 2009 by the European Space Agency (ESA) and successful follower of COBE and WMAP. Testing Planck data against precise theoretical predictions allow us to shed light on various interesting open questions such as the value of the absolute scale of neutrino masses or their energy density. We revise here the results concerning neutrinos obtained by the Planck Collaboration in the 2013 data release.

  1. Planck Scale Gravity Test with Accelerators

    NASA Astrophysics Data System (ADS)

    Gharibyan, V.

    2015-01-01

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10-35m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement since the smallest distance accessible in experiment is about 10-19m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10-31m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  2. Testing Planck-scale gravity with accelerators.

    PubMed

    Gharibyan, Vahagn

    2012-10-01

    Quantum or torsion gravity models predict unusual properties of space-time at very short distances. In particular, near the Planck length, around 10(-35)  m, empty space may behave as a crystal, singly or doubly refractive. However, this hypothesis remains uncheckable for any direct measurement, since the smallest distance accessible in experiment is about 10(-19)  m at the LHC. Here I propose a laboratory test to measure the space refractivity and birefringence induced by gravity. A sensitivity from 10(-31)  m down to the Planck length could be reached at existent GeV and future TeV energy lepton accelerators using laser Compton scattering. There are already experimental hints for gravity signature at distances approaching the Planck length by 5-7 orders of magnitude, derived from SLC and HERA data.

  3. Unfolding with Maxed and Gravel.

    2004-07-12

    Version: 00 UMG (Unfolding with MAXED and GRAVEL) is a package of seven programs written for the analysis of data measured with spectrometers that require the use of unfolding techniques. See the developers’ website for information on training courses http://www.ptb.de/en/org/6/utc2006/intro.htm. The program MAXED applies the maximum entropy principle to the unfolding problem, and the program GRAVEL uses a modified SAND-II algorithm to do the unfolding. There are two versions of each: MXD_FC33 and GRV_FC33 formore » “few-channel” unfolding (e.g., Bonner sphere spectrometers) and MXD-MC33 and GRV_MC33 for “multi-channel” unfolding (e.g., NE-213). The program IQU can be used to calculate integral quantities for both MAXED and GRAVEL solution spectra and, in the case of MAXED solutions, it can also be used to calculate the uncertainty in these values as well as the uncertainty in the solution spectrum. The uncertainty calculation is handled in the following way: given a solution spectrum generated by MAXED, the program IQU considers variations in the measured data and in the default spectrum and uses standard methods to do sensitivity analysis and uncertainty propagation. There are two versions: IQU_FC33 for “few channel” unfolding and IQU_MC33 for “multi-channel” unfolding. The program UMGPlot can be used to display the results from the unfolding programs MAXED and GRAVEL in graphical form in a quick and easy way.« less

  4. Max Weber and Robert Michels.

    ERIC Educational Resources Information Center

    Scaff, Lawrence A.

    1981-01-01

    This paper investigates the unique intellectual partnership of Max Weber and Robert Michels, with particular emphasis on Weber's influence on Michel's inquiry into the sociology of parties and organization. Concludes with an evaluation of the import of Weber's critique of Michels' work. (DB)

  5. A better presentation of Planck's radiation law

    NASA Astrophysics Data System (ADS)

    Marr, Jonathan M.; Wilkin, Francis P.

    2012-05-01

    Introductory physics and astronomy courses commonly use Wien's displacement law to explain the colors of blackbodies, including the Sun and other stars, in terms of their temperatures. We argue here that focusing on the peak of the blackbody spectrum is misleading for three reasons. First, the Planck curve is too broad for an individual spectral color to stand out. Second, the location of the peak of the Planck curve depends on the choice of the independent variable in the plot. And third, Wien's displacement law is seldom used in actual practice to find a temperature and direct fitting to the Planck function is preferable. We discuss these flaws and argue that, at the introductory level, presentation of blackbody radiation in terms of photon statistics would be more effective pedagogically. The average energy of the emitted photons would then be presented in place of Wien's displacement law, and discussion of the Stefan-Boltzmann law would include the total number of photons emitted per second. Finally, we suggest that the Planck spectrum is most appropriately plotted as a ``spectral energy density per fractional bandwidth distribution,'' using a logarithmic scale for the wavelength or frequency.

  6. Axion hot dark matter bounds after Planck

    SciTech Connect

    Archidiacono, Maria; Hannestad, Steen; Mirizzi, Alessandro; Raffelt, Georg; Wong, Yvonne Y.Y. E-mail: sth@phys.au.dk E-mail: raffelt@mpp.mpg.de

    2013-10-01

    We use cosmological observations in the post-Planck era to derive limits on thermally produced cosmological axions. In the early universe such axions contribute to the radiation density and later to the hot dark matter fraction. We find an upper limit m{sub a} < 0.67 eV at 95% C.L. after marginalising over the unknown neutrino masses, using CMB temperature and polarisation data from Planck and WMAP respectively, the halo matter power spectrum extracted from SDSS-DR7, and the local Hubble expansion rate H{sub 0} released by the Carnegie Hubble Program based on a recalibration of the Hubble Space Telescope Key Project sample. Leaving out the local H{sub 0} measurement relaxes the limit somewhat to 0.86 eV, while Planck+WMAP alone constrain the axion mass to 1.01 eV, the first time an upper limit on m{sub a} has been obtained from CMB data alone. Our axion limit is therefore not very sensitive to the tension between the Planck-inferred H{sub 0} and the locally measured value. This is in contrast with the upper limit on the neutrino mass sum, which we find here to range from Σ m{sub ν} < 0.27 eV at 95% C.L. combining all of the aforementioned observations, to 0.84 eV from CMB data alone.

  7. [Bioergography of Max Bürger].

    PubMed

    Ries, W

    1986-10-15

    For the inquiry into changes during ageing apart from the usual methods of the cross-sectional and longitudinal research the biographical analysis is at our disposal. The establishment of statistics of works is called bioergography. This method is particularly suitable for the recognition of changes of creativity of productive persons, as it is shown at the instance of Ludwig van Beethoven. The bioergography of Max Bürger reveals how form and essence of his work have changed in the course of his life without speaking about a decline of his vigour.

  8. [Bioergography of Max Bürger].

    PubMed

    Ries, W

    1986-10-15

    For the inquiry into changes during ageing apart from the usual methods of the cross-sectional and longitudinal research the biographical analysis is at our disposal. The establishment of statistics of works is called bioergography. This method is particularly suitable for the recognition of changes of creativity of productive persons, as it is shown at the instance of Ludwig van Beethoven. The bioergography of Max Bürger reveals how form and essence of his work have changed in the course of his life without speaking about a decline of his vigour. PMID:3548097

  9. Jacob Max Rabbie (1927-2013).

    PubMed

    Stroebe, Wolfgang; Zimbardo, Philip G

    2014-01-01

    Jacob Max Rabbie, an internationally renowned social psychologist and a founding member of the European Association of Social Psychology (EASP), died on June 29, 2013. Jaap was born in Haarlem, the Netherlands, on October 4, 1927. Jaap studied social psychology at the University of Amsterdam and became the face of Dutch social psychology. His later research focused on aggression between individuals and groups, his early work attempted to isolate the minimal conditions that suffice to generate discriminatory ingroup-outgroup attitudes. Jaap was a dedicated and passionate scientist, oriented to getting things right even when this meant going against the current stream.

  10. Planck satellite to be presented to media

    NASA Astrophysics Data System (ADS)

    2007-01-01

    Planck will make the most accurate maps yet of the microwave background radiation that fills space. It will be sensitive to temperature variations of a few millionths of a degree and will map the full sky in nine wavelengths. The immediate outcome of the Big Bang and the initial conditions for the evolution in the universe’s structure are the primary target of this important mission. From the results, a great deal more will be learnt not only about the nature and amount of dark matter, the ‘missing mass’ of the universe, but also about the nature of dark energy and the expansion of the universe itself. To address such challenging objectives, Planck will need to operate at very low, stable temperatures. Once in space, its detectors will have to be cooled to temperature levels close to absolute zero (-273.15ºC), ranging from -253ºC to only a few tenths of a degree above absolute zero. The Planck spacecraft thus has to be a marvel of cryotechnology. After integration, Planck will start a series of tests that will continue into early-2008. It will be launched by end-July 2008 in a dual-launch configuration with Herschel, ESA’s mission to study the formation of galaxies, stars and planetary systems in the infrared. Interested media are invited to fill in the reply form below. Note to editors The Planck spacecraft was built by AAS Cannes, the prime contractor, leading a consortium of industrial partners with the AAS industry branch in Turin, Italy, responsible for the satellite’s service module. ESA and the Danish National Space Centre (Copenhagen, Denmark) are responsible for the hardware provision of Planck’s telescope mirrors, manufactured by EADS Astrium (Friedrichshafen, Germany). AAS Cannes is also responsible for the payload module, the platform that hosts the telescope and the two onboard instruments, HFI and LFI. The instruments themselves are being supplied by a consortium of scientists and institutes led by the Institut d'Astrophysique Spatiale

  11. Planck focal plane instruments: advanced modelization and combined analysis

    NASA Astrophysics Data System (ADS)

    Zonca, Andrea; Mennella, Aniello

    2012-08-01

    This thesis is the result of my work as research fellow at IASF-MI, Milan section of the Istituto di Astrofisica Spaziale e Fisica Cosmica, part of INAF, Istituto Nazionale di Astrofisica. This work started in January 2006 in the context of the PhD school program in Astrophysics held at the Physics Department of Universita' degli Studi di Milano under the supervision of Aniello Mennella. The main topic of my work is the software modelling of the Low Frequency Instrument (LFI) radiometers. The LFI is one of the two instruments on-board the European Space Agency Planck Mission for high precision measurements of the anisotropies of the Cosmic Microwave Background (CMB). I was also selected to participate at the International Doctorate in Antiparticles Physics, IDAPP. IDAPP is funded by the Italian Ministry of University and Research (MIUR) and coordinated by Giovanni Fiorentini (Universita' di Ferrara) with the objective of supporting the growing collaboration between the Astrophysics and Particles Physics communities. It is an international program in collaboration with the Paris PhD school, involving Paris VI, VII and XI Universities, leading to a double French-Italian doctoral degree title. My work was performed with the co-tutoring of Jean-Michel Lamarre, Instrument Scientist of the High Frequency Instrument (HFI), the bolometric instrument on-board Planck. Thanks to this collaboration I had the opportunity to work with the HFI team for four months at the Paris Observatory, so that the focus of my activity was broadened and included the study of cross-correlation between HFI and LFI data. Planck is the first CMB mission to have on-board the same satellite very different detection technologies, which is a key element for controlling systematic effects and improve measurements quality.

  12. Crystal Structure of the Minimalist Max-E47 Protein Chimera

    SciTech Connect

    Ahmadpour, Faraz; Ghirlando, Rodolfo; De Jong, Antonia T.; Gloyd, Melanie; Shin, Jumi A.; Guarné, Alba

    2012-02-28

    Max-E47 is a protein chimera generated from the fusion of the DNA-binding basic region of Max and the dimerization region of E47, both members of the basic region/helix-loop-helix (bHLH) superfamily of transcription factors. Like native Max, Max-E47 binds with high affinity and specificity to the E-box site, 5'-CACGTG, both in vivo and in vitro. We have determined the crystal structure of Max-E47 at 1.7 Å resolution, and found that it associates to form a well-structured dimer even in the absence of its cognate DNA. Analytical ultracentrifugation confirms that Max-E47 is dimeric even at low micromolar concentrations, indicating that the Max-E47 dimer is stable in the absence of DNA. Circular dichroism analysis demonstrates that both non-specific DNA and the E-box site induce similar levels of helical secondary structure in Max-E47. These results suggest that Max-E47 may bind to the E-box following the two-step mechanism proposed for other bHLH proteins. In this mechanism, a rapid step where protein binds to DNA without sequence specificity is followed by a slow step where specific protein:DNA interactions are fine-tuned, leading to sequence-specific recognition. Collectively, these results show that the designed Max-E47 protein chimera behaves both structurally and functionally like its native counterparts.

  13. Planck 2015 results. XV. Gravitational lensing

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the most significant measurement of the cosmic microwave background (CMB) lensing potential to date (at a level of 40σ), using temperature and polarization data from the Planck 2015 full-mission release. Using a polarization-only estimator, we detect lensing at a significance of 5σ. We cross-check the accuracy of our measurement using the wide frequency coverage and complementarity of the temperature and polarization measurements. Public products based on this measurement include an estimate of the lensing potential over approximately 70% of the sky, an estimate of the lensing potential power spectrum in bandpowers for the multipole range 40 ≤ L ≤ 400, and an associated likelihood for cosmological parameter constraints. We find good agreement between our measurement of the lensing potential power spectrum and that found in the ΛCDM model that best fits the Planck temperature and polarization power spectra. Using the lensing likelihood alone we obtain a percent-level measurement of the parameter combination σ8Ω0.25m = 0.591 ± 0.021. We combine our determination of the lensing potential with the E-mode polarization, also measured by Planck, to generate an estimate of the lensing B-mode. We show that this lensing B-mode estimate is correlated with the B-modes observed directly by Planck at the expected level and with a statistical significance of 10σ, confirming Planck's sensitivity to this known sky signal. We also correlate our lensing potential estimate with the large-scale temperature anisotropies, detecting a cross-correlation at the 3σ level, as expected because of dark energy in the concordance ΛCDM model.

  14. Integration of the draft sequence and physical map as a framework for genomic research in soybean (Glycine max (L.) Merr.) and wild soybean (Glycine soja Sieb. and Zucc.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soybean is a model for the legume research community due to its importance as a crop, a well populated genetic map, and the availability of a genome sequence. Even though a whole genome shotgun sequence and Bacterial Artificial Chromosome (BAC) libraries are available, a high-resolution chromosome-b...

  15. Pioneers in ozone research receive Nobel Prize in chemistry

    NASA Astrophysics Data System (ADS)

    The Royal Swedish Academy of Sciences has awarded its 1995 Nobel Prize in chemistry to three AGU members for their work in atmospheric chemistry, particularly concerning the formation and decomposition of ozone. Only one other Nobel prize has ever been awarded in the realm of atmospheric research. The honorees are professors Paul Crutzen of the Max-Planck Institute for Chemistry in Mainz, Germany; Mario Molina of the Massachusetts Institute of Technology; and F. Sherwood Rowland of the University of California, Irvine. The Academy credits the three with contributing to “our salvation from a global environmental problem that could have catastrophic consequences.”

  16. Max Wertheimer centennial celebration in Germany.

    PubMed

    Wertheimer, Michael

    2014-05-01

    Introduces a celebration of Max Wertheimer. The articles presented here should help clarify some significant aspects of the history of Gestalt psychology and of Max Wertheimer's biography. PMID:24818741

  17. Planck 2015 results. XX. Constraints on inflation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley, W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-09-01

    We present the implications for cosmic inflation of the Planck measurements of the cosmic microwave background (CMB) anisotropies in both temperature and polarization based on the full Planck survey, which includes more than twice the integration time of the nominal survey used for the 2013 release papers. The Planck full mission temperature data and a first release of polarization data on large angular scales measure the spectral index of curvature perturbations to be ns = 0.968 ± 0.006 and tightly constrain its scale dependence to dns/ dlnk = -0.003 ± 0.007 when combined with the Planck lensing likelihood. When the Planck high-ℓ polarization data are included, the results are consistent and uncertainties are further reduced. The upper bound on the tensor-to-scalar ratio is r0.002< 0.11 (95% CL). This upper limit is consistent with the B-mode polarization constraint r< 0.12 (95% CL) obtained from a joint analysis of the BICEP2/Keck Array and Planck data. These results imply that V(φ) ∝ φ2 and natural inflation are now disfavoured compared to models predicting a smaller tensor-to-scalar ratio, such as R2 inflation. We search for several physically motivated deviations from a simple power-law spectrum of curvature perturbations, including those motivated by a reconstruction of the inflaton potential not relying on the slow-roll approximation. We find that such models are not preferred, either according to a Bayesian model comparison or according to a frequentist simulation-based analysis. Three independent methods reconstructing the primordial power spectrum consistently recover a featureless and smooth PR(k) over the range of scales 0.008 Mpc-1 ≲ k ≲ 0.1 Mpc-1. At large scales, each method finds deviations from a power law, connected to a deficit at multipoles ℓ ≈ 20-40 in the temperature power spectrum, but at an uncompelling statistical significance owing to the large cosmic variance present at these multipoles. By combining power spectrum and non

  18. Planck 2015 results. XIII. Cosmological parameters

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chluba, J.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Farhang, M.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Giusarma, E.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Spencer, L. D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted "base ΛCDM" in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of z_re=8.8+1.7-1.4. These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base

  19. Fokker-Planck response of stochastic satellites

    NASA Technical Reports Server (NTRS)

    Huang, T. C.; Das, A.

    1982-01-01

    The present investigation is concerned with the effects of stochastic geometry and random environmental torques on the pointing accuracy of spinning and three-axis stabilized satellites. The study of pointing accuracies requires a knowledge of the rates of error growth over and above any criteria for the asymptotic stability of the satellites. For this reason the investigation is oriented toward the determination of the statistical properties of the responses of the satellites. The geometries of the satellites are considered stochastic so as to have a phenomenological model of the motions of the flexible structural elements of the satellites. A widely used method of solving stochastic equations is the Fokker-Planck approach where the equations are assumed to define a Markoff process and the transition probability densities of the responses are computed directly as a function of time. The Fokker-Planck formulation is used to analyze the response vector of a rigid satellite.

  20. Does Planck really rule out monomial inflation?

    SciTech Connect

    Enqvist, Kari; Karčiauskas, Mindaugas E-mail: mindaugas.karciauskas@helsinki.fi

    2014-02-01

    We consider the modifications of monomial chaotic inflation models due to radiative corrections induced by inflaton couplings to bosons and/or fermions necessary for reheating. To the lowest order, ignoring gravitational corrections and treating the inflaton as a classical background field, they are of the Coleman-Weinberg type and parametrized by the renormalization scale μ. In cosmology, there are not enough measurements to fix μ so that we end up with a family of models, each having a slightly different slope of the potential. We demonstrate by explicit calculation that within the family of chaotic φ{sup 2} models, some may be ruled out by Planck whereas some remain perfectly viable. In contrast, radiative corrections do not seem to help chaotic φ{sup 4} models to meet the Planck constraints.

  1. Planck 2015 results. V. LFI calibration

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We present a description of the pipeline used to calibrate the Planck Low Frequency Instrument (LFI) timelines into thermodynamic temperatures for the Planck 2015 data release, covering four years of uninterrupted operations. As in the 2013 data release, our calibrator is provided by the spin-synchronous modulation of the cosmic microwave background dipole, but we now use the orbital component, rather than adopting the Wilkinson Microwave Anisotropy Probe (WMAP) solar dipole. This allows our 2015 LFI analysis to provide an independent Solar dipole estimate, which is in excellent agreement with that of HFI and within 1σ (0.3% in amplitude) of the WMAP value. This 0.3% shift in the peak-to-peak dipole temperature from WMAP and a general overhaul of the iterative calibration code increases the overall level of the LFI maps by 0.45% (30 GHz), 0.64% (44 GHz), and 0.82% (70 GHz) in temperature with respect to the 2013 Planck data release, thus reducing the discrepancy with the power spectrum measured by WMAP. We estimate that the LFI calibration uncertainty is now at the level of 0.20% for the 70 GHz map, 0.26% for the 44 GHz map, and 0.35% for the 30 GHz map. We provide a detailed description of the impact of all the changes implemented in the calibration since the previous data release.

  2. SPECTRAL IMAGING OF GALAXY CLUSTERS WITH PLANCK

    SciTech Connect

    Bourdin, H.; Mazzotta, P.; Rasia, E.

    2015-12-20

    The Sunyaev–Zeldovich (SZ) effect is a promising tool for detecting the presence of hot gas out to the galaxy cluster peripheries. We developed a spectral imaging algorithm dedicated to the SZ observations of nearby galaxy clusters with Planck, with the aim of revealing gas density anisotropies related to the filamentary accretion of materials, or pressure discontinuities induced by the propagation of shock fronts. To optimize an unavoidable trade-off between angular resolution and precision of the SZ flux measurements, the algorithm performs a multi-scale analysis of the SZ maps as well as of other extended components, such as the cosmic microwave background (CMB) anisotropies and the Galactic thermal dust. The demixing of the SZ signal is tackled through kernel-weighted likelihood maximizations. The CMB anisotropies are further analyzed through a wavelet analysis, while the Galactic foregrounds and SZ maps are analyzed via a curvelet analysis that best preserves their anisotropic details. The algorithm performance has been tested against mock observations of galaxy clusters obtained by simulating the Planck High Frequency Instrument and by pointing at a few characteristic positions in the sky. These tests suggest that Planck should easily allow us to detect filaments in the cluster peripheries and detect large-scale shocks in colliding galaxy clusters that feature favorable geometry.

  3. Planck 2013 results. XXXII. The updated Planck catalogue of Sunyaev-Zeldovich sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Feroz, F.; Ferragamo, A.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Gilfanov, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Groeneboom, N., E.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Olamaie, M.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-09-01

    We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (~ 80.6%) are spectroscopic, and associated mass estimates derived from the Yz mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/581/A14

  4. Poisson–Boltzmann–Nernst–Planck model

    PubMed Central

    Zheng, Qiong; Wei, Guo-Wei

    2011-01-01

    The Poisson–Nernst–Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst–Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst–Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst–Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson–Boltzmann and Nernst–Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations

  5. Poisson-Boltzmann-Nernst-Planck model

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Wei, Guo-Wei

    2011-05-01

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  6. Poisson-Boltzmann-Nernst-Planck model

    SciTech Connect

    Zheng Qiong; Wei Guowei

    2011-05-21

    The Poisson-Nernst-Planck (PNP) model is based on a mean-field approximation of ion interactions and continuum descriptions of concentration and electrostatic potential. It provides qualitative explanation and increasingly quantitative predictions of experimental measurements for the ion transport problems in many areas such as semiconductor devices, nanofluidic systems, and biological systems, despite many limitations. While the PNP model gives a good prediction of the ion transport phenomenon for chemical, physical, and biological systems, the number of equations to be solved and the number of diffusion coefficient profiles to be determined for the calculation directly depend on the number of ion species in the system, since each ion species corresponds to one Nernst-Planck equation and one position-dependent diffusion coefficient profile. In a complex system with multiple ion species, the PNP can be computationally expensive and parameter demanding, as experimental measurements of diffusion coefficient profiles are generally quite limited for most confined regions such as ion channels, nanostructures and nanopores. We propose an alternative model to reduce number of Nernst-Planck equations to be solved in complex chemical and biological systems with multiple ion species by substituting Nernst-Planck equations with Boltzmann distributions of ion concentrations. As such, we solve the coupled Poisson-Boltzmann and Nernst-Planck (PBNP) equations, instead of the PNP equations. The proposed PBNP equations are derived from a total energy functional by using the variational principle. We design a number of computational techniques, including the Dirichlet to Neumann mapping, the matched interface and boundary, and relaxation based iterative procedure, to ensure efficient solution of the proposed PBNP equations. Two protein molecules, cytochrome c551 and Gramicidin A, are employed to validate the proposed model under a wide range of bulk ion concentrations and external

  7. Plenary Talk: Nuclear physics program at MAX-lab

    NASA Astrophysics Data System (ADS)

    Briscoe, W. J.; Jason, Brudvik; Fissum, K. G.; Hansen, K.; Isaksson, L.; Lundin, M.; Nilsson, B.; Schroder, B.

    2009-12-01

    The upgrade of the MAX-lab injector and the construction of MAX III, provided the opportunity for upgrading the tagged-photon facility and thus lead to the possibility of more extensive program in nuclear physics research. This upgrade increased the injected electron energy to an eventual maximum of 250 MeV and allows for the extraction of electrons from the MAX I ring operated in the stretcher mode. The first stretched beam was delivered in September 2005. The tagged-photon facility was commissioned in parallel with the commissioning of new experimental equipment. The PAC approved experimental program is current in progress, including measurements of pion photoproduction below the Δ(1232). The efforts at the tagged photon-facility are pursued within an international collaboration with around fifty members.

  8. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Andreae, M. O.; Beirle, S.; Dörner, S.; Mies, K.; Shaiganfar, R.

    2013-01-01

    We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the yellow and red spectral range. The retrieval is based on the so-called geometric approximation and does not depend on explicit a priori information for individual observations, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected using the simultaneously measured absorptions of the oxygen dimer, O4. We applied our algorithm to MAX-DOAS observations made at the Max Planck Institute for Chemistry in Mainz, Germany, from March to August 2011, and compared the results to independent observations. Good agreement with Aerosol Robotic Network (AERONET) and European Centre for Medium-Range Weather Forecasting (ECMWF) H2O vertical column densities (VCDs) is found, while the agreement with satellite observations is less good, most probably caused by the shielding effect of clouds for the satellite observations. Good agreement is also found with near-surface in situ observations, and it was possible to derive average daily H2O scale heights (between 1.5 km and 3 km). MAX-DOAS measurements use cheap and simple instrumentation and can be run automatically. One important advantage of our algorithm is that the H2O VCD can be retrieved even under cloudy conditions (except clouds with very high optical thickness).

  9. MAX-DOAS observations of the total atmospheric water vapour column and comparison with independent observations

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Andreae, M. O.; Beirle, S.; Dörner, S.; Mies, K.; Shaiganfar, R.

    2012-09-01

    We developed an algorithm for the retrieval of the atmospheric water vapour column from Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations in the yellow and red spectral range. The retrieval is based on the so called geometric approximation and does not depend on a-priori information, extensive radiative transfer simulations, or the construction of large look-up tables. Disturbances of the radiative transfer due to aerosols and clouds are simply corrected using the simultaneously measured absorptions of the oxygen dimer, O4. We applied our algorithm to MAX-DOAS observations made at the Max Planck Institute for Chemistry in Mainz, Germany, from March to August 2011 and compared the results to independent observations. Good agreement with Aerosol Robotic Network (AERONET) and European Centre for Medium-Range Weather Forecasting (ECMWF) H2O vertical column densities (VCDs) is found, while the agreement with satellite observations is less good, most probably caused by the shielding effect of clouds for the satellite observations. Good agreement is also found with near-surface in-situ observations, and it was possible to derive average daily H2O layer heights (between 1.5 km and 3 km). MAX-DOAS measurements use cheap and simple instrumentation and can be run automatically. One important advantage of our algorithm is that the H2O VCD can be retrieved even under cloudy conditions (except clouds with very high optical thickness).

  10. Development of novel max phase composites

    NASA Astrophysics Data System (ADS)

    Hammann, Thomas Jacob

    The Mn+1AXn (MAX) phases are thermodynamically stable nanolaminates which display unusual, and in some cases unique, properties. There currently exist over 60 MAX phases in the literature. These phases are named because they possess a Mn+1AXn chemistry, where n is equal to 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is carbon and/or nitrogen. MAX phases are layered hexagonal (space group D4 6h-P63/mmc) with two formula units per unit cell. The MAX phase material group has high damage tolerance, thermal shock resistance, resistant to creep, lubricious, readily machinable, and has Vickers hardness values of 2-8 GPa which is anomalously soft for transitional metal carbides and nitrides. Some of the MAX phases are also oxidation resistant. The properties of the MAX phases make them very appealing to scientists and engineers for many different structural applications.

  11. Kähler potentials for Planck inflation

    SciTech Connect

    Roest, Diederik; Scalisi, Marco; Zavala, Ivonne E-mail: m.scalisi@rug.nl

    2013-11-01

    We assess which Kähler potentials in supergravity lead to viable single-field inflationary models that are consistent with Planck. We highlight the role of symmetries, such as shift, Heisenberg and supersymmetry, in these constructions. Also the connections to string theory are pointed out. Finally, we discuss a supergravity model for arbitrary inflationary potentials that is suitable for open string inflation and generalise it to the case of closed string inflation. Our model includes the recently discussed supergravity reformulation of the Starobinsky model of inflation as well as an interesting alternative with comparable predictions.

  12. MAX: Multiplatform Applications for XAFS

    NASA Astrophysics Data System (ADS)

    Alain, Michalowicz; Jacques, Moscovici; Diane, Muller-Bouvet; Karine, Provost

    2009-11-01

    MAX is a new EXAFS and XANES analysis package, replacing our old "EXAFS pour le Mac" software suite. The major improvement is the ability to work with strictly the same code, compiled at once for Microsoft Windows, Apple MacOSX and LINUX systems, justifying the title "Multiplatform Applications for XAFS". It is organized as four modules: ABSORBIX (X-ray absorbance and fluorescence self-absorption calculations), CHEROKEE (EXAFS and XANES data treatment), ROUNDMIDNIGHT (EXAFS modeling and fit) and CRYSTALFFREV (from crystal structures and molecular modeling to FEFF EXAFS and XANES theoretical calculations). Most features developed in "EXAFS pour le Mac" are still available, but with much improvements in the user's interface, data treatment algorithms and new functionalities.

  13. Mxi1, a protein that specifically interacts with Max to bind Myc-Max recognition sites.

    PubMed

    Zervos, A S; Gyuris, J; Brent, R

    1993-01-29

    We used the interaction trap to isolate a novel human protein that specifically interacts with Max. This protein, Mxi1 (for Max interactor 1), contains a bHLH-Zip motif that is similar to that found in Myc family proteins. Mxi1 interacts specifically with Max to form heterodimers that efficiently bind to the Myc-Max consensus recognition site. When bound to DNA by a LexA moiety in yeast, Mxi1 does not stimulate transcription. mxi1 mRNA is expressed in many tissues, and its expression is elevated in U-937 myeloid leukemia cells that have been stimulated to differentiate. These facts are consistent with a model in which Mxi1-Max heterodimers indirectly inhibit Myc function in two ways: first, by sequestering Max, thus preventing the formation of Myc-Max heterodimers, and second, by competing with Myc-Max heterodimers for binding to target sites.

  14. MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant

    PubMed Central

    Zhou, Tao; Li, Chuyu; Zhao, Wene; Wang, Xinru; Wang, Fuqiang; Sha, Jiahao

    2016-01-01

    MaxQuant is a proteomic software widely used for large-scale tandem mass spectrometry data. We have designed and developed an enhanced result reporting tool for MaxQuant, named as MaxReport. This tool can optimize the results of MaxQuant and provide additional functions for result interpretation. MaxReport can generate report tables for protein N-terminal modifications. It also supports isobaric labelling based relative quantification at the protein, peptide or site level. To obtain an overview of the results, MaxReport performs general descriptive statistical analyses for both identification and quantification results. The output results of MaxReport are well organized and therefore helpful for proteomic users to better understand and share their data. The script of MaxReport, which is freely available at http://websdoor.net/bioinfo/maxreport/, is developed using Python code and is compatible across multiple systems including Windows and Linux. PMID:27003708

  15. MaxReport: An Enhanced Proteomic Result Reporting Tool for MaxQuant.

    PubMed

    Zhou, Tao; Li, Chuyu; Zhao, Wene; Wang, Xinru; Wang, Fuqiang; Sha, Jiahao

    2016-01-01

    MaxQuant is a proteomic software widely used for large-scale tandem mass spectrometry data. We have designed and developed an enhanced result reporting tool for MaxQuant, named as MaxReport. This tool can optimize the results of MaxQuant and provide additional functions for result interpretation. MaxReport can generate report tables for protein N-terminal modifications. It also supports isobaric labelling based relative quantification at the protein, peptide or site level. To obtain an overview of the results, MaxReport performs general descriptive statistical analyses for both identification and quantification results. The output results of MaxReport are well organized and therefore helpful for proteomic users to better understand and share their data. The script of MaxReport, which is freely available at http://websdoor.net/bioinfo/maxreport/, is developed using Python code and is compatible across multiple systems including Windows and Linux. PMID:27003708

  16. Inflationary paradigm in trouble after Planck2013

    NASA Astrophysics Data System (ADS)

    Ijjas, Anna; Steinhardt, Paul J.; Loeb, Abraham

    2013-06-01

    Recent results from the Planck satellite combined with earlier observations from WMAP, ACT, SPT and other experiments eliminate a wide spectrum of more complex inflationary models and favor models with a single scalar field, as reported by the Planck Collaboration. More important, though, is that all the simplest inflaton models are disfavored statistically relative to those with plateau-like potentials. We discuss how a restriction to plateau-like models has three independent serious drawbacks: it exacerbates both the initial conditions problem and the multiverse-unpredictability problem and it creates a new difficulty that we call the inflationary "unlikeliness problem." Finally, we comment on problems reconciling inflation with a standard model Higgs, as suggested by recent LHC results. In sum, we find that recent experimental data disfavors all the best-motivated inflationary scenarios and introduces new, serious difficulties that cut to the core of the inflationary paradigm. Forthcoming searches for B-modes, non-Gaussianity and new particles should be decisive.

  17. Astrophysical Data Transmission in Planck Units

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2008-10-01

    ``Data Communication and Net Working'' by Forouzan expresses (an informatics equivalent of statistics) that N (data rate or bits/second) divided by r (number of data elements per signal or log2L) is the baud rate. For N = 10^43 Planck times per second, and L = 10^90, the number of photons in the universe, the baud rate is more than 10^40, so high a signal rate for the carriers of the attractive and repulsive pulses that we, the observers, would think that gravity is continuous, and not probabilistic. Any potential slight correction to the above as it may apply to the case, or its application to smaller baryon number (10^79) would not change the above implicit message, considering the order of magnitudes involved. This communicative aspect of gravity, and our postulation, slight modification to the inverse square law, in [1] that the probability of an interaction between two particles is inversely proportional to the square of their separations in integer number of Planck lengths, are mutually supplementary and complimentary, portraying two ducks that, not only walk like ducks, but also talk like ducks. Therefore, they are ducks. Refer to: [1] Goradia, Shantilal http://www.arXiv.org/pdf/physics/0210040v4.

  18. The best inflationary models after Planck

    SciTech Connect

    Martin, Jérôme; Vennin, Vincent; Ringeval, Christophe; Trotta, Roberto E-mail: christophe.ringeval@uclouvain.be E-mail: vennin@iap.fr

    2014-03-01

    We compute the Bayesian evidence and complexity of 193 slow-roll single-field models of inflation using the Planck 2013 Cosmic Microwave Background data, with the aim of establishing which models are favoured from a Bayesian perspective. Our calculations employ a new numerical pipeline interfacing an inflationary effective likelihood with the slow-roll library ASPIC and the nested sampling algorithm MultiNest. The models considered represent a complete and systematic scan of the entire landscape of inflationary scenarios proposed so far. Our analysis singles out the most probable models (from an Occam's razor point of view) that are compatible with Planck data, while ruling out with very strong evidence 34% of the models considered. We identify 26% of the models that are favoured by the Bayesian evidence, corresponding to 15 different potential shapes. If the Bayesian complexity is included in the analysis, only 9% of the models are preferred, corresponding to only 9 different potential shapes. These shapes are all of the plateau type.

  19. Fokker-Planck/Transport model for neutral beam driven tokamaks

    SciTech Connect

    Killeen, J.; Mirin, A.A.; McCoy, M.G.

    1980-01-01

    The application of nonlinear Fokker-Planck models to the study of beam-driven plasmas is briefly reviewed. This evolution of models has led to a Fokker-Planck/Transport (FPT) model for neutral-beam-driven Tokamaks, which is described in detail. The FPT code has been applied to the PLT, PDX, and TFTR Tokamaks, and some representative results are presented.

  20. Composite Inflation in the light of 2015 Planck data

    NASA Astrophysics Data System (ADS)

    Channuie, Phongpichit

    2016-08-01

    In this work, we examine cosmological constraints on models of composite inflation based on the slow-roll approximation by using the recent Planck measurement. We compare the spectral index of curvature perturbation (and its running) and the tensor-to-scalar ratio predicted by such models with Planck 2015 data. We find that the predictions of technicolor inflation are nicely consistent with the Planck analysis. Moreover, the predictions from the second model, glueball inflation, are in good agreement with the Planck data at 2σC.L. However, the final two models, super glueball inflation and orientifold inflation, favor only the rather large value of the tensor-to-scalar ratio of which the predictions are in tension with the Planck analysis.

  1. The Planck Mission: Recent Results, Cosmological and Fundamental Physics Perspectives

    NASA Astrophysics Data System (ADS)

    Mandolesi, Nazzareno; Burigana, Carlo; Gruppuso, Alessandro; Natoli, Paolo

    2015-01-01

    We provide a description of the latest status and performance of the Planck satellite, focusing on the final predicted sensitivity of Planck. The optimization of the observational strategy for the additional surveys following the nominal fifteen months of integration (about two surveys) originally allocated and the limitation represented by astrophysical foreground emissions are presented. An outline of early and intermediate astrophysical results from the Planck Collaboration is provided. A concise view of some fundamental cosmological results that will be achieved by exploiting Planck's full set of temperature and polarization data is presented. Finally, the perspectives opened by Planck in answering some key questions in fundamental physics, with particular attention to Parity symmetry analyses, are described.

  2. Parametrized modified gravity constraints after Planck

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Liguori, Michele; Bartolo, Nicola; Matarrese, Sabino

    2013-12-01

    We constrain f(R) and chameleon-type modified gravity in the framework of the Berstchinger-Zukin parametrization using the recently released Planck data, including both the cosmic mircowave background radiation (CMB) temperature power spectrum and the lensing potential power spectrum. Some other external data sets are included, such as baryon acoustic oscillation (BAO) measurements from the 6dFGS, SDSS DR7 and BOSS DR9 surveys; Hubble Space Telescope (HST) H0 measurements, and supernovae from the Union2.1 compilation. We also use WMAP9 data for a consistency check and comparison. For f(R) gravity, WMAP9 results can only give a quite loose constraint on the modified gravity parameter B0, which is related to the present value of the Compton wavelength of the extra scalar degree of freedom, B0<3.37 at 95% C.L. We demonstrate that this constraint mainly comes from the late integrated Sachs-Wolfe effect. With only Planck CMB temperature power-spectrum data, we can improve the WMAP9 result by a factor 3.7 (B0<0.91 at 95% C.L.). If the Planck lensing potential power-spectrum data are also taken into account, the constraint can be further strengthened by a factor 5.1 (B0<0.18 at 95% C.L.). This major improvement mainly comes from the small-scale lensing signal. Furthermore, BAO, HST and supernovae data could slightly improve the B0 bound (B0<0.12 at 95% C.L.). For the chameleon-type model, we find that the data set that we used cannot constrain the Compton wavelength B0 or the potential index s of the chameleon field, but it can give a tight constraint on the parameter β1=1.043-0.104+0.163 at 95% C.L. (β1=1 in general relativity), which accounts for the nonminimal coupling between the chameleon field and the matter component. In addition, we find that both modified gravity models we consider favor a relatively higher Hubble parameter than the concordance ΛCDM model in general relativity.

  3. Constraints on secret neutrino interactions after Planck

    NASA Astrophysics Data System (ADS)

    Forastieri, Francesco; Lattanzi, Massimiliano; Natoli, Paolo

    2015-07-01

    Neutrino interactions beyond the standard model of particle physics may affect the cosmological evolution and can be constrained through observations. We consider the possibility that neutrinos possess secret scalar or pseudoscalar interactions mediated by the Nambu-Goldstone boson of a still unknown spontaneously broken global U(1) symmetry, as in, e.g., Majoron models. In such scenarios, neutrinos still decouple at Tsimeq 1 MeV, but become tightly coupled again (``recouple'') at later stages of the cosmological evolution. We use available observations of the cosmic microwave background (CMB) anisotropies, including Planck 2013 and the joint BICEP2/Planck 2015 data, to derive constraints on the quantity γνν4, parameterizing the neutrino collision rate due to scalar or pseudoscalar interactions. We consider both a minimal extension of the standard ΛCDM model, and more complicated scenarios with extra relativistic degrees of freedom or non-vanishing tensor amplitude. For a wide range of dataset and model combinations, we find a typical constraint γνν4 lesssim 0.9× 10-27 (95% C.L.), implying an upper limit on the redshift zνrec of neutrino recoupling 0lesssim 850, leaving open the possibility that the latter occured well before hydrogen recombination. In the framework of Majoron models, the upper limit on γνν roughly translates on a constraint g lesssim 8.2× 10-7 on the Majoron-neutrino coupling constant g. In general, the data show a weak (~ 1σ) but intriguing preference for non-zero values of γνν4, with best fits in the range γνν4 = (0.15-0.35)× 10-27, depending on the particular dataset. This is more evident when either high-resolution CMB observations from the ACT and SPT experiments are included, or the possibility of non-vanishing tensor modes is considered. In particular, for the minimal model ΛCDM+γνν and including the Planck 2013, ACT and SPT data, we report γνν4=(0.44+0.17-0.36)×10-27 (0300 lesssim zνrec lesssim 550) at 68

  4. Planck scale effects in neutrino physics

    NASA Astrophysics Data System (ADS)

    Akhmedov, E. K.; Senjanovic, G.; Tao, Zhi-Jan; Berezhiani, Z. G.

    1992-08-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of one inert neutrino and three active ones. We pay special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects, which provide the breaking of the lepton charge, we show how, in this picture, one can incorporate the solutions to some of the central issues in neutrino physics, such as the solar and atmospheric neutrino puzzles, dark matter, and a 17 keV neutrino. These gravitation effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron neutrino mass in the range of 0.1-1 eV.

  5. Planck scale effects in neutrino physics

    NASA Astrophysics Data System (ADS)

    Akhmedov, Eugeni Kh.; Berezhiani, Zurab G.; Senjanović, Goran; Tao, Zhijian

    1993-04-01

    We study the phenomenology and cosmology of the Majoron (flavon) models of three active and one inert neutrino paying special attention to the possible (almost) conserved generalization of the Zeldovich-Konopinski-Mahmoud lepton charge. Using Planck scale physics effects which provide the breaking of the lepton charge, we show how in this picture one can incorporate the solutions to some of the central issues in neutrino physics such as the solar and atmospheric neutrino puzzles and the dark matter problem with the possible existence of a heavy (1-10 keV) neutrino. These gravitational effects induce tiny Majorana mass terms for neutrinos and considerable masses for flavons. The cosmological demand for the sufficiently fast decay of flavons implies a lower limit on the electron-neutrino mass in the range of 0.1-1 eV.

  6. Planck-scale corrections to Friedmann equation

    NASA Astrophysics Data System (ADS)

    Awad, Adel; Ali, Ahmed

    2014-04-01

    Recently, Verlinde proposed that gravity is an emergent phenomenon which originates from an entropic force. In this work, we extend Verlinde's proposal to accommodate generalized uncertainty principles (GUP), which are suggested by some approaches to quantum gravity such as string theory, black hole physics and doubly special relativity (DSR). Using Verlinde's proposal and two known models of GUPs, we obtain modifications to Newton's law of gravitation as well as the Friedmann equation. Our modification to the Friedmann equation includes higher powers of the Hubble parameter which is used to obtain a corresponding Raychaudhuri equation. Solving this equation, we obtain a leading Planck-scale correction to Friedmann-Robertson-Walker (FRW) solutions for the p = ωp equation of state.

  7. Planck CMB anomalies: astrophysical and cosmological secondary effects and the curse of masking

    SciTech Connect

    Rassat, A.; Starck, J.-L.; Paykari, P.; Sureau, F.; Bobin, J. E-mail: jstarck@cea.fr E-mail: florent.sureau@cea.fr

    2014-08-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes will be made available for download here http://www.cosmostat.org/anomaliesCMB.html.

  8. Planck CMB Anomalies: Astrophysical and Cosmological Secondary Effects and the Curse of Masking

    NASA Astrophysics Data System (ADS)

    Rassat, Anais

    2016-07-01

    Large-scale anomalies have been reported in CMB data with both WMAP and Planck data. These could be due to foreground residuals and or systematic effects, though their confirmation with Planck data suggests they are not due to a problem in the WMAP or Planck pipelines. If these anomalies are in fact primordial, then understanding their origin is fundamental to either validate the standard model of cosmology or to explore new physics. We investigate three other possible issues: 1) the trade-off between minimising systematics due to foreground contamination (with a conservative mask) and minimising systematics due to masking, 2) astrophysical secondary effects (the kinetic Doppler quadrupole and kinetic Sunyaev-Zel'dovich effect), and 3) secondary cosmological signals (the integrated Sachs-Wolfe effect). We address the masking issue by considering new procedures that use both WMAP and Planck to produce higher quality full-sky maps using the sparsity methodology (LGMCA maps). We show the impact of masking is dominant over that of residual foregrounds, and the LGMCA full-sky maps can be used without further processing to study anomalies. We consider four official Planck PR1 and two LGMCA CMB maps. Analysis of the observed CMB maps shows that only the low quadrupole and quadrupole-octopole alignment seem significant, but that the planar octopole, Axis of Evil, mirror parity and cold spot are not significant in nearly all maps considered. After subtraction of astrophysical and cosmological secondary effects, only the low quadrupole may still be considered anomalous, meaning the significance of only one anomaly is affected by secondary effect subtraction out of six anomalies considered. In the spirit of reproducible research all reconstructed maps and codes are available online.

  9. Planck 2015 results. XXVIII. The Planck Catalogue of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We present the Planck Catalogue of Galactic Cold Clumps (PGCC), an all-sky catalogue of Galactic cold clump candidates detected by Planck. This catalogue is the full version of the Early Cold Core (ECC) catalogue, which was made available in 2011 with the Early Release Compact Source Catalogue (ERCSC) and which contained 915 high signal-to-noise sources. It is based on the Planck 48-month mission data that are currently being released to the astronomical community. The PGCC catalogue is an observational catalogue consisting exclusively of Galactic cold sources. The three highest Planck bands (857, 454, and 353 GHz) have been combined with IRAS data at 3 THz to perform a multi-frequency detection of sources colder than their local environment. After rejection of possible extragalactic contaminants, the PGCC catalogue contains 13188 Galactic sources spread across the whole sky, i.e., from the Galactic plane to high latitudes, following the spatial distribution of the main molecular cloud complexes. The median temperature of PGCC sources lies between 13 and 14.5 K, depending on the quality of the flux density measurements, with a temperature ranging from 5.8 to 20 K after removing the sources with the top 1% highest temperature estimates. Using seven independent methods, reliable distance estimates have been obtained for 5574 sources, which allows us to derive their physical properties such as their mass, physical size, mean density, and luminosity.The PGCC sources are located mainly in the solar neighbourhood, but also up to a distance of 10.5 kpc in the direction of the Galactic centre, and range from low-mass cores to large molecular clouds. Because of this diversity and because the PGCC catalogue contains sources in very different environments, the catalogue is useful for investigating the evolution from molecular clouds to cores. Finally, it also includes 54 additional sources located in the Small and Large Magellanic Clouds.

  10. Orthogonal non-Gaussianity in DBI galileon: prospect for Planck polarization and post-Planck experiments

    NASA Astrophysics Data System (ADS)

    Koyama, Kazuya; Pettinari, Guido Walter; Mizuno, Shuntaro; Fidler, Christian

    2014-06-01

    In this paper, we study cosmic microwave background (CMB) constraints on primordial non-Gaussianity in Dirac-Born-Infeld (DBI) galileon models in which an induced gravity term is added to the DBI action. In this model, the non-Gaussianity of orthogonal shape can be generated. We provide a relation between theoretical parameters and orthogonal/equilateral nonlinear parameters using the Fisher matrix approach for the CMB bispectrum. In doing so, we include the effect of the CMB transfer functions and experimental noise properties by employing the recently developed second order non-Gaussianity code. The relation is also shown in the language of effective theory so that it can be applied to general single-field models. Using the bispectrum Fisher matrix and the central values for equilateral and orthogonal non-Gaussianities found by the Planck temperature survey, we provide forecasts on the theoretical parameters of the DBI galileon model. We consider the upcoming Planck polarization data and the proposed post-Planck experiments Cosmic Origins Explore (COrE) and Polarized Radiation Imaging and Spectroscopy Mission (PRISM). We find that Planck polarization measurements may provide a hint for a non-canonical sound speed at the 68% confidence level. COrE and PRISM will not only confirm a non-canonical sound speed but also exclude the conventional DBI inflation model at more than the 95% and 99% confidence level respectively, assuming that the central values will not change. This indicates that improving constraints on non-Gaussianity further by future CMB experiments is invaluable to constrain the physics of the early universe.

  11. Limits to Seeing High-Redshift Galaxies Due to Planck-Scale-Induced Blurring

    NASA Astrophysics Data System (ADS)

    Steinbring, Eric

    If spacetime is ``foamy'' travel along a lightpath must be subject to continual, random distance fluctuations +/- δ l proportional to Planck length l P ~ 10-35 m (Lieu & Hillman 2003). Although each ``kick'' by itself is tiny, these may accumulate. Accounting for redshifted (bluer) emitted photons, over a cosmological distance L = (1+z)L C for co-moving distance L C, the resultant phase perturbations Δ φ = 2π δ l/λ at observed wavelength λ could grow independently of telescope diameter D to a maximum of Δφmax=(1+z)Δφ0 (Steinbring 2007) where Δφ0=2π a 0 (l P α/λ)L 1 - α follows Ng et al. (2003). Here a 0 ~ 1 and α specifies the quantum-gravity model: 1/2 implies a random walk and 2/3 is consistent with the holographic principle; a vanishingly small ΔφP=Δφmax/[(1 + z) a 0 (L/l P)1 - α]=2π l P/λ is approached when α=1.

  12. Planck 2015 results. XXVI. The Second Planck Catalogue of Compact Sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Argüeso, F.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Beichman, C.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanghera, H. S.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    The Second Planck Catalogue of Compact Sources is a list of discrete objects detected in single-frequency maps from the full duration of the Planck mission and supersedes previous versions. It consists of compact sources, both Galactic and extragalactic, detected over the entire sky. Compact sources detected in the lower frequency channels are assigned to the PCCS2, while at higher frequencies they are assigned to one of two subcatalogues, the PCCS2 or PCCS2E, depending on their location on the sky. The first of these (PCCS2) covers most of the sky and allows the user to produce subsamples at higher reliabilities than the target 80% integral reliability of the catalogue. The second (PCCS2E) contains sources detected in sky regions where the diffuse emission makes it difficult to quantify the reliability of the detections. Both the PCCS2 and PCCS2E include polarization measurements, in the form of polarized flux densities, or upper limits, and orientation angles for all seven polarization-sensitive Planck channels. The improved data-processing of the full-mission maps and their reduced noise levels allow us to increase the number of objects in the catalogue, improving its completeness for the target 80% reliability as compared with the previous versions, the PCCS and the Early Release Compact Source Catalogue (ERCSC).

  13. Quantum Gravity corrections and entropy at the Planck time

    SciTech Connect

    Basilakos, Spyros; Vagenas, Elias C.; Das, Saurya E-mail: saurya.das@uleth.ca

    2010-09-01

    We investigate the effects of Quantum Gravity on the Planck era of the universe. In particular, using different versions of the Generalized Uncertainty Principle and under specific conditions we find that the main Planck quantities such as the Planck time, length, mass and energy become larger by a factor of order 10−10{sup 4} compared to those quantities which result from the Heisenberg Uncertainty Principle. However, we prove that the dimensionless entropy enclosed in the cosmological horizon at the Planck time remains unchanged. These results, though preliminary, indicate that we should anticipate modifications in the set-up of cosmology since changes in the Planck era will be inherited even to the late universe through the framework of Quantum Gravity (or Quantum Field Theory) which utilizes the Planck scale as a fundamental one. More importantly, these corrections will not affect the entropic content of the universe at the Planck time which is a crucial element for one of the basic principles of Quantum Gravity named Holographic Principle.

  14. Escape from a Crisis in Fokker-Planck Models

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, Simon F.; Takahashi, Koji

    1999-01-01

    Recent N-body simulations have shown that there is a serious discrepancy between the results of N-body simulations and the results of Fokker-Planck simulations for the evolution of globular and rich open clusters under the influence of the galactic tidal field. In some cases, the lifetime obtained from Fokker-Planck calculations is more than an order of magnitude smaller than those from N-body simulations. In this paper we show that the principal cause for this discrepancy is an over-simplified treatment of the tidal field used in previous Fokker-Planck simulations. We performed new Fokker-Planck calculations using a more appropriate implementation for the boundary condition of the tidal field. The implementation is only possible with anisotropic Fokker-Planck models, while all previous Fokker-Planck calculations rely on the assumption of isotropy. Our new Fokker-Planck results agree well with N-body results. Comparison of the two types of simulations gives a better understanding of the evolution of such clusters.

  15. A switch from Myc:Max to Mad:Max heterocomplexes accompanies monocyte/macrophage differentiation.

    PubMed

    Ayer, D E; Eisenman, R N

    1993-11-01

    Mad is a basic-helix-loop-helix-zipper protein that heterodimerizes with Max in vitro. Mad:Max heterodimers recognize the same E-box-related DNA-binding sites as Myc:Max heterodimers. However, in transient transfection assays Myc and Mad influence transcription in opposite ways through interaction with Max; Myc activates while Mad represses transcription. Here, we demonstrate that Mad protein is induced rapidly upon differentiation of cells of the myeloid lineage. The Mad protein is synthesized in human cells as a 35-kD nuclear phosphoprotein with an extremely short half-life (t1/2 = 15-30 min) and can be detected in vivo in a complex with Max. In the undifferentiated U937 monocyte cell line Max was found complexed with Myc but not Mad. However, Mad:Max complexes began to accumulate as early as 2 hr after induction of macrophage differentiation with TPA. By 48 hr following TPA treatment only Mad:Max complexes were detectable. These data show that differentiation is accompanied by a change in the composition of Max heterocomplexes. We speculate that this switch in heterocomplexes results in a change in the transcriptional regulation of Myc:Max target genes required for cell proliferation.

  16. The stability of M(max) and H (max) amplitude over time.

    PubMed

    McNulty, Penelope A; Shiner, Christine T; Thayaparan, Ganesha K; Burke, David

    2012-05-01

    The stability of the maximal muscle response (M(max)) is critical to H reflex methodology. It has previously been reported that the amplitude of M(max) declines over time. If reproducible, this finding would have implications for all experimental studies that normalise the output of the motoneurone pool against the M wave. We investigated the effect of time on changes in M(max) and the maximal H reflex (H(max)) evoked at 4-s intervals over 60 min. To identify an influence of homosynaptic depression, we extended the interstimulus interval to 10 s and the time to 100 min. Two recording montages over soleus were used to ensure that interelectrode distance was not a critical factor. The soleus M(max) and H reflex were evoked by stimulation of the tibial nerve in the popliteal fossa in 7 subjects who sat with the knee flexed to 30° and the ankle plantar flexed by ~30°. We found no change in the pooled data for M(max), H(max), a reflex 50% of maximal, or the current required to produce it. However, one subject had a statistically significant increase in M(max) and a concurrent decrease in H(max) regardless of the interstimulus interval. On average, there was no change in the H(max)/M(max) ratio over time. While both M(max) and H(max) may change in response to many factors, these results suggest that, typically, time is not one of them. PMID:22418783

  17. Microspectroscopy At Beamline 73 MAX-lab

    NASA Astrophysics Data System (ADS)

    Engdahl, Anders

    2010-02-01

    Presentation of some projects at the infrared microspectroscopy experimental station at beamline 73 MAX-lab. Among the subjects are found identification of organic residues in fossil material and examination of the chemistry in an old oak wood wreck.

  18. Intercomparison of HONO SCDs and profiles from MAX-DOAS observations during the MAD-CAT campaign and comparison to chemical model simulations

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wagner, Thomas; Xie, Pinhua; Remmers, Julia; Li, Ang; Lampel, Johannes; Friess, Udo; Peters, Enno; Wittrock, Folkard; Richter, Andreas; Hilboll, Andreas; Volkamer, Rainer; Ortega, Ivan; Hendrick, Francois; Van Roozendael, Michel; Ma, Jianzhong; Jin, Junli; Su, Hang; Cheng, Yafang

    2015-04-01

    In order to promote the development of the passive DOAS technique and to improve the retrieval algorithms of trace gases and aerosols the Multi Axis DOAS - Comparison campaign for Aerosols and Trace gases (MAD-CAT) was held at the Max Planck Institute for Chemistry in Mainz, Germany from June to October 2013. MAX-DOAS (Multi-Axis Differential Optical Absorption Spectroscopy) instruments of various designs recorded UV-visible spectra of scattered sunlight at different elevation and azimuth angles. We present intercomparison results for slant column densities (SCDs) of nitrous acid (HONO) retrieved during this campaign by several research groups. Data analysis was performed in two steps, starting with the preferred settings of the individual groups, followed by an analysis using common retrieval settings. In general good agreement of the resulting HONO SCD sets was found. Furthermore, we performed various sensitivity analyses to improve and evaluate the uncertainties in the HONO SCD retrieval, such as the influence of the wavelength dependence of the NO2 air mass factor, the selection of the wavelength interval of the retrieval, the choice of the Fraunhofer reference spectrum, or the offset correction. Finally we compared the results from different kinds of inversion algorithms for the vertical profiles of trace gases and aerosols. The derived HONO profiles, VMR near surface and tropospheric vertical column densities are compared with each other and with the results of regional chemical model simulations. We found a high HONO VMR near surface of about 200 ppt, which is much higher than the typical daytime VMR of lower than 10 ppt at the early noon (around 9:30 local time), probably indicating a strong source of HONO. The strong vertical gradient in the profile of HONO VMR probably indicates the HONO source is close to the surface.

  19. Fokker-Planck formalism in magnetic resonance simulations

    NASA Astrophysics Data System (ADS)

    Kuprov, Ilya

    2016-09-01

    This paper presents an overview of the Fokker-Planck formalism for non-biological magnetic resonance simulations, describes its existing applications and proposes some novel ones. The most attractive feature of Fokker-Planck theory compared to the commonly used Liouville - von Neumann equation is that, for all relevant types of spatial dynamics (spinning, diffusion, stationary flow, etc.), the corresponding Fokker-Planck Hamiltonian is time-independent. Many difficult NMR, EPR and MRI simulation problems (multiple rotation NMR, ultrafast NMR, gradient-based zero-quantum filters, diffusion and flow NMR, off-resonance soft microwave pulses in EPR, spin-spin coupling effects in MRI, etc.) are simplified significantly in Fokker-Planck space. The paper also summarises the author's experiences with writing and using the corresponding modules of the Spinach library - the methods described below have enabled a large variety of simulations previously considered too complicated for routine practical use.

  20. The Atacama Cosmology Telescope: cross correlation with Planck maps

    SciTech Connect

    Louis, Thibaut; Calabrese, Erminia; Dunkley, Joanna; Næss, Sigurd; Addison, Graeme E.; Hincks, Adam D.; Hasselfield, Matthew; Hlozek, Renée; Bond, J. Richard; Hajian, Amir; Das, Sudeep; Devlin, Mark J.; Dünner, Rolando; Infante, Leopoldo; Gralla, Megan; Marriage, Tobias A.; Huffenberger, Kevin; Kosowsky, Arthur; Moodley, Kavilan; Niemack, Michael D.; and others

    2014-07-01

    We present the temperature power spectrum of the Cosmic Microwave Background obtained by cross-correlating maps from the Atacama Cosmology Telescope (ACT) at 148 and 218 GHz with maps from the Planck satellite at 143 and 217 GHz, in two overlapping regions covering 592 square degrees. We find excellent agreement between the two datasets at both frequencies, quantified using the variance of the residuals between the ACT power spectra and the ACT × Planck cross-spectra. We use these cross-correlations to measure the calibration of the ACT data at 148 and 218 GHz relative to Planck, to 0.7% and 2% precision respectively. We find no evidence for anisotropy in the calibration parameter. We compare the Planck 353 GHz power spectrum with the measured amplitudes of dust and cosmic infrared background (CIB) of ACT data at 148 and 218 GHz. We also compare planet and point source measurements from the two experiments.

  1. Determining Planck's Constant Using a Light-emitting Diode.

    ERIC Educational Resources Information Center

    Sievers, Dennis; Wilson, Alan

    1989-01-01

    Describes a method for making a simple, inexpensive apparatus which can be used to determine Planck's constant. Provides illustrations of a circuit diagram using one or more light-emitting diodes and a BASIC computer program for simplifying calculations. (RT)

  2. Black hole remnants due to Planck-length deformed QFT

    NASA Astrophysics Data System (ADS)

    Dirkes, Alain R. P.; Maziashvili, Michael; Silagadze, Zurab K.

    2016-10-01

    It was argued in a number of papers that the gravitational potential calculated by using the modified QFT that follows from the Planck-length deformed uncertainty relation implies the existence of black hole (BH) remnants of the order of the Planck mass. Usually, this sort of QFTs are endowed with two specific features, the modified dispersion relation, which is universal, and the concept of minimum length, which, however, is not universal. While the emergence of the minimum length most readily leads to the idea of the BH remnants, here, we examine the behavior of the potential that follows from the Planck-length deformed QFT in the absence of the minimum length and show that it might also lead to the formation of the Planck mass BHs in some particular cases. The calculations are made for higher-dimensional case as well. Such BH remnants might be considered as a possible candidates for the dark-matter.

  3. Escape from a Crisis in Foller-Planck Models

    NASA Astrophysics Data System (ADS)

    Portegies Zwart, S.; Takahashi, K.

    Using direct N-body simulations which include both the evolution of single stars and the tidal field of the parent galaxy, the dynamical evolution of globular clusters and rich open clusters are studied. The simulations, performed on the GRAPE-4, employ up to 32,768 stars. Comparison of our results with isotropic Fokker-Planck calculations reveals a large discrepancy. The principal cause for the discrepancy is a too simplified treatment of the tidal truncation used in previous Fokker-Planck simulations. We performed new Fokker-Planck calculations using a more appropriate boundary condition for the tidal cutoff. The implementation of this condition requires anisotropic Fokker-Planck models. Our new results agree well with the N-body simulations. Comparison of the two types of simulations gives a better understanding of the cluster evolution, and clarifies why the results of N-body simulations did not seem scale with respect to N.

  4. Max Kreuzer's contributions to the study of Calabi-Yau manifolds

    NASA Astrophysics Data System (ADS)

    Candelas, Philip

    2013-10-01

    Any account of Max's career in physics must be bound up with the history of the study of Calabi-Yau manifolds, to which Max contributed at many levels. There were many currents in this study and work was not done in isolation. Work often advances through a series of challenges, and in reaction to other work. Insofar as I have myself been involved in some of these researches it is inevitable that I will have to recall some of these projects that were, at times, inextricably linked with Max's work. For this deficiency of the account let me make this single apology...

  5. Min-Max Spaces and Complexity Reduction in Min-Max Expansions

    SciTech Connect

    Gaubert, Stephane; McEneaney, William M.

    2012-06-15

    Idempotent methods have been found to be extremely helpful in the numerical solution of certain classes of nonlinear control problems. In those methods, one uses the fact that the value function lies in the space of semiconvex functions (in the case of maximizing controllers), and approximates this value using a truncated max-plus basis expansion. In some classes, the value function is actually convex, and then one specifically approximates with suprema (i.e., max-plus sums) of affine functions. Note that the space of convex functions is a max-plus linear space, or moduloid. In extending those concepts to game problems, one finds a different function space, and different algebra, to be appropriate. Here we consider functions which may be represented using infima (i.e., min-max sums) of max-plus affine functions. It is natural to refer to the class of functions so represented as the min-max linear space (or moduloid) of max-plus hypo-convex functions. We examine this space, the associated notion of duality and min-max basis expansions. In using these methods for solution of control problems, and now games, a critical step is complexity-reduction. In particular, one needs to find reduced-complexity expansions which approximate the function as well as possible. We obtain a solution to this complexity-reduction problem in the case of min-max expansions.

  6. Planck 2013 results. I. Overview of products and scientific results

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Aussel, H.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartelmann, M.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bethermin, M.; Bielewicz, P.; Bikmaev, I.; Blanchard, A.; Bobin, J.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bourdin, H.; Bowyer, J. W.; Bridges, M.; Brown, M. L.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cappellini, B.; Cardoso, J.-F.; Carr, R.; Carvalho, P.; Casale, M.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Churazov, E.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Déchelette, T.; Delabrouille, J.; Delouis, J.-M.; Démoclès, J.; Désert, F.-X.; Dick, J.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fabre, O.; Falgarone, E.; Falvella, M. C.; Fantaye, Y.; Fergusson, J.; Filliard, C.; Finelli, F.; Flores-Cacho, I.; Foley, S.; Forni, O.; Fosalba, P.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Freschi, M.; Fromenteau, S.; Frommert, M.; Gaier, T. C.; Galeotta, S.; Gallegos, J.; Galli, S.; Gandolfo, B.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Ghosh, T.; Giard, M.; Giardino, G.; Gilfanov, M.; Girard, D.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Haissinski, J.; Hamann, J.; Hansen, F. K.; Hansen, M.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Ho, S.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hou, Z.; Hovest, W.; Huey, G.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jasche, J.; Jewell, J.; Jones, W. C.; Juvela, M.; Kalberla, P.; Kangaslahti, P.; Keihänen, E.; Kerp, J.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lavabre, A.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Leroy, C.; Lesgourgues, J.; Lewis, A.; Li, C.; Liddle, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lowe, S.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marleau, F.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matsumura, T.; Matthai, F.; Maurin, L.; Mazzotta, P.; McDonald, A.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Miniscalco, R.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Negrello, M.; Nesvadba, N. P. H.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; O'Sullivan, C.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Pearson, D.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Platania, P.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Pullen, A. R.; Rachen, J. P.; Racine, B.; Rahlin, A.; Räth, C.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Riazuelo, A.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Robbers, G.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.

    2014-11-01

    The European Space Agency's Planck satellite, dedicated to studying the early Universe and its subsequent evolution, was launched 14 May 2009 and has been scanning the microwave and submillimetre sky continuously since 12 August 2009. In March 2013, ESA and the Planck Collaboration released the initial cosmology products based on the first 15.5 months of Planck data, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the mission and its performance, the processing, analysis, and characteristics of the data, the scientific results, and the science data products and papers in the release. The science products include maps of the cosmic microwave background (CMB) and diffuse extragalactic foregrounds, a catalogue of compact Galactic and extragalactic sources, and a list of sources detected through the Sunyaev-Zeldovich effect. The likelihood code used to assess cosmological models against the Planck data and a lensing likelihood are described. Scientific results include robust support for the standard six-parameter ΛCDM model of cosmology and improved measurements of its parameters, including a highly significant deviation from scale invariance of the primordial power spectrum. The Planck values for these parameters and others derived from them are significantly different from those previously determined. Several large-scale anomalies in the temperature distribution of the CMB, first detected by WMAP, are confirmed with higher confidence. Planck sets new limits on the number and mass of neutrinos, and has measured gravitational lensing of CMB anisotropies at greater than 25σ. Planck finds no evidence for non-Gaussianity in the CMB. Planck's results agree well with results from the measurements of baryon acoustic oscillations. Planck finds a lower Hubble constant than found in some more local measures. Some tension is also present between the amplitude of matter fluctuations (σ8) derived from

  7. Planck priors for dark energy surveys

    SciTech Connect

    Mukherjee, Pia; Parkinson, David; Kunz, Martin; Wang Yun

    2008-10-15

    Although cosmic microwave background anisotropy data alone cannot constrain simultaneously the spatial curvature and the equation of state of dark energy, CMB data provide a valuable addition to other experimental results. However computing a full CMB power spectrum with a Boltzmann code is quite slow; for instance if we want to work with many dark energy and/or modified gravity models, or would like to optimize experiments where many different configurations need to be tested, it is possible to adopt a quicker and more efficient approach. In this paper we consider the compression of the projected Planck cosmic microwave background data into four parameters, R (scaled distance to last scattering surface), l{sub a} (angular scale of sound horizon at last scattering), {omega}{sub b}h{sup 2} (baryon density fraction) and n{sub s} (powerlaw index of primordial matter power spectrum), all of which can be computed quickly. We show that, although this compression loses information compared to the full likelihood, such information loss becomes negligible when more data is added. We also demonstrate that the method can be used for canonical scalar-field dark energy independently of the parametrization of the equation of state, and discuss how this method should be used for other kinds of dark energy models.

  8. Detecting primordial B-modes after Planck

    NASA Astrophysics Data System (ADS)

    Creminelli, Paolo; López Nacir, Diana; Simonović, Marko; Trevisan, Gabriele; Zaldarriaga, Matias

    2015-11-01

    We update the forecasts for the measurement of the tensor-to-scalar ratio r for various ground-based experiments (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloons (EBEX 10k and Spider) and satellites (CMBPol, COrE and LiteBIRD), taking into account the recent Planck data on polarized dust and using a component separation method. The forecasts do not change significantly with respect to previous estimates when at least three frequencies are available, provided foregrounds can be accurately described by few parameters. We argue that a theoretically motivated goal for future experiments is r~2×10-3, and that this is achievable if the noise is reduced to ~1 μK-arcmin and lensing is reduced to 10% in power. We study the constraints experiments will be able to put on the frequency and l-dependence of the tensor signal as a check of its primordial origin. Futuristic ground-based and balloon experiments can have good constraints on these parameters, even for r~2×10-3. For the same value of r, satellites will marginally be able to detect the presence of the recombination bump, the most distinctive feature of the primordial signal.

  9. Detecting primordial B-modes after Planck

    SciTech Connect

    Creminelli, Paolo; Nacir, Diana López; Simonović, Marko; Zaldarriaga, Matias; Trevisan, Gabriele E-mail: dlopez_n@ictp.it E-mail: gt989@nyu.edu

    2015-11-01

    We update the forecasts for the measurement of the tensor-to-scalar ratio r for various ground-based experiments (AdvACT, CLASS, Keck/BICEP3, Simons Array, SPT-3G), balloons (EBEX 10k and Spider) and satellites (CMBPol, COrE and LiteBIRD), taking into account the recent Planck data on polarized dust and using a component separation method. The forecasts do not change significantly with respect to previous estimates when at least three frequencies are available, provided foregrounds can be accurately described by few parameters. We argue that a theoretically motivated goal for future experiments is r∼2×10{sup −3}, and that this is achievable if the noise is reduced to ∼1 μK-arcmin and lensing is reduced to 10% in power. We study the constraints experiments will be able to put on the frequency and ℓ-dependence of the tensor signal as a check of its primordial origin. Futuristic ground-based and balloon experiments can have good constraints on these parameters, even for r∼2×10{sup −3}. For the same value of r, satellites will marginally be able to detect the presence of the recombination bump, the most distinctive feature of the primordial signal.

  10. Planck 2015 results. VI. LFI mapmaking

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper describes the mapmaking procedure applied to Planck Low Frequency Instrument (LFI) data. The mapmaking step takes as input the calibrated timelines and pointing information. The main products are sky maps of I, Q, and U Stokes components. For the first time, we present polarization maps at LFI frequencies. The mapmaking algorithm is based on a destriping technique, which is enhanced with a noise prior. The Galactic region is masked to reduce errors arising from bandpass mismatch and high signal gradients. We apply horn-uniform radiometer weights to reduce the effects of beam-shape mismatch. The algorithm is the same as used for the 2013 release, apart from small changes in parameter settings. We validate the procedure through simulations. Special emphasis is put on the control of systematics, which is particularly important for accurate polarization analysis. We also produce low-resolution versions of the maps and corresponding noise covariance matrices. These serve as input in later analysis steps and parameter estimation. The noise covariance matrices are validated through noise Monte Carlo simulations. The residual noise in the map products is characterized through analysis of half-ring maps, noise covariance matrices, and simulations.

  11.  CMB anomalies after Planck

    NASA Astrophysics Data System (ADS)

    Schwarz, Dominik J.; Copi, Craig J.; Huterer, Dragan; Starkman, Glenn D.

    2016-09-01

    Several unexpected features have been observed in the microwave sky at large angular scales, both by WMAP and by Planck. Among those features is a lack of both variance and correlation on the largest angular scales, alignment of the lowest multipole moments with one another and with the motion and geometry of the solar system, a hemispherical power asymmetry or dipolar power modulation, a preference for odd parity modes and an unexpectedly large cold spot in the Southern hemisphere. The individual p-values of the significance of these features are in the per mille to per cent level, when compared to the expectations of the best-fit inflationary ΛCDM model. Some pairs of those features are demonstrably uncorrelated, increasing their combined statistical significance and indicating a significant detection of CMB features at angular scales larger than a few degrees on top of the standard model. Despite numerous detailed investigations, we still lack a clear understanding of these large-scale features, which seem to imply a violation of statistical isotropy and scale invariance of inflationary perturbations. In this contribution we present a critical analysis of our current understanding and discuss several ideas of how to make further progress.

  12. Physics Meets Philosophy at the Planck Scale

    NASA Astrophysics Data System (ADS)

    Callender, Craig; Huggett, Nick

    2001-04-01

    Preface; 1. Introduction Craig Callendar and Nick Huggett; Part I. Theories of Quantum Gravity and their Philosophical Dimensions: 2. Spacetime and the philosophical challenge of quantum gravity Jeremy Butterfield and Christopher Isham; 3. Naive quantum gravity Steven Weinstein; 4. Quantum spacetime: what do we know? Carlo Rovelli; Part II. Strings: 5. Reflections on the fate of spacetime Edward Witten; 6. A philosopher looks at string theory Robert Weingard; 7. Black holes, dumb holes, and entropy William G. Unruh; Part III. Topological Quantum Field Theory: 8. Higher-dimensional algebra and Planck scale physics John C. Baez; Part IV. Quantum Gravity and the Interpretation of General Relativity: 9. On general covariance and best matching Julian B. Barbour; 10. Pre-Socratic quantum gravity Gordon Belot and John Earman; 11. The origin of the spacetime metric: Bell's 'Lorentzian Pedagogy' and its significance in general relativity Harvey R. Brown and Oliver Pooley; Part IV. Quantum Gravity and the Interpretation of Quantum Mechanics: 12. Quantum spacetime without observers: ontological clarity and the conceptual foundations of quantum gravity Sheldon Goldstein and Stefan Teufel; 13. On gravity's role in quantum state reduction Roger Penrose; 14. Why the quantum must yield to gravity Joy Christian.

  13. Why Planck (the Satellite) could have been Zel'dovich

    NASA Astrophysics Data System (ADS)

    Partridge, Bruce

    2016-10-01

    In this brief paper, I cannot provide an overall review of the Planck results to date. Instead I will focus on a handful of results from both Planck and related cosmic microwave background (CMB) experiments that reflect Ya. B. Zel'dovich's legacy in cosmology. These include the Sunyaev-Zel'dovich effect in clusters of galaxies and in the cosmic web, and a map of the overall distribution of mass in the Universe derived from CMB maps.

  14. 77 FR 14504 - Max Planck Florida Institute, et al.; Notice of Consolidated Decision on Applications for Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-12

    ...: Electron Microscope. Manufacturer: FEI Company, Czech Republic. Intended Use: See notice at 77 FR 5767... Microscope. Manufacturer: FEI Company, Czech Republic. Intended Use: See notice at 77 FR 5767, February 6...: See notice at 77 FR 5767, February 6, 2012. Docket Number: 11-073. Applicant: Ball State...

  15. [Clinical electro-ophthalmology at the Max Planck Institute of the Frankfurt University Ophthalmology Clinic 1970-1991].

    PubMed

    Lorenz, R; Baier, M; Eckl, G; Raile, A

    1996-07-01

    The survey shows the frequency and distribution of diseases evaluated by electroophthalmological methods. Patients with retinal diseases (51.2%) and those with diseases of the optic nerve (21.8%) were examined most frequently. In a high percentage these investigations lead to a clinically useful assessment: described as confirmation or exclusion of a clinical diagnosis, as establishing a possible differential diagnosis or clearing up formerly unknown aspects of a disease. In cases of hereditary retinal disorders only 11% remained unclear, with presumed optic neuritis only 6%. The importance of electroophthalmological investigations is there ability to assess functional deficits in the visual system especially in somehow more rare retinal and centrally located disorders, functional deficits of unknown origins or in general diseases including the visual system.

  16. Signatures of Planck corrections in a spiralling axion inflation model

    SciTech Connect

    McDonald, John

    2015-05-08

    The minimal sub-Planckian axion inflation model accounts for a large scalar-to-tensor ratio via a spiralling trajectory in the field space of a complex field Φ. Here we consider how the predictions of the model are modified by Planck scale-suppressed corrections. In the absence of Planck corrections the model is equivalent to a ϕ{sup 4/3} chaotic inflation model. Planck corrections become important when the dimensionless coupling ξ of |Φ|{sup 2} to the topological charge density of the strongly-coupled gauge sector FF{sup ~} satisfies ξ∼1. For values of |Φ| which allow the Planck corrections to be understood via an expansion in powers of |Φ|{sup 2}/M{sub Pl}{sup 2}, we show that their effect is to produce a significant modification of the tensor-to-scalar ratio from its ϕ{sup 4/3} chaotic inflation value without strongly modifying the spectral index. In addition, to leading order in |Φ|{sup 2}/M{sub Pl}{sup 2}, the Planck modifications of n{sub s} and r satisfy a consistency relation, Δn{sub s}=−Δr/16. Observation of these modifications and their correlation would allow the model to be distinguished from a simple ϕ{sup 4/3} chaotic inflation model and would also provide a signature for the influence of leading-order Planck corrections.

  17. New limits on coupled dark energy from Planck

    SciTech Connect

    Xia, Jun-Qing

    2013-11-01

    Recently, the Planck collaboration has released the first cosmological papers providing the high resolution, full sky, maps of the cosmic microwave background (CMB) temperature anisotropies. It is crucial to understand that whether the accelerating expansion of our universe at present is driven by an unknown energy component (Dark Energy) or a modification to general relativity (Modified Gravity). In this paper we study the coupled dark energy models, in which the quintessence scalar field nontrivially couples to the cold dark matter, with the strength parameter of interaction β. Using the Planck data alone, we obtain that the strength of interaction between dark sectors is constrained as β < 0.102 at 95% confidence level, which is tighter than that from the WMAP9 data alone. Combining the Planck data with other probes, like the Baryon Acoustic Oscillation (BAO), Type-Ia supernovae ''Union2.1 compilation'' and the CMB lensing data from Planck measurement, we find the tight constraint on the strength of interaction β < 0.052 (95% C.L.). Interestingly, we also find a non-zero coupling β = 0.078±0.022 (68% C.L.) when we use the Planck, the ''SNLS'' supernovae samples, and the prior on the Hubble constant from the Hubble Space Telescope (HST) together. This evidence for the coupled dark energy models mainly comes from a tension between constraints on the Hubble constant from the Planck measurement and the local direct H{sub 0} probes from HST.

  18. Planck intermediate results. XXXVI. Optical identification and redshifts of Planck SZ sources with telescopes at the Canary Islands observatories

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burenin, R.; Burigana, C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hempel, A.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; León-Tavares, J.; Levrier, F.; Lietzen, H.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Stolyarov, V.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories as part of the general optical follow-up programme undertaken by the Planck Collaboration. In total, 78 SZ sources are discussed. Deep-imaging observations were obtained for most of these sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We effectively used 37.5 clear nights. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshift determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).

  19. Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: the effect of inhibitors on the binding.

    PubMed

    Park, Seyeon; Chung, Sunah; Kim, Kyung-Mee; Jung, Kyung-Chae; Park, Chihoon; Hahm, Eun-Ryeong; Yang, Chul-Hak

    2004-02-24

    The truncated myc and max proteins, only containing basic regions and helix-loop-helix/zipper (b/HLH/Zip) regions were over-expressed in E. coli and used for the determination of the binding constant and of the inhibitory mechanism on myc-max (or max-max)-DNA complex formation. The association kinetic constants (k(1) and k(-1)) of truncated max-max or myc-max dimer and DNA were determined as k(1)=(1.7+/-0.6)x10(5) M(-1) s(-1), k(-1)=(3.4+/-1.2)x10(-2) s(-1) for max-max and DNA or k(1)=(2.1+/-0.7)x10(5) M(-1) s(-1), k(-1)=(3.2+/-1.4)x10(-2) s(-1) for myc-max and DNA. The equilibrium binding constant (K(1)) was determined using these kinetic parameters [K(XXD)=(7.8+/-2.6)x10(6) M(-1) for max-max and DNA or K(XYD)=(6.9+/-2.2)x10(6) M(-1) for myc-max and DNA]. The binding constants of myc-max or max-max dimer formation were K(XX)=(2.6+/-0.9)x10(5) M(-1) or K(XY)=(1.3+/-0.4)x10(4) M(-1), respectively. When truncated proteins were used, the max-max dimer formation was easier than the myc-max dimer formation, contrary to the physiologically determined case. This leads us to deduce that domains other than b/HLH/Zip are very important for the transcriptional regulatory activity in physiological conditions. The truncated myc and max proteins, which were expressed in E. coli and contained only b/HLH/Zip regions were also used for the screening of inhibitors of myc-max-DNA complex formation. A synthesized curcuminoid, 1,7-bis(4-methyl-3-nitrophenyl)-1,6-heptadiene-3,5-dione (curcuminoid 004), showed the most potent inhibition out of the synthesized curcuminoids, in competition with DNA. The dissociation constant of max-max dimer and the inhibitor was 9 microM, when investigated using in vitro expressed b/HLH/Zip dimer proteins. The curcuminoid 004 showed an inhibitory effect on the binding of myc-max protein to the E-box element in SNU16 cells, and suppressed the expression of myc target genes including ornithine decarboxylase (ODC), cdc25a and c-myc in myc over

  20. High temperature ion irradiation effects in MAX phase ceramics

    DOE PAGESBeta

    Clark, D. W.; Zinkle, Steven J.; Patel, Maulik K.; Parish, Chad M.

    2015-12-24

    The family of layered carbides and nitrides known as MAX phase ceramics combine many attractive properties of both ceramics and metals due to their nanolaminate crystal structure and are promising potential candidates for application in future nuclear reactors. This research examines the effects of energetic heavy ion (5.8 MeV Ni) irradiations on polycrystalline samples of Ti3SiC2, Ti3AlC2, and Ti2AlC. The irradiation conditions consisted of midrange ion doses between 10 and 30 displacements per atom at temperatures of 400 and 700⁰C, conditions relevant to application in future nuclear reactors and a relatively un-explored regime for this new class of materials. Followingmore » irradiation, a comprehensive analysis of radiation response properties was compiled using grazing incidence X-ray diffraction (XRD), nanoindentation, scanning electron microcopy (SEM), and transmission electron microscopy (TEM). In all cases, XRD and TEM analyses confirm the materials remain fully crystalline although the intense atomic collisions induce significant damage and disorder into the layered crystalline lattice. X-ray diffraction and nanoindentation show this damage is manifest in anisotropic swelling and hardening at all conditions and in all materials, with the aluminum based MAX phase exhibiting significantly more damage than their silicon counterpart. In all three materials there is little damage dependence on dose, suggesting saturation of radiation damage at levels below 10 displacements per atom, and significantly less retained damage at higher temperatures, suggesting radiation defect annealing. SEM surface analysis showed significant grain boundary cracking and loss of damage tolerance properties in the aluminum-based MAX phase irradiated at 400⁰C, but not in the silicon counterpart. TEM analysis of select samples suggest that interstitials are highly mobile while vacancies are immobile and that all three materials are in the so-called point defect swelling regime

  1. High temperature ion irradiation effects in MAX phase ceramics

    SciTech Connect

    Clark, D. W.; Zinkle, Steven J.; Patel, Maulik K.; Parish, Chad M.

    2015-12-24

    The family of layered carbides and nitrides known as MAX phase ceramics combine many attractive properties of both ceramics and metals due to their nanolaminate crystal structure and are promising potential candidates for application in future nuclear reactors. This research examines the effects of energetic heavy ion (5.8 MeV Ni) irradiations on polycrystalline samples of Ti3SiC2, Ti3AlC2, and Ti2AlC. The irradiation conditions consisted of midrange ion doses between 10 and 30 displacements per atom at temperatures of 400 and 700⁰C, conditions relevant to application in future nuclear reactors and a relatively un-explored regime for this new class of materials. Following irradiation, a comprehensive analysis of radiation response properties was compiled using grazing incidence X-ray diffraction (XRD), nanoindentation, scanning electron microcopy (SEM), and transmission electron microscopy (TEM). In all cases, XRD and TEM analyses confirm the materials remain fully crystalline although the intense atomic collisions induce significant damage and disorder into the layered crystalline lattice. X-ray diffraction and nanoindentation show this damage is manifest in anisotropic swelling and hardening at all conditions and in all materials, with the aluminum based MAX phase exhibiting significantly more damage than their silicon counterpart. In all three materials there is little damage dependence on dose, suggesting saturation of radiation damage at levels below 10 displacements per atom, and significantly less retained damage at higher temperatures, suggesting radiation defect annealing. SEM surface analysis showed significant grain boundary cracking and loss of damage tolerance properties in the aluminum-based MAX phase irradiated at 400⁰C, but not in the silicon counterpart. TEM analysis of select samples suggest that interstitials are highly mobile while vacancies are immobile and that all three materials are

  2. History and progress on accurate measurements of the Planck constant.

    PubMed

    Steiner, Richard

    2013-01-01

    The measurement of the Planck constant, h, is entering a new phase. The CODATA 2010 recommended value is 6.626 069 57 × 10(-34) J s, but it has been a long road, and the trip is not over yet. Since its discovery as a fundamental physical constant to explain various effects in quantum theory, h has become especially important in defining standards for electrical measurements and soon, for mass determination. Measuring h in the International System of Units (SI) started as experimental attempts merely to prove its existence. Many decades passed while newer experiments measured physical effects that were the influence of h combined with other physical constants: elementary charge, e, and the Avogadro constant, N(A). As experimental techniques improved, the precision of the value of h expanded. When the Josephson and quantum Hall theories led to new electronic devices, and a hundred year old experiment, the absolute ampere, was altered into a watt balance, h not only became vital in definitions for the volt and ohm units, but suddenly it could be measured directly and even more accurately. Finally, as measurement uncertainties now approach a few parts in 10(8) from the watt balance experiments and Avogadro determinations, its importance has been linked to a proposed redefinition of a kilogram unit of mass. The path to higher accuracy in measuring the value of h was not always an example of continuous progress. Since new measurements periodically led to changes in its accepted value and the corresponding SI units, it is helpful to see why there were bumps in the road and where the different branch lines of research joined in the effort. Recalling the bumps along this road will hopefully avoid their repetition in the upcoming SI redefinition debates. This paper begins with a brief history of the methods to measure a combination of fundamental constants, thus indirectly obtaining the Planck constant. The historical path is followed in the section describing how the

  3. Planck 2015 results. III. LFI systematic uncertainties

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Christensen, P. R.; Colombo, L. P. L.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Doré, O.; Ducout, A.; Dupac, X.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Frailis, M.; Franceschet, C.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Pettorino, V.; Piacentini, F.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Stolyarov, V.; Stompor, R.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-08-01

    We present the current accounting of systematic effect uncertainties for the Low Frequency Instrument (LFI) that are relevant to the 2015 release of the Planck cosmological results, showing the robustness and consistency of our data set, especially for polarization analysis. We use two complementary approaches: (i) simulations based on measured data and physical models of the known systematic effects; and (ii) analysis of difference maps containing the same sky signal ("null-maps"). The LFI temperature data are limited by instrumental noise. At large angular scales the systematic effects are below the cosmic microwave background (CMB) temperature power spectrum by several orders of magnitude. In polarization the systematic uncertainties are dominated by calibration uncertainties and compete with the CMB E-modes in the multipole range 10-20. Based on our model of all known systematic effects, we show that these effects introduce a slight bias of around 0.2σ on the reionization optical depth derived from the 70GHz EE spectrum using the 30 and 353GHz channels as foreground templates. At 30GHz the systematic effects are smaller than the Galactic foreground at all scales in temperature and polarization, which allows us to consider this channel as a reliable template of synchrotron emission. We assess the residual uncertainties due to LFI effects on CMB maps and power spectra after component separation and show that these effects are smaller than the CMB amplitude at all scales. We also assess the impact on non-Gaussianity studies and find it to be negligible. Some residuals still appear in null maps from particular sky survey pairs, particularly at 30 GHz, suggesting possible straylight contamination due to an imperfect knowledge of the beam far sidelobes.

  4. Gauge-flation confronted with Planck

    SciTech Connect

    Namba, Ryo; Dimastrogiovanni, Emanuela; Peloso, Marco E-mail: ema@physics.umn.edu

    2013-11-01

    Gauge-flation is a recently proposed model in which inflation is driven solely by a non-Abelian gauge field thanks to a specific higher order derivative operator. The nature of the operator is such that it does not introduce ghosts. We compute the cosmological scalar and tensor perturbations for this model, improving over an existing computation. We then confront these results with the Planck data. The model is characterized by the quantity γ ≡ g{sup 2}Q{sup 2}/H{sup 2} (where g is the gauge coupling constant, Q the vector vev, and H the Hubble rate). For γ < 2, the scalar perturbations show a strong tachyonic instability. In the stable region, the scalar power spectrum n{sub s} is too low at small γ, while the tensor-to-scalar ratio r is too high at large γ. No value of γ leads to acceptable values for n{sub s} and r, and so the model is ruled out by the CMB data. The same behavior with γ was obtained in Chromo-natural inflation, a model in which inflation is driven by a pseudo-scalar coupled to a non-Abelian gauge field. When the pseudo-scalar can be integrated out, one recovers the model of Gauge-flation plus corrections. It was shown that this identification is very accurate at the background level, but differences emerged in the literature concerning the perturbations of the two models. On the contrary, our results show that the analogy between the two models continues to be accurate also at the perturbative level.

  5. Quantum Max-flow/Min-cut

    NASA Astrophysics Data System (ADS)

    Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg

    2016-06-01

    The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.

  6. CARMA FOLLOW-UP OF THE NORTHERN UNCONFIRMED PLANCK GALAXY CLUSTER CANDIDATES

    SciTech Connect

    Muchovej, Stephen; Leitch, Erik; Culverhouse, Thomas; Carpenter, John; Sievers, Jonathan

    2012-04-10

    We present the Combined Array for Research in Millimeter-wave Astronomy (CARMA) observations of the three northern unconfirmed galaxy clusters discovered by the Planck satellite. We confirm the existence of two massive clusters (PLCKESZ G115.71+17.52 and PLCKESZ G121.11+57.01) at high significance. For these clusters, we present refined centroid locations from the 31 GHz CARMA data, as well as mass estimates obtained from a joint analysis of CARMA and Planck data. We do not detect the third candidate, PLCKESZ G189.84-37.24, and place an upper limit on its mass of M{sub 500} < 3.2 Multiplication-Sign 10{sup 14} M{sub Sun} at 68% confidence. Considering our data and the characteristics of the Planck Early Sunyaev-Zel'dovich (ESZ) Catalog, we conclude that this object is likely to be a cold-core object in the plane of our Galaxy. As a result, we estimate the purity of the ESZ Catalog to be greater than 99.5%.

  7. Max Scheler's influence on Kurt Schneider.

    PubMed

    Cutting, John; Mouratidou, Maria; Fuchs, Thomas; Owen, Gareth

    2016-09-01

    Kurt Schneider (1887-1967) met Max Scheler (1874-1928) in 1919 when he enrolled in the latter's philosophy seminars at the University of Cologne. Kurt Schneider was then a junior psychiatrist and Max Scheler a renowned philosophy professor and co-founder of the phenomenological movement in philosophy. We uncover the facts about their intellectual and personal relationship, summarize the main articles and books that they wrote and consider whether Max Scheler did influence the young Kurt Schneider. We conclude that Scheler's philosophy of emotion impressed Schneider, and that the latter's notion of 'vital depression' as the core element in melancholia was essentially applied Schelerian philosophy. Schneider's more celebrated contributions to psychiatry - his notion of first rank symptoms of schizophrenia - owed nothing to Scheler or any other philosopher. PMID:27194114

  8. Evaluation of Maximal Oxygen Uptake (V02max) and Submaximal Estimates of VO2max Before, During and After Long Duration ISS Missions

    NASA Technical Reports Server (NTRS)

    Moore, Alan; Evetts, Simon; Feiveson, Alan; Lee, Stuart; McCleary, Frank; Platts, Steven

    2009-01-01

    NASA's Human Research Program Integrated Research Plan (HRP-47065) serves as a road-map identifying critically needed information for future space flight operations (Lunar, Martian). VO2max (often termed aerobic capacity) reflects the maximum rate at which oxygen can be taken up and utilized by the body during exercise. Lack of in-flight and immediate postflight VO2max measurements was one area identified as a concern. The risk associated with not knowing this information is: Unnecessary Operational Limitations due to Inaccurate Assessment of Cardiovascular Performance (HRP-47065).

  9. MAX-DOAS measurements of shipping emissions

    NASA Astrophysics Data System (ADS)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Theobald, Norbert; Burrows, John P.

    2015-04-01

    Air pollution from ships contributes to overall air quality problems and it has direct health effects on the population in particular in coastal regions, and in harbor cities. In order to reduce the emissions the International Maritime Organisation (IMO) have tightened the regulations for air pollution. E.g. Sulfur Emission Control Areas (SECA) have been introduced where the sulfur content of marine fuel is limited. Recently, on the 1st of January 2015, the allowed sulfur content of marine fuels inside Sulfur Emission Control Areas has been significantly decreased from 1.0% to 0.1%. However, up to now there is no regular monitoring system available to verify that ships are complying with the new regulations. Furthermore measurements of reactive trace gases in marine environments are in general sparse. The project MeSMarT (Measurements of shipping emissions in the marine troposphere, www.mesmart.de) has been established as a cooperation between the University of Bremen and the German Bundesamt für Seeschifffahrt und Hydrographie (Federal Maritime and Hydrographic Agency) with support of the Helmholtz Research Centre Geesthacht to estimate the influence of ship emissions on the chemistry of the atmospheric boundary layer and to establish a monitoring system for main shipping routes. Here we present MAX-DOAS observations of NO2 and SO2 carried out from two permanent sites close to the Elbe river (Wedel, Germany) and on the island Neuwerk close to the mouths of Elbe and Weser river since the year 2013. Mixing ratios of both trace gases have been retrieved using different approaches (pure geometric and taking into account the radiative transfer) and compared to in situ observations (see Kattner et al., Monitoring shipping fuel sulfur content regulations with in-situ measurements of shipping emissions). Furthermore, simple approaches have been used to calculate emission factors of NOx and SO2 for single ships.

  10. Planck intermediate results. XXV. The Andromeda galaxy as seen by Planck

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Bendo, G. J.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Israel, F. P.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Madden, S.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2015-10-01

    The Andromeda galaxy (M 31) is one of a few galaxies that has sufficient angular size on the sky to be resolved by the Planck satellite. Planck has detected M 31 in all of its frequency bands, and has mapped out the dust emission with the High Frequency Instrument, clearly resolving multiple spiralarms and sub-features. We examine the morphology of this long-wavelength dust emission as seen by Planck, including a study of its outermost spiral arms, and investigate the dust heating mechanism across M 31. We find that dust dominating the longer wavelength emission (≳0.3 mm) is heated by the diffuse stellar population (as traced by 3.6 μm emission), with the dust dominating the shorter wavelength emission heated by a mix of the old stellar population and star-forming regions (as traced by 24 μm emission). We also fit spectral energy distributions for individual 5' pixels and quantify the dust properties across the galaxy, taking into account these different heating mechanisms, finding that there is a linear decrease in temperature with galactocentric distance for dust heated by the old stellar population, as would be expected, with temperatures ranging from around 22 K in the nucleus to 14 K outside of the 10 kpc ring. Finally, we measure the integrated spectrum of the whole galaxy, which we find to be well-fitted with a global dust temperature of (18.2 ± 1.0) K with a spectral index of 1.62 ± 0.11 (assuming a single modified blackbody), and a significant amount of free-free emission at intermediate frequencies of 20-60 GHz, which corresponds to a star formation rate of around 0.12 M⊙ yr-1. We find a 2.3σ detection of the presence of spinning dust emission, with a 30 GHz amplitude of 0.7 ± 0.3 Jy, which is in line with expectations from our Galaxy.

  11. Planck intermediate results. XXIX. All-sky dust modelling with Planck, IRAS, and WISE observations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Aniano, G.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Couchot, F.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Draine, B. T.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Guillet, V.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ristorcelli, I.; Rocha, G.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    We present all-sky modelling of the high resolution Planck, IRAS, and WISE infrared (IR) observations using the physical dust model presented by Draine & Li in 2007 (DL, ApJ, 657, 810). We study the performance and results of this model, and discuss implications for future dust modelling. The present work extends the DL dust modelling carried out on nearby galaxies using Herschel and Spitzer data to Galactic dust emission. We employ the DL dust model to generate maps of the dust mass surface density ΣMd, the dust optical extinction AV, and the starlight intensity heating the bulk of the dust, parametrized by Umin. The DL model reproduces the observed spectral energy distribution (SED) satisfactorily over most of the sky, with small deviations in the inner Galactic disk and in low ecliptic latitude areas, presumably due to zodiacal light contamination. In the Andromeda galaxy (M31), the present dust mass estimates agree remarkably well (within 10%) with DL estimates based on independent Spitzer and Herschel data. We compare the DL optical extinction AV for the diffuse interstellar medium (ISM) with optical estimates for approximately 2 × 105 quasi-stellar objects (QSOs) observed inthe Sloan Digital Sky Survey (SDSS). The DL AV estimates are larger than those determined towards QSOs by a factor of about 2, which depends on Umin. The DL fitting parameter Umin, effectively determined by the wavelength where the SED peaks, appears to trace variations in the far-IR opacity of the dust grains per unit AV, and not only in the starlight intensity. These results show that some of the physical assumptions of the DL model will need to be revised. To circumvent the model deficiency, we propose an empirical renormalization of the DL AV estimate, dependent of Umin, which compensates for the systematic differences found with QSO observations. This renormalization, made to match the AV estimates towards QSOs, also brings into agreement the DL AV estimates with those derived for

  12. Learnability of min-max pattern classifiers

    NASA Astrophysics Data System (ADS)

    Yang, Ping-Fai; Maragos, Petros

    1991-11-01

    This paper introduces the class of thresholded min-max functions and studies their learning under the probably approximately correct (PAC) model introduced by Valiant. These functions can be used as pattern classifiers of both real-valued and binary-valued feature vectors. They are a lattice-theoretic generalization of Boolean functions and are also related to three-layer perceptrons and morphological signal operators. Several subclasses of the thresholded min- max functions are shown to be learnable under the PAC model.

  13. Planck-scale-modified dispersion relations in FRW spacetime

    NASA Astrophysics Data System (ADS)

    Rosati, Giacomo; Amelino-Camelia, Giovanni; Marcianò, Antonino; Matassa, Marco

    2015-12-01

    In recent years, Planck-scale modifications of the dispersion relation have been attracting increasing interest also from the viewpoint of possible applications in astrophysics and cosmology, where spacetime curvature cannot be neglected. Nonetheless, the interplay between Planck-scale effects and spacetime curvature is still poorly understood, particularly in cases where curvature is not constant. These challenges have been so far postponed by relying on an ansatz, first introduced by Jacob and Piran. We propose here a general strategy of analysis of the effects of modifications of the dispersion relation in Friedmann-Robertson-Walker spacetimes, applicable both to cases where the relativistic equivalence of frames is spoiled ("preferred-frame scenarios") and to the alternative possibility of "DSR-relativistic theories," theories that are fully relativistic but with relativistic laws deformed so that the modified dispersion relation is observer independent. We show that the Jacob-Piran ansatz implicitly assumes that spacetime translations are not affected by the Planck scale, while under rather general conditions, the same Planck-scale quantum-spacetime structures producing modifications of the dispersion relation also affect translations. Through the explicit analysis of one of the effects produced by modifications of the dispersion relation, an effect amounting to Planck-scale corrections to travel times, we show that our concerns are not merely conceptual but rather can have significant quantitative implications.

  14. Planck intermediate results. I. Further validation of new Planck clusters with XMM-Newton

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Bernard, J.-P.; Bersanelli, M.; Böhringer, H.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bourdin, H.; Brown, M. L.; Burigana, C.; Butler, R. C.; Cabella, P.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Cayón, L.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Da Silva, A.; Dahle, H.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Zotti, G.; Delabrouille, J.; Démoclès, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; González-Nuevo, J.; González-Riestra, R.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Hempel, A.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jagemann, T.; Jasche, J.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Liddle, A.; Lilje, P. B.; López-Caniego, M.; Luzzi, G.; Macías-Pérez, J. F.; Maino, D.; Mandolesi, N.; Mann, R.; Marleau, F.; Marshall, D. J.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Naselsky, P.; Natoli, P.; Nørgaard-Nielsen, H. U.; Noviello, F.; Osborne, S.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Pierpaoli, E.; Plaszczynski, S.; Platania, P.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Valenziano, L.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wandelt, B. D.; Weller, J.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2012-07-01

    We present further results from the ongoing XMM-Newton validation follow-up of Planck cluster candidates, detailing X-ray observations of eleven candidates detected at a signal-to-noise ratio of 4.5 < S/N < 5.3 in the same 10-month survey maps used in the construction of the Early SZ sample. The sample was selected in order to test internal SZ quality flags, and the pertinence of these flags is discussed in light of the validation results. Ten of the candidates are found to be bona fide clusters lying below the RASS flux limit. Redshift estimates are available for all confirmed systems via X-ray Fe-line spectroscopy. They lie in the redshift range 0.19 < z < 0.94, demonstrating Planck’s capability to detect clusters up to high z. The X-ray properties of the new clusters appear to be similar to previous new detections by Planck at lower z and higher SZ flux: the majority are X-ray underluminous for their mass, estimated using YX as mass proxy, and many have a disturbed morphology. We find tentative indication for Malmquist bias in the YSZ-YX relation, with a turnover at YSZ ~ 4 × 10-4 arcmin2. We present additional new optical redshift determinations with ENO and ESO telescopes of candidates previously confirmed with XMM-Newton. The X-ray and optical redshifts for a total of 20 clusters are found to be in excellent agreement. We also show that useful lower limits can be put on cluster redshifts using X-ray data only via the use of the YX vs. YSZ and X-ray flux FX vs. YSZ relations.

  15. Max Roach's Adventures in Higher Music Education.

    ERIC Educational Resources Information Center

    Hentoff, Nat

    1980-01-01

    Max Roach and the author discuss Roach's efforts to gain recognition of the complexity and importance of American musical forms, particularly jazz, by American university music departments. In addition, Roach describes his approach to marketing his music, an approach which avoids the economic exploitation often suffered by American jazz musicians.…

  16. The Statue of Liberty Peter Max Style!

    ERIC Educational Resources Information Center

    Cunningham, Kathy

    2012-01-01

    The author's school is only 30 minutes from New York City, so every year when second-graders study towns and cities, the students do a project based on New York City landmarks. This year was the Statue of Liberty. The author introduced Peter Max's famous Pop art to her students, and explained that, as the art world kept changing, artists decided…

  17. Improving Planck calibration by including frequency-dependent relativistic corrections

    SciTech Connect

    Quartin, Miguel; Notari, Alessio E-mail: notari@ffn.ub.es

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the 'orbital dipole', which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10{sup −3}, due to coupling with the 'solar dipole' (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  18. Spectator field models in light of spectral index after Planck

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu; Takahashi, Tomo; Yamaguchi, Masahide E-mail: fumi@tuhep.phys.tohoku.ac.jp E-mail: gucci@phys.titech.ac.jp

    2013-10-01

    We revisit spectator field models including curvaton and modulated reheating scenarios, specifically focusing on their viability in the new Planck era, based on the derived expression for the spectral index in general spectator field models. Importantly, the recent Planck observations give strong preference to a red-tilted power spectrum, while the spectator field models tend to predict a scale-invariant one. This implies that, during inflation, either (i) the Hubble parameter varies significantly as in chaotic inflation, or (ii) a scalar potential for the spectator field has a relatively large negative curvature. Combined with the tight constraint on the non-Gaussianity, the Planck data provides us with rich implications for various spectator field models.

  19. Problems with the linear q-Fokker Planck equation

    NASA Astrophysics Data System (ADS)

    Yano, Ryosuke

    2015-05-01

    In this letter, we discuss the linear q-Fokker Planck equation, whose solution follows Tsallis distribution, from the viewpoint of kinetic theory. Using normal definitions of moments, we can expand the distribution function with infinite moments for 0 ⩽ q < 1, whereas we cannot expand the distribution function with infinite moments for 1 < q owing to emergences of characteristic points in moments. From Grad's 13 moment equations for the linear q-Fokker Planck equation, the dissipation rate of the heat flux via the linear q-Fokker Planck equation diverges at 0 ⩽ q < 2/3. In other words, the thermal conductivity, which defines the heat flux with the spatial gradient of the temperature and the thermal conductivity, which defines the heat flux with the spacial gradient of the density, jumps to zero at q = 2/3, discontinuously.

  20. Statistical measures of Planck scale signal correlations in interferometers

    SciTech Connect

    Hogan, Craig J.; Kwon, Ohkyung

    2015-06-22

    A model-independent statistical framework is presented to interpret data from systems where the mean time derivative of positional cross correlation between world lines, a measure of spreading in a quantum geometrical wave function, is measured with a precision smaller than the Planck time. The framework provides a general way to constrain possible departures from perfect independence of classical world lines, associated with Planck scale bounds on positional information. A parametrized candidate set of possible correlation functions is shown to be consistent with the known causal structure of the classical geometry measured by an apparatus, and the holographic scaling of information suggested by gravity. Frequency-domain power spectra are derived that can be compared with interferometer data. As a result, simple projections of sensitivity for specific experimental set-ups suggests that measurements will directly yield constraints on a universal time derivative of the correlation function, and thereby confirm or rule out a class of Planck scale departures from classical geometry.

  1. Improving Planck calibration by including frequency-dependent relativistic corrections

    NASA Astrophysics Data System (ADS)

    Quartin, Miguel; Notari, Alessio

    2015-09-01

    The Planck satellite detectors are calibrated in the 2015 release using the "orbital dipole", which is the time-dependent dipole generated by the Doppler effect due to the motion of the satellite around the Sun. Such an effect has also relativistic time-dependent corrections of relative magnitude 10-3, due to coupling with the "solar dipole" (the motion of the Sun compared to the CMB rest frame), which are included in the data calibration by the Planck collaboration. We point out that such corrections are subject to a frequency-dependent multiplicative factor. This factor differs from unity especially at the highest frequencies, relevant for the HFI instrument. Since currently Planck calibration errors are dominated by systematics, to the point that polarization data is currently unreliable at large scales, such a correction can in principle be highly relevant for future data releases.

  2. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  3. Diversity of endophytic fungi in Glycine max.

    PubMed

    Fernandes, Elio Gomes; Pereira, Olinto Liparini; da Silva, Cynthia Cânedo; Bento, Claudia Braga Pereira; de Queiroz, Marisa Vieira

    2015-12-01

    Endophytic fungi are microorganisms that live within plant tissues without causing disease during part of their life cycle. With the isolation and identification of these fungi, new species are being discovered, and ecological relationships with their hosts have also been studied. In Glycine max, limited studies have investigated the isolation and distribution of endophytic fungi throughout leaves and roots. The distribution of these fungi in various plant organs differs in diversity and abundance, even when analyzed using molecular techniques that can evaluate fungal communities in different parts of the plants, such as denaturing gradient gel electrophoresis (DGGE). Our results show there is greater species richness of culturable endophytic filamentous fungi in the leaves G. max as compared to roots. Additionally, the leaves had high values for diversity indices, i.e. Simpsons, Shannon and Equitability. Conversely, dominance index was higher in roots as compared to leaves. The fungi Ampelomyces sp., Cladosporium cladosporioides, Colletotrichum gloeosporioides, Diaporthe helianthi, Guignardia mangiferae and Phoma sp. were more frequently isolated from the leaves, whereas the fungi Fusarium oxysporum, Fusarium solani and Fusarium sp. were prevalent in the roots. However, by evaluating the two communities by DGGE, we concluded that the species richness was higher in the roots than in the leaves. UPGMA analysis showed consistent clustering of isolates; however, the fungus Leptospora rubella, which belongs to the order Dothideales, was grouped among species of the order Pleosporales. The presence of endophytic Fusarium species in G. max roots is unsurprising, since Fusarium spp. isolates have been previously described as endophyte in other reports. However, it remains to be determined whether the G. max Fusarium endophytes are latent pathogens or non-pathogenic forms that benefit the plant. This study provides a broader knowledge of the distribution of the fungal

  4. Planck 2015 results. XXI. The integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marcos-Caballero, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper presents a study of the integrated Sachs-Wolfe (ISW) effect from the Planck 2015 temperature and polarization data release. This secondary cosmic microwave background (CMB) anisotropy caused by the large-scale time-evolving gravitational potential is probed from different perspectives. The CMB is cross-correlated with different large-scale structure (LSS) tracers: radio sources from the NVSS catalogue; galaxies from the optical SDSS and the infrared WISE surveys; and the Planck 2015 convergence lensing map. The joint cross-correlation of the CMB with the tracers yields a detection at 4σ where most of the signal-to-noise is due to the Planck lensing and the NVSS radio catalogue. In fact, the ISW effect is detected from the Planck data only at ≈3σ (through the ISW-lensing bispectrum), which is similar to the detection level achieved by combining the cross-correlation signal coming from all the galaxy catalogues mentioned above. We study the ability of the ISW effect to place constraints on the dark-energy parameters; in particular, we show that ΩΛ is detected at more than 3σ. This cross-correlation analysis is performed only with the Planck temperature data, since the polarization scales available in the 2015 release do not permit significant improvement of the CMB-LSS cross-correlation detectability. Nevertheless, the Planck polarization data are used to study the anomalously large ISW signal previously reported through the aperture photometry on stacked CMB features at the locations of known superclusters and supervoids, which is in conflict with ΛCDM expectations. We find that the current Planck polarization data do not exclude that this signal could be caused by the ISW effect. In addition, the stacking of the Planck lensing map on the locations of superstructures exhibits a positive cross-correlation with these large-scale structures. Finally, we have improved our previous reconstruction of the ISW temperature fluctuations by combining the

  5. Planck Visualization Project: Seeing and Hearing the CMB

    NASA Astrophysics Data System (ADS)

    Van Der Veen, Jatila; Lubin, P. M.; 2; Alper, B.; 3; Smith, W.; 4; McGee, R.; 5; US Planck Collaboration

    2011-01-01

    The Planck Education and Public Outreach collaborators at the University of California, Santa Barbara and Purdue University have prepared a variety of materials to present the science goals of the Planck Mission to the public. Here we present our interactive simulation of the Cosmic Microwave Background, in which the user can change the ingredients of the universe and hear the different harmonics. We also present how we derive information about the early universe from the power spectrum of the CMB by using the physics of music for the public.

  6. The Planck Catalogue of High-z source candidates

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided the first FIR/submm all-sky survey with a sensitivity allowing us to identify the rarest, most luminous high-z dusty star-forming sources on the sky. It opens a new window on these extreme star-forming systems at redshift above 1.5, providing a powerful laboratory to study the mechanisms of galaxy evolution and enrichment in the frame of the large scale structure growth.I will describe how the Planck catalogue of high-z source candidates (PHz, Planck 2015 in prep.) has been built and charcaterized over 25% of the sky by selecting the brightest red submm sources at a 5' resolution. Follow-up observations with Herschel/SPIRE over 228 Planck candidates have shown that 93% of these candidates are actually overdensities of red sources with SEDs peaking at 350um (Planck Int. results. XXVII 2014). Complementarily to this population of objects, 12 Planck high-z candidates have been identified as strongly lensed star forming galaxies at redshift lying between 2.2 and 3.6 (Canameras et al 2015 subm.), with flux densities larger than 400 mJy up to 1 Jy at 350um, and strong magnification factors. These Planck lensed star-forming galaxies are the rarest brightest lensed in the submm range, providing a unique opportunity to extend the exploration of the star-forming system in this range of mass and redshift.I will detail further a specific analysis performed on a proto-cluster candidate, PHz G95.5-61.6, identified as a double structure at z=1.7 and z=2.03, using an extensive follow-up program (Flores-Cacho et al 2015 subm.). This is the first Planck proto-cluster candidate with spectroscopic confirmation, which opens a new field of statistical analysis about the evolution of dusty star-forming galaxies in such accreting structures.I will finally discuss how the PHz catalogue may help to answer some of the fundamental questions like: At what cosmic epoch did massive galaxy clusters form most of their stars? Is star formation more or less vigorous

  7. Renormalization of transport equations in Fokker-Planck models

    NASA Astrophysics Data System (ADS)

    Grabert, Hermann; Weidlich, Wolfgang

    1980-06-01

    This paper is concerned with the derivation of nonlinear fluctuation-renormalized transport equations of a fluctuating thermodynamic system, on the assumption that the macroscopic variables defining a state undergo a Fokker-Planck process. It is shown that the renormalization effect may consist of two parts: a renormalization of the thermodynamic forces and a renormalization of the transport coefficients. Closed analytical expressions for the renormalized quantities in terms of the bare quantities appearing in the Fokker-Planck equation are derived. A scheme for the approximate evaluation of these expressions is given.

  8. Bounce-averaged Fokker-Planck code for stellarator transport

    SciTech Connect

    Mynick, H.E.; Hitchon, W.N.G.

    1985-07-01

    A computer code for solving the bounce-averaged Fokker-Planck equation appropriate to stellarator transport has been developed, and its first applications made. The code is much faster than the bounce-averaged Monte-Carlo codes, which up to now have provided the most efficient numerical means for studying stellarator transport. Moreover, because the connection to analytic kinetic theory of the Fokker-Planck approach is more direct than for the Monte-Carlo approach, a comparison of theory and numerical experiment is now possible at a considerably more detailed level than previously.

  9. A probe of Planck energy physics

    NASA Astrophysics Data System (ADS)

    Occhionero, F.

    } Mpc), homogeneity being restored thereabove. Another application of primordial bubbles is that they explain why, in apparent conflict with inflation, several authors claim that the Universe is open: it is sufficient that we live in a superhorizon bubble enucleated around N ~60 and that the Universe itself be a collection of such bubbles. Again a model based on FOG can be tuned to yield bubble spectra sharply peaked at Omega_0 .2, so that our probability of living in the right bubble is close to one. By unleashing one's fantasy, one can even envision a sequence of two phase transitions, at N ~60 and N ~50, where bubbles are born within bubbles and the bubbly topology and cosmogony are assigned to the open Universe. In conclusion, the study of the large scale structure may turn out to be a powerful probe -- and most likely the only one -- of Planck scale physics.

  10. Mnt-Max to Myc-Max complex switching regulates cell cycle entry.

    PubMed

    Walker, William; Zhou, Zi-Qiang; Ota, Sara; Wynshaw-Boris, Anthony; Hurlin, Peter J

    2005-05-01

    The c-Myc oncoprotein is strongly induced during the G0 to S-phase transition and is an important regulator of cell cycle entry. In contrast to c-Myc, the putative Myc antagonist Mnt is maintained at a constant level during cell cycle entry. Mnt and Myc require interaction with Max for specific DNA binding at E-box sites, but have opposing transcriptional activities. Here, we show that c-Myc induction during cell cycle entry leads to a transient decrease in Mnt-Max complexes and a transient switch in the ratio of Mnt-Max to c-Myc-Max on shared target genes. Mnt overexpression suppressed cell cycle entry and cell proliferation, suggesting that the ratio of Mnt-Max to c-Myc-Max is critical for cell cycle entry. Furthermore, simultaneous Cre-Lox mediated deletion of Mnt and c-Myc in mouse embryo fibroblasts rescued the cell cycle entry and proliferative block caused by c-Myc ablation alone. These results demonstrate that Mnt-Myc antagonism plays a fundamental role in regulating cell cycle entry and proliferation.

  11. Characterizing Planck SZ detected clusters with X-ray observations

    NASA Astrophysics Data System (ADS)

    Lovisari, L.; Forman, W.; Jones, C.; Kraft, R.; Randall, S.; Santos, F.

    2016-06-01

    Galaxy clusters are a powerful tool to constrain cosmological parameters. An accurate knowledge of the scaling relations between X-ray observables and cluster mass is a crucial step because it will enable us to compare the theoretical predictions with the real data and with the cosmological models. A complete sample is required for any meaningful study of the scaling properties, otherwise potentially important biases (e.g. Malmquist bias, cool-core and merger fractions) cannot be corrected. The Planck mission provided a nearly complete mass-limited sample of clusters of galaxies. From XMM-Newton and/or Chandra observations of the 165 Planck ESZ clusters at z <0.35, we derived the total mass, gas mass, X-ray luminosity, temperature, and morphology of each cluster. We will show how the cluster properties and morphologies differ for X-ray and SZ selected samples. In particular we will show that the Planck sample has a smaller fraction of cool-core clusters than X-ray selected samples. We will show the derived X-ray scaling relations for the Planck SZ selected sample. Finally, we will show the preliminary results of the cluster mass function.

  12. Excess B-modes extracted from the Planck polarization maps

    NASA Astrophysics Data System (ADS)

    Nørgaard-Nielsen, H. U.

    2016-07-01

    One of the main obstacles for extracting the Cosmic Microwave Background (CMB) from mm/submm observations is the pollution from the main Galactic components: synchrotron, free-free and thermal dust emission. The feasibility of using simple neural networks to extract CMB has been demonstrated on both temperature and polarization data obtained by the WMAP satellite. The main goal of this paper is to demonstrate the feasibility of neural networks for extracting the CMB signal from the Planck polarization data with high precision. Both auto-correlation and cross-correlation power spectra within a mask covering about 63 % of the sky have been used together with a ``high pass filter'' in order to minimize the influence of the remaining systematic errors in the Planck Q and U maps. Using the Planck 2015 released polarization maps, a BB power spectrum have been extracted by Multilayer Perceptron neural networks. This spectrum contains a bright feature with signal to noise ratios ≃ 4.5 within 200 ≤ l ≤ 250. The spectrum is significantly brighter than the BICEP2 2015 spectrum, with a spectral behaviour quite different from the ``canonical'' models (weak lensing plus B-modes spectra with different tensor to scalar ratios). The feasibility of the neural network to remove the residual systematics from the available Planck polarization data to a high level has been demonstrated.

  13. Planck's radiation law: is a quantum-classical perspective possible?

    NASA Astrophysics Data System (ADS)

    Marrocco, Michele

    2016-05-01

    Planck's radiation law provides the solution to the blackbody problem that marks the decline of classical physics and the rise of the quantum theory of the radiation field. Here, we venture to suggest the possibility that classical physics might be equally suitable to deal with the blackbody problem. A classical version of the Planck's radiation law seems to be achievable if we learn from the quantum-classical correspondence between classical Mie theory and quantum-mechanical wave scattering from spherical scatterers (partial wave analysis). This correspondence designs a procedure for countable energy levels of the radiation trapped within the blackbody treated within the multipole approach of classical electrodynamics (in place of the customary and problematic expansion in terms of plane waves that give rise to the ultraviolet catastrophe). In turn, introducing the Boltzmann discretization of energy levels, the tools of classical thermodynamics and statistical theory become available for the task. On the other hand, the final result depends on a free parameter whose physical units are those of an action. Tuning this parameter on the value given by the Planck constant makes the classical result agree with the canonical Planck's radiation law.

  14. Cosmological texture is incompatible with Planck-scale physics

    NASA Technical Reports Server (NTRS)

    Holman, Richard; Hsu, Stephen D. H.; Kolb, Edward W.; Watkins, Richard; Widrow, Lawrence M.

    1992-01-01

    Nambu-Goldstone modes are sensitive to the effects of physics at energies comparable to the scale of spontaneous symmetry breaking. We show that as a consequence of this the global texture proposal for structure formation requires rather severe assumptions about the nature of physics at the Planck scale.

  15. Planck 2015 results. I. Overview of products and scientific results

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Akrami, Y.; Alves, M. I. R.; Argüeso, F.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bikmaev, I.; Bock, J. J.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chluba, J.; Chon, G.; Christensen, P. R.; Church, S.; Clemens, M.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Farhang, M.; Feeney, S.; Fergusson, J.; Fernandez-Cobos, R.; Feroz, F.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschet, C.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Génova-Santos, R. T.; Gerbino, M.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Giusarma, E.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Handley, W.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Ilić, S.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kiiveri, K.; Kim, J.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Lellouch, E.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Linden-Vørnle, M.; Lindholm, V.; Liu, H.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Marcos-Caballero, A.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McEwen, J. D.; McGehee, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Moss, A.; Mottet, S.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Negrello, M.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oppermann, N.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Pandolfi, S.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Peiris, H. V.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pogosyan, D.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Romelli, E.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rouillé d'Orfeuil, B.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rumsey, C.; Rusholme, B.; Said, N.; Salvatelli, V.; Salvati, L.; Sandri, M.; Sanghera, H. S.; Santos, D.; Saunders, R. D. E.; Sauvé, A.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Serra, P.; Shellard, E. P. S.; Shimwell, T. W.; Shiraishi, M.; Smith, K.; Souradeep, T.; Spencer, L. D.; Spinelli, M.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Texier, D.; Toffolatti, L.; Tomasi, M.; Tornikoski, M.; Tramonte, D.; Tristram, M.; Troja, A.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vassallo, T.; Vibert, L.; Vidal, M.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Walter, B.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Welikala, N.; Weller, J.; White, M.; White, S. D. M.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-09-01

    The European Space Agency's Planck satellite, which is dedicated to studying the early Universe and its subsequent evolution, was launched on 14 May 2009. It scanned the microwave and submillimetre sky continuously between 12 August 2009 and 23 October 2013. In February 2015, ESA and the Planck Collaboration released the second set of cosmology products based ondata from the entire Planck mission, including both temperature and polarization, along with a set of scientific and technical papers and a web-based explanatory supplement. This paper gives an overview of the main characteristics of the data and the data products in the release, as well as the associated cosmological and astrophysical science results and papers. The data products include maps of the cosmic microwave background (CMB), the thermal Sunyaev-Zeldovich effect, diffuse foregrounds in temperature and polarization, catalogues of compact Galactic and extragalactic sources (including separate catalogues of Sunyaev-Zeldovich clusters and Galactic cold clumps), and extensive simulations of signals and noise used in assessing uncertainties and the performance of the analysis methods. The likelihood code used to assess cosmological models against the Planck data is described, along with a CMB lensing likelihood. Scientific results include cosmological parameters derived from CMB power spectra, gravitational lensing, and cluster counts, as well as constraints on inflation, non-Gaussianity, primordial magnetic fields, dark energy, and modified gravity, and new results on low-frequency Galactic foregrounds.

  16. Fokker-Planck transport in solid state accelerator concepts

    SciTech Connect

    Newberger, B.; Tajima, T.

    1989-01-01

    Particle transport in a crystalline solid under channeling conditions is considered by means of a Fokker-Planck description. The model includes electron multiple scattering, radiation damping and an accelerating electric field. Analytic solutions have been obtained using a harmonic potential model to describe the channeling forces. These solutions will be described.

  17. MediMax Elektronik-Marktkette

    NASA Astrophysics Data System (ADS)

    Die Elektronikkette MediMax setzt auf Server Based Computing mit Windows Server 2003® und Thin Clients. Mit über 100 Filialen ist MediMax die erfolgreiche Fachmarktlinie der ElectronicPartner-Verbundgruppe in Deutschland. Die Zugehörigkeit zum Mutterverbund garantiert den Franchisenehmern der Elektronikkette eine schnelle Warenversorgung und günstige Einkaufskonditionen. Über 50.000 Artikel zahlreicher namhafter Markenhersteller und unterschiedlicher Preisklassen sind ständig abrufbar. Darüber hinaus profitieren die Filialen von einer zentralen Organisation und Betreuung ihrer IT. Von Düsseldorf aus administriert ein internes Supportteam die Arbeitsplätze aller Standorte und stellt außerdem die Warenwirtschaftslösung zur Verfügung. Dank der Umstellung auf eine moderne Server Based Computing-Umgebung sind Wartung und Support künftig so effizient wie nie zuvor.

  18. Minimum distortion quantizers. [determined by max algorithm

    NASA Technical Reports Server (NTRS)

    Jones, H. W., Jr.

    1977-01-01

    The well-known algorithm of Max is used to determine the minimum distortion quantizers for normal, two-sided exponential, and specialized two-sided gamma input distributions and for mean-square, magnitude, and relative magnitude error distortion criteria. The optimum equally-spaced and unequally-spaced quantizers are found, with the resulting quantizer distortion and entropy. The quantizers, and the quantizers with entropy coding, are compared to the rate distortion bounds for mean-square and magnitude error.

  19. Planck 2015 results. XXVII. The second Planck catalogue of Sunyaev-Zeldovich sources

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Barrena, R.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bikmaev, I.; Böhringer, H.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burenin, R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Chon, G.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Dahle, H.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Eisenhardt, P. R. M.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Feroz, F.; Ferragamo, A.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Hempel, A.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jin, T.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Khamitov, I.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Mei, S.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nastasi, A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrott, Y. C.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rozo, E.; Rubiño-Martín, J. A.; Rumsey, C.; Rusholme, B.; Rykoff, E. S.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savelainen, M.; Savini, G.; Schammel, M. P.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shimwell, T. W.; Spencer, L. D.; Stanford, S. A.; Stern, D.; Stolyarov, V.; Stompor, R.; Streblyanska, A.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tramonte, D.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, S. D. M.; Wright, E. L.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the all-sky Planck catalogue of Sunyaev-Zeldovich (SZ) sources detected from the 29 month full-mission data. The catalogue (PSZ2) is the largest SZ-selected sample of galaxy clusters yet produced and the deepest systematic all-sky surveyof galaxy clusters. It contains 1653 detections, of which 1203 are confirmed clusters with identified counterparts in external data sets, and is the first SZ-selected cluster survey containing >103 confirmed clusters. We present a detailed analysis of the survey selection function in terms of its completeness and statistical reliability, placing a lower limit of 83% on the purity. Using simulations, we find that the estimates of the SZ strength parameter Y5R500are robust to pressure-profile variation and beam systematics, but accurate conversion to Y500 requires the use of prior information on the cluster extent. We describe the multi-wavelength search for counterparts in ancillary data, which makes use of radio, microwave, infra-red, optical, and X-ray data sets, and which places emphasis on the robustness of the counterpart match. We discuss the physical properties of the new sample and identify a population of low-redshift X-ray under-luminous clusters revealed by SZ selection. These objects appear in optical and SZ surveys with consistent properties for their mass, but are almost absent from ROSAT X-ray selected samples.

  20. MAX2 affects multiple hormones to promote photomorphogenesis.

    PubMed

    Shen, Hui; Zhu, Ling; Bu, Qing-Yun; Huq, Enamul

    2012-05-01

    Ubiquitin-26S proteasome system (UPS) has been shown to play central roles in light and hormone-regulated plant growth and development. Previously, we have shown that MAX2, an F-box protein, positively regulates facets of photomorphogenic development in response to light. However, how MAX2 controls these responses is still unknown. Here, we show that MAX2 oppositely regulates GA and ABA biosynthesis to optimize seed germination in response to light. Dose-response curves showed that max2 seeds are hyposensitive to GA and hypersensitive to ABA in seed germination responses. RT-PCR assays demonstrated that the expression of GA biosynthetic genes is down-regulated, while the expression of GA catabolic genes is up-regulated in the max2 seeds compared to wild-type. Interestingly, expression of both ABA biosynthetic and catabolic genes is up-regulated in the max2 seeds compared to wild-type. Treatment with an auxin transport inhibitor, NPA, showed that increased auxin transport in max2 seedlings contributes to the long hypocotyl phenotype under light. Moreover, light-signaling phenotypes are restricted to max2, as the biosynthetic mutants in the strigolactone pathway, max1, max3, and max4, did not display any defects in seed germination and seedling de-etiolation compared to wild-type. Taken together, these data suggest that MAX2 modulates multiple hormone pathways to affect photomorphogenesis.

  1. Leap of Faith: An Interview with Max Velthuijs

    ERIC Educational Resources Information Center

    de Rijke, Victoria; Hollands, Howard

    2006-01-01

    The now late great Max Velthuijs was filmed in April 2004 discussing his work with Victoria de Rijke and Howard Hollands, who began the interview expecting Max to be working under certain artistic and cultural influences, none of which seemed to be the case! Max describes what brought him home to Andersen Press, the freedom of children's…

  2. Max Wertheimer on seen motion: theory and evidence.

    PubMed

    Sarris, V

    1989-01-01

    Max Wertheimer, the chief founder of an experimentally based Gestalt psychology, conducted his pioneering studies in motion perception on new theoretical grounds. Since the influence of this approach may be greater in today's cognitive psychology than it has ever been during the half-century of introspectionism and radical behaviorism, it is appropriate to review the actual roots of Wertheimer's (1912) seminal publication and his continuing research on apparent and real motion perception in the light of past and recent work. Illustrative examples, especially of Wertheimer's early research, are provided in this paper. The implications of his experimentation and biopsychological theorizing are still of major interest for present psychological inquiry. Nevertheless, the need for more future systematic comparative research on motion perception must be emphasized. The Epilogue of this paper examines why important parts of Wertheimer's experimental contributions to psychology may have been underrated or neglected by many contemporary psychologists. PMID:2687920

  3. Max Wertheimer on seen motion: theory and evidence.

    PubMed

    Sarris, V

    1989-01-01

    Max Wertheimer, the chief founder of an experimentally based Gestalt psychology, conducted his pioneering studies in motion perception on new theoretical grounds. Since the influence of this approach may be greater in today's cognitive psychology than it has ever been during the half-century of introspectionism and radical behaviorism, it is appropriate to review the actual roots of Wertheimer's (1912) seminal publication and his continuing research on apparent and real motion perception in the light of past and recent work. Illustrative examples, especially of Wertheimer's early research, are provided in this paper. The implications of his experimentation and biopsychological theorizing are still of major interest for present psychological inquiry. Nevertheless, the need for more future systematic comparative research on motion perception must be emphasized. The Epilogue of this paper examines why important parts of Wertheimer's experimental contributions to psychology may have been underrated or neglected by many contemporary psychologists.

  4. VO2 max in an Indian population: a study to understand the role of factors determining VO2 max.

    PubMed

    Nitin, Y M; Sucharita, S; Madhura, M; Thomas, T; Sandhya, T A

    2013-01-01

    VO2 max is the maximum amount of oxygen a person can consume and the value does not change despite an increase in workload. There is lack of data evaluating the impact of factors, which could affect VO2 max measurement, particularly in Indian population. The objectives of the present study were (i) to estimate VO2 max in a young healthy Indian population and to compare it with available prediction equations for Indian population (ii) to correlate time to achieve VO2 max with the relative VO2 max (iii) to assess the factors affecting the time to achieve VO2 max measurement (body composition and physical activity level). Twenty healthy adult males (18-30 years) underwent detailed anthropometry, physical activity level and modified Bruce protocol for VO2 max assessment. Breath by breath VO2, VCO2, oxygen saturation, heart rate, blood pressure were measured continuously and following exercise protocol. There was an internal validity between the estimated VO2 max and the maximum heart rate (MHR) (r = 0.51, P < 0.05). Respiratory rate and tidal volume significantly correlated with VO2 max P < 0.01). Linear regression analysis indicated physical activity level (PAL) was a strong predictor of time to reach VO2 max. Out of the 3 prediction equations computed to estimate VO2 max, 2 equations significantly overestimated VO2 max. In Conclusion, physical activity level emerged to be a strong predictor of time to VO2 max. Time to achieve VO2 max is an important factor to be considered when determining VO2 max. There was an overestimation in the VO2 max values derived from predicted equations. PMID:24617157

  5. Planck 2013 results. XXI. Power spectrum and high-order statistics of the Planck all-sky Compton parameter map

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Da Silva, A.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marcos-Caballero, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    We have constructed the first all-sky map of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 100 to 857 GHz frequency channel maps from the Planck survey. This map shows an obvious galaxy cluster tSZ signal that is well matched with blindly detected clusters in the Planck SZ catalogue. To characterize the signal in the tSZ map we have computed its angular power spectrum. At large angular scales (ℓ < 60), the major foreground contaminant is the diffuse thermal dust emission. At small angular scales (ℓ > 500) the clustered cosmic infrared background and residual point sources are the major contaminants. These foregrounds are carefully modelled and subtracted. We thus measure the tSZ power spectrum over angular scales 0.17° ≲ θ ≲ 3.0° that were previously unexplored. The measured tSZ power spectrum is consistent with that expected from the Planck catalogue of SZ sources, with clear evidence of additional signal from unresolved clusters and, potentially, diffuse warm baryons. Marginalized band-powers of the Planck tSZ power spectrum and the best-fit model are given. The non-Gaussianity of the Compton parameter map is further characterized by computing its 1D probability distribution function and its bispectrum. The measured tSZ power spectrum and high order statistics are used to place constraints on σ8.

  6. Tribology of MAX phases and their composites

    NASA Astrophysics Data System (ADS)

    Gupta, Surojit

    2006-04-01

    Currently there is a need for triboactive materials for high-speed turbomachinery applications in industry, which possess: (a) adequate mechanical strength, both at room and elevated temperatures and, (b) low wear rates, WRs, and low fiction coefficients, mu, over a wide temperature range. If such materials can be found, the impact would be huge since they would result in increased efficiencies and reduced pollution. This is an outstanding problem that many in industry have been trying to solve for the past 20 years. In this work, the tribological behavior of the MAX phases, and their composites with Ag have been studied for foil-bearing application. Initially, the tribological behavior---at 26 °C and 550 °C---of the following layered ternary carbides: Ti2AlC, Cr2AlC, Ta2AlC, Ti3SiC2, Ti2AlN, Ti4AlN3 , Cr2GeC, Cr2GaC, Nb2SnC and Ti 2SnC, tested against Ni-based superalloys (Inc718 and Inc600) and alumina, Al2O3, were studied. The high temperature tribo-properties were acceptable and in some cases, exceptional; but at room temperatures, the WRs were too high. Since the addition of Ag is known to improve the tribological behavior at room temperature, it was used to liquid-phase sinter Ta2AlC or Cr2AlC composites. They were tested against a Ni-based superalloy (In718) and alumina. For foil-bearing applications, Ni-based superalloys are the best of choice for the foils. The tribocouples were tested for the most part using a force of 3N at 1 m/s at 25 °C, 350 °C and 550 °C for at least 1 km of dry sliding. Over the entire temperature range, the WRs were ≤ 10-4 mm3/N-m and mu ≤ 0.5. Essentially similar results were obtained when the temperature was cycled between ambient and 550 °C. Finally, hot isostatically pressed Ta2AlC/Ag and Cr2AlC/Ag cylinders were machined was successfully tested in a foil-bearing rig test for 10,000 and 3,000 stop-start cycles, respectively. When processed in the presence of liquid Ag, Al from the basal planes of the MAX phases reacts

  7. Planck 2015 results. XIX. Constraints on primordial magnetic fields

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Chluba, J.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Florido, E.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Ruiz-Granados, B.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We compute and investigate four types of imprint of a stochastic background of primordial magnetic fields (PMFs) on the cosmic microwave background (CMB) anisotropies: the impact of PMFs on the CMB temperature and polarization spectra, which is related to their contribution to cosmological perturbations; the effect on CMB polarization induced by Faraday rotation; the impact of PMFs on the ionization history; magnetically-induced non-Gaussianities and related non-zero bispectra; and the magnetically-induced breaking of statistical isotropy. We present constraints on the amplitude of PMFs that are derived from different Planck data products, depending on the specific effect that is being analysed. Overall, Planck data constrain the amplitude of PMFs to less than a few nanoGauss, with different bounds that depend on the considered model. In particular, individual limits coming from the analysis of the CMB angular power spectra, using the Planck likelihood, are B1 Mpc < 4.4 nG (where B1 Mpc is the comoving field amplitude at a scale of 1 Mpc) at 95% confidence level, assuming zero helicity. By considering the Planck likelihood, based only on parity-even angular power spectra, we obtain B1 Mpc < 5.6 nG for a maximally helical field. For nearly scale-invariant PMFs we obtain B1 Mpc < 2.0 nG and B1 Mpc < 0.9 nG if the impact of PMFs on the ionization history of the Universe is included in the analysis. From the analysis of magnetically-induced non-Gaussianity, we obtain three different values, corresponding to three applied methods, all below 5 nG. The constraint from the magnetically-induced passive-tensor bispectrum is B1 Mpc < 2.8 nG. A search for preferred directions in the magnetically-induced passive bispectrum yields B1 Mpc < 4.5 nG, whereas the compensated-scalar bispectrum gives B1 Mpc < 3 nG. The analysis of the Faraday rotation of CMB polarization by PMFs uses the Planck power spectra in EE and BB at 70 GHz and gives B1 Mpc < 1380 nG. In our final analysis, we

  8. Dark radiation sterile neutrino candidates after Planck data

    SciTech Connect

    Valentino, Eleonora Di; Melchiorri, Alessandro; Mena, Olga E-mail: alessandro.melchiorri@roma1.infn.it

    2013-11-01

    Recent Cosmic Microwave Background (CMB) results from the Planck satellite, combined with previous CMB data and Hubble constant measurements from the Hubble Space Telescope, provide a constraint on the effective number of relativistic degrees of freedom 3.62{sup +0.50}{sub −0.48} at 95% CL. New Planck data provide a unique opportunity to place limits on models containing relativistic species at the decoupling epoch. We present here the bounds on sterile neutrino models combining Planck data with galaxy clustering information. Assuming N{sub eff} active plus sterile massive neutrino species, in the case of a Planck+WP+HighL+HST analysis we find m{sub ν,} {sub sterile}{sup eff} < 0.36 eV and 3.14 < N{sub eff} < 4.15 at 95% CL, while using Planck+WP+HighL data in combination with the full shape of the galaxy power spectrum from the Baryon Oscillation Spectroscopic Survey BOSS Data Relase 9 measurements, we find that 3.30 < N{sub eff} < 4.43 and m{sub ν,} {sub sterile}{sup eff} < 0.33 eV both at 95% CL with the three active neutrinos having the minimum mass allowed in the normal hierarchy scheme, i.e. ∑m{sub ν} ∼ 0.06 eV. These values compromise the viability of the (3+2) massive sterile neutrino models for the parameter region indicated by global fits of neutrino oscillation data. Within the (3+1) massive sterile neutrino scenario, we find m{sub ν,} {sub sterile}{sup eff} < 0.34 eV at 95% CL. While the existence of one extra sterile massive neutrino state is compatible with current oscillation data, the values for the sterile neutrino mass preferred by oscillation analyses are significantly higher than the current cosmological bound. We review as well the bounds on extended dark sectors with additional light species based on the latest Planck CMB observations.

  9. VO2max during successive maximal efforts.

    PubMed

    Foster, Carl; Kuffel, Erin; Bradley, Nicole; Battista, Rebecca A; Wright, Glenn; Porcari, John P; Lucia, Alejandro; deKoning, Jos J

    2007-12-01

    The concept of VO(2)max has been a defining paradigm in exercise physiology for >75 years. Within the last decade, this concept has been both challenged and defended. The purpose of this study was to test the concept of VO(2)max by comparing VO(2) during a second exercise bout following a preliminary maximal effort exercise bout. The study had two parts. In Study #1, physically active non-athletes performed incremental cycle exercise. After 1-min recovery, a second bout was performed at a higher power output. In Study #2, competitive runners performed incremental treadmill exercise and, after 3-min recovery, a second bout at a higher speed. In Study #1 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (3.95 +/- 0.75 vs. 4.06 +/- 0.75 l min(-1)). Maximal heart rate was not different (179 +/- 14 vs. 180 +/- 13 bpm) although maximal V(E) was higher in the second bout (141 +/- 36 vs. 151 +/- 34 l min(-1)). In Study #2 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (4.09 +/- 0.97 vs. 4.03 +/- 1.16 l min(-1)), nor was maximal heart rate (184 + 6 vs. 181 +/- 10 bpm) or maximal V(E) (126 +/- 29 vs. 126 +/- 34 l min(-1)). The results support the concept that the highest VO(2) during a maximal incremental exercise bout is unlikely to change during a subsequent exercise bout, despite higher muscular power output. As such, the results support the "classical" view of VO(2)max. PMID:17891414

  10. VO2max during successive maximal efforts.

    PubMed

    Foster, Carl; Kuffel, Erin; Bradley, Nicole; Battista, Rebecca A; Wright, Glenn; Porcari, John P; Lucia, Alejandro; deKoning, Jos J

    2007-12-01

    The concept of VO(2)max has been a defining paradigm in exercise physiology for >75 years. Within the last decade, this concept has been both challenged and defended. The purpose of this study was to test the concept of VO(2)max by comparing VO(2) during a second exercise bout following a preliminary maximal effort exercise bout. The study had two parts. In Study #1, physically active non-athletes performed incremental cycle exercise. After 1-min recovery, a second bout was performed at a higher power output. In Study #2, competitive runners performed incremental treadmill exercise and, after 3-min recovery, a second bout at a higher speed. In Study #1 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (3.95 +/- 0.75 vs. 4.06 +/- 0.75 l min(-1)). Maximal heart rate was not different (179 +/- 14 vs. 180 +/- 13 bpm) although maximal V(E) was higher in the second bout (141 +/- 36 vs. 151 +/- 34 l min(-1)). In Study #2 the highest VO(2) (bout 1 vs. bout 2) was not significantly different (4.09 +/- 0.97 vs. 4.03 +/- 1.16 l min(-1)), nor was maximal heart rate (184 + 6 vs. 181 +/- 10 bpm) or maximal V(E) (126 +/- 29 vs. 126 +/- 34 l min(-1)). The results support the concept that the highest VO(2) during a maximal incremental exercise bout is unlikely to change during a subsequent exercise bout, despite higher muscular power output. As such, the results support the "classical" view of VO(2)max.

  11. Neutron Damage and MAX Phase Ternary Compounds

    SciTech Connect

    Barsoum, Michael; Hoffman, Elizabeth; Sindelar, Robert; Garcua-Duaz, Brenda; Kohse, Gordon

    2014-06-17

    The Demands of Gen IV nuclear power plants for long service life under neutron radiation at high temperature are severe. Advanced materials that would withstand high temperatures (up to 1000+ C) to high doses in a neutron field would be ideal for reactor internal structures and would add to the long service life and reliability of the reactors. The objective of this work is to investigate the response of a new class of machinable, conductive, layered, ternary transition metal carbides and nitrides - the so-called MAX phases - to low and moderate neutron dose levels.

  12. Solar vector magnetograph for Max 1991 programs

    NASA Technical Reports Server (NTRS)

    Rust, D. M.; Obyrne, J. W.; Harris, T. J.

    1988-01-01

    An instrument for measuring solar magnetic fields is under construction. Key requirements for any solar vector magnetograph are high spatial resolution, high optical throughput, fine spectral selectivity, and ultralow instrumental polarization. An available 25 cm Cassegrain telescope will provide 0.5 arcsec spatial resolution. Spectral selection will be accomplished with a 150 mA filter based on electrically tunable solid Fabry-Perot etalon. Filter and polarization analyzer design concepts for the magnetograph are described in detail. The instrument will be tested at JHU/APL, and then moved to the National Solar Observatory in late 1988. It will be available to support the Max 1991 program.

  13. Fokker Planck theory for energetic electron deposition in laser fusion

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace; Colombant, Denis

    2014-10-01

    We have developed a Fokker Planck model to calculate the transport and deposition of energetic electrons, produced for instance by the two plasmon decay instability at the quarter critical surface. In steady state, the Fokker Planck equation reduces to a single universal equation in energy and space, an equation which appears to be quite simple, but which has a rather unconventional boundary condition. The equation is equally valid in planar and spherical geometry, and it depends on only a single parameter, the charge state Z. Hence one can solve for a universal solution, valid for each Z. An asymptotic solution to this equation will be presented, which allows the heating of the main plasma to be calculated from a simple analytical expression. A more accurate solution in terms of a Bessel function expansion will also be presented. From this, one obtains a heating rate which can be simply incorporated into fluid simulations.

  14. Resurrecting power law inflation in the light of Planck results

    SciTech Connect

    Unnikrishnan, Sanil; Sahni, Varun E-mail: varun@iucaa.ernet.in

    2013-10-01

    It is well known that a canonical scalar field with an exponential potential can drive power law inflation (PLI). However, the tensor-to-scalar ratio in such models turns out to be larger than the stringent limit set by recent Planck results. We propose a new model of power law inflation for which the scalar spectra index, the tensor-to-scalar ratio and the non-gaussianity parameter f{sub N{sub L}{sup equil}} are in excellent agreement with Planck results. Inflation, in this model, is driven by a non-canonical scalar field with an inverse power law potential. The Lagrangian for our model is structurally similar to that of a canonical scalar field and has a power law form for the kinetic term. A simple extension of our model resolves the graceful exit problem which usually afflicts models of power law inflation.

  15. Planck 2013 results. XV. CMB power spectra and likelihood

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Gaier, T. C.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jewell, J.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leahy, J. P.; Leonardi, R.; León-Tavares, J.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maino, D.; Mandolesi, N.; Marinucci, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Menegoni, E.; Mennella, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; O'Dwyer, I. J.; Orieux, F.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Paykari, P.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rahlin, A.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ringeval, C.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Sanselme, L.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Varis, J.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper presents the Planck 2013 likelihood, a complete statistical description of the two-point correlation function of the CMB temperature fluctuations that accounts for all known relevant uncertainties, both instrumental and astrophysical in nature. We use this likelihood to derive our best estimate of the CMB angular power spectrum from Planck over three decades in multipole moment, ℓ, covering 2 ≤ ℓ ≤ 2500. The main source of uncertainty at ℓ ≲ 1500 is cosmic variance. Uncertainties in small-scale foreground modelling and instrumental noise dominate the error budget at higher ℓs. For ℓ < 50, our likelihood exploits all Planck frequency channels from 30 to 353 GHz, separating the cosmological CMB signal from diffuse Galactic foregrounds through a physically motivated Bayesian component separation technique. At ℓ ≥ 50, we employ a correlated Gaussian likelihood approximation based on a fine-grained set of angular cross-spectra derived from multiple detector combinations between the 100, 143, and 217 GHz frequency channels, marginalising over power spectrum foreground templates. We validate our likelihood through an extensive suite of consistency tests, and assess the impact of residual foreground and instrumental uncertainties on the final cosmological parameters. We find good internal agreement among the high-ℓ cross-spectra with residuals below a few μK2 at ℓ ≲ 1000, in agreement with estimated calibration uncertainties. We compare our results with foreground-cleaned CMB maps derived from all Planck frequencies, as well as with cross-spectra derived from the 70 GHz Planck map, and find broad agreement in terms of spectrum residuals and cosmological parameters. We further show that the best-fit ΛCDM cosmology is in excellent agreement with preliminary PlanckEE and TE polarisation spectra. We find that the standard ΛCDM cosmology is well constrained by Planck from the measurements at ℓ ≲ 1500. One specific example is the

  16. Constraints on Cosmological Parameters: Combining Planck With Other Measurements

    NASA Astrophysics Data System (ADS)

    Freedman, Wendy

    2015-08-01

    The recent measurements from Planck have set a new high bar for accuracy in the measurement of cosmological parameters. In parallel, new and increasingly accurate measurements of Baryon Acoustic Oscillations, Type Ia supernovae, and the Hubble Constant offer independent probes of various cosmological parameters. The increased accuracy in cosmic microwave background fluctuation measurements make direct comparisons with other methods even more critical, given the intrinsic physical degeneracies amongst different cosmological parameters in the acoustic oscillation spectrum. There has been fundamental progress over the last couple of decades in measuring extragalactic distances. I will discuss the current limits, and the prospects for reaching 1% uncertainty in measurement of the Hubble constant, which, combined with measurements from Planck, will be critical for providing independent constraints on dark energy, the geometry, and matter density of the universe.

  17. Mixed inflaton and spectator field models after Planck

    SciTech Connect

    Enqvist, Kari; Takahashi, Tomo E-mail: tomot@cc.saga-u.ac.jp

    2013-10-01

    We investigate the possibility that the primordial perturbation has two sources: the inflaton and a spectator field, which is not dynamically important during inflation but which after inflation can contribute to the curvature perturbation. We derive the constraints on the model by using recent Planck results on the spectral index, tensor-to-scalar ratio and nonlinearity parameters f{sub NL} and τ{sub NL} for the cases with and without specifying the inflation and spectator models. If one chooses the spectator to be the curvaton with a quadratic potential, non-Gaussianities can be computed and imply restrictions on possible values of the ratio of the spectator-to-inflaton power R. We also consider a mixed curvaton and chaotic inflation model and show that even quartic chaotic inflation is still feasible in the context of mixed models even with Planck data.

  18. Equilibrium distribution of heavy quarks in fokker-planck dynamics

    PubMed

    Walton; Rafelski

    2000-01-01

    We obtain an explicit generalization, within Fokker-Planck dynamics, of Einstein's relation between drag, diffusion, and the equilibrium distribution for a spatially homogeneous system, considering both the transverse and longitudinal diffusion for dimension n>1. We provide a complete characterization of the equilibrium distribution in terms of the drag and diffusion transport coefficients. We apply this analysis to charm quark dynamics in a thermal quark-gluon plasma for the case of collisional equilibration.

  19. Chaotic universe dynamics using a Fokker-Planck equation

    SciTech Connect

    Coule, D.H.; Olynyk, K.O.

    1987-07-01

    A Fokker-Planck equation that accounts for fluctuations in field and its conjugate momentum is solved numerically for the case of a lambda phi/sup 4/ potential. Although the amount of inflation agrees closely with that expected classically, in certain cases (large initial fields or large dispersions),the ''slow rolling'' approximation appears invalid. In such cases inflation would stop prematurely before possibly restarting. 18 refs., 2 figs.

  20. COSMOLOGY FROM GRAVITATIONAL LENS TIME DELAYS AND PLANCK DATA

    SciTech Connect

    Suyu, S. H.; Treu, T.; Sonnenfeld, A.; Hilbert, S.; Spiniello, C.; Auger, M. W.; Collett, T.; Blandford, R. D.; Marshall, P. J.; Courbin, F.; Meylan, G.; Tewes, M.; Fassnacht, C. D.; Koopmans, L. V. E.

    2014-06-20

    Under the assumption of a flat ΛCDM cosmology, recent data from the Planck satellite point toward a Hubble constant that is in tension with that measured by gravitational lens time delays and by the local distance ladder. Prosaically, this difference could arise from unknown systematic uncertainties in some of the measurements. More interestingly—if systematics were ruled out—resolving the tension would require a departure from the flat ΛCDM cosmology, introducing, for example, a modest amount of spatial curvature, or a non-trivial dark energy equation of state. To begin to address these issues, we present an analysis of the gravitational lens RXJ1131–1231 that is improved in one particular regard: we examine the issue of systematic error introduced by an assumed lens model density profile. We use more flexible gravitational lens models with baryonic and dark matter components, and find that the exquisite Hubble Space Telescope image with thousands of intensity pixels in the Einstein ring and the stellar velocity dispersion of the lens contain sufficient information to constrain these more flexible models. The total uncertainty on the time-delay distance is 6.6% for a single system. We proceed to combine our improved time-delay distance measurement with the WMAP9 and Planck posteriors. In an open ΛCDM model, the data for RXJ1131–1231 in combination with Planck favor a flat universe with Ω{sub k}=0.00{sub −0.02}{sup +0.01} (68% credible interval (CI)). In a flat wCDM model, the combination of RXJ1131–1231 and Planck yields w=−1.52{sub −0.20}{sup +0.19} (68% CI)

  1. Planck 2015 results. XVI. Isotropy and statistics of the CMB

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Akrami, Y.; Aluri, P. K.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Contreras, D.; Couchot, F.; Coulais, A.; Crill, B. P.; Cruz, M.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fantaye, Y.; Fergusson, J.; Fernandez-Cobos, R.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Frolov, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Liu, H.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mikkelsen, K.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Pant, N.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Rotti, A.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Souradeep, T.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zibin, J. P.; Zonca, A.

    2016-08-01

    We test the statistical isotropy and Gaussianity of the cosmic microwave background (CMB) anisotropies using observations made by the Planck satellite. Our results are based mainly on the full Planck mission for temperature, but also include some polarization measurements. In particular, we consider the CMB anisotropy maps derived from the multi-frequency Planck data by several component-separation methods. For the temperature anisotropies, we find excellent agreement between results based on these sky maps over both a very large fraction of the sky and a broad range of angular scales, establishing that potential foreground residuals do not affect our studies. Tests of skewness, kurtosis, multi-normality, N-point functions, and Minkowski functionals indicate consistency with Gaussianity, while a power deficit at large angular scales is manifested in several ways, for example low map variance. The results of a peak statistics analysis are consistent with the expectations of a Gaussian random field. The "Cold Spot" is detected with several methods, including map kurtosis, peak statistics, and mean temperature profile. We thoroughly probe the large-scale dipolar power asymmetry, detecting it with several independent tests, and address the subject of a posteriori correction. Tests of directionality suggest the presence of angular clustering from large to small scales, but at a significance that is dependent on the details of the approach. We perform the first examination of polarization data, finding the morphology of stacked peaks to be consistent with the expectations of statistically isotropic simulations. Where they overlap, these results are consistent with the Planck 2013 analysis based on the nominal mission data and provide our most thorough view of the statistics of the CMB fluctuations to date.

  2. Community Music during the New Deal: The Contributions of Willem Van de Wall and Max Kaplan

    ERIC Educational Resources Information Center

    Krikun, Andrew

    2010-01-01

    Willem Van de Wall (1887-1953) and Max Kaplan (1911-98) built careers spanning music performance, music education, adult education, sociology, social work, music therapy and community music. Willem Van de Wall was a seminal influence on the development of the fields of music therapy and adult education--researching the role of music in…

  3. Using a MaxEnt Classifier for the Automatic Content Scoring of Free-Text Responses

    SciTech Connect

    Sukkarieh, Jana Z.

    2011-03-14

    Criticisms against multiple-choice item assessments in the USA have prompted researchers and organizations to move towards constructed-response (free-text) items. Constructed-response (CR) items pose many challenges to the education community - one of which is that they are expensive to score by humans. At the same time, there has been widespread movement towards computer-based assessment and hence, assessment organizations are competing to develop automatic content scoring engines for such items types - which we view as a textual entailment task. This paper describes how MaxEnt Modeling is used to help solve the task. MaxEnt has been used in many natural language tasks but this is the first application of the MaxEnt approach to textual entailment and automatic content scoring.

  4. Bayesian evidence of the post-Planck curvaton

    SciTech Connect

    Hardwick, Robert J.; Byrnes, Christian T. E-mail: c.byrnes@sussex.ac.uk

    2015-08-01

    We perform a Bayesian model comparison for scenarios within the quadratic curvaton model, determining the degree to which both are disfavoured with respect to the ΛCDM concordance model and single-field quadratic inflation, using the recent Planck data release. Despite having three additional model parameters, the simplest curvaton scenario is not disfavoured relative to single-field quadratic inflation, and it becomes favoured against this single-field model when we include the joint BICEP/Keck/Planck analysis. In all cases we assume an instantaneous inflaton decay and no surviving isocurvature perturbations. Despite the success of Planck reaching its forecast measurement accuracy, we show that the current constraints on local non-Gaussianity are insufficiently precise to have any significant impact on the evidence ratios so far. We also determine the precision σ(f{sub NL}) required by future measurements assuming a fiducial value of f{sub NL}=−5/4 or 10.8 to no longer disfavour the curvaton against the ΛCDM parametrisation, and we discuss the effect that the predicted increase in precision from future measurements on f{sub NL} may have. We show that our results are not very sensitive to our choice of priors.

  5. An Efficient Numerical Approach for Nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin; Vedula, Prakash

    2009-03-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities that occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, classical fermions and bosons can be challenging to solve numerically. To address some underlying challenges in obtaining numerical solutions, we propose a quadrature based moment method for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations. In this approach the distribution function is represented as a collection of Dirac delta functions with corresponding quadrature weights and locations, that are in turn determined from constraints based on evolution of generalized moments. Properties of the distribution function can be obtained by solution of transport equations for quadrature weights and locations. We will apply this computational approach to study a wide range of problems, including the Desai-Zwanzig Model (for nonlinear muscular contraction) and multivariate nonlinear Fokker-Planck equations describing classical fermions and bosons, and will also demonstrate good agreement with results obtained from Monte Carlo and other standard numerical methods.

  6. Characteristics of GPS sources in the Planck survey

    NASA Astrophysics Data System (ADS)

    Volvach, A. E.; Kardashev, N. S.; Larionov, M. G.; Volvach, L. N.

    2016-09-01

    Two series of 22.2 and 36.8-GHz observations of 43 GHz-Peaked Spectrum (GPS) radio sources from the Planck survey have been carried out using the 22-m radio telescope of the Crimean Astrophysical Observatory in 2014-2015, with the aim of studying the variability of these sources. The interval between the two series of observations was about nine months. These data were analyzed together with the Planck data at frequencies from 20 to 143 GHz. The fraction of quasars among GPS sources grows to 90% at millimeter wavelengths, compared to 1.4% at decimeter wavelengths. The growth in the variability indices of Planck GPS sources is not as sharp as that observed at decimeter and centimeter wavelengths, and remains at a level of about 30% at millimeter wavelengths. This supports the view that GPS sources are not strongly variable, compared to other types of Active Galactic Nuclei (AGNs). A mean spectrumfor the GPS radio sources has been obtained, which is shallower at low frequencies and steeper at high frequencies atmillimeter wavelengths than at decimeter and centimeterwavelengths. These properties of the GPS spectra at millimeter wavelengths testify to the compactness of these sources and the dense, inhomogeneous nature of the medium in which they are located. This also indirectly suggests that these objects are young and that their active states have short lifetimes.

  7. Confronting the concordance model of cosmology with Planck data

    SciTech Connect

    Hazra, Dhiraj Kumar; Shafieloo, Arman E-mail: arman@apctp.org

    2014-01-01

    We confront the concordance (standard) model of cosmology, the spatially flat ΛCDM Universe with power-law form of the primordial spectrum with Planck CMB angular power spectrum data searching for possible smooth deviations beyond the flexibility of the standard model. The departure from the concordance cosmology is modeled in the context of Crossing statistic and statistical significance of this deviation is used as a measure to test the consistency of the standard model to the Planck data. Derived Crossing functions suggest the presence of some broad features in angular spectrum beyond the expectations of the concordance model. Our results indicate that the concordance model of cosmology is consistent to the Planck data only at 2 to 3σ confidence level if we allow smooth deviations from the angular power spectrum given by the concordance model. This might be due to random fluctuations or may hint towards smooth features in the primordial spectrum or departure from another aspect of the standard model. Best fit Crossing functions indicate that there are lack of power in the data at both low-ℓ and high-ℓ with respect to the concordance model. This hints that we may need some modifications in the foreground modeling to resolve the significant inconsistency at high-ℓ. However, presence of some systematics at high-ℓ might be another reason for the deviation we found in our analysis.

  8. Possible signature of distant foreground in the Planck data

    NASA Astrophysics Data System (ADS)

    Yershov, V. N.; Orlov, V. V.; Raikov, A. A.

    2014-12-01

    By using the Planck map of the cosmic microwave background (CMB) radiation, we have checked and confirmed the existence of a correlation between supernova (SN) redshifts, zSN, and CMB temperature fluctuations at the SNe locations, TSN, which we previously reported for the Wilkinson Microwave Anisotropy Probe data. The Pearson correlation coefficient for the Planck data is r = +0.38 ± 0.08, which indicates that the correlation is statistically significant (the signal is about 5σ above the noise level). The correlation becomes even stronger for the Type Ia subsample of SNe, rIa = +0.45 ± 0.09, whereas for the rest of the SNe it is vanishing. By checking the slopes of the regression lines TSN/zSN for Planck's different frequency bands, we have also excluded the possibility of this anomaly being caused by the Sunyaev-Zeldovich effect. The remaining possibility is some, unaccounted for, contribution to the CMB from distant (z > 0.3) foreground through either the integrated Sachs-Wolfe effect or thermal emission from intergalactic matter.

  9. New constraints on primordial gravitational waves from Planck 2015

    NASA Astrophysics Data System (ADS)

    Pagano, Luca; Salvati, Laura; Melchiorri, Alessandro

    2016-09-01

    We show that the new precise measurements of Cosmic Microwave Background (CMB) temperature and polarization anisotropies made by the Planck satellite significantly improves previous constraints on the cosmic gravitational waves background (CGWB) at frequencies f >10-15 Hz. On scales smaller than the horizon at the time of decoupling, primordial gravitational waves contribute to the total radiation content of the Universe. Considering adiabatic perturbations, CGWB affects temperature and polarization CMB power spectra and matter power spectrum in a manner identical to relativistic particles. Considering the latest Planck results we constrain the CGWB energy density to Ωgwh2 < 1.7 ×10-6 at 95% CL. Combining CMB power spectra with lensing, BAO and primordial Deuterium abundance observations, we obtain Ωgwh2 < 1.2 ×10-6 at 95% CL, improving previous Planck bounds by a factor 3 and the recent direct upper limit from the LIGO and VIRGO experiments a factor 2. A combined analysis of future satellite missions as COrE and EUCLID could improve current bound by more than an order of magnitude.

  10. What Planck does not tell us about inflation

    NASA Astrophysics Data System (ADS)

    Elliston, Joseph; Mulryne, David; Tavakol, Reza

    2013-09-01

    Planck data has not found the “smoking gun” of non-Gaussianity that would have necessitated consideration of inflationary models beyond the simplest canonical single-field scenarios. This raises the important question of what these results do imply for more general models, and in particular, multifield inflation. In this paper we revisit four ways in which two-field scenarios can behave differently from single-field models; two-field slow-roll dynamics, curvaton-type behavior, inflation ending on an inhomogeneous hypersurface and modulated reheating. We study the constraints that Planck data puts on these classes of behavior, focusing on the latter two which are the least studied in the recent literature. We show that these latter classes are almost equivalent, and extend their previous analyses by accounting for arbitrary evolution of the isocurvature mode which, in particular, places important limits on the Gaussian curvature of the reheating hypersurface. In general, however, we find that Planck bispectrum results only constrain certain regions of parameter space, leading us to conclude that inflation sourced by more than one scalar field remains an important possibility.

  11. Dielectric polarization in the Planck theory of sonoluminescence.

    PubMed

    Prevenslik, T V

    1998-11-01

    Sonoluminescence observed in the cavitation of liquid H2O may be explained by the Planck theory of SL, which treats the bubbles as collapsing miniature masers having optical waves standing in resonance with the dimensions of the bubble cavity. Microwaves are shown to be created from the Planck energy of the standing waves, provided the bubble wall can be treated as a perfect blackbody surface. Liquid H2O is strongly absorbent in the ultraviolet and there the bubble approaches a Planck blackbody enclosure. The microwaves are created at frequencies proportional to the bubble collapse velocity only to be promptly absorbed by the rotation quantum states of the H2O and other bubble wall molecules. The microwaves are absorbed discretely at rotation line frequencies, or continuously by dipole rotation at frequencies from 1 to 30 GHz. In the liquid state, molecular rotation of the H2O molecule is hindered and the microwave energy is rapidly turned into bending energy by intermolecular collisions. Subsequently, the bubble wall molecules may thereby ionize and produce visible photons. The microwaves create intense electrical fields in the bubble wall by dielectric polarization. If the gases adjacent to the bubble wall undergo electrical breakdown, free electrons are created, thereby providing sonoluminescence with a magnetic field effect.

  12. Did Heisenberg Spit at Max Born?

    NASA Astrophysics Data System (ADS)

    Lustig, Harry

    2005-04-01

    In his 1985 book ``The Griffin,'' Arnold Kramish quotes an unnamed ``associate'' of Max Born that when Heisenberg ''was . . . a professor in Göttingen and when the Borns went to visit him, they were met with anti-Jewish sneers and obscenities, and in the end Heisenberg spat on the floor at Max Born's feet!". Kramish, in his own words, states that Heisenberg spat at Born and that the incident took place in 1933. Paul Lawrence Rose places the incident in 1953 and, on the basis of a fuller account from Kramish than the one published, identifies the associate as Born's secretary at Edinburgh University. One may be critical of Heisenberg's character and his behavior under the Nazis, and still be highly skeptical of the Kramish-Rose allegation. The life-long friendship between Born and Heisenberg and the respect which they displayed for each other before, during, and after the Nazi regime, has hardly been challenged by anyone. No known biography of Heisenberg mentions the alleged episode, and none of his obituaries alludes to it. There is no reference to it in Born's autobiography. None of the historians of science, German and American, whom I have consulted credit it. Although it is difficult to prove a negative, it is highly unlikely that Heisenberg spit at Born or on the floor on which they stood.

  13. Cosmic microwave background reconstruction from WMAP and Planck PR2 data

    NASA Astrophysics Data System (ADS)

    Bobin, J.; Sureau, F.; Starck, J.-L.

    2016-06-01

    We describe a new estimate of the cosmic microwave background (CMB) intensity map reconstructed by a joint analysis of the full Planck 2015 data (PR2) and nine years of WMAP data. The proposed map provides more than a mere update of the CMB map introduced in a previous paper since it benefits from an improvement of the component separation method L-GMCA (Local-Generalized Morphological Component Analysis), which facilitates efficient separation of correlated components. Based on the most recent CMB data, we further confirm previous results showing that the proposed CMB map estimate exhibits appealing characteristics for astrophysical and cosmological applications: i) it is a full-sky map as it did not require any inpainting or interpolation postprocessing; ii) foreground contamination is very low even on the galactic center; and iii) the map does not exhibit any detectable trace of thermal Sunyaev-Zel'dovich contamination. We show that its power spectrum is in good agreement with the Planck PR2 official theoretical best-fit power spectrum. Finally, following the principle of reproducible research, we provide the codes to reproduce the L-GMCA, which makes it the only reproducible CMB map. The reconstructed CMB map and the code are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/591/A50

  14. Smoke signals and seed dormancy: where next for MAX2?

    PubMed

    Waters, Mark T; Smith, Steven M; Nelson, David C

    2011-09-01

    The Arabidopsis thaliana F-box protein MAX2 has been discovered in four separate genetic screens, indicating that it has roles in leaf senescence, seedling photosensitivity, shoot outgrowth, and seed germination. Both strigolactones and karrikins can regulate A. thaliana seed germination and seedling photomorphogenesis in a MAX2-dependent manner, but only strigolactones inhibit shoot branching. How MAX2 mediates specific responses to both classes of structurally-related signals, and the origin of its dual role remains unknown. The moss Physcomitrella patens utilizes strigolactones and MAX2 orthologs are present across the land plants, suggesting that this signaling system could have an ancient origin. The seed of parasitic Orobanchaceae species germinate preferentially in response to strigolactones over karrikins, and putative Orobanchaceae MAX2 orthologs form a sub-clade distinct from those of other dicots. These observations suggest that lineage-specific evolution of MAX2 may have given rise to specialized responses to these signaling molecules. 

  15. Biofortification of soy (Glycine max (L.) Merr.) with strontium ions.

    PubMed

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Dresler, Sławomir; Szwerc, Wojciech; Blicharski, Tomasz; Szymczak, Grażyna; Kocjan, Ryszard

    2014-06-11

    Soy (Glycine max (L.) Merr.) is an annual plant cultivated worldwide mostly for food. Moreover, due to its pharmacological properties it is widely used in pharmacy for alleviating the symptoms of osteoporosis. The aim of the present study was to investigate the biofortification of soy treated with various concentrations of strontium. Soy was found to have a strong capacity to absorb Sr(2+) (bioconcentration factor higher than 1). A positive linear correlation (R(2) > 0.98) between the amount of strontium in the growth medium and its content in the plant was also observed. Moreover, at a concentration of 1.5 mM, strontium appeared to be nontoxic and even stimulated plant growth by approximately 19.4% and 22.6% of fresh weight for shoots and roots, respectively. Our research may be useful to obtain vegetable products or herbal preparations containing both phytoestrogens and strontium to prevent postmenopausal osteoporosis.

  16. Biofortification of soy (Glycine max (L.) Merr.) with strontium ions.

    PubMed

    Sowa, Ireneusz; Wójciak-Kosior, Magdalena; Strzemski, Maciej; Dresler, Sławomir; Szwerc, Wojciech; Blicharski, Tomasz; Szymczak, Grażyna; Kocjan, Ryszard

    2014-06-11

    Soy (Glycine max (L.) Merr.) is an annual plant cultivated worldwide mostly for food. Moreover, due to its pharmacological properties it is widely used in pharmacy for alleviating the symptoms of osteoporosis. The aim of the present study was to investigate the biofortification of soy treated with various concentrations of strontium. Soy was found to have a strong capacity to absorb Sr(2+) (bioconcentration factor higher than 1). A positive linear correlation (R(2) > 0.98) between the amount of strontium in the growth medium and its content in the plant was also observed. Moreover, at a concentration of 1.5 mM, strontium appeared to be nontoxic and even stimulated plant growth by approximately 19.4% and 22.6% of fresh weight for shoots and roots, respectively. Our research may be useful to obtain vegetable products or herbal preparations containing both phytoestrogens and strontium to prevent postmenopausal osteoporosis. PMID:24835388

  17. MAX-DOAS observations and their application to the validation of satellite and model data in Wuxi, China

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wagner, T.; Xie, P.; Theys, N.; De Smedt, I.; Koukouli, M.; Stavrakou, T.; Beirle, S.; Li, A.

    2015-12-01

    Thomas Wagner1, Pinhua Xie2, Nicolas Theys3, Isabelle De Smedt3, MariLiza Koukouli4, Trissevgeni Stavrakou3, Steffen Beirle1, Ang Li2,1) Satellite group, Max Planck institute for Chemistry, Mainz, Germany2) Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China 3) BIRA-IASB, Brussels, Belgium 4) Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Greece From 2011 to 2014 a MAX-DOAS instrument developed by the Anhui Institute of Optics and Fine Mechanics institute is operated in Wuxi, China, which is locatd about 100 km west of Shanghai. We determine the tropospheric vertical column densities (VCDs), near surface concentrations and vertical profiles of aerosols, NO2, SO2, HCHO from the MAX-DOAS observations using the optimal estimation profile retrieval algorithm (refered to as "PriAM"). We verified the results by comparing them with results from independent techniques, such as sun photometer (AERONET), a visibility meter and a long-path DOAS instrument. We acquire the cloud and aerosol conditions using a cloud classification scheme based on the MAX-DOAS observations (Wang et al., AMTD, 2015). Based on the obtained results, we characterize the effect of the clouds on the trace gas and aerosol profiles retrieved from MAX-DOAS. Then we characterize the diurnal, annual and weekly variations of the trace gases and aerosols and validate the tropospheric trace gas VCDs derived from the Ozone Monitoring instrument (OMI) on the Aura satellite platform as well as the model results from the IMAGES, CHIMERE and Lotos-Euros models and analyse the agreement depending on the cloud and aerosol conditions. Besides the direct comparison with the satellite data, we also use the trace gas and aerosol profiles derived from MAX-DOAS to recalculate the air mass factor (AMF) for the satellite observations and to evaluate the corresponding improvement of the satellite VCDs. In some periods with strong aerosol pollution, we evaluate the

  18. The MAX facility for CFD code validation

    SciTech Connect

    Lomperski, S.; Merzari, E.; Obabko, A.; Pointer, W. D.; Fischer, P.

    2012-07-01

    ANL has recently completed construction of a fluid dynamics test facility devised to provide validation data for CFD simulation tools used to evaluate various aspects of nuclear power plant design and safety. Experiments with the facility involve mixing air jets within a 1x1x1.7m long glass tank at atmospheric pressure. A particle image velocimetry system measures flow velocity and turbulence quantities within the tank while a high-speed infrared camera records temperatures across the tank lid. The tandem of high fidelity thermal and turbulence data is particularly useful for benchmarking transient heat transfer phenomena such as thermal striping. This paper describes the MAX facility, preliminary data obtained during shakedown tests, and the results of companion CFD calculations employing RANS-based Star-CCM+ and large eddy simulations with Nek 5000. (authors)

  19. Unveiling hidden black holes in the cosmic web: Dark matter halos of WISE quasars from Planck CMB lensing

    NASA Astrophysics Data System (ADS)

    Hickox, Ryan

    (DiPompeo, Myers, Hickox, Geach, et al. 2015). Our analysis obtains a quasar bias consistent with that from spatial clustering, and motivate an expansion of this analysis to millions of quasars over the full sky. This ADAP will allow us to (1) Produce the first all-sky measurement of quasar bias using the WISE and Planck data, and (2) Directly compare the halo masses of obscured and unobscured quasars (using wide-area deep optical imaging) and measure the evolution of those biases with redshift, using a technique independent of spatial clustering. These projects will enable a significant step forward in our understanding of the cosmic evolution of black holes and their host halos, and will yield valuable tools for future studies with WISE and Planck. We envision two distinct but complementary analyses combining WISE with Planck: (1) Cross-correlation of ~700,000 WISE-selected quasars with Planck CMB lensing maps over the whole sky, constraining the halo masses of all quasars unbiased with respect to obscuration, and (2) A measurement in the SDSS and Dark Energy Survey (DES) footprints using ~475,000 obscured and unobscured quasars, allowing us to measure the evolution of the host dark matter halo masses of obscured quasars for the first time, by splitting our analysis into multiple redshift bins to explore evolution in quasar halo masses with cosmic time. The proposed work is perfect for the ADAP, as it draws on the unique capabilities of multiple NASA surveys and directly addresses the NASA research objectives of understanding the evolution of galaxies and the nature of black holes.

  20. Go-ahead for ESA's new millennium space observatories Planck and FIRST

    NASA Astrophysics Data System (ADS)

    1999-03-01

    Planck and FIRST will be launched together in the year 2007. Planck is a cosmology mission, designed to test the models describing the origin and evolution of the early Universe. It will do so by studying the Cosmic Background Radiation, a light emitted shortly after the Big Bang that fills the whole Universe and can be detected today, like an "echo" of that primeval explosion. Astronomers consider it a "fossil" radiation, since it holds a lot of information about both the past and the future of the Universe. "Planck will determine fundamental characteristics of the Universe, such as its geometry, its density, and the rate at which it expands. It will also provide important clues as to the kind of matter that fills the Universe", explains Planck Project Scientist Jan Tauber, at ESA's European Space Research and Technology Centre (ESTEC) in The Netherlands. More precisely, the task of Planck will be to measure the temperature of the "echo" of the Big Bang over the whole sky. Though at the time of its emission the Cosmic Background Radiation was very hot, some 3000 degrees, it has since expanded and cooled together with the entire cosmos to a much lower temperature, namely about minus 270 degrees centigrade (3 degrees Kelvin). Planck will look for differences in this temperature as slight as a few microkelvin, thin variations like clots that are, in fact, the "seeds" of the huge condensations of matter in today's Universe. "It will be like watching the birth of the galaxies, the galaxy clusters, all the large-scale structures that we observe today", Tauber says. The two instruments on board Planck, now approved by ESA, are the Low Frequency Instrument (LFI) and the High Frequency Instrument (HFI).They will cover a very broad range of frequencies (between 30 and 857 Gigahertz). The HFI will be designed and built by a Consortium of about 20 institutes led by Jean-Loup Puget of the Institut d'Astrophysique Spatiale in Orsay (France). The LFI will be designed and built

  1. Joint analysis of BICEP2/keck array and Planck Data.

    PubMed

    Ade, P A R; Aghanim, N; Ahmed, Z; Aikin, R W; Alexander, K D; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barkats, D; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Benton, S J; Bernard, J-P; Bersanelli, M; Bielewicz, P; Bischoff, C A; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Brevik, J A; Bucher, M; Buder, I; Bullock, E; Burigana, C; Butler, R C; Buza, V; Calabrese, E; Cardoso, J-F; Catalano, A; Challinor, A; Chary, R-R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Connors, J; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J-M; Désert, F-X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dowell, C D; Duband, L; Ducout, A; Dunkley, J; Dupac, X; Dvorkin, C; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Filippini, J P; Finelli, F; Fliescher, S; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; Golwala, S R; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Halpern, M; Hansen, F K; Hanson, D; Harrison, D L; Hasselfield, M; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hilton, G C; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hristov, V V; Huffenberger, K M; Hui, H; Hurier, G; Irwin, K D; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Karakci, A; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Keihänen, E; Kernasovskiy, S A; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kovac, J M; Krachmalnicoff, N; Kunz, M; Kuo, C L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J-M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leitch, E M; Leonardi, R; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Lueker, M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Mason, P; Matarrese, S; Megerian, K G; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M-A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nguyen, H T; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Brient, R; Ogburn, R W; Orlando, A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Pryke, C; Puget, J-L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Richter, S; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schwarz, R; Scott, D; Seiffert, M D; Sheehy, C D; Spencer, L D; Staniszewski, Z K; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A-S; Sygnet, J-F; Tauber, J A; Teply, G P; Terenzi, L; Thompson, K L; Toffolatti, L; Tolan, J E; Tomasi, M; Tristram, M; Tucci, M; Turner, A D; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Vieregg, A G; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Weber, A C; Wehus, I K; White, M; White, S D M; Willmert, J; Wong, C L; Yoon, K W; Yvon, D; Zacchei, A; Zonca, A

    2015-03-13

    We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2  μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150  GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance. PMID:25815919

  2. Joint analysis of BICEP2/keck array and Planck Data.

    PubMed

    Ade, P A R; Aghanim, N; Ahmed, Z; Aikin, R W; Alexander, K D; Arnaud, M; Aumont, J; Baccigalupi, C; Banday, A J; Barkats, D; Barreiro, R B; Bartlett, J G; Bartolo, N; Battaner, E; Benabed, K; Benoît, A; Benoit-Lévy, A; Benton, S J; Bernard, J-P; Bersanelli, M; Bielewicz, P; Bischoff, C A; Bock, J J; Bonaldi, A; Bonavera, L; Bond, J R; Borrill, J; Bouchet, F R; Boulanger, F; Brevik, J A; Bucher, M; Buder, I; Bullock, E; Burigana, C; Butler, R C; Buza, V; Calabrese, E; Cardoso, J-F; Catalano, A; Challinor, A; Chary, R-R; Chiang, H C; Christensen, P R; Colombo, L P L; Combet, C; Connors, J; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J-M; Désert, F-X; Dickinson, C; Diego, J M; Dole, H; Donzelli, S; Doré, O; Douspis, M; Dowell, C D; Duband, L; Ducout, A; Dunkley, J; Dupac, X; Dvorkin, C; Efstathiou, G; Elsner, F; Enßlin, T A; Eriksen, H K; Falgarone, E; Filippini, J P; Finelli, F; Fliescher, S; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Frejsel, A; Galeotta, S; Galli, S; Ganga, K; Ghosh, T; Giard, M; Gjerløw, E; Golwala, S R; González-Nuevo, J; Górski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Halpern, M; Hansen, F K; Hanson, D; Harrison, D L; Hasselfield, M; Helou, G; Henrot-Versillé, S; Herranz, D; Hildebrandt, S R; Hilton, G C; Hivon, E; Hobson, M; Holmes, W A; Hovest, W; Hristov, V V; Huffenberger, K M; Hui, H; Hurier, G; Irwin, K D; Jaffe, A H; Jaffe, T R; Jewell, J; Jones, W C; Juvela, M; Karakci, A; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Keihänen, E; Kernasovskiy, S A; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kovac, J M; Krachmalnicoff, N; Kunz, M; Kuo, C L; Kurki-Suonio, H; Lagache, G; Lähteenmäki, A; Lamarre, J-M; Lasenby, A; Lattanzi, M; Lawrence, C R; Leitch, E M; Leonardi, R; Levrier, F; Lewis, A; Liguori, M; Lilje, P B; Linden-Vørnle, M; López-Caniego, M; Lubin, P M; Lueker, M; Macías-Pérez, J F; Maffei, B; Maino, D; Mandolesi, N; Mangilli, A; Maris, M; Martin, P G; Martínez-González, E; Masi, S; Mason, P; Matarrese, S; Megerian, K G; Meinhold, P R; Melchiorri, A; Mendes, L; Mennella, A; Migliaccio, M; Mitra, S; Miville-Deschênes, M-A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Murphy, J A; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nguyen, H T; Nørgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Brient, R; Ogburn, R W; Orlando, A; Pagano, L; Pajot, F; Paladini, R; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, T J; Perdereau, O; Perotto, L; Pettorino, V; Piacentini, F; Piat, M; Pietrobon, D; Plaszczynski, S; Pointecouteau, E; Polenta, G; Ponthieu, N; Pratt, G W; Prunet, S; Pryke, C; Puget, J-L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Renzi, A; Richter, S; Ristorcelli, I; Rocha, G; Rossetti, M; Roudier, G; Rowan-Robinson, M; Rubiño-Martín, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Schwarz, R; Scott, D; Seiffert, M D; Sheehy, C D; Spencer, L D; Staniszewski, Z K; Stolyarov, V; Sudiwala, R; Sunyaev, R; Sutton, D; Suur-Uski, A-S; Sygnet, J-F; Tauber, J A; Teply, G P; Terenzi, L; Thompson, K L; Toffolatti, L; Tolan, J E; Tomasi, M; Tristram, M; Tucci, M; Turner, A D; Valenziano, L; Valiviita, J; Van Tent, B; Vibert, L; Vielva, P; Vieregg, A G; Villa, F; Wade, L A; Wandelt, B D; Watson, R; Weber, A C; Wehus, I K; White, M; White, S D M; Willmert, J; Wong, C L; Yoon, K W; Yvon, D; Zacchei, A; Zonca, A

    2015-03-13

    We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400  deg^{2} patch of sky centered on RA 0 h, Dec. -57.5°. The combined maps reach a depth of 57 nK deg in Stokes Q and U in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2  μK deg in Q and U at 143 GHz). We detect 150×353 cross-correlation in B modes at high significance. We fit the single- and cross-frequency power spectra at frequencies ≥150  GHz to a lensed-ΛCDM model that includes dust and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r), using a prior on the frequency spectral behavior of polarized dust emission from previous Planck analysis of other regions of the sky. We find strong evidence for dust and no statistically significant evidence for tensor modes. We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the r constraint. Finally, we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for r, and yields an upper limit r_{0.05}<0.12 at 95% confidence. Marginalizing over dust and r, lensing B modes are detected at 7.0σ significance.

  3. Local analyses of Planck maps with Minkowski functionals

    NASA Astrophysics Data System (ADS)

    Novaes, C. P.; Bernui, A.; Marques, G. A.; Ferreira, I. S.

    2016-09-01

    Minkowski functionals (MF) are excellent tools to investigate the statistical properties of the cosmic background radiation (CMB) maps. Between their notorious advantages is the possibility to use them efficiently in patches of the CMB sphere, which allow studies in masked skies, inclusive analyses of small sky regions. Then, possible deviations from Gaussianity are investigated by comparison with MF obtained from a set of Gaussian isotropic simulated CMB maps to which are applied the same cut-sky masks. These analyses are sensitive enough to detect contaminations of small intensity like primary and secondary CMB anisotropies. Our methodology uses the MF, widely employed to study non-Gaussianities in CMB data, and asserts Gaussian deviations only when all of them points out an exceptional χ2 value, at more than 2.2σ confidence level, in a given sky patch. Following this rigorous procedure, we find 13 regions in the foreground-cleaned Planck maps that evince such high levels of non-Gaussian deviations. According to our results, these non-Gaussian contributions show signatures that can be associated to the presence of hot or cold spots in such regions. Moreover, some of these non-Gaussian deviations signals suggest the presence of foreground residuals in those regions located near the Galactic plane. Additionally, we confirm that most of the regions revealed in our analyses, but not all, have been recently reported in studies done by the Planck collaboration. Furthermore, we also investigate whether these non-Gaussian deviations can be possibly sourced by systematics, like inhomogeneous noise and beam effect in the released Planck data, or perhaps due to residual Galactic foregrounds.

  4. Planck 2015 results. IX. Diffuse component separation: CMB maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Casaponsa, B.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fantaye, Y.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Molinari, D.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We present foreground-reduced cosmic microwave background (CMB) maps derived from the full Planck data set in both temperature and polarization. Compared to the corresponding Planck 2013 temperature sky maps, the total data volume is larger by a factor of 3.2 for frequencies between 30 and 70 GHz, and by 1.9 for frequencies between 100 and 857 GHz. In addition, systematic errors in the forms of temperature-to-polarization leakage, analogue-to-digital conversion uncertainties, and very long time constant errors have been dramatically reduced, to the extent that the cosmological polarization signal may now be robustly recovered on angular scales ℓ ≳ 40. On the very largest scales, instrumental systematic residuals are still non-negligible compared to the expected cosmological signal, and modes with ℓ< 20 are accordingly suppressed in the current polarization maps by high-pass filtering. As in 2013, four different CMB component separation algorithms are applied to these observations, providing a measure of stability with respect to algorithmic and modelling choices. The resulting polarization maps have rms instrumental noise ranging between 0.21 and 0.27μK averaged over 55' pixels, and between 4.5 and 6.1μK averaged over 3.4 parcm pixels. The cosmological parameters derived from the analysis of temperature power spectra are in agreement at the 1σ level with the Planck 2015 likelihood. Unresolved mismatches between the noise properties of the data and simulations prevent a satisfactory description of the higher-order statistical properties of the polarization maps. Thus, the primary applications of these polarization maps are those that do not require massive simulations for accurate estimation of uncertainties, for instance estimation of cross-spectra and cross-correlations, or stacking analyses. However, the amplitude of primordial non-Gaussianity is consistent with zero within 2σ for all local, equilateral, and orthogonal configurations of the bispectrum

  5. The traces of anisotropic dark energy in light of Planck

    SciTech Connect

    Cardona, Wilmar; Kunz, Martin; Hollenstein, Lukas E-mail: lukas.hollenstein@zhaw.ch

    2014-07-01

    We study a dark energy model with non-zero anisotropic stress, either linked to the dark energy density or to the dark matter density. We compute approximate solutions that allow to characterise the behaviour of the dark energy model and to assess the stability of the perturbations. We also determine the current limits on such an anisotropic stress from the cosmic microwave background data by the Planck satellite, and derive the corresponding constraints on the modified growth parameters like the growth index, the effective Newton's constant and the gravitational slip.

  6. Planck 2015 results. XIV. Dark energy and modified gravity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Ma, Y.-Z.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marchini, A.; Maris, M.; Martin, P. G.; Martinelli, M.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Salvatelli, V.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Viel, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We study the implications of Planck data for models of dark energy (DE) and modified gravity (MG) beyond the standard cosmological constant scenario. We start with cases where the DE only directly affects the background evolution, considering Taylor expansions of the equation of state w(a), as well as principal component analysis and parameterizations related to the potential of a minimally coupled DE scalar field. When estimating the density of DE at early times, we significantly improve present constraints and find that it has to be below ~2% (at 95% confidence) of the critical density, even when forced to play a role for z < 50 only. We then move to general parameterizations of the DE or MG perturbations that encompass both effective field theories and the phenomenology of gravitational potentials in MG models. Lastly, we test a range of specific models, such as k-essence, f(R) theories, and coupled DE. In addition to the latest Planck data, for our main analyses, we use background constraints from baryonic acoustic oscillations, type-Ia supernovae, and local measurements of the Hubble constant. We further show the impact of measurements of the cosmological perturbations, such as redshift-space distortions and weak gravitational lensing. These additional probes are important tools for testing MG models and for breaking degeneracies that are still present in the combination of Planck and background data sets. All results that include only background parameterizations (expansion of the equation of state, early DE, general potentials in minimally-coupled scalar fields or principal component analysis) are in agreement with ΛCDM. When testing models that also change perturbations (even when the background is fixed to ΛCDM), some tensions appear in a few scenarios: the maximum one found is ~2σ for Planck TT+lowP when parameterizing observables related to the gravitational potentials with a chosen time dependence; the tension increases to, at most, 3σ when external

  7. Planck-scale effects on WIMP dark matter

    NASA Astrophysics Data System (ADS)

    Boucenna, Sofiane; Valle, Jose; Lineros, Roberto

    2014-01-01

    There exists a widely known conjecture that gravitational effects violate global symmetries. We study the effect of global-symmetry violating higher-dimension operators induced by Planck-scale physics on the properties of WIMP dark matter. Using an effective description, we show that the lifetime of the WIMP dark matter candidate can satisfy cosmological bounds under reasonable assumptions regarding the strength of the dimension-five operators. On the other hand, the indirect WIMP dark matter detection signal is significantly enhanced due to new decay channels.

  8. A fractional Fokker-Planck model for anomalous diffusion

    SciTech Connect

    Anderson, Johan; Kim, Eun-jin; Moradi, Sara

    2014-12-15

    In this paper, we present a study of anomalous diffusion using a Fokker-Planck description with fractional velocity derivatives. The distribution functions are found using numerical means for varying degree of fractionality of the stable Lévy distribution. The statistical properties of the distribution functions are assessed by a generalized normalized expectation measure and entropy in terms of Tsallis statistical mechanics. We find that the ratio of the generalized entropy and expectation is increasing with decreasing fractionality towards the well known so-called sub-diffusive domain, indicating a self-organising behavior.

  9. Bounds on very low reheating scenarios after Planck

    NASA Astrophysics Data System (ADS)

    de Salas, P. F.; Lattanzi, M.; Mangano, G.; Miele, G.; Pastor, S.; Pisanti, O.

    2015-12-01

    We consider the case of very low reheating scenarios [TRH˜O (MeV ) ] with a better calculation of the production of the relic neutrino background (with three-flavor oscillations). At 95% confidence level, a lower bound on the reheating temperature TRH>4.1 MeV is obtained from big bang nucleosynthesis, while TRH>4.7 MeV from Planck data (allowing neutrino masses to vary), the most stringent bound on the reheating temperature to date. Neutrino masses as large as 1 eV are possible for very low reheating temperatures.

  10. Braneworld inflation with a complex scalar field from Planck 2015

    NASA Astrophysics Data System (ADS)

    Mounzi, Z.; Ferricha-Alami, M.; Chakir, H.; Bennai, M.

    2016-06-01

    We study an inflationary model with a single complex scalar field in the framework of braneworld Randall-Sundrum model type 2. From the scalar curvature perturbation constrained by the recent observation values, and for specific choice of parameters, we can reduce the values of the coupling constant to take the natural values, and we found that the phase theta θ of the inflation field can take the narrow interval. We have also derived all known inflationary parameters (ns, r and dns/d ln (k)), which are widely consistent with the recent Planck data for a suitable choice of brane tension value λ.

  11. Max Weber's Critique of the Bureaucratisation of Education

    ERIC Educational Resources Information Center

    Madan, Amman

    2014-01-01

    In this commentary, the author discusses the critique by Max Weber and his views on bureaucratisation of education. The modern school, said Max Weber (1864-1920) over a hundred years ago, has as its educational ideal the bureaucrat and no longer the cultivated elite of older times. The shift to modernity and to its characteristic institution, the…

  12. Intertextuality and Television Discourse: The Max Headroom Story.

    ERIC Educational Resources Information Center

    Braddlee

    Max Headroom, the computer-generated media personality, presents a good opportunity for an investigation of the degree of intertextuality in television. Max combines narrative genres (science fiction and film noir), television program types (prime-time episodic narrative, made-for-TV movie, talkshows), advertising and programming, and electronic…

  13. Weighted MinMax Algorithm for Color Image Quantization

    NASA Technical Reports Server (NTRS)

    Reitan, Paula J.

    1999-01-01

    The maximum intercluster distance and the maximum quantization error that are minimized by the MinMax algorithm are shown to be inappropriate error measures for color image quantization. A fast and effective (improves image quality) method for generalizing activity weighting to any histogram-based color quantization algorithm is presented. A new non-hierarchical color quantization technique called weighted MinMax that is a hybrid between the MinMax and Linde-Buzo-Gray (LBG) algorithms is also described. The weighted MinMax algorithm incorporates activity weighting and seeks to minimize WRMSE, whereby obtaining high quality quantized images with significantly less visual distortion than the MinMax algorithm.

  14. 76 FR 20433 - MaxLife Fund Corp.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-12

    ... COMMISSION MaxLife Fund Corp.; Order of Suspension of Trading April 8, 2011. It appears to the Securities and... MaxLife Fund Corp. (``MaxLife'') because of questions that have arisen concerning representations made by MaxLife, the control of its stock, its market price, and trading in the stock. MaxLife trades...

  15. Planck early results. V. The Low Frequency Instrument data processing

    NASA Astrophysics Data System (ADS)

    Zacchei, A.; Maino, D.; Baccigalupi, C.; Bersanelli, M.; Bonaldi, A.; Bonavera, L.; Burigana, C.; Butler, R. C.; Cuttaia, F.; de Zotti, G.; Dick, J.; Frailis, M.; Galeotta, S.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Keihänen, E.; Keskitalo, R.; Knoche, J.; Kurki-Suonio, H.; Lawrence, C. R.; Leach, S.; Leahy, J. P.; López-Caniego, M.; Mandolesi, N.; Maris, M.; Matthai, F.; Meinhold, P. R.; Mennella, A.; Morgante, G.; Morisset, N.; Natoli, P.; Pasian, F.; Perrotta, F.; Polenta, G.; Poutanen, T.; Reinecke, M.; Ricciardi, S.; Rohlfs, R.; Sandri, M.; Suur-Uski, A.-S.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Valiviita, J.; Villa, F.; Zonca, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Bedini, L.; Bennett, K.; Binko, P.; Borrill, J.; Bouchet, F. R.; Bremer, M.; Cabella, P.; Cappellini, B.; Chen, X.; Colombo, L.; Cruz, M.; Curto, A.; Danese, L.; Davies, R. D.; Davis, R. J.; de Gasperis, G.; de Rosa, A.; de Troia, G.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Dörl, U.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falvella, M. C.; Finelli, F.; Franceschi, E.; Gaier, T. C.; Gasparo, F.; Génova-Santos, R. T.; Giardino, G.; Gómez, F.; Gruppuso, A.; Hansen, F. K.; Hell, R.; Herranz, D.; Hovest, W.; Huynh, M.; Jewell, J.; Juvela, M.; Kisner, T. S.; Knox, L.; Lähteenmäki, A.; Lamarre, J.-M.; Leonardi, R.; León-Tavares, J.; Lilje, P. B.; Lubin, P. M.; Maggio, G.; Marinucci, D.; Martínez-González, E.; Massardi, M.; Matarrese, S.; Meharga, M. T.; Melchiorri, A.; Migliaccio, M.; Mitra, S.; Moss, A.; Nørgaard-Nielsen, H. U.; Pagano, L.; Paladini, R.; Paoletti, D.; Partridge, B.; Pearson, D.; Pettorino, V.; Pietrobon, D.; Prézeau, G.; Procopio, P.; Puget, J.-L.; Quercellini, C.; Rachen, J. P.; Rebolo, R.; Robbers, G.; Rocha, G.; Rubiño-Martín, J. A.; Salerno, E.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Silk, J. I.; Smoot, G. F.; Sternberg, J.; Stivoli, F.; Stompor, R.; Tofani, G.; Toffolatti, L.; Tuovinen, J.; Türler, M.; Umana, G.; Vielva, P.; Vittorio, N.; Vuerli, C.; Wade, L. A.; Watson, R.; White, S. D. M.; Wilkinson, A.

    2011-12-01

    We describe the processing of data from the Low Frequency Instrument (LFI) used in production of the Planck Early Release Compact Source Catalogue (ERCSC). In particular, we discuss the steps involved in reducing the data from telemetry packets to cleaned, calibrated, time-ordered data (TOD) and frequency maps. Data are continuously calibrated using the modulation of the temperature of the cosmic microwave background radiation induced by the motion of the spacecraft. Noise properties are estimated from TOD from which the sky signal has been removed using a generalized least square map-making algorithm. Measured 1/f noise knee-frequencies range from ~100 mHz at 30 GHz to a few tens of mHz at 70GHz. A destriping code (Madam) is employed to combine radiometric data and pointing information into sky maps, minimizing the variance of correlated noise. Noise covariance matrices required to compute statistical uncertainties on LFI and Planck products are also produced. Main beams are estimated down to the ≈-10dB level using Jupiter transits, which are also used for geometrical calibration of the focal plane. Corresponding author: A. Zacchei, e-mail: zacchei@oats.inaf.it

  16. Bayesian inference based on stationary Fokker-Planck sampling.

    PubMed

    Berrones, Arturo

    2010-06-01

    A novel formalism for bayesian learning in the context of complex inference models is proposed. The method is based on the use of the stationary Fokker-Planck (SFP) approach to sample from the posterior density. Stationary Fokker-Planck sampling generalizes the Gibbs sampler algorithm for arbitrary and unknown conditional densities. By the SFP procedure, approximate analytical expressions for the conditionals and marginals of the posterior can be constructed. At each stage of SFP, the approximate conditionals are used to define a Gibbs sampling process, which is convergent to the full joint posterior. By the analytical marginals efficient learning methods in the context of artificial neural networks are outlined. Offline and incremental bayesian inference and maximum likelihood estimation from the posterior are performed in classification and regression examples. A comparison of SFP with other Monte Carlo strategies in the general problem of sampling from arbitrary densities is also presented. It is shown that SFP is able to jump large low-probability regions without the need of a careful tuning of any step-size parameter. In fact, the SFP method requires only a small set of meaningful parameters that can be selected following clear, problem-independent guidelines. The computation cost of SFP, measured in terms of loss function evaluations, grows linearly with the given model's dimension.

  17. The observational status of Galileon gravity after Planck

    SciTech Connect

    Barreira, Alexandre; Li, Baojiu; Baugh, Carlton M.; Pascoli, Silvia E-mail: baojiu.li@durham.ac.uk E-mail: silvia.pascoli@durham.ac.uk

    2014-08-01

    We use the latest CMB data from Planck, together with BAO measurements, to constrain the full parameter space of Galileon gravity. We constrain separately the three main branches of the theory known as the Cubic, Quartic and Quintic models, and find that all yield a very good fit to these data. Unlike in ΛCDM, the Galileon model constraints are compatible with local determinations of the Hubble parameter and predict nonzero neutrino masses at over 5σ significance. We also identify that the low l part of the CMB lensing spectrum may be able to distinguish between ΛCDM and Galileon models. In the Cubic model, the lensing potential deepens at late times on sub-horizon scales, which is at odds with the current observational suggestion of a positive ISW effect. Compared to ΛCDM, the Quartic and Quintic models predict less ISW power in the low l region of the CMB temperature spectrum, and as such are slightly preferred by the Planck data. We illustrate that residual local modifications to gravity in the Quartic and Quintic models may render the Cubic model as the only branch of Galileon gravity that passes Solar System tests.

  18. DBI Galileon inflation in the light of Planck 2015

    NASA Astrophysics Data System (ADS)

    Sravan Kumar, K.; Bueno Sánchez, Juan C.; Escamilla-Rivera, Celia; Marto, J.; Vargas Moniz, P.

    2016-02-01

    In this work we consider a DBI Galileon (DBIG) inflationary model and constrain its parameter space with the Planck 2015 and BICEP2/Keck array and Planck (BKP) joint analysis data by means of a potential independent analysis. We focus our attention on inflationary solutions characterized by a constant or varying sound speed as well as warp factor. We impose bounds on stringy aspects of the model, such as the warp factor (f) and the induced gravity parameter (tilde m). We study the parameter space of the model and find that the tensor-to-scalar ratio can be as low as r simeq 6 × 10-4 and inflation happens to be at GUT scale. In addition, we obtain the tilt of the tensor power spectrum and test the standard inflationary consistency relation (r = -8nt) against the latest bounds from the combined results of BKP+Laser Interferometer Gravitational-Waves Observatory (LIGO), and find that DBIG inflation predicts a red spectral index for the tensor power spectrum.

  19. From Planck Constant to Isomorphicity Through Justice Paradox

    NASA Astrophysics Data System (ADS)

    Hidajatullah-Maksoed, Widastra

    2015-05-01

    Robert E. Scott in his ``Chaos theory and the Justice Paradox'', William & Mary Law Review, v 35, I 1, 329 (1993) wrotes''...As we approach the 21-st Century, the signs of social disarray are everywhere. Social critics observe the breakdown of core structure - the nuclear family, schools, neighborhoods & political groups''. For completions for ``soliton'' first coined by Morikazu TODA, comparing the ``Soliton on Scott-Russell aqueduct on the Union Canal near Heriot-WATT University, July 12, 1995 to Michael Stock works: ``a Fine WATT-Balance: Determination of Planck constant & Redefinition of Kilogram'', January 2011, we can concludes the inherencies between `chaos' & `soliton'. Further through ``string theory'' from Michio KAKU sought statements from Peter Mayr: Stringy world brane & Exponential hierarchy'', JHEP 11 (2000): ``if the 5-brane is embedded in flat 10-D space time, the 6-D Planck mass on the brane is infinite'' who also describes the relation of isomorphicity & ``string theory'', from whom denotes the smart city. Replace this text with your abstract body. Incredible acknowledgments to HE. Mr. Drs. P. SWANTORO & HE. Mr. Dr-HC Jakob OETAMA.

  20. Planck intermediate results. XXXI. Microwave survey of Galactic supernova remnants

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brogan, C. L.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Donzelli, S.; Doré, O.; Dupac, X.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D. L.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hobson, M.; Holmes, W. A.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lawrence, C. R.; Leonardi, R.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Maino, D.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Noviello, F.; Novikov, D.; Novikov, I.; Oppermann, N.; Oxborrow, C. A.; Pagano, L.; Pajot, F.; Paladini, R.; Pasian, F.; Peel, M.; Perdereau, O.; Perrotta, F.; Piacentini, F.; Piat, M.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Reich, W.; Reinecke, M.; Remazeilles, M.; Renault, C.; Rho, J.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Sandri, M.; Savini, G.; Scott, D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-02-01

    The all-sky Planck survey in 9 frequency bands was used to search for emission from all 274 known Galactic supernova remnants. Of these, 16 were detected in at least two Planck frequencies. The radio-through-microwave spectral energy distributions were compiled to determine the mechanism for microwave emission. In only one case, IC 443, is there high-frequency emission clearly from dust associated with the supernova remnant. In all cases, the low-frequency emission is from synchrotron radiation. As predicted for a population of relativistic particles with energy distribution that extends continuously to high energies, a single power law is evident for many sources, including the Crab and PKS 1209-51/52. A decrease in flux density relative to the extrapolation of radio emission is evident in several sources. Their spectral energy distributions can be approximated as broken power laws, Sν ∝ ν-α, with the spectral index, α, increasing by 0.5-1 above a break frequency in the range 10-60 GHz. The break could be due to synchrotron losses.

  1. Highly Accurate Photogrammetric Measurements of the Planck Reflectors

    NASA Astrophysics Data System (ADS)

    Amiri Parian, J.; Gruen, Armin; Cozzani, Alessandro

    2006-06-01

    The Planck mission of the European Space Agency (ESA) is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky. To achieve this aim, sophisticated reflectors are used as part of the Planck telescope receiving system. The system consists of secondary and primary reflectors which are sections of two different ellipsoids of revolution with mean diameters of 1 and 1.6 meters. Deformations of the reflectors which influence the optical parameters and the gain of receiving signals are investigated in vacuum and at very low temperatures. For this investigation, among the various high accuracy measurement techniques, photogrammetry was selected. With respect to the photogrammetric measurements, special considerations had to be taken into account in design steps, measurement arrangement and data processing to achieve very high accuracies. The determinability of additional parameters of the camera under the given network configuration, datum definition, reliability and precision issues as well as workspace limits and propagating errors from different sources are considered. We have designed an optimal photogrammetric network by heuristic simulation for the flight model of the primary and the secondary reflectors with relative precisions better than 1:1000000 and 1:400000 to achieve the requested accuracies. A least squares best fit ellipsoid method was developed to determine the optical parameters of the reflectors. In this paper we will report about the procedures, the network design and the results of real measurements.

  2. Interstellar Dust: New Views After Spitzer, Herschel, and Planck

    NASA Astrophysics Data System (ADS)

    Draine, Bruce T.

    2015-08-01

    The Spitzer, Herschel, and Planck missions have provided observational data that inform and challenge existing models for interstellar dust. These data will guide us in the development of a new generation of dust models.For dust in the general diffuse interstellar medium, these three missions have provided:* 5-20 um PAH emission spectra for a range of regions* determinations of the 10um and 18um silicate absorption and emission profiles in different environments* new determinations of the wavelength-dependent extinction in the mid-IR* spectral energy distributions out to 160um (with Spitzer), to 500um with Herschel, and out to 3mm with Planck* observations of "anomalous microwave emission" from dust near 1 cm* polarization of the dust emission from 4mm to 850um.Models for interstellar dust are constrained by these new data, and also by many other observational constraints, including extinction and polarization of starlight at optical wavelengths, the scattering of starllight by dust, scattering and extinction of X-rays by dust, and ground-based studies of the anomalous microwave emission.I will review where the models now stand, what appear to be the greatest challenges, and directions for future work.

  3. AZTECAN C3PO: Arizona Three-millimeter Educational C18O And N2H+ Cold Core Census of Planck Objects

    NASA Astrophysics Data System (ADS)

    Walker-LaFollette, Amanda; Shirley, Y. L.; Hardegree-Ullman, K. K.; Towner, A. P. M.; Wallace, S. C.; Smith, C. W.; Turner, J. D.; Robertson, A. N.; Austin, C. L.; Small, L. C.; Carleton, T. M.; McGraw, A. M.; Daugherty, M. J.; Guvenen, B. C.; Johnson, K. L.; Crawford, B. E.; Smart, B. M.

    2012-05-01

    The Planck satellite is studying the power spectrum of the Cosmic Microwave Background (CMB), and has found foreground contamination including dust emission from the Galaxy. The Planck Cold Core Team has been cataloging and characterizing this foreground emission. An initial catalog of over 10,000 objects, the Cold Core Census of Planck Objects (C3PO), was released from the first year of data. A subset of 915 cold cores with dust temperatures of Td < 14K and SNR > 15 was selected from this catalog, and called the Early Cold Core (ECC) Catalog. Ground-based follow-up observations of these cores are needed to determine their size, mass, source geometry (filamentary, multiple cores, etc.), and kinematic properties (degree of turbulence, etc.). Using the Arizona Radio Observatory 12m radio telescope, we mapped a sub-sample of the ECC at 1‧ resolution in the dense gas tracers C18O J=1-0 and N2H+ J=1-0. These tracers complement each other, with CO depleting in very cold, dense environments where N2H+ may be abundant. While we detected most of the cores observed in C18O, we find that N2H+ emission is very weak toward many Planck cold cores. We present here the initial results from our mapping survey. This project is the main component of Amanda Walker-LaFollette’s NASA Space Grant internship research.

  4. Study of Planck's Law with a Small USB Grating Spectrometer

    ERIC Educational Resources Information Center

    Navratil, Zdenek; Dosoudilova, Lenka; Jurmanova, Jana

    2013-01-01

    In this paper an experiment to study Planck's radiation law is presented. The spectra of a heated furnace and of a halogen lamp under various conditions were measured with a small USB grating spectrometer and fitted using Planck's law. The temperature determined from the fit was then compared with the results of comparative temperature…

  5. Planck's Constant as a Natural Unit of Measurement

    ERIC Educational Resources Information Center

    Quincey, Paul

    2013-01-01

    The proposed revision of SI units would embed Planck's constant into the definition of the kilogram, as a fixed constant of nature. Traditionally, Planck's constant is not readily interpreted as the size of something physical, and it is generally only encountered by students in the mathematics of quantum physics. Richard Feynman's…

  6. Sub-Planck structure in phase space and its relevance for quantum decoherence.

    PubMed

    Zurek, W H

    2001-08-16

    Heisenberg's principle states that the product of uncertainties of position and momentum should be no less than the limit set by Planck's constant, Planck's over 2pi/2. This is usually taken to imply that phase space structures associated with sub-Planck scales (<Planck's over 2pi) do not exist, or at least that they do not matter. Here I show that this common assumption is false: non-local quantum superpositions (or 'Schrödinger's cat' states) that are confined to a phase space volume characterized by the classical action A, much larger than Planck's over 2pi, develop spotty structure on the sub-Planck scale, a = Planck's over 2pi2/A. Structure saturates on this scale particularly quickly in quantum versions of classically chaotic systems-such as gases that are modelled by chaotic scattering of molecules-because their exponential sensitivity to perturbations causes them to be driven into non-local 'cat' states. Most importantly, these sub-Planck scales are physically significant: a determines the sensitivity of a quantum system or environment to perturbations. Therefore, this scale controls the effectiveness of decoherence and the selection of preferred pointer states by the environment. It will also be relevant in setting limits on the sensitivity of quantum meters.

  7. VO2 responses to running speeds above VO2max.

    PubMed

    Duffield, R; Bishop, D

    2008-06-01

    This study compared VO2, heart rate (HR) and electromyographic (iEMG) responses to speeds above the velocity associated with VO2max (v-VO2max). Eight male, middle-distance runners performed a graded exercise test to determine VO2max and v-VO2max and runs to fatigue at 100 % and 110 % v-VO2max. Breath-by-breath VO2 and HR were continuously recorded; lactate [La (-)] measured pre- and post-run and iEMG measures of rectus femoris (RF) and vastus lateralis were recorded during the first and last 20 s of each run. Analysis indicated longer time to fatigue in the 100 % v-VO2max run with no differences between conditions for VO2 or HR amplitudes or post-run [La (-)] (p > 0.05). There were significantly faster tau values (p < 0.05) in the 110 % condition in VO2 and HR. No significant correlations were observed between VO2 or HR tau values and time to fatigue. RF iEMG was significantly larger in 110 % compared to 100 % run in the first 20 s (p < 0.05). While no association between treadmill performance and VO2 response was evident, faster running speeds resulted in faster VO2 and HR responses, with no difference in amplitude or % VO2max attained. This may potentially be as a result of an increased muscle fibre recruitment stimulus during the faster running velocity resulting in faster cardiodynamic responses.

  8. Max '91: Flare research at the next solar maximum

    NASA Technical Reports Server (NTRS)

    Dennis, Brian; Canfield, Richard; Bruner, Marilyn; Emslie, Gordon; Hildner, Ernest; Hudson, Hugh; Hurford, Gordon; Lin, Robert; Novick, Robert; Tarbell, Ted

    1988-01-01

    To address the central scientific questions surrounding solar flares, coordinated observations of electromagnetic radiation and energetic particles must be made from spacecraft, balloons, rockets, and ground-based observatories. A program to enhance capabilities in these areas in preparation for the next solar maximum in 1991 is recommended. The major scientific issues are described, and required observations and coordination of observations and analyses are detailed. A program plan and conceptual budgets are provided.

  9. Planck 2015 results. X. Diffuse component separation: Foreground maps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Adam, R.; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    Planck has mapped the microwave sky in temperature over nine frequency bands between 30 and 857 GHz and in polarization over seven frequency bands between 30 and 353 GHz in polarization. In this paper we consider the problem of diffuse astrophysical component separation, and process these maps within a Bayesian framework to derive an internally consistent set of full-sky astrophysical component maps. Component separation dedicated to cosmic microwave background (CMB) reconstruction is described in a companion paper. For the temperature analysis, we combine the Planck observations with the 9-yr Wilkinson Microwave Anisotropy Probe (WMAP) sky maps and the Haslam et al. 408 MHz map, to derive a joint model of CMB, synchrotron, free-free, spinning dust, CO, line emission in the 94 and 100 GHz channels, and thermal dust emission. Full-sky maps are provided for each component, with an angular resolution varying between 7.´5 and 1deg. Global parameters (monopoles, dipoles, relative calibration, and bandpass errors) are fitted jointly with the sky model, and best-fit values are tabulated. For polarization, the model includes CMB, synchrotron, and thermal dust emission. These models provide excellent fits to the observed data, with rms temperature residuals smaller than 4μK over 93% of the sky for all Planck frequencies up to 353 GHz, and fractional errors smaller than 1% in the remaining 7% of the sky. The main limitations of the temperature model at the lower frequencies are internal degeneracies among the spinning dust, free-free, and synchrotron components; additional observations from external low-frequency experiments will be essential to break these degeneracies. The main limitations of the temperature model at the higher frequencies are uncertainties in the 545 and 857 GHz calibration and zero-points. For polarization, the main outstanding issues are instrumental systematics in the 100-353 GHz bands on large angular scales in the form of temperature

  10. Introducing iccMAX: new frontiers in color management

    NASA Astrophysics Data System (ADS)

    Derhak, Max; Green, Phil; Lianza, Tom

    2015-01-01

    ICC has announced a preliminary specification for iccMAX, a next-generation colour management system that expands the existing ICC profile format and architecture to overcome the limitation of the fixed colorimetric Profile Connection Space and support a much wider range of functionality. New features introduced in iccMAX include spectral processing, material identification and visualization, BRDF, new data types, an improved gamut boundary descriptor and support for arbitrary and programmable transforms. The iccMAX preliminary specification is accompanied by a reference implementation, and will undergo a period of public review before being finalized.

  11. [Thought Experiments in Historiographic Function: Max Weber on Eduard Meyer and the Question of Counterfactuality].

    PubMed

    Ernst, Florian

    2015-03-01

    Thought Experiments in Historiographic Function: Max Weber on Eduard Meyer and the Question of Counterfactuality. Max Weber's remarks on his colleague Eduard Meyer regarding counterfactual reasoning in history reflects a significant shift during the Methodenstreit around 1900. The question of attributing historical change strictly to either individual causes or abstract general laws has been tackled in a new way: By counterfactual reasoning a historian should be able to detect the most significant (and therefore meaningful) cause, event, or action for a certain historical outcome. Following Fritz Ringer, this paper argues that given the predominating methods of the natural sciences, scholars of the humanities conducted historical research by counterfactual thought experiments. This way, Weber pried open contemporary narratives (e.g. historicism), and by employing a unique historical causal analysis he made way for refined concepts to offer a model of interpretation that gave hope for a more feasible, practice-oriented approach to historical research than the epistemological discussions had hitherto offered.

  12. Inference of cloud altitude and optical properties from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Nasse, Jan-Marcus; Zielcke, Johannes; Frieß, Udo; Lampel, Johannes; König-Langlo, Gert; Platt, Ulrich

    2015-04-01

    Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a widely used technique for the detection of atmospheric trace gases, e.g. NO2, SO2, BrO, HCHO, but also for the oxygen collision complex O4. The atmospheric distribution of the latter is proportional to the square of the molecular oxygen concentration and thus well known. By comparing measured O4 differential slant column densities (dSCDs) from MAX-DOAS measurements with modeled ones, information on aerosol distributions and optical properties, as well as on clouds can be obtained using an algorithm based on optimal estimation. Here the ability of MAX-DOAS observations to detect cloud altitude and cloud optical properties of different cloud covers based on measurements of O4 will be discussed. The analysis uses measurements made by a ship-borne instrument on two cruises of the German research vessel Polarstern to the Antarctic Weddell Sea from June to October 2013. During this time a broad range of cloud and aerosol conditions was encountered, in particular persistent low cloud cover with a high optical thickness. Aerosol and particle extinction profiles were retrieved with temporal resolutions of up to 15 minutes. For clouds at altitudes up to 2000 m the results show a very good agreement with co-located measurements of a commercial ceilometer and pictures from a cloud camera. Unless visibility was very poor due to fog, even rapid changes in cloud altitude or cover could be detected by MAX-DOAS. These results indicate that under homogeneous cloud cover an accurate retrieval of trace gas vertical profiles can be possible despite the strong influence of clouds on atmospheric light paths. We will discuss advantages and limitations of cloud detection with MAX-DOAS, implications for the subsequent retrieval of trace gas profiles and the possible use of external (ceilometer) data as a priori information for the profile retrieval algorithm.

  13. Quantum Geometry and Quantum Dynamics at the Planck Scale

    SciTech Connect

    Bojowald, Martin

    2009-12-15

    Canonical quantum gravity provides insights into the quantum dynamics as well as quantum geometry of space-time by its implications for constraints. Loop quantum gravity in particular requires specific corrections due to its quantization procedure, which also results in a discrete picture of space. The corresponding changes compared to the classical behavior can most easily be analyzed in isotropic models, but perturbations around them are more involved. For one type of corrections, consistent equations have been found which shed light on the underlying space-time structure at the Planck scale: not just quantum dynamics but also the concept of space-time manifolds changes in quantum gravity. Effective line elements provide indications for possible relationships to other frameworks, such as non-commutative geometry.

  14. Yang-Baxter equations with two Planck constants

    NASA Astrophysics Data System (ADS)

    Levin, A.; Olshanetsky, M.; Zotov, A.

    2016-01-01

    We consider Yang-Baxter equations arising from its associative analog and study the corresponding exchange relations. They generate finite-dimensional quantum algebras which have the form of coupled {{GL}}(N) Sklyanin elliptic algebras. Then we proceed to a natural generalization of the Baxter-Belavin quantum R-matrix to the case {{Mat}}{(N,{{C}})}\\otimes 2\\otimes {{Mat}}{(M,{{C}})}\\otimes 2. It can be viewed as symmetric form of {{GL}}({NM}) R-matrix in the sense that the Planck constant and the spectral parameter enter (almost) symmetrically. Such type (symmetric) R-matrices are also shown to satisfy the Yang-Baxter like quadratic and cubic equations.

  15. Planck 2015 results. II. Low Frequency Instrument data processings

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaglia, P.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Chamballu, A.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Franceschet, C.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Knoche, J.; Krachmalnicoff, N.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Montier, L.; Morgante, G.; Morisset, N.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Novikov, D.; Novikov, I.; Oppermann, N.; Paci, F.; Pagano, L.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Pierpaoli, E.; Pietrobon, D.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renzi, A.; Rocha, G.; Romelli, E.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vassallo, T.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present an updated description of the Planck Low Frequency Instrument (LFI) data processing pipeline, associated with the 2015 data release. We point out the places where our results and methods have remained unchanged since the 2013 paper and we highlight the changes made for the 2015 release, describing the products (especially timelines) and the ways in which they were obtained. We demonstrate that the pipeline is self-consistent (principally based on simulations) and report all null tests. For the first time, we present LFI maps in Stokes Q and U polarization. We refer to other related papers where more detailed descriptions of the LFI data processing pipeline may be found if needed.

  16. Quantum Fokker-Planck-Kramers equation and entropy production.

    PubMed

    de Oliveira, Mário J

    2016-07-01

    We use a canonical quantization procedure to set up a quantum Fokker-Planck-Kramers equation that accounts for quantum dissipation in a thermal environment. The dissipation term is chosen to ensure that the thermodynamic equilibrium is described by the Gibbs state. An expression for the quantum entropy production that properly describes quantum systems in a nonequilibrium stationary state is also provided. The time-dependent solution is given for a quantum harmonic oscillator in contact with a heat bath. We also obtain the stationary solution for a system of two coupled harmonic oscillators in contact with reservoirs at distinct temperatures, from which we obtain the entropy production and the quantum thermal conductance. PMID:27575097

  17. Strong Planck constraints on braneworld and non-commutative inflation

    SciTech Connect

    Calcagni, Gianluca; Kuroyanagi, Sachiko; Ohashi, Junko; Tsujikawa, Shinji E-mail: skuro@rs.tus.ac.jp E-mail: shinji@rs.kagu.tus.ac.jp

    2014-03-01

    We place observational likelihood constraints on braneworld and non-commutative inflation for a number of inflaton potentials, using Planck, WMAP polarization and BAO data. Both braneworld and non-commutative scenarios of the kind considered here are limited by the most recent data even more severely than standard general-relativity models. At more than 95 % confidence level, the monomial potential V(φ)∝φ{sup p} is ruled out for p ≥ 2 in the Randall-Sundrum (RS) braneworld cosmology and, for p > 0, also in the high-curvature limit of the Gauss-Bonnet (GB) braneworld and in the infrared limit of non-commutative inflation, due to a large scalar spectral index. Some parameter values for natural inflation, small-varying inflaton models and Starobinsky inflation are allowed in all scenarios, although some tuning is required for natural inflation in a non-commutative spacetime.

  18. Noise on resistive switching: a Fokker-Planck approach

    NASA Astrophysics Data System (ADS)

    Patterson, G. A.; Grosz, D. F.; Fierens, P. I.

    2016-05-01

    We study the effect of internal and external noise on the phenomenon of resistive switching. We consider a non-harmonic external driving signal and provide a theoretical framework to explain the observed behavior in terms of the related Fokker-Planck equations. It is found that internal noise causes an enhancement of the resistive contrast and that noise proves to be advantageous when considering short driving pulses. In the case of external noise, however, noise only has the effect of degrading the resistive contrast. Furthermore, we find a relationship between the noise amplitude and the driving signal pulsewidth that constrains the persistence of the resistive state. In particular, results suggest that strong and short driving pulses favor a longer persistence time, an observation that may find applications in the field of high-integration high-speed resistive memory devices.

  19. Planck 2015 results. XII. Full focal plane simulations

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Castex, G.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Karakci, A.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present the 8th full focal plane simulation set (FFP8), deployed in support of the Planck 2015 results. FFP8 consists of 10 fiducial mission realizations reduced to 18 144 maps, together with the most massive suite of Monte Carlo realizations of instrument noise and CMB ever generated, comprising 104 mission realizations reduced to about 106 maps. The resulting maps incorporate the dominant instrumental, scanning, and data analysis effects, and the remaining subdominant effects will be included in future updates. Generated at a cost of some 25 million CPU-hours spread across multiple high-performance-computing (HPC) platforms, FFP8 is used to validate and verify analysis algorithms and their implementations, and to remove biases from and quantify uncertainties in the results of analyses of the real data.

  20. Primordial non-Gaussianities after Planck 2015: An introductory review

    NASA Astrophysics Data System (ADS)

    Renaux-Petel, Sébastien

    2015-12-01

    Deviations from Gaussian statistics of the cosmological density fluctuations, so-called primordial non-Gaussianities (NG), are one of the most informative fingerprints of the origin of structures in the universe. Indeed, they can probe physics at energy scales inaccessible to laboratory experiments, and are sensitive to the interactions of the field(s) that generated the primordial fluctuations, contrary to the Gaussian linear theory. As a result, they can discriminate between inflationary models that are otherwise almost indistinguishable. In this short review, we explain how to compute the non-Gaussian properties in any inflationary scenario. We review the theoretical predictions of several important classes of models. We then describe the ways NG can be probed observationally, and we highlight the recent constraints from the Planck mission, as well as their implications. We finally identify well motivated theoretical targets for future experiments and discuss observational prospects. xml:lang="fr"

  1. Quantifying the BICEP2-Planck tension over gravitational waves.

    PubMed

    Smith, Kendrick M; Dvorkin, Cora; Boyle, Latham; Turok, Neil; Halpern, Mark; Hinshaw, Gary; Gold, Ben

    2014-07-18

    The recent BICEP2 measurement of B-mode polarization in the cosmic microwave background (r = 0.2(-0.05)(+0.07)), a possible indication of primordial gravity waves, appears to be in tension with the upper limit from WMAP (r < 0.13 at 95% C.L.) and Planck (r < 0.11 at 95% C.L.). We carefully quantify the level of tension and show that it is very significant (around 0.1% unlikely) when the observed deficit of large-scale temperature power is taken into account. We show that measurements of TE and EE power spectra in the near future will discriminate between the hypotheses that this tension is either a statistical fluke or a sign of new physics. We also discuss extensions of the standard cosmological model that relieve the tension and some novel ways to constrain them. PMID:25083631

  2. Conservative differencing of the electron Fokker-Planck transport equation

    SciTech Connect

    Langdon, A.B.

    1981-01-12

    We need to extend the applicability and improve the accuracy of kinetic electron transport codes. In this paper, special attention is given to modelling of e-e collisions, including the dominant contributions arising from anisotropy. The electric field and spatial gradient terms are also considered. I construct finite-difference analogues to the Fokker-Planck integral-differential collision operator, which conserve the particle number, momentum and energy integrals (sums) regardless of the coarseness of the velocity zoning. Such properties are usually desirable, but are especially useful, for example, when there are spatial regions and/or time intervals in which the plasma is cool, so that the collision operator acts rapidly and the velocity distribution is poorly resolved, yet it is crucial that gross conservation properties be respected in hydro-transport applications, such as in the LASNEX code. Some points are raised concerning spatial differencing and time integration.

  3. Quantifying the BICEP2-Planck tension over gravitational waves.

    PubMed

    Smith, Kendrick M; Dvorkin, Cora; Boyle, Latham; Turok, Neil; Halpern, Mark; Hinshaw, Gary; Gold, Ben

    2014-07-18

    The recent BICEP2 measurement of B-mode polarization in the cosmic microwave background (r = 0.2(-0.05)(+0.07)), a possible indication of primordial gravity waves, appears to be in tension with the upper limit from WMAP (r < 0.13 at 95% C.L.) and Planck (r < 0.11 at 95% C.L.). We carefully quantify the level of tension and show that it is very significant (around 0.1% unlikely) when the observed deficit of large-scale temperature power is taken into account. We show that measurements of TE and EE power spectra in the near future will discriminate between the hypotheses that this tension is either a statistical fluke or a sign of new physics. We also discuss extensions of the standard cosmological model that relieve the tension and some novel ways to constrain them.

  4. ICPP: Numerical Fokker-Planck calculations in nonuniform grids

    NASA Astrophysics Data System (ADS)

    Bizarro, João P. S.

    2000-10-01

    The Fokker-Planck equation arises in a wide class of problems in plasma physics, so numerical schemes that provide efficient, accurate, and stable solutions to that equation are always welcome. One way to accomplish this is via nonuniform grids, which allow the use of different mesh sizes according to the real needs of the physical problem under consideration. The extension of the standard finite-difference approach to general nonuniform grids, taking into account proper weighting coefficients, has already been presented, and the results have been rather conclusive [J. P. S. Bizarro and P. Rodrigues, Nucl. Fusion Vol. 37, 1509 (1997)]. Besides reviewing what has been achieved with nonuniform grids, a numerical scheme that is accurate to second order (both in time step and mesh size) is here extended and detailed. Such an analysis is rigourous for one-dimensional Fokker-Planck equations, and is generalized to two-dimensional equations. The constraints on the design of the nonuniform grid are discussed, as well as the particle and energy conservation properties. The conditions under which the nonuniformity correction in the weighting coefficients is essential to secure physically meaningful solutions are also analyzed. The proposed scheme is shown to efficiently handle both linear and weakly nonlinear problems and, in addition, its ability to provide solutions to stronger nonlinear situations is demonstrated. Some particular problems in the field of plasma physics (e.g., Coulomb collisions, Compton scattering by an electronic population, and the rf heating and current drive of thermonuclear reactors) are solved in order to illustrate several features, most particularly the usefulness of nonuniform grids in reducing computational effort and in increasing accuracy.

  5. Neutrinos help reconcile Planck measurements with the local universe.

    PubMed

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-01

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included. PMID:24580585

  6. Standard big bang nucleosynthesis and primordial CNO abundances after Planck

    SciTech Connect

    Coc, Alain

    2014-10-01

    Primordial or big bang nucleosynthesis (BBN) is one of the three historical strong evidences for the big bang model. The recent results by the Planck satellite mission have slightly changed the estimate of the baryonic density compared to the previous WMAP analysis. This article updates the BBN predictions for the light elements using the cosmological parameters determined by Planck, as well as an improvement of the nuclear network and new spectroscopic observations. There is a slight lowering of the primordial Li/H abundance, however, this lithium value still remains typically 3 times larger than its observed spectroscopic abundance in halo stars of the Galaxy. According to the importance of this ''lithium problem{sup ,} we trace the small changes in its BBN calculated abundance following updates of the baryonic density, neutron lifetime and networks. In addition, for the first time, we provide confidence limits for the production of {sup 6}Li, {sup 9}Be, {sup 11}B and CNO, resulting from our extensive Monte Carlo calculation with our extended network. A specific focus is cast on CNO primordial production. Considering uncertainties on the nuclear rates around the CNO formation, we obtain CNO/H ≈ (5-30)×10{sup -15}. We further improve this estimate by analyzing correlations between yields and reaction rates and identified new influential reaction rates. These uncertain rates, if simultaneously varied could lead to a significant increase of CNO production: CNO/H∼10{sup -13}. This result is important for the study of population III star formation during the dark ages.

  7. Neutrinos help reconcile Planck measurements with the local universe.

    PubMed

    Wyman, Mark; Rudd, Douglas H; Vanderveld, R Ali; Hu, Wayne

    2014-02-01

    Current measurements of the low and high redshift Universe are in tension if we restrict ourselves to the standard six-parameter model of flat ΛCDM. This tension has two parts. First, the Planck satellite data suggest a higher normalization of matter perturbations than local measurements of galaxy clusters. Second, the expansion rate of the Universe today, H0, derived from local distance-redshift measurements is significantly higher than that inferred using the acoustic scale in galaxy surveys and the Planck data as a standard ruler. The addition of a sterile neutrino species changes the acoustic scale and brings the two into agreement; meanwhile, adding mass to the active neutrinos or to a sterile neutrino can suppress the growth of structure, bringing the cluster data into better concordance as well. For our fiducial data set combination, with statistical errors for clusters, a model with a massive sterile neutrino shows 3.5σ evidence for a nonzero mass and an even stronger rejection of the minimal model. A model with massive active neutrinos and a massless sterile neutrino is similarly preferred. An eV-scale sterile neutrino mass--of interest for short baseline and reactor anomalies--is well within the allowed range. We caution that (i) unknown astrophysical systematic errors in any of the data sets could weaken this conclusion, but they would need to be several times the known errors to eliminate the tensions entirely; (ii) the results we find are at some variance with analyses that do not include cluster measurements; and (iii) some tension remains among the data sets even when new neutrino physics is included.

  8. Countability of Planck Boxes in Quantum Branching Models

    NASA Astrophysics Data System (ADS)

    Berezin, Alexander A.

    2002-04-01

    Two popular paradigms of cosmological quantum branching are Many World (MW) model of parallel universes (Everett, Deutsch) and inflationary quantum foam (IQF) model (Guth, Linde). Taking Planck L,T units as physically smallest, our Big Bang miniverse with size 10E28 cm and duration 10E18 sec has some 10E244 (N) elementary 4D Planck Boxes (PB) in its entire spacetime history. Using combinatorics, N! (about 10E10E247) is upper estimate for number of all possible 4D states, i.e. scale of "eternal return" (ER; Nietzsche, Eliade) for such miniverses. To count all states in full Megaverse (all up and down branches of infinite tree of all MW and/or IQF miniverses) we recall that all countable infinities have same (aleph-naught) cardinality (Cantor). Using Godel-type numbering, count PB in our miniverse by primes. This uses first N primes. Both MW and IQF models presume splitting of miniverses as springing (potentially) from each PB, making each PB infinitely rich, inexhaustible and unique. Next branching level is counted by integers p1Ep2, third level by p1Ep2Ep3 integers, etc, ad infinitum. To count in up and down directions from "our" miniverse, different branching subsets of powers of primes can be used at all levels of tower exponentiation. Thus, all PB in all infinitude of MW and/or IQF branches can be uniquely counted by never repeating integers (tower exponents of primes), offering escape from grim ER scenarios.

  9. 18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. HISTORIC VIEW OF MAX VALIER, FOUNDING MEMBER OF THE VEREIN FUER RAUMSCHIFFAHRT (GERMAN SOCIETY FOR SPACE TRAVEL), DRIVES HIS ROCKET CAR IN 1931. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  10. Troublesome aspects of the Renyi-MaxEnt treatment.

    PubMed

    Plastino, A; Rocca, M C; Pennini, F

    2016-07-01

    We study in great detail the possible existence of a Renyi-associated thermodynamics, with negative results. In particular, we uncover a hidden relation in Renyi's variational problem (MaxEnt). This relation connects the two associated Lagrange multipliers (canonical ensemble) with the mean energy 〈U〉 and the Renyi parameter α. As a consequence of such relation, we obtain anomalous Renyi-MaxEnt thermodynamic results. PMID:27575114

  11. Utilities for master source code distribution: MAX and Friends

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1988-01-01

    MAX is a program for the manipulation of FORTRAN master source code (MSC). This is a technique by which one maintains one and only one master copy of a FORTRAN program under a program developing system, which for MAX is assumed to be VAX/VMS. The master copy is not intended to be directly compiled. Instead it must be pre-processed by MAX to produce compilable instances. These instances may correspond to different code versions (for example, double precision versus single precision), different machines (for example, IBM, CDC, Cray) or different operating systems (i.e., VAX/VMS versus VAX/UNIX). The advantage os using a master source is more pronounced in complex application programs that are developed and maintained over many years and are to be transported and executed on several computer environments. The version lag problem that plagues many such programs is avoided by this approach. MAX is complemented by several auxiliary programs that perform nonessential functions. The ensemble is collectively known as MAX and Friends. All of these programs, including MAX, are executed as foreign VAX/VMS commands and can easily be hidden in customized VMS command procedures.

  12. Human connectome module pattern detection using a new multi-graph MinMax cut model.

    PubMed

    De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng

    2014-01-01

    Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.

  13. Study on MAX-MIN Ant System with Random Selection in Quadratic Assignment Problem

    NASA Astrophysics Data System (ADS)

    Iimura, Ichiro; Yoshida, Kenji; Ishibashi, Ken; Nakayama, Shigeru

    Ant Colony Optimization (ACO), which is a type of swarm intelligence inspired by ants' foraging behavior, has been studied extensively and its effectiveness has been shown by many researchers. The previous studies have reported that MAX-MIN Ant System (MMAS) is one of effective ACO algorithms. The MMAS maintains the balance of intensification and diversification concerning pheromone by limiting the quantity of pheromone to the range of minimum and maximum values. In this paper, we propose MAX-MIN Ant System with Random Selection (MMASRS) for improving the search performance even further. The MMASRS is a new ACO algorithm that is MMAS into which random selection was newly introduced. The random selection is one of the edgechoosing methods by agents (ants). In our experimental evaluation using ten quadratic assignment problems, we have proved that the proposed MMASRS with the random selection is superior to the conventional MMAS without the random selection in the viewpoint of the search performance.

  14. Isocurvature perturbations and tensor mode in light of Planck and BICEP2

    SciTech Connect

    Kawasaki, Masahiro; Yokoyama, Shuichiro; Sekiguchi, Toyokazu; Takahashi, Tomo E-mail: toyokazu.sekiguchi@helsinki.fi E-mail: shu@icrr.u-tokyo.ac.jp

    2014-08-01

    We investigate the degeneracy of the isocurvature perturbations and the primordial gravitational waves, by using recent observations of the cosmic microwave background (CMB) reported by Planck and BICEP2 collaborations. We show that the tension in the bound on the tensor-to-scalar ratio r between Planck and BICEP2 can be resolved by introducing the anti-correlated isocurvature perturbations. Quantitatively, we find that with the anti-correlated isocurvature perturbations the constraints on r from Planck alone and BICEP2 results can be consistent at 68 % C.L.

  15. Premetazoan ancestry of the Myc-Max network.

    PubMed

    Young, Susan L; Diolaiti, Daniel; Conacci-Sorrell, Maralice; Ruiz-Trillo, Iñaki; Eisenman, Robert N; King, Nicole

    2011-10-01

    The origin of metazoans required the evolution of mechanisms for maintaining differentiated cell types within a multicellular individual, in part through spatially differentiated patterns of gene transcription. The unicellular ancestor of metazoans was presumably capable of regulating gene expression temporally in response to changing environmental conditions, and spatial cell differentiation in metazoans may represent a co-option of preexisting regulatory mechanisms. Myc is a critical regulator of cell growth, proliferation, and death that is found in all metazoans but absent in other multicellular lineages, including fungi and plants. Homologs of Myc and its binding partner, Max, exist in two of the closest living relatives of animals, the choanoflagellate Monosiga brevicollis (Mb) and Capsaspora owczarzaki, a unicellular opisthokont that is closely related to metazoans and choanoflagellates. We find that Myc and Max from M. brevicollis heterodimerize and bind to both canonical and noncanonical E-boxes, the DNA-binding sites through which metazoan Myc proteins act. Moreover, in M. brevicollis, MbMyc protein can be detected in nuclear and flagellar regions. Like metazoan Max proteins, MbMax can form homodimers that bind to E-boxes. However, cross-species dimerization between Mb and human Myc and Max proteins was not observed, suggesting that the binding interface has diverged. Our results reveal that the Myc/Max network arose before the divergence of the choanoflagellate and metazoan lineages. Furthermore, core features of metazoan Myc function, including heterodimerization with Max, binding to E-box sequences in DNA, and localization to the nucleus, predate the origin of metazoans.

  16. A Course between Bureaucracy and Charisma: A Pedagogical Reading of Max Weber's Social Theory

    ERIC Educational Resources Information Center

    Fantuzzo, John

    2015-01-01

    Philosophers of education tend to mention Max Weber's social theory in passing, assuming its importance and presuming its comprehension, but few have paused to consider how Weber's social theory might consciously inform educational theory and research, and none have done so comprehensively. The aim of this article is to begin this…

  17. Planck 2015 results. XVII. Constraints on primordial non-Gaussianity

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A. J.; Barreiro, R. B.; Bartolo, N.; Basak, S.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Heavens, A.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huang, Z.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kim, J.; Kisner, T. S.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lacasa, F.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Marinucci, D.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Münchmeyer, M.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Peiris, H. V.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Racine, B.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Shiraishi, M.; Smith, K.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutter, P.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Troja, A.; Tucci, M.; Tuovinen, J.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    The Planck full mission cosmic microwave background (CMB) temperature and E-mode polarization maps are analysed to obtain constraints on primordial non-Gaussianity (NG). Using three classes of optimal bispectrum estimators - separable template-fitting (KSW), binned, and modal - we obtain consistent values for the primordial local, equilateral, and orthogonal bispectrum amplitudes, quoting as our final result from temperature alone ƒlocalNL = 2.5 ± 5.7, ƒequilNL= -16 ± 70, , and ƒorthoNL = -34 ± 32 (68% CL, statistical). Combining temperature and polarization data we obtain ƒlocalNL = 0.8 ± 5.0, ƒequilNL= -4 ± 43, and ƒorthoNL = -26 ± 21 (68% CL, statistical). The results are based on comprehensive cross-validation of these estimators on Gaussian and non-Gaussian simulations, are stable across component separation techniques, pass an extensive suite of tests, and are consistent with estimators based on measuring the Minkowski functionals of the CMB. The effect of time-domain de-glitching systematics on the bispectrum is negligible. In spite of these test outcomes we conservatively label the results including polarization data as preliminary, owing to a known mismatch of the noise model in simulations and the data. Beyond estimates of individual shape amplitudes, we present model-independent, three-dimensional reconstructions of the Planck CMB bispectrum and derive constraints on early universe scenarios that generate primordial NG, including general single-field models of inflation, axion inflation, initial state modifications, models producing parity-violating tensor bispectra, and directionally dependent vector models. We present a wide survey of scale-dependent feature and resonance models, accounting for the "look elsewhere" effect in estimating the statistical significance of features. We also look for isocurvature NG, and find no signal, but we obtain constraints that improve significantly with the inclusion of polarization. The primordial

  18. Design and analysis of the cryoharness for Planck LFI

    NASA Astrophysics Data System (ADS)

    Leutenegger, Paolo H.; Bersanelli, Marco; Ferretti, Roberto; Prina, Mauro

    2003-10-01

    Planck is the third Medium-Sized Mission (M3) of ESA Horizon 2000 Scientific Programme. It is designed to image the anisotropies of the Cosmic Background Radiation Field over the whole sky, with unprecedented sensitivity and angular resolution. Planck carries two main experiments named HFI (High Frequency Instrument) and LFI (Low Frequency Instrument). The first is based on bolometers, the latter is an array of tuned radio receivers, based on High Electron Mobility Transistors (HEMTs) amplifier technology, and covering the frequency range from 30 to 70 GHz. The Front-End Electronics Modules (FEM"s) are cooled at 20K by a H2 sorption cooler. The high frequency signals (up to 70 GHz) are amplified, phase lagged and transported by means of waveguides to the warm back-end electronics at temperatures of the order of 300K. The 20 K cooling is achieved exploiting a two-stage cooling concept. The satellite is passively cooled to temperatures of the order of 60K using special designed radiators called V-grooves. An H2 sorption cooler constitutes the second active cooling stage, which allows focal plane temperatures of 20K, i.e. compatible with the tight noise requirements of the Low Noise Amplifiers (LNA"s). Each FEM needs 22 bias lines characterised by a high immunity to external noise and disturbances. The power required for each FEM ranges from 16 to 34mW, depending on the radiometer frequency. Due to the limited cooling power of the sorption cooler (about 2W), the heat transport through the harness and therefore the parasitics on the focal plane, shall be minimised. A total of 290 wires have to be routed from the warm electronics (300K) to the cold focal plane (20K), along a path of about 2200mm, transporting currents ranging from a few uA up to 240mA. The present paper analyses the thermal and electrical problems connected with the design of a suitable cryo-harness for the bias of the radiometers cryogenic front-end modules of LFI. Two possible approaches are proposed

  19. Atmospheric aerosol characterization combining multi-wavelength Raman lidar and MAX-DOAS measurements in Gwanjgu

    NASA Astrophysics Data System (ADS)

    Chong, Jihyo; Shin, Dong Ho; Kim, Kwang Chul; Lee, Kwon-Ho; Shin, Sungkyun; Noh, Young M.; Müller, Detlef; Kim, Young J.

    2011-11-01

    Integrated approach has been adopted at the ADvanced Environmental Research Center (ADEMRC), Gwangju Institute of Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosol. Various active and passive optical remote sensing techniques such as multi-wavelength (3β+2α+1δ) Raman LIDAR, sun-photometry, MAX-DOAS, and satellite retrieval have been utilized. This integrated monitoring system approach combined with in-situ surface measurement is to allow better characterization of physical and optical properties of atmospheric aerosol. Information on the vertical distribution and microphysical properties of atmospheric aerosol is important for understanding its transport characteristics as well as radiative effect. The GIST multi-wavelength (3β + 2α+1δ) Raman lidar system can measure vertical profiles of optical properties of atmospheric aerosols such as extinction coefficients at 355 and 532nm, particle backscatter coefficients at 355, 532 and 1064 nm, and depolarization ratio at 532nm. The incomplete overlap between the telescope field-of-view and beam divergence of the transmitting laser significantly affects lidar measurement, resulting in higher uncertainty near the surface where atmospheric aerosols of interest are concentrated. Differential Optical Absorption Spectroscopy (DOAS) technique is applied as a complementary tool for the detection of atmospheric aerosols near the surface. The passive Multi-Axis DOAS (MAX-DOAS) technique uses scattered sunlight as a light source from several viewing directions. Recently developed aerosol retrieval algorithm based on O4 slant column densities (SCDs) measured at UV and visible wavelengths has been utilized to derive aerosol information (e.g., aerosol optical depth (AOD) and aerosol extinction coefficients (AECs)) in the lower troposphere. The aerosol extinction coefficient at 356 nm was retrieved for the 0-1 and 1-2 km layers based on the MAX-DOAS measurements using the retrieval algorithm

  20. The Effect of Habitual Smoking on VO2max

    NASA Technical Reports Server (NTRS)

    Wier, Larry T.; Suminski, Richard R.; Poston, Walker S.; Randles, Anthony M.; Arenare, Brian; Jackson, Andrew S.

    2008-01-01

    VO2max is associated with many factors, including age, gender, physical activity, and body composition. It is popularly believed that habitual smoking lowers aerobic fitness. PURPOSE: to determine the effect of habitual smoking on VO2max after controlling for age, gender, activity and BMI. METHODS: 2374 men and 375 women employed at the NASA/Johnson Space Center were measured for VO2max by indirect calorimetry (RER>=1.1), activity by the 11 point (0-10) NASA Physical Activity Status Scale (PASS), BMI and smoking pack-yrs (packs day*y of smoking). Age was recorded in years and gender was coded as M=1, W=0. Pack.y was made a categorical variable consisting of four levels as follows: Never Smoked (0), Light (1-10), Regular (11-20), Heavy (>20). Group differences were verified by ANOVA. A General Linear Models (GLM) was used to develop two models to examine the relationship of smoking behavior on VO2max. GLM #1(without smoking) determined the combined effects of age, gender, PASS and BMI on VO2max. GLM #2 (with smoking) determined the added effects of smoking (pack.y groupings) on VO2max after controlling for age, gender, PASS and BMI. Constant errors (CE) were calculated to compare the accuracy of the two models for estimating the VO2max of the smoking subgroups. RESULTS: ANOVA affirmed the mean VO2max of each pack.y grouping decreased significantly (p<0.01) as the level of smoking exposure increased. GLM #1 showed that age, gender, PASS and BMI were independently related with VO2max (R2 = 0.642, SEE = 4.90, p<0.001). The added pack.y variables in GLM #2 were statistically significant (R2 change = 0.7%, p<0.01). Post hoc analysis showed that compared to Never Smoked, the effects on VO2max from Light and Regular smoking habits were -0.83 and -0.85 ml.kg- 1.min-1 respectively (p<0.05). The effect of Heavy smoking on VO2max was -2.56 ml.kg- 1.min-1 (p<0.001). The CE s of each smoking group in GLM #2 was smaller than the CE s of the smoking group counterparts in GLM #1

  1. Structural aspects of interactions within the Myc/Max/Mad network.

    PubMed

    Nair, S K; Burley, S K

    2006-01-01

    Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raise more questions regarding Myc biology. In this review, we focus on the lessons provided by these structures toward understanding (1) interactions that govern transcriptional repression by Mad via the Sin3 pathway, (2) homodimerization of Max, (3) heterodimerization of Myc-Max and Mad-Max, and (4) DNA recognition by each of the Max-Max, Myc-Max, and Mad-Max dimers.

  2. E2GPR - Edit your geometry, Execute GprMax2D and Plot the Results!

    NASA Astrophysics Data System (ADS)

    Pirrone, Daniele; Pajewski, Lara

    2015-04-01

    In order to predict correctly the Ground Penetrating Radar (GPR) response from a particular scenario, Maxwell's equations have to be solved, subject to the physical and geometrical properties of the considered problem and to its initial conditions. Several techniques have been developed in computational electromagnetics, for the solution of Maxwell's equations. These methods can be classified into two main categories: differential and integral equation solvers, which can be implemented in the time or spectral domain. All of the different methods present compromises between computational efficiency, stability, and the ability to model complex geometries. The Finite-Difference Time-Domain (FDTD) technique has several advantages over alternative approaches: it has inherent simplicity, efficiency and conditional stability; it is suitable to treat impulsive behavior of the electromagnetic field and can provide either ultra-wideband temporal waveforms or the sinusoidal steady-state response at any frequency within the excitation spectrum; it is accurate and highly versatile; and it has become a mature and well-researched technique. Moreover, the FDTD technique is suitable to be executed on parallel-processing CPU-based computers and to exploit the modern computer visualisation capabilities. GprMax [1] is a very well-known and largely validated FDTD software tool, implemented by A. Giannopoulos and available for free public download on www.gprmax.com, together with examples and a detailled user guide. The tool includes two electromagnetic wave simulators, GprMax2D and GprMax3D, for the full-wave simulation of two-dimensional and three-dimensional GPR models. In GprMax, everything can be done with the aid of simple commands that are used to define the model parameters and results to be calculated. These commands need to be entered in a simple ASCII text file. GprMax output files can be stored in ASCII or binary format. The software is provided with MATLAB functions, which

  3. E2GPR - Edit your geometry, Execute GprMax2D and Plot the Results!

    NASA Astrophysics Data System (ADS)

    Pirrone, Daniele; Pajewski, Lara

    2015-04-01

    In order to predict correctly the Ground Penetrating Radar (GPR) response from a particular scenario, Maxwell's equations have to be solved, subject to the physical and geometrical properties of the considered problem and to its initial conditions. Several techniques have been developed in computational electromagnetics, for the solution of Maxwell's equations. These methods can be classified into two main categories: differential and integral equation solvers, which can be implemented in the time or spectral domain. All of the different methods present compromises between computational efficiency, stability, and the ability to model complex geometries. The Finite-Difference Time-Domain (FDTD) technique has several advantages over alternative approaches: it has inherent simplicity, efficiency and conditional stability; it is suitable to treat impulsive behavior of the electromagnetic field and can provide either ultra-wideband temporal waveforms or the sinusoidal steady-state response at any frequency within the excitation spectrum; it is accurate and highly versatile; and it has become a mature and well-researched technique. Moreover, the FDTD technique is suitable to be executed on parallel-processing CPU-based computers and to exploit the modern computer visualisation capabilities. GprMax [1] is a very well-known and largely validated FDTD software tool, implemented by A. Giannopoulos and available for free public download on www.gprmax.com, together with examples and a detailled user guide. The tool includes two electromagnetic wave simulators, GprMax2D and GprMax3D, for the full-wave simulation of two-dimensional and three-dimensional GPR models. In GprMax, everything can be done with the aid of simple commands that are used to define the model parameters and results to be calculated. These commands need to be entered in a simple ASCII text file. GprMax output files can be stored in ASCII or binary format. The software is provided with MATLAB functions, which

  4. A Correction to the Photoelectric Current in the Planck's Constant Experiment.

    ERIC Educational Resources Information Center

    Snyder, Evan S.

    1985-01-01

    Provides a method for correcting the photoemission from a collector when using the photoelectric effect experiment to determine Planck's constant. The problem results from a negative current through the cell and makes the measurement of the cutoff potential difficult. (DH)

  5. POWER ASYMMETRY IN WMAP AND PLANCK TEMPERATURE SKY MAPS AS MEASURED BY A LOCAL VARIANCE ESTIMATOR

    SciTech Connect

    Akrami, Y.; Fantaye, Y.; Eriksen, H. K.; Hansen, F. K.; Shafieloo, A.; Banday, A. J.; Górski, K. M. E-mail: y.t.fantaye@astro.uio.no

    2014-04-01

    We revisit the question of hemispherical power asymmetry in the WMAP and Planck temperature sky maps by measuring the local variance over the sky and on disks of various sizes. For the 2013 Planck sky map we find that none of the 1000 available isotropic Planck ''Full Focal Plane'' simulations have a larger variance asymmetry than that estimated from the data, suggesting the presence of an anisotropic signature formally significant at least at the 3.3σ level. For the WMAP 9 year data we find that 5 out of 1000 simulations have a larger asymmetry. The preferred direction for the asymmetry from the Planck data is (l, b) = (212°, –13°), in good agreement with previous reports of the same hemispherical power asymmetry.

  6. Holographic Noise in Michelson Interferometers: A Direct Experimental Probe of Unification at the Planck Scale

    ScienceCinema

    Hogan, Craig

    2016-07-12

    Classical spacetime and quantum mass-energy form the basis of all of physics. They become inconsistent at the Planck scale, 5.4 times 10^{-44} seconds, which may signify a need for reconciliation in a unified theory. Although proposals for unified theories exist, a direct experimental probe of this scale, 16 orders of magnitude above Tevatron energy, has seemed hopelessly out of reach. However in a particular interpretation of holographic unified theories, derived from black hole evaporation physics, a world assembled out of Planck-scale waves displays effects of unification with a new kind of uncertainty in position at the Planck diffraction scale, the geometric mean of the Planck length and the apparatus size. In this case a new phenomenon may measurable, an indeterminacy of spacetime position that appears as noise in interferometers. The colloquium will discuss the theory of the effect, and our plans to build a holographic interferometer at Fermilab to measure it.

  7. The ellipsoidal universe in the Planck satellite era

    NASA Astrophysics Data System (ADS)

    Cea, Paolo

    2014-06-01

    Recent Planck data confirm that the cosmic microwave background displays the quadrupole power suppression together with large-scale anomalies. Progressing from previous results, that focused on the quadrupole anomaly, we strengthen the proposal that the slightly anisotropic ellipsoidal universe may account for these anomalies. We solved at large scales the Boltzmann equation for the photon distribution functions by taking into account both the effects of the inflation produced primordial scalar perturbations and the anisotropy of the geometry in the ellipsoidal universe. We showed that the low quadrupole temperature correlations allowed us to fix the eccentricity at decoupling, edec = (0.86 ± 0.14) 10-2, and to constraint the direction of the symmetry axis. We found that the anisotropy of the geometry of the universe contributes only to the large-scale temperature anisotropies without affecting the higher multipoles of the angular power spectrum. Moreover, we showed that the ellipsoidal geometry of the universe induces sizeable polarization signal at large scales without invoking the reionization scenario. We explicitly evaluated the quadrupole TE and EE correlations. We found an average large-scale polarization ΔTpol = (1.20 ± 0.38) μK. We point out that great care is needed in the experimental determination of the large-scale polarization correlations since the average temperature polarization could be misinterpreted as foreground emission leading, thereby, to a considerable underestimate of the cosmic microwave background polarization signal.

  8. Probing neutrinos from Planck and forthcoming galaxy redshift surveys

    SciTech Connect

    Takeuchi, Yoshitaka; Kadota, Kenji E-mail: kadota.kenji@f.nagoya-u.jp

    2014-01-01

    We investigate how much the constraints on the neutrino properties can be improved by combining the CMB, the photometric and spectroscopic galaxy redshift surveys which include the CMB lensing, galaxy lensing tomography, galaxy clustering and redshift space distortion observables. We pay a particular attention to the constraint on the neutrino mass in view of the forthcoming redshift surveys such as the Euclid satellite and the LSST survey along with the Planck CMB lensing measurements. Combining the transverse mode information from the angular power spectrum and the longitudinal mode information from the spectroscopic survey with the redshift space distortion measurements can determine the total neutrino mass with the projected error of O(0.02) eV. Our analysis fixes the mass splittings among the neutrino species to be consistent with the neutrino oscillation data, and we accordingly study the sensitivity of our parameter estimations on the minimal neutrino mass. The cosmological measurement of the total neutrino mass can distinguish between the normal and inverted mass hierarchy scenarios if the minimal neutrino mass ∼<0.005 eV with the predicted 1–σ uncertainties taken into account.

  9. Bayesian analysis of inflationary features in Planck and SDSS data

    NASA Astrophysics Data System (ADS)

    Benetti, Micol; Alcaniz, Jailson S.

    2016-07-01

    We perform a Bayesian analysis to study possible features in the primordial inflationary power spectrum of scalar perturbations. In particular, we analyze the possibility of detecting the imprint of these primordial features in the anisotropy temperature power spectrum of the cosmic microwave background (CMB) and also in the matter power spectrum P (k ) . We use the most recent CMB data provided by the Planck Collaboration and P (k ) measurements from the 11th data release of the Sloan Digital Sky Survey. We focus our analysis on a class of potentials whose features are localized at different intervals of angular scales, corresponding to multipoles in the ranges 10 <ℓ<60 (Oscill-1) and 150 <ℓ<300 (Oscill-2). Our results show that one of the step potentials (Oscill-1) provides a better fit to the CMB data than does the featureless Λ CDM scenario, with moderate Bayesian evidence in favor of the former. Adding the P (k ) data to the analysis weakens the evidence of the Oscill-1 potential relative to the standard model and strengthens the evidence of this latter scenario with respect to the Oscill-2 model.

  10. Reconciliation of high energy scale models of inflation with Planck

    SciTech Connect

    Ashoorioon, Amjad; Dimopoulos, Konstantinos; Sheikh-Jabbari, M.M.; Shiu, Gary E-mail: konst.dimopoulos@lancaster.ac.uk E-mail: shiu@physics.wisc.edu

    2014-02-01

    The inflationary cosmology paradigm is very successful in explaining the CMB anisotropy to the percent level. Besides the dependence on the inflationary model, the power spectra, spectral tilt and non-Gaussianity of the CMB temperature fluctuations also depend on the initial state of inflation. Here, we examine to what extent these observables are affected by our ignorance in the initial condition for inflationary perturbations, due to unknown new physics at a high scale M. For initial states that satisfy constraints from backreaction, we find that the amplitude of the power spectra could still be significantly altered, while the modification in bispectrum remains small. For such initial states, M has an upper bound of a few tens of H, with H being the Hubble parameter during inflation. We show that for M ∼ 20H, such initial states always (substantially) suppress the tensor to scalar ratio. In particular we show that such a choice of initial conditions can satisfactorily reconcile the simple ½m{sup 2}φ{sup 2} chaotic model with the Planck data [1-3].

  11. Full linearized Fokker-Planck collisions in neoclassical transport simulations

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.

    2012-01-01

    The complete linearized Fokker-Planck collision operator has been implemented in the drift-kinetic code NEO (Belli and Candy 2008 Plasma Phys. Control. Fusion 50 095010) for the calculation of neoclassical transport coefficients and flows. A key aspect of this work is the development of a fast numerical algorithm for treatment of the field particle operator. This Eulerian algorithm can accurately treat the disparate velocity scales that arise in the case of multi-species plasmas. Specifically, a Legendre series expansion in ξ (the cosine of the pitch angle) is combined with a novel Laguerre spectral method in energy to ameliorate the rapid numerical precision loss that occurs for traditional Laguerre spectral methods. We demonstrate the superiority of this approach to alternative spectral and finite-element schemes. The physical accuracy and limitations of more commonly used model collision operators, such as the Connor and Hirshman-Sigmar operators, are studied, and the effects on neoclassical impurity poloidal flows and neoclassical transport for experimental parameters are explored.

  12. Fokker-Planck description of conductance-based integrate-and-fire neuronal networks

    SciTech Connect

    Kovacic, Gregor; Tao, Louis; Rangan, Aaditya V.; Cai, David

    2009-08-15

    Steady dynamics of coupled conductance-based integrate-and-fire neuronal networks in the limit of small fluctuations is studied via the equilibrium states of a Fokker-Planck equation. An asymptotic approximation for the membrane-potential probability density function is derived and the corresponding gain curves are found. Validity conditions are discussed for the Fokker-Planck description and verified via direct numerical simulations.

  13. Compact Collision Kernels for Hard Sphere and Coulomb Cross Sections; Fokker-Planck Coefficients

    SciTech Connect

    Chang Yongbin; Shizgal, Bernie D.

    2008-12-31

    A compact collision kernel is derived for both hard sphere and Coulomb cross sections. The difference between hard sphere interaction and Coulomb interaction is characterized by a parameter {eta}. With this compact collision kernel, the calculation of Fokker-Planck coefficients can be done for both the Coulomb and hard sphere interactions. The results for arbitrary order Fokker-Planck coefficients are greatly simplified. An alternate form for the Coulomb logarithm is derived with concern to the temperature relaxation in a binary plasma.

  14. Physics League Across Numerous Countries for Kick-ass Students (PLANCKS)

    NASA Astrophysics Data System (ADS)

    Haasnoot, Irene

    2016-01-01

    Physics League Across Numerous Countries for Kick-ass Students (PLANCKS) is an international theoretical physics competition for bachelor and master students. The intention of PLANCKS is to increase international collaboration and stimulate the personal development of individual contestants. This is done by organizing a three-day-event which take place every year and is hosted by different countries. Besides the contest, social and scientific activities will be organised, including an opening symposium where leading physicists give lectures to inspire the participants.

  15. A proposal to generate entangled compass states with sub-Planck structure

    SciTech Connect

    Choudhury, Sayan; Panigrahi, Prasanta K.

    2011-09-23

    We illustrate a procedure to generate a bipartite, entangled compass state, which shows sub-Planck structure. The proposed method uses the interaction of a standing wave laser field, with two, two-level atoms and relies on the ability of this system to choose certain mesoscopic bipartite states to couple with the internal degrees of freedom. An appropriate measurement on the internal degrees of freedom then leads to the entangled state, which shows sub-Planck structures, desired for quantum metrology.

  16. The Planck Catalogue of Galactic Cold Clumps : Looking at the early stages of star-formation

    NASA Astrophysics Data System (ADS)

    Montier, Ludovic

    2015-08-01

    The Planck satellite has provided an unprecedented view of the submm sky, allowing us to search for the dust emission of Galactic cold sources. Combining Planck-HFI all-sky maps in the high frequency channels with the IRAS map at 100um, we built the Planck catalogue of Galactic Cold Clumps (PGCC, Planck 2015 results XXVIII 2015), counting 13188 sources distributed over the whole sky, and following mainly the Galactic structures at low and intermediate latitudes. This is the first all-sky catalogue of Galactic cold sources obtained with a single instrument at this resolution and sensitivity, which opens a new window on star-formation processes in our Galaxy.I will briefly describe the colour detection method used to extract the Galactic cold sources, i.e., the Cold Core Colour Detection Tool (CoCoCoDeT, Montier et al. 2010), and its application to the Planck data. I will discuss the statistical distribution of the properties of the PGCC sources (in terms of dust temperature, distance, mass, density and luminosity), which illustrates that the PGCC catalogue spans a large variety of environments and objects, from molecular clouds to cold cores, and covers various stages of evolution. The Planck catalogue is a very powerful tool to study the formation and the evolution of prestellar objects and star-forming regions.I will finally present an overview of the Herschel Key Program Galactic Cold Cores (PI. M.Juvela), which allowed us to follow-up about 350 Planck Galactic Cold Clumps, in various stages of evolution and environments. With this program, the nature and the composition of the 5' Planck sources have been revealed at a sub-arcmin resolution, showing very different configurations, such as starless cold cores or multiple Young Stellar objects still embedded in their cold envelope.

  17. Physical interrelation between Fokker-Planck and random walk models with application to Coulomb interactions.

    NASA Technical Reports Server (NTRS)

    Englert, G. W.

    1971-01-01

    A model of the random walk is formulated to allow a simple computing procedure to replace the difficult problem of solution of the Fokker-Planck equation. The step sizes and probabilities of taking steps in the various directions are expressed in terms of Fokker-Planck coefficients. Application is made to many particle systems with Coulomb interactions. The relaxation of a highly peaked velocity distribution of particles to equilibrium conditions is illustrated.

  18. Sequence signatures and the probabilistic identification of proteins in the Myc-Max-Mad network.

    PubMed

    Atchley, William R; Fernandes, Andrew D

    2005-05-01

    Accurate identification of specific groups of proteins by their amino acid sequence is an important goal in genome research. Here we combine information theory with fuzzy logic search procedures to identify sequence signatures or predictive motifs for members of the Myc-Max-Mad transcription factor network. Myc is a well known oncoprotein, and this family is involved in cell proliferation, apoptosis, and differentiation. We describe a small set of amino acid sites from the N-terminal portion of the basic helix-loop-helix (bHLH) domain that provide very accurate sequence signatures for the Myc-Max-Mad transcription factor network and three of its member proteins. A predictive motif involving 28 contiguous bHLH sequence elements found 337 network proteins in the GenBank NR database with no mismatches or misidentifications. This motif also identifies at least one previously unknown fungal protein with strong affinity to the Myc-Max-Mad network. Another motif found 96% of known Myc protein sequences with only a single mismatch, including sequences from genomes previously not thought to contain Myc proteins. The predictive motif for Myc is very similar to the ancestral sequence for the Myc group estimated from phylogenetic analyses. Based on available crystal structure studies, this motif is discussed in terms of its functional consequences. Our results provide insight into evolutionary diversification of DNA binding and dimerization in a well characterized family of regulatory proteins and provide a method of identifying signature motifs in protein families.

  19. Absolute Calibration of the Radio Astronomy Flux Density Scale at 22 to 43 GHz Using Planck

    NASA Astrophysics Data System (ADS)

    Partridge, B.; López-Caniego, M.; Perley, R. A.; Stevens, J.; Butler, B. J.; Rocha, G.; Walter, B.; Zacchei, A.

    2016-04-01

    The Planck mission detected thousands of extragalactic radio sources at frequencies from 28 to 857 GHz. Planck's calibration is absolute (in the sense that it is based on the satellite’s annual motion around the Sun and the temperature of the cosmic microwave background), and its beams are well characterized at sub-percent levels. Thus, Planck's flux density measurements of compact sources are absolute in the same sense. We have made coordinated Very Large Array (VLA) and Australia Telescope Compact Array (ATCA) observations of 65 strong, unresolved Planck sources in order to transfer Planck's calibration to ground-based instruments at 22, 28, and 43 GHz. The results are compared to microwave flux density scales currently based on planetary observations. Despite the scatter introduced by the variability of many of the sources, the flux density scales are determined to 1%-2% accuracy. At 28 GHz, the flux density scale used by the VLA runs 2%-3% ± 1.0% below Planck values with an uncertainty of +/- 1.0%; at 43 GHz, the discrepancy increases to 5%-6% ± 1.4% for both ATCA and the VLA.

  20. Negative running of the spectral index, hemispherical asymmetry and the consistency of Planck with large r

    SciTech Connect

    McDonald, John

    2014-11-01

    Planck favours a negative running of the spectral index, with the likelihood being dominated by low multipoles l ∼< 50 and no preference for running at higher l. A negative spectral index is also necessary for the 2- Planck upper bound on the tensor-to-scalar ratio r to be consistent with values significantly larger than 0.1. Planck has also observed a hemispherical asymmetry of the CMB power spectrum, again mostly at low multipoles. Here we consider whether the physics responsible for the hemispherical asymmetry could also account for the negative running of the spectral index and the consistency of Planck with a large value of r. A negative running of the spectral index can be generated if the hemispherical asymmetry is due to a scale- and space-dependent modulation which suppresses the CMB power spectrum at low multipoles. We show that the observed hemispherical asymmetry at low l can be generated while satisfying constraints on the asymmetry at higher l and generating a negative spectral index of the right magnitude to account for the Planck observation and to allow Planck to be consistent with a large value of r.

  1. Max-Plus Stochastic Control and Risk-Sensitivity

    SciTech Connect

    Fleming, Wendell H.; Kaise, Hidehiro; Sheu, Shuenn-Jyi

    2010-08-15

    In the Maslov idempotent probability calculus, expectations of random variables are defined so as to be linear with respect to max-plus addition and scalar multiplication. This paper considers control problems in which the objective is to minimize the max-plus expectation of some max-plus additive running cost. Such problems arise naturally as limits of some types of risk sensitive stochastic control problems. The value function is a viscosity solution to a quasivariational inequality (QVI) of dynamic programming. Equivalence of this QVI to a nonlinear parabolic PDE with discontinuous Hamiltonian is used to prove a comparison theorem for viscosity sub- and super-solutions. An example from mathematical finance is given, and an application in nonlinear H-infinity control is sketched.

  2. A 10-Gbps optical WiMAX transport system.

    PubMed

    Lin, Ying-Pyng; Lu, Hai-Han; Wu, Po-Yi; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung

    2014-02-10

    A 10-Gbps optical worldwide interoperability for microwave access (WiMAX) transport system employing vertical cavity surface emitting laser (VCSEL) and spatial light modulator (SLM) with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. With the assistance of equalizer and low noise amplifier (LNA) at the receiving site, good bit error rate (BER) performance, clear constellation map, and clear eye diagram are achieved in the proposed systems. An optical WiMAX transport system, transmitting 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 10 Gbps is successfully demonstrated. Such a 10-Gbps optical WiMAX transport system would be attractive for providing services including Internet and telecommunication services. Our proposed system is suitable for the free-space lightwave transport system in visible light communication (VLC) application. PMID:24663567

  3. [Max Mohr (1891 - 1937) - a physician in search of independence].

    PubMed

    Beer, Ralf; Steger, Florian

    2010-01-01

    Max Mohr (1891-1937) was a physician and one of the most successful writers during the period of the Weimar Republic (1919-1933). The biography of Max Mohr is of particular importance for the understanding of his works. Since--aside from the literary producing--his medical occupations were constitutive in his life, this article focuses on the physician Max Mohr. The pursuit of personal independence was a central theme in his life. Though working in a private practice would have enabled him to lead a civic life in Munich, Mohr--newly-married in 1920--decided to move into Wolfsgrub near Rottach at Tegernsee. Mohr increasingly applied himself to his literary producing and frequently visited Berlin. In 1934, Mohr was forced to emigrate to Shanghai because of his Jewish heritage. There he quickly succeeded in building up his own practice, thus securing an economic existence. Mohr died on November 13th, 1937. PMID:21322921

  4. A 10-Gbps optical WiMAX transport system.

    PubMed

    Lin, Ying-Pyng; Lu, Hai-Han; Wu, Po-Yi; Chen, Chia-Yi; Jhang, Tai-Wei; Ruan, Sheng-Siang; Wu, Kuan-Hung

    2014-02-10

    A 10-Gbps optical worldwide interoperability for microwave access (WiMAX) transport system employing vertical cavity surface emitting laser (VCSEL) and spatial light modulator (SLM) with 16-quadrature amplitude modulation (QAM)-orthogonal frequency-division multiplexing (OFDM) modulating signal is proposed. With the assistance of equalizer and low noise amplifier (LNA) at the receiving site, good bit error rate (BER) performance, clear constellation map, and clear eye diagram are achieved in the proposed systems. An optical WiMAX transport system, transmitting 16-QAM-OFDM signal over a 6-m free-space link, with a data rate of 10 Gbps is successfully demonstrated. Such a 10-Gbps optical WiMAX transport system would be attractive for providing services including Internet and telecommunication services. Our proposed system is suitable for the free-space lightwave transport system in visible light communication (VLC) application.

  5. Quantum Tomography from Incomplete Data via MaxEnt Principle

    NASA Astrophysics Data System (ADS)

    Bužek, Vladimír

    We show how the maximum entropy (MaxEnt) principle can be efficiently used for a reconstruction of states of quantum systems from incomplete tomographic data. This MaxEnt reconstruction scheme can be in specific cases several orders of magnitude more efficient than the standard inverse Radon transformation or the reconstruction via direct sampling using pattern functions. We apply the MaxEnt algorithm for a reconstruction of motional quantum states of neutral atoms. As an example we analyze the experimental data obtained by the group of C. Salomon at the ENS in Paris and we reconstruct Wigner functions of motional quantum states of Cs atoms trapped in an optical lattice. We also reconstruct Wigner functions of a cavity field based on a measurement of the parity operator. We analyze in detail experimental data obtained by the group of S. Haroche at the ENS in Paris.

  6. Performances of JEM-EUSO: energy and X max reconstruction

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The Extreme Universe Space Observatory (EUSO) on-board the Japanese Experimental Module (JEM) of the International Space Station aims at the detection of ultra high energy cosmic rays from space. The mission consists of a UV telescope which will detect the fluorescence light emitted by cosmic ray showers in the atmosphere. The mission, currently developed by a large international collaboration, is designed to be launched within this decade. In this article, we present the reconstruction of the energy of the observed events and we also address the X max reconstruction. After discussing the algorithms developed for the energy and X max reconstruction, we present several estimates of the energy resolution, as a function of the incident angle, and energy of the event. Similarly, estimates of the X max resolution for various conditions are presented.

  7. [Max Mohr (1891 - 1937) - a physician in search of independence].

    PubMed

    Beer, Ralf; Steger, Florian

    2010-01-01

    Max Mohr (1891-1937) was a physician and one of the most successful writers during the period of the Weimar Republic (1919-1933). The biography of Max Mohr is of particular importance for the understanding of his works. Since--aside from the literary producing--his medical occupations were constitutive in his life, this article focuses on the physician Max Mohr. The pursuit of personal independence was a central theme in his life. Though working in a private practice would have enabled him to lead a civic life in Munich, Mohr--newly-married in 1920--decided to move into Wolfsgrub near Rottach at Tegernsee. Mohr increasingly applied himself to his literary producing and frequently visited Berlin. In 1934, Mohr was forced to emigrate to Shanghai because of his Jewish heritage. There he quickly succeeded in building up his own practice, thus securing an economic existence. Mohr died on November 13th, 1937.

  8. Public key cryptosystem based on max-semirings

    NASA Astrophysics Data System (ADS)

    Durcheva, Mariana I.; Trendafilov, Ivan D.

    2012-11-01

    When we replace addition and multiplication of real numbers by the operations of taking the maximum of two numbers and of adding two numbers respectively, we obtain the so-called max-algebra which offers an attractive language to deal with certain problems in automata theory, scheduling theory, discrete event systems, manufacturing systems, telecommunication networks, parallel processing systems and traffic control. The aim of this paper is to employ max-algebra as platforms for secret key establishment between two individuals whose only means of communication is a public channel. The proposed new cryptographic protocols are based on the difficulty of solving matrix equations since matrices over max-semirings are generally not invertible.

  9. Multimedia application performance on a WiMAX network

    NASA Astrophysics Data System (ADS)

    Halepovic, Emir; Ghaderi, Majid; Williamson, Carey

    2009-01-01

    In this paper, we use experimental measurements to study the performance of multimedia applications over a commercial IEEE 802.16 WiMAX network. Voice-over-IP (VoIP) and video streaming applications are tested. We observe that the WiMAX-based network solidly supports VoIP. The voice quality degradation compared to high-speed Ethernet is only moderate, despite higher packet loss and network delays. Despite different characteristics of the uplink and the downlink, call quality is comparable for both directions. On-demand video streaming performs well using UDP. Smooth playback of high-quality video/audio clips at aggregate rates exceeding 700 Kbps is achieved about 63% of the time, with low-quality playback periods observed only 7% of the time. Our results show that WiMAX networks can adequately support currently popular multimedia Internet applications.

  10. The interactional foundations of MaxEnt: Open questions

    NASA Astrophysics Data System (ADS)

    Harré, Michael S.

    2014-12-01

    One of the simplest and potentially most useful techniques to be developed in the 20th century, a century noted for an ever more mathematically sophisticated formulation of the sciences, is that of maximising the entropy of a system in order to generate a descriptive, stochastic model of that system in closed form, often abbreviated to MaxEnt. The extension of MaxEnt to systems beyond the physics from which it originated is hampered by the fact that the microscopic physical interactions that are not justified or justifiable within the MaxEnt framework need to be falsifiably evaluated in each new field of application. It is not obvious that such justification exists for many systems in which the interactions are not directly based on physics. For example what is the justification for the use of MaxEnt in biology, climate modelling or economics? Is it simply a useful heuristic or is there some deeper connection with the foundations of some systems? Without further critical examination of the microscopic foundations that give rise to the success of the MaxEnt principle it is difficult to motivate the use of such techniques in other fields except through theoretically an practically unsatisfying analogical arguments. This article briefly presents the basis of MaxEnt principles as originally introduced in statistical mechanics in the Jaynes form, the Tsallis form and the Rényi form. Several different applications are introduced including that of ecological diversity where maximising the different diversity measures is equivalent to maximising different entropic functionals.

  11. The interactional foundations of MaxEnt: Open questions

    SciTech Connect

    Harré, Michael S.

    2014-12-05

    One of the simplest and potentially most useful techniques to be developed in the 20{sup th} century, a century noted for an ever more mathematically sophisticated formulation of the sciences, is that of maximising the entropy of a system in order to generate a descriptive, stochastic model of that system in closed form, often abbreviated to MaxEnt. The extension of MaxEnt to systems beyond the physics from which it originated is hampered by the fact that the microscopic physical interactions that are not justified or justifiable within the MaxEnt framework need to be falsifiably evaluated in each new field of application. It is not obvious that such justification exists for many systems in which the interactions are not directly based on physics. For example what is the justification for the use of MaxEnt in biology, climate modelling or economics? Is it simply a useful heuristic or is there some deeper connection with the foundations of some systems? Without further critical examination of the microscopic foundations that give rise to the success of the MaxEnt principle it is difficult to motivate the use of such techniques in other fields except through theoretically an practically unsatisfying analogical arguments. This article briefly presents the basis of MaxEnt principles as originally introduced in statistical mechanics in the Jaynes form, the Tsallis form and the Rényi form. Several different applications are introduced including that of ecological diversity where maximising the different diversity measures is equivalent to maximising different entropic functionals.

  12. The BALDER Beamline at the MAX IV Laboratory

    NASA Astrophysics Data System (ADS)

    Klementiev, K.; Norén, K.; Carlson, S.; Sigfridsson Clauss, K. G. V.; Persson, I.

    2016-05-01

    X-ray absorption spectroscopy (XAS) includes well-established methods to study the local structure around the absorbing element - extended X-ray absorption fine structure (EXAFS), and the effective oxidation number or to quantitatively determine the speciation of an element in a complex matrix - X-ray absorption near-edge structure (XANES). The increased brilliance and intensities available at the new generation of synchrotron light sources makes it possible to study, in-situ and in-operando, much more dilute systems with relevance for natural systems, as well as the micro-scale variability and dynamics of chemical reactions on the millisecond time-scale. The design of the BALDER beamline at the MAX IV Laboratory 3 GeV ring has focused on a high flux of photons in a wide energy range, 2.4-40 keV, where the K-edge is covered for the elements S to La, and the L 3-edge for all elements heavier than Sb. The overall design of the beamline will allow large flexibility in energy range, beam size and data collection time. The other focus of the beamline design is the possibility to perform multi-technique analyses on samples. Development of sample environment requires focus on implementation of auxiliary methods in such a way that techniques like Fourier transform infrared (FTIR) spectroscopy, UV-Raman spectroscopy, X-ray diffraction and/or mass spectrometry can be performed simultaneously as the XAS study. It will be a flexible system where different instruments can be plugged in and out depending on the needs for the particular investigation. Many research areas will benefit from the properties of the wiggler based light source and the capabilities to perform in-situ and in-operando measurements, for example environmental and geochemical sciences, nuclear chemistry, catalysis, materials sciences, and cultural heritage.

  13. Beyond NextGen: AutoMax Overview and Update

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal; Alexandrov, Natalia

    2013-01-01

    Main Message: National and Global Needs - Develop scalable airspace operations management system to accommodate increased mobility needs, emerging airspace uses, mix, future demand. Be affordable and economically viable. Sense of Urgency. Saturation (delays), emerging airspace uses, proactive development. Autonomy is Needed for Airspace Operations to Meet Future Needs. Costs, time critical decisions, mobility, scalability, limits of cognitive workload. AutoMax to Accommodate National and Global Needs. Auto: Automation, autonomy, autonomicity for airspace operations. Max: Maximizing performance of the National Airspace System. Interesting Challenges and Path Forward.

  14. Squeezed between shells? The origin of the Lupus I molecular cloud. APEX/LABOCA, Herschel, and Planck observations

    NASA Astrophysics Data System (ADS)

    Gaczkowski, B.; Preibisch, T.; Stanke, T.; Krause, M. G. H.; Burkert, A.; Diehl, R.; Fierlinger, K.; Kroell, D.; Ngoumou, J.; Roccatagliata, V.

    2015-12-01

    large-scale compression from the advancing USco H I shell and the UCL wind bubble. The Atacama Pathfinder Experiment (APEX) is a collaboration between the Max-Planck-Institut für Radioastronomie (MPIfR), the European Southern Observatory (ESO), and the Onsala Space Observatory (OSO).Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.Final APEX cube and Herschel N and T maps as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A36

  15. Max-E47, a Designed Minimalist Protein that Targets the E-Box DNA Site In Vivo and In Vitro

    PubMed Central

    Xu, Jing; Chen, Gang; De Jong, Antonia T.; Shahravan, S. Hesam; Shin, Jumi A.

    2009-01-01

    Max-E47 is a designed hybrid protein comprising the Max DNA-binding basic region and E47 HLH dimerization subdomain. In the yeast one-hybrid system (Y1H), Max-E47 shows strong transcriptional activation from the E-box site, 5'-CACGTG, targeted by the Myc/Max/Mad network of transcription factors; two mutants, Max-E47Y and Max-E47YF, activate more weakly from the E-box in the Y1H. Quantitative fluorescence anisotropy titrations to gain free energies of protein:DNA binding gave low nM Kd values for the native MaxbHLHZ, Max-E47, and the Y and YF mutants binding to the E-box site (14 nM, 15 nM, 9 nM, and 6 nM, respectively), with no detectable binding to a nonspecific control duplex. Because these minimalist, E-box-binding hybrids have no activation domain and no interactions with the c-MycbHLHZ, as shown by the yeast two-hybrid assay, they can potentially serve as dominant-negative inhibitors that suppress activation of E-box-responsive genes targeted by transcription factors including the c-Myc/Max complex. As proof-of-principle, we used our modified Y1H, which allows direct competition between two proteins vying for a DNA target, to show that Max-E47 effectively outcompetes the native MaxbHLHZ for the E-box; weaker competition is observed from the two mutants, consistent with Y1H results. These hybrids provide a minimalist scaffold for further exploration of the relationship between protein structure and DNA-binding function and may have applications as protein therapeutics or biochemical probes capable of targeting the E-box site. PMID:19449889

  16. Unsaturated fatty acids bind Myc-Max transcription factor and inhibit Myc-Max-DNA complex formation.

    PubMed

    Chung, Sunah; Park, Seyeon; Yang, Chul Hak

    2002-12-15

    Oncoprotein Myc, hetero-dimerized with Max through a b/HLH/Zip region, is a transcription factor that governs important cellular processes such as cell cycle entry, proliferation and differentiation. We found that linoleic acid, isolated from Pollen Typhae, and other unsaturated fatty acids have strong inhibitory effects on the binding of Myc-Max heterodimer to an E-box DNA site (CA(C/T)GTG). The interaction of a fatty acid with a protein dimer, not with DNA, is assumed to block the entire Myc-Max-DNA complex formation. Unsaturated fatty acids also showed cytotoxicity against a SNU16 human stomach cancer cell line and conjugated linoleic acid suppressed mRNA expression of several myc-target genes; ornithine decarboxylase, p53, cdc25a in the SNU16 cells.

  17. A CRITICAL COMMENT ON THE CLAIMED RELATION BETWEEN THE SOLAR MAXIMUM AMPLITUDE AND MAX-MAX CYCLE LENGTH

    SciTech Connect

    Carrasco, V. M. S.; Vaquero, J. M.; Gallego, M. C. E-mail: jvaquero@unex.es

    2012-08-15

    In this paper, we revisit a correlation between the amplitude of a solar cycle, R{sub m}, and the max-max solar cycle length two solar cycles before, P{sub max-2}, which was proposed by Du to be used as a tool for solar cycle forecasting. We vary the time interval used in the statistical analysis and also use different long-term series of sunspot numbers: International sunspot number and Group sunspot number. We show that the claimed correlation appears unstable as it depends on the time interval and the selected data series. This suggests that the relationship between the two parameters is not stationary and more complex than previously thought and, therefore, this relationship should not be used to predict solar activity.

  18. Planck 2015 results. XXV. Diffuse low-frequency Galactic foregrounds

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Alves, M. I. R.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Ghosh, T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Orlando, E.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Peel, M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Strong, A. W.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vidal, M.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Watson, R.; Wehus, I. K.; Wilkinson, A.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We discuss the Galactic foreground emission between 20 and 100 GHz based on observations by Planck and WMAP. The total intensity in this part of the spectrum is dominated by free-free and spinning dust emission, whereas the polarized intensity is dominated by synchrotron emission. The Commander component-separation tool has been used to separate the various astrophysical processes in total intensity. Comparison with radio recombination line templates verifies the recovery of the free-free emission along the Galactic plane. Comparison of the high-latitude Hα emission with our free-free map shows residuals that correlate with dust optical depth, consistent with a fraction (≈30%) of Hα having been scattered by high-latitude dust. We highlight a number of diffuse spinning dust morphological features at high latitude. There is substantial spatial variation in the spinning dust spectrum, with the emission peak (in Iν) ranging from below 20 GHz to more than 50 GHz. There is a strong tendency for the spinning dust component near many prominent H ii regions to have a higher peak frequency, suggesting that this increase in peak frequency is associated with dust in the photo-dissociation regions around the nebulae. The emissivity of spinning dust in these diffuse regions is of the same order as previous detections in the literature. Over the entire sky, the Commander solution finds more anomalous microwave emission (AME) than the WMAP component maps, at the expense of synchrotron and free-free emission. This can be explained by the difficulty in separating multiple broadband components with a limited number of frequency maps. Future surveys, particularly at 5-20 GHz, will greatly improve the separation by constraining the synchrotron spectrum. We combine Planck and WMAP data to make the highest signal-to-noise ratio maps yet of the intensity of the all-sky polarized synchrotron emission at frequencies above a few GHz. Most of the high-latitude polarized emission is

  19. Observations of high-z galaxies with Planck and Herschel

    NASA Astrophysics Data System (ADS)

    Toffolatti, L.; Negrello, M.; González-Nuevo, J.; de Zotti, G.; Magliocchetti, M.

    medskip In the recent past sub-mm and mm-wave surveys have led to the discovery of very luminous high- z galaxies with star formation rates sim 10 3 M odot yr The bright portion of number counts of these sources appears to be declining steeply with increasing flux density reflecting the exponential fall of the dark-halo mass function foreseen by the Press Schechter formula moreover preliminary data show that they are strongly clustered The current astrophysical explanation e g Granato G L it et al 2004 ApJ 600 580 is in terms of very massive proto-spheroidal galaxies undergoing their main phase of star formation at substantial redshift typically z simeq 2 - 3 Given the wide redshift range spanned by them proto-spheroids will provide a unique opportunity to investigate the formation and evolution of large-scale structure up to high redshift Moreover they have a substantial optical depth for gravitational lensing and the effect of lensing results strongly amplified by the steepness of their bright counts medskip In this scenario - in which massive proto-spheroidal galaxies live in strongly overdense regions - a low resolution instrument like Planck cannot measure the flux of individual objects but the sum of fluxes of physically related sources in a resolution element an unresolved source clump Analytic estimates as well as numerical simulations Negrello M it et al 2005 MNRAS 358 869 Gonz alez-Nuevo J it et al 2005 ApJ 621 1 show that several clumps should be detectable by

  20. Updated constraints on non-standard neutrino interactions from Planck

    SciTech Connect

    Archidiacono, Maria; Hannestad, Steen E-mail: sth@phys.au.dk

    2014-07-01

    We provide updated bounds on non-standard neutrino interactions based on data from the Planck satellite as well as auxiliary cosmological measurements. Two types of models are studied - A Fermi-like 4-point interaction and an interaction mediated by a light pseudoscalar - and we show that these two models are representative of models in which neutrinos either decouple or recouple in the early Universe. Current cosmological data constrain the effective 4-point coupling to be G{sub X} ≤ (0.06 GeV){sup -2}, corresponding to G{sub X} ≤ 2.5 × 10{sup 7} G{sub F}. For non-standard pseudoscalar interactions we set a limit on the diagonal elements of the dimensionless coupling matrix, g{sub ij}, of g{sub ii} ≤ 1.2 × 10{sup -7}. For the off-diagonal elements which induce neutrino decay the bound is significantly stronger, corresponding to g{sub ij} ≤ 2.3 × 10{sup -11}(m/0.05 eV){sup -2}, or a lifetime constraint of τ ≥ 1.2 × 10{sup 9} s (m/0.05 eV){sup 3} . This is currently the strongest known bound on this particular type of neutrino decay. We finally note that extremely strong neutrino self-interactions which completely suppress anisotropic stress over all of cosmic history are very highly disfavored by current data Δ χ{sup 2} ∼ 10{sup 4})

  1. Cosmic Reionization after Planck: Could Quasars Do It All?

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Haardt, Francesco

    2015-11-01

    We assess a model of late cosmic reionization in which the ionizing background radiation arises entirely from high-redshift quasars and other active galactic nuclei (AGNs). The low optical depth to Thomson scattering reported by the Planck Collaboration pushes the redshift of instantaneous reionization down to z={8.8}-1.4+1.7 and greatly reduces the need for significant Lyman-continuum emission at very early times. We show that if recent claims of a numerous population of faint AGNs at z = 4-6 are upheld and the high inferred AGN comoving emissivity at these epochs persists to higher, z ≳ 10, redshifts, then active galaxies may drive the reionization of hydrogen and helium with little contribution from normal star-forming galaxies. We discuss an AGN-dominated scenario that satisfies a number of observational constraints: the H i photoionization rate is relatively flat over the range 2 < z < 5, hydrogen gets fully reionized by z ≃ 5.7, and the integrated Thomson scattering optical depth is τ ≃ 0.056, in agreement with measurements based on the Lyα opacity of the intergalactic medium (IGM) and cosmic microwave background polarization. It is a prediction of the model that helium gets doubly reionized before redshift 4, the heat input from helium reionization dominates the thermal balance of the IGM after hydrogen reionization, and z > 5 AGNs provide a significant fraction of the unresolved X-ray background at 2 keV. Singly and doubly ionized helium contribute about 13% to τ, and the He iii volume fraction is already 50% when hydrogen becomes fully reionized.

  2. Gas of 96 Planck Cold Clumps in the Second Quadrant

    NASA Astrophysics Data System (ADS)

    Zhang, Tianwei; Wu, Yuefang; Liu, Tie; Meng, Fanyi

    2016-06-01

    Ninety-six Planck cold dust clumps in the second quadrant were mapped with 12CO (1-0), 13CO (1-0), and C18O (1-0) lines at the 13.7 m telescope of Purple Mountain Observatory. 12CO (1-0) and 13CO (1-0) emissions were detected for all 96 clumps, while C18O (1-0) emissions were detected in 81 of them. Fifteen clumps have more than one velocity component. In the 115 mapped velocity components, 225 cores were obtained. We found that 23.1% of the cores have non-Gaussian profiles. We acquired the V lsr, FWHM, and T A of the lines. Distances, T ex, velocity dispersions, {N}{{{H}}2}, and masses were also derived. Generally, turbulence may dominant the cores because {σ }{NT}/{σ }{Therm}\\gt 1 in almost all of the cores and Larson’s relationship is not apparent in our massive cores. Virial parameters are adopted to test the gravitational stability of cores and 51% of the cores are likely collapsing. The core mass function of the cores in the range 0-1 kpc suggests a low core-to-star conversional efficiency (0.62%). Only 14 of 225 cores (6.2%) have associated stellar objects at their centers, while the others are starless. The morphologies of clumps are mainly filamentary structures. Seven clumps may be located on an extension of the new spiral arm in the second quadrant while three are on the known outer arm.

  3. Dirac(-Pauli), Fokker-Planck equations and exceptional Laguerre polynomials

    SciTech Connect

    Ho, Choon-Lin

    2011-04-15

    Research Highlights: > Physical examples involving exceptional orthogonal polynomials. > Exceptional polynomials as deformations of classical orthogonal polynomials. > Exceptional polynomials from Darboux-Crum transformation. - Abstract: An interesting discovery in the last two years in the field of mathematical physics has been the exceptional X{sub l} Laguerre and Jacobi polynomials. Unlike the well-known classical orthogonal polynomials which start with constant terms, these new polynomials have lowest degree l = 1, 2, and ..., and yet they form complete set with respect to some positive-definite measure. While the mathematical properties of these new X{sub l} polynomials deserve further analysis, it is also of interest to see if they play any role in physical systems. In this paper we indicate some physical models in which these new polynomials appear as the main part of the eigenfunctions. The systems we consider include the Dirac equations coupled minimally and non-minimally with some external fields, and the Fokker-Planck equations. The systems presented here have enlarged the number of exactly solvable physical systems known so far.

  4. An In-Depth Look at Ground Source Heat Pumps and Other Electric Loads in Two GreenMax Homes

    SciTech Connect

    Puttagunta, Srikanth; Shapiro, Carl

    2012-04-01

    Building America research team Consortium for Advanced Residential Buildings (CARB) partnered with WPPI Energy to answer key research questions on in-field performance of ground-source heat pumps and lighting, appliance, and miscellaneous loads (LAMELs) through extensive field monitoring at two WPPI GreenMax demonstration homes in Wisconsin. These two test home evaluations provided valuable data on the true in-field performance of various building mechanical systems and LAMELs.

  5. CARMA observations of massive Planck-discovered cluster candidates at z ≳ 0.5 associated with WISE overdensities: strategy, observations and validation

    NASA Astrophysics Data System (ADS)

    Rodríguez-Gonzálvez, Carmen; Muchovej, Stephen; Chary, Ranga Ram

    2015-02-01

    We present 1-2 arcmin spatial resolution Combined Array for Research in Millimetre-wave Astronomy (CARMA)-8 31 GHz observations towards 19 unconfirmed Planck cluster candidates, selected to have significant galaxy overdensities from the WISE early data release and thought to be at z ≳ 1 from the WISE colours of the putative brightest cluster galaxy. We find a Sunyaev-Zeldovich (SZ) detection in the CARMA-8 data towards nine candidate clusters, where one detection is considered tentative. For each cluster candidate we present CARMA-8 maps, a study of their radio-source environment and we assess the reliability of the SZ detection. The CARMA SZ detections appear to be SZ bright, with the mean, primary-beam-corrected peak flux density of the decrement being -2.9 mJy beam-1 with a standard deviation of 0.8, and are typically offset from the Planck position by ≈80 arcsec. Using archival imaging data in the vicinity of the CARMA SZ centroids, we present evidence that one cluster matches Abell 586 - a known z ≈ 0.2 cluster; four candidate clusters are likely to have 0.3 ≲ z ≲ 0.7; and, for the remaining four, the redshift information is inconclusive. We also argue that the sensitivity limits resulting from the cross-correlation between Planck and WISE makes it challenging to use our selection criterion to identify clusters at z > 1.

  6. Improved low molecular weight Myc-Max inhibitors.

    PubMed

    Wang, Huabo; Hammoudeh, Dalia I; Follis, Ariele Viacava; Reese, Brian E; Lazo, John S; Metallo, Steven J; Prochownik, Edward V

    2007-09-01

    Compounds that selectively prevent or disrupt the association between the c-Myc oncoprotein and its obligate heterodimeric partner Max (Myc-Max compounds) have been identified previously by high-throughput screening of chemical libraries. Although these agents specifically inhibit the growth of c-Myc-expressing cells, their clinical applicability is limited by their low potency. We describe here several chemical modifications of one of these original compounds, 10058-F4, which result in significant improvements in efficacy. Compared with the parent structure, these analogues show enhanced growth inhibition of c-Myc-expressing cells in a manner that generally correlates with their ability to disrupt c-Myc-Max association and DNA binding. Furthermore, we show by use of a sensitive fluorescence polarization assay that both 10058-F4 and its active analogues bind specifically to monomeric c-Myc. These studies show that improved Myc-Max compounds can be generated by a directed approach involving deliberate modification of an index compound. They further show that the compounds specifically target c-Myc, which exists in a dynamic and relatively unstructured state with only partial and transient alpha-helical content.

  7. Shape complexes in continuous max-flow segmentation

    NASA Astrophysics Data System (ADS)

    Baxter, John S. H.; Yuan, Jing; Drangova, Maria; Peters, Terry M.; Inoue, Jiro

    2016-03-01

    Optimization-based segmentation approaches deriving from discrete graph-cuts and continuous max-flow have become increasingly nuanced, allowing for topological and geometric constraints on the resulting segmentation while retaining global optimality. However, these two considerations, topological and geometric, have yet to be combined in a unified manner. This paper presents the concept of shape complexes, which combine geodesic star convexity with extendable continuous max-flow solvers. These shape complexes allow more complicated shapes to be created through the use of multiple labels and super-labels, with geodesic star convexity governed by a topological ordering. These problems can be optimized using extendable continuous max-flow solvers. Previous work required computationally expensive co-ordinate system warping which are ill-defined and ambiguous in the general case. These shape complexes are validated in a set of synthetic images as well as atrial wall segmentation from contrast-enhanced CT. Shape complexes represent a new, extendable tool alongside other continuous max-flow methods that may be suitable for a wide range of medical image segmentation problems.

  8. 19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. HISTORIC VIEW OF MAX VALIER IN AN EARLY STATIC TEST. THE ROCKET IS SITTING ON A SCALE. VALIER IS MEASURING THRUST BY ADDING WEIGHT LIKE THE ONE IN HIS RIGHT HAND. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL

  9. Portrait Face-Off: Gilbert Stuart vs. Peter Max

    ERIC Educational Resources Information Center

    Crumpecker, Cheryl

    2012-01-01

    When art classes are short and infrequent, it is always a challenge to meet required state and national standards. A unit comparing and contrasting Peter Max's Pop art portraits with the realistic style of Gilbert Stuart's presidential portraits provides an opportunity to address a huge number of these requirements. Focus can change with the age…

  10. Breaking the Genetic Code in a Letter by Max Delbruck.

    ERIC Educational Resources Information Center

    Fox, Marty

    1996-01-01

    Describes a classroom exercise that uses a letter from Max Delbruck to George Beadle to stimulate interest in the mechanics of a nonoverlapping comma-free code. Enables students to participate in the rich history of molecular biology and illustrates to them that scientists and science can be fun. (JRH)

  11. The effect of exposure on MaxRGB color constancy

    NASA Astrophysics Data System (ADS)

    Funt, Brian; Shi, Lilong

    2010-02-01

    The performance of the MaxRGB illumination-estimation method for color constancy and automatic white balancing has been reported in the literature as being mediocre at best; however, MaxRGB has usually been tested on images of only 8-bits per channel. The question arises as to whether the method itself is inadequate, or rather whether it has simply been tested on data of inadequate dynamic range. To address this question, a database of sets of exposure-bracketed images was created. The image sets include exposures ranging from very underexposed to slightly overexposed. The color of the scene illumination was determined by taking an extra image of the scene containing 4 Gretag Macbeth mini Colorcheckers placed at an angle to one another. MaxRGB was then run on the images of increasing exposure. The results clearly show that its performance drops dramatically when the 14-bit exposure range of the Nikon D700 camera is exceeded, thereby resulting in clipping of high values. For those images exposed such that no clipping occurs, the median error in MaxRGB's estimate of the color of the scene illumination is found to be relatively small.

  12. Max Weber and the Iron Cage of Technology

    ERIC Educational Resources Information Center

    Maley, Terry

    2004-01-01

    Max Weber is seen by mainstream social scientists as a sociologist, social theorist, and theorist of bureaucracy. In this reassessment of Weber's social science and its methodology, it is suggested that Weber can also be seen as a compelling early 20th-century critic of science and technology. The theme of technology, and Webers ambivalence about…

  13. Genome Sequence of the Paleopolyploid Soybean (Glycine max (L.) Merr.)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report the genome sequence for soybean (Glycine max var. Williams 82), one of the most important crop plants worldwide because of its ability to produce both protein and oil. Soybean is a recently domesticated legume that plays a vital role in crop rotation as it fixes atmospheric nitrogen via s...

  14. 13. VIEW OF WESTINGHOUSE STEAM TURBINE. 1500 kilowatt (max kw ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW OF WESTINGHOUSE STEAM TURBINE. 1500 kilowatt (max kw 1875). AC Westinghouse generator (1875 KVA, 2400 volts, 450 amps, 3 phase, 60 cycles). - Juniata Shops, Power Plant & Boiler House, East of Fourth Avenue at Second Street, Altoona, Blair County, PA

  15. Min and Max Exponential Extreme Interval Values and Statistics

    ERIC Educational Resources Information Center

    Jance, Marsha; Thomopoulos, Nick

    2009-01-01

    The extreme interval values and statistics (expected value, median, mode, standard deviation, and coefficient of variation) for the smallest (min) and largest (max) values of exponentially distributed variables with parameter ? = 1 are examined for different observation (sample) sizes. An extreme interval value g[subscript a] is defined as a…

  16. Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress.

    PubMed

    Luo, Qingyun; Yu, Bingjun; Liu, Youliang

    2005-09-01

    High Na+ and Cl- concentrations in soil cause hyperionic and hyperosmotic stress effects, the consequence of which can be plant demise. Ion-specific stress effects of Na+ and Cl- on seedlings of cultivated (Glycine max (L.) Merr) and wild soybean (Glycine soja Sieb. Et Zucc.) were evaluated and compared in isoosmotic solutions of Cl-, Na+ and NaCl. Results showed that under NaCl stress, Cl- was more toxic than Na+ to seedlings of G. max. Injury of six G. max cultivars, including 'Jackson' (salt sensitive) and 'Lee 68' (salt tolerant), was positively correlated with the content of Cl- in the leaves, and negatively with that in the roots. In subsequent research, seedlings of two G. max cultivars (salt-tolerant Nannong 1138-2, and salt-sensitive Zhongzihuangdou-yi) and two G. soja populations (BB52 and N23232) were subjected to isoosmotic solutions of 150mM Na+, Cl- and NaCl, respectively. G. max cv. Nannong 1138-2 and Zhongzihuangdou-yi were damaged much more heavily in the solution of Cl- than in that of Na+. Their Leaves were found to be more sensitive to Cl- than to Na+, and salt tolerance of these two G. max cultivars was mainly due to successful withholding of Cl- in the roots and stems to decrease its content in the leaves. The reverse response to isoosmotic stress of 150 mM Na+ and Cl- was shown in G. soja populations of BB52 and N23232; their leaves were not as susceptible to toxicity of Cl- as that of Na+. Salt tolerance of BB52 and N23232 was mainly due to successful withholding of Na+ in the roots and stems to decrease its content in the leaves. These results indicate that G. soja have advantages over G. max in those traits associated with the mechanism of Cl-tolerance, such as its withholding in roots and vacuoles of leaves. It is possible to use G. soja to improve the salt tolerance of G. max.

  17. Max Tech and Beyond: Fluorescent Lamps

    SciTech Connect

    Scholand, Michael

    2012-04-01

    Fluorescent lamps are the most widely used artificial light source today, responsible for approximately 70% of the lumens delivered to our living spaces globally. The technology was originally commercialized in the 1930's, and manufacturers have been steadily improving the efficacy of these lamps over the years through modifications to the phosphors, cathodes, fill-gas, operating frequency, tube diameter and other design attributes. The most efficient commercially available fluorescent lamp is the 25 Watt T5 lamp. This lamp operates at 114-116 lumens per watt while also providing good color rendering and more than 20,000 hours of operating life. Industry experts interviewed indicated that while this lamp is the most efficient in the market today, there is still a further 10 to 14% of potential improvements that may be introduced to the market over the next 2 to 5 years. These improvements include further developments in phosphors, fill-gas, cathode coatings and ultraviolet (UV) reflective glass coatings. The commercialization of these technology improvements will combine to bring about efficacy improvements that will push the technology up to a maximum 125 to 130 lumens per watt. One critical issue raised by researchers that may present a barrier to the realization of these improvements is the fact that technology investment in fluorescent lamps is being reduced in order to prioritize research into light emitting diodes (LEDs) and ceramic metal halide high intensity discharge (HID) lamps. Thus, it is uncertain whether these potential efficacy improvements will be developed, patented and commercialized. The emphasis for premium efficacy will continue to focus on T5 lamps, which are expected to continue to be marketed along with the T8 lamp. Industry experts highlighted the fact that an advantage of the T5 lamp is the fact that it is 40% smaller and yet provides an equivalent lumen output to that of a T8 or T12 lamp. Due to its smaller form factor, the T5 lamp

  18. The Planck Constant, the International System of Units, and the 2012 North American Watt Balance Absolute Gravity Comparison

    NASA Astrophysics Data System (ADS)

    Newell, D. B.

    2012-12-01

    As outlined in Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) on the future revision of the International System of Units (SI) [1], the current four SI base units the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature. The new definitions will be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. While significant progress has been made towards providing the necessary experimental results for the redefinition, some disagreement among the relevant data remain. Among the set of discrepant data towards the redefinition of the SI are the determinations of the Planck constant from the National Institute of Standards and Technology (NIST) watt balance [2] and the recent result from the National Research Council Canada (NRC) watt balance [3], with the discrepancy of roughly 2.5 parts in 107 being significantly outside the reported uncertainties. Of major concern is that the watt balance experiment is seen as a key component of a mise en pratique for the new kilogram definition, once such a redefinition takes place. The basic operational principle of a watt balance relates the Planck constant to mass, length, and time through h = mgvC, where m is the mass of an artifact mass standard, g is the local acceleration of gravity, v is a velocity, and C is a combination of frequencies and scalar constants. With the total uncertainty goal for the watt balance on the order of a few parts in 108, g needs to be determined at the location of the mass standard to parts in 109 such that its uncertainty is negligible in the final watt balance result. NIST and NRC have formed a collaborative effort to reconcile the relevant discrepant data and provide further progress towards preparing and testing a mise en pratique for the new kilogram definition. As an initial step, direct comparisons of

  19. Planck Early Results. XV. Spectral Energy Distributions and Radio Continuum Spectra of Northern Extragalactic Radio Sources

    NASA Technical Reports Server (NTRS)

    Aatrokoski, J.; Ade, P. A. R.; Aghanim, N.; Aller, H. D.; Aller, M. F.; Angelakis, E.; Amaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoit, A.; Berdyugin, A.; Bernard, J. P.; Bersanelli, M.; Bhatia, R.; Bonaldi, A.; Bonavera, L.; Gehrels, N.

    2011-01-01

    Spectral energy distributions (SEDs) and radio continuum spectra are presented for a northern sample of 104 extragalactic radio sources. based on the Planck Early Release Compact Source Catalogue (ERCSC) and simultaneous multi frequency data. The nine Planck frequencies, from 30 to 857 GHz, are complemented by a set of simultaneous observations ranging from radio to gamma-rays. This is the first extensive frequency coverage in the radio and millimetre domains for an essentially complete sample of extragalactic radio sources, and it shows how the individual shocks, each in their own phase of development, shape the radio spectra as they move in the relativistic jet. The SEDs presented in this paper were fitted with second and third degree polynomials to estimate the frequencies of the synchrotron and inverse Compton (IC) peaks, and the spectral indices of low and high frequency radio data, including the Planck ERCSC data, were calculated. SED modelling methods are discussed, with an emphasis on proper. physical modelling of the synchrotron bump using multiple components. Planck ERCSC data also suggest that the original accelerated electron energy spectrum could be much harder than commonly thought, with power-law index around 1.5 instead of the canonical 2.5. The implications of this are discussed for the acceleration mechanisms effective in blazar shock. Furthermore in many cases the Planck data indicate that gamma-ray emission must originate in the same shocks that produce the radio emission.

  20. Symmetry breaking indication for supergravity inflation in light of the Planck 2015

    SciTech Connect

    Li, Tianjun; Li, Zhijin; Nanopoulos, Dimitri V.

    2015-09-01

    Supergravity (SUGRA) theories with exact global U(1) symmetry or shift symmetry in Kähler potential provide natural frameworks for inflation. However, quadratic inflation is disfavoured by the new results on primordial tensor fluctuations from the Planck Collaboration. To be consistent with the new Planck data, we point out that the explicit symmetry breaking is needed, and study these two SUGRA inflation in detail. For SUGRA inflation with global U(1) symmetry, the symmetry breaking term leads to a trigonometric modulation on inflaton potential. Coefficient of the U(1) symmetry breaking term is of order 10{sup −2}, which is sufficient large to improve the inflationary predictions while its higher order corrections are negligible. Such models predict sizeable tensor fluctuations and highly agree with the Planck results. In particular, the model with a linear U(1) symmetry breaking term predicts the tensor-to-scalar ratio around r∼0.01 and running spectral index α{sub s}∼−0.004, which comfortably fit with the Planck observations. For SUGRA inflation with breaking shift symmetry, the inflaton potential is modulated by an exponential factor. The modulated linear and quadratic models are consistent with the Planck observations. In both types of models the tensor-to-scalar ratio can be of order 10{sup −2}, which will be tested by the near future observations.

  1. A constraint on Planck-scale modifications to electrodynamics with CMB polarization data

    SciTech Connect

    Gubitosi, Giulia; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Cooray, Asantha E-mail: luca.pagano@roma1.infn.it E-mail: alessandro.melchiorri@roma1.infn.it

    2009-08-01

    We show that the Cosmic Microwave Background (CMB) polarization data gathered by the BOOMERanG 2003 flight and WMAP provide an opportunity to investigate in-vacuo birefringence, of a type expected in some quantum pictures of space-time, with a sensitivity that extends even beyond the desired Planck-scale energy. In order to render this constraint more transparent we rely on a well studied phenomenological model of quantum-gravity-induced birefringence, in which one easily establishes that effects introduced at the Planck scale would amount to values of a dimensionless parameter, denoted by ξ, with respect to the Planck energy which are roughly of order 1. By combining BOOMERanG and WMAP data we estimate ξ ≅ −0.110±0.075 at the 68% c.l. Moreover, we forecast on the sensitivity to ξ achievable by future CMB polarization experiments (PLANCK, Spider, EPIC), which, in the absence of systematics, will be at the 1-σ confidence of 8.5 × 10{sup −4} (PLANCK), 6.1 × 10{sup −3} (Spider), and 1.0 × 10{sup −5} (EPIC) respectively. The cosmic variance-limited sensitivity from CMB is 6.1 × 10{sup −6}.

  2. MaxMod: a hidden Markov model based novel interface to MODELLER for improved prediction of protein 3D models.

    PubMed

    Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K

    2015-02-01

    Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/. PMID:25636267

  3. MaxMod: a hidden Markov model based novel interface to MODELLER for improved prediction of protein 3D models.

    PubMed

    Parida, Bikram K; Panda, Prasanna K; Misra, Namrata; Mishra, Barada K

    2015-02-01

    Modeling the three-dimensional (3D) structures of proteins assumes great significance because of its manifold applications in biomolecular research. Toward this goal, we present MaxMod, a graphical user interface (GUI) of the MODELLER program that combines profile hidden Markov model (profile HMM) method with Clustal Omega program to significantly improve the selection of homologous templates and target-template alignment for construction of accurate 3D protein models. MaxMod distinguishes itself from other existing GUIs of MODELLER software by implementing effortless modeling of proteins using templates that bear modified residues. Additionally, it provides various features such as loop optimization, express modeling (a feature where protein model can be generated directly from its sequence, without any further user intervention) and automatic update of PDB database, thus enhancing the user-friendly control of computational tasks. We find that HMM-based MaxMod performs better than other modeling packages in terms of execution time and model quality. MaxMod is freely available as a downloadable standalone tool for academic and non-commercial purpose at http://www.immt.res.in/maxmod/.

  4. Fokker Planck equations for globally coupled many-body systems with time delays

    NASA Astrophysics Data System (ADS)

    Frank, T. D.; Beek, P. J.

    2005-10-01

    A Fokker-Planck description for globally coupled many-body systems with time delays was developed by integrating previously derived Fokker-Planck equations for many-body systems and for time-delayed systems. By means of the Fokker-Planck description developed, we examined the dependence of the variability of many-body systems on attractive coupling forces and time delays. For a fundamental class of systems exemplified by a time-delayed Shimizu-Yamada model for muscular contractions, we established that the variability is an invertible one-to-one mapping of coupling forces and time delays and that coupling forces and time delays have opposite effects on system variability, allowing time delays to annihilate the impact of coupling forces. Furthermore, we showed how variability measures could be used to determine coupling parameters and time delays from experimental data.

  5. Boltzmann-Fokker-Planck calculations using standard discrete-ordinates codes

    SciTech Connect

    Morel, J.E.

    1987-01-01

    The Boltzmann-Fokker-Planck (BFP) equation can be used to describe both neutral and charged-particle transport. Over the past several years, the author and several collaborators have developed methods for representing Fokker-Planck operators with standard multigroup-Legendre cross-section data. When these data are input to a standard S/sub n/ code such as ONETRAN, the code actually solves the Boltzmann-Fokker-Planck equation rather than the Boltzmann equation. This is achieved wihout any modification to the S/sub n/ codes. Because BFP calculations can be more demanding from a numerical viewpoint than standard neutronics calculations, we have found it useful to implement new quadrature methods ad convergence acceleration methods in the standard discrete-ordinates code, ONETRAN. We discuss our BFP cross-section representation techniques, our improved quadrature and acceleration techniques, and present results from BFP coupled electron-photon transport calculations performed with ONETRAN. 19 refs., 7 figs.

  6. How Measuring the Planck Constant gets to an Electronic Kilogram Standard

    SciTech Connect

    Steiner, Richard

    2007-08-01

    The best measurement of the Planck constant is now derived from the watt balance method. This method measures mechanical power, in reference units of the kilogram (artifact mass standard), second (atomic clocks), and meter (lasers), in ratio to electrical power, in reference units of the volt (Josephson effect) and ohm (quantum Hall effect). Of these reference standards, only the kilogram is still an artifact standard. Thus a high precision measurement of the Planck constant is equivalent to monitoring the SI kilogram artifact, and may be used to redefine the kilogram. This talk will summarize the complexity of making a Planck constant measurement, where there are interesting aspects of basic physics that appear when the ultimate precision of the standards laboratory is applied to obtain an uncertainty of 20 parts in a billion.

  7. ALMA observation of high-z extreme star-forming environments discovered by Planck/Herschel

    NASA Astrophysics Data System (ADS)

    Kneissl, R.

    2016-05-01

    The Comic Microwave Background satellite Planck with its High Frequency Instrument has surveyed the mm/sub-mm sky in six frequency channels from 100 to 900 GHz. A sample of 228 cold sources of the Cosmic Infrared Background was observed in follow-up with Herschel SPIRE. The majority of sources appear to be over-densities of star-forming galaxies matching the size of high-z proto-cluster regions, while a 3% fraction are individual bright, lensed galaxies. A large observing program is underway with the aim of resolving the regions into the constituent members of the Planck sources. First ALMA data have been received on one Planck/Herschel proto-cluster candidate, showing the expected large over-abundance of bright mm/sub-mm sources within the cluster region. ALMA long baseline data of the brightest lensed galaxy in the sample with > 1 Jy at 350 μm are also forthcoming.

  8. Invited Article: A precise instrument to determine the Planck constant, and the future kilogram.

    PubMed

    Haddad, D; Seifert, F; Chao, L S; Li, S; Newell, D B; Pratt, J R; Williams, C; Schlamminger, S

    2016-06-01

    A precise instrument, called a watt balance, compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. We describe in this paper the fourth-generation watt balance at the National Institute of Standards and Technology (NIST), and report our initial determination of the Planck constant obtained from data taken in late 2015 and the beginning of 2016. A comprehensive analysis of the data and the associated uncertainties led to the SI value of the Planck constant, h = 6.626 069 83(22) × 10(-34) J s. The relative standard uncertainty associated with this result is 34 × 10(-9).

  9. Invited Article: A precise instrument to determine the Planck constant, and the future kilogram

    NASA Astrophysics Data System (ADS)

    Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.

    2016-06-01

    A precise instrument, called a watt balance, compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. We describe in this paper the fourth-generation watt balance at the National Institute of Standards and Technology (NIST), and report our initial determination of the Planck constant obtained from data taken in late 2015 and the beginning of 2016. A comprehensive analysis of the data and the associated uncertainties led to the SI value of the Planck constant, h = 6.626 069 83(22) × 10-34 J s. The relative standard uncertainty associated with this result is 34 × 10-9.

  10. Constraining the existence of magnetic monopoles by Dirac-dual electric charge renormalization effect under the Planck scale limit

    NASA Astrophysics Data System (ADS)

    Deng, Yanbin; Huang, Changyu; Huang, Yong-Chang

    2016-08-01

    It was suggested by dimensional analysis that there exists a limit called the Planck energy scale coming close to which the gravitational effects of physical processes would inflate and struggle for equal rights so as to spoil the validity of pure nongravitational physical theories that governed well below the Planck energy. Near the Planck scale, the Planck charges, Planck currents, or Planck parameters can be defined and assigned to physical quantities such as the single particle electric charge and magnetic charge as the ceiling value obeyed by the low energy ordinary physics. The Dirac electric-magnetic charge quantization relation as one form of electric-magnetic duality dictates that, the present low value electric charge corresponds to a huge magnetic charge value already passed the Planck limit so as to render theories of magnetic monopoles into the strong coupling regime, and vice versa, that small and tractable magnetic charge values correspond to huge electric charge values. It suggests that for theoretic models in which the renormalization group equation provides rapid growth for the running electric coupling constant, it is easier for the dual magnetic monopoles to emerge at lower energy scales. Allowing charges to vary with the Dirac electric-magnetic charge quantization relation while keeping values under the Planck limit informs that the magnetic charge value drops below the Planck ceiling value into the manageable region when the electric coupling constant grows to one fourth at a model dependent energy scale, and continues dropping toward half the value of the Planck magnetic charge as the electric coupling constant continues growing at the model dependent rate toward one near Planck energy scale.

  11. How accurate are the nonlinear chemical Fokker-Planck and chemical Langevin equations?

    PubMed

    Grima, Ramon; Thomas, Philipp; Straube, Arthur V

    2011-08-28

    The chemical Fokker-Planck equation and the corresponding chemical Langevin equation are commonly used approximations of the chemical master equation. These equations are derived from an uncontrolled, second-order truncation of the Kramers-Moyal expansion of the chemical master equation and hence their accuracy remains to be clarified. We use the system-size expansion to show that chemical Fokker-Planck estimates of the mean concentrations and of the variance of the concentration fluctuations about the mean are accurate to order Ω(-3∕2) for reaction systems which do not obey detailed balance and at least accurate to order Ω(-2) for systems obeying detailed balance, where Ω is the characteristic size of the system. Hence, the chemical Fokker-Planck equation turns out to be more accurate than the linear-noise approximation of the chemical master equation (the linear Fokker-Planck equation) which leads to mean concentration estimates accurate to order Ω(-1∕2) and variance estimates accurate to order Ω(-3∕2). This higher accuracy is particularly conspicuous for chemical systems realized in small volumes such as biochemical reactions inside cells. A formula is also obtained for the approximate size of the relative errors in the concentration and variance predictions of the chemical Fokker-Planck equation, where the relative error is defined as the difference between the predictions of the chemical Fokker-Planck equation and the master equation divided by the prediction of the master equation. For dimerization and enzyme-catalyzed reactions, the errors are typically less than few percent even when the steady-state is characterized by merely few tens of molecules.

  12. Planck 2015 results. XXIII. The thermal Sunyaev-Zeldovich effect-cosmic infrared background correlation

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Burigana, C.; Butler, R. C.; Calabrese, E.; Catalano, A.; Chamballu, A.; Chiang, H. C.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Galeotta, S.; Galli, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Langer, M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Levrier, F.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mak, D. S. Y.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Melchiorri, A.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Welikala, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-08-01

    We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro-Frenk-White profile, we find that the radial profile concentration parameter is c500 = 1.00+0.18-0.15 . This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6σ; (ii) 3σ; and (iii) 4σ. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is AtSZ-CIB = 1.2 ± 0.3. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.

  13. A challenge for probing the statistics of interstellar magnetic fields: beyond the Planck resolution with Herschel

    NASA Astrophysics Data System (ADS)

    Bracco, Andrea; André, Philippe; Boulanger, Francois

    2015-08-01

    The recent Planck results in polarization at sub-mm wavelengths allow us to gain insight into the Galactic magnetic field topology, revealing its statistical correlation with matter, from the diffuse interstellar medium (ISM), to molecular clouds (MCs) (Planck intermediate results. XXXII, XXXIII, XXXV). This correlation has a lot to tell us about the dynamics of the turbulent ISM, stressing the importance of considering magnetic fields in the formation of structures, some of which eventually undergo gravitational collapse producing new star-forming cores.Investigating the early phases of star formation has been a fundamental scope of the Herschel Gould Belt survey collaboration (http://gouldbelt-herschel.cea.fr), which, in the last years, has thoroughly characterized, at a resolution of few tens of arcseconds, the statistics of MCs, such as their filamentary structure, kinematics and column density.Although at lower angular resolution, the Planck maps of dust emission at 353GHz, in intensity and polarization, show that all MCs are complex environments, where we observe a non-trivial correlation between the magnetic field and their density structure. This result opens new perspectives on their formation and evolution, which we have started to explore.In this talk, I will present first results of a comparative analysis of the Herschel-Planck data, where we combine the high resolution Herschel maps of some MCs of the Gould Belt with the Planck polarization data, which sample the structure of the field weighted by the density.In particular, I will discuss the large-scale envelopes of the selected MCs, and, given the correlation between magnetic field and matter, I will show how to make use of the high resolution information of the density structure provided by Herschel to investigate the statistics of interstellar magnetic fields in the Planck data.

  14. Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram

    NASA Astrophysics Data System (ADS)

    Stock, M.

    2013-02-01

    Since 1889 the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 108. The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper the background for the choice of the Planck constant for the kilogram redefinition is discussed and the role of the Planck constant in physics is briefly reviewed. The operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all presently available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. This article is based on a lecture given at the International School of Physics ‘Enrico Fermi’, Course CLXXXV: Metrology and Physical Constants, held in Varenna on 17-27 July 2012. It will also be published in the proceedings of the school, edited by E Bava, M Kühne and A M Rossi (IOS Press, Amsterdam and SIF, Bologna).

  15. New Planetarium Show: "Max Goes To The Moon"

    NASA Astrophysics Data System (ADS)

    Benjamin, Matthew

    2012-05-01

    As part of our NASA Lunar Science Institute funding we have focused on making a children’s planetarium show about space science and exploration. We decided to adapt an award winning children’s book, “Max Goes to the Moon” by Dr. Jeffrey Bennett into a planetarium show. This story follows the adventure of a dog names Max and his friend/owner Tori. The two of them go on an amazing journey to the Moon and back. Not only is the show a great adventure but it also teaches many concepts pertaining to our current understanding of the Earth-Moon system. We based many of these concepts to fit the new State and Federal education standards.

  16. [Psychiatry as cultural science: considerations following Max Weber].

    PubMed

    Bormuth, M

    2010-11-01

    Psychiatry can be seen as a natural and cultural science. According to this the postulate of freedom is its strong value judgment. Since the times of enlightenment it has been described metaphorically by the myth of the expulsion from Paradise. Following Max Weber and Wilhelm Dilthey, Karl Jaspers has introduced this perspective into psychiatry. His strict dichotomy between explaining and understanding has later been critically revised by Werner Janzarik and Hans Heimann. Their concepts of structure dynamic, of pathography and of anthropology are closer to Max Weber who connected natural and cultural sciences in a much stronger way. Especially the pathographic example of Nietzsche allows to demonstrate the differences between Jaspers and the later psychopathologists of the Heidelberg and Tübingen schools.

  17. Evaluating the Performance of IPTV over Fixed WiMAX

    NASA Astrophysics Data System (ADS)

    Hamodi, Jamil; Salah, Khaled; Thool, Ravindra

    2013-12-01

    IEEE specifies different modulation techniques for WiMAX; namely, BPSK, QPSK, 16 QAM and 64 QAM. This paper studies the performance of Internet Protocol Television (IPTV) over Fixed WiMAX system considering different combinations of digital modulation. The performance is studied taking into account a number of key system parameters which include the variation in the video coding, path-loss, scheduling service classes different rated codes in FEC channel coding. The performance study was conducted using OPNET simulation. The performance is studied in terms of packet lost, packet jitter delay, end-to-end delay, and network throughput. Simulation results show that higher order modulation and coding schemes (namely, 16 QAM and 64 QAM) yield better performance than that of QPSK.

  18. Using `min' and `max' functions in calculus teaching

    NASA Astrophysics Data System (ADS)

    Satianov, Pavel; Dagan, Miriam; Amram, Meirav

    2015-08-01

    In this paper, we discuss the use of the min and max functions in teaching calculus to engineering students. Our experience illustrates that such functions have great possibilities in the development of a student's analytical thinking. The types of problems we present here are not common in most instructional texts, which lead us to suggest that the paper will be interesting and useful to calculus lecturers.

  19. Gravitation and Special Relativity from Compton Wave Interactions at the Planck Scale: An Algorithmic Approach

    NASA Technical Reports Server (NTRS)

    Blackwell, William C., Jr.

    2004-01-01

    In this paper space is modeled as a lattice of Compton wave oscillators (CWOs) of near- Planck size. It is shown that gravitation and special relativity emerge from the interaction between particles Compton waves. To develop this CWO model an algorithmic approach was taken, incorporating simple rules of interaction at the Planck-scale developed using well known physical laws. This technique naturally leads to Newton s law of gravitation and a new form of doubly special relativity. The model is in apparent agreement with the holographic principle, and it predicts a cutoff energy for ultrahigh-energy cosmic rays that is consistent with observational data.

  20. Fokker-Planck equation in the presence of a uniform magnetic field

    NASA Astrophysics Data System (ADS)

    Dong, Chao; Zhang, Wenlu; Li, Ding

    2016-08-01

    The Fokker-Planck equation in the presence of a uniform magnetic field is derived which has the same form as the case of no magnetic field but with different Fokker-Planck coefficients. The coefficients are calculated explicitly within the binary collision model, which are free from infinite sums of Bessel functions. They can be used to investigate relaxation and transport phenomena conveniently. The kinetic equation is also manipulated into the Landau form from which it is straightforward to compare with previous results and prove the conservation laws.

  1. Updating constraints on inflationary features in the primordial power spectrum with the Planck data

    NASA Astrophysics Data System (ADS)

    Benetti, Micol

    2013-10-01

    We present new constraints on possible features in the primordial inflationary density perturbation power spectrum in light of the recent cosmic microwave background anisotropy measurements from the Planck satellite. We found that the Planck data hints for the presence of features in two different ranges of angular scales, corresponding to multipoles 10<ℓ<60 and 150<ℓ<300, with a decrease in the best-fit χ2 value with respect to the featureless “vanilla” ΛCDM model of Δχ2≃9 in both cases.

  2. Mesoscopic superposition and sub-Planck-scale structure in molecular wave packets

    SciTech Connect

    Ghosh, Suranjana; Banerji, J.; Panigrahi, P. K.; Chiruvelli, Aravind

    2006-01-15

    We demonstrate the possibility of realizing sub-Planck-scale structures in the mesoscopic superposition of molecular wave packets involving vibrational levels. The time evolution of the wave packet, taken here as the SU(2) coherent state of the Morse potential describing hydrogen iodide molecules, produces macroscopic-quantum-superposition-like states, responsible for the above phenomenon. We investigate the phase-space dynamics of the coherent state through the Wigner function approach and identify the interference phenomena behind the sub-Planck-scale structures. The optimal parameter ranges are specified for observing these features.

  3. Fokker-Planck description of wealth dynamics and the origin of Pareto's law

    NASA Astrophysics Data System (ADS)

    Boghosian, Bruce

    2014-05-01

    The so-called "Yard-Sale Model" of wealth distribution posits that wealth is transferred between economic agents as a result of transactions whose size is proportional to the wealth of the less wealthy agent. In recent work [B. M. Boghosian, Phys. Rev. E89, 042804 (2014)], it was shown that this results in a Fokker-Planck equation governing the distribution of wealth. With the addition of a mechanism for wealth redistribution, it was further shown that this model results in stationary wealth distributions that are very similar in form to Pareto's well-known law. In this paper, a much simpler derivation of that Fokker-Planck equation is presented.

  4. Kurt Schaffner: from organic photochemistry to photobiology.

    PubMed

    Gärtner, Wolfgang

    2012-06-01

    Kurt Schaffner turned 80 this year. This perspective highlights his contributions to the research on the plant photoreceptor phytochrome, as many of the findings on structure and function of this molecule are tightly linked to the Max-Planck-Institute for Radiation Chemistry, where he was effective as Max-Planck director for more than twenty years.

  5. Estimation of VO2 Max: A Comparative Analysis of Five Exercise Tests.

    ERIC Educational Resources Information Center

    Zwiren, Linda D.; And Others

    1991-01-01

    Thirty-eight healthy females measured maximal oxygen uptake (VO2max) on the cycle ergometer and treadmill to compare five exercise tests (run, walk, step, and two tests using heart-rate response on the bicycle ergometer) in predicting VO2max. Results indicate that walk and run tests are satisfactory predictors of VO2max in 30- to 39-year-old…

  6. Augmentative Device Helps Max Speak. PACER Center ACTion Information Sheets. PHP-c75

    ERIC Educational Resources Information Center

    PACER Center, 2014

    2014-01-01

    This Action Information Sheet follows a family's process of selecting and using augmentative and alternative communication to help their young son, Max, speak. Max is affected by global dyspraxia, which makes learning new motor skills--especially speech--quite difficult. For the first years of his life, Max could not say words. Before he and his…

  7. Review of WiMAX Scheduling Algorithms and Their Classification

    NASA Astrophysics Data System (ADS)

    Yadav, A. L.; Vyavahare, P. D.; Bansod, P. P.

    2014-07-01

    Providing quality of service (QoS) in wireless communication networks has become an important consideration for supporting variety of applications. IEEE 802.16 based WiMAX is the most promising technology for broadband wireless access with best QoS features for tripe play (voice, video and data) service users. Unlike wired networks, QoS support is difficult in wireless networks due to variable and unpredictable nature of wireless channels. In transmission of voice and video main issue involves allocation of available resources among the users to meet QoS criteria such as delay, jitter and throughput requirements to maximize goodput, to minimize power consumption while keeping feasible algorithm flexibility and ensuring system scalability. WiMAX assures guaranteed QoS by including several mechanisms at the MAC layer such as admission control and scheduling. Packet scheduling is a process of resolving contention for bandwidth which determines allocation of bandwidth among users and their transmission order. Various approaches for classification of scheduling algorithms in WiMAX have appeared in literature as homogeneous, hybrid and opportunistic scheduling algorithms. The paper consolidates the parameters and performance metrics that need to be considered in developing a scheduler. The paper surveys recently proposed scheduling algorithms, their shortcomings, assumptions, suitability and improvement issues associated with these uplink scheduling algorithms.

  8. Magnetic MAX phases from theory and experiments; a review.

    PubMed

    Ingason, A S; Dahlqvist, M; Rosen, J

    2016-11-01

    This review presents MAX phases (M is a transition metal, A an A-group element, X is C or N), known for their unique combination of ceramic/metallic properties, as a recently uncovered family of novel magnetic nanolaminates. The first created magnetic MAX phases were predicted through evaluation of phase stability using density functional theory, and subsequently synthesized as heteroepitaxial thin films. All magnetic MAX phases reported to date, in bulk or thin film form, are based on Cr and/or Mn, and they include (Cr,Mn)2AlC, (Cr,Mn)2GeC, (Cr,Mn)2GaC, (Mo,Mn)2GaC, (V,Mn)3GaC2, Cr2AlC, Cr2GeC and Mn2GaC. A variety of magnetic properties have been found, such as ferromagnetic response well above room temperature and structural changes linked to magnetic anisotropy. In this paper, theoretical as well as experimental work performed on these materials to date is critically reviewed, in terms of methods used, results acquired, and conclusions drawn. Open questions concerning magnetic characteristics are discussed, and an outlook focused on new materials, superstructures, property tailoring and further synthesis and characterization is presented. PMID:27602484

  9. Magnetic MAX phases from theory and experiments; a review

    NASA Astrophysics Data System (ADS)

    Ingason, A. S.; Dahlqvist, M.; Rosen, J.

    2016-11-01

    This review presents MAX phases (M is a transition metal, A an A-group element, X is C or N), known for their unique combination of ceramic/metallic properties, as a recently uncovered family of novel magnetic nanolaminates. The first created magnetic MAX phases were predicted through evaluation of phase stability using density functional theory, and subsequently synthesized as heteroepitaxial thin films. All magnetic MAX phases reported to date, in bulk or thin film form, are based on Cr and/or Mn, and they include (Cr,Mn)2AlC, (Cr,Mn)2GeC, (Cr,Mn)2GaC, (Mo,Mn)2GaC, (V,Mn)3GaC2, Cr2AlC, Cr2GeC and Mn2GaC. A variety of magnetic properties have been found, such as ferromagnetic response well above room temperature and structural changes linked to magnetic anisotropy. In this paper, theoretical as well as experimental work performed on these materials to date is critically reviewed, in terms of methods used, results acquired, and conclusions drawn. Open questions concerning magnetic characteristics are discussed, and an outlook focused on new materials, superstructures, property tailoring and further synthesis and characterization is presented.

  10. MiniMAX: miniature, mobile, agile, x-ray system

    NASA Astrophysics Data System (ADS)

    Watson, Scott A.; Cunningham, Gwynneth; Gonzales, Samuel

    2012-06-01

    We present a unique, lightweight, compact, low-cost, x-ray imager: MiniMAX (Miniature, Mobile, Agile, X-ray). This system, which exploits the best aspects of Computed Radiography (CR) and Digital Radiography (DR) technology, weighs less than 6lbs, fits into a 6" diameter x 16" long carbon-fiber tube, and is constructed almost entirely from offthe- shelf components. MiniMAX is suitable for use in weld inspection, archaeology, homeland security, and veterinary medicine. While quantum limited for MeV radiography, the quantum-efficiency is too low for routine medical use. Formats include: 4"x6", 8"x12", or 16"x24" and can be readily displayed on the camera back, using a pocket projector, or on a tablet computer. In contrast to a conventional, flying-spot scanner, MiniMAX records a photostimulated image from the entire phosphor at once using a bright, red LED flash filtered through an extremely efficient (OD>9) dichroic filter.

  11. Premarket evaluations of the IMDx C. difficile for Abbott m2000 Assay and the BD Max Cdiff Assay.

    PubMed

    Stellrecht, K A; Espino, A A; Maceira, V P; Nattanmai, S M; Butt, S A; Wroblewski, D; Hannett, G E; Musser, K A

    2014-05-01

    Clostridium difficile-associated diarrhea is a well-recognized complication of antibiotic use. Historically, diagnosing C. difficile has been difficult, as antigen assays are insensitive and culture-based methods require several days to yield results. Nucleic acid amplification tests (NAATs) are quickly becoming the standard of care. We compared the performance of two automated investigational/research use only (IUO/RUO) NAATs for the detection of C. difficile toxin genes, the IMDx C. difficile for Abbott m2000 Assay (IMDx) and the BD Max Cdiff Assay (Max). A prospective analysis of 111 stool specimens received in the laboratory for C. difficile testing by the laboratory's test of record (TOR), the BD GeneOhm Cdiff Assay, and a retrospective analysis of 88 specimens previously determined to be positive for C. difficile were included in the study. One prospective specimen was excluded due to loss to follow-up discrepancy analysis. Of the remaining 198 specimens, 90 were positive by all three methods, 9 were positive by TOR and Max, and 3 were positive by TOR only. One negative specimen was initially inhibitory by Max. The remaining 95 specimens were negative by all methods. Toxigenic C. difficile culture was performed on the 12 discrepant samples. True C. difficile-positive status was defined as either positive by all three amplification assays or positive by toxigenic culture. Based on this definition, the sensitivity and specificity were 96.9% and 95% for Max and 92.8% and 100% for IMDx. In summary, both highly automated systems demonstrated excellent performance, and each has individual benefits, which will ensure that they will both have a niche in clinical laboratories.

  12. The Nature of Light: II. A Historical Survey from the Planck Era and Implications for Budding Physicists

    ERIC Educational Resources Information Center

    Oon, Pey Tee; Subramaniam, R.

    2009-01-01

    Following on from our previous article (Oon and Subramaniam 2009 "Phys. Educ." 44 384-91), here we trace ideas on the history of light from the Planck era to modern times. In particular, the seminal contributions of Planck, Einstein and de Broglie are highlighted. Some lesser known facets of the nature of light are also emphasized. It is stressed…

  13. Second-order Poisson-Nernst-Planck solver for ion transport

    NASA Astrophysics Data System (ADS)

    Zheng, Qiong; Chen, Duan; Wei, Guo-Wei

    2011-06-01

    The Poisson-Nernst-Planck (PNP) theory is a simplified continuum model for a wide variety of chemical, physical and biological applications. Its ability of providing quantitative explanation and increasingly qualitative predictions of experimental measurements has earned itself much recognition in the research community. Numerous computational algorithms have been constructed for the solution of the PNP equations. However, in the realistic ion-channel context, no second-order convergent PNP algorithm has ever been reported in the literature, due to many numerical obstacles, including discontinuous coefficients, singular charges, geometric singularities, and nonlinear couplings. The present work introduces a number of numerical algorithms to overcome the abovementioned numerical challenges and constructs the first second-order convergent PNP solver in the ion-channel context. First, a Dirichlet to Neumann mapping (DNM) algorithm is designed to alleviate the charge singularity due to the protein structure. Additionally, the matched interface and boundary (MIB) method is reformulated for solving the PNP equations. The MIB method systematically enforces the interface jump conditions and achieves the second order accuracy in the presence of complex geometry and geometric singularities of molecular surfaces. Moreover, two iterative schemes are utilized to deal with the coupled nonlinear equations. Furthermore, extensive and rigorous numerical validations are carried out over a number of geometries, including a sphere, two proteins and an ion channel, to examine the numerical accuracy and convergence order of the present numerical algorithms. Finally, application is considered to a real transmembrane protein, the Gramicidin A channel protein. The performance of the proposed numerical techniques is tested against a number of factors, including mesh sizes, diffusion coefficient profiles, iterative schemes, ion concentrations, and applied voltages. Numerical predictions are

  14. Max Tech and Beyond: Maximizing Appliance and Equipment Efficiency by Design

    SciTech Connect

    Desroches, Louis-Benoit; Garbesi, Karina

    2011-07-20

    It is well established that energy efficiency is most often the lowest cost approach to reducing national energy use and minimizing carbon emissions. National investments in energy efficiency to date have been highly cost-effective. The cumulative impacts (out to 2050) of residential energy efficiency standards are expected to have a benefit-to-cost ratio of 2.71:1. This project examined energy end-uses in the residential, commercial, and in some cases the industrial sectors. The scope is limited to appliances and equipment, and does not include building materials, building envelopes, and system designs. This scope is consistent with the scope of DOE's appliance standards program, although many products considered here are not currently subject to energy efficiency standards. How much energy could the United States save if the most efficient design options currently feasible were adopted universally? What design features could produce those savings? How would the savings from various technologies compare? With an eye toward identifying promising candidates and strategies for potential energy efficiency standards, the Max Tech and Beyond project aims to answer these questions. The analysis attempts to consolidate, in one document, the energy savings potential and design characteristics of best-on-market products, best-engineered products (i.e., hypothetical products produced using best-on-market components and technologies), and emerging technologies in research & development. As defined here, emerging technologies are fundamentally new and are as yet unproven in the market, although laboratory studies and/or emerging niche applications offer persuasive evidence of major energy-savings potential. The term 'max tech' is used to describe both best-engineered and emerging technologies (whichever appears to offer larger savings). Few best-on-market products currently qualify as max tech, since few apply all available best practices and components. The three primary

  15. Fokker-Planck approach to the pulse packet propagation in synfire chain.

    PubMed

    Câteau, H; Fukai, T

    2001-01-01

    We applied the Fokker-Planck method to the so-called 'synfire chain' network model and showed how a synchronous population spike (pulse packet) evolves to a narrow pulse packet (width < 1 ms) or fades away, depending on its initial size and width. The results of numerical integration of the Fokker-Planck equation are in good agreement with those of simulations on a network of leaky integrate-and-fire neurons. For a narrow input pulse packet, the integration of the Fokker-Planck equation requires careful numerical treatment. However, we can construct a precise analytical waveform of an output packet, which proves valid for narrow input pulse packets, from the stationary solution to the Fokker-Planck equation and a previously proposed approximate input-output relationship. Our methods enable us also to understand an essential role of the synaptic noise in the evolution, the peculiar temporal evolution of a broader pulse packets, and the irrelevance of the refractory period in determining the waveform of a pulse packet. Furthermore, we elucidate possible functional roles of multiple interactive pulse packets in spatiotemporal information processing, i.e. the association of information and the temporal competition. PMID:11665762

  16. The important role of evolution in the Planck YSZ-mass calibration

    NASA Astrophysics Data System (ADS)

    Andreon, S.

    2014-10-01

    In light of the tension between cosmological parameters from Planck cosmic microwave background and galaxy clusters, we revised the Planck analysis of the YSZ-mass calibration to allow evolution to be determined by the data instead of being imposed as an external constraint. Our analysis uses the very same data and Malmquist bias corrections as used by the Planck team in order to emphasize that differences in the results come from differences in the assumptions. The evolution derived from 71 calibrating clusters, with 0.05 < z < 0.45, is proportional to E2.5 ± 0.4(z), so inconsistent with the self-similar evolution (E2/3) assumed by previous analyses. When allowing for evolution, the slope of YSZ-mass relation turns out to be 1.51 ± 0.07, which is shallower by 4.8σ than the value derived when assuming self-similar evolution, introducing a mass-dependent bias. The non-self-similar evolution of YSZ has to be accounted for in analyses aimed to establish the biases of Planck masses.

  17. Measuring the dynamical state of Planck SZ-selected clusters: X-ray peak - BCG offset

    NASA Astrophysics Data System (ADS)

    Rossetti, M.; Gastaldello, F.; Ferioli, G.; Bersanelli, M.; De Grandi, S.; Eckert, D.; Ghizzardi, S.; Maino, D.; Molendi, S.

    2016-04-01

    We want to characterize the dynamical state of galaxy clusters detected with the Sunyaev-Zeldovich (SZ) effect by Planck and compare them with the dynamical state of clusters selected in X-rays survey. We analysed a representative subsample of the Planck SZ catalogue, containing the 132 clusters with the highest signal to noise ratio and characterize their dynamical state using as an indicator the projected offset between the peak of the X-ray emission and the position of the Brightest cluster galaxy. We compare the distribution of this indicator for the Planck SZ-selected sample and three X-ray-selected samples (HIFLUGCS, MACS and REXCESS). The distributions are significantly different and the fraction of relaxed objects is smaller in the Planck sample (52 ± 4 per cent) than in X-ray samples (≃74 per cent) We interpret this result as an indication of different selection effects affecting X-rays (e.g. `cool core bias') and SZ surveys of galaxy clusters.

  18. A quadrature based method of moments for nonlinear Fokker-Planck equations

    NASA Astrophysics Data System (ADS)

    Otten, Dustin L.; Vedula, Prakash

    2011-09-01

    Fokker-Planck equations which are nonlinear with respect to their probability densities and occur in many nonequilibrium systems relevant to mean field interaction models, plasmas, fermions and bosons can be challenging to solve numerically. To address some underlying challenges, we propose the application of the direct quadrature based method of moments (DQMOM) for efficient and accurate determination of transient (and stationary) solutions of nonlinear Fokker-Planck equations (NLFPEs). In DQMOM, probability density (or other distribution) functions are represented using a finite collection of Dirac delta functions, characterized by quadrature weights and locations (or abscissas) that are determined based on constraints due to evolution of generalized moments. Three particular examples of nonlinear Fokker-Planck equations considered in this paper include descriptions of: (i) the Shimizu-Yamada model, (ii) the Desai-Zwanzig model (both of which have been developed as models of muscular contraction) and (iii) fermions and bosons. Results based on DQMOM, for the transient and stationary solutions of the nonlinear Fokker-Planck equations, have been found to be in good agreement with other available analytical and numerical approaches. It is also shown that approximate reconstruction of the underlying probability density function from moments obtained from DQMOM can be satisfactorily achieved using a maximum entropy method.

  19. Analytical solutions of a class of multidimensional Fokker-Planck equations

    NASA Technical Reports Server (NTRS)

    Zhang, Weijian

    1988-01-01

    Analytical representations of the solutions of Kolmogorov's forward (i.e., Fokker-Planck) and backward partial differential equations are obtained by employing Girsanov's (1960) transformation. The equations considered are restricted to those with the drift vector being the gradient of a function and the diffusion matrix being nonsingular and dependent upon time only.

  20. Consistency tests for Planck and WMAP in the low multipole domain

    SciTech Connect

    Frejsel, A.; Hansen, M.; Liu, H. E-mail: kirstejn@nbi.dk

    2013-06-01

    Recently, full sky maps from Planck have been made publicly available. In this paper, we do consistency tests for the three Planck CMB sky maps. We assume that the difference between two maps represents the contributions from systematics, noise, foregrounds and other sources, and that a precise representation of the Cosmic Microwave Background should be uncorrelated with it. We investigate the cross correlation in pixel space between the difference maps and the various Planck maps and find no significant correlations, in comparison to 10000 random Gaussian simulated maps. Additionally we investigate the difference map between the WMAP ILC 9 year map and the ILC 7 year map. We perform cross correlations between this difference map, and the ILC9 and ILC7, and find significant correlations only for the ILC9, at more than the 99.99% level. Likewise, a comparison between the Planck NILC map and the WMAP ILC9 map, shows a strong correlation for the ILC9 map with the difference map, also at more than the 99.99% level. Thus the ILC9 appears to be more contaminated than the ILC7, which should be taken into consideration when using WMAP maps for cosmological analyses.

  1. Multigroup Boltzmann Fokker Planck electron-photon transport capability in MCNP{sup trademark}

    SciTech Connect

    Adams, K.J.; Hart, M.

    1995-07-01

    The MCNP code system has a robust multigroup transport capability which includes a multigroup Boltzmann-Fokker-Planck (MGBFP) transport algorithm to perform coupled electron-photon or other coupled charged and neutral particle transport in either a forward or adjoint mode. This paper will discuss this capability and compare code results with other transport codes.

  2. Multigroup Boltzmann-Fokker-Planck electron-photon transport capability in MCNP

    SciTech Connect

    Adams, K.J.; Hart, M.

    1995-12-31

    The MCNP code system has a robust multigroup transport capability that includes a Boltzmann-Fokker-Planck (MGBFP) transport algorithm to perform coupled electron-photon or other coupled charged and neutral particle transport in either a forward or adjoint mode. This paper discusses this capability.

  3. Reconciling Planck with the local value of H0 in extended parameter space

    NASA Astrophysics Data System (ADS)

    Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph

    2016-10-01

    The recent determination of the local value of the Hubble constant by Riess et al., 2016 (hereafter R16) is now 3.3 sigma higher than the value derived from the most recent CMB anisotropy data provided by the Planck satellite in a ΛCDM model. Here we perform a combined analysis of the Planck and R16 results in an extended parameter space, varying simultaneously 12 cosmological parameters instead of the usual 6. We find that a phantom-like dark energy component, with effective equation of state w = -1.29-0.12+0.15 at 68% c.l. can solve the current tension between the Planck dataset and the R16 prior in an extended ΛCDM scenario. On the other hand, the neutrino effective number is fully compatible with standard expectations. This result is confirmed when including cosmic shear data from the CFHTLenS survey and CMB lensing constraints from Planck. However, when BAO measurements are included we find that some of the tension with R16 remains, as also is the case when we include the supernova type Ia luminosity distances from the JLA catalog.

  4. Planck early results. VIII. The all-sky early Sunyaev-Zeldovich cluster sample

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartelmann, M.; Bartlett, J. G.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Brown, M. L.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Carvalho, P.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, L.-Y.; Chiang, C.; Chon, G.; Christensen, P. R.; Churazov, E.; Clements, D. L.; Colafrancesco, S.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; da Silva, A.; Dahle, H.; Danese, L.; Davis, R. J.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Eisenhardt, P.; Enßlin, T. A.; Feroz, F.; Finelli, F.; Flores-Cacho, I.; Forni, O.; Fosalba, P.; Frailis, M.; Franceschi, E.; Fromenteau, S.; Galeotta, S.; Ganga, K.; Génova-Santos, R. T.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; González-Riestra, R.; Górski, K. M.; Grainge, K. J. B.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Harrison, D.; Heinämäki, P.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Hurier, G.; Hurley-Walker, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Leach, S.; Leonardi, R.; Li, C.; Liddle, A.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Maino, D.; Mandolesi, N.; Mann, R.; Maris, M.; Marleau, F.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; Mei, S.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Olamaie, M.; Osborne, S.; Pajot, F.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Piffaretti, R.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rubiño-Martín, J. A.; Rusholme, B.; Saar, E.; Sandri, M.; Santos, D.; Saunders, R. D. E.; Savini, G.; Schaefer, B. M.; Scott, D.; Seiffert, M. D.; Shellard, P.; Smoot, G. F.; Stanford, A.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Sygnet, J.-F.; Taburet, N.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Tristram, M.; Tuovinen, J.; Valenziano, L.; Vibert, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Weller, J.; White, S. D. M.; White, M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    We present the first all-sky sample of galaxy clusters detected blindly by the Planck satellite through the Sunyaev-Zeldovich (SZ) effect from its six highest frequencies. This early SZ (ESZ) sample is comprised of 189 candidates, which have a high signal-to-noise ratio ranging from 6 to 29. Its high reliability (purity above 95%) is further ensured by an extensive validation process based on Planck internal quality assessments and by external cross-identification and follow-up observations. Planck provides the first measured SZ signal for about 80% of the 169 previously-known ESZ clusters. Planck furthermore releases 30 new cluster candidates, amongst which 20 meet the ESZ signal-to-noise selection criterion. At the submission date, twelve of the 20 ESZ candidates were confirmed as new clusters, with eleven confirmed using XMM-Newton snapshot observations, most of them with disturbed morphologies and low luminosities. The ESZ clusters are mostly at moderate redshifts (86% with z below 0.3) and span more than a decade in mass, up to the rarest and most massive clusters with masses above 1 × 1015 M⊙. Corresponding author: M. Douspis, e-mail: marian.douspis@ias.u-psud.frAppendix is available in electronic form at http://www.aanda.org

  5. Brans-Dicke inflation in light of the Planck 2015 data

    NASA Astrophysics Data System (ADS)

    Tahmasebzadeh, B.; Rezazadeh, K.; Karami, K.

    2016-07-01

    We study inflation in the Brans-Dicke gravity as a special model of the scalar-tensor gravity. We obtain the inflationary observables containing the scalar spectral index, the tensor-to-scalar ratio, the running of the scalar spectral index and the equilateral non-Gaussianity parameter in terms of the general form of the potential in the Jordan frame. Then, we compare the results for various inflationary potentials in light of the Planck 2015 data. Our study shows that in the Brans-Dicke gravity, the power-law, inverse power-law and exponential potentials are ruled out by the Planck 2015 data. But, the hilltop, Higgs, Coleman-Weinberg and natural potentials can be compatible with Planck 2015 TT,TE,EE+lowP data at 95% CL. Moreover, the D-brane, SB SUSY and displaced quadratic potentials can be in well agreement with the observational data since their results can lie inside the 68% CL region of Planck 2015 TT,TE,EE+lowP data.

  6. Planck 2014 and beyond: the CMB polarization at large angular scales

    NASA Astrophysics Data System (ADS)

    Mangilli, Anna

    2015-08-01

    One of the main challenge left for the present and the future CMB experiments is the high precision measurement of the CMB polarization at large angular scales. The reionization bump in the CMB polarization EE and BB power spectra encodes unique informations about the reionization history of the Universe and the inflationary epoch. Such valuable information can be accessed only with an unprecedented accuracy and care on each step of the data analysis and its interpretation. The Planck 2014 release represents a first step towards the accurate characterization of the CMB polarization on the full sky. In this talk I will go through a brief introduction about the CMB polarization mainly focusing on the large angular scales. I will show how the EE and BB spectra at low-l can be used to improve the constraints on the cosmological parameters, in particular those related to the reionization history (τ) and the amount of tensor modes (r). As a Planck Scientist I will present, on behalf of the Planck collaboration, the status of the CMB analysis at large scales after the 2014 release. I will present different methods that can be used for the low-l analysis, focusing on a spectral based approach (Mangilli et al. in preparation). Finally I will present the theoretical implications of the results and the future prospects in view of the Planck release at the end of 2015 and future CMB experiments.

  7. Thermal Equilibrium Between Radiation and Matter: A Lead to the Maxwell-Boltzmann and Planck Distributions

    NASA Technical Reports Server (NTRS)

    Lanyi, Gabor E.

    2003-01-01

    This viewgraph presentation reviews the 1901 work in Planck's constant and blackbody radiation law and the 1916 Einstein rederivation of the blackbody radiation law. It also reviews Wien's law. It also presents equations that demonstrate the thermal balance between radiation and matter.

  8. SZ/X-ray scaling relations using X-ray data and Planck Nominal maps

    NASA Astrophysics Data System (ADS)

    De Martino, I.; Atrio-Barandela, F.

    2016-09-01

    We determine the relation between the Comptonization parameter predicted using X-ray data YC, Xray and the X-ray luminosity LX, both magnitudes derived from ROSAT data, with the Comptonization parameter YC, SZ measured on Planck 2013 foreground cleaned Nominal maps. The 560 clusters of our sample includes clusters with masses M ≥ 1013 M⊙, one order of magnitude smaller than those used by the Planck Collaboration in a similar analysis. It also contains eight times more clusters in the redshift interval z ≤ 0.3. The prediction of the β = 2/3 model convolved with the Planck antenna beam agrees with the anisotropies measured in foreground cleaned Planck Nominal maps within the X-ray emitting region, confirming the results of an earlier analysis. The universal pressure profile overestimates the signal by a 15-21 per cent depending on the angular aperture. We show that the discrepancy is not due to the presence of cool-core systems but it is an indication of a brake in the LX - M relation towards low mass systems. We show that relation of the Comptonization parameter averaged over the region that emits 99 per cent of the X-ray flux and and the X-ray luminosity is consistent with the predictions of the self-similar model. We confirm previous findings that the scaling relations studied here do not evolve with redshift within the range probed by our catalogue.

  9. The watt balance: determination of the Planck constant and redefinition of the kilogram.

    PubMed

    Stock, M

    2011-10-28

    Since 1889, the international prototype of the kilogram has served as the definition of the unit of mass in the International System of Units (SI). It is the last material artefact to define a base unit of the SI, and it influences several other base units. This situation is no longer acceptable in a time of ever-increasing measurement precision. It is therefore planned to redefine the unit of mass by fixing the numerical value of the Planck constant. At the same time three other base units, the ampere, the kelvin and the mole, will be redefined. As a first step, the kilogram redefinition requires a highly accurate determination of the Planck constant in the present SI system, with a relative uncertainty of the order of 1 part in 10(8). The most promising experiment for this purpose, and for the future realization of the kilogram, is the watt balance. It compares mechanical and electrical power and makes use of two macroscopic quantum effects, thus creating a relationship between a macroscopic mass and the Planck constant. In this paper, the operating principle of watt balance experiments is explained and the existing experiments are reviewed. An overview is given of all available experimental determinations of the Planck constant, and it is shown that further investigation is needed before the redefinition of the kilogram can take place. Independent of this requirement, a consensus has been reached on the form that future definitions of the SI base units will take.

  10. Constraints on cosmological birefringence from PLANCK and Bicep2/Keck data

    NASA Astrophysics Data System (ADS)

    Gruppuso, A.; Gerbino, M.; Natoli, P.; Pagano, L.; Mandolesi, N.; Melchiorri, A.; Molinari, D.

    2016-06-01

    The polarization of cosmic microwave background (CMB) can be used to constrain cosmological birefringence, the rotation of the linear polarization of CMB photons potentially induced by parity violating physics beyond the standard model. This effect produces non-null CMB cross correlations between temperature and B mode-polarization, and between E- and B-mode polarization. Both cross-correlations are otherwise null in the standard cosmological model. We use the recently released 2015 PLANCK likelihood in combination with the Bicep2/Keck/Planck (BKP) likelihood to constrain the birefringence angle α. Our findings, that are compatible with no detection, read α = 0.0° ± 1.3° (stat) ± 1° (sys) for PLANCK data and α = 0.30° ± 0.27° (stat) ± 1° (sys) for BKP data. We finally forecast the expected improvements over present constraints when the PLANCK BB, TB and EB spectra at high l will be included in the analysis.

  11. The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test

    PubMed Central

    Lim, W; Lambrick, D; Mauger, AR; Woolley, B

    2016-01-01

    The self-paced maximal oxygen uptake (VO2max) test (SPV), which is based on the Borg 6-20 Ratings of Perceived Exertion (RPE) scale, allows participants to self-regulate their exercise intensity during a closed-loop incremental maximal exercise test. As previous research has assessed the utility of the SPV test within laboratory conditions, the purpose to this study was to assess the effect of trial familiarisation on the validity and reproducibility of a field-based, SPV test. In a cross-sectional study, fifteen men completed one laboratory-based graded exercise test (GXT) and three field-based SPV tests. The GXT was continuous and incremental until the attainment of VO2max. The SPV, which was completed on an outdoor 400m athletic track, consisted of five x 2 min perceptually-regulated (RPE11, 13, 15, 17 and 20) stages of incremental exercise. There were no differences in the VO2max reported between the GXT (63.5±10.1 ml·kg-1·min-1) and each SPV test (65.5±8.7, 65.4±7.0 and 66.7±7.7 ml·kg-1·min-1 for SPV1, SPV2 and SPV3, respectively; P>.05). Similar findings were observed when comparing VO2max between SPV tests (P>.05). High intraclass correlation coefficients were reported between the GXT and the SPV, and between each SPV test (≥.80). Although participants ran faster and further during SPV3, a similar pacing strategy was implemented during all tests. This study demonstrated that a field-based SPV is a valid and reliable VO2max test. As trial familiarisation did not moderate VO2max values from the SPV, the application of a single SPV test is an appropriate stand-alone protocol for gauging VO2max.

  12. The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test

    PubMed Central

    Lim, W; Lambrick, D; Mauger, AR; Woolley, B

    2016-01-01

    The self-paced maximal oxygen uptake (VO2max) test (SPV), which is based on the Borg 6-20 Ratings of Perceived Exertion (RPE) scale, allows participants to self-regulate their exercise intensity during a closed-loop incremental maximal exercise test. As previous research has assessed the utility of the SPV test within laboratory conditions, the purpose to this study was to assess the effect of trial familiarisation on the validity and reproducibility of a field-based, SPV test. In a cross-sectional study, fifteen men completed one laboratory-based graded exercise test (GXT) and three field-based SPV tests. The GXT was continuous and incremental until the attainment of VO2max. The SPV, which was completed on an outdoor 400m athletic track, consisted of five x 2 min perceptually-regulated (RPE11, 13, 15, 17 and 20) stages of incremental exercise. There were no differences in the VO2max reported between the GXT (63.5±10.1 ml·kg-1·min-1) and each SPV test (65.5±8.7, 65.4±7.0 and 66.7±7.7 ml·kg-1·min-1 for SPV1, SPV2 and SPV3, respectively; P>.05). Similar findings were observed when comparing VO2max between SPV tests (P>.05). High intraclass correlation coefficients were reported between the GXT and the SPV, and between each SPV test (≥.80). Although participants ran faster and further during SPV3, a similar pacing strategy was implemented during all tests. This study demonstrated that a field-based SPV is a valid and reliable VO2max test. As trial familiarisation did not moderate VO2max values from the SPV, the application of a single SPV test is an appropriate stand-alone protocol for gauging VO2max. PMID:27601782

  13. The effect of trial familiarisation on the validity and reproducibility of a field-based self-paced VO2max test.

    PubMed

    Lim, W; Lambrick, D; Mauger, A R; Woolley, B; Faulkner, J

    2016-09-01

    The self-paced maximal oxygen uptake (VO2max) test (SPV), which is based on the Borg 6-20 Ratings of Perceived Exertion (RPE) scale, allows participants to self-regulate their exercise intensity during a closed-loop incremental maximal exercise test. As previous research has assessed the utility of the SPV test within laboratory conditions, the purpose to this study was to assess the effect of trial familiarisation on the validity and reproducibility of a field-based, SPV test. In a cross-sectional study, fifteen men completed one laboratory-based graded exercise test (GXT) and three field-based SPV tests. The GXT was continuous and incremental until the attainment of VO2max. The SPV, which was completed on an outdoor 400m athletic track, consisted of five x 2 min perceptually-regulated (RPE11, 13, 15, 17 and 20) stages of incremental exercise. There were no differences in the VO2max reported between the GXT (63.5±10.1 ml·kg(-1)·min(-1)) and each SPV test (65.5±8.7, 65.4±7.0 and 66.7±7.7 ml·kg(-1)·min(-1) for SPV1, SPV2 and SPV3, respectively; P>.05). Similar findings were observed when comparing VO2max between SPV tests (P>.05). High intraclass correlation coefficients were reported between the GXT and the SPV, and between each SPV test (≥.80). Although participants ran faster and further during SPV3, a similar pacing strategy was implemented during all tests. This study demonstrated that a field-based SPV is a valid and reliable VO2max test. As trial familiarisation did not moderate VO2max values from the SPV, the application of a single SPV test is an appropriate stand-alone protocol for gauging VO2max. PMID:27601782

  14. Lifetime of the electroweak vacuum and sensitivity to Planck scale physics

    NASA Astrophysics Data System (ADS)

    Branchina, Vincenzo; Messina, Emanuele; Sher, Marc

    2015-01-01

    If the Standard Model (SM) is valid up to extremely high energy scales, then the Higgs potential becomes unstable at approximately 1 011 GeV . However, calculations of the lifetime of the SM vacuum have shown that it vastly exceeds the age of the Universe. It was pointed out by two of us (V. B., E. M.) that these calculations are extremely sensitive to effects from Planck scale higher-dimensional operators and, without knowledge of these operators, firm conclusions about the lifetime of the SM vacuum cannot be drawn. The previous paper used analytical approximations to the potential and, except for Higgs contributions, ignored loop corrections to the bounce action. In this work, we do not rely on any analytical approximations and consider all contributions to the bounce action, confirming the earlier result. It is surprising that the Planck scale operators can have such a large effect when the instability is at 1 011 GeV . There are two reasons for the size of this effect. In typical tunneling calculations, the value of the field at the center of the critical bubble is much larger than the point of the instability; in the SM case, this turns out to be numerically within an order of magnitude of the Planck scale. In addition, tunneling is an inherently nonperturbative phenomenon and may not be as strongly suppressed by inverse powers of the Planck scale. We include effective Φ6 and Φ8 Planck-scale operators and show that they can have an enormous effect on the tunneling rate.

  15. Planck 2015 results. XXIV. Cosmology from Sunyaev-Zeldovich cluster counts

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Battye, R.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chiang, H. C.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hansen, F. K.; Hanson, D.; Harrison, D. L.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Melin, J.-B.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Moss, A.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Popa, L.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Rebolo, R.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Roman, M.; Rosset, C.; Rossetti, M.; Roudier, G.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Seiffert, M. D.; Shellard, E. P. S.; Spencer, L. D.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Tuovinen, J.; Türler, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Weller, J.; White, S. D. M.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    We present cluster counts and corresponding cosmological constraints from the Planck full mission data set. Our catalogue consists of 439 clusters detected via their Sunyaev-Zeldovich (SZ) signal down to a signal-to-noise ratio of 6, and is more than a factor of 2 larger than the 2013 Planck cluster cosmology sample. The counts are consistent with those from 2013 and yield compatible constraints under the same modelling assumptions. Taking advantage of the larger catalogue, we extend our analysis to the two-dimensional distribution in redshift and signal-to-noise. We use mass estimates from two recent studies of gravitational lensing of background galaxies by Planck clusters to provide priors on the hydrostatic bias parameter, (1-b). In addition, we use lensing of cosmic microwave background (CMB) temperature fluctuations by Planck clusters as an independent constraint on this parameter. These various calibrations imply constraints on the present-day amplitude of matter fluctuations in varying degrees of tension with those from the Planck analysis of primary fluctuations in the CMB; for the lowest estimated values of (1-b) the tension is mild, only a little over one standard deviation, while it remains substantial (3.7σ) for the largest estimated value. We also examine constraints on extensions to the base flat ΛCDM model by combining the cluster and CMB constraints. The combination appears to favour non-minimal neutrino masses, but this possibility does little to relieve the overall tension because it simultaneously lowers the implied value of the Hubble parameter, thereby exacerbating the discrepancy with most current astrophysical estimates. Improving the precision of cluster mass calibrations from the current 10%-level to 1% would significantly strengthen these combined analyses and provide a stringent test of the base ΛCDM model.

  16. An alternative validation strategy for the Planck cluster catalogue and y-distortion maps

    NASA Astrophysics Data System (ADS)

    Khatri, Rishi

    2016-07-01

    We present an all-sky map of the y-type distortion calculated from the full mission Planck High Frequency Instrument (HFI) data using the recently proposed approach to component separation, which is based on parametric model fitting and model selection. This simple model-selection approach enables us to distinguish between carbon monoxide (CO) line emission and y-type distortion, something that is not possible using the internal linear combination based methods. We create a mask to cover the regions of significant CO emission relying on the information in the χ2 map that was obtained when fitting for the y-distortion and CO emission to the lowest four HFI channels. We revisit the second Planck cluster catalogue and try to quantify the quality of the cluster candidates in an approach that is similar in spirit to Aghanim et al. (2015, A&A, 580, A138). We find that at least 93% of the clusters in the cosmology sample are free of CO contamination. We also find that 59% of unconfirmed candidates may have significant contamination from molecular clouds. We agree with Planck Collaboration XXVII (2016, A&A, in press) on the worst offenders. We suggest an alternative validation strategy of measuring and subtracting the CO emission from the Planck cluster candidates using radio telescopes, thus improving the reliability of the catalogue. Our CO mask and annotations to the Planck cluster catalogue, identifying cluster candidates with possible CO contamination, are made publicly available. The full Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A48

  17. OaMAX2 of Orobanche aegyptiaca and Arabidopsis AtMAX2 share conserved functions in both development and drought responses.

    PubMed

    Li, Weiqiang; Nguyen, Kien Huu; Watanabe, Yasuko; Yamaguchi, Shinjiro; Tran, Lam-Son Phan

    2016-09-16

    Previous studies in Arabidopsis reported that the MAX2 (more axillary growth 2) gene is a component of the strigolactone (SL) signaling pathway, which regulates a wide range of biological processes, from plant growth and development to environmental stress responses. Orobanche aegyptiaca is a harmful parasitic plant for many economically important crops. Seed germination of O. aegyptiaca is very sensitive to SLs, suggesting that O. aegyptiaca may contain components of the SL signaling pathway. To investigate this hypothesis, we identified and cloned a MAX2 ortholog from O. aegyptiaca for complementation analyses using the Arabidopsis Atmax2 mutant. The so-called OaMAX2 gene could rescue phenotypes of the Atmax2 mutant in various tested developmental aspects, including seed germination, shoot branching, leaf senescence and growth and development of hypocotyl, root hair, primary root and lateral root. More importantly, OaMAX2 could enhance the drought tolerance of Atmax2 mutant, suggesting its ability to restore the drought-tolerant phenotype of mutant plants defected in AtMAX2 function. Thus, this study provides genetic evidence that the functions of the MAX2 orthologs, and perhaps the MAX2 signaling pathways, are conserved in parasitic and non-parasitic plants. Furthermore, the results of our study enable us to develop a strategy to fight against parasitic plants by suppressing the MAX signaling, which ultimately leads to enhanced productivity of crop plants. PMID:27425246

  18. Diffusivity in Alumina Scales Grown on Al-MAX Phases

    NASA Technical Reports Server (NTRS)

    Smialek, James L.

    2014-01-01

    Ti3AlC2, Ti2AlC, and Cr2AlC are oxidation resistant MAX phase compounds distinguished by the formation of protective Al2O3 scales with well controlled kinetics. A modified Wagner treatment was used to obtain interfacial grain boundary diffusivity, deltaD(sub gb,O,int.), from scale growth rates and corresponding grain size. It is based on the p(O2)(exp -1/6) dependency of the double charged oxygen vacancy and oxygen diffusivity, coupled with the effective diffusion constant for short circuit grain boundary paths. Data from the literature for MAX phases was analyzed accordingly, and deltaD(sub gb,O,int.) was found to nearly coincide with the Arrhenius line developed for Zr-doped FeCrAl, where: deltaD(sub gb,O,int.) = 1.8x10(exp -10) exp(-375 kJ/RT) cubic meters/s. Furthermore, this oxidation relation suggests the more general format applicable to bulk samples under ambient conditions: deltaD(sub gb,O) = 7.567x10(exp -8) exp(-544 kJ/RT) p(O2)(exp -1/6) cubic meters/[s x Pa(exp -1/6)]. Data from many other FeCrAl(X) studies were similarly assessed to show general agreement with the relation for deltaD(sub gb,O,int.). This analysis reinforces the view that protective alumina scales grow by similar mechanisms for these Al-MAX phases and oxidation resistant FeCrAl alloys.

  19. [MAX-DOAS Tomography Reconstruction for Gas Plume].

    PubMed

    Wei, Min-hong; Tong, Min-ming; Li, Su-wen; Xiao, Jian-yu

    2015-08-01

    In order to achieve precisely two-dimensional spatial distribution reconstruction of smoke plume, passive MAX-DOAS tomography is established, the measurement of the spatial distribution of the exhaust plume is implemented by more passive multi-axis differential absorption spectrum system. First, the multi-axis differential absorption spectrum system and its mechanism of inverse gas concentration are introduced in the paper. Then, algebra iterative algorithm is adopted to extract the information of the trace gas concentration in reconstruction simulation with different models and different scanning optical path, and the reconstruction program is designed. Then, the numerical simulation results are compared. Finally, a platform of multi-axis differential absorption optical tomography system is set up, a field campaign was carried out. The numerical simulation results show that the MAX-DOAS tomography can accurately reconstruct two-dimensional spatial distribution of plume model, the re- construction error of MAX-DOAS tomography with four light sources is about a third of the reconstruction error with double light sources, moreover, the reconstruction time is about a quarter of the reconstruction time of double light sources, and the reconstruction error of the twin peaks model is greater than that of the one peak model. Field test results show that the integral data of reconstruction image is consistent with the measured projection data of multi-axis differential absorption spectrum, the spatial distribution reconstruction of plume is in line with the actual situation. Studies have shown that the result of numerical simulation and field test results have consistency. PMID:26672304

  20. [MAX-DOAS Tomography Reconstruction for Gas Plume].

    PubMed

    Wei, Min-hong; Tong, Min-ming; Li, Su-wen; Xiao, Jian-yu

    2015-08-01

    In order to achieve precisely two-dimensional spatial distribution reconstruction of smoke plume, passive MAX-DOAS tomography is established, the measurement of the spatial distribution of the exhaust plume is implemented by more passive multi-axis differential absorption spectrum system. First, the multi-axis differential absorption spectrum system and its mechanism of inverse gas concentration are introduced in the paper. Then, algebra iterative algorithm is adopted to extract the information of the trace gas concentration in reconstruction simulation with different models and different scanning optical path, and the reconstruction program is designed. Then, the numerical simulation results are compared. Finally, a platform of multi-axis differential absorption optical tomography system is set up, a field campaign was carried out. The numerical simulation results show that the MAX-DOAS tomography can accurately reconstruct two-dimensional spatial distribution of plume model, the re- construction error of MAX-DOAS tomography with four light sources is about a third of the reconstruction error with double light sources, moreover, the reconstruction time is about a quarter of the reconstruction time of double light sources, and the reconstruction error of the twin peaks model is greater than that of the one peak model. Field test results show that the integral data of reconstruction image is consistent with the measured projection data of multi-axis differential absorption spectrum, the spatial distribution reconstruction of plume is in line with the actual situation. Studies have shown that the result of numerical simulation and field test results have consistency.

  1. Modelling exchange bias with MuMax3

    NASA Astrophysics Data System (ADS)

    De Clercq, Jonas; Vansteenkiste, Arne; Abes, Medjid; Temst, Kristiaan; Van Waeyenberge, Bartel

    2016-11-01

    The unidirectional shift of the hysteresis loop and the athermal training effect are two key features of the exchange bias phenomenon in most polycrystalline FM/AFM bilayers. We show that, by using MuMax3 which is an open source micromagnetic simulation program, we are able to reproduce experimental data (bias field and coercivity) for a polycrystalline Co/CoO bilayer. We also demonstrate that rotatable uncompensated spins can be responsible for the athermal training effect and that the reversal mechanism between the ascending and descending branch in the first hysteresis loop can be different, as has frequently been noticed in experiments.

  2. Simulated annealing approach to the max cut problem

    NASA Astrophysics Data System (ADS)

    Sen, Sandip

    1993-03-01

    In this paper we address the problem of partitioning the nodes of a random graph into two sets, so as to maximize the sum of the weights on the edges connecting nodes belonging to different sets. This problem has important real-life counterparts, but has been proven to be NP-complete. As such, a number of heuristic solution techniques have been proposed in literature to address this problem. We propose a stochastic optimization technique, simulated annealing, to find solutions for the max cut problem. Our experiments verify that good solutions to the problem can be found using this algorithm in a reasonable amount of time.

  3. Access to Max '91 information via computer networks

    NASA Technical Reports Server (NTRS)

    Kiplinger, Alan L.

    1989-01-01

    Various types of flare information, activity, active region reports, x ray plots and daily Campaign Action notices are now available on SPAN, and INTERNET. Although this system was developed for use by Max '91 participants during campaigns, it is updated daily and maintained at times outside of campaigns. Thus it is available for general use outside of campaigns. The Space Environment Laboratory maintains VAX and Apollo systems, both of which are on INTERNET. The VAX is also on the SPAN network as node SELVAX or 9555. Details of access to files on the VAX are given.

  4. Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Bartolo, N.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bock, J. J.; Bonaldi, A.; Bonavera, L.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Butler, R. C.; Calabrese, E.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chiang, H. C.; Christensen, P. R.; Clements, D. L.; Colombo, L. P. L.; Combet, C.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; Davis, R. J.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Désert, F.-X.; Di Valentino, E.; Dickinson, C.; Diego, J. M.; Dolag, K.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Ducout, A.; Dunkley, J.; Dupac, X.; Efstathiou, G.; Elsner, F.; Enßlin, T. A.; Eriksen, H. K.; Fergusson, J.; Finelli, F.; Forni, O.; Frailis, M.; Fraisse, A. A.; Franceschi, E.; Frejsel, A.; Galeotta, S.; Galli, S.; Ganga, K.; Gauthier, C.; Gerbino, M.; Giard, M.; Gjerløw, E.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Gudmundsson, J. E.; Hamann, J.; Hansen, F. K.; Harrison, D. L.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Holmes, W. A.; Hornstrup, A.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kiiveri, K.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lähteenmäki, A.; Lamarre, J.-M.; Lasenby, A.; Lattanzi, M.; Lawrence, C. R.; Le Jeune, M.; Leonardi, R.; Lesgourgues, J.; Levrier, F.; Lewis, A.; Liguori, M.; Lilje, P. B.; Lilley, M.; Linden-Vørnle, M.; Lindholm, V.; López-Caniego, M.; Macías-Pérez, J. F.; Maffei, B.; Maggio, G.; Maino, D.; Mandolesi, N.; Mangilli, A.; Maris, M.; Martin, P. G.; Martínez-González, E.; Masi, S.; Matarrese, S.; Meinhold, P. R.; Melchiorri, A.; Migliaccio, M.; Millea, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Mottet, S.; Munshi, D.; Murphy, J. A.; Narimani, A.; Naselsky, P.; Nati, F.; Natoli, P.; Noviello, F.; Novikov, D.; Novikov, I.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Pettorino, V.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Pratt, G. W.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Renzi, A.; Ristorcelli, I.; Rocha, G.; Rossetti, M.; Roudier, G.; Rouillé d'Orfeuil, B.; Rubiño-Martín, J. A.; Rusholme, B.; Salvati, L.; Sandri, M.; Santos, D.; Savelainen, M.; Savini, G.; Scott, D.; Serra, P.; Spencer, L. D.; Spinelli, M.; Stolyarov, V.; Stompor, R.; Sunyaev, R.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Tristram, M.; Trombetti, T.; Tucci, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, F.; Vielva, P.; Villa, F.; Wade, L. A.; Wandelt, B. D.; Wehus, I. K.; Yvon, D.; Zacchei, A.; Zonca, A.

    2016-09-01

    This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlationfunctions of the cosmic microwave background (CMB) temperature and polarization fluctuations that account for relevant uncertainties, both instrumental and astrophysical in nature. They are based on the same hybrid approach used for the previous release, i.e., a pixel-based likelihood at low multipoles (ℓ< 30) and a Gaussian approximation to the distribution of cross-power spectra at higher multipoles. The main improvements are the use of more and better processed data and of Planck polarization information, along with more detailed models of foregrounds and instrumental uncertainties. The increased redundancy brought by more than doubling the amount of data analysed enables further consistency checks and enhanced immunity to systematic effects. It also improves the constraining power of Planck, in particular with regard to small-scale foreground properties. Progress in the modelling of foreground emission enables the retention of a larger fraction of the sky to determine the properties of the CMB, which also contributes to the enhanced precision of the spectra. Improvements in data processing and instrumental modelling further reduce uncertainties. Extensive tests establish the robustness and accuracy of the likelihood results, from temperature alone, from polarization alone, and from their combination. For temperature, we also perform a full likelihood analysis of realistic end-to-end simulations of the instrumental response to the sky, which were fed into the actual data processing pipeline; this does not reveal biases from residual low-level instrumental systematics. Even with the increase in precision and robustness, the ΛCDM cosmological model continues to offer a very good fit to the Planck data. The slope of the primordial scalar fluctuations, ns, is confirmed smaller than unity at more than 5σ from Planck alone. We further validate the robustness of the

  5. [Max Hirsch founder of rheumatology in Germany: banished and murdered].

    PubMed

    Keitel, W

    2014-08-01

    The Jewish physician and scientist Dr. Max Hirsch (1875-1941) made a substantial contribution to consolidation of the foundations of his professional discipline, balneology, and in particular developed the social aspects. He recognized the economic significance of diseases of the musculoskeletal system very early on and gathered important ideas from abroad. Together with the department head in the Prussian Ministry of Education and Cultural Affairs, the Privy Councillor Prof. Dr. Eduard Dietrich and later alone, he was editor of various balneological journals. He worked as general secretary of the Deutsche Gesellschaft für Rheumatologie (German Society of Rheumatology) from the beginning of its existence (1927) and created the publication series Veröffentlichungen der Deutschen Gesellschaft für Rheumabekämpfung (Publications of the German Society against Rheumatism) and Rheuma-Jahrbuch (Annual review of rheumatology) in 1929, 1930 and 1931 and organized seven rheumatology congresses up to 1933. After the accession to power of the National Socialists, Max Hirsch and Eduard Dietrich were deposed from office. Hirsch emigrated to Latvia via Switzerland and the Soviet Union with his wife and one son where they were murdered in the course of the Jewish pogrom. The second son escaped with his family to Sweden. PMID:24599355

  6. [Max Hirsch founder of rheumatology in Germany: banished and murdered].

    PubMed

    Keitel, W

    2014-08-01

    The Jewish physician and scientist Dr. Max Hirsch (1875-1941) made a substantial contribution to consolidation of the foundations of his professional discipline, balneology, and in particular developed the social aspects. He recognized the economic significance of diseases of the musculoskeletal system very early on and gathered important ideas from abroad. Together with the department head in the Prussian Ministry of Education and Cultural Affairs, the Privy Councillor Prof. Dr. Eduard Dietrich and later alone, he was editor of various balneological journals. He worked as general secretary of the Deutsche Gesellschaft für Rheumatologie (German Society of Rheumatology) from the beginning of its existence (1927) and created the publication series Veröffentlichungen der Deutschen Gesellschaft für Rheumabekämpfung (Publications of the German Society against Rheumatism) and Rheuma-Jahrbuch (Annual review of rheumatology) in 1929, 1930 and 1931 and organized seven rheumatology congresses up to 1933. After the accession to power of the National Socialists, Max Hirsch and Eduard Dietrich were deposed from office. Hirsch emigrated to Latvia via Switzerland and the Soviet Union with his wife and one son where they were murdered in the course of the Jewish pogrom. The second son escaped with his family to Sweden.

  7. Fracturing and brecciation along the Max Meadows thrust, southwestern Virginia

    SciTech Connect

    Haneberg, W.C.

    1984-04-01

    Fracturing is an important mechanism of porosity development in deformed hydrocarbon provinces such as the Eastern Overthrust belt, but the sizes and shapes of fractured zones place critical constraints on exploration strategies. Fracturing and brecciation associated with the Max Meadows thrust, along which the Cambrian Rome Formation have been emplaced atop the younger Cambrian Elbrook and Conococheague Formations of the Pulaski thrust sheet, are controlled by lithology, proximity to the fault, and mesoscopic folding. Within the Max Meadows sheet, Rome carbonates are highly fractured and, in fold cores near the fault, brecciated. Rome mudstones and sandstones are tightly folded, and near the fault have developed both an incipient axial planar cleavage and a set of closely spaced fractures striking perpendicular to fold axes. In comparison, the wholly carbonate sequence of the Pulaski sheet had earlier been folded into a large syncline characterized by bedding-parallel shear in shaly and thin-bedded layers, flexural slip folding, and localized fracturing of thick layers. Thus breccia and fracture porosity zones in the study area are highly localized, of irregular geometry, and essentially restricted to the upper thrust sheet. Zones of tectonic breccia and fracture porosity are not attractive exploration targets, then, unless they occur as uniform and widespread broken zones in sedimentologically and mechanically homogeneous beds.

  8. Cosmological Constraints from the SDSS maxBCG Cluster Catalog

    SciTech Connect

    Rozo, Eduardo; Wechsler, Risa H.; Rykoff, Eli S.; Annis, James T.; Becker, Matthew R.; Evrard, August E.; Frieman, Joshua A.; Hansen, Sarah M.; Hao, Jia; Johnston, David E.; Koester, Benjamin P.; McKay, Timothy A.; Sheldon, Erin S.; Weinberg, David H.; /CCAPP /Ohio State U.

    2009-08-03

    We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat {Lambda}CDM cosmology, we find {sigma}{sub 8}({Omega}{sub m}/0.25){sup 0.41} = 0.832 {+-} 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find {sigma}{sub 8} = 0.807 {+-} 0.020 and {Omega}{sub m} = 0.265 {+-} 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.

  9. Cosmological Constraints From SDSS MaxBCG Cluster Abundances

    SciTech Connect

    Rozo, Eduardo; Wechsler, Risa H.; Koester, Benjamin P.; McKay, Timothy A.; Evrard, August E.; Johnston, David; Sheldon, Erin S.; Annis, James; Frieman, Joshua A.; /KICP, Chicago /Chicago U., Astron. Astrophys. Ctr. /Fermilab

    2007-03-26

    We perform a maximum likelihood analysis of the cluster abundance measured in the SDSS using the maxBCG cluster finding algorithm. Our analysis is aimed at constraining the power spectrum normalization {sigma}{sub 8}, and assumes flat cosmologies with a scale invariant spectrum, massless neutrinos, and CMB and supernova priors {Omega}{sub m}h{sup 2} = 0.128 {+-} 0.01 and h = 0.72 {+-} 0.05 respectively. Following the method described in the companion paper Rozo et al. (2007), we derive {sigma}{sub 8} = 0.92 {+-} 0.10 (1{sigma}) after marginalizing over all major systematic uncertainties. We place strong lower limits on the normalization, {sigma}{sub 8} > 0.76 (95% CL) (> 0.68 at 99% CL). We also find that our analysis favors relatively low values for the slope of the Halo Occupation Distribution (HOD), {alpha} = 0.83 {+-} 0.06. The uncertainties of these determinations will substantially improve upon completion of an ongoing campaign to estimate dynamical, weak lensing, and X-ray cluster masses in the SDSS maxBCG cluster sample.

  10. On the affordances of the MaxEP principle

    NASA Astrophysics Data System (ADS)

    Chung, Bong Jae; McDermid, Kirk; Vaidya, Ashwin

    2014-01-01

    Optimality principles have long been popular in the natural sciences and enjoyed much successes in various applications. However these principles seem to be disparate, each applied in limited contexts and there are far too many of them causing some consternation among scientists and philosophers of science regarding the ad-hoc nature of the optimality arguments. In this paper, we discuss the Maximum entropy production (MaxEP) as a plausible over-arching principle to understand stable configurations in fluid mechanics and related problems. The MaxEP being based upon sound physical arguments and in the immutable laws of thermodynamics along with the fact that it has been successfully co-opted across disciplines makes it worthy of attention. We discuss various physical and metaphysical aspects of this principle and use it to analyze some model problems regarding patterns in particle sedimentation such as sedimentation of a particle in Newtonian and non-Newtonian fluids and stable deformation of a falling droplet.

  11. Physical properties of Galactic Planck cold cores revealed by the Hi-GAL survey

    NASA Astrophysics Data System (ADS)

    Zahorecz, S.; Jimenez-Serra, I.; Wang, K.; Testi, L.; Tóth, L. V.; Molinari, S.

    2016-06-01

    Context. Previous studies of the initial conditions of massive star and star cluster formation have mainly targeted infrared-dark clouds (or IRDCs) toward the inner Galaxy. This is because IRDCs were first detected in absorption against the bright mid-infrared (IR) background of the inner Galaxy, requiring a favorable location to be observed. By selection, IRDCs therefore represent only a fraction of the Galactic clouds capable of forming massive stars and star clusters. Owing their low dust temperatures, however, IRDCs are bright in the far-IR and millimeter and, thus, observations at these wavelengths have the potential to provide a complete sample of star-forming massive clouds across the Galaxy. Aims: Our aim is to identify the clouds at the initial conditions of massive star and star cluster formation across the Galaxy and compare their physical properties as a function of Galactic longitude and Galactocentric distance. Methods: We have examined the physical properties of a homogeneous Galactic cold core sample obtained with the Planck satellite across the Galactic plane. With the use of Herschel Hi-GAL observations, we characterized the internal structure of the most reliable Galactic cold clumps within the Early Cold Core (ECC) Planck catalog. By using background-subtracted Herschel images, we derived the H2 column density and dust temperature maps for 48 Planck clumps covered by the Herschel Hi-GAL survey. We calculated and analyzed the basic physical parameters (size, mass, and average dust temperature) of these clumps as a function of location within the Galaxy. We also compared these properties with the empirical relation for massive star formation previously derived. Results: Most of the Planck clumps contain signs of star formation. About 25% of the clumps are massive enough to form high-mass stars and star clusters since they exceed the empirical threshold for massive star formation. Planck clumps toward the Galactic center region show higher peak

  12. The thermal Sunyaev-Zel'dovich effect power spectrum in light of Planck

    NASA Astrophysics Data System (ADS)

    McCarthy, I. G.; Le Brun, A. M. C.; Schaye, J.; Holder, G. P.

    2014-06-01

    The amplitude of the thermal Sunyaev-Zel'dovich effect (tSZ) power spectrum is extremely sensitive to the abundance of the most massive dark matter haloes (galaxy clusters) and therefore to fundamental cosmological parameters that control their growth, such as σ8 and Ωm. Here we explore the sensitivity of the tSZ power spectrum to important non-gravitational (`subgrid') physics by employing the cosmo-OWLS suite of large-volume cosmological hydrodynamical simulations, run in both the Planck and 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) best-fitting cosmologies. On intermediate and small angular scales (ℓ ≳ 1000, or θ≲10 arcmin), accessible with the South Pole Telescope (SPT) and the Atacama Cosmology Telescope (ACT), the predicted tSZ power spectrum is highly model dependent, with gas ejection due to active galactic nuclei (AGN) feedback having a particularly large effect. However, at large scales, observable with the Planck telescope, the effects of subgrid physics are minor. Comparing the simulated tSZ power spectra with observations, we find a significant amplitude offset on all measured angular scales (including large scales), if the Planck best-fitting cosmology is assumed by the simulations. This is shown to be a generic result for all current models of the tSZ power spectrum. By contrast, if the WMAP7 cosmology is adopted, there is full consistency with the Planck tSZ power spectrum measurements on large scales and agreement at the 2σ level with the SPT and ACT measurements at intermediate scales for our fiducial AGN model, which Le Brun et al. have shown reproduces the `resolved' properties of the Local Group and cluster population remarkably well. These findings strongly suggest that there are significantly fewer massive galaxy clusters than expected for the Planck best-fitting cosmology, which is consistent with recent measurements of the tSZ number counts. Our findings therefore pose a significant challenge to the cosmological

  13. Detection of thermal SZ-CMB lensing cross-correlation in Planck nominal mission data

    SciTech Connect

    Hill, J. Colin; Spergel, David N. E-mail: dns@astro.princeton.edu

    2014-02-01

    The nominal mission maps from the Planck satellite contain a wealth of information about secondary anisotropies in the cosmic microwave background (CMB), including those induced by the thermal Sunyaev-Zel'dovich (tSZ) effect and gravitational lensing. As both the tSZ and CMB lensing signals trace the large-scale matter density field, the anisotropies sourced by these processes are expected to be correlated. We report the first detection of this cross-correlation signal, which we measure at 6.2σ significance using the Planck data. We take advantage of Planck's multifrequency coverage to construct a tSZ map using internal linear combination techniques, which we subsequently cross-correlate with the publicly-released Planck CMB lensing potential map. The cross-correlation is subject to contamination from the cosmic infrared background (CIB), which is known to correlate strongly with CMB lensing. We correct for this contamination via cross-correlating our tSZ map with the Planck 857 GHz map and confirm the robustness of our measurement using several null tests. We interpret the signal using halo model calculations, which indicate that the tSZ-CMB lensing cross-correlation is a unique probe of the physics of intracluster gas in high-redshift, low-mass groups and clusters. Our results are consistent with extrapolations of existing gas physics models to this previously unexplored regime and show clear evidence for contributions from both the one- and two-halo terms, but no statistically significant evidence for contributions from diffuse, unbound gas outside of collapsed halos. We also show that the amplitude of the signal depends rather sensitively on the amplitude of fluctuations (σ{sub 8}) and the matter density (Ω{sub m}), scaling as σ{sub 8}{sup 6.1}Ω{sub m}{sup 1.5} at ℓ = 1000. We constrain the degenerate combination σ{sub 8}(Ω{sub m}/0.282){sup 0.26} = 0.824±0.029, a result that is in less tension with primordial CMB constraints than some recent t

  14. Calibrating max-stable models of rainfall extremes at multiple timescales

    NASA Astrophysics Data System (ADS)

    Le, Phuong Dong; Leonard, Michael; Westra, Seth

    2016-04-01

    Understanding the probabilistic behaviour of extreme rainfall events is critical for estimating the risk of flooding, leading to better design of infrastructure and management of flood events. The majority of engineering design is based on estimates of the probability of extreme rainfall known as the Intensity-Frequency-Duration relationship (IDF). IDF curves are estimated at each rain gauge and are subsequently interpolated for application to ungauged locations. The pointwise nature of IDF estimates leads to difficulties, especially at sub-daily timescales, due to the sparseness of sub-daily extreme rainfall data. As a result there is greater uncertainty and potential for bias when estimating sub-daily extreme rainfall. By using a model that incorporates dependence between spatial extremes as well as across multiple timescales, there is considerable potential to improve estimates of extreme rainfall. The aim of this research is to develop max-stable models of extreme rainfall that have both spatial dependence as well as dependence across timescales. Max-stable processes are a direct extension of the univariate generalized extreme value (GEV) model into the spatial domain. Max-stable processes provide a general framework for modelling multivariate extremes with spatial dependence for just a single duration extreme rainfall. To achieve dependence across multiple timescales, Koutsoyiannis et al. (1998) proposed a mathematical framework which expresses the parameters as a function of timescale. This parameterization is important because it allows data to be incorporated from daily rainfall stations to improve estimates at sub-daily timescales. The approach therefore addresses the issue of sparseness for sub-daily stations by exploiting the denser network of daily stations. A case study in the Hawkesbury-Nepean catchment near Sydney is used, having 82 daily gauges (>50 years) and 13 sub-daily gauges (>24 years) over a region of 300 km x 300 km area. The max

  15. X-ray structures of Myc-Max and Mad-Max recognizing DNA. Molecular bases of regulation by proto-oncogenic transcription factors.

    PubMed

    Nair, Satish K; Burley, Stephen K

    2003-01-24

    X-ray structures of the basic/helix-loop-helix/leucine zipper (bHLHZ) domains of Myc-Max and Mad-Max heterodimers bound to their common DNA target (Enhancer or E box hexanucleotide, 5'-CACGTG-3') have been determined at 1.9 A and 2.0 A resolution, respectively. E box recognition by these two structurally similar transcription factor pairs determines whether a cell will divide and proliferate (Myc-Max) or differentiate and become quiescent (Mad-Max). Deregulation of Myc has been implicated in the development of many human cancers, including Burkitt's lymphoma, neuroblastomas, and small cell lung cancers. Both quasisymmetric heterodimers resemble the symmetric Max homodimer, albeit with marked structural differences in the coiled-coil leucine zipper regions that explain preferential homo- and heteromeric dimerization of these three evolutionarily related DNA-binding proteins. The Myc-Max heterodimer, but not its Mad-Max counterpart, dimerizes to form a bivalent heterotetramer, which explains how Myc can upregulate expression of genes with promoters bearing widely separated E boxes.

  16. Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells

    PubMed Central

    Suzuki, Ayumu; Hirasaki, Masataka; Hishida, Tomoaki; Wu, Jun; Okamura, Daiji; Ueda, Atsushi; Nishimoto, Masazumi; Nakachi, Yutaka; Mizuno, Yosuke; Okazaki, Yasushi; Matsui, Yasuhisa; Belmonte, Juan Carlos Izpisua; Okuda, Akihiko

    2016-01-01

    Meiosis is a unique process that allows the generation of reproductive cells. It remains largely unknown how meiosis is initiated in germ cells and why non-germline cells do not undergo meiosis. We previously demonstrated that knockdown of Max expression, a gene encoding a partner of MYC family proteins, strongly activates expression of germ cell-related genes in ESCs. Here we find that complete ablation of Max expression in ESCs results in profound cytological changes reminiscent of cells undergoing meiotic cell division. Furthermore, our analyses uncovers that Max expression is transiently attenuated in germ cells undergoing meiosis in vivo and its forced reduction induces meiosis-like cytological changes in cultured germline stem cells. Mechanistically, Max depletion alterations are, in part, due to impairment of the function of an atypical PRC1 complex (PRC1.6), in which MAX is one of the components. Our data highlight MAX as a new regulator of meiotic onset. PMID:27025988

  17. Gestalt theory reconfigured: Max Wertheimer's anticipation of recent developments in visual neuroscience.

    PubMed

    Westheimer, G

    1999-01-01

    In the 1920s Max Wertheimer enunciated a credo of Gestalt theory: the properties of any of the parts are governed by the structural laws of the whole. Intense efforts at the time to discover these laws had only very limited success. Psychology was in the grips of the Fechnerian tradition to seek exact relationships between the material and the mental and, because the Gestalt movement could not deliver these, it never attained a major standing among students of perception. However, as neurophysiological research into cortical processing of visual stimuli progresses the need for organizing principles is increasingly making itself felt. Concepts like contour salience and figure segregation, once the province of Gestalt psychology, are now taking on renewed significance as investigators combine neural modeling and psychophysical approaches with electrophysiological ones to characterize neural mechanisms of cognition. But it would be perilous not to take heed of some of the lessons that the history of the Gestalt movement teaches. PMID:10627849

  18. Gestalt theory reconfigured: Max Wertheimer's anticipation of recent developments in visual neuroscience.

    PubMed

    Westheimer, G

    1999-01-01

    In the 1920s Max Wertheimer enunciated a credo of Gestalt theory: the properties of any of the parts are governed by the structural laws of the whole. Intense efforts at the time to discover these laws had only very limited success. Psychology was in the grips of the Fechnerian tradition to seek exact relationships between the material and the mental and, because the Gestalt movement could not deliver these, it never attained a major standing among students of perception. However, as neurophysiological research into cortical processing of visual stimuli progresses the need for organizing principles is increasingly making itself felt. Concepts like contour salience and figure segregation, once the province of Gestalt psychology, are now taking on renewed significance as investigators combine neural modeling and psychophysical approaches with electrophysiological ones to characterize neural mechanisms of cognition. But it would be perilous not to take heed of some of the lessons that the history of the Gestalt movement teaches.

  19. On the Potential of MAX phases for Nuclear Applications

    NASA Astrophysics Data System (ADS)

    Tallman, Darin Joseph

    Materials within nuclear reactors experience some of the harshest environments currently known to man, including long term operation in extreme temperatures, corrosive media, and fast neutron fluences with up to 100 displacements per atom, dpa. In order to improve the efficiency and safety of current and future reactors, new materials are required to meet these harsh demands. The M n+1AXn phases, a growing family of ternary nano-layered ceramics, possess a desirable combination of metallic and ceramic properties. They are composed of an early transition metal (M), a group 13--16 element (A), and carbon and/or nitrogen (X). The MAX phases are being proposed for use in such extreme environments because of their unique combination of high fracture toughness values and thermal conductivities, machinability, oxidation resistance, and ion irradiation damage tolerance. Previous ion irradiation studies have shown that Ti3SiC2 and Ti3AlC2 resist irradiation damage, maintaining crystallinity up to 50 dpa. The aim of this work was to explore the effect of neutron irradiation, up to 9 dpa and at temperatures of 100 to 1000 °C, on select MAX phases for the first time. The MAX phases Ti3SiC2, Ti 3AlC2, Ti2AlC, and Ti2AlN were synthesized, and irradiated in test reactors that simulate in-pile conditions of nuclear reactors. X-ray diffraction, XRD, pattern refinements of samples revealed a distortion of the crystal lattice after low temperature irradiation, which was not observed after high temperature irradiations. Additionally, the XRD results indicated that Ti3AlC2 and Ti2AlN dissociated after relatively low neutron doses. This led us to focus on Ti 3SiC2 and Ti2AlC. For the first time, dislocation loops were observed in Ti3SiC 2 and Ti2AlC as a result of neutron irradiation. At 1 x 1023 loops/m3, the loop density in Ti2 AlC after irradiation to 0.1 dpa at 700°C was 1.5 orders of magnitude greater than that observed in Ti3SiC2, at 3 x 1021 loops/m3. The Ti2AlC composition

  20. An accurate scheme to solve cluster dynamics equations using a Fokker-Planck approach

    NASA Astrophysics Data System (ADS)

    Jourdan, T.; Stoltz, G.; Legoll, F.; Monasse, L.

    2016-10-01

    We present a numerical method to accurately simulate particle size distributions within the formalism of rate equation cluster dynamics. This method is based on a discretization of the associated Fokker-Planck equation. We show that particular care has to be taken to discretize the advection part of the Fokker-Planck equation, in order to avoid distortions of the distribution due to numerical diffusion. For this purpose we use the Kurganov-Noelle-Petrova scheme coupled with the monotonicity-preserving reconstruction MP5, which leads to very accurate results. The interest of the method is highlighted in the case of loop coarsening in aluminum. We show that the choice of the models to describe the energetics of loops does not significantly change the normalized loop distribution, while the choice of the models for the absorption coefficients seems to have a significant impact on it.

  1. Two temperature gas equilibration model with a Fokker-Planck type collision operator

    NASA Astrophysics Data System (ADS)

    Méndez, A. R.; Chacón-Acosta, G.; García-Perciante, A. L.

    2014-01-01

    The equilibration process of a binary mixture of gases with two different temperatures is revisited using a Fokker-Planck type equation. The collision integral term of the Boltzmann equation is approximated by a Fokker-Planck differential collision operator by assuming that one of the constituents can be considered as a background gas in equilibrium while the other species diffuses through it. As a main result the coefficients of the linear term and of the first derivative are modified by the temperature and kinetic energy difference of the two species. These modifications are expected to influence the form of the solution for the distribution function and the corresponding transport equations. When temperatures are equal, the usual result of a Rayleigh gas is recovered.

  2. Constraining the Energy-Momentum Dispersion Relation with Planck-Scale Sensitivity Using Cold Atoms

    SciTech Connect

    Amelino-Camelia, Giovanni; Mercati, Flavio; Laemmerzahl, Claus; Tino, Guglielmo M.

    2009-10-23

    We use the results of ultraprecise cold-atom-recoil experiments to constrain the form of the energy-momentum dispersion relation, a structure that is expected to be modified in several quantum-gravity approaches. Our strategy of analysis applies to the nonrelativistic (small speeds) limit of the dispersion relation, and is therefore complementary to an analogous ongoing effort of investigation of the dispersion relation in the ultrarelativistic regime using observations in astrophysics. For the leading correction in the nonrelativistic limit the exceptional sensitivity of cold-atom-recoil experiments remarkably allows us to set a limit within a single order of magnitude of the desired Planck-scale level, thereby providing the first example of Planck-scale sensitivity in the study of the dispersion relation in controlled laboratory experiments.

  3. Unveiling the most massive Planck clusters at z>0.5 (XMM LP re-observations).

    NASA Astrophysics Data System (ADS)

    Arnaud, Monique

    2012-10-01

    We have been awarded a Large Program in AO11 to gather spatially resolved X ray spectroscopy on a sample of 32 massive (M_500 > 5e+14Msun) clusters detected blindly by Planck in the redshift range 0.5Planck sample. We propose to re-observe 8 targets, the observations of which are dramatically affected by flares.

  4. Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma

    SciTech Connect

    Manheimer, Wallace; Colombant, Denis

    2015-09-15

    Various laser plasma instabilities, such as the two plasma decay instability and the stimulated Raman scatter instability, produce large quantities of energetic electrons. How these electrons are transported and heat the plasma are crucial questions for laser fusion. This paper works out a Fokker Planck and Krook theory for such transport and heating. The result is a set of equations, for which one can find a simple asymptotic approximation for the solution, for the Fokker Planck case, and an exact solution for the Krook case. These solutions are evaluated and compared with one another. They give rise to expressions for the spatially dependent heating of the background plasma, as a function of the instantaneous laser and plasma parameters, in either planar or spherical geometry. These formulas are simple, universal (depending weakly only on the single parameter Z, the charge state), and can be easily be incorporated into a fluid simulation.

  5. Simulating transient dynamics of the time-dependent time fractional Fokker-Planck systems

    NASA Astrophysics Data System (ADS)

    Kang, Yan-Mei

    2016-09-01

    For a physically realistic type of time-dependent time fractional Fokker-Planck (FP) equation, derived as the continuous limit of the continuous time random walk with time-modulated Boltzmann jumping weight, a semi-analytic iteration scheme based on the truncated (generalized) Fourier series is presented to simulate the resultant transient dynamics when the external time modulation is a piece-wise constant signal. At first, the iteration scheme is demonstrated with a simple time-dependent time fractional FP equation on finite interval with two absorbing boundaries, and then it is generalized to the more general time-dependent Smoluchowski-type time fractional Fokker-Planck equation. The numerical examples verify the efficiency and accuracy of the iteration method, and some novel dynamical phenomena including polarized motion orientations and periodic response death are discussed.

  6. State-space-split method for some generalized Fokker-Planck-Kolmogorov equations in high dimensions.

    PubMed

    Er, Guo-Kang; Iu, Vai Pan

    2012-06-01

    The state-space-split method for solving the Fokker-Planck-Kolmogorov equations in high dimensions is extended to solving the generalized Fokker-Planck-Kolmogorov equations in high dimensions for stochastic dynamical systems with a polynomial type of nonlinearity and excited by Poissonian white noise. The probabilistic solution of the motion of the stretched Euler-Bernoulli beam with cubic nonlinearity and excited by uniformly distributed Poissonian white noise is analyzed with the presented solution procedure. The numerical analysis shows that the results obtained with the state-space-split method together with the exponential polynomial closure method are close to those obtained with the Monte Carlo simulation when the relative value of the basic system relaxation time and the mean arrival time of the Poissonian impulse is in some limited range.

  7. Moment-Preserving SN Discretizations for the One-Dimensional Fokker-Planck Equation

    SciTech Connect

    Warsa, James S.; Prinja, Anil K.

    2012-06-14

    The Fokker-Planck equation: (1) Describes the transport and interactions of charged particles, (2) Many small-angle scattering collisions, (3) Asymptotic limit of the Boltzmann equation (Pomraning, 1992), and (4) The Boltzmann collision operator becomes the angular Laplacian. SN angular discretization: (1) Angular flux is collocated at the SN quadrature points, (2) The second-order derivatives in the Laplacian term must be discretized, and (3) Weighted finite-difference method preserves zeroth and first moments (Morel, 1985). Moment-preserving methods: (1) Collocate the Fokker-Planck operator at the SN quadrature points, (2) Develop several related and/or equivalent methods, and (3) Motivated by discretizations for the angular derivative appearing in the transport equation in one-dimensional spherical coordinates.

  8. Using CMB data to constrain non-isotropic Planck-scale modifications to Electrodynamics

    SciTech Connect

    Gubitosi, Giulia; Migliaccio, Marina; Pagano, Luca; Amelino-Camelia, Giovanni; Melchiorri, Alessandro; Natoli, Paolo; Polenta, Gianluca E-mail: Marina.Migliaccio@roma2.infn.it E-mail: giovanni.amelino-camelia@roma1.infn.it E-mail: paolo.natoli@roma2.infn.it

    2011-11-01

    We develop a method to constrain non-isotropic features of Cosmic Microwave Background (CMB) polarization, of a type expected to arise in some models describing quantum gravity effects on light propagation. We describe the expected signatures of this kind of anomalous light propagation on CMB photons, showing that it will produce a non-isotropic birefringence effect, i.e. a rotation of the CMB polarization direction whose observed amount depends in a peculiar way on the observation direction. We also show that the sensitivity levels expected for CMB polarization studies by the Planck satellite are sufficient for testing these effects if, as assumed in the quantum-gravity literature, their magnitude is set by the minute Planck length.

  9. The Fokker-Planck law of diffusion and pattern formation in heterogeneous environments.

    PubMed

    Bengfort, Michael; Malchow, Horst; Hilker, Frank M

    2016-09-01

    We analyze the influence of spatially inhomogeneous diffusion on several common ecological problems. Diffusion is modeled with Fick's law and the Fokker-Planck law of diffusion. We discuss the differences between the two formalisms and when to use either the one or the other. In doing so, we start with a pure diffusion equation, then turn to a reaction-diffusion system with one logistically growing component which invades the spatial domain. We also look at systems of two reacting components, namely a trimolecular oscillating chemical model system and an excitable predator-prey model. Contrary to Fickian diffusion, spatial inhomogeneities promote spatial and spatiotemporal pattern formation in case of Fokker-Planck diffusion.

  10. Planck early results. XXII. The submillimetre properties of a sample of Galactic cold clumps

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Arnaud, M.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Balbi, A.; Banday, A. J.; Barreiro, R. B.; Bartlett, J. G.; Battaner, E.; Benabed, K.; Benoît, A.; Bernard, J.-P.; Bersanelli, M.; Bhatia, R.; Bock, J. J.; Bonaldi, A.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bucher, M.; Burigana, C.; Cabella, P.; Cantalupo, C. M.; Cardoso, J.-F.; Catalano, A.; Cayón, L.; Challinor, A.; Chamballu, A.; Chiang, L.-Y.; Christensen, P. R.; Clements, D. L.; Colombi, S.; Couchot, F.; Coulais, A.; Crill, B. P.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Gasperis, G.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Doi, Y.; Donzelli, S.; Doré, O.; Dörl, U.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hovest, W.; Hoyland, R. J.; Huffenberger, K. M.; Ikeda, N.; Jaffe, A. H.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kitamura, Y.; Kneissl, R.; Knox, L.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leach, S.; Leonardi, R.; Leroy, C.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; MacTavish, C. J.; Maffei, B.; Malinen, J.; Mandolesi, N.; Mann, R.; Maris, M.; Marshall, D. J.; Martin, P.; Martínez-González, E.; Masi, S.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Meny, C.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Pagani, L.; Pajot, F.; Paladini, R.; Pasian, F.; Patanchon, G.; Pelkonen, V.-M.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Poutanen, T.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Reach, W. T.; Rebolo, R.; Reinecke, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Rowan-Robinson, M.; Rubiño-Martín, J. A.; Rusholme, B.; Sandri, M.; Santos, D.; Savini, G.; Scott, D.; Seiffert, M. D.; Smoot, G. F.; Starck, J.-L.; Stivoli, F.; Stolyarov, V.; Sudiwala, R.; Sygnet, J.-F.; Tauber, J. A.; Terenzi, L.; Toffolatti, L.; Tomasi, M.; Torre, J.-P.; Toth, V.; Tristram, M.; Tuovinen, J.; Umana, G.; Valenziano, L.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Ysard, N.; Yvon, D.; Zacchei, A.; Zonca, A.

    2011-12-01

    We perform a detailed investigation of sources from the Cold Cores Catalogue of Planck Objects (C3PO). Our goal is to probe the reliability of the detections, validate the separation between warm and cold dust emission components, provide the first glimpse at the nature, internal morphology and physical characterictics of the Planck-detected sources. We focus on a sub-sample of ten sources from the C3PO list, selected to sample different environments, from high latitude cirrus to nearby (150pc) and remote (2kpc) molecular complexes. We present Planck surface brightness maps and derive the dust temperature, emissivity spectral index, and column densities of the fields. With the help of higher resolution Herschel and AKARI continuum observations and molecular line data, we investigate the morphology of the sources and the properties of the substructures at scales below the Planck beam size. The cold clumps detected by Planck are found to be located on large-scale filamentary (or cometary) structures that extend up to 20pc in the remote sources. The thickness of these filaments ranges between 0.3 and 3pc, for column densities NH2 ~ 0.1 to 1.6 × 1022 cm-2, and with linear mass density covering a broad range, between 15 and 400 M⊙ pc-1. The dust temperatures are low (between 10 and 15K) and the Planck cold clumps correspond to local minima of the line-of-sight averaged dust temperature in these fields. These low temperatures are confirmed when AKARI and Herschel data are added to the spectral energy distributions. Herschel data reveal a wealth of substructure within the Planck cold clumps. In all cases (except two sources harbouring young stellar objects), the substructures are found to be colder, with temperatures as low as 7K. Molecular line observations provide gas column densities which are consistent with those inferred from the dust. The linewidths are all supra-thermal, providing large virial linear mass densities in the range 10 to 300 M⊙ pc-1, comparable

  11. Low and high scale MSSM inflation, gravitational waves and constraints from Planck

    SciTech Connect

    Choudhury, Sayantan; Pal, Supratik; Mazumdar, Anupam E-mail: a.mazumdar@lancaster.ac.uk

    2013-07-01

    In this paper we will analyze generic predictions of an inflection-point model of inflation with Hubble-induced corrections and study them in light of the Planck data. Typically inflection-point models of inflation can be embedded within Minimal Supersymmetric Standard Model (MSSM) where inflation can occur below the Planck scale. The flexibility of the potential allows us to match the observed amplitude of the TT-power spectrum of the cosmic microwave background radiation with low and high multipoles, spectral tilt, and virtually mild running of the spectral tilt, which can put a bound on an upper limit on the tensor-to-scalar ratio, r ≤ 0.12. Since the inflaton within MSSM carries the Standard Model charges, therefore it is the minimal model of inflation beyond the Standard Model which can reheat the universe with the right thermal degrees of freedom without any dark-radiation.

  12. Foreground removal from Planck Sky Model temperature maps using a MLP neural network

    NASA Astrophysics Data System (ADS)

    Nørgaard-Nielsen, H. U.; Hebert, K.

    2009-08-01

    Unfortunately, the Cosmic Microwave Background (CMB) radiation is contaminated by emission originating in the Milky Way (synchrotron, free-free and dust emission). Since the cosmological information is statistically in nature, it is essential to remove this foreground emission and leave the CMB with no systematic errors. To demonstrate the feasibility of a simple multilayer perceptron (MLP) neural network for extracting the CMB temperature signal, we have analyzed a specific data set, namely the Planck Sky Model maps, developed for evaluation of different component separation methods before including them in the Planck data analysis pipeline. It is found that a MLP neural network can provide a CMB map of about 80 % of the sky to a very high degree uncorrelated with the foreground components. Also the derived power spectrum shows little evidence for systematic errors.

  13. Relaxation of terrace-width distributions: Physical information from Fokker Planck time

    NASA Astrophysics Data System (ADS)

    Hamouda, Ajmi BH.; Pimpinelli, Alberto; Einstein, T. L.

    2008-12-01

    Recently some of us have constructed a Fokker-Planck formalism to describe the equilibration of the terrace-width distribution of a vicinal surface from an arbitrary initial configuration. However, the meaning of the associated relaxation time, related to the strength of the random noise in the underlying Langevin equation, was rather unclear. Here we present a set of careful kinetic Monte Carlo simulations that demonstrate convincingly that the time constant shows activated behavior with a barrier that has a physically plausible dependence on the energies of the governing microscopic model. Remarkably, the rate-limiting step for relaxation in the far-from-equilibrium regime is the generation of kink-antikink pairs, involving the breaking of three lateral bonds on a cubic {0 0 1} surface, in contrast to the processes breaking two bonds that dominate equilibrium fluctuations. After an initial regime, the Fokker-Planck time at least semiquantitatively tracks the actual physical time.

  14. NUMERICAL ANALYSIS OF THE FOKKER-PLANCK EQUATION WITH ADIABATIC FOCUSING: ISOTROPIC PITCH-ANGLE SCATTERING

    SciTech Connect

    Danos, Rebecca J.; Fiege, Jason D.; Shalchi, Andreas E-mail: fiege@physics.umanitoba.ca

    2013-07-20

    We present numerical solutions to both the standard and modified two-dimensional Fokker-Planck equations with adiabatic focusing and isotropic pitch-angle scattering. With the numerical solution of the particle distribution function, we then discuss the related numerical issues, calculate the parallel diffusion coefficient using several different methods, and compare our numerical solutions for the parallel diffusion coefficient to the analytical forms derived earlier. We find the numerical solution to the diffusion coefficient for both the standard and modified Fokker-Planck equations agrees with that of Shalchi for the mean squared displacement method of computing the diffusion coefficient. However, we also show the numerical solution agrees with that of Litvinenko and Shalchi and Danos when calculating the diffusion coefficient via the velocity correlation function.

  15. Orbit-averaged guiding-center Fokker-Planck operator for numerical applications

    SciTech Connect

    Decker, J.; Peysson, Y.; Duthoit, F.-X.; Brizard, A. J.

    2010-11-15

    A guiding-center Fokker-Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker-Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.

  16. Teleportation fidelity as a probe of sub-Planck phase-space structure

    SciTech Connect

    Scott, A.J. Caves, Carlton M.

    2008-11-15

    We investigate the connection between sub-Planck structure in the Wigner function and the output fidelity of continuous-variable teleportation protocols. When the teleporting parties share a two-mode squeezed state as an entangled resource, high fidelity in the output state requires a squeezing large enough that the smallest sub-Planck structures in an input pure state are teleported faithfully. We formulate this relationship, which leads to an explicit relation between the fine-scale structure in the Wigner function and large-scale extent of the Wigner function, and we treat specific examples, including coherent, number, and random states and states produced by chaotic dynamics. We generalize the pure-state results to teleportation of mixed states.

  17. Sensitivity analysis for dose deposition in radiotherapy via a Fokker–Planck model

    DOE PAGESBeta

    Barnard, Richard C.; Frank, Martin; Krycki, Kai

    2016-02-09

    In this paper, we study the sensitivities of electron dose calculations with respect to stopping power and transport coefficients. We focus on the application to radiotherapy simulations. We use a Fokker–Planck approximation to the Boltzmann transport equation. Equations for the sensitivities are derived by the adjoint method. The Fokker–Planck equation and its adjoint are solved numerically in slab geometry using the spherical harmonics expansion (PN) and an Harten-Lax-van Leer finite volume method. Our method is verified by comparison to finite difference approximations of the sensitivities. Finally, we present numerical results of the sensitivities for the normalized average dose deposition depthmore » with respect to the stopping power and the transport coefficients, demonstrating the increase in relative sensitivities as beam energy decreases. In conclusion, this in turn gives estimates on the uncertainty in the normalized average deposition depth, which we present.« less

  18. Use and Abuse of a Fractional Fokker-Planck Dynamics for Time-Dependent Driving

    NASA Astrophysics Data System (ADS)

    Heinsalu, E.; Patriarca, M.; Goychuk, I.; Hänggi, P.

    2007-09-01

    We investigate a subdiffusive, fractional Fokker-Planck dynamics occurring in time-varying potential landscapes and thereby disclose the failure of the fractional Fokker-Planck equation (FFPE) in its commonly used form when generalized in an ad hoc manner to time-dependent forces. A modified FFPE (MFFPE) is rigorously derived, being valid for a family of dichotomously alternating force fields. This MFFPE is numerically validated for a rectangular time-dependent force with zero average bias. For this case, subdiffusion is shown to become enhanced as compared to the force free case. We question, however, the existence of any physically valid FFPE for arbitrary varying time-dependent fields that differ from this dichotomous varying family.

  19. The present and future of the most favoured inflationary models after Planck 2015

    NASA Astrophysics Data System (ADS)

    Escudero, Miguel; Ramírez, Héctor; Boubekeur, Lotfi; Giusarma, Elena; Mena, Olga

    2016-02-01

    The value of the tensor-to-scalar ratio r in the region allowed by the latest Planck 2015 measurements can be associated to a large variety of inflationary models. We discuss here the potential of future Cosmic Microwave Background cosmological observations in disentangling among the possible theoretical scenarios allowed by our analyses of current Planck temperature and polarization data. Rather than focusing only on r, we focus as well on the running of the primordial power spectrum, αs and the running thereof, βs. If future cosmological measurements, as those from the COrE mission, confirm the current best-fit value for βs gtrsim 10-2 as the preferred one, it will be possible to rule-out the most favoured inflationary models.

  20. Fokker Planck and Krook theory of energetic electron transport in a laser produced plasma

    NASA Astrophysics Data System (ADS)

    Manheimer, Wallace; Colombant, Denis

    2015-09-01

    Various laser plasma instabilities, such as the two plasma decay instability and the stimulated Raman scatter instability, produce large quantities of energetic electrons. How these electrons are transported and heat the plasma are crucial questions for laser fusion. This paper works out a Fokker Planck and Krook theory for such transport and heating. The result is a set of equations, for which one can find a simple asymptotic approximation for the solution, for the Fokker Planck case, and an exact solution for the Krook case. These solutions are evaluated and compared with one another. They give rise to expressions for the spatially dependent heating of the background plasma, as a function of the instantaneous laser and plasma parameters, in either planar or spherical geometry. These formulas are simple, universal (depending weakly only on the single parameter Z, the charge state), and can be easily be incorporated into a fluid simulation.

  1. Convergence to global equilibrium for Fokker-Planck equations on a graph and Talagrand-type inequalities

    NASA Astrophysics Data System (ADS)

    Che, Rui; Huang, Wen; Li, Yao; Tetali, Prasad

    2016-08-01

    In 2012, Chow, Huang, Li and Zhou [7] proposed the Fokker-Planck equations for the free energy on a finite graph, in which they showed that the corresponding Fokker-Planck equation is a nonlinear ODE defined on a Riemannian manifold of probability distributions. Different choices for inner products result in different Fokker-Planck equations. The unique global equilibrium of each equation is a Gibbs distribution. In this paper we proved that the exponential rate of convergence towards the global equilibrium of these Fokker-Planck equations. The rate is measured by both the decay of the L2 norm and that of the (relative) entropy. With the convergence result, we also prove two Talagrand-type inequalities relating relative entropy and Wasserstein metric, based on two different metrics introduced in [7]. The first one is a local inequality, while the second is a global inequality with respect to the "lower bound metric" from [7].

  2. Min-max identities on boundaries of convex sets around the origin

    SciTech Connect

    Grcar, Joseph F.

    2002-01-31

    Min-max and max-min identities are found for inner products on the boundaries of compact, convex sets whose interiors contain the origin. The identities resemble the minimax theorem but they are different from it. Specifically, the value of each min-max (or max-min) equals the value of a dual problem of the same type. Their solution sets can be characterized geometrically in terms of the enclosed convex sets and their polar sets. However, the solution sets need not be convex nor even connected.

  3. MODELING THERMAL DUST EMISSION WITH TWO COMPONENTS: APPLICATION TO THE PLANCK HIGH FREQUENCY INSTRUMENT MAPS

    SciTech Connect

    Meisner, Aaron M.; Finkbeiner, Douglas P. E-mail: dfinkbeiner@cfa.harvard.edu

    2015-01-10

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  4. Global Positioning System test of the local position invariance of Planck's constant.

    PubMed

    Kentosh, J; Mohageg, M

    2012-03-16

    Publicly available clock correction data from the Global Positioning System was analyzed and used in combination with the results of terrestrial clock comparison experiments to confirm the local position invariance (LPI) of Planck's constant within the context of general relativity. The results indicate that h is invariant within a limit of |β(h)|<0.007, where β(h) is a dimensionless parameter that represents the extent of LPI violation.

  5. The Numerical Solution of the Time-Dependent Nernst-Planck Equations

    PubMed Central

    Cohen, H.; Cooley, J. W.

    1965-01-01

    Calculations are reported of the time-dependent Nernst-Planck equations for a thin permeable membrane between electrolytic solutions. Charge neutrality is assumed for the time-dependent case. The response of such a membrane system to step current input is measured in terms of the time and space changes in concentration, electrical potential, and effective conductance. The report also includes discussion of boundary effects that occur when charge neutrality does not hold in the steady-state case. PMID:14268950

  6. Quasilinear simulation of auroral kilometric radiation by a relativistic Fokker-Planck code

    SciTech Connect

    Matsuda, Y.

    1991-01-01

    An intense terrestrial radiation called the auroral kilometric radiation (AKR) is believed to be generated by cyclotron maser instability. We study a quasilinear evolution of this instability by means of a two-dimensional relativistic Fokker-Planck code which treats waves and distributions self-consistently, including radiation loss and electron source and sink. We compare the distributions and wave amplitude with spacecraft observations to elucidate physical processes involved. 3 refs., 1 fig.

  7. The Kramers-Kronig relations for usual and anomalous Poisson-Nernst-Planck models.

    PubMed

    Evangelista, Luiz Roberto; Lenzi, Ervin Kaminski; Barbero, Giovanni

    2013-11-20

    The consistency of the frequency response predicted by a class of electrochemical impedance expressions is analytically checked by invoking the Kramers-Kronig (KK) relations. These expressions are obtained in the context of Poisson-Nernst-Planck usual or anomalous diffusional models that satisfy Poisson's equation in a finite length situation. The theoretical results, besides being successful in interpreting experimental data, are also shown to obey the KK relations when these relations are modified accordingly.

  8. Suprathermal electron energy deposition in plasmas with the Fokker-Planck method

    SciTech Connect

    Wienke, B.R.

    1983-08-01

    A one-dimensional, multigroup, discrete-ordinates technique for computing electron energy deposition in plasmas is detailed. The Fokker-Planck collision operator is employed in the continuous approximation and electric fields (considered external) are included in the equation. Bremsstrahlung processes are not treated. Comparisons with analytic and Monte Carlo results are given. Fits to deposition and energy scaling are proposed and discussed for monoenergetic and Maxwellian sources in the rnge 0--150 keV, with and without uniform fields.

  9. Current dependence of spin torque switching rate based on Fokker-Planck approach

    SciTech Connect

    Taniguchi, Tomohiro Imamura, Hiroshi

    2014-05-07

    The spin torque switching rate of an in-plane magnetized system in the presence of an applied field is derived by solving the Fokker-Planck equation. It is found that three scaling currents are necessary to describe the current dependence of the switching rate in the low-current limit. The dependences of these scaling currents on the applied field strength are also studied.

  10. Infinite product expansion of the Fokker–Planck equation with steady-state solution

    PubMed Central

    Martin, R. J.; Craster, R. V.; Kearney, M. J.

    2015-01-01

    We present an analytical technique for solving Fokker–Planck equations that have a steady-state solution by representing the solution as an infinite product rather than, as usual, an infinite sum. This method has many advantages: automatically ensuring positivity of the resulting approximation, and by design exactly matching both the short- and long-term behaviour. The efficacy of the technique is demonstrated via comparisons with computations of typical examples. PMID:26346100

  11. Degeneracy between primordial tensor modes and cosmic strings in future CMB data from the Planck satellite

    SciTech Connect

    Urrestilla, Jon; Mukherjee, Pia; Liddle, Andrew R.; Hindmarsh, Mark; Kunz, Martin; Bevis, Neil

    2008-06-15

    While observations indicate that the predominant source of cosmic inhomogeneities are adiabatic perturbations, there are a variety of candidates to provide auxiliary trace effects, including inflation-generated primordial tensors and cosmic defects which both produce B-mode cosmic microwave background polarization. We investigate whether future experiments may suffer confusion as to the true origin of such effects, focusing on the ability of Planck to distinguish tensors from cosmic strings, and show that there is no significant degeneracy.

  12. Fokker-Planck-DSMC algorithm for simulations of rarefied gas flows

    NASA Astrophysics Data System (ADS)

    Gorji, M. Hossein; Jenny, Patrick

    2015-04-01

    A Fokker-Planck based particle Monte Carlo algorithm was devised recently for simulations of rarefied gas flows by the authors [1-3]. The main motivation behind the Fokker-Planck (FP) model is computational efficiency, which could be gained due to the fact that the resulting stochastic processes are continuous in velocity space. This property of the model leads to simulations where the computational cost becomes independent of the Knudsen number (Kn) [3]. However, the Fokker-Planck model which can be seen as a diffusion approximation of the Boltzmann equation, becomes less accurate as Kn increases. In this study we propose a hybrid Fokker-Planck-Direct Simulation Monte Carlo (FP-DSMC) solution method, which is applicable for the whole range of Kn. The objective of this algorithm is to retain the efficiency of the FP scheme at low Kn (Kn ≪ 1) and to employ conventional DSMC at high Kn (Kn ≫ 1). Since the computational particles employed by the FP model represent the same data as in DSMC, the coupling between the two methods is straightforward. The new ingredient is a switching criterion which would ideally result in a hybrid scheme with the efficiency of the FP method and the accuracy of DSMC for the whole Kn-range. Here, we adopt the number of collisions in a given computational cell and for a given time step size as a decision criterion in order to switch between the FP model and DSMC. For assessment of the hybrid algorithm, different test cases including flow impingement and flow expansion through a slit were studied. Both accuracy and efficiency of the model are shown to be excellent for the presented test cases.

  13. Proteome data associated with the leaf senescence in Glycine max.

    PubMed

    Gupta, Ravi; Lee, Su Ji; Min, Cheol Woo; Kim, So Wun; Park, Ki-Hun; Bae, Dong-Won; Lee, Byong Won; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2016-12-01

    The data presented in this article are associated with the article "Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max" (R. Gupta, S.J. Lee, C.W. Min, S.W. Kim, K.-H. Park, D.-W. Bae, et al., 2016) [1]. Leaf senescence is one of the important aspects of the life cycle of a plant that leads to the recycling of nutrients from source to sink cells. To understand the leaf senescence-associated proteins, we used a combination of gel-based 2-DE and 1-DE shotgun proteomic approaches. Here, we display the 2-DE, Mass spectrometry, and Gene ontology data related with the leaf senescence in soybean [1]. PMID:27631020

  14. Proteome data associated with the leaf senescence in Glycine max.

    PubMed

    Gupta, Ravi; Lee, Su Ji; Min, Cheol Woo; Kim, So Wun; Park, Ki-Hun; Bae, Dong-Won; Lee, Byong Won; Agrawal, Ganesh Kumar; Rakwal, Randeep; Kim, Sun Tae

    2016-12-01

    The data presented in this article are associated with the article "Coupling of gel-based 2-DE and 1-DE shotgun proteomics approaches to dig deep into the leaf senescence proteome of Glycine max" (R. Gupta, S.J. Lee, C.W. Min, S.W. Kim, K.-H. Park, D.-W. Bae, et al., 2016) [1]. Leaf senescence is one of the important aspects of the life cycle of a plant that leads to the recycling of nutrients from source to sink cells. To understand the leaf senescence-associated proteins, we used a combination of gel-based 2-DE and 1-DE shotgun proteomic approaches. Here, we display the 2-DE, Mass spectrometry, and Gene ontology data related with the leaf senescence in soybean [1].

  15. The crystallography beamline I711 at MAX II.

    PubMed

    Cerenius, Y; Ståhl, K; Svensson, L A; Ursby, T; Oskarsson, A; Albertsson, J; Liljas, A

    2000-07-01

    A new X-ray crystallographic beamline is operational at the MAX II synchrotron in Lund. The beamline has been in regular use since August 1998 and is used both for macro- and small molecule diffraction as well as powder diffraction experiments. The radiation source is a 1.8 T multipole wiggler. The beam is focused vertically by a bendable mirror and horizontally by an asymmetrically cut Si(111) monochromator. The wavelength range is 0.8-1.55 A with a measured flux at 1 A of more than 10(11) photons s(-1) in 0.3 mm x 0.3 mm at the sample position. The station is currently equipped with a Mar345 imaging plate, a Bruker Smart 1000 area CCD detector and a Huber imaging-plate Guinier camera. An ADSC 210 area CCD detector is planned to be installed during 2000. PMID:16609196

  16. The Max Launch Abort System - Concept, Flight Test, and Evolution

    NASA Technical Reports Server (NTRS)

    Gilbert, Michael G.

    2014-01-01

    The NASA Engineering and Safety Center (NESC) is an independent engineering analysis and test organization providing support across the range of NASA programs. In 2007 NASA was developing the launch escape system for the Orion spacecraft that was evolved from the traditional tower-configuration escape systems used for the historic Mercury and Apollo spacecraft. The NESC was tasked, as a programmatic risk-reduction effort to develop and flight test an alternative to the Orion baseline escape system concept. This project became known as the Max Launch Abort System (MLAS), named in honor of Maxime Faget, the developer of the original Mercury escape system. Over the course of approximately two years the NESC performed conceptual and tradeoff analyses, designed and built full-scale flight test hardware, and conducted a flight test demonstration in July 2009. Since the flight test, the NESC has continued to further develop and refine the MLAS concept.

  17. Max 2-SAT with up to 108 qubits

    NASA Astrophysics Data System (ADS)

    Santra, Siddhartha; Quiroz, Gregory; Ver Steeg, Greg; Lidar, Daniel A.

    2014-04-01

    We experimentally study the performance of a programmable quantum annealing processor, the D-Wave One (DW1) with up to 108 qubits, on maximum SAT problem with 2 variables per clause (MAX 2-SAT) problems. We consider ensembles of random problems characterized by a fixed clause density, an external parameter which we tune through its critical value in our experiments. We demonstrate that the DW1 is sensitive to the critical value of the clause density. The DW1 results are verified and compared with akmaxsat, an exact, state-of-the-art algorithm. We study the relative performance of the two solvers and how they correlate in terms of problem hardness. We find that the DW1 performance scales more favorably with problem size and that problem hardness correlation is essentially non-existent. We discuss the relevance and limitations of such a comparison.