Sample records for maximal binding capacities

  1. Modelling the interdependence between the stoichiometry of receptor oligomerization and ligand binding for a coexisting dimer/tetramer receptor system.

    PubMed

    Rovira, X; Vivó, M; Serra, J; Roche, D; Strange, P G; Giraldo, J

    2009-01-01

    Many G protein-coupled receptors have been shown to exist as oligomers, but the oligomerization state and the effects of this on receptor function are unclear. For some G protein-coupled receptors, in ligand binding assays, different radioligands provide different maximal binding capacities. Here we have developed mathematical models for co-expressed dimeric and tetrameric species of receptors. We have considered models where the dimers and tetramers are in equilibrium and where they do not interconvert and we have also considered the potential influence of the ligands on the degree of oligomerization. By analogy with agonist efficacy, we have considered ligands that promote, inhibit or have no effect on oligomerization. Cell surface receptor expression and the intrinsic capacity of receptors to oligomerize are quantitative parameters of the equations. The models can account for differences in the maximal binding capacities of radioligands in different preparations of receptors and provide a conceptual framework for simulation and data fitting in complex oligomeric receptor situations.

  2. Capture and separation of l-histidine through optimized zinc-decorated magnetic silica spheres.

    PubMed

    Cardoso, Vanessa F; Sebastián, Víctor; Silva, Carlos J R; Botelho, Gabriela; Lanceros-Méndez, Senentxu

    2017-09-01

    Zinc-decorated magnetic silica spheres were developed, optimized and tested for the capture and separation of l-histidine. The magnetic silica spheres were prepared using a simple sol-gel method and show excellent magnetic characteristics, adsorption capacity toward metal ions, and stability in aqueous solution in a wide pH range. The binding capacity of zinc-decorated magnetic silica spheres to histidine proved to be strongly influenced by the morphology, composition and concentration of metal at the surface of the magnetic silica spheres and therefore these parameters should be carefully controlled in order to maximize the performance for protein purification purposes. Optimized zinc-decorated magnetic silica spheres demonstrate a binding capacity to l-histidine of approximately 44mgg -1 at the optimum binding pH buffer. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Hydrophobic interaction chromatography in dual salt system increases protein binding capacity.

    PubMed

    Senczuk, Anna M; Klinke, Ralph; Arakawa, Tsutomu; Vedantham, Ganesh; Yigzaw, Yinges

    2009-08-01

    Hydrophobic interaction chromatography (HIC) uses weakly hydrophobic resins and requires a salting-out salt to promote protein-resin interaction. The salting-out effects increase with protein and salt concentration. Dynamic binding capacity (DBC) is dependent on the binding constant, as well as on the flow characteristics during sample loading. DBC increases with the salt concentration but decreases with increasing flow rate. Dynamic and operational binding capacity have a major raw material cost/processing time impact on commercial scale production of monoclonal antibodies. In order to maximize DBC the highest salt concentration without causing precipitation is used. We report here a novel method to maintain protein solubility while increasing the DBC by using a combination of two salting-out salts (referred to as dual salt). In a series of experiments, we explored the dynamic capacity of a HIC resin (TosoBioscience Butyl 650M) with combinations of salts. Using a model antibody, we developed a system allowing us to increase the dynamic capacity up to twofold using the dual salt system over traditional, single salt system. We also investigated the application of this novel approach to several other proteins and salt combinations, and noted a similar protein solubility and DBC increase. The observed increase in DBC in the dual salt system was maintained at different linear flow rates and did not impact selectivity.

  4. Functional somatostatin receptors on a rat pancreatic acinar cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Viguerie, N.; Tahiri-Jouti, N.; Esteve, J.P.

    1988-07-01

    Somatostatin receptors from a rat pancreatic acinar cell line, AR4-2J, were characterized biochemically, structurally, and functionally. Binding of {sup 125}I-(Tyr{sup 11})Somatostatin to AR4-2J cells was saturable, exhibiting a single class of high-affinity binding sites with a maximal binding capacity of 258 {plus minus} 20 fmol/10{sup 6} cells. Somatostatin receptor structure was analyzed by covalently cross-linking {sup 125}I-(Tyr{sup 11})somatostatin to its plasma membrane receptors. Gel electrophoresis and autoradiography of cross-linked proteins revealed a peptide containing the somatostatin receptor. Somatostatin inhibited vasoactive intestinal peptide (VIP)-stimulated adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) formation in a dose-dependent manner. The concentration of somatostatin that caused half-maximal inhibitionmore » of cAMP formation was close to the receptor affinity for somatostatin. Pertussis toxin pretreatment of AR4-2J cells prevented somatostatin inhibition of VIP-stimulated cAMP formation as well as somatostatin binding. The authors conclude that AR4-2J cells exhibit functional somatostatin receptors that retain both specificity and affinity of the pancreatic acinar cell somatostatin receptors and act via the pertussis toxin-sensitive guanine nucleotide-binding protein N{sub i} to inhibit adenylate cyclase.« less

  5. Characterization of product capture resin during microbial cultivations.

    PubMed

    Frykman, Scott; Tsuruta, Hiroko; Galazzo, Jorge; Licari, Peter

    2006-06-01

    Various bioactive small molecules produced by microbial cultivation are degraded in the culture broth or may repress the formation of additional product. The inclusion of hydrophobic adsorber resin beads to capture these products in situ and remove them from the culture broth can reduce or prevent this degradation and repression. These product capture beads are often subjected to a dynamic and stressful microenvironment for a long cultivation time, affecting their physical structure and performance. Impact and collision forces can result in the fracturing of these beads into smaller pieces, which are difficult to recover at the end of a cultivation run. Various contaminating compounds may also bind in a non-specific manner to these beads, reducing the binding capacity of the resin for the product of interest (fouling). This study characterizes resin bead binding capacity (to monitor bead fouling), and resin bead volume distributions (to monitor bead fracture) for an XAD-16 adsorber resin used to capture epothilone produced during myxobacterial cultivations. Resin fouling was found to reduce the product binding capacity of the adsorber resin by 25-50%. Additionally, the degree of resin bead fracture was found to be dependent on the cultivation length and the impeller rotation rate. Microbial cultivations and harvesting processes should be designed in such a way to minimize bead fragmentation and fouling during cultivation to maximize the amount of resin and associated product harvested at the end of a run.

  6. Sorption of Cr(III) and Cr(VI) to High and Low Pressure Synthetic Nano-Magnetite (Fe3O4)Particles

    PubMed Central

    Parsons, Jason G.; Hernandez, Jeffrey; Gonzalez, Christina M.; Gardea-Torresdey, J. L.

    2014-01-01

    The binding of Cr(III) and Cr(VI) to synthetic nano-magnetie particles synthesized under open vessel conditions and a microwave assisted hydrothermal synthesis techniques was investigated. Batch studies showed that the binding of both the Cr(III) and Cr(VI) bound to the nano-materials in a pH dependent manner. The Cr(III) maximized at binding at pH 4 and 100% binding. Similarly, the Cr(VI) ions showed a maximum binding of 100% at pH 4. The data from the time dependency studies showed for the most part the majority of the binding occurred within the first 5 minutes of contact with the nanomaterial and remained constant thereafter. In addition, the effects of the possible interferences were investigated which showed some effects on the binding of both Cr(III) and Cr(VI). However, the interferences never completely eliminated the chromium binding. Isotherm studies conducted at room temperature showed the microwave synthesized nanomaterials had a binding capacity of 1208 ± 43.9 mg/g and 555 ± 10.5 mg/g for Cr(VI) and Cr(III), respectively. However, the microwave assisted synthesized nanomaterials had capacities of 1705 ± 14.5 and 555± 10.5 mg/g for Cr(VI) and Cr(III), respectively. XANES studies showed the Cr(VI) was reduced to Cr(III), and the Cr(III) remained as Cr(III). In addition, the XANES studies indicated that the chromium remained coordinated in an octahedral arrangement of oxygen atoms. PMID:25097452

  7. Heterogeneity of binding of muscarinic receptor antagonists in rat brain homogenates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.H.; el-Fakahany, E.E.

    1985-06-01

    The binding properties of (-)-(/sup 3/H)quinuclidinyl benzilate and (/sup 3/H) N-methylscopolamine to muscarinic acetylcholine receptors have been investigated in rat brain homogenates. The binding of both antagonists demonstrated high affinity and saturability. Analysis of the binding data resulted in linear Scatchard plots. However, (-)-(/sup 3/H)quinuclidinyl benzilate showed a significantly higher maximal binding capacity than that of (/sup 3/H)N-methylscopolamine. Displacement of both ligands with several muscarinic receptor antagonists resulted in competition curves in accordance with the law of mass-action for quinuclidinyl benzilate, atropine and scopolamine. A similar profile was found for the quaternary ammonium analogs of atropine and scopolamine when (/supmore » 3/H)N-methylscopolamine was used to label the receptors. However, when these hydrophilic antagonists were used to displace (-)-(/sup 3/H) quinuclidinyl benzilate binding, they showed interaction with high- and low-affinity binding sites. On the other hand, the nonclassical muscarinic receptor antagonist, pirenzepine, was able to displace both ligands from two binding sites. The present data are discussed in terms of the relationship of this anomalous heterogenity of binding of these hydrophilic muscarinic receptor antagonists and the proposed M1 and M2 receptor subtypes.« less

  8. Exercise science: research to sustain and enhance performance

    NASA Astrophysics Data System (ADS)

    Wingo, Jonathan E.

    2013-05-01

    Cardiovascular adjustments accompanying exercise in high ambient temperatures are likely responsible for diminished aerobic capacity and performance in such conditions. These adjustments include a phenomenon known as cardiovascular drift in which heart rate rises and stroke volume declines progressively over time during constant-rate exercise. A variety of factors modulate the magnitude of cardiovascular drift, e.g., elevated core and skin temperatures, dehydration, and exercise intensity. Regardless of the mode of manipulation, decreases in stroke volume associated with cardiovascular drift result in directionally and proportionally similar decreases in maximal aerobic capacity. Maximal aerobic capacity is determined by maximal heart rate, maximal tissue oxygen extraction, and maximal stroke volume. Because maximal heart rate and maximal tissue oxygen extraction are unaffected during exercise in the heat, decreased stroke volume associated with cardiovascular drift likely persists during maximal efforts and explains the decrease in maximal aerobic capacity. Decreased maximal aerobic capacity results in a greater perceptual and physiological strain accompanying any given level of work. Therefore, sustaining and enhancing performance involves sophisticated monitoring of physiological strain combined with development of countermeasures that mitigate the magnitude of deleterious phenomena like cardiovascular drift.

  9. Field use of maximal sprint speed by collared lizards (Crotaphytus collaris): compensation and sexual selection.

    PubMed

    Husak, Jerry F; Fox, Stanley F

    2006-09-01

    To understand how selection acts on performance capacity, the ecological role of the performance trait being measured must be determined. Knowing if and when an animal uses maximal performance capacity may give insight into what specific selective pressures may be acting on performance, because individuals are expected to use close to maximal capacity only in contexts important to survival or reproductive success. Furthermore, if an ecological context is important, poor performers are expected to compensate behaviorally. To understand the relative roles of natural and sexual selection on maximal sprint speed capacity we measured maximal sprint speed of collared lizards (Crotaphytus collaris) in the laboratory and field-realized sprint speed for the same individuals in three different contexts (foraging, escaping a predator, and responding to a rival intruder). Females used closer to maximal speed while escaping predators than in the other contexts. Adult males, on the other hand, used closer to maximal speed while responding to an unfamiliar male intruder tethered within their territory. Sprint speeds during foraging attempts were far below maximal capacity for all lizards. Yearlings appeared to compensate for having lower absolute maximal capacity by using a greater percentage of their maximal capacity while foraging and escaping predators than did adults of either sex. We also found evidence for compensation within age and sex classes, where slower individuals used a greater percentage of their maximal capacity than faster individuals. However, this was true only while foraging and escaping predators and not while responding to a rival. Collared lizards appeared to choose microhabitats near refugia such that maximal speed was not necessary to escape predators. Although natural selection for predator avoidance cannot be ruled out as a selective force acting on locomotor performance in collared lizards, intrasexual selection for territory maintenance may be more important for territorial males.

  10. Insulin binding and glycolytic activity in erythrocytes from dialyzed and nondialyzed uremic patients.

    PubMed

    Weisinger, J R; Contreras, N E; Cajias, J; Bellorin-Font, E; Amair, P; Guitierrez, L; Sylva, V; Paz-Martínez, V

    1988-01-01

    Insulin resistance in uremia has been attributed to impaired hormone-receptor binding or to postbinding defects. Oral glucose tolerance tests, insulin binding, and in vitro glycolytic activity were studied in purified red blood cells from normal control subjects (C) and from uremic patients belonging to three groups: nondialyzed (U), on chronic hemodialysis (HD), and on continuous ambulatory peritoneal dialysis (CAPD). Glucose intolerance and hyperinsulinemia were demonstrated in all groups of patients. Maximal specific binding of 125I-insulin to erythrocytes, kinetically derived receptor numbers per cell, and affinity constants for insulin binding did not differ between control and patient groups. No correlation was found between the degree of glucose intolerance and insulin binding parameters. Basal lactate production by erythrocytes incubated in vitro was significantly higher in U and HD patients than in C, whereas CAPD patients did not differ from C in this respect. Addition of 1 mM dibutyryl-cAMP and 0.5 mM isobutyl-methyl-xanthine during incubation of erythrocytes caused an increase in the rate of lactate production that was similar in magnitude in the U, HD and C groups, whereas cells from CAPD subjects showed a significantly larger absolute response to these compounds after 1 h of incubation. There was no evidence of impairment of glycolytic capacity in red blood cells from uremic patients. In addition, no correlation was found between the degree of glucose intolerance and basal or stimulated lactate production by erythrocytes. Our results obtained in human erythrocytes suggest that the insulin resistance observed in uremia does not involve a defect in hormone binding or in the intracellular capacity to utilize glucose through glycolysis.

  11. Immobilization of Fab' fragments onto substrate surfaces: A survey of methods and applications.

    PubMed

    Crivianu-Gaita, Victor; Thompson, Michael

    2015-08-15

    Antibody immobilization onto surfaces has widespread applications in many different fields. It is desirable to bind antibodies such that their fragment-antigen-binding (Fab) units are oriented away from the surface in order to maximize analyte binding. The immobilization of only Fab' fragments yields benefits over the more traditional whole antibody immobilization technique. Bound Fab' fragments display higher surface densities, yielding a higher binding capacity for the analyte. The nucleophilic sulfide of the Fab' fragments allows for specific orientations to be achieved. For biosensors, this indicates a higher sensitivity and lower detection limit for a target analyte. The last thirty years have shown tremendous progress in the immobilization of Fab' fragments onto gold, Si-based, polysaccharide-based, plastic-based, magnetic, and inorganic surfaces. This review will show the current scope of Fab' immobilization techniques available and illustrate methods employed to minimize non-specific adsorption of undesirables. Furthermore, a variety of examples will be given to show the versatility of immobilized Fab' fragments in different applications and future directions of the field will be addressed, especially regarding biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Can endurance training improve physical capacity and quality of life in young Fontan patients?

    PubMed

    Hedlund, Eva R; Lundell, Bo; Söderström, Liselott; Sjöberg, Gunnar

    2018-03-01

    Children after Fontan palliation have reduced exercise capacity and quality of life. Our aim was to study whether endurance training could improve physical capacity and quality of life in Fontan patients. Fontan patients (n=30) and healthy age- and gender-matched control subjects (n=25) performed a 6-minute walk test at submaximal capacity and a maximal cycle ergometer test. Quality of life was assessed with Pediatric Quality of Life Inventory Version 4.0 questionnaires for children and parents. All tests were repeated after a 12-week endurance training programme and after 1 year. Patients had decreased submaximal and maximal exercise capacity (maximal oxygen uptake 35.0±5.1 ml/minute per·kg versus 43.7±8.4 ml/minute·per·kg, p<0.001) and reported a lower quality of life score (70.9±9.9 versus 85.7±8.0, p<0.001) than controls. After training, patients improved their submaximal exercise capacity in a 6-minute walk test (from 590.7±65.5 m to 611.8±70.9 m, p<0.05) and reported a higher quality of life (p<0.01), but did not improve maximal exercise capacity. At follow-up, submaximal exercise capacity had increased further and improved quality of life was sustained. The controls improved their maximal exercise capacity (p<0.05), but not submaximal exercise capacity or quality of life after training. At follow-up, improvement of maximal exercise capacity was sustained. We believe that an individualised endurance training programme for Fontan patients improves submaximal exercise capacity and quality of life in Fontan patients and the effect on quality of life appears to be long-lasting.

  13. Automated On-tip Affinity Capture Coupled with Mass Spectrometry to Characterize Intact Antibody-Drug Conjugates from Blood

    NASA Astrophysics Data System (ADS)

    Li, Ke Sherry; Chu, Phillip Y.; Fourie-O'Donohue, Aimee; Srikumar, Neha; Kozak, Katherine R.; Liu, Yichin; Tran, John C.

    2018-05-01

    Antibody-drug conjugates (ADCs) present unique challenges for ligand-binding assays primarily due to the dynamic changes of the drug-to-antibody ratio (DAR) distribution in vivo and in vitro. Here, an automated on-tip affinity capture platform with subsequent mass spectrometry analysis was developed to accurately characterize the DAR distribution of ADCs from biological matrices. A variety of elution buffers were tested to offer optimal recovery, with trastuzumab serving as a surrogate to the ADCs. High assay repeatability (CV 3%) was achieved for trastuzumab antibody when captured below the maximal binding capacity of 7.5 μg. Efficient on-tip deglycosylation was also demonstrated in 1 h followed by affinity capture. Moreover, this tip-based platform affords higher throughput for DAR characterization when compared with a well-characterized bead-based method.

  14. 2,3-Diphosphoglycerate is a nonselective inhibitor of inositol 1,4,5-trisphosphate action and metabolism.

    PubMed

    Guillemette, G; Favreau, I; Lamontagne, S; Boulay, G

    1990-04-25

    Inositol 1,4,5-trisphosphate (InsP3) is an important second messenger generated from the hydrolysis of phosphatidylinositol 4,5-bisphosphate by phospholipase C in response to Ca2(+)-mobilizing stimuli. InsP3 interacts with specific intracellular receptors and triggers the release of sequestered Ca2+ from an intracellular store. We have looked at the influence of 2,3-diphosphoglycerate on the action and metabolism of InsP3 in the bovine adrenal cortex. 2,3-Diphosphoglycerate blocked InsP3 binding to adrenal cortex microsomes with a half-maximal efficiency of 0.5 mM. Scatchard analyses revealed that 2,3-diphosphoglycerate did not change the maximal capacity of the microsomes, but decreased their binding affinity for InsP3. The Ca2(+)-releasing activity of InsP3 on the same microsomal preparation was monitored with the fluorescent indicator, Fura-2. 2,3-Diphosphoglycerate blocked this activity with a half-maximal efficiency of 2 mM. The effect of 2,3-diphosphoglycerate could be overcome by supramaximal doses of InsP3, indicating a competitive inhibitory effect. The activity of InsP3 phosphatase from bovine adrenal cortex microsomes was also studied. 2,3-Diphosphoglycerate inhibited the activity of the phosphatase with a half-maximal efficiency of 0.3 mM. Lineweaver-Burke plots revealed that this effect was competitive. Finally, 2,3-diphosphoglycerate was also able to inhibit the activity of a partially purified preparation of InsP3 kinase from bovine adrenal cortex cytosol. The half-maximal dose was around 10 mM and the Lineweaver-Burke plot showed that the inhibition was competitive. These results show that 2,3-diphosphoglycerate can be considered as a structural analog of InsP3. Its inhibitory effects, however, are not selective enough to use it as an InsP3 protective agent in Ca2(+)-mobilization studies.

  15. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    PubMed

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities.

    PubMed

    Maalej, H; Hmidet, N; Boisset, C; Buon, L; Heyraud, A; Nasri, M

    2015-02-01

    To investigate the effect of culture conditions and medium components on exopolysaccharide (EPS) production by Pseudomonas stutzeri AS22 and to access the EPS performance as a metal-binding exopolysaccharide. The EPS production conditions of Ps. stutzeri AS22 in submerged culture were optimized using two approaches for EPS quantification, and its metal-binding capacity was evaluated using both single and mixed metal ions systems. Maximum EPS level was achieved after 24 h of incubation at 30°C with an initial pH of 8.0, 250 rev min(-1) stirring level and 10% inoculum size. 50 g l(-1) starch, 5 g l(-1) yeast extract, 0.5 g l(-1) NaCl, 1.4 g l(-1) K2 HPO4, 0.4 g l(-1) MgSO4, 0.4 g l(-1) CaCl2 and 1 g l(-1) mannose were found to be the most suitable carbon, nitrogen, mineral and additional carbohydrate sources, respectively. From metal-binding experiments, the crude EPS showed interesting metal adsorption capacity adopting the order Pb > Co > Fe > Cu > Cd. Lead was preferentially biosorbed with a maximal uptake of 460 mg g(-1) crude EPS. Under the optimal culture requirements, EPS level reached 10.2 g l(-1) after 24 h of fermentation, seven times more than the production under initial conditions. According to the metal-binding assay, the crude EPS has potential to be used as a novel biosorbent in the treatment of heavy metals-contaminated water. Our results are interesting in terms of yield as well as efficiency for the potential use of the Ps. stutzeri exopolysaccharide as a metal-absorbent polymer in the bioremediation field. © 2014 The Society for Applied Microbiology.

  17. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells.

    PubMed

    Qaddoumi, Mohamed; Lee, Vincent H L

    2004-07-01

    To investigate the binding and uptake pattern of three plant lectins in rabbit conjunctival epithelial cells (RCECs) with respect to their potential for enhancing cellular macromolecular uptake. Three fluorescein-labeled plant lectins (Lycoperison esculentum, TL; Solanum tuberosum, STL; and Ulex europaeus 1, UEA-1) were screened with respect to time-, concentration-, and temperature-dependent binding and uptake. Chitin (30 mg/ml) and L-alpha-fucose (10 mM) were used as inhibitory sugars to correct for nonspecific binding of TL or STL and UEA-1, respectively. Confocal microscopy was used to confirm internalization of STL. The binding and uptake of all three lectins in RCECs was time-dependent (reaching a plateau at 1-2 h period) and saturable at 1-h period. The rank order of affinity constants (km) was STL>TL>UEA-1 with values of 0.39>0.48>4.81 microM, respectively. However, maximal, specific binding/uptake potential was in the order UEA-1>STL>TL with values of 53.7, 52.3, and 15.0 nM/mg of cell protein, respectively. Lectins showed temperature dependence in their uptake, with STL exhibiting the highest endocytic capacity. Internalized STL was visualized by confocal microscopy to be localized to the cell membrane and cytoplasm. Based on favorable binding and uptake characteristics, potato lectin appears to be a useful candidate for further investigation as an ocular drug delivery system.

  18. Interaction between rose bengal and different protein components.

    PubMed

    Tseng, S C; Zhang, S H

    1995-07-01

    Bindings of rose bengal to several proteins were determined by Sephadex G-75 chromatography. Their respective blocking effect against dye uptake was demonstrated in an assay using a rabbit corneal epithelial cell layer. The total binding capacity of nonmucin proteins was measured using fluorometry and Scatchard analysis. The results showed that albumin, lactoferrin, transferrin, and lysozyme could--but serum prealbumin, IgA, carboxymethyl cellulose (CMC), and Sepharose 4B-purified porcine stomach mucin (PSM) could not--bind rose bengal. Lysozyme formed precipitates with rose bengal. Sufficient concentrations of albumin, lactoferrin, transferrin, or lysozyme premixed with rose bengal could block dye uptake by cells, but IgA and serum prealbumin could not. Premixed PSM was not as effective as precoated PSM in blocking dye uptake. The dissociation constant (Kd) was 1.2 x 10(-7) M, 3.6 x 10(-7) M, 3.9 x 10(-7) M, and 1.6 x 10(-6) M for albumin, transferrin, lactoferrin, and lysozyme, respectively. Based on these values, the total maximal binding capacity of nonmucin proteins in normal 7-microliters tears was extrapolated to be 0.249 micrograms rose bengal, which is too small to explain the negative staining of rose bengal on the normal ocular surface. Rose bengal, but not fluorescein, could interact with carbohydrate-containing Sephadex, CMC, and PSM to slow down its elution via Sephadex column chromatography. Therefore, the normal negative staining to rose bengal might be caused by the blocking effect of preocular mucus tear layer, which serves as a diffusion barrier. Rose bengal remains a unique dye for detecting the protective function of the preocular mucus tear.

  19. Maximizing in vivo target clearance by design of pH-dependent target binding antibodies with altered affinity to FcRn.

    PubMed

    Yang, Danlin; Giragossian, Craig; Castellano, Steven; Lasaro, Marcio; Xiao, Haiguang; Saraf, Himanshu; Hess Kenny, Cynthia; Rybina, Irina; Huang, Zhong-Fu; Ahlberg, Jennifer; Bigwarfe, Tammy; Myzithras, Maria; Waltz, Erica; Roberts, Simon; Kroe-Barrett, Rachel; Singh, Sanjaya

    2017-10-01

    Antibodies with pH-dependent binding to both target antigens and neonatal Fc receptor (FcRn) provide an alternative tool to conventional neutralizing antibodies, particularly for therapies where reduction in antigen level is challenging due to high target burden. However, the requirements for optimal binding kinetic framework and extent of pH dependence for these antibodies to maximize target clearance from circulation are not well understood. We have identified a series of naturally-occurring high affinity antibodies with pH-dependent target binding properties. By in vivo studies in cynomolgus monkeys, we show that pH-dependent binding to the target alone is not sufficient for effective target removal from circulation, but requires Fc mutations that increase antibody binding to FcRn. Affinity-enhanced pH-dependent FcRn binding that is double-digit nM at pH 7.4 and single-digit nM at pH 6 achieved maximal target reduction when combined with similar target binding affinities in reverse pH directions. Sustained target clearance below the baseline level was achieved 3 weeks after single-dose administration at 1.5 mg/kg. Using the experimentally derived mechanistic model, we demonstrate the essential kinetic interplay between target turnover and antibody pH-dependent binding during the FcRn recycling, and identify the key components for achieving maximal target clearance. These results bridge the demand for improved patient dosing convenience with the "know-how" of therapeutic modality by design.

  20. Effect of Repeated Whole Blood Donations on Aerobic Capacity and Hemoglobin Mass in Moderately Trained Male Subjects: A Randomized Controlled Trial.

    PubMed

    Meurrens, Julie; Steiner, Thomas; Ponette, Jonathan; Janssen, Hans Antonius; Ramaekers, Monique; Wehrlin, Jon Peter; Vandekerckhove, Philippe; Deldicque, Louise

    2016-12-01

    The aims of the present study were to investigate the impact of three whole blood donations on endurance capacity and hematological parameters and to determine the duration to fully recover initial endurance capacity and hematological parameters after each donation. Twenty-four moderately trained subjects were randomly divided in a donation (n = 16) and a placebo (n = 8) group. Each of the three donations was interspersed by 3 months, and the recovery of endurance capacity and hematological parameters was monitored up to 1 month after donation. Maximal power output, peak oxygen consumption, and hemoglobin mass decreased (p < 0.001) up to 4 weeks after a single blood donation with a maximal decrease of 4, 10, and 7%, respectively. Hematocrit, hemoglobin concentration, ferritin, and red blood cell count (RBC), all key hematological parameters for oxygen transport, were lowered by a single donation (p < 0.001) and cumulatively further affected by the repetition of the donations (p < 0.001). The maximal decrease after a blood donation was 11% for hematocrit, 10% for hemoglobin concentration, 50% for ferritin, and 12% for RBC (p < 0.001). Maximal power output cumulatively increased in the placebo group as the maximal exercise tests were repeated (p < 0.001), which indicates positive training adaptations. This increase in maximal power output over the whole duration of the study was not observed in the donation group. Maximal, but not submaximal, endurance capacity was altered after blood donation in moderately trained people and the expected increase in capacity after multiple maximal exercise tests was not present when repeating whole blood donations.

  1. Sestrin2 is a leucine sensor for the mTORC1 pathway

    PubMed Central

    Wolfson, Rachel L.; Chantranupong, Lynne; Saxton, Robert A.; Shen, Kuang; Scaria, Sonia M.; Cantor, Jason R.; Sabatini, David M.

    2015-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, a GTPase activating protein (GAP); GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a Kd of 20 µM, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. PMID:26449471

  2. Chronic molindone treatment: relative inability to elicit dopamine receptor supersensitivity in rats.

    PubMed

    Meller, E

    1982-01-01

    Chronic treatment of rats with the antipsychotic drug molindone (2.5 mg/kg) did not elicit behavioral supersensitivity to apomorphine (AP) (0.25 mg/kg) or increased striatal 3H-spiroperidol binding, whereas treatment with haloperidol (0.5-1.0 mg/kg) produced manifestations of dopaminergic supersensitivity in both paradigms. Chronic treatment with a high dose of molindone (20 mg/kg) elicited a small, but significant increase in behavioral sensitivity to AP (57%) which was, however, significantly less than that produced by 1 mg/kg haloperidol (126%, P less than 0.01). Apparent tolerance to elevation of striatal and frontal cortical 3,4-dihydroxyphenylacetic acid (DOPAC) levels was obtained with chronic molindone treatment (5 or 20 mg/kg). None of the molindone doses used (2.5-50 mg/kg) increased striatal dopamine receptor binding. Scatchard analyses revealed no change in either maximal binding capacity (Bmax) or dissociation constant (Kd). A significant (P less than 0.001) correlation of receptor binding activity and stereotypy score was obtained for haloperidol-, but not molindone-treated rats. These results with molindone in an animal model of tardive dyskinesia suggest that this drug may have a lower potential for eliciting this disorder in humans.

  3. The amphiphilic peptide adenoregulin enhances agonist binding to A1-adenosine receptors and [35S]GTP gamma S to brain membranes.

    PubMed

    Moni, R W; Romero, F S; Daly, J W

    1995-08-01

    1. Adenoregulin is an amphilic peptide isolated from skin mucus of the tree frog, Phyllomedusa bicolor. Synthetic adenoregulin enhanced the binding of agonists to several G-protein-coupled receptors in rat brain membranes. 2. The maximal enhancement of agonist binding, and in parentheses, the concentration of adenoregulin affording maximal enhancement were as follows: 60% (20 microM) for A1-adenosine receptors, 30% (100 microM) for A2a-adenosine receptors, 20% (2 microM) for alpha 2-adrenergic receptors, and 30% (10 microM) for 5HT1A receptors. High affinity agonist binding for A1-, alpha 2-, and 5HT1A-receptors was virtually abolished by GTP gamma S in the presence of adenoregulin, but was only partially abolished in its absence. Magnesium ions increased the binding of agonists to receptors and reduced the enhancement elicited by adenoregulin. 3. The effect of adenoregulin on binding of N6-cyclohexyladenosine ([3H]CHA) to A1-receptors was relatively slow and was irreversible. Adenoregulin increased the Bmax value for [3H]CHA binding sites, and the proportion of high affinity states, and slowed the rate of [3H]CHA dissociation. Binding of the A1-selective antagonist, [3H]DPCPX, was maximally enhanced by only 13% at 2 microM adenoregulin. Basal and A1-adenosine receptor-stimulated binding of [35S]GTP gamma S were maximally enhanced 45% and 23%, respectively, by 50 microM adenoregulin. In CHAPS-solubilized membranes from rat cortex, the binding of both [3H]CHA and [3H]DPCPX were enhanced by adenoregulin. Binding of [3H]CHA to membranes from DDT1 MF-2 cells was maximally enhanced 17% at 20 microM adenoregulin. In intact DDT1 MF-2 cells, 20 microM adenoregulin did not potentiate the inhibition of cyclic AMP accumulation mediated via the adenosine A1 receptor. 4. It is proposed that adenoregulin enhances agonist binding through a mechanism involving enhancement of guanyl nucleotide exchange at G-proteins, resulting in a conversion of receptors into a high affinity state complexed with guanyl nucleotide-free G-protein.

  4. Antioxidant and neurosedative properties of polyphenols and iridoids from Lippia alba.

    PubMed

    Hennebelle, Thierry; Sahpaz, Sevser; Gressier, Bernard; Joseph, Henry; Bailleul, François

    2008-02-01

    The neurosedative and antioxidative properties of some major compounds isolated from a citral chemotype of Lippia alba were investigated. Binding assays were performed on two CNS inhibitory targets: benzodiazepine and GABA(A) receptors. The most active compound was luteolin-7-diglucuronide, with half maximal inhibitory concentrations (IC(50)) of 101 and 40 microm, respectively. Fifteen compounds isolated from Lippia alba were tested for their radical scavenging capacities against DPPH. Four of the major compounds (verbascoside, calceolarioside E, luteolin-7-diglucuronide and theveside) were also tested for their antioxidant activity against superoxide radical-anion in cell-free (hypoxanthine-xanthine oxidase) and cellular (PMA-stimulated neutrophil granulocytes) systems.

  5. Are H-reflex and M-wave recruitment curve parameters related to aerobic capacity?

    PubMed

    Piscione, Julien; Grosset, Jean-François; Gamet, Didier; Pérot, Chantal

    2012-10-01

    Soleus Hoffmann reflex (H-reflex) amplitude is affected by a training period and type and level of training are also well known to modify aerobic capacities. Previously, paired changes in H-reflex and aerobic capacity have been evidenced after endurance training. The aim of this study was to investigate possible links between H- and M-recruitment curve parameters and aerobic capacity collected on a cohort of subjects (56 young men) that were not involved in regular physical training. Maximal H-reflex normalized with respect to maximal M-wave (H(max)/M(max)) was measured as well as other parameters of the H- or M-recruitment curves that provide information about the reflex or direct excitability of the motoneuron pool, such as thresholds of stimulus intensity to obtain H or M response (H(th) and M(th)), the ascending slope of H-reflex, or M-wave recruitment curves (H(slp) and M(slp)) and their ratio (H(slp)/M(slp)). Aerobic capacity, i.e., maximal oxygen consumption and maximal aerobic power (MAP) were, respectively, estimated from a running field test and from an incremental test on a cycle ergometer. Maximal oxygen consumption was only correlated with M(slp), an indicator of muscle fiber heterogeneity (p < 0.05), whereas MAP was not correlated with any of the tested parameters (p > 0.05). Although higher H-reflex are often described for subjects with a high aerobic capacity because of endurance training, at a basic level (i.e., without training period context) no correlation was observed between maximal H-reflex and aerobic capacity. Thus, none of the H-reflex or M-wave recruitment curve parameters, except M(slp), was related to the aerobic capacity of young, untrained male subjects.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steiner, B.; Cousot, D.; Trzeciak, A.

    The platelet glycoprotein IIb-IIIa complex (GP IIb-IIIa) is a member of the integrin receptor family that recognizes adhesive proteins containing the Arg-Gly-Asp (RGD) sequence. In the present study the binding characteristics of the synthetic hexapeptide Tyr-Asn-Arg-Gly-Asp-Ser (YNRGDS, a sequence present in the fibrinogen alpha-chain at position 570-575) to purified GP IIb-IIIa were determined by equilibrium dialysis. The binding of 125I-YNRGDS to GP IIb-IIIa was specific, saturable, and reversible. The apparent dissociation constant was 1.0 +/- 0.2 microM, and the maximal binding capacity was 0.92 +/- 0.02 mol of 125I-YNRGDS/mol of GP IIb-IIIa, indicating that GP IIb-IIIa contains a single bindingmore » site for RGD peptides. The binding of 125I-YNRGDS to purified GP IIb-IIIa showed many of the characteristics of fibrinogen binding to activated platelets: the binding was inhibited by fibrinogen, by the monoclonal antibody A2A9, and by the dodecapeptide from the C terminus of the fibrinogen gamma-chain. In addition, the binding of 125I-YNRGDS to GP IIb-IIIa was divalent cation-dependent. Our data suggest that two divalent cation binding sites must be occupied for YNRGDS to bind: one site is specific for calcium and is saturated at 1 microM free Ca2+, whereas the other site is less specific and reaches saturation at millimolar concentrations of either Ca2+ or Mg2+. The results of the present study support the hypothesis that the RGD domains within the adhesive proteins are responsible for their binding to GP IIb-IIIa.« less

  7. Characterization of the slow calcium channel binding sites for ( sup 3 H)SR 33557 in rat heart sarcolemmal membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chatelain, P.; Beaufort, P.; Meysmans, L.

    1991-01-01

    SR 33557 represents a new class of compounds (indolizine sulfone) that inhibit L-type Ca2+ channels. ({sup 3}H)SR 33557 has been shown to bind with high affinity (Kd congruent to 0.36 nM, calculated from saturation isotherms and association/dissociation kinetics) to a single class of sites in a purified preparation of rat cardiac sarcolemmal membranes. The binding was found to be saturable and reversible. The maximal binding capacity was in approximately 1:1 stoichiometry with that of other Ca2+ channel antagonists. Various divalent cations (Mg2+, Mn2+, Ca2+, Ba2+, and Cd2+) were shown to inhibit specific ({sup 3}H)SR 33557 binding, with Cd2+ being themore » most potent. Among several receptor or channel ligands (including omega-conotoxin and Na+ and K+ channel modulators), only the L-type Ca2+ channel antagonists were found to displace ({sup 3}H)SR 33557. However, dihydropyridines, phenylalkylamines, benzothiazepines, and diphenylbutylpiperidines were found to inhibit ({sup 3}H)SR 33557 in a noncompetitive manner as demonstrated by displacement and saturation experiments in addition to dissociation kinetics. From these results, we suggest that SR 33557 binds with high affinity to a unique site on the L-type Ca2+ channel found in rat cardiac sarcolemmal membranes.« less

  8. Low capacity of erythrocytes to bind with immune complexes via C3b receptor in patients with systemic lupus erythematosus: correlation with pathological proteinuria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nojima, Y.; Terai, C.; Minota, S.

    1985-01-01

    Erythrocytes from 51 patients with systemic lupus erythematosus and 75 controls were tested for the capacity to bind aggregated human gamma-globulin labeled with radioiodine in the presence of complement. Both in patients and controls, a trimodal distribution of binding capacity was observed. Low (less than 9% of the added radioactivity), intermediate (9-17%), and high binding (more than 17%) were observed in 13, 58, and 29% in controls and in 49, 43 and 8% in lupus patients. The low binding capacity of erythrocytes persisted even after patients entered remission following steroid therapy. A genetic control of binding capacity was supported bymore » familial surveys. Prevalence of pathological proteinuria was significantly higher in patients with low binding capacity than those with intermediate or high binding capacity (16/25 vs 7/26, P less than 0.01). These results indicate that an impaired physiological disposal of immune complexes via the erythrocyte C3b receptor in lupus patients may contribute to the development of renal involvement.« less

  9. Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events.

    PubMed

    Ho, Hsu-Tso; Fan, Li; Nowicka-Sans, Beata; McAuliffe, Brian; Li, Chang-Ben; Yamanaka, Gregory; Zhou, Nannan; Fang, Hua; Dicker, Ira; Dalterio, Richard; Gong, Yi-Fei; Wang, Tao; Yin, Zhiwei; Ueda, Yasutsugu; Matiskella, John; Kadow, John; Clapham, Paul; Robinson, James; Colonno, Richard; Lin, Pin-Fang

    2006-04-01

    BMS-488043 is a small-molecule human immunodeficiency virus type 1 (HIV-1) CD4 attachment inhibitor with demonstrated clinical efficacy. The compound inhibits soluble CD4 (sCD4) binding to the 11 distinct HIV envelope gp120 proteins surveyed. Binding of BMS-488043 and that of sCD4 to gp120 are mutually exclusive, since increased concentrations of one can completely block the binding of the other without affecting the maximal gp120 binding capacity. Similarly, BMS-488043 inhibited virion envelope trimers from binding to sCD4-immunoglobulin G (IgG), with decreasing inhibition as the sCD4-IgG concentration increased, and BMS-488043 blocked the sCD4-induced exposure of the gp41 groove in virions. In both virion binding assays, BMS-488043 was active only when added prior to sCD4. Collectively, these results indicate that obstruction of gp120-sCD4 interactions is the primary inhibition mechanism of this compound and that compound interaction with envelope must precede CD4 binding. By three independent approaches, BMS-488043 was further shown to induce conformational changes within gp120 in both the CD4 and CCR5 binding regions. These changes likely prevent gp120-CD4 interactions and downstream entry events. However, BMS-488043 could only partially inhibit CD4 binding to an HIV variant containing a specific envelope truncation and altered gp120 conformation, despite effectively inhibiting the pseudotyped virus infection. Taken together, BMS-488043 inhibits viral entry primarily through altering the envelope conformation and preventing CD4 binding, and other downstream entry events could also be inhibited as a result of these induced conformational changes.

  10. Mutant protein of recombinant human granulocyte colony-stimulating factor for receptor binding assay.

    PubMed

    Watanabe, M; Fukamachi, H; Uzumaki, H; Kabaya, K; Tsumura, H; Ishikawa, M; Matsuki, S; Kusaka, M

    1991-05-15

    A new mutant protein of recombinant human granulocyte colony-stimulating factor (rhG-CSF) was produced for the studies on receptors for human G-CSF. The mutant protein [(Tyr1, Tyr3]rhG-CSF), the biological activity of which was almost equal to that of rhG-CSF, was prepared by the replacement of threonine-1 and leucine-3 of rhG-CSF with tyrosine. The radioiodinated preparation of the mutant protein showed high specific radioactivity and retained full biological activity for at least 3 weeks. The binding capacity of the radioiodinated ligand was compared with that of [35S]rhG-CSF. Both radiolabeled ligands showed specific binding to murine bone marrow cells. Unlabeled rhG-CSF and human G-CSF purified from the culture supernatant of the human bladder carcinoma cell line 5637 equally competed for the binding of labeled rhG-CSFs in a dose-dependent manner, demonstrating that the sugar moiety of human G-CSF made no contribution to the binding of human G-CSF to target cells. In contrast, all other colony-stimulating factors and lymphokines examined did not affect the binding. Scatchard analysis of the specific binding of both labeled ligands revealed a single class of binding site with an apparent dissociation constant (Kd) of 20-30 pM and 100-200 maximal binding sites per cell. These data indicate that the radioiodinated preparation of the mutant protein binds the same specific receptor with the same affinity as [35S]rhG-CSF. The labeled mutant protein also showed specific binding to human circulating neutrophils.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. 3- and 4-O-sulfoconjugated and methylated dopamine: highly reduced binding affinity to dopamine D2 receptors in rat striatal membranes.

    PubMed

    Werle, E; Lenz, T; Strobel, G; Weicker, H

    1988-07-01

    The binding properties of 3- and 4-O-sulfo-conjugated dopamine (DA-3-O-S, DA-4-O-S) as well as 3-O-methylated dopamine (MT) to rat striatal dopamine D2 receptors were investigated. 3H-spiperone was used as a radioligand in the binding studies. In saturation binding experiments (+)butaclamol, which has been reported to bind to dopaminergic D2 and serotoninergic 5HT2 receptors, was used in conjunction with ketanserin and sulpiride, which preferentially label 5HT2 and D2 receptors, respectively, in order to discriminate between 3H-spiperone binding to D2 and to 5HT2 receptors. Under our particular membrane preparation and assay conditions, 3H-spiperone binds to D2 and 5HT2 receptors with a maximal binding capacity (Bmax) of 340 fmol/mg protein in proportions of about 75%:25% with similar dissociation constants KD (35 pmol/l; 43 pmol/l). This result was verified by the biphasic competition curve of ketanserin, which revealed about 20% high (KD = 24 nmol/l) and 80% low (KD = 420 nmol/l) affinity binding sites corresponding to 5HT2 and D2 receptors, respectively. Therefore, all further competition experiments at a tracer concentration of 50 pmol/l were performed in the presence of 0.1 mumol/l ketanserin to mask the 5HT2 receptors. DA competition curves were best fitted assuming two binding sites, with high (KH = 0.12 mumol/l) and low (KL = 18 mumol/l) affinity, present in a ratio of 3:1. The high affinity binding sites were interconvertible by 100 mumol/l guanyl-5-yl imidodiphosphate [Gpp(NH)p], resulting in a homogenous affinity state of DA receptors (KD = 2.8 mumol/l).2+ off

  12. Phosphorylation and calcium antagonistically tune myosin-binding protein C’s structure and function

    PubMed Central

    Previs, Michael J.; Mun, Ji Young; Michalek, Arthur J.; Previs, Samantha Beck; Gulick, James; Robbins, Jeffrey; Warshaw, David M.; Craig, Roger

    2016-01-01

    During each heartbeat, cardiac contractility results from calcium-activated sliding of actin thin filaments toward the centers of myosin thick filaments to shorten cellular length. Cardiac myosin-binding protein C (cMyBP-C) is a component of the thick filament that appears to tune these mechanochemical interactions by its N-terminal domains transiently interacting with actin and/or the myosin S2 domain, sensitizing thin filaments to calcium and governing maximal sliding velocity. Both functional mechanisms are potentially further tunable by phosphorylation of an intrinsically disordered, extensible region of cMyBP-C’s N terminus, the M-domain. Using atomic force spectroscopy, electron microscopy, and mutant protein expression, we demonstrate that phosphorylation reduced the M-domain’s extensibility and shifted the conformation of the N-terminal domain from an extended structure to a compact configuration. In combination with motility assay data, these structural effects of M-domain phosphorylation suggest a mechanism for diminishing the functional potency of individual cMyBP-C molecules. Interestingly, we found that calcium levels necessary to maximally activate the thin filament mitigated the structural effects of phosphorylation by increasing M-domain extensibility and shifting the phosphorylated N-terminal fragments back to the extended state, as if unphosphorylated. Functionally, the addition of calcium to the motility assays ablated the impact of phosphorylation on maximal sliding velocities, fully restoring cMyBP-C’s inhibitory capacity. We conclude that M-domain phosphorylation may have its greatest effect on tuning cMyBP-C’s calcium-sensitization of thin filaments at the low calcium levels between contractions. Importantly, calcium levels at the peak of contraction would allow cMyBP-C to remain a potent contractile modulator, regardless of cMyBP-C’s phosphorylation state. PMID:26908872

  13. Comparative study of four antacids.

    PubMed Central

    Jacyna, M. R.; Boyd, E. J.; Wormsley, K. G.

    1984-01-01

    Four antacid preparations have been studied in a stratified, randomized, double-blind trial to evaluate criteria which determine patients' acceptance of this type of therapy. There was a considerable range of judgements about palatability, but preference was determined not only by factors such as the smell, taste, texture and after-taste of the preparation, but also by the order in which the antacids were tested and by the age and sex of the patient. The preparations also differed considerably in acid-neutralizing capacity and ability to bind bile salts, as well as cost. We conclude that individuals requiring antacid therapy should be allowed to chose from among a range of preparations, in order to maximize compliance. PMID:6091079

  14. Binding of [3H] SR 49059, a potent nonpeptide vasopressin V1a antagonist, to rat and human liver membranes.

    PubMed

    Serradeil-Le Gal, C; Raufaste, D; Marty, E; Garcia, C; Maffrand, J P; Le Fur, G

    1994-02-28

    The new potent and selective nonpeptide vasopressin V1a antagonist, SR 49059, was tritiated and used for the characterization of rat and human liver AVP V1a receptors. Binding of [3H] SR 49059 was time-dependent, reversible and saturable. A single class of high affinity binding sites was identified with Kd values of 0.63 +/- 0.13 and 2.95 +/- 0.64 nM, in rat and human liver membranes, respectively. The maximal binding capacity (Bmax) was about 7 times higher in rat than in human liver preparations. The relative potencies of several AVP/oxytocin agonists or antagonists to inhibit [3H] SR 49059 binding confirmed that this ligand labeled a homogeneous population of sites with the expected AVP V1a profile. Furthermore, [3H] SR 49059 or unlabeled SR 49059 displayed only slight species differences between rat and human V1a receptors, whereas OPC-21268, another nonpeptide V1a antagonist, exhibited a high species-related potency with more than 500 fold higher affinity for rat than for human liver V1a receptors. Thus, [3H] SR 49059 is the first nonpeptide AVP V1a ligand reported having highly specific activity, stability, specificity and affinity. This makes it a suitable probe for labeling AVP V1a receptors in rat and also in human tissues.

  15. Sestrin2 is a leucine sensor for the mTORC1 pathway.

    PubMed

    Wolfson, Rachel L; Chantranupong, Lynne; Saxton, Robert A; Shen, Kuang; Scaria, Sonia M; Cantor, Jason R; Sabatini, David M

    2016-01-01

    Leucine is a proteogenic amino acid that also regulates many aspects of mammalian physiology, in large part by activating the mTOR complex 1 (mTORC1) protein kinase, a master growth controller. Amino acids signal to mTORC1 through the Rag guanosine triphosphatases (GTPases). Several factors regulate the Rags, including GATOR1, aGTPase-activating protein; GATOR2, a positive regulator of unknown function; and Sestrin2, a GATOR2-interacting protein that inhibits mTORC1 signaling. We find that leucine, but not arginine, disrupts the Sestrin2-GATOR2 interaction by binding to Sestrin2 with a dissociation constant of 20 micromolar, which is the leucine concentration that half-maximally activates mTORC1. The leucine-binding capacity of Sestrin2 is required for leucine to activate mTORC1 in cells. These results indicate that Sestrin2 is a leucine sensor for the mTORC1 pathway. Copyright © 2016, American Association for the Advancement of Science.

  16. A micro-reactor for preparing uniform molecularly imprinted polymer beads.

    PubMed

    Zourob, Mohammed; Mohr, Stephan; Mayes, Andrew G; Macaskill, Alexandra; Pérez-Moral, Natalia; Fielden, Peter R; Goddard, Nicholas J

    2006-02-01

    In this study, uniform spherical molecularly imprinted polymer beads were prepared via controlled suspension polymerization in a spiral-shaped microchannel using mineral oil and perfluorocarbon liquid as continuous phases. Monodisperse droplets containing the monomers, template, initiator, and porogenic solvent were introduced into the microchannel, and particles of uniform size were produced by subsequent UV polymerization, quickly and without wasting polymer materials. The droplet/particle size was varied by changing the flow conditions in the microfluidic device. The diameter of the resulting products typically had a coefficient of variation (CV) below 2%. The specific binding sites that were created during the imprinting process were analysed via radioligand binding analysis. The molecularly imprinted microspheres produced in the liquid perfluorocarbon continuous phase had a higher binding capacity compared with the particles produced in the mineral oil continuous phase, though it should be noted that the aim of this study was not to optimize or maximize imprinting performance, but rather to demonstrate broad applicability and compatibility with known MIP production methods. The successful imprinting against a model compound using two very different continuous phases (one requiring a surfactant to stabilize the droplets the other not) demonstrates the generality of this current simple approach.

  17. Planning for partnerships: Maximizing surge capacity resources through service learning.

    PubMed

    Adams, Lavonne M; Reams, Paula K; Canclini, Sharon B

    2015-01-01

    Infectious disease outbreaks and natural or human-caused disasters can strain the community's surge capacity through sudden demand on healthcare activities. Collaborative partnerships between communities and schools of nursing have the potential to maximize resource availability to meet community needs following a disaster. This article explores how communities can work with schools of nursing to enhance surge capacity through systems thinking, integrated planning, and cooperative efforts.

  18. Binding proteins enhance specific uptake rate by increasing the substrate-transporter encounter rate.

    PubMed

    Bosdriesz, Evert; Magnúsdóttir, Stefanía; Bruggeman, Frank J; Teusink, Bas; Molenaar, Douwe

    2015-06-01

    Microorganisms rely on binding-protein assisted, active transport systems to scavenge for scarce nutrients. Several advantages of using binding proteins in such uptake systems have been proposed. However, a systematic, rigorous and quantitative analysis of the function of binding proteins is lacking. By combining knowledge of selection pressure and physiochemical constraints, we derive kinetic, thermodynamic, and stoichiometric properties of binding-protein dependent transport systems that enable a maximal import activity per amount of transporter. Under the hypothesis that this maximal specific activity of the transport complex is the selection objective, binding protein concentrations should exceed the concentration of both the scarce nutrient and the transporter. This increases the encounter rate of transporter with loaded binding protein at low substrate concentrations, thereby enhancing the affinity and specific uptake rate. These predictions are experimentally testable, and a number of observations confirm them. © 2015 FEBS.

  19. Immobilization of Heparan Sulfate on Electrospun Meshes to Support Embryonic Stem Cell Culture and Differentiation*

    PubMed Central

    Meade, Kate A.; White, Kathryn J.; Pickford, Claire E.; Holley, Rebecca J.; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H.; Whittle, Jason D.; Day, Anthony J.; Merry, Catherine L. R.

    2013-01-01

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells. PMID:23235146

  20. Immobilization of heparan sulfate on electrospun meshes to support embryonic stem cell culture and differentiation.

    PubMed

    Meade, Kate A; White, Kathryn J; Pickford, Claire E; Holley, Rebecca J; Marson, Andrew; Tillotson, Donna; van Kuppevelt, Toin H; Whittle, Jason D; Day, Anthony J; Merry, Catherine L R

    2013-02-22

    As our understanding of what guides the behavior of multi- and pluripotent stem cells deepens, so too does our ability to utilize certain cues to manipulate their behavior and maximize their therapeutic potential. Engineered, biologically functionalized materials have the capacity to influence stem cell behavior through a powerful combination of biological, mechanical, and topographical cues. Here, we present the development of a novel electrospun scaffold, functionalized with glycosaminoglycans (GAGs) ionically immobilized onto the fiber surface. Bound GAGs retained the ability to interact with GAG-binding molecules and, crucially, presented GAG sulfation motifs fundamental to mediating stem cell behavior. Bound GAG proved to be biologically active, rescuing the neural differentiation capacity of heparan sulfate-deficient mouse embryonic stem cells and functioning in concert with FGF4 to facilitate the formation of extensive neural processes across the scaffold surface. The combination of GAGs with electrospun scaffolds creates a biomaterial with potent applicability for the propagation and effective differentiation of pluripotent stem cells.

  1. The productive cellulase binding capacity of cellulosic substrates.

    PubMed

    Karuna, Nardrapee; Jeoh, Tina

    2017-03-01

    Cellulosic biomass is the most promising feedstock for renewable biofuel production; however, the mechanisms of the heterogeneous cellulose saccharification reaction are still unsolved. As cellulases need to bind isolated molecules of cellulose at the surface of insoluble cellulose fibrils or larger aggregated cellulose structures in order to hydrolyze glycosidic bonds, the "accessibility of cellulose to cellulases" is considered to be a reaction limiting property of cellulose. We have defined the accessibility of cellulose to cellulases as the productive binding capacity of cellulose, that is, the concentration of productive binding sites on cellulose that are accessible for binding and hydrolysis by cellulases. Productive cellulase binding to cellulose results in hydrolysis and can be quantified by measuring hydrolysis rates. In this study, we measured the productive Trichoderma reesei Cel7A (TrCel7A) binding capacity of five cellulosic substrates from different sources and processing histories. Swollen filter paper and bacterial cellulose had higher productive binding capacities of ∼6 µmol/g while filter paper, microcrystalline cellulose, and algal cellulose had lower productive binding capacities of ∼3 µmol/g. Swelling and regenerating filter paper using phosphoric acid increased the initial accessibility of the reducing ends to TrCel7A from 4 to 6 µmol/g. Moreover, this increase in initial productive binding capacity accounted in large part for the difference in the overall digestibility between filter paper and swollen filter paper. We further demonstrated that an understanding of how the productive binding capacity declines over the course of the hydrolysis reaction has the potential to predict overall saccharification time courses. Biotechnol. Bioeng. 2017;114: 533-542. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Dynamics of platelet glycoprotein IIb-IIIa receptor expression and fibrinogen binding. I. Quantal activation of platelet subpopulations varies with adenosine diphosphate concentration.

    PubMed Central

    Frojmovic, M. M.; Mooney, R. F.; Wong, T.

    1994-01-01

    We have previously reported that maximal platelet activation with adenosine diphosphate (100 microM ADP) causes rapid expression of all GPIIb-IIIa receptors for fibrinogen (FgR) (< 1-3 s), measured with FITC-labeled PAC1 by flow cytometry. We have extended these studies to examine the effects of ADP concentration on the graded expression and Fg occupancy of GPIIb-IIIa receptors. Human citrated platelet-rich plasma, diluted 10-fold with Walsh-albumin-Mg+2 (2 mM), was treated with ADP (0.1-100 microM). The rates of GPIIb-IIIa receptor expression or Fg binding were measured in unstirred samples by flow cytometry, using FITC-labeled monoclonal antibodies (mAb) PAC1 and 9F9, respectively, from on-rates, using increasing times between mAb and ADP additions. Fibrinogen receptors were all expressed rapidly at low (1 microM) or high (100 microM) ADP (few seconds), whereas Fg occupancy was 50% of maximal by about 2 min. The maximal extent of GPIIb-IIIa receptor expression and Fg occupancy was determined from maximal binding (Flmax) at 30 min incubation with PAC1 or 9F9. On-rates and maximal extents of binding for either PAC1 or 9F9 probes showed identical [ADP]-response profiles ("KD" approximately 1.4 +/- 0.1 microM). However, Flmax studies showed bimodal histograms consisting of "resting" (Po) and maximally "activated" (P*) platelets for both PAC1 and 9F9 binding, with the fraction of "activated" platelets increasing with ADP concentration. The data best fit a model where platelet subpopulations are "quantally" transformed from Po to P*, expressing all GPIIb-IIIa receptors, rapidly filled by Fg, but "triggered" at critical ADP concentrations. Larger, but not the largest, platelets appear to be the most sensitive subpopulation. The implications for clinical studies are discussed, and the relationship to dynamics of aggregation are described in a companion paper. PMID:7858143

  3. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  4. A new fluorescent probe for the equilibrative inhibitor-sensitive nucleoside transporter. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA)-chi 2-fluorescein.

    PubMed

    Wiley, J S; Brocklebank, A M; Snook, M B; Jamieson, G P; Sawyer, W H; Craik, J D; Cass, C E; Robins, M J; McAdam, D P; Paterson, A R

    1991-02-01

    The N6-(4-nitrobenzyl) derivative of adenosine is a tight-binding inhibitor of the equilibrative inhibitor-sensitive nucleoside transporter of mammalian cells. A fluorescent ligand for this transporter has been synthesized by allowing an adenosine analogue. 5'-S-(2-aminoethyl)-N6-(4-nitrobenzyl)-5'-thioadenosine (SAENTA), to react with fluorescein isothiocyanate. The purified adduct had a SAENTA/fluorescein molar ratio of 0.92:1 calculated from its absorption spectrum. The intensity of fluorescent emission from the SAENTA-chi 2-fluorescein adduct was 30% that of fluorescein isothiocyanate (chi 2 is the number of atoms in the linkage between fluorescein and SAENTA). SAENTA-chi 2-fluorescein inhibited the influx of nucleosides into cultured leukaemic cells with an IC50 (total concentration of inhibitor producing 50% inhibition) of 40 nM. The adduct inhibited the binding of [3H]nitrobenzylthioinosine ([3H]NBMPR) with half-maximal inhibition at 50-100 nM. Mass Law analysis of the competitive-binding data suggested the presence of two classes of sites for [3H]NBMPR binding, only one of which was accessible to SAENTA-chi 2-fluorescein. Flow cytometry was used to analyse equilibrium binding of SAENTA-chi 2-fluorescein to leukaemic cells and a Kd of 6 nM was obtained. SAENTA-chi 2-fluorescein is a high-affinity ligand for the equilibrative inhibitor-sensitive nucleoside transporter which allows rapid assessment of transport capacity by flow cytometry.

  5. Effects of chronic nitric oxide synthase inhibition on V'O2max and exercise capacity in mice.

    PubMed

    Wojewoda, M; Przyborowski, K; Sitek, B; Zakrzewska, A; Mateuszuk, L; Zoladz, J A; Chlopicki, S

    2017-03-01

    Acute inhibition of NOS by L-NAME (N ω -nitro-L-arginine methyl ester) is known to decrease maximal oxygen consumption (V'O 2max ) and impair maximal exercise capacity, whereas the effects of chronic L-NAME treatment on V'O 2max and exercise performance have not been studied so far. In this study, we analysed the effect of L-NAME treatment, (LN2 and LN12, respectively) on V'O 2max and exercise capacity (in maximal incremental running and prolonged sub-maximal incremental running tests), systemic NO bioavailability (plasma nitrite (NO 2 - ) and nitrate (NO 3 - )) and prostacyclin (PGI 2 ) production in C57BL6/J mice. Mice treated with L-NAME for 2 weeks (LN2) displayed higher V'O 2max and better running capacity than age-matched control mice. In LN2 mice, NO bioavailability was preserved, as evidenced by maintained NO 2 - plasma concentration. PGI 2 production was activated (increased 6-keto-PGF 1α plasma concentration) and the number of circulating erythrocytes (RBC) and haemoglobin concentration were increased. In mice treated with L-NAME for 12 weeks (LN12), NO bioavailability was decreased (lower NO 2 - plasma concentration), and 6-keto-PGF 1α plasma concentration and RBC number were not elevated compared to age-matched control mice. However, LN12 mice still performed better during the maximal incremental running test despite having lower V'O 2max . Interestingly, the LN12 mice showed poorer running capacity during the prolonged sub-maximal incremental running test. To conclude, short-term (2 weeks) but not long-term (12 weeks) treatment with L-NAME activated robust compensatory mechanisms involving preservation of NO2- plasma concentration, overproduction of PGI 2 and increased number of RBCs, which might explain the fully preserved exercise capacity despite the inhibition of NOS.

  6. Progesterone receptor membrane component-1 (PGRMC1) is the mediator of progesterone's antiapoptotic action in spontaneously immortalized granulosa cells as revealed by PGRMC1 small interfering ribonucleic acid treatment and functional analysis of PGRMC1 mutations.

    PubMed

    Peluso, John J; Romak, Jonathan; Liu, Xiufang

    2008-02-01

    Progesterone (P4) receptor membrane component-1 (PGRMC1) and its binding partner, plasminogen activator inhibitor 1 RNA binding protein (PAIRBP1) are thought to form a complex that functions as membrane receptor for P4. The present investigations confirm PGRMC1's role in this membrane receptor complex by demonstrating that depleting PGMRC1 with PGRMC1 small interfering RNA results in a 60% decline in [(3)H]P4 binding and the loss of P4's antiapoptotic action. Studies conducted on partially purified GFP-PGRMC1 fusion protein indicate that [(3)H]P4 specifically binds to PGRMC1 at a single site with an apparent K(d) of about 35 nm. In addition, experiments using various deletion mutations reveal that the entire PGRMC1 molecule is required for maximal [(3)H]P4 binding and P4 responsiveness. Analysis of the binding data also suggests that the P4 binding site is within a segment of PGRMC1 that is composed of the transmembrane domain and the initial segment of the C terminus. Interestingly, PAIRBP1 appears to bind to the C terminus between amino acids 70-130, which is distal to the putative P4 binding site. Taken together, these data provide compelling evidence that PGRMC1 is the P4 binding protein that mediates P4's antiapoptotic action. Moreover, the deletion mutation studies indicate that each domain of PGRMC1 plays an essential role in modulating PGRMC1's capacity to both bind and respond to P4. Additional studies are required to more precisely delineate the role of each PGRMC1 domain in transducing P4's antiapoptotic action.

  7. Lactobacillus acidophilus binds to MUC3 component of cultured intestinal epithelial cells with highest affinity.

    PubMed

    Das, Jugal Kishore; Mahapatra, Rajani Kanta; Patro, Shubhransu; Goswami, Chandan; Suar, Mrutyunjay

    2016-04-01

    Lactobacillus strains have been shown to adhere to the mucosal components of intestinal epithelial cells. However, established in vitro adhesion assays have several drawbacks in assessing the adhesion of new Lactobacillus strains. The present study aimed to compare the adhesion of four different Lactobacillus strains and select the most adherent microbe, based on in silico approach supported by in vitro results. The mucus-binding proteins in Lactobacillus acidophilus, L. plantarum, L. brevis and L. fermentum were identified and their capacities to interact with intestinal mucin were compared by molecular docking analysis. Lactobacillus acidophilus had the maximal affinity of binding to mucin with predicted free energy of -6.066 kcal mol(-1) Further, in vitro experimental assay of adhesion was performed to validate the in silico results. The adhesion of L. acidophilus to mucous secreting colon epithelial HT-29 MTX cells was highest at 12%, and it formed biofilm with maximum depth (Z = 84 μm). Lactobacillus acidophilus was determined to be the most adherent strain in the study. All the Lactobacillus strains tested in this study, displayed maximum affinity of binding to MUC3 component of mucus as compared to other gastrointestinal mucins. These findings may have importance in the design of probiotics and health care management. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Effects of high-intensity intermittent training on carnitine palmitoyl transferase activity in the gastrocnemius muscle of rats

    PubMed Central

    Carnevali, L.C.; Eder, R.; Lira, F.S.; Lima, W.P.; Gonçalves, D.C.; Zanchi, N.E.; Nicastro, H.; Lavoie, J.M.; Seelaender, M.C.L.

    2012-01-01

    We examined the capacity of high-intensity intermittent training (HI-IT) to facilitate the delivery of lipids to enzymes responsible for oxidation, a task performed by the carnitine palmitoyl transferase (CPT) system in the rat gastrocnemius muscle. Male adult Wistar rats (160-250 g) were randomly distributed into 3 groups: sedentary (Sed, N = 5), HI-IT (N = 10), and moderate-intensity continuous training (MI-CT, N = 10). The trained groups were exercised for 8 weeks with a 10% (HI-IT) and a 5% (MI-CT) overload. The HI-IT group presented 11.8% decreased weight gain compared to the Sed group. The maximal activities of CPT-I, CPT-II, and citrate synthase were all increased in the HI-IT group compared to the Sed group (P < 0.01), as also was gene expression, measured by RT-PCR, of fatty acid binding protein (FABP; P < 0.01) and lipoprotein lipase (LPL; P < 0.05). Lactate dehydrogenase also presented a higher maximal activity (nmol·min−1·mg protein−1) in HI-IT (around 83%). We suggest that 8 weeks of HI-IT enhance mitochondrial lipid transport capacity thus facilitating the oxidation process in the gastrocnemius muscle. This adaptation may also be associated with the decrease in weight gain observed in the animals and was concomitant to a higher gene expression of both FABP and LPL in HI-IT, suggesting that intermittent exercise is a “time-efficient” strategy inducing metabolic adaptation. PMID:22735180

  9. In Vitro Binding Capacity of Bile Acids by Defatted Corn Protein Hydrolysate

    PubMed Central

    Kongo-Dia-Moukala, Jauricque Ursulla; Zhang, Hui; Irakoze, Pierre Claver

    2011-01-01

    Defatted corn protein was digested using five different proteases, Alcalase, Trypsin, Neutrase, Protamex and Flavourzyme, in order to produce bile acid binding peptides. Bile acid binding capacity was analyzed in vitro using peptides from different proteases of defatted corn hydrolysate. Some crystalline bile acids like sodium glycocholate, sodium cholate and sodium deoxycholate were individually tested using HPLC to see which enzymes can release more peptides with high bile acid binding capacity. Peptides from Flavourzyme defatted corn hydrolysate exhibited significantly (p < 0.05) stronger bile acid binding capacity than all others hydrolysates tested and all crystalline bile acids tested were highly bound by cholestyramine, a positive control well known as a cholesterol-reducing agent. The bile acid binding capacity of Flavourzyme hydrolysate was almost preserved after gastrointestinal proteases digestion. The molecular weight of Flavourzyme hydrolysate was determined and most of the peptides were found between 500–180 Da. The results showed that Flavourzyme hydrolysate may be used as a potential cholesterol-reducing agent. PMID:21541043

  10. Exercise Capacity and Selected Physiological Factors by Ancestry and Residential Altitude: Cross-Sectional Studies of 9–10-Year-Old Children in Tibet

    PubMed Central

    Berntsen, Sveinung; Andersen, Lars Bo; Stigum, Hein; Ouzhuluobu; Nafstad, Per; Wu, Tianyi; Bjertness, Espen

    2014-01-01

    Abstract Bianba, Sveinung Bernsten, Lars Bo Andersen, Hein Stegum, Ouzhuluobu, Per Nafstad, Tianyi Wu, and Espen Bjertness. Exercise capacity and selected physiological factors by ancestry and residential altitude—Cross-sectional studies of 9–10-year-old children in Tibet. High Alt Med Biol. 15:162–169, 2014.—Aim: Several physiological compensatory mechanisms have enabled Tibetans to live and work at high altitude, including increased ventilation and pulmonary diffusion capacity, both of which serve to increase oxygen transport in the blood. The aim of the present study was to compare exercise capacity (maximal power output) and selected physiological factors (arterial oxygen saturation and heart rate at rest and during maximal exercise, resting hemoglobin concentration, and forced vital capacity) in groups of native Tibetan children living at different residential altitudes (3700 vs. 4300 m above sea level) and across ancestry (native Tibetan vs. Han Chinese children living at the same altitude of 3700 m). Methods: A total of 430 9–10-year-old native Tibetan children from Tingri (4300 m) and 406 native Tibetan- and 406 Han Chinese immigrants (77% lowland-born and 33% highland-born) from Lhasa (3700 m) participated in two cross-sectional studies. The maximal power output (Wmax) was assessed using an ergometer cycle. Results: Lhasa Tibetan children had a 20% higher maximal power output (watts/kg) than Tingri Tibetan and 4% higher than Lhasa Han Chinese. Maximal heart rate, arterial oxygen saturation at rest, lung volume, and arterial oxygen saturation were significantly associated with exercise capacity at a given altitude, but could not fully account for the differences in exercise capacity observed between ancestry groups or altitudes. Conclusions: The superior exercise capacity in native Tibetans vs. Han Chinese may reflect a better adaptation to life at high altitude. Tibetans at the lower residential altitude of 3700 m demonstrated a better exercise capacity than residents at a higher altitude of 4300 m when measured at their respective residential altitudes. Such altitude- or ancestry-related difference could not be fully attributed to the physiological factors measured. PMID:24836751

  11. Biological variability of transferrin saturation and unsaturated iron binding capacity

    PubMed Central

    Adams, PC; Reboussin, DM; Press, RD; Barton, JC; Acton, RT; Moses, GC; Leiendecker-Foster, C; McLaren, GD; Dawkins, FW; Gordeuk, VR; Lovato, L; Eckfeldt, JH

    2007-01-01

    Background Transferrin saturation is widely considered the preferred screening test for hemochromatosis. Unsaturated iron binding capacity has similar performance at lower cost. However, the within-person biological variability of both these tests may limit their ability at commonly used cut points to detect HFE C282Y homozygous patients. Methods The Hemochromatosis and Iron Overload Screening (HEIRS) Study screened 101,168 primary care participants for iron overload using tansferrin saturation, unsaturated iron binding capacity, ferritin and HFE C282Y and H63D genotyping. Transferrin saturation and unsaturated iron binding capacity were performed at initial screening and again when selected participants and controls returned for a clinical examination several months later. A missed case was defined as a C282Y homozygote who had transferrin saturation below cut point (45 % women, 50 % men) or unsaturated iron binding capacity above cut point (150 μmol/L women, 125 μmol/L men) at either the initial screening or clinical examination, or both, regardless of serum ferritin. Results There were 209 C282Y previously undiagnosed homozygotes with transferrin saturation and unsaturated iron binding capacity testing done at initial screening and clinical examination. Sixty-eight C282Y homozygotes (33%) would have been missed at these transferrin saturation cut points (19 men, 49 women, median SF 170 μg/L, first and third quartiles 50 and 474 μg/L), and 58 homozygotes (28 %) would have been missed at the unsaturated iron binding capacity cut points (20 men, 38 women, median SF 168 μg/L, quartiles 38 and 454 μg/L). There was no advantage to using fasting samples. Conclusions The within-person biological variability of transferrin saturation and unsaturated iron binding capacity limit their usefulness as an initial screening test for expressing C282Y homozygotes. PMID:17976429

  12. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype

    PubMed Central

    Barlow, Samantha L.; Metcalfe, Julian; Righton, David A.

    2017-01-01

    ABSTRACT Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O2 saturation difference, Sa–vO2, another major determinant of circulatory O2 supply rate. The results showed statistically indistinguishable red blood cell O2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O2 binding (Bohr and Root effects). Modelling of Sa–vO2 at physiological pH, temperature and O2 partial pressures revealed a substantial capacity for increases in Sa–vO2 to meet rising tissue O2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa–vO2 with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O2 supply to tissue demand. PMID:28148818

  13. Life on the edge: O2 binding in Atlantic cod red blood cells near their southern distribution limit is not sensitive to temperature or haemoglobin genotype.

    PubMed

    Barlow, Samantha L; Metcalfe, Julian; Righton, David A; Berenbrink, Michael

    2017-02-01

    Atlantic cod are a commercially important species believed to be threatened by warming seas near their southern, equatorward upper thermal edge of distribution. Limitations to circulatory O 2 transport, in particular cardiac output, and the geographic distribution of functionally different haemoglobin (Hb) genotypes have separately been suggested to play a role in setting thermal tolerance in this species. The present study assessed the thermal sensitivity of O 2 binding in Atlantic cod red blood cells with different Hb genotypes near their upper thermal distribution limit and modelled its consequences for the arterio-venous O 2 saturation difference, Sa-v O 2 , another major determinant of circulatory O 2 supply rate. The results showed statistically indistinguishable red blood cell O 2 binding between the three HbI genotypes in wild-caught Atlantic cod from the Irish Sea (53° N). Red blood cells had an unusually low O 2 affinity, with reduced or even reversed thermal sensitivity between pH 7.4 and 7.9, and 5.0 and 20.0°C. This was paired with strongly pH-dependent affinity and cooperativity of red blood cell O 2 binding (Bohr and Root effects). Modelling of Sa-v O 2  at physiological pH, temperature and O 2 partial pressures revealed a substantial capacity for increases in Sa-v O 2  to meet rising tissue O 2 demands at 5.0 and 12.5°C, but not at 20°C. Furthermore, there was no evidence for an increase of maximal Sa-v O 2  with temperature. It is suggested that Atlantic cod at such high temperatures may solely depend on increases in cardiac output and blood O 2 capacity, or thermal acclimatisation of metabolic rate, for matching circulatory O 2 supply to tissue demand. © 2017. Published by The Company of Biologists Ltd.

  14. Haematological values in pregnant women in Port Harcourt, Nigeria II: Serum iron and transferrin, total and unsaturated iron binding capacity and some red cell and platelet indices.

    PubMed

    Amah-Tariah, F S; Ojeka, S O; Dapper, D V

    2011-12-20

    Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in our subjects (p>0.05). The present study reports, for the first time, normative values for these parameters in apparently healthy pregnant subjects in Port Harcourt south eastern Nigeria. Apparently, increases in unsaturated and total iron binding capacity and serum transferrin values seen amongst our subjects with increasing gestation may perhaps be a mechanism to ensure a fetal adequate iron delivery on account of the decreasing serum iron concentration with gestation in our subjects. The study suggests that values of serum transferrin are perhaps a more useful screening tool for iron deficiency anemia during pregnancy amongst our subjects.

  15. Importance of Non-invasive Right and Left Ventricular Variables on Exercise Capacity in Patients with Tetralogy of Fallot Hemodynamics.

    PubMed

    Meierhofer, Christian; Tavakkoli, Timon; Kühn, Andreas; Ulm, Kurt; Hager, Alfred; Müller, Jan; Martinoff, Stefan; Ewert, Peter; Stern, Heiko

    2017-12-01

    Good quality of life correlates with a good exercise capacity in daily life in patients with tetralogy of Fallot (ToF). Patients after correction of ToF usually develop residual defects such as pulmonary regurgitation or stenosis of variable severity. However, the importance of different hemodynamic parameters and their impact on exercise capacity is unclear. We investigated several hemodynamic parameters measured by cardiovascular magnetic resonance (CMR) and echocardiography and evaluated which parameter has the most pronounced effect on maximal exercise capacity determined by cardiopulmonary exercise testing (CPET). 132 patients with ToF-like hemodynamics were tested during routine follow-up with CMR, echocardiography and CPET. Right and left ventricular volume data, ventricular ejection fraction and pulmonary regurgitation were evaluated by CMR. Echocardiographic pressure gradients in the right ventricular outflow tract and through the tricuspid valve were measured. All data were classified and correlated with the results of CPET evaluations of these patients. The analysis was performed using the Random Forest model. In this way, we calculated the importance of the different hemodynamic variables related to the maximal oxygen uptake in CPET (VO 2 %predicted). Right ventricular pressure showed the most important influence on maximal oxygen uptake, whereas pulmonary regurgitation and right ventricular enddiastolic volume were not important hemodynamic variables to predict maximal oxygen uptake in CPET. Maximal exercise capacity was only very weakly influenced by right ventricular enddiastolic volume and not at all by pulmonary regurgitation in patients with ToF. The variable with the most pronounced influence was the right ventricular pressure.

  16. Effects of Age on Maximal Work Capacity in Women Aged 18-48 Years.

    ERIC Educational Resources Information Center

    Hartung, G. Harley; And Others

    Fifty-six healthy nontrained women aged 18 to 48 were tested for maximal work capacity on a bicycle ergometer. The women were divided into three age groups. A continuous step-increment bicycle ergometer work test was administered with the workload starting at 150 kpm (kilometers per minute) and 50 pedal rpm (revolutions per minute). The workload…

  17. A Goal Programming Optimization Model for The Allocation of Liquid Steel Production

    NASA Astrophysics Data System (ADS)

    Hapsari, S. N.; Rosyidi, C. N.

    2018-03-01

    This research was conducted in one of the largest steel companies in Indonesia which has several production units and produces a wide range of steel products. One of the important products in the company is billet steel. The company has four Electric Arc Furnace (EAF) which produces liquid steel which must be procesed further to be billet steel. The billet steel plant needs to make their production process more efficient to increase the productvity. The management has four goals to be achieved and hence the optimal allocation of the liquid steel production is needed to achieve those goals. In this paper, a goal programming optimization model is developed to determine optimal allocation of liquid steel production in each EAF, to satisfy demand in 3 periods and the company goals, namely maximizing the volume of production, minimizing the cost of raw materials, minimizing maintenance costs, maximizing sales revenues, and maximizing production capacity. From the results of optimization, only maximizing production capacity goal can not achieve the target. However, the model developed in this papare can optimally allocate liquid steel so the allocation of production does not exceed the maximum capacity of the machine work hours and maximum production capacity.

  18. Does power indicate capacity? 30-s Wingate anaerobic test vs. maximal accumulated O2 deficit.

    PubMed

    Minahan, C; Chia, M; Inbar, O

    2007-10-01

    The purpose of this study was to evaluate the relationship between anaerobic power and capacity. Seven men and seven women performed a 30-s Wingate Anaerobic Test on a cycle ergometer to determine peak power, mean power, and the fatigue index. Subjects also cycled at a work rate predicted to elicit 120 % of peak oxygen uptake to exhaustion to determine the maximal accumulated O (2) deficit. Peak power and the maximal accumulated O (2) deficit were significantly correlated (r = 0.782, p = 0.001). However, when the absolute difference in exercise values between groups (men and women) was held constant using a partial correlation, the relationship diminished (r = 0.531, p = 0.062). In contrast, we observed a significant correlation between fatigue index and the maximal accumulated O (2) deficit when controlling for gender (r = - 0.597, p = 0.024) and the relationship remained significant when values were expressed relative to active muscle mass. A higher anaerobic power does not indicate a greater anaerobic capacity. Furthermore, we suggest that the ability to maintain power output during a 30-s cycle sprint is related to anaerobic capacity.

  19. Flavanol binding of nuclei from tree species.

    PubMed

    Feucht, W; Treutter, D; Polster, J

    2004-01-01

    Light microscopy was used to examine the nuclei of five tree species with respect to the presence of flavanols. Flavanols develop a blue colouration in the presence of a special p-dimethylaminocinnamaldehyde (DMACA) reagent that enables those nuclei loaded with flavanols to be recognized. Staining of the nuclei was most pronounced in both Tsuga canadensis and Taxus baccata, variable in Metasequoia glyptostroboides, faint in Coffea arabica and minimal in Prunus avium. HPLC analysis showed that the five species contained substantial amounts of different flavanols such as catechin, epicatechin and proanthocyanidins. Quantitatively, total flavanols were quite different among the species. The nuclei themselves, as studied in Tsuga seed wings, were found to contain mainly catechin, much lower amounts of epicatechin and traces of proanthocyanidins. Blue-coloured nuclei located centrally in small cells were often found to maximally occupy up to 90% of a cell's radius, and the surrounding small rim of cytoplasm was visibly free of flavanols. A survey of 34 gymnosperm and angiosperm species indicated that the first group has much higher nuclear binding capacities for flavanols than the second group.

  20. Exercise Responses after Inactivity

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1986-01-01

    The exercise response after bed rest inactivity is a reduction in the physical work capacity and is manifested by significant decreases in oxygen uptake. The magnitude of decrease in maximal oxygen intake V(dot)O2max is related to the duration of confinement and the pre-bed-rest level of aerobic fitness; these relationships are relatively independent of age and gender. The reduced exercise performance and V(dot)O2max following bed rest are associated with various physiological adaptations including reductions in blood volume, submaximal and maximal stroke volume, maximal cardiac output, sceletal muscle tone and strength, and aerobic enzyme capacities, as well as increases in venous compliance and submaximal and maximal heart rate. This reduction in physiological capacity can be partially restored by specific countermeasures that provide regular muscular activity or orhtostatic stress or both during the bed rest exposure. The understanding of these physiological and physical responses to exercise following bed rest inactivity has important implications for the solution to safety and health problems that arise in clinical medicine, aerospace medicine, sedentary living, and aging.

  1. Tropical soils in Mato Grosso, Brazil, retain high phosphorus (P) binding capacity after 30 years of intensive fertilization and will remain a P sink for another 50-160 years.

    NASA Astrophysics Data System (ADS)

    Porder, S.; Roy, E.; Willig, E.; Martinelli, L. A.; Pegorini, L.; Richards, P.; Spera, S. A.; Vazquez, F. F.

    2016-12-01

    Intensification of tropical agriculture is one way to meet increasing global food demand, but tropical soils often require more phosphorus (P) fertilizer than those in the world's traditional breadbaskets. Recent studies from Europe suggest that P fertilizer additions will eventually saturate soil P binding capacity, and can build a soil P bank upon which future crop production can draw. We tested this hypothesis in Mato Grosso, Brazil, where highly mechanized agriculture produces 9% of the world's soy harvest on soils with high P binding capacity. In this region, P fertilizer inputs typically exceed harvests by 10kg P/ha, and our expectation was that total P and available P would increase, and P binding capacity would decrease, with time in cultivation. To test this hypothesis, we measured P availability, binding, and accumulation on 31 fields ranging from 0-31 years in intensive production. We also estimated the number of years in production that would be required to saturate the soils with P, since after that time P additions could be reduced to equal harvest P removal. As expected, our data show increasing P availability, and decreasing P binding capacity, over time. A multiple regression including only soil [SiO2] (a proxy for both mineralogy and texture) and years in production explained 87, 63 and 91% of the observed variation in total P, Bray-extractable P, and P sorption capacity, respectively. However, the effect of [SiO2], and thus texture and mineralogy, was 1.7, 1.2, and 4.9 times more important in predicting our dependent variables than was years in production. Despite fertilizer inputs in excess of harvest removals, the reduction in P binding capacity is slow, and we estimate it will take between 50-160 years for fertilizer inputs to saturate the P binding capacity of these soils. These results suggest that the P tax imposed by high P binding soils in the tropics will impose substantial material costs to tropical farmers in the coming decades, and may influence their capacity to intensify food production to meet growing food demands.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachel, Shawn J.; Sanders, John M.; Henze, Darrell A.

    We have identified several series of small molecule inhibitors of TrkA with unique binding modes. The starting leads were chosen to maximize the structural and binding mode diversity derived from a high throughput screen of our internal compound collection. These leads were optimized for potency and selectivity employing a structure based drug design approach adhering to the principles of ligand efficiency to maximize binding affinity without overly relying on lipophilic interactions. This endeavor resulted in the identification of several small molecule pan-Trk inhibitor series that exhibit high selectivity for TrkA/B/C versus a diverse panel of kinases. We have also demonstratedmore » efficacy in both inflammatory and neuropathic pain models upon oral dosing. Herein we describe the identification process, hit-to-lead progression, and binding profiles of these selective pan-Trk kinase inhibitors.« less

  3. Evaluation of the mobile phone electromagnetic radiation on serum iron parameters in rats.

    PubMed

    Çetkin, Murat; Demirel, Can; Kızılkan, Neşe; Aksoy, Nur; Erbağcı, Hülya

    2017-03-01

    Electromagnetic fields (EMF) created by mobile phones during communication have harmful effects on different organs. It was aimed to investigate the effects of an EMF created by a mobile phone on serum iron level, ferritin, unsaturated iron binding capacity and total iron binding capacity within a rat experiment model. A total of 32 male Wistar albino rats were randomly divided into the control, sham, mobile phone speech (2h/day) and stand by (12 h/day) groups. The speech and stand by groups were subjected to the EMF for a total of 10 weeks. No statistically significant difference was observed between the serum iron and ferritin values of the rats in the speech and stand by groups than the control and sham groups (p>0.05). The unsaturated iron binding capacity and total iron capacity values of the rats in the speech and stand by groups were significantly lower in comparison to the control group (p<0.01). It was found that exposure to EMF created by mobile phones affected unsaturated iron binding capacity and total iron binding capacity negatively.

  4. Potential benefits of maximal exercise just prior to return from weightlessness

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1987-01-01

    The purpose of this study was to determine whether performance of a single maximal bout of exercise during weightlessness within hours of return to earth would enhance recovery of aerobic fitness and physical work capacities under a 1G environment. Ten healthy men were subjected to a 10-d bedrest period in the 6-deg headdown position. A graded maximal supine cycle ergometer test was performed before and at the end of bedrest to simulate exercise during weightlessness. Following 3 h of resumption of the upright posture, a second maximal exercise test was performed on a treadmill to measure work capacity under conditions of 1G. Compared to before bedrest, peak oxygen consumption, V(O2), decreased by 8.7 percent and peak heart rate (HR) increased by 5.6 percent in the supine cycle test at the end of bedrest. However, there were no significant changes in peak V(O2) and peak HR in the upright treadmill test following bedrest. These data suggest that one bout of maximal leg exercise prior to return from 10 d of weightlessness may be adequate to restore preflight aerobic fitness and physical work capacity.

  5. Intravenous iron-dextran: studies on unsaturated iron-binding capacity

    PubMed Central

    Cox, J. S. G.; Moss, G. F.; Bremner, I.; Reason, Janet

    1968-01-01

    A method is described for measuring the plasma unsaturated iron-binding capacity in the presence of very high concentrations of iron as iron-dextran. The procedure utilizes 59Fe to label the apotransferrin with subsequent separation of ionic iron from transferrin-bound iron on an ion exchange or Sephadex G.25 column. The unsaturated iron-binding capacity has been measured in rabbits and dogs after intravenous injection of iron-dextran and in human subjects after total dose infusion of iron-dextran. No evidence of saturation of the unsaturated iron-binding capacity was found even when the plasma iron values were greater than 40,000 μg Fe/100 ml. PMID:5697365

  6. Expression of receptors for atrial natriuretic peptide on the murine bone marrow-derived stromal cells.

    PubMed

    Agui, T; Yamada, T; Legros, G; Nakajima, T; Clark, M; Peschel, C; Matsumoto, K

    1992-05-01

    Atrial natriuretic peptide (ANP) receptors were identified on both murine bone marrow-derived stromal cell lines A-3 and ALC and primary cultured cells using [125I]ANP binding assays and Northern blot analyses. The binding of [125I] ANP to the stromal cells was rapid, saturable, and of high affinity. The dissociation constants between ANP and its receptors on these cells showed no difference among cell types, while maximal binding capacity values were different among cell types. Competitive inhibition of [125I]ANP binding with C-atrial natriuretic factor, specific for ANP clearance receptor (ANPR-C), revealed that most of [125I]ANP-binding sites corresponded to ANPR-C. Northern blotting data corroborated that bone marrow-derived stromal cells expressed ANPR-C. However, in ALC cells, ANP biological receptors (either ANPR-A or ANPR-B), the mol wt of which is approximately 130K, were detected, and cGMP was accumulated after stimulation with ANP. On the other hand, in another stromal cell clone, A-3 cells, the expression of biological receptor was not detected in the affinity cross-linking and competitive inhibition experiments using [125I]ANP. However, A-3 cells accumulated cGMP by responding to ANPR-B-specific ligand, C-type natriuretic peptide. These results suggest that ALC cells equally express ANPR-A and ANPR-B, while A-3 cells express ANPR-B dominantly. Although the physiological roles of these receptors in the bone marrow is still not resolved, ANP is expected to play a role in the regulation of stromal cell functions in bone marrow.

  7. Formation of a dinitrosyl iron complex by NorA, a nitric oxide-binding di-iron protein from Ralstonia eutropha H16.

    PubMed

    Strube, Katja; de Vries, Simon; Cramm, Rainer

    2007-07-13

    In Ralstonia eutropha H16, two genes, norA and norB, form a dicistronic operon that is controlled by the NO-responsive transcriptional regulator NorR. NorB has been identified as a membrane-bound NO reductase, but the physiological function of NorA is unknown. We found that, in a NorA deletion mutant, the promoter activity of the norAB operon was increased 3-fold, indicating that NorA attenuates activation of NorR. NorA shows limited sequence similarity to the oxygen carrier hemerythrin, which contains a di-iron center. Indeed, optical and EPR spectroscopy of purified NorA revealed the presence of a di-iron center, which binds oxygen in a similar way as hemerythrin. Diferrous NorA binds two molecules of NO maximally. Unexpectedly, binding of NO to the diferrous NorA required an external reductant. Two different NorA-NO species could be resolved. A minor species (up to 20%) showed an S = (1/2) EPR signal with g( perpendicular) = 2.041, and g( parallel) = 2.018, typical of a paramagnetic dinitrosyl iron complex. The major species was EPR-silent, showing characteristic signals at 420 nm and 750 nm in the optical spectrum. This species is proposed to represent a novel dinitrosyl iron complex of the form Fe(2+)-[NO](2)(2-), i.e. NO is bound as NO(-). The NO binding capacity of NorA in conjunction with its high cytoplasmic concentration (20 mum) suggests that NorA regulates transcription by lowering the free cytoplasmic concentration of NO.

  8. Laboratory or field tests for evaluating firefighters' work capacity?

    PubMed

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = -0.81) and barbell shoulder press (rs = -0.77), for Pulling: IE shoulder extension (rs = -0.82) and bench press (rs = -0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = -0.83) and bench press (rs = -0.82), and for the Terrain work task: IE trunk flexion (rs = -0.58) and upright barbell row (rs = -0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity.

  9. Flow Cytometric Determination of Panton-Valentine Leucocidin S Component Binding

    PubMed Central

    Gauduchon, Valérie; Werner, Sandra; Prévost, Gilles; Monteil, Henri; Colin, Didier A.

    2001-01-01

    The binding of the S component (LukS-PV) from the bicomponent staphylococcal Panton-Valentine leucocidin to human polymorphonuclear neutrophils (PMNs) and monocytes was determined using flow cytometry and a single-cysteine substitution mutant of LukS-PV. The mutant was engineered by replacing a glycine at position 10 with a cysteine and was labeled with a fluorescein moiety. The biological activity of the mutant was identical to that of the native protein. It has been shown that LukS-PV has a high affinity for PMNs (Kd = 0.07 ± 0.02 nM, n = 5) and monocytes (Kd = 0.020 ± 0.003 nM, n = 3) with maximal binding capacities of 197,000 and 80,000 LukS-PV molecules per cell, respectively. The nonspecifically bound molecules of LukS-PV do not form pores in the presence of the F component (LukF-PV) of leucocidin. LukS-PV and HlgC share the same receptor on PMNs, but the S components of other staphylococcal leukotoxins, HlgA, LukE, and LukM, do not compete with LukS-PV for its receptor. Extracellular Ca2+ at physiological concentrations (1 to 2 nM) has only a slight influence on the LukS-PV binding, in contrast to its complete inhibition by Zn2+. The down-regulation by phorbol 12-myristate 13-acetate (PMA) of the binding of LukS-PV was blocked by staurosporine, suggesting that the regulatory effect of PMA depends on protein kinase C activation. The labeled mutant form of LukS-PV has proved very useful for detailed binding studies of circulating white cells by flow cytometry. LukS-PV possesses a high specific affinity for a unique receptor on PMNs and monocytes. PMID:11254598

  10. Effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    John E. Aston; William A. Apel; Brady D. Lee

    2010-12-01

    This study describes the effects of cell condition, pH, and temperature on lead, zinc, and copper sorption to Acidithiobacillus caldus strain BC13 with a Langmuir model. Copper exhibited the highest loading capacity, 4.76 ± 0.28 mmol g-1, to viable cells at pH 5.5. The highest kL (binding-site affinity) observed was 61.2 ± 3.0 L mmol-1 to dehydrated cells at pH 4.0. The pHs that maximized loading capacities and binding-site affinities were generally between 4.0 and 5.5, where the sum of free-proton and complexed-metal concentrations was near a minimum. Of additional importance, lead, zinc, and copper sorbed to viable cells atmore » pH values as low as 1.5. Previous studies with other acidithiobacilli did not measure viable-cell sorption below pH 4.0. In separate experiments, desorption studies showed that far less copper was recovered from viable cells than any other metal or cell condition, suggesting that uptake may play an important role in copper sorption by At. caldus strain BC13. To reflect an applied system, the sorption of metal mixtures was also studied. In these experiments, lead, zinc, and copper sorption from a tertiary mixture were 40.2 ± 4.3%, 28.7 ± 3.8%, and 91.3 ± 3.0%, respectively, of that sorbed in single-metal systems.« less

  11. Effects of dynamic hyperinflation on exercise capacity and quality of life in stable COPD patients.

    PubMed

    Zhao, Li; Peng, Liyue; Wu, Baomei; Bu, Xiaoning; Wang, Chen

    2016-09-01

    Dynamic hyperinflation (DH) is an important pathophysiological characteristic of chronic obstructive pulmonary disease (COPD). There is increasing evidence that DH has negative effects on exercise performance and quality of life. The objective of this study was to explore effects of DH on exercise capacity and quality of life in stable COPD patients. Fifty-eight COPD patients and 20 matched healthy individuals underwent pulmonary function test, 6-min walk test and symptom-limited cardiopulmonary exercise test (CPET). End-expiratory lung volume/total lung capacity ratio (EELVmax/TLC) at peak exercise of CPET was evaluated, and EELVmax/TLC ≥ 75% was defined as 'severe dynamic hyperinflation (SDH)'. Of the 58 patients studied, 29 (50.0%) presented with SDH (SDH+ group, EELVmax/TLC 79.60 ± 3.60%), having worse maximal exercise capacity reflected by lower peakload, maximal oxygen uptake (VO2 max), maximal carbon dioxide output (VCO2 max) and maximal minute ventilation (VEmax) than did those without SDH (SDH- group, EELVmax/TLC 67.44 ± 6.53%). The EELVmax/TLC ratio at peak exercise had no association with variables of pulmonary function and 6-min walk distance (6MWD), but correlated inversely with peakload, VO2 max, VCO2 max and VEmax (r = -0.300~-0.351, P < 0.05). Although no significant differences were observed, patients with EELVmax/TLC ≥ 75% tended to have higher COPD assessment test score (15.07 ± 6.55 vs 13.28 ± 6.59, P = 0.303). DH develops variably during exercise and has a greater impact on maximal exercise capacity than 6MWD, even in those with the same extent of pulmonary function impairment at rest. © 2015 John Wiley & Sons Ltd.

  12. Interactions between neutral endopeptidase (EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells.

    PubMed

    Okamoto, A; Lovett, M; Payan, D G; Bunnett, N W

    1994-05-01

    Interactions between neutral endopeptidase-24.11 (NEP) and the substance P receptor (SPR; NK1) were investigated by examining substance P (SP) degradation, SP binding and SP-induced Ca2+ mobilization in epithelial cells transfected with cDNA encoding the rat SPR and rat NEP. Expression of NEP accelerated the degradation of SP by intact epithelial cells and by membrane preparations, and degradation was reduced by the NEP inhibitor thiorphan. In cells expressing SPR alone, specific 125I-SP binding after 20 min incubation at 37 degrees C was 92.2 +/- 3.1% of maximal binding and was unaffected by thiorphan. Coexpression of NEP in the same cells as the SPR markedly reduced SP binding to 13.9 +/- 0.5% of maximal, and binding was increased to 82.7 +/- 2.4% of maximal with thiorphan. Coexpression of NEP in the same cells as the SPR also reduced to undetectable the increase in intracellular Ca2+ in response to low concentrations of SP (0.3 and 0.5 nM), and significantly reduced the response to higher concentrations (1 and 3 nM). The Ca2+ response was restored to control values by inhibition of NEP with thiorphan. In contrast, SP binding and SP-induced Ca2+ mobilization were only slightly reduced when cells expressing SPR alone were mixed with a 3- to 24-fold excess of cells expressing NEP alone. Therefore, in this system, NEP markedly down-regulates SP binding and SP-induced Ca2+ mobilization only when coexpressed in the same cells as the SPR.

  13. Statins Affect Skeletal Muscle Performance: Evidence for Disturbances in Energy Metabolism.

    PubMed

    Allard, Neeltje A E; Schirris, Tom J J; Verheggen, Rebecca J; Russel, Frans G M; Rodenburg, Richard J; Smeitink, Jan A M; Thompson, Paul D; Hopman, Maria T E; Timmers, Silvie

    2018-01-01

    Statin myopathy is linked to disturbances in mitochondrial function and exercise intolerance. To determine whether differences exist in exercise performance, muscle function, and muscle mitochondrial oxidative capacity and content between symptomatic and asymptomatic statin users, and control subjects. Cross-sectional study. Department of Physiology, Radboud University Medical Center. Long-term symptomatic and asymptomatic statin users, and control subjects (n = 10 per group). Maximal incremental cycling tests, involuntary electrically stimulated isometric quadriceps-muscle contractions, and biopsy of vastus lateralis muscle. Maximal exercise capacity, substrate use during exercise, muscle function, and mitochondrial energy metabolism. Peak oxygen uptake, maximal work load, and ventilatory efficiency were comparable between groups, but both statin groups had a depressed anaerobic threshold compared with the control group (P = 0.01). Muscle relaxation time was prolonged in both statin groups compared with the control group and rate of maximal force rise was decreased (Ptime×group < 0.001 for both measures). Mitochondrial activity of complexes II and IV was lower in symptomatic statin users than control subjects and tended to be lower for complex (C) III (CII: P = 0.03; CIII: P = 0.05; CIV: P = 0.04). Mitochondrial content tended to be lower in both statin groups than in control subjects. Statin use attenuated substrate use during maximal exercise performance, induced muscle fatigue during repeated muscle contractions, and decreased muscle mitochondrial oxidative capacity. This suggests disturbances in mitochondrial oxidative capacity occur with statin use even in patients without statin-induced muscle complaints. Copyright © 2017 Endocrine Society

  14. Antioxidative capacity and binding affinity of the complex of green tea catechin and beta-lactoglobulin glycated by the Maillard reaction.

    PubMed

    Perusko, Marija; Al-Hanish, Ayah; Mihailovic, Jelena; Minic, Simeon; Trifunovic, Sara; Prodic, Ivana; Cirkovic Velickovic, Tanja

    2017-10-01

    Major green tea catechin, epigallocatechin-3-gallate (EGCG), binds non-covalently to numerous dietary proteins, including beta-lactoglobulin of cow's milk. The effects of glycation of proteins via Maillard reaction on the binding capacity for polyphenols and the antiradical properties of the formed complexes have not been studied previously. Binding constant of BLG glycated by milk sugar lactose to EGCG was measured by the method of fluorophore quenching. Binding of EGCG was confirmed by CD and FTIR. The antioxidative properties of the complexes were examined by measuring ABTS radical scavenging capacity, superoxide anion scavenging capacity and total reducing power assay. Glycation of BLG does not significantly influence the binding constant of EGCG for the protein. Conformational changes were observed for both native and glycated BLG upon complexation with EGCG. Masking effect of polyphenol complexation on the antioxidative potential of the protein was of the similar degree for both glycated BLG and native BLG. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  16. Modulation of the platelet serotonin transporter by thermal balneotherapy: a study in healthy subjects.

    PubMed

    Baroni, S; Marazziti, D; Consoli, G; Picchetti, M; Catena-Dell'Osso, M; Galassi, A

    2012-05-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 30 healthy volunteers before (t0) and 30 minutes after (t1) thermal balneotherapy with ozonized water, as compared with a similar group who underwent a bath in non-mineral water. MATERIALS AN METHODS: The SERT was evaluated by means of the specific binding of 3H-paroxetine (3H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of 3H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  17. Thermal balneotherapy induces changes of the platelet serotonin transporter in healthy subjects.

    PubMed

    Marazziti, Donatella; Baroni, Stefano; Giannaccini, Gino; Catena Dell'Osso, Mario; Consoli, Giorgio; Picchetti, Michela; Carlini, Marina; Massimetti, Gabriele; Provenzano, Serafina; Galassi, Antonio

    2007-10-01

    Although the beneficial effects of balneotherapy have been recognized since a long time, a few information is available on the biological mechanisms underlying them and the subjective feelings of increased well-being and mood. The links between the serotonin (5-HT) system and mood prompted us to investigate the 5-HT platelet transporter (SERT), which is considered a reliable, peripheral marker of the same structure present in presynaptic neurons, in 20 healthy volunteers before (t0) and 30 min after (t1) thermal balneotherapy with ozonized water of Montecatini spa, as compared with a similar group who underwent a bath in non-mineral water. The SERT was evaluated by means of the specific binding of (3)H-paroxetine ((3)H-Par) to platelet membranes. Equilibrium-saturation binding data, the maximal binding capacity (Bmax) and the dissociation constant (Kd), were obtained by means of the Scatchard analysis. The results showed that, while Bmax values did not change in both groups, the Kd values decreased significantly at t1 only in those subjects who bathed in ozonized water. The results of this study, while showing a decrease of the dissociation constant (Kd) which is the inverse of affinity constant, of (3)H-Par binding to SERT in all subjects after balneotherapy and not in those bathing in normal water, suggest that SERT modifications may be related to a specific effect of ozonized water and, perhaps, also to the increased sense of well-being.

  18. Different inactivating mutations of the mineralocorticoid receptor in fourteen families affected by type I pseudohypoaldosteronism.

    PubMed

    Sartorato, Paola; Lapeyraque, Anne-Laure; Armanini, Decio; Kuhnle, Ursula; Khaldi, Yasmina; Salomon, Rémi; Abadie, Véronique; Di Battista, Eliana; Naselli, Arturo; Racine, Alain; Bosio, Maurizio; Caprio, Massimiliano; Poulet-Young, Véronique; Chabrolle, Jean-Pierre; Niaudet, Patrick; De Gennes, Christiane; Lecornec, Marie-Hélène; Poisson, Elodie; Fusco, Anna Maria; Loli, Paola; Lombès, Marc; Zennaro, Maria-Christina

    2003-06-01

    We have analyzed the human mineralocorticoid receptor (hMR) gene in 14 families with autosomal dominant or sporadic pseudohypoaldosteronism (PHA1), a rare form of mineralocorticoid resistance characterized by neonatal renal salt wasting and failure to thrive. Six heterozygous mutations were detected. Two frameshift mutations in exon 2 (insT1354, del8bp537) and one nonsense mutation in exon 4 (C2157A, Cys645stop) generate truncated proteins due to premature stop codons. Three missense mutations (G633R, Q776R, L979P) differently affect hMR function. The DNA binding domain mutant R633 exhibits reduced maximal transactivation, although its binding characteristics and ED(50) of transactivation are comparable with wild-type hMR. Ligand binding domain mutants R776 and P979 present reduced or absent aldosterone binding, respectively, which is associated with reduced or absent ligand-dependent transactivation capacity. Finally, P979 possesses a transdominant negative effect on wild-type hMR activity, whereas mutations G633R and Q776R probably result in haploinsufficiency in PHA1 patients. We conclude that hMR mutations are a common feature of autosomal dominant PHA1, being found in 70% of our familial cases. Their absence in some families underscores the importance of an extensive investigation of the hMR gene and the role of precise diagnostic procedures to allow for identification of other genes potentially involved in the disease.

  19. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    PubMed Central

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  20. Protein Binding Capacity of Different Forages Tannin

    NASA Astrophysics Data System (ADS)

    Yusiati, L. M.; Kurniawati, A.; Hanim, C.; Anas, M. A.

    2018-02-01

    Eight forages of tannin sources(Leucaena leucocephala, Arachis hypogaea, Mimosa pudica, Morus alba L, Swietenia mahagoni, Manihot esculenta, Gliricidia sepium, and Bauhinia purpurea)were evaluated their tannin content and protein binding capacity. The protein binding capacity of tannin were determined using precipitation of bovine serum albumin (BSA). Swietenia mahagonihas higest total tannin level and condensed tannin (CT) compared with other forages (P<0.01). The Leucaena leucocephala has highest hydrolysable tannin (HT) level (P<0.01). The total and condensed tannin content of Swietenia mahagoni were 11.928±0.04 mg/100 mg and 9.241±0.02mg/100mg dry matter (DM) of leaves. The hydrolysable tannin content of Leucaena leucocephala was 5.338±0.03 mg/100 mg DM of leaves. Binding capacity was highest in Swietenia mahagoni and Leucaena leucocephala compared to the other forages (P<0.01). The optimum binding of BSA to tannin in Leucaena leucocephala and Swietenia mahagoniwere1.181±0.44 and 1.217±0.60mg/mg dry matter of leaves. The present study reports that Swietenia mahagoni has highest of tannin content and Leucaena leucocephala and Swietenia mahagoni capacity of protein binding.

  1. Iron-binding antioxidant capacity is impaired in diabetes mellitus.

    PubMed

    Van Campenhout, Ann; Van Campenhout, Christel; Lagrou, Albert R; Moorkens, Greta; De Block, Christophe; Manuel-y-Keenoy, Begoña

    2006-05-15

    Increased lipid peroxidation contributes to diabetic complications and redox-active iron is known to play an important role in catalyzing peroxidation reactions. We aimed to investigate if diabetes affects the capacity of plasma to protect against iron-driven lipid peroxidation and to identify underlying factors. Glycemic control, serum iron, proteins involved in iron homeostasis, plasma iron-binding antioxidant capacity in a liposomal model, and non-transferrin-bound iron were measured in 40 type 1 and 67 type 2 diabetic patients compared to 100 nondiabetic healthy control subjects. Iron-binding antioxidant capacity was significantly lower in the plasma of diabetic subjects (83 +/- 6 and 84 +/- 5% in type 1 and type 2 diabetes versus 88 +/- 6% in control subjects, p < 0.0005). The contribution of transferrin, ceruloplasmin, and albumin concentrations to the iron-binding antioxidant capacity was lost in diabetes (explaining only 4.2 and 6.3% of the variance in type 1 and type 2 diabetes versus 13.9% in control subjects). This observation could not be explained by differences in Tf glycation, lipid, or inflammatory status and was not associated with higher non-transferrin-bound iron levels. Iron-binding antioxidant capacity is decreased in diabetes mellitus.

  2. Quantitative determination of cesium binding to ferric hexacyanoferrate: Prussian blue.

    PubMed

    Faustino, Patrick J; Yang, Yongsheng; Progar, Joseph J; Brownell, Charles R; Sadrieh, Nakissa; May, Joan C; Leutzinger, Eldon; Place, David A; Duffy, Eric P; Houn, Florence; Loewke, Sally A; Mecozzi, Vincent J; Ellison, Christopher D; Khan, Mansoor A; Hussain, Ajaz S; Lyon, Robbe C

    2008-05-12

    Ferric hexacyanoferrate (Fe4III[FeII(CN)6]3), also known as insoluble Prussian blue (PB) is the active pharmaceutical ingredient (API) of the drug product, Radiogardase. Radiogardase is the first FDA approved medical countermeasure for the treatment of internal contamination with radioactive cesium (Cs) or thallium in the event of a major radiological incident such as a "dirty bomb". A number of pre-clinical and clinical studies have evaluated the use of PB as an investigational decorporation agent to enhance the excretion of metal cations. There are few sources of published in vitro data that detail the binding capacity of cesium to insoluble PB under various chemical and physical conditions. The study objective was to determine the in vitro binding capacity of PB APIs and drug products by evaluating certain chemical and physical factors such as medium pH, particle size, and storage conditions (temperature). In vitro experimental conditions ranged from pH 1 to 9, to cover the range of pH levels that PB may encounter in the gastrointestinal (GI) tract in humans. Measurements of cesium binding were made between 1 and 24h, to cover gastric and intestinal tract residence time using a validated atomic emission spectroscopy (AES) method. The results indicated that pH, exposure time, storage temperature (affecting moisture content) and particle size play significant roles in the cesium binding to both the PB API and the drug product. The lowest cesium binding was observed at gastric pH of 1 and 2, whereas the highest cesium binding was observed at physiological pH of 7.5. It was observed that dry storage conditions resulted in a loss of moisture from PB, which had a significant negative effect on the PB cesium binding capacity at time intervals consistent with gastric residence. Differences were also observed in the binding capacity of PB with different particle sizes. Significant batch to batch differences were also observed in the binding capacity of some PB API and drug products. Our results suggest that certain physiochemical properties affect the initial binding capacity and the overall binding capacity of PB APIs and drug products during conditions that simulated gastric and GI residence time. These physiochemical properties can be utilized as quality attributes to monitor and predict drug product quality under certain manufacturing and storage conditions and may be utilized to enhance the clinical efficacy of PB.

  3. Linear dimensions and volumes of human lungs

    DOE PAGES

    Hickman, David P.

    2012-03-30

    TOTAL LUNG Capacity is defined as “the inspiratory capacity plus the functional residual capacity; the volume of air contained in the lungs at the end of a maximal inspiration; also equals vital capacity plus residual volume” (from MediLexicon.com). Within the Results and Discussion section of their April 2012 Health Physics paper, Kramer et al. briefly noted that the lungs of their experimental subjects were “not fully inflated.” By definition and failure to obtain maximal inspiration, Kramer et. al. did not measure Total Lung Capacity (TLC). The TLC equation generated from this work will tend to underestimate TLC and does notmore » improve or update total lung capacity data provided by ICRP and others. Likewise, the five linear measurements performed by Kramer et. al. are only representative of the conditions of the measurement (i.e., not at-rest volume, but not fully inflated either). While there was significant work performed and the data are interesting, the data does not represent a maximal situation, a minimal situation, or an at-rest situation. Moreover, while interesting, the linear data generated by this study is limited by the conditions of the experiment and may not be fully comparative with other lung or inspiratory parameters, measures, or physical dimensions.« less

  4. A proof of the log-concavity conjecture related to the computation of the ergodic capacity of MIMO channels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gurvitis, Leonid

    2009-01-01

    An upper bound on the ergodic capacity of MIMO channels was introduced recently in [1]. This upper bound amounts to the maximization on the simplex of some multilinear polynomial p({lambda}{sub 1}, ..., {lambda}{sub n}) with non-negative coefficients. In general, such maximizations problems are NP-HARD. But if say, the functional log(p) is concave on the simplex and can be efficiently evaluated, then the maximization can also be done efficiently. Such log-concavity was conjectured in [1]. We give in this paper self-contained proof of the conjecture, based on the theory of H-Stable polynomials.

  5. Lung volumes and maximal respiratory pressures in collegiate swimmers and runners.

    PubMed

    Cordain, L; Tucker, A; Moon, D; Stager, J M

    1990-03-01

    To determine whether respiratory muscle strength is related to pulmonary volume differences in athletes and nonathletes, 11 intercollegiate female swimmers, 11 female cross-country runners, and two nonathletic control groups, matched to the athletes in height and age, were evaluated for pulmonary parameters including maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax). Swimmers exhibited larger (p less than .05) vital capacities (VC), residual lung volumes (RV), inspiratory capacities (IC), and functional residual capacities (FRC) than both the runners or the controls but no difference (p greater than .05) in either PImax or inspiratory flow (FIV 25%-75%). Timed expiratory volumes (FEV 0.5 and FEV 1.0) were significantly (p less than .05) lower in the swimmers than in the controls. These data suggest that an adaptational growth may be responsible, in part, for the augmented static lung volumes demonstrated in swimmers.

  6. Purification of Bacteriophages Using Anion-Exchange Chromatography.

    PubMed

    Vandenheuvel, Dieter; Rombouts, Sofie; Adriaenssens, Evelien M

    2018-01-01

    In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM ® ) monoliths. Afterward, the column is washed to remove impurities from the CIM ® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.

  7. CFTR Genotype and Maximal Exercise Capacity in Cystic Fibrosis: A Cross-sectional Study.

    PubMed

    Radtke, Thomas; Hebestreit, Helge; Gallati, Sabina; Schneiderman, Jane E; Braun, Julia; Stevens, Daniel; Hulzebos, Erik Hj; Takken, Tim; Boas, Steven R; Urquhart, Don S; Lands, Larry C; Tejero, Sergio; Sovtic, Aleksandar; Dwyer, Tiffany; Petrovic, Milos; Harris, Ryan A; Karila, Chantal; Savi, Daniela; Usemann, Jakob; Mei-Zahav, Meir; Hatziagorou, Elpis; Ratjen, Felix; Kriemler, Susi

    2018-02-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in human skeletal muscle cells. Variations of CFTR dysfunction among patients with cystic fibrosis may be an important determinant of maximal exercise capacity in cystic fibrosis. Previous studies on the relationship between CFTR genotype and maximal exercise capacity are scarce and contradictory. This study was designed to explore factors influencing maximal exercise capacity, expressed as peak oxygen uptake (V.O2peak), with a specific focus on CFTR genotype in children and adults with cystic fibrosis. In an international, multicenter, cross-sectional study, we collected data on CFTR genotype and cardiopulmonary exercise tests in patients with cystic fibrosis who were ages 8 years and older. CFTR mutations were classified into functional classes I–V. The final analysis included 726 patients (45% females; age range, 8–61 yr; forced expiratory volume in 1 s, 16 to 123% predicted) from 17 cystic fibrosis centers in North America, Europe, Australia, and Asia, all of whom had both valid maximal cardiopulmonary exercise tests and complete CFTR genotype data. Overall, patients exhibited exercise intolerance (V.O2peak, 77.3 ± 19.1% predicted), but values were comparable among different CFTR classes. We did not detect an association between CFTR genotype functional classes I–III and either V.O2peak (percent predicted) (adjusted β = −0.95; 95% CI, −4.18 to 2.29; P = 0.57) or maximum work rate (Wattmax) (adjusted β = −1.38; 95% CI, −5.04 to 2.27; P = 0.46) compared with classes IV–V. Those with at least one copy of a F508del-CFTR mutation and one copy of a class V mutation had a significantly lower V.O2peak (β = −8.24%; 95% CI, −14.53 to −2.99; P = 0.003) and lower Wattmax (adjusted β = −7.59%; 95% CI, −14.21 to −0.95; P = 0.025) than those with two copies of a class II mutation. On the basis of linear regression analysis adjusted for relevant confounders, lung function and body mass index were associated with V.O2peak. CFTR functional genotype class was not associated with maximal exercise capacity in patients with cystic fibrosis overall, but those with at least one copy of a F508del-CFTR mutation and a single class V mutation had lower maximal exercise capacity.

  8. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function.

    PubMed

    Jacobs, Robert Acton; Flück, Daniela; Bonne, Thomas Christian; Bürgi, Simon; Christensen, Peter Møller; Toigo, Marco; Lundby, Carsten

    2013-09-01

    Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.

  9. Interactions between neutral endopeptidase (EC 3.4.24.11) and the substance P (NK1) receptor expressed in mammalian cells.

    PubMed Central

    Okamoto, A; Lovett, M; Payan, D G; Bunnett, N W

    1994-01-01

    Interactions between neutral endopeptidase-24.11 (NEP) and the substance P receptor (SPR; NK1) were investigated by examining substance P (SP) degradation, SP binding and SP-induced Ca2+ mobilization in epithelial cells transfected with cDNA encoding the rat SPR and rat NEP. Expression of NEP accelerated the degradation of SP by intact epithelial cells and by membrane preparations, and degradation was reduced by the NEP inhibitor thiorphan. In cells expressing SPR alone, specific 125I-SP binding after 20 min incubation at 37 degrees C was 92.2 +/- 3.1% of maximal binding and was unaffected by thiorphan. Coexpression of NEP in the same cells as the SPR markedly reduced SP binding to 13.9 +/- 0.5% of maximal, and binding was increased to 82.7 +/- 2.4% of maximal with thiorphan. Coexpression of NEP in the same cells as the SPR also reduced to undetectable the increase in intracellular Ca2+ in response to low concentrations of SP (0.3 and 0.5 nM), and significantly reduced the response to higher concentrations (1 and 3 nM). The Ca2+ response was restored to control values by inhibition of NEP with thiorphan. In contrast, SP binding and SP-induced Ca2+ mobilization were only slightly reduced when cells expressing SPR alone were mixed with a 3- to 24-fold excess of cells expressing NEP alone. Therefore, in this system, NEP markedly down-regulates SP binding and SP-induced Ca2+ mobilization only when coexpressed in the same cells as the SPR. Images Figure 1 Figure 2 PMID:7514869

  10. Contributions of molecular size, charge distribution, and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates.

    PubMed

    Sun, Na; Cui, Pengbo; Jin, Ziqi; Wu, Haitao; Wang, Yixing; Lin, Songyi

    2017-09-01

    This study investigated the contributions of molecular size, charge distribution and specific amino acids to the iron-binding capacity of sea cucumber (Stichopus japonicus) ovum hydrolysates (SCOHs), and further explored their iron-binding sites. It was demonstrated that enzyme type and degree of hydrolysis (DH) significantly influenced the iron-binding capacity of the SCOHs. The SCOHs produced by alcalase at a DH of 25.9% possessed the highest iron-binding capacity at 92.1%. As the hydrolysis time increased, the molecular size of the SCOHs decreased, the negative charges increased, and the hydrophilic amino acids were exposed to the surface, facilitating iron binding. Furthermore, the Fourier transform infrared spectra, combined with amino acid composition analysis, revealed that iron bound to the SCOHs primarily through interactions with carboxyl oxygen of Asp, guanidine nitrogen of Arg or nitrogen atoms in imidazole group of His. The formed SCOHs-iron complexes exhibited a fold and crystal structure with spherical particles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Maximizing the optical network capacity

    PubMed Central

    Bayvel, Polina; Maher, Robert; Liga, Gabriele; Shevchenko, Nikita A.; Lavery, Domaniç; Killey, Robert I.

    2016-01-01

    Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. PMID:26809572

  12. Inspiratory muscle training improves respiratory muscle strength, functional capacity and quality of life in patients with chronic kidney disease: a systematic review.

    PubMed

    de Medeiros, Ana Irene Carlos; Fuzari, Helen Kerlen Bastos; Rattesa, Catarina; Brandão, Daniella Cunha; de Melo Marinho, Patrícia Érika

    2017-04-01

    Does inspiratory muscle training improve respiratory muscle strength, functional capacity, lung function and quality of life of patients with chronic kidney disease? Does inspiratory muscle training improve these outcomes more than breathing exercises? Systematic review and meta-analysis of randomised trials. People with chronic kidney disease undergoing dialysis treatment. The primary outcomes were: maximal inspiratory pressure, maximal expiratory pressure, and distance covered on the 6-minute walk test. The secondary outcomes were: forced vital capacity, forced expiratory volume in the first second (FEV 1 ), and quality of life. The search identified four eligible studies. The sample consisted of 110 participants. The inspiratory muscle training used a Threshold ® or PowerBreathe ® device, with a load ranging from 30 to 60% of the maximal inspiratory pressure and lasting from 6 weeks to 6 months. The studies showed moderate to high risk of bias, and the quality of the evidence was rated low or very low, due to the studies' methodological limitations. The meta-analysis showed that inspiratory muscle training significantly improved maximal inspiratory pressure (MD 23 cmH 2 O, 95% CI 16 to 29) and the 6-minute walk test distance (MD 80m, 95% CI 41 to 119) when compared with controls. Significant benefits in lung function and quality of life were also identified. When compared to breathing exercises, significant benefits were identified in maximal expiratory pressure (MD 6 cmH 2 O, 95% CI 2 to 10) and FEV 1 (MD 0.24litres 95% CI 0.14 to 0.34), but not maximal inspiratory pressure or forced vital capacity. In patients with chronic renal failure on dialysis, inspiratory muscle training with a fixed load significantly improves respiratory muscle strength, functional capacity, lung function and quality of life. The evidence for these benefits may be influenced by some sources of bias. PROSPERO (CRD 42015029986). [de Medeiros AIC, Fuzari HKB, Rattesa C, Brandão DC, de Melo Marinho PÉ (2017) Inspiratory muscle training improves respiratory muscle strength, functional capacity and quality of life in patients with chronic kidney disease: a systematic review. Journal of Physiotherapy 63: 76-83]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  13. Changes in cardiopulmonary function in normal adults after the Rockport 1 mile walking test: a preliminary study.

    PubMed

    Kim, Kyoung; Lee, Hye-Young; Lee, Do-Youn; Nam, Chan-Woo

    2015-08-01

    [Purpose] The purpose of this study was to investigate the changes of cardiopulmonary function in normal adults after the Rockport 1 mile walking test. [Subjects and Methods] University students (13 males and 27 females) participated in this study. Before and after the Rockport 1 mile walking test, pulmonary function, respiratory pressure, and maximal oxygen uptake were measured. [Results] Significant improvements in forced vital capacity and maximal inspiratory pressure were observed after the Rockport 1 mile walking test in males, and significant improvements in forced vital capacity, forced expiratory volume at 1 s, maximal inspiratory pressure, and maximal expiratory pressure were observed after the Rockport 1 mile walking test in females. However, the maximal oxygen uptake was not significantly different. [Conclusion] Our findings indicate that the Rockport 1 mile walking test changes cardiopulmonary function in males and females, and that it may improve cardiopulmonary function in middle-aged and older adults and provide basic data on cardiopulmonary endurance.

  14. Changes in cardiopulmonary function in normal adults after the Rockport 1 mile walking test: a preliminary study

    PubMed Central

    Kim, Kyoung; Lee, Hye-Young; Lee, Do-Youn; Nam, Chan-Woo

    2015-01-01

    [Purpose] The purpose of this study was to investigate the changes of cardiopulmonary function in normal adults after the Rockport 1 mile walking test. [Subjects and Methods] University students (13 males and 27 females) participated in this study. Before and after the Rockport 1 mile walking test, pulmonary function, respiratory pressure, and maximal oxygen uptake were measured. [Results] Significant improvements in forced vital capacity and maximal inspiratory pressure were observed after the Rockport 1 mile walking test in males, and significant improvements in forced vital capacity, forced expiratory volume at 1 s, maximal inspiratory pressure, and maximal expiratory pressure were observed after the Rockport 1 mile walking test in females. However, the maximal oxygen uptake was not significantly different. [Conclusion] Our findings indicate that the Rockport 1 mile walking test changes cardiopulmonary function in males and females, and that it may improve cardiopulmonary function in middle-aged and older adults and provide basic data on cardiopulmonary endurance. PMID:26356048

  15. Determinants of maximal oxygen uptake (VO2 max) in fire fighter testing.

    PubMed

    Vandersmissen, G J M; Verhoogen, R A J R; Van Cauwenbergh, A F M; Godderis, L

    2014-07-01

    The aim of this study was to evaluate current daily practice of aerobic capacity testing in Belgian fire fighters. The impact of personal and test-related parameters on the outcome has been evaluated. Maximal oxygen uptake (VO2 max) results of 605 male fire fighters gathered between 1999 and 2010 were analysed. The maximal cardio respiratory exercise tests were performed at 22 different centres using different types of tests (tread mill or bicycle), different exercise protocols and measuring equipment. Mean VO2 max was 43.3 (SD = 9.8) ml/kg.min. Besides waist circumference and age, the type of test, the degree of performance of the test and the test centre were statistically significant determinants of maximal oxygen uptake. Test-related parameters have to be taken into account when interpreting and comparing maximal oxygen uptake tests of fire fighters. It highlights the need for standardization of aerobic capacity testing in the medical evaluation of fire fighters. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Binding characteristics and protective capacity of cyanidin-3-glucoside and its aglycon to calf thymus DNA.

    PubMed

    Zhang, Chao; Guo, Xiaofei; Cai, Wenqian; Ma, Yue; Zhao, Xiaoyan

    2015-04-01

    The binding characteristics and protective capacity of cyanidin (Cy) and cyanidin-3-glucoside (C3G) to calf thymus DNA were explored for the first time. The Cy and C3G gave a bathochromic shift to the ultraviolet-visible spectra of the DNA, indicating the formation of the DNA-Cy and DNA-C3G complexes. The complexes were formed by an intercalative binding mode based on the results of the fluorescence spectra and competitive binding analysis. Meanwhile, the Cy and C3G protected the DNA from the damage induced by the hydroxyl radical. The binding capacity and protective capacity of the C3G were stronger than that of the Cy. Furthermore, the formation of the DNA-anthocyanin complexes was spontaneous when the hydrogen bond and hydrophobic force played a key role. Hence, the Cy and C3G could protect the DNA automatically from the damage induced by the hydroxyl radical. © 2015 Institute of Food Technologists®

  17. Validity, Reliability, and Performance Determinants of a New Job-Specific Anaerobic Work Capacity Test for the Norwegian Navy Special Operations Command.

    PubMed

    Angeltveit, Andreas; Paulsen, Gøran; Solberg, Paul A; Raastad, Truls

    2016-02-01

    Operators in Special Operation Forces (SOF) have a particularly demanding profession where physical and psychological capacities can be challenged to the extremes. The diversity of physical capacities needed depend on the mission. Consequently, tests used to monitor SOF operators' physical fitness should cover a broad range of physical capacities. Whereas tests for strength and aerobic endurance are established, there is no test for specific anaerobic work capacity described in the literature. The purpose of this study was therefore to evaluate the reliability, validity, and to identify performance determinants of a new test developed for testing specific anaerobic work capacity in SOF operators. Nineteen active young students were included in the concurrent validity part of the study. The students performed the evacuation (EVAC) test 3 times and the results were compared for reliability and with performance in the Wingate cycle test, 300-m sprint, and a maximal accumulated oxygen deficit (MAOD) test. In part II of the study, 21 Norwegian Navy Special Operations Command operators conducted the EVAC test, anthropometric measurements, a dual x-ray absorptiometry scan, leg press, isokinetic knee extensions, maximal oxygen uptake test, and countermovement jump (CMJ) test. The EVAC test showed good reliability after 1 familiarization trial (intraclass correlation = 0.89; coefficient of variance = 3.7%). The EVAC test correlated well with the Wingate test (r = -0.68), 300-m sprint time (r = 0.51), and 300-m mean power (W) (r = -0.67). No significant correlation was found with the MAOD test. In part II of the study, height, body mass, lean body mass, isokinetic knee extension torque, maximal oxygen uptake, and maximal power in a CMJ was significantly correlated with performance in the EVAC test. The EVAC test is a reliable and valid test for anaerobic work capacity for SOF operators, and muscle mass, leg strength, and leg power seem to be the most important determinants of performance.

  18. Laboratory or Field Tests for Evaluating Firefighters' Work Capacity?

    PubMed Central

    Lindberg, Ann-Sofie; Oksa, Juha; Malm, Christer

    2014-01-01

    Muscle strength is important for firefighters work capacity. Laboratory tests used for measurements of muscle strength, however, are complicated, expensive and time consuming. The aims of the present study were to investigate correlations between physical capacity within commonly occurring and physically demanding firefighting work tasks and both laboratory and field tests in full time (N = 8) and part-time (N = 10) male firefighters and civilian men (N = 8) and women (N = 12), and also to give recommendations as to which field tests might be useful for evaluating firefighters' physical work capacity. Laboratory tests of isokinetic maximal (IM) and endurance (IE) muscle power and dynamic balance, field tests including maximal and endurance muscle performance, and simulated firefighting work tasks were performed. Correlations with work capacity were analyzed with Spearman's rank correlation coefficient (rs). The highest significant (p<0.01) correlations with laboratory and field tests were for Cutting: IE trunk extension (rs = 0.72) and maximal hand grip strength (rs = 0.67), for Stairs: IE shoulder flexion (rs = −0.81) and barbell shoulder press (rs = −0.77), for Pulling: IE shoulder extension (rs = −0.82) and bench press (rs = −0.85), for Demolition: IE knee extension (rs = 0.75) and bench press (rs = 0.83), for Rescue: IE shoulder flexion (rs = −0.83) and bench press (rs = −0.82), and for the Terrain work task: IE trunk flexion (rs = −0.58) and upright barbell row (rs = −0.70). In conclusion, field tests may be used instead of laboratory tests. Maximal hand grip strength, bench press, chin ups, dips, upright barbell row, standing broad jump, and barbell shoulder press were strongly correlated (rs≥0.7) with work capacity and are therefore recommended for evaluating firefighters work capacity. PMID:24614596

  19. Lapatinib nano-delivery systems: a promising future for breast cancer treatment.

    PubMed

    Bonde, Gunjan Vasant; Yadav, Sarita Kumari; Chauhan, Sheetal; Mittal, Pooja; Ajmal, Gufran; Thokala, Sathish; Mishra, Brahmeshwar

    2018-05-01

    Breast cancer stands the second prominent cause of death among women. For its efficient treatment, Lapatinib (LAPA) was developed as a selective tyrosine kinase inhibitor of receptors, overexpressed by breast cancer cells. Various explored delivery strategies for LAPA indicated its controlled release with enhanced aqueous solubility, improved bioavailability, decreased plasma protein binding, reduced dose and toxicity to the other organs with maximized clinical efficacy, compared to its marketed tablet formulation. Areas covered: This comprehensive review deals with the survey, performed through different electronic databases, regarding various challenges and their solutions attained by fabricating delivery systems like nanoparticles, micelle, nanocapsules, nanochannels, and liposomes. It also covers the synthesis of novel LAPA-conjugates for diagnostic purpose. Expert opinion: Unfortunately, clinical use of LAPA is restricted because of its extensive albumin binding capacity, poor oral bioavailability, and poor aqueous solubility. LAPA is marketed as the oral tablet only. Therefore, it becomes imperative to formulate alternate efficient multiparticulate or nano-delivery systems for administration through non-oral routes, for active/passive targeting, and to scale-up by pharmaceutical scientists followed by their clinical trials by clinical experts. LAPA combinations with capecitabine and letrozole should also be tried for breast cancer treatment.

  20. Measuring School Capacity, Maximizing School Improvement. Policy Brief. RB-53

    ERIC Educational Resources Information Center

    Beaver, Jessica K.; Weinbaum, Elliot H.

    2012-01-01

    It is an oft-heard refrain in schools: "These schools lack the capacity they need." Or, "We need to build capacity in schools so that students can achieve." In district offices, statehouses, and elsewhere, the sentiment is repeated in various forms, but the term "capacity" is almost always used. What do education…

  1. Effect of Semirecumbent and Upright Body Position on Maximal and Submaximal Exercise Testing

    ERIC Educational Resources Information Center

    Scott, Alexander; Antonishen, Kevin; Johnston, Chris; Pearce, Terri; Ryan, Michael; Sheel, A. William; McKenzie, Don C.

    2006-01-01

    The study was designed to determine the effect of upright-posture (UP) versus semirecumbent (SR) cycling on commonly used measures of maximal and submaximal exercise capacity. Nine healthy, untrained men (M age = 27 years, SD = 4.8 years) underwent steady-state submaximal aerobic testing followed by a ramped test to determine maximal oxygen…

  2. Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

    PubMed Central

    2013-01-01

    Background. Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Methods. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by 31P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). Results. In vitro St3 respiration was significantly correlated with in vivo ATPmax (r 2 = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r 2 = .33, p = .006). ATPmax (r 2 = .158, p = .03) and VO2 peak (r 2 = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r 2 = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Conclusions. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age. PMID:23051977

  3. Skeletal muscle mitochondrial energetics are associated with maximal aerobic capacity and walking speed in older adults.

    PubMed

    Coen, Paul M; Jubrias, Sharon A; Distefano, Giovanna; Amati, Francesca; Mackey, Dawn C; Glynn, Nancy W; Manini, Todd M; Wohlgemuth, Stephanie E; Leeuwenburgh, Christiaan; Cummings, Steven R; Newman, Anne B; Ferrucci, Luigi; Toledo, Frederico G S; Shankland, Eric; Conley, Kevin E; Goodpaster, Bret H

    2013-04-01

    Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.

  4. Partial agonist/antagonist mouse interleukin-2 proteins indicate that a third component of the receptor complex functions in signal transduction.

    PubMed Central

    Zurawski, S M; Imler, J L; Zurawski, G

    1990-01-01

    Some mouse interleukin-2 (mIL-2) proteins with substitutions at residue Gln141 are unable to trigger a maximal biological response. The Asp141 protein induces the lowest maximal response. The Asp141 protein can weakly antagonize the biological activity of mIL-2 and strongly antagonizes the biological activity of active mIL-2 mutant proteins that have defects in interactions with the high affinity receptor. Residue 141 mutant proteins bind with reduced affinity to T cells expressing the high affinity IL-2 receptor, yet bind normally to transfected fibroblasts expressing only the alpha and beta chains of the receptor. These results suggest that a third receptor component is important for both binding and signal transduction. PMID:2249656

  5. Prolonged head-down tilt exposure reduces maximal cutaneous vasodilator and sweating capacity in humans

    NASA Technical Reports Server (NTRS)

    Crandall, C. G.; Shibasaki, M.; Wilson, T. E.; Cui, J.; Levine, B. D.

    2003-01-01

    Cutaneous vasodilation and sweat rate are reduced during a thermal challenge after simulated and actual microgravity exposure. The effects of microgravity exposure on cutaneous vasodilator capacity and on sweat gland function are unknown. The purpose of this study was to test the hypothesis that simulated microgravity exposure, using the 6 degrees head-down tilt (HDT) bed rest model, reduces maximal forearm cutaneous vascular conductance (FVC) and sweat gland function and that exercise during HDT preserves these responses. To test these hypotheses, 20 subjects were exposed to 14 days of strict HDT bed rest. Twelve of those subjects exercised (supine cycle ergometry) at 75% of pre-bed rest heart rate maximum for 90 min/day throughout HDT bed rest. Before and after HDT bed rest, maximal FVC was measured, via plethysmography, by heating the entire forearm to 42 degrees C for 45 min. Sweat gland function was assessed by administering 1 x 10(-6) to 2 M acetylcholine (9 doses) via intradermal microdialysis while simultaneously monitoring sweat rate over the microdialysis membranes. In the nonexercise group, maximal FVC and maximal stimulated sweat rate were significantly reduced after HDT bed rest. In contrast, these responses were unchanged in the exercise group. These data suggest that 14 days of simulated microgravity exposure, using the HDT bed rest model, reduces cutaneous vasodilator and sweating capacity, whereas aerobic exercise training during HDT bed rest preserves these responses.

  6. [Effects of a high intensity interval training on the aerobic capacity of adolescents].

    PubMed

    Huerta Ojeda, Álvaro; Galdames Maliqueo, Sergio; Cataldo Guerra, Marianela; Barahona Fuentes, Guillermo; Rozas Villanueva, Tania; Cáceres Serrano, Pablo

    2017-08-01

    If aerobic capacity is stimulated early in life, maximal oxygen consumption during adulthood is assured. To analyze the effects of a high intensity interval training (HIIT) in adolescents on the maximal oxygen consumption (VO2max) measured using the 20-m shuttle run test (20mSRT). Twenty eight teenagers aged 13 ± 0.6 years were divided in two groups of 14 subjects each. One group was to a 16 sessions of HIIT interval training based on their individual maximal aerobic speed and the other continued with their usual exercise done at school. At baseline and the end of the intervention VO2max was measured using the 20mSTR. At the end of the intervention, the trained teenagers significantly improved their VO2max and the time spent in the 20mSTR. A HIIT program based on the individual maximal aerobic speed improves VO2max in adolescents.

  7. Effects of salts on protein-surface interactions: applications for column chromatography.

    PubMed

    Tsumoto, Kouhei; Ejima, Daisuke; Senczuk, Anna M; Kita, Yoshiko; Arakawa, Tsutomu

    2007-07-01

    Development of protein pharmaceuticals depends on the availability of high quality proteins. Various column chromatographies are used to purify proteins and characterize the purity and properties of the proteins. Most column chromatographies require salts, whether inorganic or organic, for binding, elution or simply better recovery and resolution. The salts modulate affinity of the proteins for particular columns and nonspecific protein-protein or protein-surface interactions, depending on the type and concentration of the salts, in both specific and nonspecific manners. Salts also affect the binding capacity of the column, which determines the size of the column to be used. Binding capacity, whether equilibrium or dynamic (under an approximation of a slow flow rate), depends on the binding constant, protein concentration and the number of the binding site on the column as well as nonspecific binding. This review attempts to summarize the mechanism of the salt effects on binding affinity and capacity for various column chromatographies and on nonspecific protein-protein or protein-surface interactions. Understanding such salt effects should also be useful in preventing nonspecific protein binding to various containers. Copyright 2007 Wiley-Liss, Inc.

  8. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J.M.; McCormick, S.D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol x mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol x mg protein-1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  9. Large heat capacity change in a protein-monovalent cation interaction.

    PubMed

    Guinto, E R; Di Cera, E

    1996-07-09

    Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.

  10. (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride) induces saliva and tear secretions in rats and mice: the role of muscarinic acetylcholine receptors.

    PubMed

    Iga, Y; Arisawa, H; Ogane, N; Saito, Y; Tomizuka, T; Nakagawa-Yagi, Y; Masunaga, H; Yasuda, H; Miyata, N

    1998-11-01

    We investigated effects of (+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] hydrochloride, hemihydrate (SNI-2011, cevimeline hydrochloride), a rigid analogue of acetylcholine, on saliva and tear secretions in rats and mice to evaluate its therapeutical efficacy for xerostomia and xerophthalmia in patients with Sjogren's syndrome and X-ray exposure in the head and neck. Intraduodenal administrations of SNI-2011 increased saliva secretion in a dose-dependent manner at doses ranging from 3 to 30 mg/kg in normal rats and mice, two strains of autoimmune disease mice and X-irradiated saliva secretion defective rats. The salivation elicited by SNI-2011 was completely inhibited by atropine. A similar atropine-sensitive response was observed in tear secretion. In rat submandibular/sublingual gland membranes, [3H]quinuclidinyl benzilate (QNB) binding was saturable, and Scatchard plot analysis revealed a single population of binding sites with a Kd of 22 pM and a maximal binding capacity of 60 fmol/mg protein. The competitive inhibition curve of the [3H]QNB binding by SNI-2011 was obtained, and its dissociation constant value calculated from IC50 was 1-2 microM. These results suggest that SNI-2011 increases saliva and tear secretions through a direct stimulation to muscarinic receptors in salivary and lacrimal glands, and they suggest that SNI-2011 should be beneficial to patients with Sjögren's syndrome and X-ray exposure in the head and neck.

  11. Histamine-binding capacities of different natural zeolites: a comparative study.

    PubMed

    Selvam, Thangaraj; Schwieger, Wilhelm; Dathe, Wilfried

    2018-06-07

    Two different natural zeolites from Cuba and Mexico, which are already being used as contemporaneous drugs or dietary supplements in Germany and Mexico, respectively, are applied in a comparative study of their histamine-binding capacities as a function of their particle sizes. The zeolites are characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) and N 2 -sorption measurements (BET surface areas). The Cuban zeolite contains clinoptilolite and mordenite as major phases (78% zeolite), whereas the Mexican one contains only clinoptilolite (65% zeolite). Both zeolites are apparently free from fibrous materials according to SEM. Both zeolites adsorb significant amount of histamine under the experimental conditions. Nevertheless, the results showed that the histamine-binding capacity of the Cuban zeolite is higher than the Mexican one and the smaller the particle size of zeolite, the higher the histamine-binding capacity. This difference could be due to the variation in their mineralogical compositions resulting in varied BET surface areas. Thus, the high histamine-binding capacities of Cuban zeolites seem to be due at least partly to the presence of the large-pore zeolite mordenite, providing high total pore volumes, which will be discussed in detail. For the first time, we have shown that the mineralogical compositions of natural zeolites and their particle sizes play a key role in binding histamine, which is one of the most important regulators in human physiology.

  12. Biosorption of Cadmium and Manganese Using Free Cells of Klebsiella sp. Isolated from Waste Water

    PubMed Central

    Hou, Yunnan; Cheng, Keke; Li, Zehua; Ma, Xiaohui; Wei, Yahong; Zhang, Lei; Wang, Yao

    2015-01-01

    In the present study, we evaluated a bacterium that was isolated from waste water for its ability to take up cadmium and manganese. The strain, identified both biochemically and by its 16S rRNA gene sequence as Klebsiella, was named Yangling I2 and was found to be highly resistant to heavy metals. Surface characterization of the bacterium via SEM revealed gross morphological changes, with cells appearing as biconcave discs after metal exposure rather than their typical rod shape. The effects of pH, temperature, heavy metal concentration, agitation and biomass concentration on the uptake of Cd(II) and Mn(II) was measured using atomic absorption spectrophotometry. The results showed that the biosorption was most affected by pH and incubation temperature, being maximized at pH 5.0 and 30°C, with absorption capacities of 170.4 and 114.1 mg/g for Cd(II) and Mn(II), respectively. Two models were investigated to compare the cells’ capacity for the biosorption of Cd and Mn, and the Langmuir model based on fuzzy linear regression was found to be close to the observed absorption curves and yield binding constants of 0.98 and 0.86 for Cd and Mn, respectively. This strain of Klebsiella has approximately ten times the absorption capacity reported for other strains and is promising for the removal of heavy metals from waste water. PMID:26505890

  13. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels

    DOE PAGES

    Petit, Elsa; Coppi, Maddalena V.; Hayes, James C.; ...

    2015-06-02

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of our present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer.more » These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. Lastly, these characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.« less

  14. Genome and Transcriptome of Clostridium phytofermentans, Catalyst for the Direct Conversion of Plant Feedstocks to Fuels.

    PubMed

    Petit, Elsa; Coppi, Maddalena V; Hayes, James C; Tolonen, Andrew C; Warnick, Thomas; Latouf, William G; Amisano, Danielle; Biddle, Amy; Mukherjee, Supratim; Ivanova, Natalia; Lykidis, Athanassios; Land, Miriam; Hauser, Loren; Kyrpides, Nikos; Henrissat, Bernard; Lau, Joanne; Schnell, Danny J; Church, George M; Leschine, Susan B; Blanchard, Jeffrey L

    2015-01-01

    Clostridium phytofermentans was isolated from forest soil and is distinguished by its capacity to directly ferment plant cell wall polysaccharides into ethanol as the primary product, suggesting that it possesses unusual catabolic pathways. The objective of the present study was to understand the molecular mechanisms of biomass conversion to ethanol in a single organism, Clostridium phytofermentans, by analyzing its complete genome and transcriptome during growth on plant carbohydrates. The saccharolytic versatility of C. phytofermentans is reflected in a diversity of genes encoding ATP-binding cassette sugar transporters and glycoside hydrolases, many of which may have been acquired through horizontal gene transfer. These genes are frequently organized as operons that may be controlled individually by the many transcriptional regulators identified in the genome. Preferential ethanol production may be due to high levels of expression of multiple ethanol dehydrogenases and additional pathways maximizing ethanol yield. The genome also encodes three different proteinaceous bacterial microcompartments with the capacity to compartmentalize pathways that divert fermentation intermediates to various products. These characteristics make C. phytofermentans an attractive resource for improving the efficiency and speed of biomass conversion to biofuels.

  15. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    NASA Astrophysics Data System (ADS)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of diphtheria toxin to cells.

  16. Maximizing the optical network capacity.

    PubMed

    Bayvel, Polina; Maher, Robert; Xu, Tianhua; Liga, Gabriele; Shevchenko, Nikita A; Lavery, Domaniç; Alvarado, Alex; Killey, Robert I

    2016-03-06

    Most of the digital data transmitted are carried by optical fibres, forming the great part of the national and international communication infrastructure. The information-carrying capacity of these networks has increased vastly over the past decades through the introduction of wavelength division multiplexing, advanced modulation formats, digital signal processing and improved optical fibre and amplifier technology. These developments sparked the communication revolution and the growth of the Internet, and have created an illusion of infinite capacity being available. But as the volume of data continues to increase, is there a limit to the capacity of an optical fibre communication channel? The optical fibre channel is nonlinear, and the intensity-dependent Kerr nonlinearity limit has been suggested as a fundamental limit to optical fibre capacity. Current research is focused on whether this is the case, and on linear and nonlinear techniques, both optical and electronic, to understand, unlock and maximize the capacity of optical communications in the nonlinear regime. This paper describes some of them and discusses future prospects for success in the quest for capacity. © 2016 The Authors.

  17. Li + -Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances

    DOE PAGES

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming; ...

    2017-11-17

    Lithium (Li) ion battery (LIB) has penetrated almost every aspects of human life, from portable electronics, vehicles to grids, and its operation stability in extreme environments becomes increasingly important. Among these, sub-zero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. Here, in this work, we attempted to identify the rate-determining process for Li + migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in available capacities from graphite||LiNi 0.80Co 0.15Al 0.05O 2 chemistry down to -40°C is achieved by reducing themore » solvent molecule that more tightly binds to Li + and thus constitutes high desolvation energy barrier. Lastly, the fundamental understanding is applicable universally to a wide spectrum of electrochemical devices that have to operate in similar environments.« less

  18. Li+-Desolvation Dictating Lithium-Ion Battery's Low-Temperature Performances.

    PubMed

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming; Jiao, Shuhong; Luo, Langli; Wang, Chong-Min; Xu, Kang; Zhang, Ji-Guang; Xu, Wu

    2017-12-13

    Lithium (Li) ion battery has penetrated almost every aspect of human life, from portable electronics, vehicles, to grids, and its operation stability in extreme environments is becoming increasingly important. Among these, subzero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. In this work, we attempted to identify the rate-determining process for Li + migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in the available capacities from graphite∥LiNi 0.80 Co 0.15 Al 0.05 O 2 chemistry down to -40 °C is achieved by reducing the solvent molecule that more tightly binds to Li + and thus constitutes a high desolvation energy barrier. The fundamental understanding is applicable universally to a wide spectrum of electrochemical devices that have to operate in similar environments.

  19. Li + -Desolvation Dictating Lithium-Ion Battery’s Low-Temperature Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Qiuyan; Lu, Dongping; Zheng, Jianming

    Lithium (Li) ion battery (LIB) has penetrated almost every aspects of human life, from portable electronics, vehicles to grids, and its operation stability in extreme environments becomes increasingly important. Among these, sub-zero temperature presents a kinetic challenge to the electrochemical reactions required to deliver the stored energy. Here, in this work, we attempted to identify the rate-determining process for Li + migration under such low temperatures, so that an optimum electrolyte formulation could be designed to maximize the energy output. Substantial increase in available capacities from graphite||LiNi 0.80Co 0.15Al 0.05O 2 chemistry down to -40°C is achieved by reducing themore » solvent molecule that more tightly binds to Li + and thus constitutes high desolvation energy barrier. Lastly, the fundamental understanding is applicable universally to a wide spectrum of electrochemical devices that have to operate in similar environments.« less

  20. In vitro hypoglycemic and cholesterol lowering effects of dietary fiber prepared from cocoa (Theobroma cacao L.) shells.

    PubMed

    Nsor-Atindana, John; Zhong, Fang; Mothibe, Kebitsamang Joseph

    2012-10-01

    Three dietary fiber (DF) powders; soluble dietary fiber (SDF), insoluble dietary fiber (IDF) and total dietary fiber (TDF) were prepared from cocoa bean shells (CBS) by enzymatic treatment. These DFs were evaluated for their effects on glucose adsorption, glucose diffusion, starch hydrolysis, cholesterol binding, sodium cholate binding and oil binding capacities using in vitro model systems by simulating gastric intestinal conditions. The results showed that SDF generally exhibited significantly (p < 0.05) higher glucose adsorption capacity (GAC), α-amylase inhibition activity, cholesterol and sodium cholate binding capacity, but less significant (>0.05) glucose dialysis retardation index (GDRI) and oil binding capacity, when compared with IDF and TDF which both showed similar effects. Moreover, it was discovered that the three CBS dietary fiber powders contained intrinsic antioxidants (phenolic compounds). The study suggested that CBS could be an alternative cheap source of DF with additional benefits. Thus, CBS fibers could be incorporated as low calorie bulk ingredients in high-fiber diet to reduce calorie and cholesterol levels and control blood glucose level.

  1. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei.

    PubMed

    Thongekkaew, Jantaporn; Ikeda, Hiroko; Iefuji, Haruyuki

    2012-03-30

    To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1) promoter and the secretion signal sequence from Saccharomyces cerevisiae (α factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 °C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The effects of artificial wing wear on the flight capacity of the honey bee Apis mellifera.

    PubMed

    Vance, Jason T; Roberts, Stephen P

    2014-06-01

    The wings of bees and other insects accumulate permanent wear, which increases the rate of mortality and impacts foraging behavior, presumably due to effects on flight performance. In this study, we investigated how experimental wing wear affects flight performance in honey bees. Variable density gases and high-speed videography were used to determine the maximum hovering flight capacity and wing kinematics of bees from three treatment groups: no wing wear, symmetric and asymmetric wing wear. Wing wear was simulated by clipping the distal-trailing edge of one or both of the wings. Across all bees from treatment groups combined, wingbeat frequency was inversely related to wing area. During hovering in air, bees with symmetric and asymmetric wing wear responded kinematically so as to produce wingtip velocities similar to those bees with no wing wear. However, maximal hovering flight capacity (revealed during flight in hypodense gases) decreased in direct proportion to wing area and inversely to wing asymmetry. Bees with reduced wing area and high asymmetry produced lower maximum wingtip velocity than bees with intact or symmetric wings, which caused a greater impairment in maximal flight capacity. These results demonstrate that the magnitude and type of wing wear affects maximal aerodynamic power production and, likely, the control of hovering flight. Wing wear reduces aerodynamic reserve capacity and, subsequently, the capacity for flight behaviors such as load carriage, maneuverability, and evading predators. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Design of a modular digital computer system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    A design tradeoff study is reported for a modular spaceborne computer system that is responsive to many mission types and phases. The computer uses redundancy to maximize reliability, and multiprocessing to maximize processing capacity. Fault detection and recovery features provide optimal reliability.

  4. The presence of high-affinity, low-capacity estradiol-17β binding in rainbow trout scale indicates a possible endocrine route for the regulation of scale resorption

    USGS Publications Warehouse

    Persson, Petra; Shrimpton, J. Mark; McCormick, Stephen D.; Bjornsson, Bjorn Thrandur

    2000-01-01

    High-affinity, low-capacity estradiol-17β (E2) binding is present in rainbow trout scale. The Kd and Bmax of the scale E2 binding are similar to those of the liver E2 receptor (Kd is 1.6 ± 0.1 and 1.4 ± 0.1 nM, and Bmax is 9.1 ± 1.2 and 23.1 ± 2.2 fmol × mg protein-1, for scale and liver, respectively), but different from those of the high-affinity, low-capacity E2 binding in plasma (Kd is 4.0 ± 0.4 nM and Bmax is 625.4 ± 63.1 fmol × mg protein−1). The E2 binding in scale was displaced by testosterone, but not by diethylstilbestrol. Hence, the ligand binding specificity is different from that of the previously characterized liver E2 receptor, where E2 is displaced by diethylstilbestrol, but not by testosterone. The putative scale E2 receptor thus appears to bind both E2 and testosterone, and it is proposed that the increased scale resorption observed during sexual maturation in both sexes of several salmonid species may be mediated by this receptor. No high-affinity, low-capacity E2 binding could be detected in rainbow trout gill or skin.

  5. Increases thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase by fusion of cellulose binding domain derived from Trichoderma reesei

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thongekkaew, Jantaporn, E-mail: jantaporn_25@yahoo.com; Ikeda, Hiroko; Iefuji, Haruyuki

    Highlights: Black-Right-Pointing-Pointer The CSLP and fusion enzyme were successfully expressed in the Pichia pastoris. Black-Right-Pointing-Pointer The fusion enzyme was stable at 80 Degree-Sign C for 120-min. Black-Right-Pointing-Pointer The fusion enzyme was responsible for cellulose-binding capacity. Black-Right-Pointing-Pointer The fusion enzyme has an attractive applicant for enzyme immobilization. -- Abstract: To improve the thermal stability and cellulose-binding capacity of Cryptococcus sp. S-2 lipase (CSLP), the cellulose-binding domain originates from Trichoderma reesei cellobiohydrolase I was engineered into C-terminal region of the CSLP (CSLP-CBD). The CSLP and CSLP-CBD were successfully expressed in the Pichia pastoris using the strong methanol inducible alcohol oxidase 1 (AOX1)more » promoter and the secretion signal sequence from Saccharomyces cerevisiae ({alpha} factor). The recombinant CSLP and CSLP-CBD were secreted into culture medium and estimated by SDS-PAGE to be 22 and 27 kDa, respectively. The fusion enzyme was stable at 80 Degree-Sign C and retained more than 80% of its activity after 120-min incubation at this temperature. Our results also found that the fusion of fungal exoglucanase cellulose-binding domain to CSLP is responsible for cellulose-binding capacity. This attribute should make it an attractive applicant for enzyme immobilization.« less

  6. SAOS-2 osteosarcoma cells bind fibroblasts via ICAM-1 and this is increased by tumour necrosis factor-α.

    PubMed

    David, Manu S; Kelly, Elizabeth; Cheung, Ivan; Xaymardan, Munira; Moore, Malcolm A S; Zoellner, Hans

    2014-01-01

    We recently reported exchange of membrane and cytoplasmic markers between SAOS-2 osteosarcoma cells and human gingival fibroblasts (h-GF) without comparable exchange of nuclear markers, while similar h-GF exchange was seen for melanoma and ovarian carcinoma cells. This process of "cellular sipping" changes phenotype such that cells sharing markers of both SAOS-2 and h-GF have morphology intermediate to that of either cell population cultured alone, evidencing increased tumour cell diversity without genetic change. TNF-α increases cellular sipping between h-GF and SAOS-2, and we here study binding of SAOS-2 to TNF-α treated h-GF to determine if increased cellular sipping can be accounted for by cytokine stimulated SAOS-2 binding. More SAOS-2 bound h-GF pe-seeded wells than culture plastic alone (p<0.001), and this was increased by h-GF pre-treatment with TNF-α (p<0.001). TNF-α stimulated binding was dose dependent and maximal at 1.16 nM (p<0.05) with no activity below 0.006 nM. SAOS-2 binding to h-GF was independent of serum, while the lipopolysaccharide antagonist Polymyxin B did not affect results, and TNF-α activity was lost on boiling. h-GF binding of SAOS-2 started to increase after 30min TNF-α stimulation and was maximal by 1.5 hr pre-treatment (p<0.001). h-GF retained maximal binding up to 6 hrs after TNF-α stimulation, but this was lost by 18 hrs (p<0.001). FACS analysis demonstrated increased ICAM-1 consistent with the time course of SAOS-2 binding, while antibody against ICAM-1 inhibited SAOS-2 adhesion (p<0.04). Pre-treating SAOS-2 with TNF-α reduced h-GF binding to background levels (p<0.003), and this opposite effect to h-GF cytokine stimulation suggests that the history of cytokine exposure of malignant cells migrating across different microenvironments can influence subsequent interactions with fibroblasts. Since cytokine stimulated binding was comparable in magnitude to earlier reported TNF-α stimulated cellular sipping, we conclude that TNF-α stimulated cellular sipping likely reflects increased SAOS-2 binding as opposed to enhanced exchange mechanisms.

  7. Human IgG is produced in a pro-form that requires clipping of C-terminal lysines for maximal complement activation

    PubMed Central

    van den Bremer, Ewald TJ; Beurskens, Frank J; Voorhorst, Marleen; Engelberts, Patrick J; de Jong, Rob N; van der Boom, Burt G; Cook, Erika M; Lindorfer, Margaret A; Taylor, Ronald P; van Berkel, Patrick HC; Parren, Paul WHI

    2015-01-01

    Human IgG is produced with C-terminal lysines that are cleaved off in circulation. The function of this modification was unknown and generally thought not to affect antibody function. We recently reported that efficient C1q binding and complement-dependent cytotoxicity (CDC) requires IgG hexamerization at the cell surface. Here we demonstrate that C-terminal lysines may interfere with this process, leading to suboptimal C1q binding and CDC of cells opsonized with C-terminal lysine-containing IgG. After we removed these lysines with a carboxypeptidase, maximal complement activation was observed. Interestingly, IgG1 mutants containing either a negative C-terminal charge or multiple positive charges lost CDC almost completely; however, CDC was fully restored by mixing C-terminal mutants of opposite charge. Our data indicate a novel post-translational control mechanism of human IgG: human IgG molecules are produced in a pro-form in which charged C-termini interfere with IgG hexamer formation, C1q binding and CDC. To allow maximal complement activation, C-terminal lysine processing is required to release the antibody's full cytotoxic potential. PMID:26037225

  8. Current Understanding of the Binding Sites, Capacity, Affinity, and Biological Significance of Metals in Melanin

    PubMed Central

    Hong, Lian; Simon, John D.

    2008-01-01

    Metal chelation is often invoked as one of the main biological functions of melanin. In order to understand the interaction between metals and melanin, extensive studies have been carried out to determine the nature of the metal binding sites, binding capacity and affinity. These data are central to efforts aimed at elucidating the role metal binding plays in determining the physical, structural, biological, and photochemical properties of melanin. This article examines the current state of understanding of this field. PMID:17580858

  9. Non-Grammatical Reflexive Binding Phenomena: The Case of Japanese.

    ERIC Educational Resources Information Center

    Sakakibara, Sonoko

    Two non-syntactic phenomena of Japanese reflexive binding by "zibun" ("self") are analyzed with respect to a pragmatic use condition on "zibun," a culture-specific condition, and the Maxim of Politeness (Fukada 1986). The first phenomenon is the tendency by native speakers of Japanese to avoid referring to an honored…

  10. Reversible increase in maximal cortisol secretion rate in septic shock.

    PubMed

    Dorin, Richard I; Qualls, Clifford R; Torpy, David J; Schrader, Ronald M; Urban, Frank K

    2015-03-01

    Cortisol clearance is reduced in sepsis and may contribute to the development of impaired adrenocortical function that is thought to contribute to the pathophysiology of critical illness-related corticosteroid insufficiency. We sought to assess adrenocortical function using computer-assisted numerical modeling methodology to characterize and compare maximal cortisol secretion rate and free cortisol half-life in septic shock, sepsis, and healthy control subjects. Post hoc analysis of previously published total cortisol, free cortisol, corticosteroid-binding globulin, and albumin concentration data. Single academic medical center. Subjects included septic shock (n = 45), sepsis (n = 25), and healthy controls (n = 10). I.v. cosyntropin (250 μg). Solutions for maximal cortisol secretion rate and free cortisol half-life were obtained by least squares solution of simultaneous, nonlinear differential equations that account for free cortisol appearance and elimination as well as reversible binding to corticosteroid-binding globulin and albumin. Maximal cortisol secretion rate was significantly greater in septic shock (0.83 nM/s [0.44, 1.58 nM/s] reported as median [lower quartile, upper quartile]) compared with sepsis (0.51 nM/s [0.36, 0.62 nM/s]; p = 0.007) and controls (0.49 nM/s [0.42, 0.62 nM/s]; p = 0.04). The variance of maximal cortisol secretion rate in septic shock was also greater than that of sepsis or control groups (F test, p < 0.001). Free cortisol half-life was significantly increased in septic shock (4.6 min [2.2, 6.3 min]) and sepsis (3.0 min [2.3, 4.8 min] when compared with controls (2.0 min [1.2, 2.6 min]) (both p < 0.004). Results obtained by numerical modeling are consistent with comparable measures obtained by the gold standard stable isotope dilution method. Septic shock is associated with generally not only higher levels but also greater variance of maximal cortisol secretion rate when compared with control and sepsis groups. Additional studies would be needed to determine whether assessment of cortisol kinetic parameters such as maximal cortisol secretion rate and free cortisol half-life is useful in the diagnosis or management of critical illness-related corticosteroid insufficiency.

  11. Comparative study of thiophilic functionalised matrices for polyclonal F(ab')2 purification.

    PubMed

    Kumpalume, Peter; Slater, Nigel K H

    2004-01-02

    Thiophilic adsorbents have been developed using divinyl sulfone or epoxy activated Streamline quartz base matrix. Their capacity and selectivity for binding polyclonal F(ab')2 fragments generated by whole serum proteolysis was tested. Except for epoxy activated guanidine, all the adsorbents displayed high selectivity for F(ab')2 with dynamic binding capacities ranging from 3 to 10 mg/ml of adsorbent. Thiol immobilised ligands adsorbed more F(ab')2 and the recovery was equal to or more than that from amino immobilised ligands. All adsorbents showed good selectivity for IgG and the dynamic binding capacities were better than for F(ab')2.

  12. Differential effects of chronic lorazepam and alprazolam on benzodiazepine binding and GABAA-receptor function.

    PubMed Central

    Galpern, W. R.; Miller, L. G.; Greenblatt, D. J.; Shader, R. I.

    1990-01-01

    1. Chronic benzodiazepine administration has been associated with tolerance and with downregulation of gamma-aminobutyric acidA (GABAA)-receptor binding and function. However, effects of individual benzodiazepines on brain regions have varied. 2. To compare the effects of chronic lorazepam and alprazolam, we have administered these drugs to mice for 1 and 7 days (2 mg kg-1 day-1) and determined benzodiazepine receptor binding in vivo with and without administration of CL 218,872, 25 mg kg-1 i.p., and GABA-dependent chloride uptake in 3 brain regions at these time points. 3. Benzodiazepine binding was decreased in the cortex and hippocampus at day 7 compared to day 1 of lorazepam, with an increase in CL 218,872-resistant (Type 2) sites in both regions. Maximal GABA-dependent chloride uptake was also decreased in the cortex and hippocampus at day 7. 4. Binding was decreased only in the cortex after 7 days of alprazolam, with no significant change in Type 2 binding. Maximal GABA-dependent chloride uptake was also decreased only in the cortex. 5. These data suggest that the effects of chronic benzodiazepine administration on the GABAA-receptor may be both region-specific and receptor subtype-specific. PMID:1964820

  13. Which instruments can detect submaximal physical and functional capacity in patients with chronic nonspecific back pain? A systematic review.

    PubMed

    van der Meer, Suzan; Trippolini, Maurizio A; van der Palen, Job; Verhoeven, Jan; Reneman, Michiel F

    2013-12-01

    Systematic review. To evaluate the validity of instruments that claim to detect submaximal capacity when maximal capacity is requested in patients with chronic nonspecific musculoskeletal pain. Several instruments have been developed to measure capacity in patients with chronic pain. The detection of submaximal capacity can have major implications for patients. The validity of these instruments has never been systematically reviewed. A systematic literature search was performed including the following databases: Web of Knowledge (including PubMed and Cinahl), Scopus, and Cochrane. Two reviewers independently selected the articles based on the title and abstract according to the study selection criteria. Studies were included when they contained original data and when they objectified submaximal physical or functional capacity when maximal physical or functional capacity was requested. Two authors independently extracted data and rated the quality of the articles. The included studies were scored according to the subscales "Criterion Validity" and "Hypothesis Testing" of the COSMIN checklist. A Best Evidence Synthesis was performed. Seven studies were included, 5 of which used a reference standard for submaximal capacity. Three studies were of good methodological quality and validly detected submaximal capacity with specificity rates between 75% and 100%. There is strong evidence that submaximal capacity can be detected in patients with chronic low back pain with a lumbar motion monitor or visual observations accompanying a functional capacity evaluation lifting test.

  14. Effects of retinoids on differentiation, lipid metabolism, epidermal growth factor, and low-density lipoprotein binding in squamous carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponec, M.; Weerheim, A.; Havekes, L.

    The relationship among keratinocyte differentiation capacity, lipid synthesis, low-density lipoprotein (LDL) metabolism, plasma membrane composition, and epidermal growth factor (EGF) binding has been studied in SCC-12F2 cells. The differentiation capacity of the cells, i.e., ionophore-induced cornified envelope formation, was inhibited by various retinoids and stimulated by hydrocortisone. Retinoids that caused a significant reduction of cornified envelope formation, i.e., retinoic acid and 13-cis-retinoic acid, caused only minor changes in lipid synthesis and plasma membrane composition. Arotinoid ethylsulfone, having a minor effect on cornified envelope formation, caused a drastic inhibition of cholesterol synthesis resulting in changes in the plasma membrane composition. Hydrocortisonemore » stimulated cornified envelope formation but had only minor effects on lipid synthesis and plasma membrane composition. Of all retinoids tested, only arotinoid ethylsulfone caused a drastic increase in EGF binding, while hydrocortisone had no effect. These results clearly demonstrate that the plasma membrane composition is not related to keratinocyte differentiation capacity, but most likely does determine EGF binding. Furthermore, EGF binding does not determine keratinocyte differentiation capacity.« less

  15. Whey protein with potassium bicarbonate supplement attenuates the reduction in muscle oxidative capacity during 19 days of bed rest.

    PubMed

    Bosutti, Alessandra; Salanova, Michele; Blottner, Dieter; Buehlmeier, Judith; Mulder, Edwin; Rittweger, Jörn; Yap, Moi Hoon; Ganse, Bergita; Degens, Hans

    2016-10-01

    The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO 3 ) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO 3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o 2 max ), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles (P < 0.05), and the fiber oxidative capacity (P < 0.001) and V̇o 2 max (P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL (P < 0.001). WP+KHCO 3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles (P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO 3 appears to attenuate disuse-induced reductions in fiber oxidative capacity. Copyright © 2016 the American Physiological Society.

  16. High-throughput process development: determination of dynamic binding capacity using microtiter filter plates filled with chromatography resin.

    PubMed

    Bergander, Tryggve; Nilsson-Välimaa, Kristina; Oberg, Katarina; Lacki, Karol M

    2008-01-01

    Steadily increasing demand for more efficient and more affordable biomolecule-based therapies put a significant burden on biopharma companies to reduce the cost of R&D activities associated with introduction of a new drug to the market. Reducing the time required to develop a purification process would be one option to address the high cost issue. The reduction in time can be accomplished if more efficient methods/tools are available for process development work, including high-throughput techniques. This paper addresses the transitions from traditional column-based process development to a modern high-throughput approach utilizing microtiter filter plates filled with a well-defined volume of chromatography resin. The approach is based on implementing the well-known batch uptake principle into microtiter plate geometry. Two variants of the proposed approach, allowing for either qualitative or quantitative estimation of dynamic binding capacity as a function of residence time, are described. Examples of quantitative estimation of dynamic binding capacities of human polyclonal IgG on MabSelect SuRe and of qualitative estimation of dynamic binding capacity of amyloglucosidase on a prototype of Capto DEAE weak ion exchanger are given. The proposed high-throughput method for determination of dynamic binding capacity significantly reduces time and sample consumption as compared to a traditional method utilizing packed chromatography columns without sacrificing the accuracy of data obtained.

  17. Tight-binding calculation of single-band and generalized Wannier functions of graphene

    NASA Astrophysics Data System (ADS)

    Ribeiro, Allan Victor; Bruno-Alfonso, Alexys

    Recent work has shown that a tight-binding approach associated with Wannier functions (WFs) provides an intuitive physical image of the electronic structure of graphene. Regarding the case of graphene, Marzari et al. displayed the calculated WFs and presented a comparison between the Wannier-interpolated bands and the bands generated by using the density-functional code. Jung and MacDonald provided a tight-binding model for the π-bands of graphene that involves maximally localized Wannier functions (MLWFs). The mixing of the bands yields better localized WFs. In the present work, the MLWFs of graphene are calculated by combining the Quantum-ESPRESSO code and tight-binding approach. The MLWFs of graphene are calculated from the Bloch functions obtained through a tight binding approach that includes interactions and overlapping obtained by partially fitting the DFT bands. The phase of the Bloch functions of each band is appropriately chosen to produce MLWFs. The same thing applies to the coefficients of their linear combination in the generalized case. The method allows for an intuitive understanding of the maximally localized WFs of graphene and shows excellent agreement with the literature. Moreover, it provides accurate results at reduced computational cost.

  18. Cancellation of scheduled procedures as a mechanism to generate hospital bed surge capacity-a pilot study.

    PubMed

    Soremekun, Olan A; Zane, Richard D; Walls, Andrew; Allen, Matthew B; Seefeld, Kimberly J; Pallin, Daniel J

    2011-06-01

    The ability to generate hospital beds in response to a mass-casualty incident is an essential component of public health preparedness. Although many acute care hospitals' emergency response plans include some provision for delaying or cancelling elective procedures in the event of an inpatient surge, no standardized method for implementing and quantifying the impact of this strategy exists in the literature. The aim of this study was to develop a methodology to prospectively emergency plan for implementing a strategy of delaying procedures and quantifying the potential impact of this strategy on creating hospital bed capacity. This is a pilot study. A categorization methodology was devised and applied retrospectively to all scheduled procedures during four one-week periods chosen by convenience. The categorization scheme grouped procedures into four categories: (A) procedures with no impact on inpatient capacity; (B) procedures that could be delayed indefinitely; (C) procedures that could be delayed by one week; and (D) procedures that could not be delayed. The categorization scheme was applied by two research assistants and an emergency medicine resident. All three raters categorized the first 100 cases to allow for calculation of inter-rater reliability. Maximal hospital bed capacity was defined as the 95th percentile weekday occupancy, as this is more representative of functional bed capacity than is the number of licensed beds. The main outcome was the number of hospital beds that could be created by postponing procedures in categories B and C. Maximal hospital bed capacity was 816 beds. Mean occupancy during weekdays was 759 versus 694 on weekends. By postponing Group B and C procedures, a mean of 60 beds (51 general medical/surgical and nine intensive care unit (ICU)) could be created on weekdays, and four beds (three general medical/surgical and one ICU) on weekends. This represents 7.3% and 0.49% of maximal hospital bed capacity and ICU capacity, respectively. In the event that sustained surge is needed, delaying all category B and C procedures for one week would lead to the generation of 1,235 hospital-bed days. Inter-rater reliability was high (kappa = 0.74) indicating good agreement between all three raters. For the institution studied, the strategy of delaying scheduled procedures could generate inpatient capacity with maximal impact during weekdays and little impact on weekends. Future research is needed to validate the categorization scheme and increase the ability to predict inpatient surge capacity across various hospital types and sizes.

  19. Attenuation of iron-binding proteins in ARPE-19 cells reduces their resistance to oxidative stress.

    PubMed

    Karlsson, Markus; Kurz, Tino

    2016-09-01

    Oxidative stress-related damage to retinal pigment epithelial (RPE) cells is an important feature in the development of age-related macular degeneration. Iron-catalysed intralysosomal production of hydroxyl radicals is considered a major pathogenic factor, leading to lipofuscin formation with ensuing depressed cellular autophagic capacity, lysosomal membrane permeabilization and apoptosis. Previously, we have shown that cultured immortalized human RPE (ARPE-19) cells are extremely resistant to exposure to bolus doses of hydrogen peroxide and contain considerable amounts of the iron-binding proteins metallothionein (MT), heat-shock protein 70 (HSP70) and ferritin (FT). According to previous findings, autophagy of these proteins depresses lysosomal redox-active iron. The aim of this study was to investigate whether up- or downregulation of these proteins would affect the resistance of ARPE-19 cells to oxidative stress. The sensitivity of ARPE-19 cells to H2 O2 exposure was tested following upregulation of MT, HSP70 and/or FT by pretreatment with ZnSO4 , heat shock or FeCl3 , as well as siRNA-mediated downregulation of the same proteins. Upregulation of MT, HSP70 and FT did not improve survival following exposure to H2 O2 . This was interpreted as existence of an already maximal protection. Combined siRNA-mediated attenuation of both FT chains (H and L), or simultaneous downregulation of all three proteins, made the cells significantly more susceptible to oxidative stress confirming the importance of iron-binding proteins. The findings support our hypothesis that the oxidative stress resistance exhibited by RPE cells may be explained by a high autophagic influx of iron-binding proteins that would keep levels of redox-active lysosomal iron low. © 2016 Acta Ophthalmologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Characterization of a new ARID family transcription factor (Brightlike/ARID3C) that co-activates Bright/ARID3A-mediated immunoglobulin gene transcription

    PubMed Central

    Tidwell, Josephine A.; Schmidt, Christian; Heaton, Phillip; Wilson, Van; Tucker, Philip W.

    2011-01-01

    Two members, Bright/ARID3A and Bdp/ARID3B, of the ARID (AT-Rich Interaction Domain) transcription family are distinguished by their ability to specifically bind to DNA and to self-associate via a second domain, REKLES. Bright and Bdp positively regulate immunoglobulin heavy chain gene (IgH) transcription by binding to AT-rich motifs within Matrix Associating Regions (MARs) residing within a subset of VH promoters and the Eµ intronic enhancer. In addition, REKLES provides Bright nuclear export function, and a small pool of Bright is directed to plasma membrane sub-domains/lipid rafts where it associates with and modulates signaling of the B cell antigen receptor (BCR). Here, we characterize a third, highly conserved, physically condensed ARID3 locus, Brightlike/ARID3C. Brightlike encodes two alternatively spliced, SUMO-I-modified isoforms that include or exclude (Δ6) the REKLES-encoding exon 6. Brightlike transcripts and proteins are expressed preferentially within B lineage lymphocytes and coordinate with highest Bright expression--in activated follicular B cells. Brightlike, but not BrightlikeΔ6, undergoes nuclear-cytoplasmic shuttling with a fraction localizing within lipid rafts following BCR stimulation. Brightlike, but not BrightlikeΔ6, associates with Bright in solution, at common DNA binding sites in vitro, and is enriched at Bright binding sites in chromatin. Although possessing little transactivation capacity of its own, Brightlike significantly co-activates Bright-dependent IgH transcription with maximal activity mediated by the unsumoylated form. In sum, this report introduces Brightlike as an additional functional member of the family of ARID proteins, which should be considered in regulatory circuits, previously ascribed to be mediated by Bright. PMID:21955986

  1. Identification and properties of steroid-binding proteins in nesting Chelonia mydas plasma.

    PubMed

    Ikonomopoulou, M P; Bradley, A J; Whittier, J M; Ibrahim, K

    2006-11-01

    We report for the first time the presence of a sex steroid-binding protein in the plasma of green sea turtles Chelonia mydas, which provides an insight into reproductive status. A high affinity, low capacity sex hormone steroid-binding protein was identified in nesting C. mydas and its thermal profile was established. In nesting C. mydas testosterone and oestradiol bind at 4 degrees C with high affinity (K (a) = 1.49 +/- 0.09 x 10(9) M(-1); 0.17 +/- 0.02 x 10(7) M(-1)) and low binding capacity (B (max) = 3.24 +/- 0.84 x 10(-5) M; 0.33 +/- 0.06 x 10(-4) M). The binding affinity and capacity of testosterone at 23 and 36 degrees C, respectively were similar to those determined at 4 degrees C. However, oestradiol showed no binding activity at 36 degrees C. With competition studies we showed that oestradiol and oestrone do not compete for binding sites. Furthermore, in nesting C. mydas plasma no high-affinity binding was observed for adrenocortical steroids (cortisol and corticosterone) and progesterone. Our results indicate that in nesting C. mydas plasma temperature has a minimal effect on the high-affinity binding of testosterone to sex steroid-binding protein, however, the high affinity binding of oestradiol to sex steroid-binding protein is abolished at a hypothetically high (36 degrees C) sea/ambient/body temperature. This suggests that at high core body temperatures most of the oestradiol becomes biologically available to the tissues rather than remaining bound to a high-affinity carrier.

  2. Characterization of the binding of Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) to glycosphingolipids, using a solid-phase overlay approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stroemberg, N.K.; Karlsson, K.A.

    1990-07-05

    Actinomyces naeslundii (ATCC 12104) and Actinomyces viscosus (ATCC 19246) were radiolabeled externally (125I) or metabolically (35S) and analyzed for their ability to bind glycosphingolipids separated on thin layer chromatograms or coated in microtiter wells. Two binding properties were found and characterized in detail. (i) Both bacteria showed binding to lactosylceramide (LacCer) in a fashion similar to bacteria characterized earlier. The activity of free LacCer was dependent on the ceramide structure; species with 2-hydroxy fatty acid and/or a trihydroxy base were positive, while species with nonhydroxy fatty acid and a dihydroxy base were negative binders. Several glycolipids with internal lactose weremore » active but only gangliotriaosylceramide and gangliotetraosylceramide were as active as free LacCer. The binding to these three species was half-maximal at about 200 ng of glycolipid and was not blocked by preincubation of bacteria with free lactose or lactose-bovine serum albumin. (ii) A. naeslundii, unlike A. viscosus, showed a superimposed binding concluded to be to terminal or internal GalNAc beta and equivalent to a lactose-inhibitable specificity previously analyzed by other workers. Terminal Gal beta was not recognized in several glycolipids, although free Gal and lactose were active as soluble inhibitors. The binding was half-maximal at about 10 ng of glycolipid. A glycolipid mixture prepared from a scraping of human buccal epithelium contained an active glycolipid with sites for both binding specificities.« less

  3. 21 CFR 862.1415 - Iron-binding capacity test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Iron-binding capacity test system. 862.1415 Section 862.1415 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES CLINICAL CHEMISTRY AND CLINICAL TOXICOLOGY DEVICES Clinical Chemistry Test...

  4. Effects of overweight and leisure-time activities on aerobic fitness in urban and rural adolescents.

    PubMed

    Albarwani, Sulayma; Al-Hashmi, Khamis; Al-Abri, Mohammed; Jaju, Deepali; Hassan, Mohammed O

    2009-08-01

    The aim of this research was to study the effects of overweight and leisure-time activities on maximal aerobic capacity (VO(2)max) in urban and rural Omani adolescents. A total of 529 (245 males, 284 females) adolescents, aged 15-16 years were randomly selected from segregated urban and rural schools. Maximal aerobic capacity was estimated using the multistage 20-meter shuttle-run test. The body mass index (BMI) of urban boys and girls was significantly higher than that of rural boys and girls. Urban boys and girls spent significantly less weekly hours on sports activities and significantly more weekly hours on TV/computer games than their rural counterpart. Urban boys and girls achieved significantly less VO(2)max than rural boys and girls (44.2 and 33.0 vs. 48.3 and 38.6 mL/kg/min, respectively). Maximal aerobic capacity was negatively correlated with BMI in urban boys. Overweight and inactivity had significant negative effects on cardiorespiratory fitness in urban boys and girls as compared to their rural counterparts. Weight gain in adolescence requires early intervention.

  5. Forced vital capacity and not central chemoreflex predicts maximal hyperoxic breath-hold duration in elite apneists.

    PubMed

    Bain, Anthony R; Barak, Otto F; Hoiland, Ryan L; Drvis, Ivan; Bailey, Damian M; Dujic, Zeljko; Mijacika, Tanja; Santoro, Antoinette; DeMasi, Daniel K; MacLeod, David B; Ainslie, Philip N

    2017-08-01

    The determining mechanisms of a maximal hyperoxic apnea duration in elite apneists have remained unexplored. We tested the hypothesis that maximal hyperoxic apnea duration in elite apneists is related to forced vital capacity (FVC) but not the central chemoreflex (for CO 2 ). Eleven elite apneists performed a maximal dry static-apnea with prior hyperoxic (100% oxygen) pre-breathing, and a central chemoreflex test via a hyperoxic re-breathing technique (hyperoxic-hypercapnic ventilatory response: HCVR); expressed as the increase in ventilation (pneumotachometry) per increase in arterial CO 2 tension (PaCO 2 ; radial artery). FVC was assessed using standard spirometry. Maximal apnea duration ranged from 807 to 1262s (mean=1034s). Average HCVR was 2.0±1.2Lmin -1 mmHg -1 PaCO 2 . The hyperoxic apnea duration was related to the FVC (r 2 =0.45, p<0.05), but not the HCVR (r 2 <0.01, p>0.05). These findings were interpreted to suggest that during a hyperoxic apnea, a larger initial lung volume prolongs the time before reaching intolerable discomfort associated with pending lung squeeze, while CO 2 sensitivity has little impact. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cooperative binding of anti-tetanus toxin monoclonal antibodies: Implications for designing an efficient biclonal preparation to prevent tetanus toxin intoxication.

    PubMed

    Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Marinkovic, Emilija; Miljkovic, Radmila; Stojanovic, Marijana

    2018-05-15

    Oligoclonal combinations of several monoclonal antibodies (MAbs) are being considered for the treatment of various infectious pathologies. These combinations are less sensitive to antigen structural changes than individual MAbs; at the same time, their characteristics can be more efficiently controlled than those of polyclonal antibodies. The main goal of this study was to evaluate the binding characteristics of six biclonal equimolar preparations (BEP) of tetanus toxin (TeNT)-specific MAbs and to investigate how the MAb combination influences the BEPs' protective capacity. We show that a combination of TeNT-specific MAbs, which not only bind TeNT but also exert positive cooperative effects, results in a BEP with superior binding characteristics and protective capacity, when compared with the individual component MAbs. Furthermore, we show that a MAb with only partial protective capacity but positive effects on the binding of the other BEP component can be used as a valuable constituent of the BEP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. 75 FR 55540 - New England Fishery Management Council; Public Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... Council, 50 Water Street, Mill 2, Newburyport, MA 01950. FOR FURTHER INFORMATION CONTACT: Paul J. Howard..., measures to maximize sampling, measures to address net slippage, maximized retention, electronic monitoring... Scallop FMP. If approved these would: (1) include annual catch limits; (2) address excess capacity in the...

  8. Low- and High-Volume Water-Based Resistance Training Induces Similar Strength and Functional Capacity Improvements in Older Women: A Randomized Study.

    PubMed

    Reichert, Thaís; Delevatti, Rodrigo Sudatti; Prado, Alexandre Konig Garcia; Bagatini, Natália Carvalho; Simmer, Nicole Monticelli; Meinerz, Andressa Pellegrini; Barroso, Bruna Machado; Costa, Rochelle Rocha; Kanitz, Ana Carolina; Kruel, Luiz Fernando Martins

    2018-03-27

    Water-based resistance training (WRT) has been indicated to promote strength gains in elderly population. However, no study has compared different training strategies to identify the most efficient one. The aim of this study was to compare the effects of 3 WRT strategies on the strength and functional capacity of older women. In total, 36 women were randomly allocated to training groups: simple set of 30 seconds [1 × 30s; 66.41 (1.36) y; n = 12], multiple sets of 10 seconds [3 × 10s; 66.50 (1.43) y; n = 11], and simple set of 10 seconds [1 × 10s; 65.23 (1.09) y; n = 13]. Training lasted for 12 weeks. The maximal dynamic strength (in kilograms) and muscular endurance (number of repetitions) of knee extension, knee flexion, elbow flexion, and bench press, as well as functional capacity (number of repetitions), were evaluated. All types of training promoted similar gains in maximal dynamic strength of knee extension and flexion as well as elbow flexion. Only the 1 × 30s and 1 × 10s groups presented increments in bench press maximal strength. All 3 groups showed increases in muscular endurance in all exercises and functional capacity. WRT using long- or short-duration simple sets promotes the same gains in strength and functional capacity in older women as does WRT using multiple sets.

  9. Physical Fitness and Hormonal Profile During an 11-Week Paratroop Training Period.

    PubMed

    Vaara, Jani P; Kalliomaa, Riikka; Hynninen, Petri; Kyröläinen, Heikki

    2015-11-01

    Physical fitness and serum hormone concentrations have been shown to change during military training. The purpose was to examine these chronic changes in paratroopers (n = 52 male conscripts) during an 11-week training period, including acute changes induced by strenuous 5-day military field training. Hormonal profiles, body mass, maximal strength, muscle endurance, and 12-minute running test were assessed at several time points during paratrooper training. In the latter part of the training period, conscripts were involved in strenuous military field training (5 days). At week 7, during specialized military training period, aerobic performance decreased (3,146 ± 163 m) but recovered back to a baseline level (3,226 ± 190 m) at the end of the study period (p < 0.001). Standing long jump decreased at week 7 (242 ± 13 cm) (p < 0.001) from the baseline value (248 ± 13 cm), whereas push-up (52 ± 11, 60 ± 13 repetitions per minute) and sit-up (54 ± 6, 56 ± 7 repetitions per minute) performances increased (p < 0.001). No changes were observed in maximal strength and body composition, neither mostly in hormone concentrations, although cortisol decreased but increased back to baseline value at the end of the study period (p ≤ 0.05). Acute responses after the 5-day military field training included decreased maximal strength of the lower extremities and body mass, as well as changes in androgen hormone concentrations ([INCREMENT]testosterone: -46%, [INCREMENT]insulin-like growth factor-1: -28%, [INCREMENT]sex hormone-binding globulin: +25%) compared with all other measurements (p ≤ 0.05). The first 4 weeks of parachute military training decreased maximal aerobic capacity and neuromuscular performance of the lower body, whereas muscular endurance increased. Moreover, 5-day military field training resulted in dramatic changes in hormone concentrations. These findings highlight the importance of periodizing paratrooper training and underline the need for sufficient recovery immediately after military field training.

  10. Maximal exercise capacity in patients with obstructive sleep apnoea syndrome: A systematic review and meta-analysis.

    PubMed

    Mendelson, Monique; Marillier, Mathieu; Bailly, Sébastien; Flore, Patrice; Borel, Jean-Christian; Vivodtzev, Isabelle; Doutreleau, Stéphane; Tamisier, Renaud; Pépin, Jean-Louis; Verges, Samuel

    2018-04-26

    Maximal aerobic capacity is a strong health predictor and peak oxygen consumption (VO 2peak ) is considered a reflection of total body health. No systematic reviews or meta-analysis' to date have synthesised the existing data regarding VO 2peak in patients with obstructive sleep apnoea (OSA).A systematic review of English and French articles using Pubmed/Medline and Embase included studies assessing VO 2peak of OSA patients in mL·kg -1 ·min -1 compared with controls or in % predicted. Two independent reviewers analysed the studies, extracted the data and assessed the quality of evidence.Mean VO 2peak expressed in mL·kg -1 ·min -1 was significantly lower in patients with OSA when compared with controls (mean difference=-2.7 mL·kg -1 ·min -1 ; p<0.001; n=850). This reduction in VO 2peak was found to be larger in non-obese patients (BMI<30 kg·m -2 ). Mean VO 2peak in % predicted was 90.7±21.0% in OSA patients (n=643).OSA patients present reduced maximal aerobic capacity, which can be associated with increased cardiovascular risks and reduced survival in certain patient subgroups. Maximal exercise testing can be useful to characterise functional limitation and to evaluate health status in OSA patients. Registration # CRD42017057319. Copyright ©ERS 2018.

  11. SB265610 is an allosteric, inverse agonist at the human CXCR2 receptor

    PubMed Central

    Bradley, ME; Bond, ME; Manini, J; Brown, Z; Charlton, SJ

    2009-01-01

    Background and purpose: In several previous studies, the C-X-C chemokine receptor (CXCR)2 antagonist 1-(2-bromo-phenyl)-3-(7-cyano-3H-benzotriazol-4-yl)-urea (SB265610) has been described as binding competitively with the endogenous agonist. This is in contrast to many other chemokine receptor antagonists, where the mechanism of antagonism has been described as allosteric. Experimental approach: To determine whether it displays a unique mechanism among the chemokine receptor antagonists, the mode of action of SB265610 was investigated at the CXCR2 receptor using radioligand and [35S]-GTPγS binding approaches in addition to chemotaxis of human neutrophils. Key results: In equilibrium saturation binding studies, SB265610 depressed the maximal binding of [125I]-interleukin-8 ([125I]-IL-8) without affecting the Kd. In contrast, IL-8 was unable to prevent binding of [3H]-SB265610. Kinetic binding experiments demonstrated that this was not an artefact of irreversible or slowly reversible binding. In functional experiments, SB265610 caused a rightward shift of the concentration-response curves to IL-8 and growth-related oncogene α, but also a reduction in maximal response elicited by each agonist. Fitting these data to an operational allosteric ternary complex model suggested that, once bound, SB265610 completely blocks receptor activation. SB265610 also inhibited basal [35S]-GTPγS binding in this preparation. Conclusions and implications: Taken together, these data suggest that SB265610 behaves as an allosteric inverse agonist at the CXCR2 receptor, binding at a region distinct from the agonist binding site to prevent receptor activation, possibly by interfering with G protein coupling. PMID:19422399

  12. Study of the Thermodynamics of Chromium(III) and Chromium(VI) Binding to Fe3O4 and MnFe2O4 nanoparticles

    PubMed Central

    Luther, Steven; Brogfeld, Nathan; Kim, Jisoo; Parsons, J.G.

    2013-01-01

    Removal of chromium(III) or (VI) from aqueous solution was achieved using Fe3O4, and MnFe2O4 nanomaterials. The nanomaterials were synthesized using a precipitation method and characterized using XRD. The size of the nanomaterials was determined to be 22.4 ± 0.9 nm (Fe3O4) and 15.5 ± 0.5 nm (MnFe2O4). The optimal binding pH for chromium(III) and chromium(VI) were pH 6 and pH 3. Isotherm studies were performed, under light and dark conditions, to determine the capacity of the nanomaterials. The capacities for the light studies with MnFe2O4 and Fe3O4 were determined to be 7.189 and 10.63 mg/g, respectively, for chromium(III). The capacities for the light studies with MnFe2O4 and Fe3O4 were 3.21 and 3.46 mg/g, respectively, for chromium(VI). Under dark reaction conditions the binding of chromium(III) to the MnFe2O4 and Fe3O4 nanomaterials were 5.74 and 15.9 mg/g, respectively. The binding capacity for the binding of chromium(VI) to MnFe2O4 and Fe3O4 under dark reaction conditions were 3.87 and 8.54 mg/g, respectively. The thermodynamics for the reactions showed negative ΔG values, and positive ΔH values. The ΔS values were positive for the binding of chromium(III) and for chromium(VI) binding under dark reaction conditions. The ΔS values for chromium(VI) binding under the light reaction conditions were determined to be negative. PMID:23558081

  13. Equilibrium binding behavior of magnesium to wall teichoic acid.

    PubMed

    Thomas, Kieth J; Rice, Charles V

    2015-10-01

    Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Changes in biomechanical properties of glenohumeral joint capsules with adhesive capsulitis by repeated capsule-preserving hydraulic distensions with saline solution and corticosteroid.

    PubMed

    Koh, Eun S; Chung, Sun G; Kim, Tae Uk; Kim, Hee Chan

    2012-12-01

    To investigate whether capsule-preserving hydraulic distension with saline solution and corticosteroid for adhesive capsulitis induces biomechanical alterations in glenohumeral joint capsules along with clinical improvements. A case series. University outpatient clinic of physical medicine and rehabilitation. Eighteen patients with unilateral adhesive capsulitis. INTERVENTION AND MAIN OUTCOME MEASUREMENTS: Three hydraulic distensions with saline solution and corticosteroid were performed with 1-month intervals. To avoid rupturing capsules, all distensions were monitored by using real-time pressure-volume curves. Stiffness, maximal volume capacity, and pressure at the maximal volume capacity of the capsule were measured at each intervention. Clinical parameters, such as pain and range of motion, were recorded before, 3 days after, and 1 month after each distension. Stiffness decreased (47.6 ± 27.1 mm Hg/mL to 31.7 ± 18.4 mm Hg/mL to 24.2 ± 14.0 mm Hg/mL, mean SD) and maximal volume capacity increased (18.8 ± 7.3 mL to 20.5 ± 7.5 mL to 24.2 ± 7.0 mL, mean SD) significantly (P = .001 for both) at each repeated hydraulic distension. Pressure at the maximal volume capacity tended to decrease, but the decrements were not statistically significant (P = .662). The clinical parameters were significantly improved throughout and 1 month after the 3 repeat procedures (P < .05 for all). Capsule-preserving hydraulic distension changed the biomechanical properties of the glenohumeral joint capsule, lessening the stiffness and enlarging the volume capacity. These alterations were accompanied by improved range of motion and relief of pain. Repeated capsule-preserving hydraulic distension with saline solution and corticosteroid would be useful to treat adhesive capsulitis and to evaluate the treatment results. Copyright © 2012 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  15. Norepinephrine transporter function and desipramine: residual drug effects versus short-term regulation.

    PubMed

    Ordway, Gregory A; Jia, Weihong; Li, Jing; Zhu, Meng-Yang; Mandela, Prashant; Pan, Jun

    2005-04-30

    Previous research has shown that exposure of norepinephrine transporter (NET)-expressing cells to desipramine (DMI) downregulates the norepinephrine transporter, although changes in the several transporter parameters do not demonstrate the same time course. Exposures to desipramine for <1 day reduces only radioligand binding and uptake capacity while transporter-immunoreactivity is unaffected. Recent demonstration of persistent drug retention in cells following desipramine exposures raises the possibility that previous reported changes in the norepinephrine transporter may be partly accountable by residual drug. In this study, potential effects of residual desipramine on norepinephrine transporter binding and uptake were re-evaluated following exposures of PC12 cells to desipramine using different methods to remove residual drug. Using a method that minimizes residual drug, exposure of intact PC12 cells to desipramine for 4h had no effect on uptake capacity or [(3)H]nisoxetine binding to the norepinephrine transporter, while exposures for > or =16 h reduced uptake capacity. Desipramine-induced reductions in binding to the transporter required >24 h or greater periods of desipramine exposure. This study confirms that uptake capacity of the norepinephrine transporter is reduced earlier than changes in radioligand binding, but with a different time course than originally shown. Special pre-incubation procedures are required to abolish effects of residual transporter inhibitor when studying inhibitor-induced transporter regulation.

  16. Adsorption of plasmid DNA on anion exchange chromatography media.

    PubMed

    Tarmann, Christina; Jungbauer, Alois

    2008-08-01

    Anion exchange chromatography (AEC) is a useful and effective tool for DNA purification, but due to average pore sizes between 40 and 100 nm most AEC resins lack truly useful binding capacities for plasmid DNA (pDNA). Equilibrium binding capacities and uptake kinetics of AEC media including conventional media (Source 30 Q, Q Sepharose HP), a polymer grafted medium (Fractogel EMD DEAE (M)), media with large pores (Celbeads DEAE, PL SAX 4000 A 30 microm) and a monolithic medium (CIM-DEAE) were investigated by batch uptake or shallow bed experiments at two salt concentrations. Theoretical and experimental binding capacities suggest that the shape of the pDNA molecule can be described by a rod with a length to diameter ratio of 20:1 and that the molecule binds in upright position. The arrangement of DNA like a brush at the surface can be considered as entropy driven, kind of self-assembly process which is inherent to highly and uniformly charged DNA molecules. The initial phase of adsorption is very fast and levels off, associated with a change in mass transfer mechanism. Feed concentrations higher than 0.1 mg/mL pDNA pronounce this effect. Monolithic media showed the fastest adsorption rate and highest binding capacity with 13 mg pDNA per mL.

  17. Alteration of the Copper-Binding Capacity of Iron-Rich Humic Colloids during Transport from Peatland to Marine Waters.

    PubMed

    Muller, François L L; Cuscov, Marco

    2017-03-21

    Blanket bogs contain vast amounts of Sphagnum-derived organic substances which can act as powerful chelators for dissolved iron and thus enhance its export to the coastal ocean. To investigate the variations in quantity and quality of these exports, adsorptive cathodic stripping voltammetry (CSV) was used to characterize the metal binding properties of molecular weight-fractionated dissolved organic matter (MW-fractionated DOM) in the catchment and coastal plume of a small peat-draining river over a seasonal cycle. Within the plume, both iron- and copper-binding organic ligands showed a linear, conservative distribution with increasing salinity, illustrating the high stability of peatland-derived humic substances (HS). Within the catchment, humic colloids lost up to 50% of their copper-binding capacity, expressed as a molar ratio to organic carbon, after residing for 1 week or more in the main reservoir of the catchment. Immediately downstream of the reservoir, the molar ratio [L 2 ]/[C org ], where L 2 was the second strongest copper-binding ligand, was 0.75 × 10 -4 when the reservoir residence time was 5 h but 0.34 × 10 -4 when it was 25 days. Residence time did not affect the carbon specific iron-binding capacity of the humic substances which was [L]/[C org ] = (0.80 ± 0.20) × 10 -2 . Our results suggest that the loss of copper-binding capacity with increasing residence time is caused by intracolloidal interactions between iron and HS during transit from peat soil to river mouth.

  18. The EPA-Wide Plan to Provide Solid Waste Management Capacity Assistance to Tribes

    EPA Pesticide Factsheets

    This Plan is a strategy for building tribal capacity to manage solid waste. The Plan promotes the development and implementation of integrated waste management plans and describes how EPA will prioritize its resources to maximize environmental benefits.

  19. Changes in aerobic capacity and glycaemic control in response to reduced-exertion high-intensity interval training (REHIT) are not different between sedentary men and women.

    PubMed

    Metcalfe, Richard S; Tardif, Nicolas; Thompson, Dylan; Vollaard, Niels B J

    2016-11-01

    Previously it has been reported that reduced-exertion high-intensity interval training (REHIT; total training time of 3 × 10 min per week) improves maximal aerobic capacity in both sedentary men and women, but improves insulin sensitivity in men only. The aim of the present study was to determine whether there is a true sex difference in response to REHIT, or that these findings can be explained by the large interindividual variability in response inherent to all exercise training. Thirty-five sedentary participants (18 women; mean ± SD age for men and women, respectively: age, 33 ± 9 and 36 ± 9 years; body mass index, 25.1 ± 2.1 and 24.1 ± 3.5 kg·m -2 ; maximal aerobic capacity, 38.6 ± 8.3 and 31.6 ± 4.6 mL·kg -1 ·min -1 ) completed a 6-week REHIT programme consisting of eighteen 10-min unloaded cycling sessions with 1 (first session) or 2 (all other sessions) "all-out" 10-20-s sprints against a resistance of 5% of body mass. Maximal aerobic capacity and oral glucose tolerance test-derived insulin sensitivity were determined before and after training. REHIT was associated with an increase in maximal aerobic capacity (2.54 ± 0.65 vs. 2.78 ± 0.68 L·min -1 , main effect of time: p < 0.01), a trend toward reduced plasma insulin area-under-the-curve (AUC; 6.7 ± 4.8 vs. 6.1 ± 4.0 IU·min -1 ·mL -1 , p = 0.096), but no significant change in plasma glucose AUC or the Cederholm index of insulin sensitivity. Substantial interindividual variability in response to REHIT was observed for all variables, but there was no significant effect of sex. In conclusion, REHIT improves the key health marker of aerobic capacity within a minimal total training time-commitment. There is large interindividual variability in responses to REHIT, but sex differences in the responses are not apparent.

  20. Study of As(III) and As(V) Oxoanion Adsorption onto Single and Mixed Ferrite and Hausmannite Nanomaterials

    PubMed Central

    Garcia, Sandra; Sardar, Saima; Maldonado, Stephanie; Garcia, Velia; Tamez, C.; Parsons, J. G.

    2014-01-01

    The removal of arsenic(III) and arsenic(V) from an aqueous solution through adsorption on to Fe3O4, MnFe2O4, 50% Mn substituted Fe3O4, 75% Mn substituted Fe3O4, and Mn3O4 nanomaterials was investigated. Characterization of the nanomaterials using XRD showed only pure phases for Mn3O4, MnFe2O4, and Fe3O4. The 50% and 75% substituted nanomaterials were found to be mixtures of Mn3O4 and Fe3O4. From batch studies the optimum binding pH of arsenic(III) and arsenic(V) to the nanomaterials was determined to be pH 3. The binding capacity for As(III) and As(VI) to the various nanomaterials was determined using Isotherm studies. The binding capacity of Fe3O4 was determined to be 17.1 mg/g for arsenic(III) and 7.0 mg/g for arsenic(V). The substitution of 25% Mn into the Fe3O4 lattice showed a slight increase in the binding capacity for As(III) and As(VI) to 23.8 mg/g and 7.9 mg/g, respectively. The 50% substituted showed the maximum binding capacity of 41.5 mg/g and 13.9 mg/g for arsenic(III) and arsenic(V). The 75% Mn substituted Fe3O4 capacities were 16.7 mg/g for arsenic(III) and 8.2 mg/g for arsenic(V). The binding capacity of the Mn3O4 was determined to be 13.5 mg/g for arsenic(III) and 7.5 mg/g for arsenic(V). In addition, interference studies on the effects of SO2−4, PO3−4, Cl−, and NO−3 investigated. All the interferences had very minimal effects on the As(III) and As(V) binding never fell below 20% even in the presence of 1000 ppm interfering ions. PMID:25097269

  1. Effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation: a randomized controlled trial.

    PubMed

    Zeren, Melih; Demir, Rengin; Yigit, Zerrin; Gurses, Hulya N

    2016-12-01

    To investigate the effects of inspiratory muscle training on pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. Prospective randomized controlled single-blind study. Cardiology department of a university hospital. A total of 38 patients with permanent atrial fibrillation were randomly allocated to either a treatment group (n = 19; age 66.2 years (8.8)) or a control group (n = 19; age 67.1 years (6.4)). The training group received inspiratory muscle training at 30% of maximal inspiratory pressure for 15 minutes twice a day, 7 days a week, for 12 weeks alongside the standard medical treatment. The control group received standard medical treatment only. Spirometry, maximal inspiratory and expiratory pressures and 6-minute walking distance was measured at the beginning and end of the study. There was a significant increase in maximal inspiratory pressure (27.94 cmH 2 O (8.90)), maximal expiratory pressure (24.53 cmH 2 O (10.34)), forced vital capacity (10.29% (8.18) predicted), forced expiratory volume in one second (13.88% (13.42) predicted), forced expiratory flow 25%-75% (14.82% (12.44) predicted), peak expiratory flow (19.82% (15.62) predicted) and 6-minute walking distance (55.53 m (14.13)) in the training group (p < 0.01). No significant changes occurred in the control group (p > 0.05). Inspiratory muscle training can improve pulmonary function, respiratory muscle strength and functional capacity in patients with atrial fibrillation. © The Author(s) 2016.

  2. Maximal oxygen uptake is associated with allele -202 A of insulin-like growth factor binding protein-3 (IGFBP3) promoter polymorphism and (CA)n tandem repeats of insulin-like growth factor IGF1 in Caucasians from Poland.

    PubMed

    Gronek, Piotr; Holdys, Joanna; Kryściak, Jakub; Wieliński, Dariusz; Słomski, Ryszard

    2014-01-01

    Physical fitness is a trait determined by multiple genes, and its genetic basis is modified by numerous environmental factors. The present study examines the effects of the (CA)n tandem repeats polymorphism in IGFI gene and SNP Alw21I restriction site -202 A>C polymorphism in IGF1BP3 on VO2max--a physiological index of aerobic capacity of high heritability. The study sample consisted of 239 (154 male and 85 female) students of the University School of Physical Education in Poznań and athletes practicing various sports, including members of the Polish national team. An association was found between -202 A/C polymorphism of IGFBP3 gene with VO2max in men. Higher VO2max values were attained by men with CC genotype, especially male athletes practicing endurance sports and sports featuring energy metabolism of aerobic/anaerobic character. A statistically significant influence of allele 188 and genotype 188/188 of tandem repeats (CA)n polymorphism of IGF1 gene on VO2max was found in women. Also, lower values of maximal oxygen uptake were noted in individuals with allele 186 or genotype 186/186, and higher VO2max values in athletes with allele 194.

  3. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  4. Efavirenz directly modulates the oestrogen receptor and induces breast cancer cell growth.

    PubMed

    Sikora, M J; Rae, J M; Johnson, M D; Desta, Z

    2010-10-01

    Efavirenz-based HIV therapy is associated with breast hypertrophy and gynaecomastia. Here, we tested the hypothesis that efavirenz induces gynaecomastia through direct binding and modulation of the oestrogen receptor (ER). To determine the effect of efavirenz on growth, the oestrogen-dependent, ER-positive breast cancer cell lines MCF-7, T47D and ZR-75-1 were treated with efavirenz under oestrogen-free conditions in the presence or absence of the anti-oestrogen ICI 182,780. Cells treated with 17β-oestradiol in the absence or presence of ICI 182,780 served as positive and negative controls, respectively. Cellular growth was assayed using the crystal violet staining method and an in vitro receptor binding assay was used to measure the ER binding affinity of efavirenz. Efavirenz induced growth in MCF-7 cells with an estimated effective concentration for half-maximal growth (EC(50)) of 15.7 μM. This growth was reversed by ICI 182,780. Further, efavirenz binds directly to the ER [inhibitory concentration for half maximal binding (IC(50)) of ∼52 μM] at a roughly 1000-fold higher concentration than observed with 17β-oestradiol. Our data suggest that efavirenz-induced gynaecomastia may be caused, at least in part, by drug-induced ER activation in breast tissues.

  5. Oxytocin and vasopressin: distinct receptors in myometrium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillon, G.; Balestre, M.N.; Roberts, J.M.

    1987-06-01

    The binding characteristics of (/sup 3/H)oxytocin (( /sup 3/H)OT) and (/sup 3/H)lysine vasopressin (( /sup 3/H)LVP) to nonpregnant human myometrium were investigated. Binding of both radioligands was saturable, time dependent, and reversible. Whereas (/sup 3/H)OT was found to bind to a single class of sites with high affinity (Kd, 1.5 +/- 0.4 (+/- SEM) nM) and low capacity (maximum binding (Bmax), 34 +/- 6 fmol/mg protein), (/sup 3/H)LVP bound to two classes of sites, one with high affinity (Kd, 2.2 +/- 0.1 nM) and low capacity (Bmax, 198 +/- 7 fmol/mg protein) and another with low affinity (Kd, 655 +/-more » 209 nM) and high capacity (Bmax, 5794 +/- 1616 fmol/mg protein). The binding of the labeled peptides also displayed a marked difference in sensitivity to Mg2+ and guanine nucleotides. These differences in binding characteristics as well as the differences in potency of analogs in competing for (/sup 3/H)OT and (/sup 3/H)LVP binding indicate the presence of distinct receptors for OT and vasopressin in human myometrium. Pharmacological characterization of the high affinity binding sites for (/sup 3/H)LVP indicated that these are of the V1 subtype. Although, as suggested by others, vasopressin and OT can bind to the same sites, the presence of distinct receptors for both peptides provides an explanation for the previously reported difference in myometrial responsiveness to OT and vasopressin.« less

  6. Binding and Utilization of Human Transferrin by Prevotella nigrescens

    PubMed Central

    Duchesne, Pascale; Grenier, Daniel; Mayrand, Denis

    1999-01-01

    To survive and multiply within their hosts, pathogens must possess efficient iron-scavenging mechanisms. In the present study, we investigate the capacity of Prevotella nigrescens and Prevotella intermedia to use various sources of iron for growth and characterize the transferrin-binding activity of P. nigrescens. Iron-saturated human transferrin and lactoferrin, but not ferric chloride and the iron-free form of transferrin, could be used as sources of iron by P. nigrescens and P. intermedia. Neither siderophore activity nor ferric reductase activity could be detected in P. nigrescens and P. intermedia. However, both species showed transferrin-binding activity as well as the capacity to proteolytically cleave transferrin. To various extents, all strains of P. nigrescens and P. intermedia tested demonstrated transferrin-binding activity. The activity was heat and protease sensitive. The capacity of P. nigrescens to bind transferrin was decreased when cells were grown in the presence of hemin. Preincubation of bacterial cells with hemin, hemoglobin, lactoferrin, fibrinogen, immunoglobulin G, or laminin did not affect transferrin-binding activity. The transferrin-binding protein could be extracted from the cell surface of P. nigrescens by treatment with a zwitterionic detergent. Subjecting the cell surface extract to affinity chromatography on an agarose-transferrin column revealed that it contained a protein having an estimated molecular mass of 37 kDa and possessing transferrin-binding activity. The transferrin-binding activity of P. nigrescens and P. intermedia may permit the bacteria to obtain iron for survival and growth in periodontal pockets. PMID:9916061

  7. Stochastic user equilibrium model with a tradable credit scheme and application in maximizing network reserve capacity

    NASA Astrophysics Data System (ADS)

    Han, Fei; Cheng, Lin

    2017-04-01

    The tradable credit scheme (TCS) outperforms congestion pricing in terms of social equity and revenue neutrality, apart from the same perfect performance on congestion mitigation. This article investigates the effectiveness and efficiency of TCS on enhancing transportation network capacity in a stochastic user equilibrium (SUE) modelling framework. First, the SUE and credit market equilibrium conditions are presented; then an equivalent general SUE model with TCS is established by virtue of two constructed functions, which can be further simplified under a specific probability distribution. To enhance the network capacity by utilizing TCS, a bi-level mathematical programming model is established for the optimal TCS design problem, with the upper level optimization objective maximizing network reserve capacity and lower level being the proposed SUE model. The heuristic sensitivity analysis-based algorithm is developed to solve the bi-level model. Three numerical examples are provided to illustrate the improvement effect of TCS on the network in different scenarios.

  8. Role of sufficient statistics in stochastic thermodynamics and its implication to sensory adaptation

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takumi; Sagawa, Takahiro

    2018-04-01

    A sufficient statistic is a significant concept in statistics, which means a probability variable that has sufficient information required for an inference task. We investigate the roles of sufficient statistics and related quantities in stochastic thermodynamics. Specifically, we prove that for general continuous-time bipartite networks, the existence of a sufficient statistic implies that an informational quantity called the sensory capacity takes the maximum. Since the maximal sensory capacity imposes a constraint that the energetic efficiency cannot exceed one-half, our result implies that the existence of a sufficient statistic is inevitably accompanied by energetic dissipation. We also show that, in a particular parameter region of linear Langevin systems there exists the optimal noise intensity at which the sensory capacity, the information-thermodynamic efficiency, and the total entropy production are optimized at the same time. We apply our general result to a model of sensory adaptation of E. coli and find that the sensory capacity is nearly maximal with experimentally realistic parameters.

  9. Variation in lung volumes and capacities among young males in relation to height.

    PubMed

    Bhatti, Urooj; Rani, Keenjher; Memon, Muhammad Qasim

    2014-01-01

    Vital Capacity (VC) is defined as a change in volume of lung after maximal inspiration followed by maximal expiration is called Vital Capacity of lungs. It is the sum of tidal volume, inspiratory reserve volume .and expiratory reserve volume. Vital capacity of normal adults ranges between 3 to 5 litres. A number of physiological factors like age, gender, height and ethnicity effect lung volumes. The reference values of lung volume and capacities were calculated previously and those studies played pivotal role in establishing the fact that air volume capacities measured in an individual fall within a wide range among healthy persons of same age, gender and height buit with different ethnicity. The objective of this study was to evaluate the changes in vital capacity in with height and gender. This cross-sectional study included 74 male students in the Department of Physiology, Liaquat University of Medical and Health Sciences, Jamshoro during January-March, 2014. The volunteers were divided into 2 groups of height ≤ 167.4 cm and > 167.4 cm. The volunteers' height was measured in cm. Vital capacity of the subjects was measured using standard protocol. Mean ± SD of age, height and vital capacity were calculated. Mean vital capacity in students with height > 167.4 cm was higher than average vital capacity of students with height ≤ 167.4 cm. It might be due to the increased surface area of the lungs in relation with increasing height. There are variations in vital capacity of individuals in relation to their heights, within the same ethnic and age groups.

  10. Optimal resource allocation strategy for two-layer complex networks

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Wang, Lixin; Li, Sufeng; Duan, Congwen; Liu, Yu

    2018-02-01

    We study the traffic dynamics on two-layer complex networks, and focus on its delivery capacity allocation strategy to enhance traffic capacity measured by the critical value Rc. With the limited packet-delivering capacity, we propose a delivery capacity allocation strategy which can balance the capacities of non-hub nodes and hub nodes to optimize the data flow. With the optimal value of parameter αc, the maximal network capacity is reached because most of the nodes have shared the appropriate delivery capacity by the proposed delivery capacity allocation strategy. Our work will be beneficial to network service providers to design optimal networked traffic dynamics.

  11. Hupresin Retains Binding Capacity for Butyrylcholinesterase and Acetylcholinesterase after Sanitation with Sodium Hydroxide.

    PubMed

    Onder, Seda; David, Emilie; Tacal, Ozden; Schopfer, Lawrence M; Lockridge, Oksana

    2017-01-01

    Hupresin is a new affinity resin that binds butyrylcholinesterase (BChE) in human plasma and acetylcholinesterase (AChE) solubilized from red blood cells (RBC). Hupresin is available from the CHEMFORASE company. BChE in human plasma binds to Hupresin and is released with 0.1 M trimethylammonium bromide (TMA) with full activity and 10-15% purity. BChE immunopurified from plasma by binding to immobilized monoclonal beads has fewer contaminating proteins than the one-step Hupresin-purified BChE. However, when affinity chromatography on Hupresin follows ion exchange chromatography at pH 4.5, BChE is 99% pure. The membrane bound AChE, solubilized from human RBC with 0.6% Triton X-100, binds to Hupresin and remains bound during washing with sodium chloride. Human AChE is not released in significant quantities with non-denaturing solvents, but is recovered in 1% trifluoroacetic acid. The denatured, partially purified AChE is useful for detecting exposure to nerve agents by mass spectrometry. Our goal was to determine whether Hupresin retains binding capacity for BChE and AChE after Hupresin is washed with 0.1 M NaOH. A 2 mL column of Hupresin equilibrated in 20 mM TrisCl pH 7.5 was used in seven consecutive trials to measure binding and recovery of BChE from 100 mL human plasma. Between each trial the Hupresin was washed with 10 column volumes of 0.1 M sodium hydroxide. A similar trial was conducted with red blood cell AChE in 0.6% Triton X-100. It was found that the binding capacity for BChE and AChE was unaffected by washing Hupresin with 0.1 M sodium hydroxide. Hupresin could be washed with sodium hydroxide at least seven times without losing binding capacity.

  12. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a

    PubMed Central

    Casanueva, Felipe F.; Camiña, Jesus P.; Carreira, Marcos C.; Pazos, Yolanda; Varga, Jozsef L.; Schally, Andrew V.

    2008-01-01

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1–29)NH2 (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of 125I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1–42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control. PMID:19088192

  13. Growth hormone-releasing hormone as an agonist of the ghrelin receptor GHS-R1a.

    PubMed

    Casanueva, Felipe F; Camiña, Jesus P; Carreira, Marcos C; Pazos, Yolanda; Varga, Jozsef L; Schally, Andrew V

    2008-12-23

    Ghrelin synergizes with growth hormone-releasing hormone (GHRH) to potentiate growth hormone (GH) response through a mechanism not yet fully characterized. This study was conducted to analyze the role of GHRH as a potential ligand of the ghrelin receptor, GHS-R1a. The results show that hGHRH(1-29)NH(2) (GHRH) induces a dose-dependent calcium mobilization in HEK 293 cells stably transfected with GHS-R1a an effect not observed in wild-type HEK 293 cells. This calcium rise is also observed using the GHRH receptor agonists JI-34 and JI-36. Radioligand binding and cross-linking studies revealed that calcium response to GHRH is mediated by the ghrelin receptor GHS-R1a. GHRH activates the signaling route of inositol phosphate and potentiates the maximal response to ghrelin measured in inositol phosphate turnover. The presence of GHRH increases the binding capacity of (125)I-ghrelin in a dose dependent-fashion showing a positive binding cooperativity. In addition, confocal microscopy in CHO cells transfected with GHS-R1a tagged with enhanced green fluorescent protein shows that GHRH activates the GHS-R1a endocytosis. Furthermore, the selective GHRH-R antagonists, JV-1-42 and JMR-132, act also as antagonists of the ghrelin receptor GHS-R1a. Our findings suggest that GHRH interacts with ghrelin receptor GHS-R1a, and, in consequence, modifies the ghrelin-associated intracellular signaling pathway. This interaction may represent a form of regulation, which could play a putative role in the physiology of GH regulation and appetite control.

  14. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  15. Maximal liquid bridges between horizontal cylinders

    NASA Astrophysics Data System (ADS)

    Cooray, Himantha; Huppert, Herbert E.; Neufeld, Jerome A.

    2016-08-01

    We investigate two-dimensional liquid bridges trapped between pairs of identical horizontal cylinders. The cylinders support forces owing to surface tension and hydrostatic pressure that balance the weight of the liquid. The shape of the liquid bridge is determined by analytically solving the nonlinear Laplace-Young equation. Parameters that maximize the trapping capacity (defined as the cross-sectional area of the liquid bridge) are then determined. The results show that these parameters can be approximated with simple relationships when the radius of the cylinders is small compared with the capillary length. For such small cylinders, liquid bridges with the largest cross-sectional area occur when the centre-to-centre distance between the cylinders is approximately twice the capillary length. The maximum trapping capacity for a pair of cylinders at a given separation is linearly related to the separation when it is small compared with the capillary length. The meniscus slope angle of the largest liquid bridge produced in this regime is also a linear function of the separation. We additionally derive approximate solutions for the profile of a liquid bridge, using the linearized Laplace-Young equation. These solutions analytically verify the above-mentioned relationships obtained for the maximization of the trapping capacity.

  16. Physical-layer security analysis of PSK quantum-noise randomized cipher in optically amplified links

    NASA Astrophysics Data System (ADS)

    Jiao, Haisong; Pu, Tao; Xiang, Peng; Zheng, Jilin; Fang, Tao; Zhu, Huatao

    2017-08-01

    The quantitative security of quantum-noise randomized cipher (QNRC) in optically amplified links is analyzed from the perspective of physical-layer advantage. Establishing the wire-tap channel models for both key and data, we derive the general expressions of secrecy capacities for the key against ciphertext-only attack and known-plaintext attack, and that for the data, which serve as the basic performance metrics. Further, the maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. Based on the same framework, the secrecy capacities of various cases can be assessed and compared. The results indicate perfect secrecy is potentially achievable for data transmission, and an elementary principle of setting proper number of photons and bases is given to ensure the maximal data secrecy capacity. But the key security is asymptotically perfect, which tends to be the main constraint of systemic maximal secrecy rate. Moreover, by adopting cascaded optical amplification, QNRC can realize long-haul transmission with secure rate up to Gb/s, which is orders of magnitude higher than the perfect secrecy rates of other encryption systems.

  17. Adaptation of avian influenza A (H6N1) virus from avian to human receptor-binding preference

    PubMed Central

    Wang, Fei; Qi, Jianxun; Bi, Yuhai; Zhang, Wei; Wang, Min; Zhang, Baorong; Wang, Ming; Liu, Jinhua; Yan, Jinghua; Shi, Yi; Gao, George F

    2015-01-01

    The receptor-binding specificity of influenza A viruses is a major determinant for the host tropism of the virus, which enables interspecies transmission. In 2013, the first human case of infection with avian influenza A (H6N1) virus was reported in Taiwan. To gather evidence concerning the epidemic potential of H6 subtype viruses, we performed comprehensive analysis of receptor-binding properties of Taiwan-isolated H6 HAs from 1972 to 2013. We propose that the receptor-binding properties of Taiwan-isolated H6 HAs have undergone three major stages: initially avian receptor-binding preference, secondarily obtaining human receptor-binding capacity, and recently human receptor-binding preference, which has been confirmed by receptor-binding assessment of three representative virus isolates. Mutagenesis work revealed that E190V and G228S substitutions are important to acquire the human receptor-binding capacity, and the P186L substitution could reduce the binding to avian receptor. Further structural analysis revealed how the P186L substitution in the receptor-binding site of HA determines the receptor-binding preference change. We conclude that the human-infecting H6N1 evolved into a human receptor preference. PMID:25940072

  18. Mutational analysis of vaccinia virus E3 protein: the biological functions do not correlate with its biochemical capacity to bind double-stranded RNA.

    PubMed

    Dueck, Kevin J; Hu, YuanShen Sandy; Chen, Peter; Deschambault, Yvon; Lee, Jocelyn; Varga, Jessie; Cao, Jingxin

    2015-05-01

    Vaccinia E3 protein has the biochemical capacity of binding to double-stranded RNA (dsRNA). The best characterized biological functions of the E3 protein include its host range function, suppression of cytokine expression, and inhibition of interferon (IFN)-induced antiviral activity. Currently, the role of the dsRNA binding capacity in the biological functions of the E3 protein is not clear. To further understand the mechanism of the E3 protein biological functions, we performed alanine scanning of the entire dsRNA binding domain of the E3 protein to examine the link between its biochemical capacity of dsRNA binding and biological functions. Of the 115 mutants examined, 20 were defective in dsRNA binding. Although the majority of the mutants defective in dsRNA binding also showed defective replication in HeLa cells, nine mutants (I105A, Y125A, E138A, F148A, F159A, K171A, L182A, L183A, and I187/188A) retained the host range function to various degrees. Further examination of a set of representative E3L mutants showed that residues essential for dsRNA binding are not essential for the biological functions of E3 protein, such as inhibition of protein kinase R (PKR) activation, suppression of cytokine expression, and apoptosis. Thus, data described in this communication strongly indicate the E3 protein performs its biological functions via a novel mechanism which does not correlate with its dsRNA binding activity. dsRNAs produced during virus replication are important pathogen-associated molecular patterns (PAMPs) for inducing antiviral immune responses. One of the strategies used by many viruses to counteract such antiviral immune responses is achieved by producing dsRNA binding proteins, such as poxvirus E3 family proteins, influenza virus NS1, and Ebola virus V35 proteins. The most widely accepted model for the biological functions of this class of viral dsRNA binding proteins is that they bind to and sequester viral dsRNA PAMPs; thus, they suppress the related antiviral immune responses. However, no direct experimental data confirm such a model. In this study of vaccinia E3 protein, we found that the biological functions of the E3 protein are not necessarily linked to its biochemical capacity of dsRNA binding. Thus, our data strongly point to a new concept of virus modulation of cellular antiviral responses triggered by dsRNA PAMPs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Characterization of [(3)H]harmane binding to rat whole brain membranes.

    PubMed

    Anderson, N J; Robinson, E S J; Husbands, S M; Delagrange, P; Nutt, D J; Hudson, A L

    2003-12-01

    This study investigates the binding of [(3)H]harmane to rat whole brain homogenates. Saturation studies revealed [(3)H]harmane labels a single, saturable, high-capacity population with high affinity. All the test compounds displaced [(3)H]harmane completely and in an apparently monophasic manner. The displacement profile of the test ligands indicated labeling of MAO-A. Given the high level of MAO-A binding, it is unlikely that a low-capacity I(2) site would be distinguishable from the total [(3)H]harmane population.

  20. With age a lower individual breathing reserve is associated with a higher maximal heart rate.

    PubMed

    Burtscher, Martin; Gatterer, Hannes; Faulhaber, Martin; Burtscher, Johannes

    2018-01-01

    Maximal heart rate (HRmax) is linearly declining with increasing age. Regular exercise training is supposed to partly prevent this decline, whereas sex and habitual physical activity do not. High exercise capacity is associated with a high cardiac output (HR x stroke volume) and high ventilatory requirements. Due to the close cardiorespiratory coupling, we hypothesized that the individual ventilatory response to maximal exercise might be associated with the age-related HRmax. Retrospective analyses have been conducted on the results of 129 consecutively performed routine cardiopulmonary exercise tests. The study sample comprised healthy subjects of both sexes of a broad range of age (20-86 years). Maximal values of power output, minute ventilation, oxygen uptake and heart rate were assessed by the use of incremental cycle spiroergometry. Linear multivariate regression analysis revealed that in addition to age the individual breathing reserve at maximal exercise was independently predictive for HRmax. A lower breathing reserve due to a high ventilatory demand and/or a low ventilatory capacity, which is more pronounced at a higher age, was associated with higher HRmax. Age explained the observed variance in HRmax by 72% and was improved to 83% when the variable "breathing reserve" was entered. The presented findings indicate an independent association between the breathing reserve at maximal exercise and maximal heart rate, i.e. a low individual breathing reserve is associated with a higher age-related HRmax. A deeper understanding of this association has to be investigated in a more physiological scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site(s), missing in the separate catalytic domain, that must also be saturated for maximal activity. The molecular bases of the thermostabilizing effect of Mn2+ on the N-terminal domain of the protein as well as the potential location of additional metal binding sites in the entire RepB are discussed. PMID:27709114

  2. Revised Model of Calcium and Magnesium Binding to the Bacterial Cell Wall

    PubMed Central

    Thomas, Kieth J.; Rice, Charles V.

    2014-01-01

    Metals bind to the bacterial cell wall yet the binding mechanisms and affinity constants are not fully understood. The cell wall of gram positive bacteria is characterized by a thick layer of peptidoglycan and anionic teichoic acids anchored in the cytoplasmic membrane (lipoteichoic acid) or covalently bound to the cell wall (wall teichoic acid). The polyphosphate groups of teichoic acid provide one-half of the metal binding sites for calcium and magnesium, contradicting previous reports that calcium binding is 100% dependent on teichoic acid. The remaining binding sites are formed with the carboxyl units of peptidoglycan. In this work we report equilibrium association constants and total metal binding capacities for the interaction of calcium and magnesium ions with the bacterial cell wall. Metal binding is much stronger and previously reported. Curvature of Scatchard plots from the binding data and the resulting two regions of binding affinity suggest the presence of negative cooperative binding, meaning that the binding affinity decreases as more ions become bound to the sample. For Ca2+, Region I has a KA = (1.0 ± 0.2) × 106 M−1 and Region II has a KA = (0.075 ± 0.058) × 106 M−1. For Mg2+, KA1 = (1.5 ± 0.1) × 106 and KA2 = (0.17 ± 0.10) × 106. A binding capacity (η) is reported for both regions. However, since binding is still occurring in Region II, the total binding capacity is denoted by η2, which are 0.70 ± 0.04 µmol/mg and 0.67 ± 0.03 µmol/mg for Ca2+ and Mg2+ respectively. These data contradict the current paradigm of there being a single metal affinity value that is constant over a range of concentrations. We also find that measurement of equilibrium binding constants is highly sample dependent, suggesting a role for diffusion of metals through heterogeneous cell wall fragments. As a result, we are able to reconcile many contradictory theories that describe binding affinity and the binding mode of divalent metal cations. PMID:25315444

  3. Seasonal changes in plasma androgens, glucocorticoids and glucocorticoid-binding proteins in the marsupial sugar glider Petaurus breviceps.

    PubMed

    Bradley, A J; Stoddart, D M

    1992-01-01

    An investigation spanning two breeding seasons was carried out to examine endocrine changes associated with reproduction in a wild population of the marsupial sugar glider Petaurus breviceps, a small arboreal gliding possum. Using techniques of equilibrium dialysis and polyacrylamide gel electrophoresis at steady-state conditions, a high-affinity, low-capacity glucocorticoid-binding protein was demonstrated in the plasma of Petaurus breviceps. Equilibrium dialysis at 36 degrees C using cortisol gave a high-affinity binding constant of 95 +/- 5.2 litres/mumol for a presumed corticosteroid-binding globulin (CBG) while the binding constant for the cortisol-albumin interaction was 3.5 +/- 0.4 litres/mmol. There was no difference between the sexes in the affinity of binding of cortisol to CBG; however, the cortisol-binding capacity underwent seasonal variation in both sexes. Progesterone was bound strongly to the presumed CBG while neither oestradiol nor aldosterone appeared to be bound with high affinity to P. breviceps plasma. In the males, peaks in the plasma concentration of testosterone coincided with the July-September breeding season in both years. A significant inverse relationship was shown to exist between the plasma testosterone concentration and the CBG-binding capacity. In both sexes an increase occurred in the plasma concentration of free cortisol during the first breeding season, a pattern which was not repeated in the subsequent breeding season, possibly due to a lower population density in that year.

  4. Dietary fibers from mushroom Sclerotia: 2. In vitro mineral binding capacity under sequential simulated physiological conditions of the human gastrointestinal tract.

    PubMed

    Wong, Ka-Hing; Cheung, Peter C K

    2005-11-30

    The in vitro mineral binding capacity of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, to Ca, Mg, Cu, Fe, and Zn under sequential simulated physiological conditions of the human stomach, small intestine, and colon was investigated and compared. Apart from releasing most of their endogenous Ca (ranged from 96.9 to 97.9% removal) and Mg (ranged from 95.9 to 96.7% removal), simulated physiological conditions of the stomach also attenuated the possible adverse binding effect of the three sclerotial DFs to the exogenous minerals by lowering their cation-exchange capacity (ranged from 20.8 to 32.3%) and removing a substantial amount of their potential mineral chelators including protein (ranged from 16.2 to 37.8%) and phytate (ranged from 58.5 to 64.2%). The in vitro mineral binding capacity of the three sclerotial DF under simulated physiological conditions of small intestine was found to be low, especially for Ca (ranged from 4.79 to 5.91% binding) and Mg (ranged from 3.16 to 4.18% binding), and was highly correlated (r > 0.97) with their residual protein contents. Under simulated physiological conditions of the colon with slightly acidic pH (5.80), only bound Ca was readily released (ranged from 34.2 to 72.3% releasing) from the three sclerotial DFs, and their potential enhancing effect on passive Ca absorption in the human large intestine was also discussed.

  5. A streptavidin linker layer that functions after drying.

    PubMed

    Xia, Nan; Shumaker-Parry, Jennifer S; Zareie, M Hadi; Campbell, Charles T; Castner, David G

    2004-04-27

    The ability of streptavidin (SA) to simultaneously bind four biotins is often used in linker layers, where a biotinylated molecule is linked to a biotin-functionalized surface via SA. For biosensor and array applications, it is desirable that the SA linker layer be stable to drying and rehydration. In this study it was observed that a significant decrease in binding capacity of a SA layer occurred when that layer was dried. For this study a SA linker layer was constructed by binding SA to a biotin-containing alkylthiolate monolayer (BAT/OEG) self-assembled onto gold. Its stability after drying was investigated using surface plasmon resonance (SPR). Approximately a quarter of the SA layer was removed from the BAT/OEG surface upon drying and rehydration, suggesting disruption of SA-biotin binding when dry. This resulted in the dried SA layer losing approximately 40% of its biotinylated ferritin (BF) binding capacity. Coating the layer with trehalose before drying was found to inhibit the loss of SA from the BAT/OEG surface. SPR showed that the trehalose-protected SA linker layer retained approximately 91% of its original BF binding capacity after drying and rehydration. Atomic force microscopy, which was used to image individual surface-bound SA and BF molecules, qualitatively confirmed these observations.

  6. Lead-binding capacity of calcium pectates with different molecular weight.

    PubMed

    Khotimchenko, Maksim; Makarova, Ksenia; Khozhaenko, Elena; Kovalev, Valeri

    2017-04-01

    Nowadays, heavy metal contamination of environment is considered as a serious threat to public health because of toxicity of these pollutants and the lack of effective materials with metal-binding properties. Some biopolymers such as pectins were proposed for removal of metal ions from industrial water disposals. Chemical structure of pectins is quite variable and substantially affects their metal binding properties. In this work, relationship between molecular weight and Pb(II)-binding capacity of calcium pectates was investigated in a batch sorption system. The results showed that all pectate samples are able to form complexes with Pb(II) ions. The effects of contact time, pH of the media and equilibrium metal concentration on metal-binding process were tested in experiments. The equilibrium time min required for uptake of Pb(II) by pectate compounds was found to be 60min. Langmuir and Freundlich models were applied for description of interactions between pectates and metal ions. Binding capacity of low molecular pectate was highest among all the samples tested. Langmuir model was figured out to be the best fit within the whole range of pH values. These results demonstrate that calcium pectate with low molecular weight is more promising agent for elimination of Pb(II) ions from contaminated wastewaters. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Mapping quorum sensing onto neural networks to understand collective decision making in heterogeneous microbial communities

    NASA Astrophysics Data System (ADS)

    Yusufaly, Tahir I.; Boedicker, James Q.

    2017-08-01

    Microbial communities frequently communicate via quorum sensing (QS), where cells produce, secrete, and respond to a threshold level of an autoinducer (AI) molecule, thereby modulating gene expression. However, the biology of QS remains incompletely understood in heterogeneous communities, where variant bacterial strains possess distinct QS systems that produce chemically unique AIs. AI molecules bind to ‘cognate’ receptors, but also to ‘non-cognate’ receptors found in other strains, resulting in inter-strain crosstalk. Understanding these interactions is a prerequisite for deciphering the consequences of crosstalk in real ecosystems, where multiple AIs are regularly present in the same environment. As a step towards this goal, we map crosstalk in a heterogeneous community of variant QS strains onto an artificial neural network model. This formulation allows us to systematically analyze how crosstalk regulates the community’s capacity for flexible decision making, as quantified by the Boltzmann entropy of all QS gene expression states of the system. In a mean-field limit of complete cross-inhibition between variant strains, the model is exactly solvable, allowing for an analytical formula for the number of variants that maximize capacity as a function of signal kinetics and activation parameters. An analysis of previous experimental results on the Staphylococcus aureus two-component Agr system indicates that the observed combination of variant numbers, gene expression rates and threshold concentrations lies near this critical regime of parameter space where capacity peaks. The results are suggestive of a potential evolutionary driving force for diversification in certain QS systems.

  8. Breathing exercises with vagal biofeedback may benefit patients with functional dyspepsia.

    PubMed

    Hjelland, Ina E; Svebak, Sven; Berstad, Arnold; Flatabø, Geir; Hausken, Trygve

    2007-09-01

    Many patients with functional dyspepsia (FD) have postprandial symptoms, impaired gastric accommodation and low vagal tone. The aim of this study was to improve vagal tone, and thereby also drinking capacity, intragastric volume and quality of life, using breathing exercises with vagal biofeedback. Forty FD patients were randomized to either a biofeedback group or a control group. The patients received similar information and care. Patients in the biofeedback group were trained in breathing exercises, 6 breaths/min, 5 min each day for 4 weeks, using specially designed software for vagal biofeedback. Effect variables included maximal drinking capacity using a drink test (Toro clear meat soup 100 ml/min), intragastric volume at maximal drinking capacity, respiratory sinus arrhythmia (RSA), skin conductance (SC) and dyspepsia-related quality of life scores. Drinking capacity and quality of life improved significantly more in the biofeedback group than in the control group (p=0.02 and p=0.01) without any significant change in baseline autonomic activity (RSA and SC) or intragastric volume. After the treatment period, RSA during breathing exercises was significantly correlated to drinking capacity (r=0.6, p=0.008). Breathing exercises with vagal biofeedback increased drinking capacity and improved quality of life in FD patients, but did not improve baseline vagal tone.

  9. Ontogeny of growth hormone (GH) binding in the domestic turkey: evidence of sexual dimorphism and developmental changes in relationship to plasma GH.

    PubMed

    Vasilatos-Younken, R; Gray, K S; Bacon, W L; Nestor, K E; Long, D W; Rosenberger, J L

    1990-07-01

    The post-hatch ontogeny of hepatic GH binding and its relationship to GH plasma profile characteristics in male and female turkeys of slow- (RBC-2) and fast-growing (F; selected from RBC-2) genetic lines were determined. Specific binding of 125I-labelled recombinant chicken GH to crude hepatic membrane preparations (100,000 g pellet) was determined at 2, 4, 8, 14 and 24 weeks of age for both total (occupied plus free; 4 mol MgCl2/l pretreatment) and free (without MgCl2 pretreatment) binding sites. Characteristics of the plasma GH profile were measured at each age by serial blood sampling through indwelling jugular vein catheters. When specific binding to either free or total sites was expressed on a whole organ basis (i.e. hepatic GH-binding capacity/bird), binding increased dramatically (P less than 0.0001) with increasing age over both lines and sexes. Total binding capacity (free plus occupied sites) per bird was greater for females than for males at 24 weeks of age (P less than 0.04), as birds reached sexual maturity, but did not differ between fast- and slow-growing lines at any age. Available binding capacity (free sites) per bird was greater for the faster growing F than RBC-2 line at the older ages when body size was most divergent (14 and 24 weeks of age; P less than 0.01, P less than 0.06 respectively), but did not differ between sexes. Correlation analysis at individual ages revealed a progressive change in the nature of the relationship between hepatic GH binding, plasma GH and somatic growth.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Streamflow variability and optimal capacity of run-of-river hydropower plants

    NASA Astrophysics Data System (ADS)

    Basso, S.; Botter, G.

    2012-10-01

    The identification of the capacity of a run-of-river plant which allows for the optimal utilization of the available water resources is a challenging task, mainly because of the inherent temporal variability of river flows. This paper proposes an analytical framework to describe the energy production and the economic profitability of small run-of-river power plants on the basis of the underlying streamflow regime. We provide analytical expressions for the capacity which maximize the produced energy as a function of the underlying flow duration curve and minimum environmental flow requirements downstream of the plant intake. Similar analytical expressions are derived for the capacity which maximize the economic return deriving from construction and operation of a new plant. The analytical approach is applied to a minihydro plant recently proposed in a small Alpine catchment in northeastern Italy, evidencing the potential of the method as a flexible and simple design tool for practical application. The analytical model provides useful insight on the major hydrologic and economic controls (e.g., streamflow variability, energy price, costs) on the optimal plant capacity and helps in identifying policy strategies to reduce the current gap between the economic and energy optimizations of run-of-river plants.

  11. Hormone-induced 14-3-3γ Adaptor Protein Regulates Steroidogenic Acute Regulatory Protein Activity and Steroid Biosynthesis in MA-10 Leydig Cells*

    PubMed Central

    Aghazadeh, Yasaman; Rone, Malena B.; Blonder, Josip; Ye, Xiaoying; Veenstra, Timothy D.; Hales, D. Buck; Culty, Martine; Papadopoulos, Vassilios

    2012-01-01

    Cholesterol is the sole precursor of steroid hormones in the body. The import of cholesterol to the inner mitochondrial membrane, the rate-limiting step in steroid biosynthesis, relies on the formation of a protein complex that assembles at the outer mitochondrial membrane called the transduceosome. The transduceosome contains several mitochondrial and cytosolic components, including the steroidogenic acute regulatory protein (STAR). Human chorionic gonadotropin (hCG) induces de novo synthesis of STAR, a process shown to parallel maximal steroid production. In the hCG-dependent steroidogenic MA-10 mouse Leydig cell line, the 14-3-3γ protein was identified in native mitochondrial complexes by mass spectrometry and immunoblotting, and its levels increased in response to hCG treatment. The 14-3-3 proteins bind and regulate the activity of many proteins, acting via target protein activation, modification and localization. In MA-10 cells, cAMP induces 14-3-3γ expression parallel to STAR expression. Silencing of 14-3-3γ expression potentiates hormone-induced steroidogenesis. Binding motifs of 14-3-3γ were identified in components of the transduceosome, including STAR. Immunoprecipitation studies demonstrate a hormone-dependent interaction between 14-3-3γ and STAR that coincides with reduced 14-3-3γ homodimerization. The binding site of 14-3-3γ on STAR was identified to be Ser-194 in the STAR-related sterol binding lipid transfer (START) domain, the site phosphorylated in response to hCG. Taken together, these results demonstrate that 14-3-3γ negatively regulates steroidogenesis by binding to Ser-194 of STAR, thus keeping STAR in an unfolded state, unable to induce maximal steroidogenesis. Over time 14-3-3γ homodimerizes and dissociates from STAR, allowing this protein to induce maximal mitochondrial steroid formation. PMID:22427666

  12. Chemical and structural characterization of copper adsorbed on mosses (Bryophyta).

    PubMed

    González, Aridane G; Jimenez-Villacorta, Felix; Beike, Anna K; Reski, Ralf; Adamo, Paola; Pokrovsky, Oleg S

    2016-05-05

    The adsorption of copper on passive biomonitors (devitalized mosses Hypnum sp., Sphagnum denticulatum, Pseudoscleropodium purum and Brachythecium rutabulum) was studied under different experimental conditions such as a function of pH and Cu concentration in solution. Cu assimilation by living Physcomitrella patents was also investigated. Molecular structure of surface adsorbed and incorporated Cu was studied by X-ray Absorption Spectroscopy (XAS). Devitalized mosses exhibited the universal adsorption pattern of Cu as a function of pH, with a total binding sites number 0.05-0.06 mmolg(dry)(-1) and a maximal adsorption capacity of 0.93-1.25 mmolg(dry)(-1) for these devitalized species. The Extended X-ray Absorption Fine Structure (EXAFS) fit of the first neighbor demonstrated that for all studied mosses there are ∼4.5 O/N atoms around Cu at ∼1.95 Å likely in a pseudo-square geometry. The X-ray Absorption Near Edge Structure (XANES) analysis demonstrated that Cu(II)-cellulose (representing carboxylate groups) and Cu(II)-phosphate are the main moss surface binding moieties, and the percentage of these sites varies as a function of solution pH. P. patens exposed during one month to Cu(2+) yielded ∼20% of Cu(I) in the form of Cu-S(CN) complexes, suggesting metabolically-controlled reduction of adsorbed and assimilated Cu(2+). Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Musculoskeletal capacity of middle-aged women and men in physical, mental and mixed occupations. A 3.5-year follow-up.

    PubMed

    Nygård, C H; Luopajärvi, T; Ilmarinen, J

    1988-01-01

    The musculoskeletal capacity of 44 women and 39 men, mean age 55.0 +/- 3.4 years, was studied at the beginning and end of a 3.5 year period. The measurements included anthropometrics, maximal isometric trunk flexion and extension strength, maximal isometric hand grip strength and back mobility. According to a job analysis the subjects were divided into three dominating work groups: physical, mental and mixed groups. The results showed significant changes in anthropometrics, maximal isometric muscle strength and in mobility. The body weight and body mass index among women and the body mass index among men increased significantly during the period. The body height and sum of the skinfolds had on the other hand decreased significantly for both women and men. Women showed significant decreases of 9% and 10% (p less than 0.05 and p less than 0.01) in isometric trunk flexion and extension strength, and an increase of 9% in back mobility (p less than 0.05). In mental work, most of the significant changes occurred among women. Men had significant decreases in isometric trunk flexion and extension, 22% and 16% respectively (p less than 0.001) and an increase of 13% in back mobility (p less than 0.001). The men doing physical work had most of the significant changes in musculoskeletal capacity. The results revealed accelerated changes in musculoskeletal capacity in middle-aged employees.

  14. Serotonin and dopamine transporter binding in children with autism determined by SPECT.

    PubMed

    Makkonen, Ismo; Riikonen, Raili; Kokki, Hannu; Airaksinen, Mauno M; Kuikka, Jyrki T

    2008-08-01

    Disturbances in the serotonergic system have been recognized in autism. To investigate the association between serotonin and dopamine transporters and autism, we studied 15 children (14 males, one female; mean age 8 y 8 mo [SD 3 y 10 mo]) with autism and 10 non-autistic comparison children (five males, five females; mean age 9 y 10 mo [SD 2 y 8 mo]) using single-photon emission computed tomography (SPECT) with [123 I] nor-beta-CIT. The children, with autism were studied during light sedation. They showed reduced serotonin transporter (SERT) binding capacity in the medial frontal cortex, midbrain, and temporal lobe areas. However, after correction due to the estimated effect of sedation, the difference remained significant only in the medial frontal cortex area (p=0.002). In the individuals with autism dopamine transporter (DAT) binding did not differ from that of the comparison group. The results indicate that SERT binding capacity is disturbed in autism. The reduction is more evident in adolescence than in earlier childhood. The low SERT binding reported here and the low serotonin synthesis capacity shown elsewhere may indicate maturation of a lesser number of serotonergic nerve terminals in individuals with autism.

  15. High intensity interval training (HIIT) improves resting blood pressure, metabolic (MET) capacity and heart rate reserve without compromising cardiac function in sedentary aging men.

    PubMed

    Grace, Fergal; Herbert, Peter; Elliott, Adrian D; Richards, Jo; Beaumont, Alexander; Sculthorpe, Nicholas F

    2017-05-13

    This study examined a programme of pre-conditioning exercise with subsequent high intensity interval training (HIIT) on blood pressure, echocardiography, cardiac strain mechanics and maximal metabolic (MET) capacity in sedentary (SED) aging men compared with age matched masters athletes (LEX). Using a STROBE compliant observational design, 39 aging male participants (SED; n=22, aged 62.7±5.2yrs) (LEX; n=17, aged=61.1±5.4yrs) were recruited to a study that necessitated three distinct assessment phases; enrolment (Phase A), following pre-conditioning exercise in SED (Phase B), then following 6weeks of HIIT performed once every five days by both groups before reassessment (Phase C). Hemodynamic, echocardiographic and cardiac strain mechanics were obtained at rest and maximal cardiorespiratory and chronotropic responses were obtained at each measurement phase. The training intervention improved systolic, mean arterial blood pressure, rate pressure product and heart rate reserve (each P<0.05) in SED and increased MET capacity in both SED and LEX (P<0.01) which was amplified by HIIT. Echocardiography and cardiac strain measures were unremarkable apart from trivial increase to intra-ventricular septum diastole (IVSd) (P<0.05) and decrease to left ventricular internal dimension diastole (LVId) (P<0.05) in LEX following HIIT. A programme of preconditioning exercise with HIIT induces clinically relevant improvements in blood pressure, rate pressure product and encourages recovery of heart rate reserve in SED, while improving maximal MET capacity in both SED and LEX without inducing any pathological cardiovascular remodeling. These data add to the emerging repute of HIIT as a safe and promising exercise prescription to improve cardiovascular function and metabolic capacity in sedentary aging. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. From neural oscillations to reasoning ability: Simulating the effect of the theta-to-gamma cycle length ratio on individual scores in a figural analogy test.

    PubMed

    Chuderski, Adam; Andrelczyk, Krzysztof

    2015-02-01

    Several existing computational models of working memory (WM) have predicted a positive relationship (later confirmed empirically) between WM capacity and the individual ratio of theta to gamma oscillatory band lengths. These models assume that each gamma cycle represents one WM object (e.g., a binding of its features), whereas the theta cycle integrates such objects into the maintained list. As WM capacity strongly predicts reasoning, it might be expected that this ratio also predicts performance in reasoning tasks. However, no computational model has yet explained how the differences in the theta-to-gamma ratio found among adult individuals might contribute to their scores on a reasoning test. Here, we propose a novel model of how WM capacity constraints figural analogical reasoning, aimed at explaining inter-individual differences in reasoning scores in terms of the characteristics of oscillatory patterns in the brain. In the model, the gamma cycle encodes the bindings between objects/features and the roles they play in the relations processed. Asynchrony between consecutive gamma cycles results from lateral inhibition between oscillating bindings. Computer simulations showed that achieving the highest WM capacity required reaching the optimal level of inhibition. When too strong, this inhibition eliminated some bindings from WM, whereas, when inhibition was too weak, the bindings became unstable and fell apart or became improperly grouped. The model aptly replicated several empirical effects and the distribution of individual scores, as well as the patterns of correlations found in the 100-people sample attempting the same reasoning task. Most importantly, the model's reasoning performance strongly depended on its theta-to-gamma ratio in same way as the performance of human participants depended on their WM capacity. The data suggest that proper regulation of oscillations in the theta and gamma bands may be crucial for both high WM capacity and effective complex cognition. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Maximal Oxygen Uptake, Sweating and Tolerance to Exercise in the Heat

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Castle, B. L.; Ruff, W. K.

    1972-01-01

    The physiological mechanisms that facilitate acute acclimation to heat have not been fully elucidated, but the result is the establishment of a more efficient cardiovascular system to increase heat dissipation via increased sweating that allows the acclimated man to function with a cooler internal environment and to extend his performance. Men in good physical condition with high maximal oxygen uptakes generally acclimate to heat more rapidly and retain it longer than men in poorer condition. Also, upon first exposure trained men tolerate exercise in the heat better than untrained men. Both resting in heat and physical training in a cool environment confer only partial acclimation when first exposed to work in the heat. These observations suggest separate additive stimuli of metabolic heat from exercise and environmental heat to increase sweating during the acclimation process. However, the necessity of utilizing physical exercise during acclimation has been questioned. Bradbury et al. (1964) have concluded exercise has no effect on the course of heat acclimation since increased sweating can be induced by merely heating resting subjects. Preliminary evidence suggests there is a direct relationship between the maximal oxygen uptake and the capacity to maintain thermal regulation, particularly through the control of sweating. Since increased sweating is an important mechanism for the development of heat acclimation, and fit men have high sweat rates, it follows that upon initial exposure to exercise in the heat, men with high maximal oxygen uptakes should exhibit less strain than men with lower maximal oxygen uptakes. The purpose of this study was: (1) to determine if men with higher maximal oxygen uptakes exhibit greater tolerance than men with lower oxygen uptakes during early exposure to exercise in the heat, and (2) to investigate further the mechanism of the relationship between sweating and maximal work capacity.

  18. Metabolic predictors of middle-distance swimming performance.

    PubMed

    Ribeiro, J P; Cadavid, E; Baena, J; Monsalvete, E; Barna, A; De Rose, E H

    1990-09-01

    To evaluate the capacity of different metabolic indices to predict performance in middle distance swimming, 15 competitive swimmers performed a submaximal and a maximal 400 metres freestyle swimming event. Expired gases were collected in Douglas bags immediately after the events for the determination of VO2 max. Arterialized blood samples were collected for the determination of maximal blood lactate concentration and the velocity corresponding to blood lactate concentration of 4 mM. The results demonstrated (means +/- SD): maximal velocity of 1.44 +/- 0.05 m.s-1; velocity at 85 percent of VO2 max of 1.36 +/- 0.04 m.s-1; velocity at 4 mM of 1.32 +/- 0.04 m.s-1; VO2 max of 3.47 +/- 0.5 l.min-1; maximal blood lactate concentration of 11.8 +/- 2.5 mM. Multiple regression analysis relating metabolic indices and maximal velocity demonstrated that only velocity at 85 percent of VO2 max (r2 = 0.81) and velocity at 4 mM (r2 = 0.79) were significant predictors. Thus, 79 percent of the variance in the performance of 400 m freestyle can be accounted for the velocity at 85 percent of VO2 max or the velocity at 4 mM. The success in this event seems to depend on the swimmer's capacity to achieve higher velocities with lower blood lactate levels and/or utilizing a lower percentage of their VO2 max.

  19. r- and K-selection in fluctuating populations is determined by the evolutionary trade-off between two fitness measures: Growth rate and lifetime reproductive success.

    PubMed

    Engen, Steinar; Saether, Bernt-Erik

    2017-01-01

    In a stable environment, evolution maximizes growth rates in populations that are not density regulated and the carrying capacity in the case of density regulation. In a fluctuating environment, evolution maximizes a function of growth rate, carrying capacity and environmental variance, tending to r-selection and K-selection under large and small environmental noise, respectively. Here we analyze a model in which birth and death rates depend on density through the same function but with independent strength of density dependence. As a special case, both functions may be linear, corresponding to logistic dynamics. It is shown that evolution maximizes a function of the deterministic growth rate r 0 and the lifetime reproductive success (LRS) R 0 , both defined at small densities, as well as the environmental variance. Under large noise this function is dominated by r 0 and average lifetimes are small, whereas R 0 dominates and lifetimes are larger under small noise. Thus, K-selection is closely linked to selection for large R 0 so that evolution tends to maximize LRS in a stable environment. Consequently, different quantities (r 0 and R 0 ) tend to be maximized at low and high densities, respectively, favoring density-dependent changes in the optimal life history. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  20. Force Exertion Capacity Measurements in Haptic Virtual Environments

    ERIC Educational Resources Information Center

    Munih, Marko; Bardorfer, Ales; Ceru, Bojan; Bajd, Tadej; Zupan, Anton

    2010-01-01

    An objective test for evaluating functional status of the upper limbs (ULs) in patients with muscular distrophy (MD) is presented. The method allows for quantitative assessment of the UL functional state with an emphasis on force exertion capacity. The experimental measurement setup and the methodology for the assessment of maximal exertable force…

  1. 20 CFR 220.11 - Definitions as used in this subpart.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Occupation § 220.11 Definitions as used in this subpart. Functional capacity test means one of a number of tests which provide objective measures of a claimant's maximal work ability and includes functional... railway labor organization. Residual functional capacity has the same meaning as found in § 220.120. [63...

  2. The Relationship between Aerobic Capacity and Physical Activity in Blind and Sighted Adolescents.

    ERIC Educational Resources Information Center

    Kobberling, G.; And Others

    1991-01-01

    This study investigated the relationship between habitual physical activity and aerobic capacity in 30 blind and 30 sighted adolescents. Both physical activity and maximal oxygen consumption were significantly higher among the sighted adolescents. A minimum of 30 minutes of daily activity at a minimal oxygen consumption of 8 METs (resting…

  3. Aerobic Capacity in Children and Adolescents with Cerebral Palsy

    ERIC Educational Resources Information Center

    Verschuren, Olaf; Takken, Tim

    2010-01-01

    This study described the aerobic capacity [VO[subscript 2peak] (ml/kg/min)] in contemporary children and adolescents with cerebral palsy (CP) using a maximal exercise test protocol. Twenty-four children and adolescents with CP classified at Gross Motor Functional Classification Scale (GMFCS) level I or level II and 336 typically developing…

  4. Methods and Apparatuses for Signaling with Geometric Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2018-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  5. Methods and apparatuses for signaling with geometric constellations

    NASA Technical Reports Server (NTRS)

    Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)

    2012-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. geometrically shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  6. Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.

    2017-05-01

    Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.

  7. Thiacarbocyanine as ligand in dye-affinity chromatography for protein purification. II. Dynamic binding capacity using lysozyme as a model.

    PubMed

    Boto, R E F; Anyanwu, U; Sousa, F; Almeida, P; Queiroz, J A

    2009-09-01

    A constant development of dye-affinity chromatography to replace more traditional techniques is verified, with the aim of increasing specificity in the purification of biomolecules. The establishment of a new dye-affinity chromatographic support imposes their complete characterization, namely with relation to the binding capacity for proteins, in order to evaluate its applicability on global purification processes. Following previous studies, the adsorption of lysozyme onto a thiacarbocyanine dye immobilized on beaded cellulose was investigated. The effect of different parameters, such as temperature, ionic strength, pH, protein concentration and flow rate, on the dynamic binding capacity of the support to retain lysozyme was also studied. Increasing the temperature and the lysozyme concentration had a positive effect on the dynamic binding capacity (DBC), whereas increasing the ionic strength and the flow rate resulted in the opposite. It was also discovered that the pH used had an important impact on the lysozyme binding onto the immobilized dye. The maximum DBC value obtained for lysozyme was 8.6 mg/mL, which was achieved at 30 degrees C and pH 9 with a protein concentration of 0.5 mg/mL and a flow rate of 0.05 mL/min. The dissociation constant (K(d)) obtained was 2.61 +/- 0.36 x 10(-5 )m, proving the affinity interaction between the thiacarbocyanine dye ligand and the lysozyme. Copyright (c) 2009 John Wiley & Sons, Ltd.

  8. Development of high-productivity, strong cation-exchange adsorbers for protein capture by graft polymerization from membranes with different pore sizes

    PubMed Central

    Chenette, Heather C.S.; Robinson, Julie R.; Hobley, Eboni; Husson, Scott M.

    2012-01-01

    This paper describes the surface modification of macroporous membranes using ATRP (atom transfer radical polymerization) to create cation-exchange adsorbers with high protein binding capacity at high product throughput. The work is motivated by the need for a more economical and rapid capture step in downstream processing of protein therapeutics. Membranes with three reported nominal pore sizes (0.2, 0.45, 1.0 μm) were modified with poly(3-sulfopropyl methacrylate, potassium salt) tentacles, to create a high density of protein binding sites. A special formulation was used in which the monomer was protected by a crown ether to enable surface-initiated ATRP of this cationic polyelectrolyte. Success with modification was supported by chemical analysis using Fourier-transform infrared spectroscopy and indirectly by measurement of pure water flux as a function of polymerization time. Uniformity of modification within the membranes was visualized with confocal laser scanning microscopy. Static and dynamic binding capacities were measured using lysozyme protein to allow comparisons with reported performance data for commercial cation-exchange materials. Dynamic binding capacities were measured for flow rates ranging from 13 to 109 column volumes (CV)/min. Results show that this unique ATRP formulation can be used to fabricate cation-exchange membrane adsorbers with dynamic binding capacities as high as 70 mg/mL at a throughput of 100 CV/min and unprecedented productivity of 300 mg/mL/min. PMID:23175597

  9. Multicomponent Exercise Improves Hemodynamic Parameters and Mobility, but Not Maximal Walking Speed, Transfer Capacity, and Executive Function of Older Type II Diabetic Patients.

    PubMed

    Coelho Junior, Hélio José; Callado Sanches, Iris; Doro, Marcio; Asano, Ricardo Yukio; Feriani, Daniele Jardim; Brietzke, Cayque; Gonçalves, Ivan de Oliveira; Uchida, Marco Carlos; Capeturo, Erico Chagas; Rodrigues, Bruno

    2018-01-01

    The present study aimed to investigate the effects of a 6-month multicomponent exercise program (MCEP) on functional, cognitive, and hemodynamic parameters of older Type 2 diabetes mellitus (T2DM) patients. Moreover, additional analyses were performed to evaluate if T2DM patients present impaired adaptability in response to physical exercise when compared to nondiabetic volunteers. A total of 72 T2DM patients and 72 age-matched healthy volunteers (CG) were recruited and submitted to functional, cognitive, and hemodynamic evaluations before and after six months of a MCEP. The program of exercise was performed twice a week at moderate intensity. Results indicate T2DM and nondiabetic patients present an increase in mobility (i.e., usual walking speed) after the MCEP. However, improvements in maximal walking speed, transfer capacity, and executive function were only observed in the CG. On the other hand, only T2DM group reveals a marked decline in blood pressure. In conclusion, data of the current study indicate that a 6-month MCEP improves mobility and reduce blood pressure in T2DM patients. However, maximal walking speed, transfer capacity, and executive function were only improved in CG, indicating that T2DM may present impaired adaptability in response to physical stimulus.

  10. Dextran hydrogel coated surface plasmon resonance imaging (SPRi) sensor for sensitive and label-free detection of small molecule drugs

    NASA Astrophysics Data System (ADS)

    Li, Shaopeng; Yang, Mo; Zhou, Wenfei; Johnston, Trevor G.; Wang, Rui; Zhu, Jinsong

    2015-11-01

    The label-free and sensitive detection of small molecule drugs on SPRi is still a challenging task, mainly due to the limited surface immobilization capacity of the sensor. In this research, a dextran hydrogel-coated gold sensor chip for SPRi was successfully fabricated via photo-cross-linking for enhanced surface immobilization capacity. The density of the dextran hydrogel was optimized for protein immobilization and sensitive small molecule detection. The protein immobilization capacity of the hydrogel was 10 times greater than a bare gold surface, and 20 times greater than an 11-mercaptoundecanoic acid (MUA) surface. Such a drastic improvement in immobilization capacity allowed the SPRi sensor to detect adequate response signals when probing small molecule binding events. The binding signal of 4 nM liquid-phase biotin to streptavidin immobilized on the dextran surface reached 435 RU, while no response was observed on bare gold or MUA surfaces. The dextran hydrogel-coated SPRi sensor was also applied in a kinetic study of the binding between an immunosuppressive drug (FK506) and its target protein (FKBP12) in a high-throughput microarray format. The measured binding affinity was shown to be consistent with reported literature values, and a detection limit of 0.5 nM was achieved.

  11. Improved purification of immunoglobulin G from plasma by mixed-mode chromatography.

    PubMed

    Chai, Dong-Sheng; Sun, Yan; Wang, Xiao-Ning; Shi, Qing-Hong

    2014-12-01

    Efficient loading of immunoglobulin G in mixed-mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed-mode ligand, 4-(1H-imidazol-1-yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15-64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Determinants of team-sport performance: implications for altitude training by team-sport athletes

    PubMed Central

    Bishop, David J; Girard, Olivier

    2013-01-01

    Team sports are increasingly popular, with millions of participants worldwide. Athletes engaged in these sports are required to repeatedly produce skilful actions and maximal or near-maximal efforts (eg, accelerations, changes in pace and direction, sprints, jumps and kicks), interspersed with brief recovery intervals (consisting of rest or low-intensity to moderate-intensity activity), over an extended period of time (1–2 h). While performance in most team sports is dominated by technical and tactical proficiencies, successful team-sport athletes must also have highly-developed, specific, physical capacities. Much effort goes into designing training programmes to improve these physical capacities, with expected benefits for team-sport performance. Recently, some team sports have introduced altitude training in the belief that it can further enhance team-sport physical performance. Until now, however, there is little published evidence showing improved team-sport performance following altitude training, despite the often considerable expense involved. In the absence of such studies, this review will identify important determinants of team-sport physical performance that may be improved by altitude training, with potential benefits for team-sport performance. These determinants can be broadly described as factors that enhance either sprint performance or the ability to recover from maximal or near-maximal efforts. There is some evidence that some of these physical capacities may be enhanced by altitude training, but further research is required to verify that these adaptations occur, that they are greater than what could be achieved by appropriate sea-level training and that they translate to improved team-sport performance. PMID:24282200

  13. Human skeletal muscle mitochondrial capacity.

    PubMed

    Rasmussen, U F; Rasmussen, H N

    2000-04-01

    Under aerobic work, the oxygen consumption and major ATP production occur in the mitochondria and it is therefore a relevant question whether the in vivo rates can be accounted for by mitochondrial capacities measured in vitro. Mitochondria were isolated from human quadriceps muscle biopsies in yields of approximately 45%. The tissue content of total creatine, mitochondrial protein and different cytochromes was estimated. A number of activities were measured in functional assays of the mitochondria: pyruvate, ketoglutarate, glutamate and succinate dehydrogenases, palmitoyl-carnitine respiration, cytochrome oxidase, the respiratory chain and the ATP synthesis. The activities involved in carbohydrate oxidation could account for in vivo oxygen uptakes of 15-16 mmol O2 min-1 kg-1 or slightly above the value measured at maximal work rates in the knee-extensor model of Saltin and co-workers, i.e. without limitation from the cardiac output. This probably indicates that the maximal oxygen consumption of the muscle is limited by the mitochondrial capacities. The in vitro activities of fatty acid oxidation corresponded to only 39% of those of carbohydrate oxidation. The maximal rate of free energy production from aerobic metabolism of glycogen was calculated from the mitochondrial activities and estimates of the DeltaG or ATP hydrolysis and the efficiency of the actin-myosin reaction. The resultant value was 20 W kg-1 or approximately 70% of the maximal in vivo work rates of which 10-20% probably are sustained by the anaerobic ATP production. The lack of aerobic in vitro ATP synthesis might reflect termination of some critical interplay between cytoplasm and mitochondria.

  14. Preparation of dummy template imprinted polymers at surface of silica microparticles for the selective extraction of trace bisphenol A from water samples.

    PubMed

    Zhao, Wenhui; Sheng, Na; Zhu, Rong; Wei, Fangdi; Cai, Zheng; Zhai, Meijuan; Du, Shuhu; Hu, Qin

    2010-07-15

    Molecularly imprinted polymers for bisphenol A (BPA) were prepared by using surface molecular imprinting technique. Analogues of BPA, namely 4,4'-dihydroxybiphenyl and 3,3',5,5'-tetrabromobisphenol A, were used as the dummy templates instead of BPA, to avoid the leakage of a trace amount of the target analyte (BPA). The resulting dummy molecularly imprinted polymers (DMIPs) showed the large sorption capacity, high recognition ability and fast binding kinetics for BPA. The maximal sorption capacity was up to 958 micromol g(-1), and it only took 40 min for DMIPs to achieve the sorption equilibrium. The DMIPs were successfully applied to the solid-phase extraction coupled with HPLC/UV for the determination of BPA in water samples. The calibration graph of the analytical method was linear with a correlation coefficient more than 0.999 in the concentration range of 0.0760-0.912 ng mL(-1) of BPA. The limit of detection was 15.2 pg mL(-1) (S/N=3). Recoveries were in the range of 92.9-102% with relative standard deviation (RSD) less than 11%. The trace amounts of BPA in tap water, drinking water, rain and leachate of one-off tableware were determined by the method built, and the satisfactory results were obtained. 2010 Elsevier B.V. All rights reserved.

  15. Red mud as a carbon sink: variability, affecting factors and environmental significance.

    PubMed

    Si, Chunhua; Ma, Yingqun; Lin, Chuxia

    2013-01-15

    The capacity of red mud to sequester CO(2) varied markedly due to differences in bauxite type, processing and disposal methods. Calcium carbonates were the dominant mineral phases responsible for the carbon sequestration in the investigated red mud types. The carbon sequestration capacity of red mud was not fully exploited due to shortages of soluble divalent cations for formation of stable carbonate minerals. Titanate and silicate ions were the two major oxyanions that appeared to strongly compete with carbonate ions for the available soluble Ca. Supply of additional soluble Ca and Mg could be a viable pathway for maximizing carbon sequestration in red mud and simultaneously reducing the causticity of red mud. It is roughly estimated that over 100 million tonnes of CO(2) have been unintentionally sequestered in red mud around the world to date through the natural weathering of historically produced red mud. Based on the current production rate of red mud, it is likely that some 6 million tonnes of CO(2) will be sequestered annually through atmospheric carbonation. If appropriate technologies are in place for incorporating binding cations into red mud, approximately 6 million tonnes of additional CO(2) can be captured and stored in the red mud while the hazardousness of red mud is simultaneously reduced. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Influence of binding pH and protein solubility on the dynamic binding capacity in hydrophobic interaction chromatography.

    PubMed

    Baumann, Pascal; Baumgartner, Kai; Hubbuch, Jürgen

    2015-05-29

    Hydrophobic interaction chromatography (HIC) is one of the most frequently used purification methods in biopharmaceutical industry. A major drawback of HIC, however, is the rather low dynamic binding capacity (DBC) obtained when compared to e.g. ion exchange chromatography (IEX). The typical purification procedure for HIC includes binding at neutral pH, independently of the proteins nature and isoelectric point. Most approaches to process intensification are based on resin and salt screenings. In this paper a combination of protein solubility data and varying binding pH leads to a clear enhancement of dynamic binding capacity. This is shown for three proteins of acidic, neutral, and alkaline isoelectric points. High-throughput solubility screenings as well as miniaturized and parallelized breakthrough curves on Media Scout RoboColumns (Atoll, Germany) were conducted at pH 3-10 on a fully automated robotic workstation. The screening results show a correlation between the DBC and the operational pH, the protein's isoelectric point and the overall solubility. Also, an inverse relationship of DBC in HIC and the binding kinetics was observed. By changing the operational pH, the DBC could be increased up to 30% compared to the standard purification procedure performed at neutral pH. As structural changes of the protein are reported during HIC processes, the applied samples and the elution fractions were proven not to be irreversibly unfolded. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Reliability, construct validity and determinants of 6-minute walk test performance in patients with chronic heart failure.

    PubMed

    Uszko-Lencer, Nicole H M K; Mesquita, Rafael; Janssen, Eefje; Werter, Christ; Brunner-La Rocca, Hans-Peter; Pitta, Fabio; Wouters, Emiel F M; Spruit, Martijn A

    2017-08-01

    In-depth analyses of the measurement properties of the 6-minute walk test (6MWT) in patients with chronic heart failure (CHF) are lacking. We investigated the reliability, construct validity, and determinants of the distance covered in the 6MWT (6MWD) in CHF patients. 337 patients were studied (median age 65years, 70% male, ejection fraction 35%). Participants performed two 6MWTs on subsequent days. Demographics, anthropometrics, clinical data, ejection fraction, maximal exercise capacity, body composition, lung function, and symptoms of anxiety and depression were also assessed. Construct validity was assessed in terms of convergent, discriminant and known-groups validity. Stepwise linear regression was used. 6MWT was reliable (ICC=0.90, P<0.0001). The learning effect was 31m (95%CI 27, 35m). Older age (≥65years), lower lung diffusing capacity (<80% predicted) and higher NYHA class (NYHA III) were associated with a lower likelihood of a meaningful increase in the second test (OR 0.45-0.56, P<0.05 for all). The best 6MWD had moderate-to-good correlations with peak exercise capacity (r s =0.54-0.69) and no-to-fair correlations with body composition, lung function, ejection fraction, and symptoms of anxiety and depression (r s =0.04-0.49). Patients with higher NYHA classes had lower 6MWD. 6MWD was independently associated with maximal power output during maximal exercise, estimated glomerular filtration rate and age (51.7% of the variability). 6MWT was found to be reliable and valid in patients with mild-to-moderate CHF. Maximal exercise capacity, renal function and age were significant determinants of the best 6MWD. These findings strengthen the clinical utility of the 6MWT in CHF. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Physiological and computed tomographic predictors of outcome from lung volume reduction surgery.

    PubMed

    Washko, George R; Martinez, Fernando J; Hoffman, Eric A; Loring, Stephen H; Estépar, Raúl San José; Diaz, Alejandro A; Sciurba, Frank C; Silverman, Edwin K; Han, MeiLan K; Decamp, Malcolm; Reilly, John J

    2010-03-01

    Previous investigations have identified several potential predictors of outcomes from lung volume reduction surgery (LVRS). A concern regarding these studies has been their small sample size, which may limit generalizability. We therefore sought to examine radiographic and physiologic predictors of surgical outcomes in a large, multicenter clinical investigation, the National Emphysema Treatment Trial. To identify objective radiographic and physiological indices of lung disease that have prognostic value in subjects with chronic obstructive pulmonary disease being evaluated for LVRS. A subset of the subjects undergoing LVRS in the National Emphysema Treatment Trial underwent preoperative high-resolution computed tomographic (CT) scanning of the chest and measures of static lung recoil at total lung capacity (SRtlc) and inspiratory resistance (Ri). The relationship between CT measures of emphysema, the ratio of upper to lower zone emphysema, CT measures of airway disease, SRtlc, Ri, the ratio of residual volume to total lung capacity (RV/TLC), and both 6-month postoperative changes in FEV(1) and maximal exercise capacity were assessed. Physiological measures of lung elastic recoil and inspiratory resistance were not correlated with improvement in either the FEV(1) (R = -0.03, P = 0.78 and R = -0.17, P = 0.16, respectively) or maximal exercise capacity (R = -0.02, P = 0.83 and R = 0.08, P = 0.53, respectively). The RV/TLC ratio and CT measures of emphysema and its upper to lower zone ratio were only weakly predictive of postoperative changes in both the FEV(1) (R = 0.11, P = 0.01; R = 0.2, P < 0.0001; and R = 0.23, P < 0.0001, respectively) and maximal exercise capacity (R = 0.17, P = 0.0001; R = 0.15, P = 0.002; and R = 0.15, P = 0.002, respectively). CT assessments of airway disease were not predictive of change in FEV(1) or exercise capacity in this cohort. The RV/TLC ratio and CT measures of emphysema and its distribution are weak but statistically significant predictors of outcome after LVRS.

  19. Binding of /sup 125/I-hCG to rainbow trout (Salmo gairdneri) testis in vitro. [Human Chorionic Gonadotropin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schlaghecke, R.

    1983-02-01

    Homogenates of maturing rainbow trout testes show specific binding sites for /sup 125/I-labeled hCG (. /sup 125/I-labeled hCG). The binding is competitively inhibited by unlabeled hCG and by a hypophyseal extract of rainbow trout. It could be demonstrated that the tissue /sup 125/I-hCG binding specificity is restricted to the gonadal preparation. The trout testis was characterized by determining affinity and capacity from Scatchard plot analysis giving a high constant of dissociation Kd 3.65 x 10(-10)/M and a low binding capacity of 0.88 x 10(-15) M/mg tissue. The test system is markedly dependent on temperature, incubation-time, and pH. The maximum bindingmore » was found at 37 degrees during 2 hr of incubation in a buffer of pH 7.5.« less

  20. Vitelline envelope of Bufo arenarum: biochemical and biological characterization.

    PubMed

    Barisone, Gustavo A; Hedrick, Jerry L; Cabada, Marcelo O

    2002-04-01

    Vitelline envelopes (VEs) of Bufo arenarum were isolated in order to study their composition and their role in fertilization. VEs are composed of four glycoproteins, with molecular masses of 120, 75, 41, and 38 kDa. To characterize its biological properties, we quantitatively determined sperm-VE binding and the induction of the acrosome reaction. Heterologous binding of B. arenarum sperm to Xenopus laevis VE components was observed with about one-third the efficiency of homologous binding. Equivalent binding of X. laevis sperm to the B. arenarum VE was observed. When B. arenarum sperm were incubated with fluorescein isothiocyanate-labeled VE, the labeled glycoproteins bound to the anterior end of the sperm head, showing a lateral distribution. Induction of the acrosome reaction was evaluated by incubating sperm in hypotonic saline media with VE glycoproteins. VEs induced the acrosome reaction in a time- and concentration-dependent manner. The acrosome reaction was maximal after 10 min. The half-maximal effect was obtained at a glycoprotein concentration of 1 microg/ml. Specificity was determined using fertilization envelope glycoproteins, which failed to induce the acrosome reaction. The B. arenarum VE is biochemically similar to other egg envelopes. It also seems that its biological properties are similar to other species in regard to sperm binding and induction of the acrosome reaction. However, as far as we are aware, this is the first observation of the VE inducing the sperm acrosome reaction in amphibians. The relatively small differences observed in heterologous sperm-VE binding in X. laevis and B. arenarum are inconsistent with the current paradigm that species specificity in fertilization is regulated at the sperm-VE binding step.

  1. Role of the adrenocortical reaction to physical load in increase in the working capacity of the body

    NASA Technical Reports Server (NTRS)

    Viru, A. A.

    1977-01-01

    The maximal duration of swimming by rats with a load of 3% of their body weight increased after 5 weeks of training. This time did not increase in animals receiving dexamethasone in the process of training. The blood corticosterone level of these rats with the maximal load increased less than that of animals trained without administration of dexamethasone.

  2. Insulin binding and glucose uptake of adipocytes in rats adapted to hypergravitational force

    NASA Technical Reports Server (NTRS)

    Kobayashi, M.; Mondon, C. E.; Oyama, J.

    1980-01-01

    Rats were exposed to 4.15 g for 1 yr and weight and age matched, and lean noncentrifuged rats were used as control groups. Rats exposed to chronic hypergravity (hypergravic rats) were found to show lower ambient insulin levels, greater food intake with smaller body weight gain, and decreased size of isolated adipocytes. The ability of adipocytes from the hypergravic rats to bind insulin was increased. With Scatchard analysis, both number and affinity of receptors were increased. In contrast to the increased binding, glucose transport was found to be decreased in adipocytes from these animals. However, when the data were expressed as a percentage of maximal effect, the half maximal insulin effect for both the hypergravic and lean control groups was produced at an insulin concentration of 0.23 + or - 0.02 ng/ml, which was lower than the insulin concentration of 0.31 + or - 0.02 ng/ml for the weight-matched control group (P less than 0.05). This increased insulin sensitivity in the hypergravic group was accounted for by an increased number of receptors.

  3. Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.

    PubMed

    Nielsen, A D; Borch, K; Westh, P

    2000-06-15

    The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.

  4. Disruption of integrin-fibronectin complexes by allosteric but not ligand-mimetic inhibitors.

    PubMed

    Mould, A Paul; Craig, Susan E; Byron, Sarah K; Humphries, Martin J; Jowitt, Thomas A

    2014-12-15

    Failure of Arg-Gly-Asp (RGD)-based inhibitors to reverse integrin-ligand binding has been reported, but the prevalence of this phenomenon among integrin heterodimers is currently unknown. In the present study we have investigated the interaction of four different RGD-binding integrins (α5β1, αVβ1, αVβ3 and αVβ6) with fibronectin (FN) using surface plasmon resonance. The ability of inhibitors to reverse ligand binding was assessed by their capacity to increase the dissociation rate of pre-formed integrin-FN complexes. For all four receptors we showed that RGD-based inhibitors (such as cilengitide) were completely unable to increase the dissociation rate. Formation of the non-reversible state occurred very rapidly and did not rely on the time-dependent formation of a high-affinity state of the integrin, or the integrin leg regions. In contrast with RGD-based inhibitors, Ca2+ (but not Mg2+) was able to greatly increase the dissociation rate of integrin-FN complexes, with a half-maximal response at ~0.4 mM Ca2+ for αVβ3-FN. The effect of Ca2+ was overcome by co-addition of Mn2+, but not Mg2+. A stimulatory anti-β1 monoclonal antibody (mAb) abrogated the effect of Ca2+ on α5β1-FN complexes; conversely, a function-blocking mAb mimicked the effect of Ca2+. These results imply that Ca2+ acts allosterically, probably through binding to the adjacent metal-ion-dependent adhesion site (ADMIDAS), and that the α1 helix in the β subunit I domain is the key element affected by allosteric modulators. The data suggest an explanation for the limited clinical efficacy of RGD-based integrin antagonists, and we propose that allosteric antagonists could prove to be of greater therapeutic benefit.

  5. Phenytoin pharmacokinetics in critically ill trauma patients.

    PubMed

    Boucher, B A; Rodman, J H; Jaresko, G S; Rasmussen, S N; Watridge, C B; Fabian, T C

    1988-12-01

    Preliminary data have suggested that phenytoin systemic clearance may increase during initial therapy in critically ill patients. The objectives for this study were to model the time-variant phenytoin clearance and evaluate concomitant changes in protein binding and urinary metabolite elimination. Phenytoin was given as an intravenous loading dose of 15 mg/kg followed by an initial maintenance dose of 6 mg/kg/day in 10 adult critically ill trauma patients. Phenytoin bound and unbound plasma concentrations were determined in 10 patients and urinary excretion of the metabolite p-hydroxyphenyl phenylhydantoin (p-HPPH) was measured in seven patients for 7 to 14 days. A Michaelis-Menten one-compartment model incorporating a time-variant maximal velocity (Vmax) was sufficient to describe the data and superior to a conventional time-invariant Michaelis-Menten model. Vmax for the time-variant model was defined as V'max + Vmax delta (1 - e(-kindt)). Vmax infinity is the value for Vmax when t is large. The median values (ranges) for the parameters were Km = 4.8 (2.6 to 20) mg/L, Vmax infinity = 1348 (372 to 4741) mg/day, and kind = 0.0115 (0.0045 to 0.132) hr-1. Phenytoin free fraction increased in a majority of patients during the study period, with a binding ratio inversely related to albumin. Measured urinary p-HPPH data were consistent with the proposed model. A loading and constant maintenance dose of phenytoin frequently yielded a substantial, clinically significant fall in plasma concentrations with a pattern of apparently increasing clearance that may be a consequence of changes in protein binding, induction of metabolism, or the influence of stress on hepatic metabolic capacity.

  6. Is GABA neurotransmission enhanced in auditory thalamus relative to inferior colliculus?

    PubMed Central

    Cai, Rui; Kalappa, Bopanna I.; Brozoski, Thomas J.; Ling, Lynne L.

    2013-01-01

    Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [3H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [3H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus. PMID:24155003

  7. Drug Design Relating Amebicides to Inhibition of Protein Synthesis.

    DTIC Science & Technology

    1977-09-01

    A study of the effect of emetine on protein synthesis in E. histolytica was made on log phase amebas as compared to stationary phase amebas ...Sensitivity to emetine was maintained independently of the rate of protein synthesis. Furthermore, both stages of amebas had the same capacity to bind emetine...elongation site. Finally, evidence was obtained that the capacity to bind emetine provides a basis for conferring drug resistance in amebas . A direct

  8. Exploring the meteorological potential for planning a high performance European electricity super-grid: optimal power capacity distribution among countries

    NASA Astrophysics Data System (ADS)

    Santos-Alamillos, Francisco J.; Brayshaw, David J.; Methven, John; Thomaidis, Nikolaos S.; Ruiz-Arias, José A.; Pozo-Vázquez, David

    2017-11-01

    The concept of a European super-grid for electricity presents clear advantages for a reliable and affordable renewable power production (photovoltaics and wind). Based on the mean-variance portfolio optimization analysis, we explore optimal scenarios for the allocation of new renewable capacity at national level in order to provide to energy decision-makers guidance about which regions should be mostly targeted to either maximize total production or reduce its day-to-day variability. The results show that the existing distribution of renewable generation capacity across Europe is far from optimal: i.e. a ‘better’ spatial distribution of resources could have been achieved with either a ~31% increase in mean power supply (for the same level of day-to-day variability) or a ~37.5% reduction in day-to-day variability (for the same level of mean productivity). Careful planning of additional increments in renewable capacity at the European level could, however, act to significantly ameliorate this deficiency. The choice of where to deploy resources depends, however, on the objective being pursued—if the goal is to maximize average output, then new capacity is best allocated in the countries with highest resources, whereas investment in additional capacity in a north/south dipole pattern across Europe would act to most reduce daily variations and thus decrease the day-to-day volatility of renewable power supply.

  9. Effect of Escherichia coli DNA binding protein on the transcription of single-stranded phage M13 DNA by Escherichia coli RNA polymerase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niyogi, S.K.; Ratrie, H. III; Datta, A.K.

    E. coli DNA binding protein strongly inhibits the transcription of single-stranded rather than double-stranded phage M13 DNA by E. coli RNA polymerase. This inhibition cannot be significantly overcome by increasing the concentration of RNA polymerase. Nor does the order of addition of binding protein affect its inhibitory property: inhibition is evident whether binding protein is added before or after the formation of the RNA polymerase--DNA complex. Inhibition is also observed if binding protein is added at various times after initiation of RNA synthesis. Maximal inhibition occurs at a binding protein-to-DNA ratio (w/w) of about 8:1. This corresponds to one bindingmore » protein molecule covering about 30 nucleotides, in good agreement with values obtained by physical measurements.« less

  10. Glycation of whey protein with dextrans of different molar mass: Effect on immunoglobulin E-binding capacity with blood sera obtained from patients with cow milk protein allergy.

    PubMed

    Xu, Lei; Gong, Yuansheng; Gern, James E; Ikeda, Shinya; Lucey, John A

    2018-05-16

    A growing concern around the world is the number of people who are suffering from food protein allergies. One potential approach to decrease protein allergenicity is to block IgE-binding epitopes of the protein allergen by attachment of polysaccharides via the Maillard reaction (i.e., glycation). Protein glycation has been extensively studied to modify various functional properties. We wanted to examine whether glycates could reduce IgE binding in patients with cow milk protein allergy and to explore how the size (molar mass; M W ) of the polysaccharide affects this IgE-binding capacity. Glycation was performed using the initial step of the Maillard reaction performed in aqueous solutions. The specific goal of this study was to reduce the IgE-binding capacity of whey protein isolate (WPI) through glycation with dextran (DX). Blood sera were obtained from 8 patients who had been diagnosed with cow milk protein allergy, and a composite sera sample was used for IgE-binding analysis by the ImmunoCap (Phadia, Uppsala, Sweden) method. The WPI was glycated with DX of M W ranging from 1 to 2,000 kDa, and the M W of purified glycates was determined using size-exclusion chromatography coupled with multiangle laser light scattering. The WPI to DX molar ratios in the glycates made from DX that had M W values of 1, 3.5, 10 (G10), 150, 500, and 2,000 kDa were 1:4, 1:3, 1:2, 1:1.5, 1:1, and 1:1, respectively. With the increase in the M W of DX, there was an increase in the M W values of the corresponding glycates but a decrease in the number of bound DX. The WPI-DX glycates had lower whey protein IgE-binding capacity than native WPI, with the lowest IgE-binding capacity obtained in the G10 glycate. The DX binding ratios and morphology results from atomic force microscopy images suggested that glycation of WPI with small-M W DX resulted in extensive protein surface coverage, probably due to the attachment of up to 4 DX molecules per whey protein. The lower IgE binding of the G10 glycate was likely due to greater steric hindrance (or a physical barrier) at the surface of the protein. In summary, our results demonstrate that glycating WPI with DX via Maillard reaction can potentially be used to decrease the allergenicity of whey protein. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Exercise capacity is associated with endothelin-1 release during emotional excitement in coronary artery disease patients.

    PubMed

    Tulppo, Mikko P; Piira, Olli-Pekka; Hautala, Arto J; Kiviniemi, Antti M; Miettinen, Johanna A; Huikuri, Heikki V

    2014-08-01

    Endothelin-1 (ET-1), a potent vasoconstrictor, IL-6, and catecholamines are increased and heart rate variability [SD of normal to normal R-R intervals (SDNN)] decreased during emotional excitement, but individual responses vary. We tested the hypothesis that exercise capacity is associated with physiological responses caused by real-life emotional excitement. We measured the plasma levels of ET-1, IL-6, catecholamines, heart rate, and SDNN in enthusiastic male ice hockey spectators (n = 51; age, 59 ± 9 years) with stable coronary artery disease (CAD) at baseline and during the Finnish National Ice Hockey League's final play-off matches. Maximal exercise capacity (METs) by bicycle exercise test and left ventricular ejection fraction (LVEF) were measured on a separate day. ET-1 response from baseline to emotional excitement correlated with maximal METs (r = -0.30; P = 0.040). In a linear stepwise regression analysis age, body mass index (BMI), METs, LVEF, basal ET-1, and subjective experience of excitement were entered the model as independent variables to explain ET-1 response. This model explained 27% of ET-1 response (P = 0.003). Maximal METs were most strongly correlated with ET-1 response (β = -0.45; partial correlation r = -0.43; P = 0.002), followed by BMI (β = -0.31; partial correlation r = -0.31; P = 0.033) and LVEF (β = -0.30; partial correlation r = -0.33; P = 0.023). Exercise capacity may protect against further cardiovascular events in CAD patients, because it is associated with reduced ET-1 release during emotional excitement. Copyright © 2014 the American Physiological Society.

  12. Salt-soluble proteins from wheat-derived foodstuffs show lower allergenic potency than those from raw flour.

    PubMed

    de Gregorio, Marta; Armentia, Alicia; Díaz-Perales, Araceli; Palacín, Arantxa; Dueñas-Laita, Antonio; Martín, Blanca; Salcedo, Gabriel; Sánchez-Monge, Rosa

    2009-04-22

    Salt-soluble proteins from wheat flour have been described as main allergens associated with both baker's asthma and food allergy. However, most studies have used raw flour as starting material, thus not considering potential changes in allergenic properties induced by the heat treatment and other industrial processing to produce wheat-derived foodstuffs. Salt extracts from different commercial wheat-derived products were obtained and their allergenic properties investigated by IgE-immunodetection, ELISA assays, and skin prick test. The IgE-binding capacity of salt-soluble proteins from commercial breads and cooked pastas was reduced around 50% compared with that of raw flour, the reduction being less dramatic in noncooked pastas and biscuits. Several wheat-derived foodstuffs showed major IgE-binding components of 20 and 35 kDa, identified as avenin-like and globulin proteins, respectively. These proteins, as well as most flour and bread salt-soluble proteins, were hydrolyzed when subjected to simulated gastrointestinal digestion. However, the digested products still exhibited a residual IgE-binding capacity. Therefore, processing of wheat flour to obtain derived foodstuffs decreases the IgE binding-capacity of the major salt-soluble wheat proteins. Moreover, simulated gastric fluid digestion further inactivates some heat-resistant IgE-binding proteins.

  13. Impact of continuous positive airway pressure (CPAP) on the respiratory capacity of chronic kidney disease patients under hemodialysis treatment.

    PubMed

    Xavier, Vivian Bertoni; Roxo, Renata Spósito; Miorin, Luiz Antônio; Dos Santos Alves, Vera Lúcia; Dos Santos Sens, Yvoty Alves

    2015-06-01

    Chronic kidney disease (CKD) patients on long-term dialysis present changes in pulmonary function and respiratory muscle strength, negatively influencing physical capacity. To analyze the impact of a continuous positive airway pressure (CPAP) protocol on the respiratory capacity of CKD patients under hemodialysis. A randomized clinical trial was conducted involving 40 CKD patients 19-83 years old divided into two groups: control (n = 20) and CPAP (n = 20). Subjects were assessed on the respiratory muscle function test, maximal respiratory pressures, peak flow and 6-min walk test, at baseline and again at the 2-month follow-up. CPAP group patients were submitted to CPAP protocol (PEEP: 5 cm H2O, flow: 15 L/min, FiO2: 33 %) three times per week during hemodialysis sessions. The CPAP group showed higher forced vital capacity, forced expiratory volume in one second, peak expiratory flow, maximal inspiratory pressure, peak flow, as well as lower systolic blood pressure, heart rate, respiratory rate and Borg scale, in addition to a longer distance travelled on the 6-min walk test, compared with the control group. The introduction of a CPAP protocol during hemodialysis sessions had a positive impact on pulmonary function and physical capacity in CKD patients.

  14. Aerobic exercise deconditioning and countermeasures during bed rest.

    PubMed

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  15. [Evaluation of exercise capacity in pulmonary arterial hypertension].

    PubMed

    Demir, Rengin; Küçükoğlu, Mehmet Serdar

    2010-12-01

    Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by increased pulmonary vascular resistance that leads to right ventricular failure. The most common clinical features of PAH are dyspnea and exercise intolerance. Measurement of exercise capacity is of considerable importance for the assessment of disease severity as well as routine monitoring of disease. Maximal, symptom-limited, cardiopulmonary exercise test (CPET) is the gold standard for the evaluation of exercise capacity, whereby functions of several systems involved in exercise can be assessed, including cardiovascular, respiratory, and metabolic systems. However, in order to derive the most useful diagnostic information on physiologic limitations to exercise, CPET requires maximal effort of the patient, which can be difficult and risky for some severely ill patients. Moreover, it requires specific exercise equipment and measurement systems, and experienced and trained personnel. Thus, routine clinical use of CPET to assess exercise capacity in patients with PAH may not always be feasible. A practical and simple alternative to CPET to determine exercise capacity is the 6-minute walk test (6MWT). It is simple to perform, safe, and reproducible. In contrast to CPET, the 6MWT reflects a submaximal level of exertion that is more consistent with the effort required for daily physical activities. This review focuses on the role of CPET and 6MWT in patients with PAH.

  16. Self-organizing feature maps for dynamic control of radio resources in CDMA microcellular networks

    NASA Astrophysics Data System (ADS)

    Hortos, William S.

    1998-03-01

    The application of artificial neural networks to the channel assignment problem for cellular code-division multiple access (CDMA) cellular networks has previously been investigated. CDMA takes advantage of voice activity and spatial isolation because its capacity is only interference limited, unlike time-division multiple access (TDMA) and frequency-division multiple access (FDMA) where capacities are bandwidth-limited. Any reduction in interference in CDMA translates linearly into increased capacity. To satisfy the high demands for new services and improved connectivity for mobile communications, microcellular and picocellular systems are being introduced. For these systems, there is a need to develop robust and efficient management procedures for the allocation of power and spectrum to maximize radio capacity. Topology-conserving mappings play an important role in the biological processing of sensory inputs. The same principles underlying Kohonen's self-organizing feature maps (SOFMs) are applied to the adaptive control of radio resources to minimize interference, hence, maximize capacity in direct-sequence (DS) CDMA networks. The approach based on SOFMs is applied to some published examples of both theoretical and empirical models of DS/CDMA microcellular networks in metropolitan areas. The results of the approach for these examples are informally compared to the performance of algorithms, based on Hopfield- Tank neural networks and on genetic algorithms, for the channel assignment problem.

  17. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged F. (Inventor); Jones, Christopher R. (Inventor)

    2017-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e. `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR, over the Raleigh fading channel. In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d.sub.min, are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  18. Methods and Apparatuses for Signaling with Geometric Constellations in a Raleigh Fading Channel

    NASA Technical Reports Server (NTRS)

    Jones, Christopher R. (Inventor); Barsoum, Maged F. (Inventor)

    2015-01-01

    Communication systems are described that use signal constellations, which have unequally spaced (i.e., `geometrically` shaped) points. In many embodiments, the communication systems use specific geometric constellations that are capacity optimized at a specific SNR (signal to noise ratio). In addition, ranges within which the constellation points of a capacity optimized constellation can be perturbed and are still likely to achieve a given percentage of the optimal capacity increase compared to a constellation that maximizes d (sub min) (i.e. minimum distance between constellations) are also described. Capacity measures that are used in the selection of the location of constellation points include, but are not limited to, parallel decode (PD) capacity and joint capacity.

  19. Transient chloride binding as a contributory factor to corneal stromal swelling in the ox.

    PubMed Central

    Hodson, S; Kaila, D; Hammond, S; Rebello, G; al-Omari, Y

    1992-01-01

    1. Investigations were made of the cation exchange capacity of fresh isolated ox corneal stroma (Q, units: mequiv fixed stromal charge/kg stromal fluid) at pH 7.4 over a variety of stomal hydrations (H, units: kg stromal fluid/kg dry tissue) both above and below the physiological hydration of 3.2, whilst the stromas were immersed in a variety of sodium chloride solutions (range 5-1000 mM). 2. At any particular salt concentration, the product QH (dry tissue exchange capacity, units: mequiv/kg dry tissue) appeared constant, over all the hydrations investigated. 3. Dry tissue exchange capacity (QH) varied, however, when the bathing salt concentration was altered. It varied between 55 mequiv/kg dry tissue (e.g. Q = 17 mequiv at H = 3.2) in 5 mM-NaCl to 240 mequiv/kg dry tissue (e.g. Q = 75 mequiv/l at H = 3.2) in 1000 mM-NaCl. 4. The variation of stromal exchange capacity in NaCl solutions of different concentrations was similar when detected by three independent procedures: stromal gel pressure measurements, intrastromal sodium ion distributions, and intrastromal electrical potentials. 5. Intrastromal chloride ion distributions were anomalous. Total chloride (measured by radio-isotopes) was consistently higher than that predicted by Donnan theory. 6. The data were consistent with Elliott's hypothesis that a fraction of intrastromal chloride ions bind to the corneal stromal matrix and in so doing contribute to the fixed negative charge of the stroma. 7. Our observations may be explained by a model of the cation exchange capacity of ox cornea which has two types of components. On is (at constant pH) invariant, and has a dry tissue exchange capacity of about 50 mequiv/kg dry tissue, and is probably generated by the sulphonic and carboxylic acid groups of the glycosaminoglycans. The other is explained by supposing it to consist of a chloride binding ligand which exhibits first order binding, is half occupied at ambient chloride concentrations of 300 mM, and has a total capacity of 240 mequiv/kg dry tissue. 8. Partial stromal extraction with 4 M-guanidine HCl indicated that the chloride binding ligand is not associated with the collagen molecules in the corneal stromal fibrils. 9. It is suggested that such a stromal chloride ion binding ligand would help to stabilize the hydration and transparency of the living cornea when it is exposed to environments of varying tonicity (such as in river or sea bathing). PMID:1432722

  20. Hydrogen storage in engineered carbon nanospaces.

    PubMed

    Burress, Jacob; Kraus, Michael; Beckner, Matt; Cepel, Raina; Suppes, Galen; Wexler, Carlos; Pfeifer, Peter

    2009-05-20

    It is shown how appropriately engineered nanoporous carbons provide materials for reversible hydrogen storage, based on physisorption, with exceptional storage capacities (approximately 80 g H2/kg carbon, approximately 50 g H2/liter carbon, at 50 bar and 77 K). Nanopores generate high storage capacities (a) by having high surface area to volume ratios, and (b) by hosting deep potential wells through overlapping substrate potentials from opposite pore walls, giving rise to a binding energy nearly twice the binding energy in wide pores. Experimental case studies are presented with surface areas as high as 3100 m(2) g(-1), in which 40% of all surface sites reside in pores of width approximately 0.7 nm and binding energy approximately 9 kJ mol(-1), and 60% of sites in pores of width>1.0 nm and binding energy approximately 5 kJ mol(-1). The findings, including the prevalence of just two distinct binding energies, are in excellent agreement with results from molecular dynamics simulations. It is also shown, from statistical mechanical models, that one can experimentally distinguish between the situation in which molecules do (mobile adsorption) and do not (localized adsorption) move parallel to the surface, how such lateral dynamics affects the hydrogen storage capacity, and how the two situations are controlled by the vibrational frequencies of adsorbed hydrogen molecules parallel and perpendicular to the surface: in the samples presented, adsorption is mobile at 293 K, and localized at 77 K. These findings make a strong case for it being possible to significantly increase hydrogen storage capacities in nanoporous carbons by suitable engineering of the nanopore space.

  1. An Intrinsic MicroRNA Timer Regulates Progressive Decline in Shoot Regenerative Capacity in Plants

    PubMed Central

    Zhang, Tian-Qi; Lian, Heng; Tang, Hongbo; Dolezal, Karel; Zhou, Chuan-Miao; Yu, Sha; Chen, Juan-Hua; Chen, Qi; Liu, Hongtao; Ljung, Karin

    2015-01-01

    Plant cells are totipotent and competent to regenerate from differentiated organs. It has been shown that two phytohormones, auxin and cytokinin, play critical roles within this process. As in animals, the regenerative capacity declines with age in plants, but the molecular basis for this phenomenon remains elusive. Here, we demonstrate that an age-regulated microRNA, miR156, regulates shoot regenerative capacity. As a plant ages, the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors leads to the progressive decline in shoot regenerative capacity. In old plants, SPL reduces shoot regenerative capacity by attenuating the cytokinin response through binding with the B-type ARABIDOPSIS RESPONSE REGULATORs, which encode the transcriptional activators in the cytokinin signaling pathway. Consistently, the increased amount of exogenous cytokinin complements the reduced shoot regenerative capacity in old plants. Therefore, the recruitment of age cues in response to cytokinin contributes to shoot regenerative competence. PMID:25649435

  2. Chemical modification of protein A chromatography ligands with polyethylene glycol. I: Effects on IgG adsorption equilibrium, kinetics, and transport.

    PubMed

    Weinberg, Justin; Zhang, Shaojie; Crews, Gillian; Carta, Giorgio; Przybycien, Todd

    2018-04-20

    Chemical modification of Protein A (ProA) chromatography ligands with polyethylene glycol (PEGylation) has been proposed as a strategy to increase the process selectivity and resin robustness by providing the ligand with a steric repulsion barrier against non-specific binding. This article comprises a comprehensive study of IgG adsorption and transport in Repligen CaptivA PriMAB resin with PEGylated ProA ligands that are modified using 5.2 and 21.5 kDa PEG chains. We studied the impact of the molecular weight of the PEG as well as the extent of PEGylation for the 5.2 kDa PEG modification. In all cases, PEGylation of ProA ligands decreases the resin average pore size, particle porosity, and static binding capacity for IgG proportional to the volume of conjugated PEG in the resin. Resin batch uptake experiments conducted in bulk via a stirred-tank system and with individual resin particles under confocal laser scanning microscopy suggests that PEGylation introduces heterogeneity into IgG binding kinetics: a fraction of the IgG binding sites are transformed from typical fast association kinetic behavior to slow kinetic behavior. pH gradient elution experiments of an IgG molecule on the modified resins show an increase in IgG elution pH for all modified resins, implying a decrease in IgG-ProA binding affinity on modification. Despite losses in static binding capacity for all resins with PEGylated ligands, the loss of dynamic binding capacity at 10% breakthrough (DBC 10% ) ranged more broadly from almost 0-47% depending on the PEG molecular weight and the extent of PEGylation. Minimal losses in DBC 10% were observed with a low extent of PEGylation with a smaller molecular weight PEG, while higher losses were observed at higher extents of PEGylation and with higher molecular weight PEG due to decreased static binding capacity and increased mass transfer resistance. This work provides insight into the practical implications for resin performance if PEGylation is considered as a strategy for selectivity enhancement in affinity chromatography with macromolecular ligands. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. An evaluation of ferrihydrite- and Metsorb™-DGT techniques for measuring oxyanion species (As, Se, V, P): effective capacity, competition and diffusion coefficients.

    PubMed

    Price, Helen L; Teasdale, Peter R; Jolley, Dianne F

    2013-11-25

    This study investigated several knowledge gaps with respect to the diffusive gradients in thin films (DGT) technique for measurement of oxyanions (As(III), As(V), Se(IV), Se(VI), PO4(3-), and V(V)) using the ferrihydrite and Metsorb™ binding layers. Elution efficiencies for each binding layer were higher with 1:20 dilutions, as analytical interferences for ICP-MS were minimised. Diffusion coefficients measured by diffusion cell and by DGT time-series experiments were found to agree well and generally agreed with previously reported values, although a range of diffusion coefficients have been reported for inorganic As and Se species. The relative binding affinity for both ferrihydrite and Metsorb™ was PO4(3-) ≈ As(V)>V(V) ≈ As(III)>Se(IV) > Se(VI) and effective binding capacities were measured in single ion solutions, and spiked synthetic freshwater and seawater, advising practical decisions about DGT monitoring. Under the conditions tested the performance of both ferrihydrite and Metsorb™ binding layers was directly comparable for As(V), As(III) Se(IV), V(V) and PO4(3-) over a deployment spanning ≤ 2 days for both freshwater and seawater. In order to return quantitative data for several analytes we recommend that the DGT method using either ferrihydrite or Metsorb™ be deployed for a maximum of 2 days in marine waters likely to contain high levels of the most strongly adsorbing oxyanions contaminants. The high pH, the competitive ions present in seawater and the identity of co-adsorbing ions affect the capacity of each binding layer for the analytes of interest. In freshwaters, longer deployment times can be considered but the concentration and identity of co-adsorbing ions may impact on quantitative uptake of Se(IV). This study found ferrihydrite-DGT outperformed Metsorb-DGT while previous studies have found the opposite, with variation in binding materials masses used being a likely reason. Clearly, preparation of both binding layers should always be optimised to produce the highest capacity possible, especially for seawater deployments. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  4. Optimal topologies for maximizing network transmission capacity

    NASA Astrophysics Data System (ADS)

    Chen, Zhenhao; Wu, Jiajing; Rong, Zhihai; Tse, Chi K.

    2018-04-01

    It has been widely demonstrated that the structure of a network is a major factor that affects its traffic dynamics. In this work, we try to identify the optimal topologies for maximizing the network transmission capacity, as well as to build a clear relationship between structural features of a network and the transmission performance in terms of traffic delivery. We propose an approach for designing optimal network topologies against traffic congestion by link rewiring and apply them on the Barabási-Albert scale-free, static scale-free and Internet Autonomous System-level networks. Furthermore, we analyze the optimized networks using complex network parameters that characterize the structure of networks, and our simulation results suggest that an optimal network for traffic transmission is more likely to have a core-periphery structure. However, assortative mixing and the rich-club phenomenon may have negative impacts on network performance. Based on the observations of the optimized networks, we propose an efficient method to improve the transmission capacity of large-scale networks.

  5. Distribution and determinants of maximal physical work capacity of Korean male metal workers.

    PubMed

    Kang, D; Woo, J H; Shin, Y C

    2007-12-01

    The distribution of maximal physical work capacity (MPWC) can be used to establish an upper limit for energy expenditure during work (EEwork). If physically demanding work has wearing effects, there will be a negative relationship between MPWC and workload. This study was conducted to investigate the distribution of MPWC among Korean metal workers and to examine the relationship between workload and MPWC. MPWC was estimated with a bicycle ergometer using a submaximal test. Energy expenditure was estimated by measuring heart rates during work. The study subjects were 507 male employees from several metal industries in Korea. They had a lower absolute VO2max than the Caucasian populations described in previous studies. The older workers had a lower physical capacity and a greater overload at work. A negative relationship was found between MPWC and workload across all age groups. Upper limits for EEwork for all age groups and for older age groups are recommended based on the 5th percentile value of MPWC.

  6. Metabolic predictors of middle-distance swimming performance.

    PubMed Central

    Ribeiro, J P; Cadavid, E; Baena, J; Monsalvete, E; Barna, A; De Rose, E H

    1990-01-01

    To evaluate the capacity of different metabolic indices to predict performance in middle distance swimming, 15 competitive swimmers performed a submaximal and a maximal 400 metres freestyle swimming event. Expired gases were collected in Douglas bags immediately after the events for the determination of VO2 max. Arterialized blood samples were collected for the determination of maximal blood lactate concentration and the velocity corresponding to blood lactate concentration of 4 mM. The results demonstrated (means +/- SD): maximal velocity of 1.44 +/- 0.05 m.s-1; velocity at 85 percent of VO2 max of 1.36 +/- 0.04 m.s-1; velocity at 4 mM of 1.32 +/- 0.04 m.s-1; VO2 max of 3.47 +/- 0.5 l.min-1; maximal blood lactate concentration of 11.8 +/- 2.5 mM. Multiple regression analysis relating metabolic indices and maximal velocity demonstrated that only velocity at 85 percent of VO2 max (r2 = 0.81) and velocity at 4 mM (r2 = 0.79) were significant predictors. Thus, 79 percent of the variance in the performance of 400 m freestyle can be accounted for the velocity at 85 percent of VO2 max or the velocity at 4 mM. The success in this event seems to depend on the swimmer's capacity to achieve higher velocities with lower blood lactate levels and/or utilizing a lower percentage of their VO2 max. PMID:2078807

  7. [Dependence of the concentration of the demi-maximal action of a channel blocker on the agonist concentration].

    PubMed

    Skorinkin, A I; Valeev, N V; Shaĭkhutdinova, A R

    2005-01-01

    Based on the analysis of kinetic scheme of blocking of open channels at any number of blocker binding sites, the dependence of current on blocker concentration was found. A variant of this dependence for a trapping blocker was also found. The restrictions of the applicability of the Hill equation and the necessity of taking into account the dependence of the concentration of demi-maximal blocker action (IC50) on the concentration of agonist were shown.

  8. Effects of Endurance Training at the Crossover Point in Women with Metabolic Syndrome.

    PubMed

    Borel, Benoit; Coquart, Jérémy; Boitel, Guillaume; Duhamel, Alain; Matran, Régis; Delsart, Pascal; Mounier-Vehier, Claire; Garcin, Murielle

    2015-11-01

    On the basis of theoretical evidence, intensity at the crossover point (COP) of substrate utilization could be considered as potential exercise intensity for metabolic syndrome (MetS). This study aimed to examine the effects of a training program at COP on exercise capacity parameters in women with MetS and to compare two metabolic indices (COP and the maximal fat oxidation rate point LIPOXmax®) with ventilatory threshold (VT). Nineteen women with MetS volunteered to perform a 12-wk training program on a cycle ergometer, with intensity corresponding to COP. Pre- and posttraining values of anthropometric and exercise capacity parameters were compared to determine the effects of exercise training. The pre-post training change of COP, LIPOXmax®, and VT were also investigated. After training, anthropometric parameters were significantly modified, with reduction of body mass (3.0% ± 3.0%, P < 0.001), fat mass (3.3% ± 3.4%, P < 0.001), and body mass index (3.2% ± 3.4%, P < 0.001). Exercise capacity was improved after the training program, with significant increase of maximal power output (25.0% ± 18.4%, P < 0.001) and maximal oxygen uptake (V˙O2max, 9.0% ± 11.2%; P < 0.01). Lastly, when expressed in terms of power output, COP, LIPOXmax®, and VT occurred at a similar exercise intensity, but the occurrence of these three indices is different when expressed in terms of oxygen uptake, HR, or RPE. This study highlights the effectiveness of a 12-wk training program at COP to improve physical fitness in women with MetS. The relations between metabolic indices and VT in terms of power output highlight the determination of VT from a shorter maximal exercise as a useful method for determining metabolic indices in MetS.

  9. Individual responses to combined endurance and strength training in older adults.

    PubMed

    Karavirta, Laura; Häkkinen, Keijo; Kauhanen, Antti; Arija-Blázquez, Alfredo; Sillanpää, Elina; Rinkinen, Niina; Häkkinen, Arja

    2011-03-01

    A combination of endurance and strength training is generally used to seek further health benefits or enhanced physical performance in older adults compared with either of the training modes alone. The mean change within a training group, however, may conceal a wide range of individual differences in the responses. The purpose, therefore, was to examine the individual trainability of aerobic capacity and maximal strength, when endurance and strength training are performed separately or concurrently. For this study, 175 previously untrained volunteers, 89 men and 86 women between the ages of 40 and 67 yr, completed a 21-wk period of either strength training (S) twice a week, endurance training (E) twice a week, combined training (ES) four times per week, or served as controls. Training adaptations were quantified as peak oxygen uptake (VO2peak) in a bicycle ergometer test to exhaustion and maximal isometric bilateral leg extension force (MVC) in a dynamometer. A large range in training responses, similar to endurance or strength training alone, was also observed with combined endurance and strength training in both ΔVO2peak (from -8% to 42%) and ΔMVC (from -12% to 87%). There were no significant correlations between the training responses in VO2peak and MVC in the E, S, or especially in the ES group, suggesting that the same subjects did not systematically increase both aerobic capacity and maximal strength. The goal of combined endurance and strength training--increasing both aerobic capacity and maximal strength simultaneously--was only achieved by some of the older subjects. New means are needed to personalize endurance, strength, and especially combined endurance and strength training programs for optimal individual adaptations.

  10. Effect of insulin-like factors on glucose transport activity in unweighted rat skeletal muscle

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Ritter, Leslie S.

    1993-01-01

    The effect of 3 or 6 days of unweighting on glucose transport activity, as assessed by 2-deoxyglucose uptake, in soleus strips stimulated by maximally effective concentrations of insulin, IGF-I, vanadate, or phospholipase C (PLC) is examined. Progressively increased responses to maximally effective doses of insulin or insulin-like growth factor were observed after 3 and 6 days of unweighting compared with weight matched control strips. Enhanced maximal responses to vanadate (6 days only) and PLC (3 and 6 days) were also observed. The data provide support for the existance of postreceptor binding mechanisms for the increased action of insulin on the glucose transport system in unweighted rat skeletal muscle.

  11. Average capacity optimization in free-space optical communication system over atmospheric turbulence channels with pointing errors.

    PubMed

    Liu, Chao; Yao, Yong; Sun, Yun Xu; Xiao, Jun Jun; Zhao, Xin Hui

    2010-10-01

    A model is proposed to study the average capacity optimization in free-space optical (FSO) channels, accounting for effects of atmospheric turbulence and pointing errors. For a given transmitter laser power, it is shown that both transmitter beam divergence angle and beam waist can be tuned to maximize the average capacity. Meanwhile, their optimum values strongly depend on the jitter and operation wavelength. These results can be helpful for designing FSO communication systems.

  12. [Sub-maximal aerobic capacity and quality of life of patients with rheumatoid arthritis].

    PubMed

    Lataoui, S; Belghali, S; Zeglaoui, H; Bouajina, E; Ben Saad, H

    2017-01-01

    Studies about sub-maximal aerobic capacity of patients with rheumatoid arthritis are scarce. To assess the sub-maximal aerobic capacity of these patients through the 6-min walk test, estimated age of the "muscular and cardiorespiratory" chain. Thirty-seven consecutive patients (aged 20 to 60 years) with newly diagnosed rheumatoid arthritis will be included. Non-inclusion criteria will be: use of drugs (e.g.; methotrexate, beta-blockers), orthopaedic or rheumatologic conditions (other than rheumatoid arthritis) that may alter walking ability and recent infections. Exclusion criteria will be: 6-min walking test contra-indications and imperfect performance of the required lung function and walking maneuvers. Signs of walking intolerance will be: test interruption, distance ≤lower limit of normal, dyspnea score ≥5/10 (visual analogue scale) at the end of the test, haemoglobin oxygen saturation (SpO 2 ) drop ≥5%, cardiac frequency at the end of the test ≤60% of maximum predicted. An estimated "muscular and cardiorespiratory chain" age higher than the chronological one will be considered as a sign of accelerated ageing. A high percentage of patients suffering from rheumatoid arthritis would show evidences of walking limitation and accelerated "muscular and cardiorespiratory chain" ageing. There would be a significant correlation between the walking test and clinical, biological, radiological and pulmonary function data and the patients' quality-of-life status. Copyright © 2016 SPLF. Published by Elsevier Masson SAS. All rights reserved.

  13. Edible oil structures at low and intermediate concentrations. I. Modeling, computer simulation, and predictions for X ray scattering

    NASA Astrophysics Data System (ADS)

    Pink, David A.; Quinn, Bonnie; Peyronel, Fernanda; Marangoni, Alejandro G.

    2013-12-01

    Triacylglycerols (TAGs) are biologically important molecules which form the recently discovered highly anisotropic crystalline nanoplatelets (CNPs) and, ultimately, the large-scale fat crystal networks in edible oils. Identifying the hierarchies of these networks and how they spontaneously self-assemble is important to understanding their functionality and oil binding capacity. We have modelled CNPs and studied how they aggregate under the assumption that all CNPs are present before aggregation begins and that their solubility in the liquid oil is very low. We represented CNPs as rigid planar arrays of spheres with diameter ≈50 nm and defined the interaction between spheres in terms of a Hamaker coefficient, A, and a binding energy, VB. We studied three cases: weak binding, |VB|/kBT ≪ 1, physically realistic binding, VB = Vd(R, Δ), so that |VB|/kBT ≈ 1, and Strong binding with |VB|/kBT ≫ 1. We divided the concentration of CNPs, ϕ, with 0≤ϕ= 10-2 (solid fat content) ≤1, into two regions: Low and intermediate concentrations with 0<ϕ<0.25 and high concentrations with 0.25 < ϕ and considered only the first case. We employed Monte Carlo computer simulation to model CNP aggregation and analyzed them using static structure functions, S(q). We found that strong binding cases formed aggregates with fractal dimension, D, 1.7≤D ≤1.8, in accord with diffusion limited cluster-cluster aggregation (DLCA) and weak binding formed aggregates with D =3, indicating a random distribution of CNPs. We found that models with physically realistic intermediate binding energies formed linear multilayer stacks of CNPs (TAGwoods) with fractal dimension D =1 for ϕ =0.06,0.13, and 0.22. TAGwood lengths were greater at lower ϕ than at higher ϕ, where some of the aggregates appeared as thick CNPs. We increased the spatial scale and modelled the TAGwoods as rigid linear arrays of spheres of diameter ≈500 nm, interacting via the attractive van der Waals interaction. We found that TAGwoods aggregated via DLCA into clusters with fractal dimension D =1.7-1.8. As the simulations were run further, TAGwoods relaxed their positions in order to maximize the attractive interaction making the process look like reaction limited cluster-cluster aggregation with the fractal dimension increasing to D =2.0-2.1. For higher concentrations of CNPs, many TAGwood clusters were formed and, because of their weak interactions, were distributed randomly with D =3.0. We summarize the hierarchy of structures and make predictions for X-ray scattering.

  14. Inflammatory markers following acute fuel oil exposure or bacterial lipopolysaccharide in mallard ducks (Anas platyrhynchos).

    PubMed

    Lee, Kelly A; Tell, Lisa A; Mohr, F Charles

    2012-12-01

    Adult mallard ducks (Anas platyrhynchos) were orally dosed with bunker C fuel oil for 5 days, and five different inflammatory markers (haptoglobin, mannan-binding lectin, ceruloplasmin, unsaturated iron-binding capacity, and plasma iron) were measured in blood plasma prior to and 8, 24, 48, and 72 hr following exposure. In order to contrast the response to fuel oil with that of a systemic inflammatory response, an additional five ducks were injected intramuscularly with bacterial lipopolysaccharide (LPS). Oil-treated birds had an inflammatory marker profile that was significantly different from control and LPS-treated birds, showing decreases in mannan-binding lectin-dependent hemolysis and unsaturated iron-binding capacity, but no changes in any of the other inflammatory markers. Birds treated with oil also exhibited increased liver weights, decreased body and splenic weights, and decreased packed cell volume.

  15. A comparative study for Hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Jinlian; Guo, Yanhua; Zhang, Yun

    A comparative study for hydrogen storage in metal decorated graphyne nanotubes and graphyne monolayers has been investigated within the framework of first-principle calculations. Our results show that the binding energies of Li, Ca, Sc, Ti on graphyne nanotubes are stronger than that on graphyne monolayers. Such strong binding would prevent the formation of metal clusters on graphyne nanotubes. From the charge transfer and partial density of states, it is found that the curvature effect of nanotubes plays an important role for the strong binding strength of metal on graphyne nanotubes. And the hydrogen storage capacity is 4.82 wt%, 5.08 wt%,more » 4.88 wt%, 4.76 wt% for Li, Ca, Sc, Ti decorated graphyne nanotubes that promise a potential material for storing hydrogen. - Graphical abstract: Metal atoms (Li, Ca, Sc and Ti) can strongly bind to graphyne nanotubes to avoid the formation of metal clusters, and a capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015. Twenty-four hydrogen molecules absorb to Ti-decorated graphyne nanotube. - Highlights: • The binding strength for metal on graphyne nanotubes is much stronger than that on γ-graphyne monolayer. • Metal atoms can strongly bind to the curving triangle acetylenes rings to avoid the formation of metal clusters. • A capacity of Ca@graphyne nanotube is 5.08 wt% which is close to the requirement of DOE in 2015.« less

  16. Bio-nanocapsule-based scaffold improves the sensitivity and ligand-binding capacity of mammalian receptors on the sensor chip.

    PubMed

    Iijima, Masumi; Yoshimoto, Nobuo; Niimi, Tomoaki; Maturana, Andrés D; Kuroda, Shun'ichi

    2016-06-01

    Mammalian receptors are recognized as target molecules for drug discovery, and chemical libraries have been screened for both potential antagonists and agonists mainly by ligand-binding assays using immobilized receptors. A bio-nanocapsule (BNC) of approximately 30 nm that displays a tandem form of the protein A-derived immunoglobulin G (IgG) Fc-binding Z domains (denoted as ZZ-BNC) has been developed for both clustering and oriented immobilization of IgGs on the solid phase of immunosensors. In this study, human IgG1 Fc-fused vascular endothelial growth factor (VEGF) receptor was immobilized through ZZ-BNC on the sensor chip of quartz crystal microbalance (ZZ-BNC-coating). When compared with direct adsorption and protein A-coating, the sensor chip showed higher sensitivity (∽46- and ∽165-fold, respectively) and larger ligand-binding capacity (∽4- and ∽18-fold, respectively). Furthermore, the number of VEGF molecules bound to its receptor increased from 0.20 (direct adsorption) to 2.06 by ZZ-BNC-coating, strongly suggesting that ZZ-BNC reduced the steric hindrance near ligand recognition sites through oriented immobilization. Similarly, the sensitivity and ligand-binding capacity of leptin and prolactin receptors were both enhanced at a level comparable to that observed for the VEGF receptor. Thus, the combination of ZZ-BNC and Fc-fused receptors could significantly improve the function of ligand-binding assays. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE PAGES

    Cui, Borui; Gao, Dian-ce; Xiao, Fu; ...

    2016-12-23

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  18. Model-based optimal design of active cool thermal energy storage for maximal life-cycle cost saving from demand management in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Borui; Gao, Dian-ce; Xiao, Fu

    This article provides a method in comprehensive evaluation of cost-saving potential of active cool thermal energy storage (CTES) integrated with HVAC system for demand management in non-residential building. The active storage is beneficial by shifting peak demand for peak load management (PLM) as well as providing longer duration and larger capacity of demand response (DR). In this research, a model-based optimal design method using genetic algorithm is developed to optimize the capacity of active CTES aiming for maximizing the life-cycle cost saving concerning capital cost associated with storage capacity as well as incentives from both fast DR and PLM. Inmore » the method, the active CTES operates under a fast DR control strategy during DR events while under the storage-priority operation mode to shift peak demand during normal days. The optimal storage capacities, maximum annual net cost saving and corresponding power reduction set-points during DR event are obtained by using the proposed optimal design method. Lastly, this research provides guidance in comprehensive evaluation of cost-saving potential of CTES integrated with HVAC system for building demand management including both fast DR and PLM.« less

  19. Limits to sustained energy intake. XIII. Recent progress and future perspectives.

    PubMed

    Speakman, John R; Król, Elżbieta

    2011-01-15

    Several theories have been proposed to explain limits on the maximum rate at which animals can ingest and expend energy. These limits are likely to be intrinsic to the animal, and potentially include the capacity of the alimentary tract to assimilate energy--the 'central limitation' hypothesis. Experimental evidence from lactating mice exposed to different ambient temperatures allows us to reject this and similar ideas. Two alternative ideas have been proposed. The 'peripheral limitation' hypothesis suggests that the maximal sustained energy intake reflects the summed demands of individual tissues, which have their own intrinsic limitations on capacity. In contrast, the 'heat dissipation limit' (HDL) theory suggests that animals are constrained by the maximal capacity to dissipate body heat. Abundant evidence in domesticated livestock supports the HDL theory, but data from smaller mammals are less conclusive. Here, we develop a novel framework showing how the HDL and peripheral limitations are likely to be important in all animals, but to different extents. The HDL theory makes a number of predictions--in particular that there is no fixed limit on sustained energy expenditure as a multiple of basal metabolic rate, but rather that the maximum sustained scope is positively correlated with the capacity to dissipate heat.

  20. Maximally-localized position, Euclidean path-integral, and thermodynamics in GUP quantum mechanics

    NASA Astrophysics Data System (ADS)

    Bernardo, Reginald Christian S.; Esguerra, Jose Perico H.

    2018-04-01

    In dealing with quantum mechanics at very high energies, it is essential to adapt to a quasiposition representation using the maximally-localized states because of the generalized uncertainty principle. In this paper, we look at maximally-localized states as eigenstates of the operator ξ = X + iβP that we refer to as the maximally-localized position. We calculate the overlap between maximally-localized states and show that the identity operator can be expressed in terms of the maximally-localized states. Furthermore, we show that the maximally-localized position is diagonal in momentum-space and that the maximally-localized position and its adjoint satisfy commutation and anti-commutation relations reminiscent of the harmonic oscillator commutation and anti-commutation relations. As application, we use the maximally-localized position in developing the Euclidean path-integral and introduce the compact form of the propagator for maximal localization. The free particle momentum-space propagator and the propagator for maximal localization are analytically evaluated up to quadratic-order in β. Finally, we obtain a path-integral expression for the partition function of a thermodynamic system using the maximally-localized states. The partition function of a gas of noninteracting particles is evaluated. At temperatures exceeding the Planck energy, we obtain the gas' maximum internal energy N / 2 β and recover the zero heat capacity of an ideal gas.

  1. Comparing dissolved reactive phosphorus measured by DGT with ferrihydrite and titanium dioxide adsorbents: anionic interferences, adsorbent capacity and deployment time.

    PubMed

    Panther, Jared G; Teasdale, Peter R; Bennett, William W; Welsh, David T; Zhao, Huijun

    2011-07-18

    Two adsorbents (Metsorb and ferrihydrite) used in binding layers with the diffusive gradients in a thin film technique were evaluated for the measurement of dissolved reactive phosphorous (DRP) in synthetic and natural waters. Possible interferences were investigated with Cl(-) (up to 1.35 mol L(-1)) and SO(4)(2-) (up to 0.056 mol L(-1)) having no affect on either DGT binding layer, and HCO(3)(-) (up to 5.7 mmol L(-1)) having no effect on Metsorb-DGT, over 4 days. However, HCO(3)(-) interfered with the ferrihydrite-DGT measurement at concentrations typical of many natural waters (≥0.7 mmol L(-1)) after a deployment period of 1-2 days. The capacity of the Metsorb binding phase for DGT response was ∼37,000 ng P, whereas the capacities of a low-mass (17.8 mg of adsorbent per DGT sampler) and high-mass (29.2mg of adsorbent per DGT sampler) ferrihydrite binding phase were substantially lower (∼15,000 ng P and ∼25,000 ng P, low-mass and high-mass, respectively). Increasing the capacity of the ferrihydrite adsorbent allowed the ferrihydrite-DGT to be utilized for up to 3 days before interference by HCO(3)(-) was observed. Seawater deployments demonstrated that even high-capacity ferrihydrite-DGT devices underestimated the DRP concentration by 37%, whereas Metsorb-DGT measurements were accurate. The Metsorb-DGT is superior to the ferrihydrite-DGT for determining DRP over deployment times greater than 1 day and in waters with ≥0.7 mmol L(-1) HCO(3)(-). Based on the experience obtained from this detailed validation process, the authors propose a number of key requirements that need to be considered when developing new DGT binding layers, with testing the performance over longer deployment times being critical. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. The Effect of Hydraulic Loading Rate and Influent Source on the Binding Capacity of Phosphorus Filters

    PubMed Central

    Herrmann, Inga; Jourak, Amir; Hedström, Annelie; Lundström, T. Staffan; Viklander, Maria

    2013-01-01

    Sorption by active filter media can be a convenient option for phosphorus (P) removal and recovery from wastewater for on-site treatment systems. There is a need for a robust laboratory method for the investigation of filter materials to enable a reliable estimation of their longevity. The objectives of this study were to (1) investigate and (2) quantify the effect of hydraulic loading rate and influent source (secondary wastewater and synthetic phosphate solution) on P binding capacity determined in laboratory column tests and (3) to study how much time is needed for the P to react with the filter material (reaction time). To study the effects of these factors, a 22 factorial experiment with 11 filter columns was performed. The reaction time was studied in a batch experiment. Both factors significantly (α = 0.05) affected the P binding capacity negatively, but the interaction of the two factors was not significant. Increasing the loading rate from 100 to 1200 L m−2 d−1 decreased P binding capacity from 1.152 to 0.070 g kg−1 for wastewater filters and from 1.382 to 0.300 g kg−1 for phosphate solution filters. At a loading rate of 100 L m−2 d−1, the average P binding capacity of wastewater filters was 1.152 g kg−1 as opposed to 1.382 g kg−1 for phosphate solution filters. Therefore, influent source or hydraulic loading rate should be carefully controlled in the laboratory. When phosphate solution and wastewater were used, the reaction times for the filters to remove P were determined to be 5 and 15 minutes, respectively, suggesting that a short residence time is required. However, breakthrough in this study occurred unexpectedly quickly, implying that more time is needed for the P that has reacted to be physically retained in the filter. PMID:23936313

  3. Functional magnetic mesoporous nanoparticles for efficient purification of laccase from fermentation broth in magnetically stabilized fluidized bed.

    PubMed

    Wang, Feng; Guo, Chen; Liu, Chun-Zhao

    2013-12-01

    A magnetically stabilized fluidized bed (MSFB) with the Cu(2+)-chelated magnetic mesoporous silica nanoparticles (MMSNPs-Cu(2+)) was established to purify laccase directly from the fermentation broth of Trametes versicolor. The MMSNPs-Cu(2+) particles in the MSFB maintained a stable bed expansion of two to threefold at a flow rate of 120-180 cm/h. At the optimal magnetic field intensity of 120 Gs, both the maximal Bodenstein number and the smallest axial dispersion coefficient were achieved, which resulted in a stable fluidization stage. The dynamic binding capacity of laccase in the MSFB decreased from 192.5 to144.3 mg/g when the flow velocity through the bed increased from 44.2 to 69.8 cm/h. The MSFB with MMSNPs-Cu(2+) achieved efficient laccase purification from the fermentation broth with 62.4-fold purification of laccase and 108.9 % activity yield. These results provided an excellent platform for the application of these magnetic mesoporous nanoparticles integrated with the MSFB in developing novel protein purification process.

  4. Shape Engineering Boosts Magnetic Mesoporous Silica Nanoparticle-Based Isolation and Detection of Circulating Tumor Cells.

    PubMed

    Chang, Zhi-Min; Wang, Zheng; Shao, Dan; Yue, Juan; Xing, Hao; Li, Li; Ge, Mingfeng; Li, Mingqiang; Yan, Huize; Hu, Hanze; Xu, Qiaobing; Dong, Wen-Fei

    2018-04-04

    Magnetic mesoporous silica nanoparticles (M-MSNs) are attractive candidates for the immunomagnetic isolation and detection of circulating tumor cells (CTCs). Understanding of the interactions between the effects of the shape of M-MSNs and CTCs is crucial to maximize the binding capacity and capture efficiency as well as to facilitate the sensitivity and efficiency of detection. In this work, fluorescent M-MSNs were rationally designed with sphere and rod morphologies while retaining their robust fluorescence and uniform surface functionality. After conjugation with the antibody of epithelial cell adhesion molecule (EpCAM), both of the differently shaped M-MSNs-EpCAM obtained achieved efficient enrichment of CTCs and fluorescent-based detection. Importantly, rodlike M-MSNs exhibited faster immunomagnetic isolation as well as better performance in the isolation and detection of CTCs in spiked cells and real clinical blood samples than those of their spherelike counterparts. Our results showed that shape engineering contributes positively toward immunomagnetic isolation, which might open new avenues to the rational design of magnetic-fluorescent nanoprobes for the sensitive and efficient isolation and detection of CTCs.

  5. Photoresponsive surface molecularly imprinted polymer on ZnO nanorods for uric acid detection in physiological fluids.

    PubMed

    Tang, Qian; Li, Zai-Yong; Wei, Yu-Bo; Yang, Xia; Liu, Lan-Tao; Gong, Cheng-Bin; Ma, Xue-Bing; Lam, Michael Hon-Wah; Chow, Cheuk-Fai

    2016-09-01

    A photoresponsive surface molecularly imprinted polymer for uric acid in physiological fluids was fabricated through a facile and effective method using bio-safe and biocompatible ZnO nanorods as a support. The strategy was carried out by introducing double bonds on the surface of the ZnO nanorods with 3-methacryloxypropyltrimethoxysilane. The surface molecularly imprinted polymer on ZnO nanorods was then prepared by surface polymerization using uric acid as template, water-soluble 5-[(4-(methacryloyloxy)phenyl)diazenyl]isophthalic acid as functional monomer, and triethanolamine trimethacryl ester as cross-linker. The surface molecularly imprinted polymer on ZnO nanorods showed good photoresponsive properties, high recognition ability, and fast binding kinetics toward uric acid, with a dissociation constant of 3.22×10(-5)M in aqueous NaH2PO4 buffer at pH=7.0 and a maximal adsorption capacity of 1.45μmolg(-1). Upon alternate irradiation at 365 and 440nm, the surface molecularly imprinted polymer on ZnO nanorods can quantitatively uptake and release uric acid. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.

    1978-01-01

    Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.

  7. Production of human vitronectin in Nicotiana benthamiana using the INPACT hyperexpression platform.

    PubMed

    Dugdale, Benjamin; Kato, Maiko; Deo, Pradeep; Plan, Manuel; Harrison, Mark; Lloyd, Robyn; Walsh, Terry; Harding, Robert; Dale, James

    2018-02-01

    Human vitronectin (hVN) is a glycoprotein that functions as a cell adhesion molecule and a regulator of coagulation in blood plasma and the extracellular matrix. In vitro, hVN is added to serum-free media in order to promote the adhesion of animal cells to tissue culture surfaces and the proliferation of undifferentiated stem cells. Here, we report the production of hVN in Nicotiana benthamiana using the inducible In Plant ACTivation (INPACT) hyperexpression platform. N. benthamiana plants were transformed with an INPACT expression cassette encoding hVN, and both the Tobacco yellow dwarf virus Rep/RepA activator and Tomato bushy stunt virus p19 gene under the transcriptional control of the ethanol-inducible AlcR:alcA gene switch. hVN expression was maximal 4-5 days postactivation of the INPACT platform with a dilute ethanol solution, and crude yields of the recombinant protein reached a maximum of 643 ± 78 mg/kg fresh weight. A three-stage purification protocol was developed using heparin and polyhistidine tag affinity binding and size exclusion filtration, resulting in a plant-made hVN product of >90% purity. Storage conditions for plant-made hVN were identified that maximized the capacity of the recombinant protein to promote cell adhesion. Critically, plant-made hVN was shown to be functionally equivalent to commercial, plasma-derived hVN at promoting one-half maximal attachment of murine fibroblast cells (BALB-C/3T3) in serum-free medium at <0.1 μg/cm 2 to tissue culture plasticware. The INPACT platform represents an attractive means of producing large quantities of functional, animal-free hVN for in vitro applications. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Feature Binding in Visual Working Memory Evaluated by Type Identification Paradigm

    ERIC Educational Resources Information Center

    Saiki, Jun; Miyatsuji, Hirofumi

    2007-01-01

    Memory for feature binding comprises a key ingredient in coherent object representations. Previous studies have been equivocal about human capacity for objects in the visual working memory. To evaluate memory for feature binding, a type identification paradigm was devised and used with a multiple-object permanence tracking task. Using objects…

  9. Binding of environmental carcinogens to asbestos and mineral fibres.

    PubMed Central

    Harvey, G; Pagé, M; Dumas, L

    1984-01-01

    A rapid method has been developed for measuring the binding capacity of asbestos and other mineral fibres for environmental carcinogens. Benzo(alpha)pyrene (B(alpha)P), nitrosonornicotine (NNN), and N-acetyl-2-aminofluorene (NAAF) were assayed in the presence of Canadian grade 4T30 chrysotile, chrysotile A, amosite, crocidolite, glass microfibres, glasswool, attapulgite, and titanium dioxide. Chrysotile binds significantly more carcinogens than the other mineral fibres. This binding assay is reproducible with coefficients of variation of less than 8% and 6% respectively for inter and intra assay. The influence of pH was also studied, and there is good correlation between the carcinogen binding and the charge of the tested mineral fibres. The in vitro cytotoxicity on macrophage like cell line P388D1 and the haemolytic activity of various mineral fibres were also measured; a good correlation was found between the binding capacity and the cytotoxicity of tested mineral fibres on P388D1 cells. These results give some explanations for the reported synergism between exposure to asbestos and the smoking habits of workers. PMID:6331497

  10. Stress, workload and physiology demand during extravehicular activity: a pilot study.

    PubMed

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-06-01

    Extravehicular activity (EVA), such as exercise performed under unique environmental conditions, is essential for supporting daily living in weightlessness and for further space exploration like long Mars mission. The study was planned stress, workload, and physiological demands of simulated Mars exploration. In this study, the six-person crew lived (24 hours) for 14 days during a short-term stay at the Mars Desert Research Station. The heart rates, salivary cortisol, workload, peak oxygen uptake or maximal aerobic capacity of the crew are measured before, during and after an EVA. Data for heart rate showed the same trend as peak oxygen uptake or maximal aerobic capacity, with a maximal increase to 85% of peak. The rating of subscale showed a significant increase in EVA as compared to run. Salivary cortisol levels and heart rates were increased in both groups, although significant increased of cortisol levels and heart rates more in EVA as compared to hill running crew members. Further study is required on large scale taken into account of limitations of this study and including other physiological and psychological parameters in Mars analog environment.

  11. The N-terminal domain of substance P is required for complete homologous desensitization but not phosphorylation of the rat neurokinin-1 receptor.

    PubMed

    Vigna, S R

    2001-02-01

    The agonist activity of substance P (SP) is a function of the C-terminal domain of the peptide. A C-terminal SP fragment (SP(6-11)) and analog (septide) and neurokinin A (NKA; a related tachykinin with a divergent N-terminal amino acid sequence) were found to be full neurokinin-1 receptor (NK-1R) agonists, but were not able to desensitize the receptor maximally as much as SP. Substance P caused 95.6 +/- 0.9% maximal desensitization of the NK-1R whereas SP(6-11), septide, and NKA(only)caused 74 +/- 3.5, 50.6 +/- 8, and 71.5 +/- 4.4% maximal desensitization, respectively (mean +/- SEM; P < 0.001 vs SP). When a series of SP C-terminal fragment peptides were tested for their NK-1R desensitizing activity, it was found that SP(5-11)and SP(6-11)caused significantly less maximal NK-1R desensitization than SP. SP N-terminal fragment peptides had no effect on the ability of SP(6-11)to compete with(3)H-SP binding, generate an IP(3)response, or cause NK-1R desensitization when tested with or without SP(6-11). SP, SP(6-11), septide, and NKA all maximally stimulated 8-9-fold increases in NK-1R phosphorylation. When attached to the C-terminal domain of SP responsible for NK-1R binding and agonism, the N-terminus of SP is responsible for 25-50% of homologous desensitization and this may occur via a mechanism other than NK-1R phosphorylation. Copyright 2001 Harcourt Publishers Ltd.

  12. Antisense RNA: effect of ribosome binding sites, target location, size, and concentration on the translation of specific mRNA molecules.

    PubMed

    Daugherty, B L; Hotta, K; Kumar, C; Ahn, Y H; Zhu, J D; Pestka, S

    1989-01-01

    A series of plasmids were constructed to generate RNA complementary to the beta-galactosidase messenger RNA under control of the phage lambda PL promoter. These plasmids generate anti-lacZ mRNA bearing or lacking a synthetic ribosome binding site adjacent to the lambda PL promoter and/or the lacZ ribosome binding site in reverse orientation. Fragments of lacZ DNA from the 5' and/or the 3' region were used in these constructions. When these anti-mRNA molecules were produced in Escherichia coli 294, maximal inhibition of beta-galactosidase synthesis occurred when a functional ribosome binding site was present near the 5' end of the anti-mRNA and the anti-mRNA synthesized was complementary to the 5' region of the mRNA corresponding to the lacZ ribosome binding site and/or the 5'-coding sequence. Anti-mRNAs producing maximal inhibition of beta-galactosidase synthesis exhibited an anti-lacZ mRNA:normal lacZ mRNA ratio of 100:1 or higher. Those showing lower levels of inhibition exhibited much lower anti-lacZ mRNA:normal lacZ mRNA ratios. A functional ribosome binding site at the 5'-end was found to decrease the decay rate of the anti-lacZ mRNAs. In addition, the incorporation of a transcription terminator just downstream of the antisense segment provided for more efficient inhibition of lacZ mRNA translation due to synthesis of smaller and more abundant anti-lacZ mRNAs. The optimal constructions produced undetectable levels of beta-galactosidase synthesis.

  13. Binding of carbonyl flavours to canola, pea and wheat proteins using GC/MS approach.

    PubMed

    Wang, Kun; Arntfield, Susan D

    2014-08-15

    Interactions of homologous aldehydes (hexanal, heptanal, and octanal) and ketones (2-hexanone, 2-heptanone, and 2-octanone) to salt and alkaline-extracted canola and pea proteins and commercial wheat gluten were studied using GC/MS. Long-chain aldehyde flavours exhibited higher binding affinity, regardless of protein type and isolation method. Salt-extracted canola protein isolates (CPIs) revealed the highest binding capacity to all aldehydes followed by wheat gluten and salt-extracted pea protein isolates (PPIs), while binding of ketone flavours decreased in the order: PPIs>wheat gluten>CPIs. Two aldolisation products, 2-butyl-2-octenal and 2-pentyl-2-nonenal, were detected from the interactions between CPIs with hexanal and heptanal, respectively. Protein thermal behaviour in the presence of these compounds was analysed by differential scanning calorimeter, where decreased ΔH inferred potential conformational changes due to partial denaturation of PPIs. Compared to ketones, aldehyde flavours possessed much higher "unfolding capacity" (lower ΔH), which accounted for their higher binding affinities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Study of the role of bran water binding and the steric hindrance by bran in straight dough bread making.

    PubMed

    Hemdane, S; Langenaeken, N A; Jacobs, P J; Verspreet, J; Delcour, J A; Courtin, C M

    2018-07-01

    This study investigates the effect of the physical presence and water binding of wheat bran during bread making, and the possible mechanisms behind this effect. Regular bran, pericarp-enriched bran and synthetic bran-like particles with different water binding capacities and particle sizes were used. Incorporation of regular and pericarp-enriched bran in dough (15% dm) led to a lower oven rise than the control dough. Bread volumes decreased with 11% and 30%, respectively. Dough with synthetic bran, having a low water binding capacity, displayed a near to normal leavening and oven rise and resulted in a bread volume decrease of only 5% compared to the control. Particle size reduction of regular bran and synthetic bran to an average size of 200 µm did not affect final bread quality. Results indicate that water binding by bran affects bread quality the most, whereas steric hindrance by physical presence of bran particles is less determinative. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Fabrication of antibody microarrays by light-induced covalent and oriented immobilization.

    PubMed

    Adak, Avijit K; Li, Ben-Yuan; Huang, Li-De; Lin, Ting-Wei; Chang, Tsung-Che; Hwang, Kuo Chu; Lin, Chun-Cheng

    2014-07-09

    Antibody microarrays have important applications for the sensitive detection of biologically important target molecules and as biosensors for clinical applications. Microarrays produced by oriented immobilization of antibodies generally have higher antigen-binding capacities than those in which antibodies are immobilized with random orientations. Here, we present a UV photo-cross-linking approach that utilizes boronic acid to achieve oriented immobilization of an antibody on a surface while retaining the antigen-binding activity of the immobilized antibody. A photoactive boronic acid probe was designed and synthesized in which boronic acid provided good affinity and specificity for the recognition of glycan chains on the Fc region of the antibody, enabling covalent tethering to the antibody upon exposure to UV light. Once irradiated with optimal UV exposure (16 mW/cm(2)), significant antibody immobilization on a boronic acid-presenting surface with maximal antigen detection sensitivity in a single step was achieved, thus obviating the necessity of prior antibody modifications. The developed approach is highly modular, as demonstrated by its implementation in sensitive sandwich immunoassays for the protein analytes Ricinus communis agglutinin 120, human prostate-specific antigen, and interleukin-6 with limits of detection of 7.4, 29, and 16 pM, respectively. Furthermore, the present system enabled the detection of multiple analytes in samples without any noticeable cross-reactivities. Antibody coupling via the use of boronic acid and UV light represents a practical, oriented immobilization method with significant implications for the construction of a large array of immunosensors for diagnostic applications.

  16. Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes.

    PubMed

    Rivera, A; Rotter, M A; Brugnara, C

    1999-10-01

    Cell dehydration mediated by Ca(2+)-activated K(+) channels plays an important role in the pathogenesis of sickle cell disease. CD-1 mouse erythrocytes possess a Ca(2+)-activated K(+) channel (Gardos channel) with maximal velocity (V(max)) of 0.154 +/- 0.02 mmol. l cells(-1). min(-1) and an affinity constant (K(0.5)) for Ca(2+) of 286 +/- 83 nM in the presence of A-23187. Cells pretreated with 500 nM endothelin-1 (ET-1) increased their V(max) by 88 +/- 9% (n = 8) and decreased their K(0.5) for Ca(2+) to 139 +/- 63 nM (P < 0.05; n = 4). Activation of the Gardos channel resulted in an EC(50) of 75 +/- 20 nM for ET-1 and 374 +/- 97 nM for ET-3. Analysis of the affinity of unlabeled ET-1 for its receptor showed two classes of binding sites with apparent dissociation constants of 167 +/- 51 and 785 +/- 143 nM and with capacity of binding sites of 298 +/- 38 and 1,568 +/- 211 sites/cell, respectively. The Gardos channel was activated by the endothelin B (ET(B)) receptor agonist IRL 1620 and inhibited by BQ-788, demonstrating the involvement of ET(B) receptors. Calphostin C inhibited 73% of ET-1-induced Gardos activation and 84% of the ET-1-induced membrane protein kinase C activity. Thus endothelins regulate erythrocyte Gardos channels via ET(B) receptors and a calphostin-sensitive mechanism.

  17. Estimation of Rapidly Exchangeable Cellular Thyroxine from the Plasma Disappearance Curves of Simultaneously Administered Thyroxine-131I and Albumin-125I*

    PubMed Central

    Oppenheimer, Jack H.; Bernstein, Gerald; Hasen, Julian

    1967-01-01

    A mathematical analysis of the plasma disappearance curves of simultaneously injected thyroxine-131I and albumin-125I allows the development of simple formulas for estimating the pool size and transfer kinetics of rapidly exchangeable intracellular thyroxine in man. Evidence is presented that the early distribution kinetics of albumin-125I can be used to represent the expansion of the thyroxine-131I-plasma protein complex into the extracellular compartment. Calculations indicate that approximately 37% of total body extrathyroidal thyroxine is within such exchangeable tissue stores. The average cellular clearance of thyroxine is 42.7 ml per minute, a value far in excess of the metabolic clearance of this hormone. Results of external measurements over the hepatic area and studies involving hepatic biopsies indicate that the liver is an important but probably not the exclusive component of the intracellular compartment. The partition of thyroxine between cellular and extracellular compartments is determined by the balance of tissue and plasma protein binding factors. The fractional transfer constants are inversely related to the strength of binding of each compartment and directly proportional to the permeability characteristic of the hypothetical membrane separating compartments. Appropriate numerical values for these factors are assigned. An increased fractional entrance of thyroxine-131I into the cellular compartment was noted in a patient with congenital decrease in the maximal binding capacity of thyroxine-binding globulin and in three patients after the infusion of 5,5-diphenylhydantoin. Decreased intracellular space and impaired permeability characteristics were observed in five patients with hepatic disease. Studies of the rate of entrance of thyroxine-131I and albumin-125I into the pleural effusion of a patient with congestive heart failure suggested that transcapillary passage of thyroxine independent of its binding protein is not a predominant factor in the total distribution kinetics of thyroxine-131I. The thesis is advanced that the distribution of thyroxine, both within the extracellular compartment and between the extracellular and intracellular compartments, is accomplished largely by the carrier protein and the direct transfer of thyroxine from one binding site to another. The concept of free thyroxine is reassessed in terms of this formulation. PMID:4960936

  18. Stereotype Strength and Attentional Bias: Preference for Confirming versus Disconfirming Information Depends on Processing Capacity

    PubMed Central

    Allen, Thomas J.; Sherman, Jeffrey W.; Conrey, Frederica R.; Stroessner, Steven J.

    2009-01-01

    In two experiments, we investigated the relationships among stereotype strength, processing capacity, and the allocation of attention to stereotype-consistent versus stereotype-inconsistent information describing a target person. The results of both experiments showed that, with full capacity, greater stereotype strength was associated with increased attention toward stereotype-consistent versus stereotype-inconsistent information. However, when capacity was diminished, greater stereotype strength was associated with increased attention toward inconsistent versus consistent information. Thus, strong stereotypes may act as self-confirming filters when processing capacity is plentiful, but as efficient information gathering devices that maximize the acquisition of novel (disconfirming) information when capacity is depleted. Implications for models of stereotyping and stereotype change are discussed. PMID:20161043

  19. Pharmaceutical-grade albumin: impaired drug-binding capacity in vitro

    PubMed Central

    Olsen, Harald; Andersen, Anders; Nordbø, Arve; Kongsgaard, Ulf E; Børmer, Ole P

    2004-01-01

    Background Albumin is the most abundant protein in blood plasma, and due to its ligand binding properties, serves as a circulating depot for endogenous and exogenous (e.g. drugs) compounds. Hence, the unbound drug is the pharmacologically active drug. Commercial human albumin preparations are frequently used during surgery and in critically ill patients. Recent studies have indicated that the use of pharmaceutical-grade albumin is controversial in critically ill patients. In this in vitro study we investigated the drug binding properties of pharmaceutical-grade albumins (Baxter/Immuno, Octapharma, and Pharmacia & Upjohn), native human serum, and commercially available human serum albumin from Sigma Chemical Company. Methods The binding properties of the various albumin solutions were tested in vitro by means of ultrafiltration. Naproxen, warfarin, and digitoxin were used as ligands. HPLC was used to quantitate the total and free drug concentrations. The data were fitted to a model of two classes of binding sites for naproxen and warfarin and one class for digitoxin, using Microsoft Excel and Graphpad Prism. Results The drugs were highly bound to albumin (95–99.5%). The highest affinity (lowest K1) was found with naproxen. Pharmaceutical-grade albumin solutions displayed significantly lower drug-binding capacity compared to native human serum and Sigma albumin. Thus, the free fraction was considerably higher, approximately 40 times for naproxen and 5 and 2 times for warfarin and digitoxin, respectively. The stabilisers caprylic acid and N-acetyl-DL-tryptophan used in the manufacturing procedure seem to be of importance. Adding the stabilisers to human serum and Sigma albumin reduced the binding affinity whereas charcoal treatment of the pharmaceutical-grade albumin from Octapharma almost restored the specific binding capacity. Conclusion This in vitro study demonstrates that the specific binding for warfarin and digitoxin is significantly reduced and for naproxen no longer detectable in pharmaceutical-grade albumin. It further shows that the addition of stabilisers may be of major importance for this effect. PMID:15046641

  20. The Binding of Learning to Action in Motor Adaptation

    PubMed Central

    Gonzalez Castro, Luis Nicolas; Monsen, Craig Bryant; Smith, Maurice A.

    2011-01-01

    In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising from an error occurring on a particular movement is specifically associated with the motion that was planned. Here we show that this is not the case. Instead, we demonstrate the binding of the adaptation arising from an error on a particular trial to the motion experienced on that same trial. The formation of this association means that future movements planned to resemble the motion experienced on a given trial benefit maximally from the adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for motor errors because, in a computational sense, the maximal adaptive response would be associated with the condition credited with the error. We studied this process by examining the patterns of generalization associated with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that these patterns consistently matched those predicted by adaptation associated with the actual rather than the planned motion, with maximal generalization observed where actual motions were clustered. We followed up these findings by showing that a novel training procedure designed to leverage this newfound understanding of the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a mechanistic framework for understanding the effects of partial assistance and error augmentation during neurologic rehabilitation, and they suggest ways to optimize their use. PMID:21731476

  1. [Evaluation of the capacity of work using upper limbs after radical latero-cervical surgery].

    PubMed

    Capodaglio, P; Strada, M R; Grilli, C; Lodola, E; Panigazzi, M; Bernardo, G; Bazzini, G

    1998-01-01

    Evaluation of arm work capacity after radical neck surgery. The aim of this paper is to describe an approach for the assessment of work capacity in patients who underwent radical neck surgery, including those treated with radiation therapy. Nine male patients, who underwent radical neck surgery 2 months before being referred to our Unit, participated in the study. In addition to manual muscle strength test, we performed the following functional evaluations: 0-100 Constant scale for shoulder function; maximal shoulder strength in adduction/abduction and intrarotation/extrarotation; instrumental. We measured maximal isokinetic strength (10 repetitions) with a computerized dynamometer (Lido WorkSET) set at 100 degrees/sec. During the rehabilitation phase, the patients' mechanical parameters, the perception of effort, pain or discomfort, and the range of movement were monitored while performing daily/occupational task individually chosen on the simulator (Lido WorkSET) under isotonic conditions. On this basis, patients were encouraged to return to levels of daily physical activities compatible with the individual tolerable work load. The second evaluation at 2 month confirmed that the integrated rehabilitation protocol successfully increased patients' capacities and "trust" in their physical capacity. According to the literature, the use of isokinetic and isotonic exercise programs appears to decrease shoulder rehabilitation time. In our experience an excellent compliance has been noted. One of the advantages of the method proposed is to provide quantitative reports of the functional capacity and therefore to facilitate return-to-work of patients who underwent radical neck surgery.

  2. Potential Functional Byproducts from Guava Purée Processing.

    PubMed

    Lim, Si Yi; Tham, Paik Yean; Lim, Hilary Yi Ler; Heng, Wooi Shin; Chang, Ying Ping

    2018-05-10

    The valorization of guava waste requires compositional and functional studies. We tested three byproducts of guava purée processing, namely refiner, siever, and decanter. We analyzed the chemical composition and quantified the prebiotic activity score and selected carbohydrates; we also determined the water holding (WHC), oil holding (OHC), cation exchange capacities, bile acid binding, and glucose dialysis retardation (GDR) of the solid fraction and the antioxidative and α-amylase inhibitory capacities (AIC) of the ethanolic extract. Refiner contained 7.7% lipid, 7.08% protein and a relatively high phytate content; it had a high prebiotic activity score and possessed the highest binding capacity with deoxycholic acid. Siever contained high levels of low molecular weight carbohydrates and total tannin but relatively low crude fiber and cellulose contents. It had the highest binding with chenodeoxycholic acid (74.8%), and exhibited the highest 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity. Decanter was rich in cellulose and had a high prebiotic activity score. The WHC and OHC values of decanter were within a narrow range and also exhibited the highest binding with cholic acid (86.6%), and the highest values of GDR and AIC. The refiner waste could be included in animal feed but requires further processing to reduce the high phytate levels. All three guava byproducts had the potential to be a source of antioxidant dietary fiber (DF), a finding that warrants further in vivo study. To differing extents, the guava byproducts exhibited useful physicochemical binding properties and so possessed the potential for health-promoting activity. These byproducts could also be upgraded to other marketable products so the manufacturers of processed guava might be able to develop their businesses sustainably by making better use of them. © 2018 Institute of Food Technologists®.

  3. On Distributed PV Hosting Capacity Estimation, Sensitivity Study, and Improvement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry

    This paper first studies the estimated distributed PV hosting capacities of seventeen utility distribution feeders using the Monte Carlo simulation based stochastic analysis, and then analyzes the sensitivity of PV hosting capacity to both feeder and photovoltaic system characteristics. Furthermore, an active distribution network management approach is proposed to maximize PV hosting capacity by optimally switching capacitors, adjusting voltage regulator taps, managing controllable branch switches and controlling smart PV inverters. The approach is formulated as a mixed-integer nonlinear optimization problem and a genetic algorithm is developed to obtain the solution. Multiple simulation cases are studied and the effectiveness of themore » proposed approach on increasing PV hosting capacity is demonstrated.« less

  4. High-Affinity Low-Capacity and Low-Affinity High-Capacity N-Acetyl-2-Aminofluorene (AAF) Macromolecular Binding Sites Are Revealed During the Growth Cycle of Adult Rat Hepatocytes in Primary Culture.

    PubMed

    Koch, Katherine S; Moran, Tom; Shier, W Thomas; Leffert, Hyam L

    2018-05-01

    Long-term cultures of primary adult rat hepatocytes were used to study the effects of N-acetyl-2-aminofluorene (AAF) on hepatocyte proliferation during the growth cycle; on the initiation of hepatocyte DNA synthesis in quiescent cultures; and, on hepatocyte DNA replication following the initiation of DNA synthesis. Scatchard analyses were used to identify the pharmacologic properties of radiolabeled AAF metabolite binding to hepatocyte macromolecules. Two classes of growth cycle-dependent AAF metabolite binding sites-a high-affinity low-capacity site (designated Site I) and a low-affinity high-capacity site (designated Site II)-associated with two spatially distinct classes of macromolecular targets, were revealed. Based upon radiolabeled AAF metabolite binding to purified hepatocyte genomic DNA or to DNA, RNA, proteins, and lipids from isolated nuclei, Site IDAY 4 targets (KD[APPARENT] ≈ 2-4×10-6 M and BMAX[APPARENT] ≈ 6 pmol/106 cells/24 h) were consistent with genomic DNA; and with AAF metabolized by a nuclear cytochrome P450. Based upon radiolabeled AAF binding to total cellular lysates, Site IIDAY 4 targets (KD[APPARENT] ≈ 1.5×10-3 M and BMAX[APPARENT] ≈ 350 pmol/106 cells/24 h) were consistent with cytoplasmic proteins; and with AAF metabolized by cytoplasmic cytochrome P450s. DNA synthesis was not inhibited by concentrations of AAF that saturated DNA binding in the neighborhood of the Site I KD. Instead, hepatocyte DNA synthesis inhibition required higher concentrations of AAF approaching the Site II KD. These observations raise the possibility that carcinogenic DNA adducts derived from AAF metabolites form below concentrations of AAF that inhibit replicative and repair DNA synthesis.

  5. Construction of a Functional S-Layer Fusion Protein Comprising an Immunoglobulin G-Binding Domain for Development of Specific Adsorbents for Extracorporeal Blood Purification

    PubMed Central

    Völlenkle, Christine; Weigert, Stefan; Ilk, Nicola; Egelseer, Eva; Weber, Viktoria; Loth, Fritz; Falkenhagen, Dieter; Sleytr, Uwe B.; Sára, Margit

    2004-01-01

    The chimeric gene encoding a C-terminally-truncated form of the S-layer protein SbpA from Bacillus sphaericus CCM 2177 and two copies of the Fc-binding Z-domain was constructed, cloned, and heterologously expressed in Escherichia coli HMS174(DE3). The Z-domain is a synthetic analogue of the B-domain of protein A, capable of binding the Fc part of immunoglobulin G (IgG). The S-layer fusion protein rSbpA31-1068/ZZ retained the specific properties of the S-layer protein moiety to self-assemble in suspension and to recrystallize on supports precoated with secondary cell wall polymer (SCWP), which is the natural anchoring molecule for the S-layer protein in the bacterial cell wall. Due to the construction principle of the S-layer fusion protein, the ZZ-domains remained exposed on the outermost surface of the protein lattice. The binding capacity of the native or cross-linked monolayer for human IgG was determined by surface plasmon resonance measurements. For batch adsorption experiments, 3-μm-diameter, biocompatible cellulose-based, SCWP-coated microbeads were used for recrystallization of the S-layer fusion protein. In the case of the native monolayer, the binding capacity for human IgG was 5.1 ng/mm2, whereas after cross-linking with dimethyl pimelimidate, 4.4 ng of IgG/mm2 was bound. This corresponded to 78 and 65% of the theoretical saturation capacity of a planar surface for IgGs aligned in the upright position, respectively. Compared to commercial particles used as immunoadsorbents to remove autoantibodies from sera of patients suffering from an autoimmune disease, the IgG binding capacity of the S-layer fusion protein-coated microbeads was at least 20 times higher. For that reason, this novel type of microbeads should find application in the microsphere-based detoxification system. PMID:15006773

  6. Exercise Capacity and the Obesity Paradox in Heart Failure: The FIT (Henry Ford Exercise Testing) Project.

    PubMed

    McAuley, Paul A; Keteyian, Steven J; Brawner, Clinton A; Dardari, Zeina A; Al Rifai, Mahmoud; Ehrman, Jonathan K; Al-Mallah, Mouaz H; Whelton, Seamus P; Blaha, Michael J

    2018-05-03

    To assess the influence of exercise capacity and body mass index (BMI) on 10-year mortality in patients with heart failure (HF) and to synthesize these results with those of previous studies. This large biracial sample included 774 men and women (mean age, 60±13 years; 372 [48%] black) with a baseline diagnosis of HF from the Henry Ford Exercise Testing (FIT) Project. All patients completed a symptom-limited maximal treadmill stress test from January 1, 1991, through May 31, 2009. Patients were grouped by World Health Organization BMI categories for Kaplan-Meier survival analyses and stratified by exercise capacity (<4 and ≥4 metabolic equivalents [METs] of task). Associations of BMI and exercise capacity with all-cause mortality were assessed using multivariable-adjusted Cox proportional hazards models. During a mean follow-up of 10.1±4.6 years, 380 patients (49%) died. Kaplan-Meier survival plots revealed a significant positive association between BMI category and survival for exercise capacity less than 4 METs (log-rank, P=.05), but not greater than or equal to 4 METs (P=.76). In the multivariable-adjusted models, exercise capacity (per 1 MET) was inversely associated, but BMI was not associated, with all-cause mortality (hazard ratio, 0.89; 95% CI, 0.85-0.94; P<.001 and hazard ratio, 0.99; 95% CI, 0.97-1.01; P=.16, respectively). Maximal exercise capacity modified the relationship between BMI and long-term survival in patients with HF, upholding the presence of an exercise capacity-obesity paradox dichotomy as observed over the short-term in previous studies. Copyright © 2018 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  7. Diadenosine polyphosphates induce intracellular Ca2+ mobilization in human neutrophils via a pertussis toxin sensitive G-protein.

    PubMed Central

    Gasmi, L; McLennan, A G; Edwards, S W

    1997-01-01

    The diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A) and diadenosine 5',5"'-P1,P6-hexaphosphate (Ap6A) all stimulated increases in intracellular Ca2+ in human neutrophils. Maximal increases in intracellular Ca2+ of 650 nM were obtained at dinucleotide concentrations of 500-700 microM. These increases in intracellular, Ca2+ were completely abolished by pre-treatment of the neutrophils with pertussis toxin and were hardly affected when the extracellular buffer was devoid of Ca2+. On the other hand, adenosine triphosphate (ATP) could stimulate much greater increases in intracellular Ca2+ (up to 1.1 microM) at much lower concentrations (half maximal responses obtained at around 5 microM ATP). Receptor de-sensitization experiments indicate that human neutrophils may possess two types of P2-purinoceptors. The first of these may bind ATP (but not the dinucleotides) with high affinity whilst the second may bind the dinucleotides with lower affinity and also bind ATP. PMID:9038726

  8. Comparison of developmental gradients for growth, ATPase, and fusicoccin-binding activity in mung bean hypocotyls

    NASA Technical Reports Server (NTRS)

    Basel, L. E.; Cleland, R. E.

    1992-01-01

    A comparison has been made of the developmental gradients along a mung bean (Vigna radiata L.) hypocotyl of the growth rate, plasma membrane ATPase, and fusicoccin-binding protein (FCBP) activity to determine whether they are interrelated. The hook and four sequential 7.5 millimeter segments of the hypocotyl below the hook were cut. A plasma membrane-enriched fraction was isolated from each section by aqueous two-phase partitioning and assayed for vanadate-sensitive ATPase and FCBP activity. Each gradient had a distinctive and different pattern. Endogenous growth rate was maximal in the second section and much lower in the others. Vanadate-sensitive ATPase activity was maximal in the third section, but remained high in the older sections. Amounts of ATPase protein, shown by specific antibody binding, did not correlate with the amount of vanadate-sensitive ATPase activity in the three youngest sections. FCBP activity was almost absent in the first section, then increased to a maximum in the oldest sections. These data show that the growth rate is not determined by the ATPase activity, and that there are no fixed ratios between the ATPase and FCBP.

  9. Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin.

    PubMed

    Skog, Johan; Mei, Ya-Fang; Wadell, Göran

    2002-06-01

    Most currently used adenovirus vectors are based upon adenovirus serotypes 2 and 5 (Ad2 and Ad5), which have limited efficiencies for gene transfer to human neural cells. Both serotypes bind to the known adenovirus receptor, CAR (coxsackievirus and adenovirus receptor), and have restricted cell tropism. The purpose of this study was to find vector candidates that are superior to Ad5 in infecting human neural tumours. Using flow cytometry, the vector candidates Ad4p, Ad11p and Ad17p were compared to the commonly used adenovirus vector Ad5v for their binding capacity to neural cell lines derived from glioblastoma, medulloblastoma and neuroblastoma cell lines. The production of viral structural proteins and the CAR-binding properties of the different serotypes were also assessed in these cells. Computer-based models of the fibre knobs of Ad4p and Ad17 were created based upon the crystallized fibre knob structure of adenoviruses and analysed for putative receptor-interacting regions that differed from the fibre knob of Ad5. The non CAR-binding vector candidate Ad11p showed clearly the best binding capacity to all of the neural cell lines, binding more than 90% of cells of all of the neural cell lines tested, in contrast to 20% or less for the commonly used vector Ad5v. Ad4p and Ad11p were also internalized and produced viral proteins more successfully than Ad5. Ad4p showed a low binding ability but a very efficient capacity for infection in cell culture. Ad17p virions neither bound or efficiently infected any of the neural cell lines studied.

  10. Newborn Jaundice Technologies: Unbound Bilirubin and Bilirubin Binding Capacity In Neonates

    PubMed Central

    Amin, Sanjiv B.; Lamola, Angelo A.

    2011-01-01

    Neonatal jaundice (hyperbilirubinemia), extremely common in neonates, can be associated with neurotoxicity. A safe level of bilirubin has not been defined in either premature or term infants. Emerging evidence suggest that the level of unbound (or “free”) bilirubin has a better sensitivity and specificity than total serum bilirubin for bilirubin-induced neurotoxicity. Although recent studies suggest the usefulness of free bilirubin measurements in managing high-risk neonates including premature infants, there currently exists no widely available method to assay the serum free bilirubin concentration. To keep pace with the growing demand, in addition to reevaluation of old methods, several promising new methods are being developed for sensitive, accurate, and rapid measurement of free bilirubin and bilirubin binding capacity. These innovative methods need to be validated before adopting for clinical use. We provide an overview of some promising methods for free bilirubin and binding capacity measurements with the goal to enhance research in this area of active interest and apparent need. PMID:21641486

  11. Estimating Prion Adsorption Capacity of Soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS)

    PubMed Central

    Wyckoff, A. Christy; Lockwood, Krista L.; Meyerett-Reid, Crystal; Michel, Brady A.; Bender, Heather; VerCauteren, Kurt C.; Zabel, Mark D.

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200×g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols. PMID:23484043

  12. Estimating prion adsorption capacity of soil by BioAssay of Subtracted Infectivity from Complex Solutions (BASICS).

    PubMed

    Wyckoff, A Christy; Lockwood, Krista L; Meyerett-Reid, Crystal; Michel, Brady A; Bender, Heather; VerCauteren, Kurt C; Zabel, Mark D

    2013-01-01

    Prions, the infectious agent of scrapie, chronic wasting disease and other transmissible spongiform encephalopathies, are misfolded proteins that are highly stable and resistant to degradation. Prions are known to associate with clay and other soil components, enhancing their persistence and surprisingly, transmissibility. Currently, few detection and quantification methods exist for prions in soil, hindering an understanding of prion persistence and infectivity in the environment. Variability in apparent infectious titers of prions when bound to soil has complicated attempts to quantify the binding capacity of soil for prion infectivity. Here, we quantify the prion adsorption capacity of whole, sandy loam soil (SLS) typically found in CWD endemic areas in Colorado; and purified montmorillonite clay (Mte), previously shown to bind prions, by BioAssay of Subtracted Infectivity in Complex Solutions (BASICS). We incubated prion positive 10% brain homogenate from terminally sick mice infected with the Rocky Mountain Lab strain of mouse-adapted prions (RML) with 10% SLS or Mte. After 24 hours samples were centrifuged five minutes at 200 × g and soil-free supernatant was intracerebrally inoculated into prion susceptible indicator mice. We used the number of days post inoculation to clinical disease to calculate the infectious titer remaining in the supernatant, which we subtracted from the starting titer to determine the infectious prion binding capacity of SLS and Mte. BASICS indicated SLS bound and removed ≥ 95% of infectivity. Mte bound and removed lethal doses (99.98%) of prions from inocula, effectively preventing disease in the mice. Our data reveal significant prion-binding capacity of soil and the utility of BASICS to estimate prion loads and investigate persistence and decomposition in the environment. Additionally, since Mte successfully rescued the mice from prion disease, Mte might be used for remediation and decontamination protocols.

  13. Elevated Nicotinamide Phosphoribosyl Transferase in Skeletal Muscle Augments Exercise Performance and Mitochondrial Respiratory Capacity Following Exercise Training

    PubMed Central

    Brouwers, Bram; Stephens, Natalie A.; Costford, Sheila R.; Hopf, Meghan E.; Ayala, Julio E.; Yi, Fanchao; Xie, Hui; Li, Jian-Liang; Gardell, Stephen J.; Sparks, Lauren M.; Smith, Steven R.

    2018-01-01

    Mice overexpressing NAMPT in skeletal muscle (NamptTg mice) develop higher exercise endurance and maximal aerobic capacity (VO2max) following voluntary exercise training compared to wild-type (WT) mice. Here, we aimed to investigate the mechanisms underlying by determining skeletal muscle mitochondrial respiratory capacity in NamptTg and WT mice. Body weight and body composition, tissue weight (gastrocnemius, quadriceps, soleus, heart, liver, and epididymal white adipose tissue), skeletal muscle and liver glycogen content, VO2max, skeletal muscle mitochondrial respiratory capacity (measured by high-resolution respirometry), skeletal muscle gene expression (measured by microarray and qPCR), and skeletal muscle protein content (measured by Western blot) were determined following 6 weeks of voluntary exercise training (access to running wheel) in 13-week-old male NamptTg (exercised NamptTg) mice and WT (exercised WT) mice. Daily running distance and running time during the voluntary exercise training protocol were recorded. Daily running distance (p = 0.51) and running time (p = 0.85) were not significantly different between exercised NamptTg mice and exercised WT mice. VO2max was higher in exercised NamptTg mice compared to exercised WT mice (p = 0.02). Body weight (p = 0.92), fat mass (p = 0.49), lean mass (p = 0.91), tissue weight (all p > 0.05), and skeletal muscle (p = 0.72) and liver (p = 0.94) glycogen content were not significantly different between exercised NamptTg mice and exercised WT mice. Complex I oxidative phosphorylation (OXPHOS) respiratory capacity supported by fatty acid substrates (p < 0.01), maximal (complex I+II) OXPHOS respiratory capacity supported by glycolytic (p = 0.02) and fatty acid (p < 0.01) substrates, and maximal uncoupled respiratory capacity supported by fatty acid substrates (p < 0.01) was higher in exercised NamptTg mice compared to exercised WT mice. Transcriptomic analyses revealed differential expression for genes involved in oxidative metabolism in exercised NamptTg mice compared to exercised WT mice, specifically, enrichment for the gene set related to the SIRT3-mediated signaling pathway. SIRT3 protein content correlated with NAMPT protein content (r = 0.61, p = 0.04). In conclusion, NamptTg mice develop higher exercise capacity following voluntary exercise training compared to WT mice, which is paralleled by higher mitochondrial respiratory capacity in skeletal muscle. The changes in SIRT3 targets suggest that these effects are due to remodeling of mitochondrial function. PMID:29942262

  14. Physiological and Computed Tomographic Predictors of Outcome from Lung Volume Reduction Surgery

    PubMed Central

    Washko, George R.; Martinez, Fernando J.; Hoffman, Eric A.; Loring, Stephen H.; Estépar, Raúl San José; Diaz, Alejandro A.; Sciurba, Frank C.; Silverman, Edwin K.; Han, MeiLan K.; DeCamp, Malcolm; Reilly, John J.

    2010-01-01

    Rationale: Previous investigations have identified several potential predictors of outcomes from lung volume reduction surgery (LVRS). A concern regarding these studies has been their small sample size, which may limit generalizability. We therefore sought to examine radiographic and physiologic predictors of surgical outcomes in a large, multicenter clinical investigation, the National Emphysema Treatment Trial. Objectives: To identify objective radiographic and physiological indices of lung disease that have prognostic value in subjects with chronic obstructive pulmonary disease being evaluated for LVRS. Methods: A subset of the subjects undergoing LVRS in the National Emphysema Treatment Trial underwent preoperative high-resolution computed tomographic (CT) scanning of the chest and measures of static lung recoil at total lung capacity (SRtlc) and inspiratory resistance (Ri). The relationship between CT measures of emphysema, the ratio of upper to lower zone emphysema, CT measures of airway disease, SRtlc, Ri, the ratio of residual volume to total lung capacity (RV/TLC), and both 6-month postoperative changes in FEV1 and maximal exercise capacity were assessed. Measurements and Main Results: Physiological measures of lung elastic recoil and inspiratory resistance were not correlated with improvement in either the FEV1 (R = −0.03, P = 0.78 and R = –0.17, P = 0.16, respectively) or maximal exercise capacity (R = –0.02, P = 0.83 and R = 0.08, P = 0.53, respectively). The RV/TLC ratio and CT measures of emphysema and its upper to lower zone ratio were only weakly predictive of postoperative changes in both the FEV1 (R = 0.11, P = 0.01; R = 0.2, P < 0.0001; and R = 0.23, P < 0.0001, respectively) and maximal exercise capacity (R = 0.17, P = 0.0001; R = 0.15, P = 0.002; and R = 0.15, P = 0.002, respectively). CT assessments of airway disease were not predictive of change in FEV1 or exercise capacity in this cohort. Conclusions: The RV/TLC ratio and CT measures of emphysema and its distribution are weak but statistically significant predictors of outcome after LVRS. PMID:19965810

  15. Cigarette smoking decreases dynamic inspiratory capacity during maximal exercise in patients with type 2 diabetes.

    PubMed

    Kitahara, Yoshihiro; Hattori, Noboru; Yokoyama, Akihito; Yamane, Kiminori; Sekikawa, Kiyokazu; Inamizu, Tsutomu; Kohno, Nobuoki

    2012-06-01

    To investigate the influence of cigarette smoking on exercise capacity, respiratory responses and dynamic changes in lung volume during exercise in patients with type 2 diabetes. Forty-one men with type, 2 diabetes without cardiopulmonary disease were recruited and divided into 28 non-current smokers and 13 current smokers. All subjects received lung function tests and cardiopulmonary exercise testing using tracings of the flow-volume loop. Exercise capacity was compared using the percentage of predicted oxygen uptake at maximal workload (%VO2max). Respiratory variables and inspiratory capacity (IC) were compared between the two groups at rest and at 20%, 40%, 60%, 80% and 100% of maximum workload. Although there was no significant difference in lung function tests between the two groups, venous carboxyhemoglobin (CO-Hb) levels were significantly higher in current smokers. %VO2max was inversely correlated with CO-Hb levels. Changing patterns in respiratory rate, respiratory equivalent and IC were significantly different between the two groups. Current smokers had rapid breathing, a greater respiratory equivalent and a limited increase in IC during exercise. Cigarette smoking diminishes the increase in dynamic IC in patients with type 2 diabetes. As this effect of smoking on dynamic changes in lung volume will exacerbate dynamic hyperinflation in cases complicated by chronic obstructive pulmonary disease, physicians should consider smoking habits and lung function when evaluating exercise capacity in patients with type 2 diabetes.

  16. Cyclosporine A normalizes mitochondrial coupling, reactive oxygen species production, and inflammation and partially restores skeletal muscle maximal oxidative capacity in experimental aortic cross-clamping.

    PubMed

    Pottecher, Julien; Guillot, Max; Belaidi, Elise; Charles, Anne-Laure; Lejay, Anne; Gharib, Abdallah; Diemunsch, Pierre; Geny, Bernard

    2013-04-01

    By binding to cyclophilin D, cyclosporine A (CsA) inhibits mitochondrial permeability transition pore (mPTP) opening and prevents mitochondrial dysfunction and ultimately cell death after ischemia-reperfusion (IR) injury in cardiac muscle. This study tested whether CsA would decrease skeletal muscle oxidative stress and mitochondrial dysfunctions after aortic cross-clamping related IR. Forty-five Wistar rats were investigated. The sham group (n = 8) had aortic exposure but no ischemia, the IR group (n = 10) had aortic cross-clamping for 3 hours followed by 2 hours of reperfusion, and the IR+CsA group (n = 9) had two intraperitoneal injections of 10 mg of CsA at 90 and 150 minutes of ischemia before reperfusion. Mitochondrial coupling (acceptor control ratio) and mitochondrial respiratory chain complexes' activities were measured. Reactive oxygen species (ROS) production, cyclophilin D expression, and muscle inflammation were determined using dihydroethidium staining, Western blot, and immunohistochemistry, respectively. An additional 18 sham rats were investigated to determine CsA blood levels and the effects of CsA on mitochondrial respiration and calcium retention capacity, a marker of mPTP opening, both in myocardium and gastrocnemius with and without CsA. Compared with sham, IR decreased mitochondrial coupling (1.38 ± 0.06 vs 1.98 ± 0.20; P = .0092), increased ROS production (3992 ± 706 arbitrary units [AU] vs 1812 ± 322 AU; P = .033), was associated with macrophage infiltration, and decreased maximal oxidative capacity (V(max): 4.08 ± 0.38 μmol O(2)/min/g vs 5.98 ± 0.56 μmol O(2)/min/g; P = .015). Despite IR, CsA treatment totally restored mitochondrial coupling (1.93 ± 0.12; P = .023 vs IR), normalized ROS (1569 ± 348 AU; P = .0098 vs IR), and decreased inflammation. The V(max) was slightly enhanced (5.02 ± 0.39 μmol O(2)/min/g; P = .33 vs IR; P = .35 vs sham). Compared with myocardium, gastrocnemius muscle was characterized by a decreased cyclophilin D content (-50%) associated with an earlier opening of mPTP (calcium retention capacity increased from 10.85 ± 1.35 μM/mg dry weight [DW] to 12.11 ± 2.77 μM/mg DW; P = .65; and from 11.07 ± 1.67 to 37.65 ± 11.41 μM/mg DW; P = .0098 in gastrocnemius and heart, respectively). Cyclosporine A normalized ROS production, decreased inflammation, and restored mitochondrial coupling during aortic cross-clamping. Incomplete Vmax protection might be due to low cyclophilin D expression in gastrocnemius, preventing CsA from blocking mPTP opening. Copyright © 2013 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  17. Toxic compound, anti-nutritional factors and functional properties of protein isolated from detoxified Jatropha curcas seed cake.

    PubMed

    Saetae, Donlaporn; Suntornsuk, Worapot

    2010-12-28

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications.

  18. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake

    PubMed Central

    Saetae, Donlaporn; Suntornsuk, Worapot

    2011-01-01

    Jatropha curcas is a multipurpose tree, which has potential as an alternative source for biodiesel. All of its parts can also be used for human food, animal feed, fertilizer, fuel and traditional medicine. J. curcas seed cake is a low-value by-product obtained from biodiesel production. The seed cake, however, has a high amount of protein, with the presence of a main toxic compound: phorbol esters as well as anti-nutritional factors: trypsin inhibitors, phytic acid, lectin and saponin. The objective of this work was to detoxify J. curcas seed cake and study the toxin, anti-nutritional factors and also functional properties of the protein isolated from the detoxified seed cake. The yield of protein isolate was approximately 70.9%. The protein isolate was obtained without a detectable level of phorbol esters. The solubility of the protein isolate was maximal at pH 12.0 and minimal at pH 4.0. The water and oil binding capacities of the protein isolate were 1.76 g water/g protein and 1.07 mL oil/g protein, respectively. The foam capacity and stability, including emulsion activity and stability of protein isolate, had higher values in a range of basic pHs, while foam and emulsion stabilities decreased with increasing time. The results suggest that the detoxified J. curcas seed cake has potential to be exploited as a novel source of functional protein for food applications. PMID:21339978

  19. Dissecting the link between the enzymatic activity and the SaPI inducing capacity of the phage 80α dUTPase.

    PubMed

    Alite, Christian; Humphrey, Suzanne; Donderis, Jordi; Maiques, Elisa; Ciges-Tomas, J Rafael; Penadés, José R; Marina, Alberto

    2017-09-11

    The trimeric staphylococcal phage-encoded dUTPases (Duts) are signalling molecules that induce the cycle of some Staphylococcal pathogenicity islands (SaPIs) by binding to the SaPI-encoded Stl repressor. To perform this regulatory role, these Duts require an extra motif VI, as well as the Dut conserved motifs IV and V. While the apo form of Dut is required for the interaction with the Stl repressor, usually only those Duts with normal enzymatic activity can induce the SaPI cycle. To understand the link between the enzymatic activities and inducing capacities of the Dut protein, we analysed the structural, biochemical and physiological characteristics of the Dut80α D95E mutant, which loses the SaPI cycle induction capacity despite retaining enzymatic activity. Asp95 is located at the threefold central channel of the trimeric Dut where it chelates a divalent ion. Here, using state-of-the-art techniques, we demonstrate that D95E mutation has an epistatic effect on the motifs involved in Stl binding. Thus, ion binding in the central channel correlates with the capacity of motif V to twist and order in the SaPI-inducing disposition, while the tip of motif VI is disturbed. These alterations in turn reduce the affinity for the Stl repressor and the capacity to induce the SaPI cycle.

  20. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans.

    PubMed

    Crisafulli, Antonio; Tangianu, Flavio; Tocco, Filippo; Concu, Alberto; Mameli, Ombretta; Mulliri, Gabriele; Caria, Marcello A

    2011-08-01

    Brief episodes of nonlethal ischemia, commonly known as "ischemic preconditioning" (IP), are protective against cell injury induced by infarction. Moreover, muscle IP has been found capable of improving exercise performance. The aim of the study was the comparison of standard exercise performances carried out in normal conditions with those carried out following IP, achieved by brief muscle ischemia at rest (RIP) and after exercise (EIP). Seventeen physically active, healthy male subjects performed three incremental, randomly assigned maximal exercise tests on a cycle ergometer up to exhaustion. One was the reference (REF) test, whereas the others were performed after the RIP and EIP sessions. Total exercise time (TET), total work (TW), and maximal power output (W(max)), oxygen uptake (VO(2max)), and pulmonary ventilation (VE(max)) were assessed. Furthermore, impedance cardiography was used to measure maximal heart rate (HR(max)), stroke volume (SV(max)), and cardiac output (CO(max)). A subgroup of volunteers (n = 10) performed all-out tests to assess their anaerobic capacity. We found that both RIP and EIP protocols increased in a similar fashion TET, TW, W(max), VE(max), and HR(max) with respect to the REF test. In particular, W(max) increased by ∼ 4% in both preconditioning procedures. However, preconditioning sessions failed to increase traditionally measured variables such as VO(2max), SV(max,) CO(max), and anaerobic capacity(.) It was concluded that muscle IP improves performance without any difference between RIP and EIP procedures. The mechanism of this effect could be related to changes in fatigue perception.

  1. Shelving Maximizes Storage and Productivity.

    ERIC Educational Resources Information Center

    School Business Affairs, 1984

    1984-01-01

    Describes specialized units that increase storage capacity. One involves two stationary units at either end of a track, with three or more movable units and one aisle; the other is an inclined rack. (MLF)

  2. Factors in Maximal Power Production and in Exercise Endurance Relative to Maximal Power

    DTIC Science & Technology

    1988-10-13

    Mechanical efficiency of fast -and slow - twitch muscle fibers in mnan during cycling. J. ADLi Physiol.:Reespirat. Environ. Exercise Physiol. 47: 263- 267...R.S. Hikida, and F.C. Hagerman. Myofibrillar ATPase activity in hu-man muscle fast - twitch subtypes. Histochem. 78: 405-408, 1983. 31. Suzuki, Y...capacity and muscle fibre composition in mnan. J. Physiol (London) 354: 73P, 1984. 21. Margaria, R., P. Aghemo, and E. Rovelli. Measurement of muscular

  3. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  4. Modulation of FadR Binding Capacity for Acyl-CoA Fatty Acids Through Structure-Guided Mutagenesis

    DOE PAGES

    Bacik, John-Paul; Yeager, Chris M.; Twary, Scott N.; ...

    2015-09-18

    FadR is a versatile global regulator in Escherichia coli that controls fatty acid metabolism and thereby modulates the ability of this bacterium to grow using fatty acids or acetate as the sole carbon source. FadR regulates fatty acid metabolism in response to intra-cellular concentrations of acyl-CoA lipids. The ability of FadR to bind acyl-CoA fatty acids is hence of significant interest for the engineering of biosynthetic pathways for the production of lipid-based biofuels and commodity chemicals. Based on the available crystal structure of E. coli bound to myristoyl- CoA, we predicted amino acid positions within the effector binding pocket thatmore » would alter the ability of FadR to bind acyl-CoA fatty acids without affecting DNA binding. We utilized fluorescence polarization to characterize the in-vitro binding properties of wild type and mutant FadR. We found that a Leu102Ala mutant enhanced binding of the effector, likely by increasing the size of the binding pocket for the acyl moiety of the molecule. Conversely, the elimination of the guanidine side chain (Arg213Ala and Arg213Met mutants) of the CoA moiety binding site severely diminished the ability of FadR to bind the acyl-CoA effector. These results demonstrate the ability to fine tune FadR binding capacity. The validation of an efficient method to fully characterize all the binding events involved in the specific activity (effector and DNA operator binding) of FadR has allowed us to increase our understanding of the role of specific amino acids in the binding and recognition of acyl-CoA fatty acids and will greatly facilitate efforts aimed at engineering tunable FadR regulators for synthetic biology.« less

  5. Relating saturation capacity to charge density in strong cation exchangers.

    PubMed

    Steinebach, Fabian; Coquebert de Neuville, Bertrand; Morbidelli, Massimo

    2017-07-21

    In this work the relation between physical and chemical resin characteristics and the total amount of adsorbed protein (saturation capacity) for ion-exchange resins is discussed. Eleven different packing materials with a sulfo-functionalization and one multimodal resin were analyzed in terms of their porosity, pore size distribution, ligand density and binding capacity. By specifying the ligand density and binding capacity by the total and accessible surface area, two different groups of resins were identified: Below a ligand density of approx. 2.5μmol/m 2 area the ligand density controls the saturation capacity, while above this limit the accessible surface area becomes the limiting factor. This results in a maximum protein uptake of around 2.5mg/m 2 of accessible surface area. The obtained results allow estimating the saturation capacity from independent resin characteristics like the saturation capacity mainly depends on "library data" such as the accessible and total surface area and the charge density. Hence these results give an insight into the fundamentals of protein adsorption and help to find suitable resins, thus limiting the experimental effort in early process development stages. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Cardiopulmonary functional capacity and the role of exercise in improving maximal oxygen consumption in women with PCOS.

    PubMed

    Lenarcik, Agnieszka; Bidzińska-Speichert, Bozena

    2010-01-01

    Polycystic ovary syndrome (PCOS) is one of the most common reproductive disorder in premenopausal women and is frequently accompanied by the presence of cardiovascular risk factors. It has also been recognized that PCOS women are characterized by cardiopulmonary impairment. Reduced cardiopulmonary functional capacity and the autonomic dysfunction associated with abnormal heart rate recovery might be responsible for the increased cardiovascular risk in patients with PCOS. Exercise training has beneficial effects on cardiopulmonary functional capacity and reduces the risk of cardiovascular disease in PCOS women.

  7. Comparison of the fibronectin-binding ability and antitumor efficacy of various mycobacteria.

    PubMed

    Hudson, M A; Ritchey, J K; Catalona, W J; Brown, E J; Ratliff, T L

    1990-07-01

    Although the mechanism by which Bacillus Calmette-Guerin (BCG) exerts an antitumor effect on superficial bladder tumors is not fully understood, recent evidence has implicated binding of BCG organisms to fibronectin (FN) as requisite for this antitumor efficacy. Various substrains of BCG and other mycobacteria were tested in vitro for their relative capacities to bind both matrix and soluble FN. A substrain of Mycobacterium kansasii, designated the "high-binding strain," was found to bind FN more readily (P less than 0.05) in in vitro studies, when compared to commercially available substrains of BCG (Tice, Connaught, and Armand Frappier). The binding by the three commercial strains of BCG to FN in vitro appeared to be equivalent. The high-binding strain was further demonstrated to attach more readily in vivo to the acutely injured murine bladder (P less than 0.005) than the Armand Frappier substrain. Finally, using the MB49 murine bladder tumor model, an enhanced antitumor effect (P less than 0.05) was noted in mice treated with intravesical high-binding strain, in comparison to the Armand Frappier substrain, during five weekly treatments. It appears not only that the commercial substrains of BCG bind FN in an equivalent manner but also that the relative binding capacities of the substrains correlate directly with antitumor activity. A substrain of M. kansasii appears to have been identified which may prove more clinically effective than the currently available strains of BCG.

  8. Kinetic and Thermodynamic Analyses of Interaction between a High-Affinity RNA Aptamer and Its Target Protein.

    PubMed

    Amano, Ryo; Takada, Kenta; Tanaka, Yoichiro; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2016-11-15

    AML1 (RUNX1) protein is an essential transcription factor involved in the development of hematopoietic cells. Several genetic aberrations that disrupt the function of AML1 have been frequently observed in human leukemia. AML1 contains a DNA-binding domain known as the Runt domain (RD), which recognizes the RD-binding double-stranded DNA element of target genes. In this study, we identified high-affinity RNA aptamers that bind to RD by systematic evolution of ligands by exponential enrichment. The binding assay using surface plasmon resonance indicated that a shortened aptamer retained the ability to bind to RD when 1 M potassium acetate was used. A thermodynamic study using isothermal titration calorimetry (ITC) showed that the aptamer-RD interaction is driven by a large enthalpy change, and its unfavorable entropy change is compensated by a favorable enthalpy change. Furthermore, the binding heat capacity change was identified from the ITC data at various temperatures. The aptamer binding showed a large negative heat capacity change, which suggests that a large apolar surface is buried upon such binding. Thus, we proposed that the aptamer binds to RD with long-range electrostatic force in the early stage of the association and then changes its conformation and recognizes a large surface area of RD. These findings about the biophysics of aptamer binding should be useful for understanding the mechanism of RNA-protein interaction and optimizing and modifying RNA aptamers.

  9. Development of the C-Terminal Inhibitors of Heat Shock Protein 90 in the Treatment of Prostate Cancer

    DTIC Science & Technology

    2008-10-01

    proteasomal degradation pathway9. The ansamycin antibiotic novobiocin has been demonstrated to bind to the C-terminal site of the Hsp90 molecular...low Hsp90 affinity with an IC50 of ~400 µM and would require high concentrations for maximal effects10, 11. Thus, we hypothesize novobiocin ... novobiocin analogues designed to bind to the Hsp90 C-terminal domain 10, 12. Herein, we report the characterization of a previously unreported analogue

  10. Effect of Aerobic Exercise Training on Ventilatory Efficiency and Respiratory Drive in Obese Subjects.

    PubMed

    Chlif, Mehdi; Chaouachi, Anis; Ahmaidi, Said

    2017-07-01

    Obese patients show a decline in exercise capacity and diverse degrees of dyspnea in association with mechanical abnormalities, increased ventilatory requirements secondary to the increased metabolic load, and a greater work of breathing. Consequently, obese patients may be particularly predisposed to the development of respiratory muscle fatigue during exercise. The aim of this study was to assess inspiratory muscle performance during incremental exercise in 19 obese male subjects (body mass index 41 ± 6 kg/m 2 ) after aerobic exercise training using the noninvasive, inspiratory muscle tension-time index (T T0.1 ). Measurements performed included anthropometric parameters, lung function assessed by spirometry, rate of perceived breathlessness with the modified Borg dyspnea scale (0-10), breathing pattern, maximal exercise capacity, and inspiratory muscle performance with a breath-by-breath automated exercise metabolic system during an incremental exercise test. T T0.1 was calculated using the equation, T T0.1 = P 0.1 /P Imax × T I /T tot (where P 0.1 represents mouth occlusion pressure, P Imax is maximal inspiratory pressure, and T I /T tot is the duty cycle). At rest, there was no statistically significant difference for spirometric parameters and cardiorespiratory parameters between pre- and post-training. At maximal exercise, the minute ventilation, the rate of exchange ratio, the rate of perceived breathlessness, and the respiratory muscle performance parameters were not significantly different pre- and post-training; in contrast, tidal volume ( P = .037, effect size = 1.51), breathing frequency ( P = .049, effect size = 0.97), power output ( P = .048, effect size = 0.79), peak oxygen uptake ( P = .02, effect size = 0.92) were significantly higher after training. At comparable work load, training induces lower minute ventilation, mouth occlusion pressure, ratio of occlusion pressure to maximal inspiratory pressure, T T0.1 , and rate of perceived breathlessness. Aerobic exercise at ventilatory threshold can induce significant improvement in respiratory muscle strength, maximal exercise capacity, and inspiratory muscle performance and decreased dyspnea perception in obese subjects. Copyright © 2017 by Daedalus Enterprises.

  11. GET REAL!

    EPA Science Inventory

    Combined sewer overflow (CSO) is a significant source of pollution in receiving waters. However, implementing a real-time control scheme operates automatic regulators more efficiently to maximize a collection system's storage, treatment, and transport capacities, reducing the vol...

  12. Pulmonary function and dysfunction in multiple sclerosis.

    PubMed

    Smeltzer, S C; Utell, M J; Rudick, R A; Herndon, R M

    1988-11-01

    Pulmonary function was studied in 25 patients with clinically definite multiple sclerosis with a range of motor impairment. Forced vital capacity (FVC), maximal voluntary ventilation (MVV), and maximal expiratory pressure (MEP) were normal in the ambulatory patients (mean greater than or equal to 80% predicted) but reduced in bedridden patients (mean, 38.5%, 31.6%, and 36.3% predicted; FCV, MVV, and MEP, respectively) and wheelchair-bound patients with upper extremity involvement (mean, 69.4%, 50.4%, and 62.6% predicted; FVC, MVV, and MEP, respectively). Forced vital capacity, MVV, and MEP correlated with Kurtzke Expanded Disability Status scores (tau = -0.72, -0.70, and -0.65) and expiratory muscle weakness occurred most frequently. These findings demonstrate that marked expiratory weakness develops in severely paraparetic patients with multiple sclerosis and the weakness increases as the upper extremities become increasingly involved.

  13. Speed and stamina trade-off in lacertid lizards.

    PubMed

    Vanhooydonck, B; Van Damme, R; Aerts, P

    2001-05-01

    Morphological and physiological considerations suggest that sprinting ability and endurance capacity put conflicting demands on the design of an animal's locomotor apparatus and therefore cannot be maximized simultaneously. To test this hypothesis, we correlated size-corrected maximal sprint speed and stamina of 12 species of lacertid lizards. Phylogenetically independent contrasts of sprint speed and stamina showed a significant negative relationship, giving support to the idea of an evolutionary trade-off between the two performance measures. To test the hypothesis that the trade-off is mediated by a conflict in morphological requirements, we correlated both performance traits with snout-vent length, size-corrected estimates of body mass and limb length, and relative hindlimb length (the residuals of the relationship between hind- and forelimb length). Fast-running species had hindlimbs that were long compared to their forelimbs. None of the other size or shape variables showed a significant relationship with speed or endurance. We conclude that the evolution of sprint capacity may be constrained by the need for endurance capacity and vice versa, but the design conflict underlying this trade-off has yet to be identified.

  14. Effect of chain length on binding of fatty acids to Pluronics in microemulsions.

    PubMed

    James-Smith, Monica A; Shekhawat, Dushyant; Cheung, Sally; Moudgil, Brij M; Shah, Dinesh O

    2008-03-15

    We investigated the effect of fatty acid chain length on the binding capacity of drug and fatty acid to Pluronic F127-based microemulsions. This was accomplished by using turbidity experiments. Pluronic-based oil-in-water microemulsions of various compositions were synthesized and titrated to turbidity with concentrated Amitriptyline, an antidepressant drug. Sodium salts of C(8), C(10), or C(12) fatty acid were used in preparation of the microemulsion and the corresponding binding capacities were observed. It has been previously determined that, for microemulsions prepared with sodium caprylate (C(8) fatty acid soap), a maximum of 11 fatty acid molecules bind to the microemulsion per 1 molecule of Pluronic F127 and a maximum of 12 molecules of Amitriptyline bind per molecule of F127. We have found that with increasing the chain length of the fatty acid salt component of the microemulsion, the binding capacity of both the fatty acid and the Amitriptyline to the microemulsion decreases. For sodium salts of C(8), C(10) and C(12) fatty acids, respectively, a maximum of approximately 11, 8.4 and 8.3 molecules of fatty acid molecules bind to 1 Pluronic F127 molecule. We propose that this is due to the decreasing number of free monomers with increasing chain length. As chain length increases, the critical micelle concentration (cmc) decreases, thus leading to fewer monomers. Pluronics are symmetric tri-block copolymers consisting of propylene oxide (PO) and ethylene oxide (EO). The polypropylene oxide block, PPO is sandwiched between two polyethylene oxide (PEO) blocks. The PEO blocks are hydrophilic while PPO is hydrophobic portion in the Pluronic molecule. Due to this structure, we propose that the fatty acid molecules that are in monomeric form most effectively diffuse between the PEO "tails" and bind to the hydrophobic PPO groups.

  15. [Fiber in the diet--certainties and speculation].

    PubMed

    Peters, P; Peters, K M

    1988-06-01

    This report defines dietary fibre and summarizes its effects on dental, gastrointestinal and metabolic diseases. A higher intake of dietary fibre is important in prophylaxis of caries, paradentosis, constipation, diverticulosis, colon cancer, diabetes and hypercholesteraemia. An ideal preparation must have the following abilities: It should be coarse, hard and swallowable and without cariogenic sugars in order to prevent dental diseases. It should be a mixture of several kinds of fibre getting water binding capacity and bile acid binding capacity. Mechanical crushing and heatening of fibre are to be avoided. The preparation should not contain phytic acid.

  16. Relationship between peripheral muscle structure and function in patients with chronic obstructive pulmonary disease with different nutritional status.

    PubMed

    Malaguti, Carla; Napolis, Lara M; Villaça, Débora; Neder, José A; Nery, Luiz E; Dal Corso, Simone

    2011-07-01

    The purpose of this study was to investigate the relationships between peripheral muscle structure (mass) and function (strength, endurance, and maximal aerobic capacity) in patients with chronic obstructive pulmonary disease (COPD) with different nutritional states. Thirty-nine patients (31 male) with moderate-severe COPD (63.5 ± 7.3 [SD] years) and 17 controls (14 male; 64.7 ± 5.5 [SD] years) underwent isokinetic (peak torque [PT]), isometric (isometric torque [IT]), and endurance strength (total work [TW]) measurements of the knee extensor muscles and a maximal cardiopulmonary exercise test to evaluate the maximal aerobic capacity (peak oxygen uptake [VO(2)] peak). Muscle mass (MM) was determined using dual-energy x-ray absorptiometry. Patients with COPD presented with reduced muscle function as compared with the healthy controls: PT (105.9 ± 33.9 vs. 134.3 ± 30.9, N·m(-1), respectively, p < 0.05), TW (1,446.3 ± 550.8 vs. 1,792.9 ± 469.1 kJ, respectively, p < 0.05), and VO(2)peak (68.1 ± 15.1 vs. 93.7 ± 14.5, % pred, respectively, p < 0.05). Significant relationships were found between muscle structure and function (strength and endurance) in the patient subgroup with preserved MM and in the control group: PT·MM(r(2) = 0.36; p = 0.01 vs. r(2) = 0.32; p = 0.01, respectively) and TW·MM (r(2) = 0.32; p = 0.01 vs. r(2) = 0.22; p = 0.05, respectively). Strength corrected for mass normalized this function in both patient subgroups, whereas endurance was normalized only in the patient subgroup without muscle depletion. Maximal aerobic capacity remained reduced, despite the correction, in both patient subgroups (depleted or nondepleted) compared with the healthy controls (VO(2)peak.MM: 9.1 ± 3.7 vs. 21.8 ± 4.9 vs. 28.5 ± 4.2 ml·min·kg, respectively, with p < 0.01 among groups). Muscle atrophy seems to be the main determinant of strength reduction among patients with moderate-severe COPD, whereas endurance reduction seems to be more related to imbalance between oxygen delivery and consumption than to the local muscle structure itself. Peripheral MM did not constitute a good predictor for maximal aerobic capacity in this population. The main practical application of this study is to point out a crucial role for the strategies able to ameliorate cardiorespiratory and muscular fitness in patients with COPD, even in those patients with preserved MM.

  17. Bilirubin Binding Capacity in the Preterm Neonate

    PubMed Central

    Amin, Sanjiv B

    2016-01-01

    SYNOPSIS Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. PMID:27235205

  18. Affinity binding of antibodies to supermacroporous cryogel adsorbents with immobilized protein A for removal of anthrax toxin protective antigen.

    PubMed

    Ingavle, Ganesh C; Baillie, Les W J; Zheng, Yishan; Lis, Elzbieta K; Savina, Irina N; Howell, Carol A; Mikhalovsky, Sergey V; Sandeman, Susan R

    2015-05-01

    Polymeric cryogels are efficient carriers for the immobilization of biomolecules because of their unique macroporous structure, permeability, mechanical stability and different surface chemical functionalities. The aim of the study was to demonstrate the potential use of macroporous monolithic cryogels for biotoxin removal using anthrax toxin protective antigen (PA), the central cell-binding component of the anthrax exotoxins, and covalent immobilization of monoclonal antibodies. The affinity ligand (protein A) was chemically coupled to the reactive hydroxyl and epoxy-derivatized monolithic cryogels and the binding efficiencies of protein A, monoclonal antibodies to the cryogel column were determined. Our results show differences in the binding capacity of protein A as well as monoclonal antibodies to the cryogel adsorbents caused by ligand concentrations, physical properties and morphology of surface matrices. The cytotoxicity potential of the cryogels was determined by an in vitro viability assay using V79 lung fibroblast as a model cell and the results reveal that the cryogels are non-cytotoxic. Finally, the adsorptive capacities of PA from phosphate buffered saline (PBS) were evaluated towards a non-glycosylated, plant-derived human monoclonal antibody (PANG) and a glycosylated human monoclonal antibody (Valortim(®)), both of which were covalently attached via protein A immobilization. Optimal binding capacities of 108 and 117 mg/g of antibody to the adsorbent were observed for PANG attached poly(acrylamide-allyl glycidyl ether) [poly(AAm-AGE)] and Valortim(®) attached poly(AAm-AGE) cryogels, respectively, This indicated that glycosylation status of Valortim(®) antibody could significantly increase (8%) its binding capacity relative to the PANG antibody on poly(AAm-AGE)-protien-A column (p < 0.05). The amounts of PA which remained in the solution after passing PA spiked PBS through PANG or Valortim bound poly(AAm-AGE) cryogel were significantly (p < 0.05) decreased relative to the amount of PA remained in the solution after passing through unmodified as well as protein A modified poly(AAm-AGE) cryogel columns, indicates efficient PA removal from spiked PBS over 60 min of circulation. The high adsorption capacity towards anthrax toxin PA of the cryogel adsorbents indicated potential application of these materials for treatment of Bacillus anthracis infection. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Studies with an immobilized metal affinity chromatography cassette system involving binuclear triazacyclononane-derived ligands: automation of batch adsorption measurements with tagged recombinant proteins.

    PubMed

    Petzold, Martin; Coghlan, Campbell J; Hearn, Milton T W

    2014-07-18

    This study describes the determination of the adsorption isotherms and binding kinetics of tagged recombinant proteins using a recently developed IMAC cassette system and employing automated robotic liquid handling procedures for IMAC resin screening. These results confirm that these new IMAC resins, generated from a variety of different metal-charged binuclear 1,4,7-triaza-cyclononane (tacn) ligands, interact with recombinant proteins containing a novel N-terminal metal binding tag, NT1A, with static binding capacities similar to those obtained with conventional hexa-His tagged proteins, but with significantly increased association constants. In addition, higher kinetic binding rates were observed with these new IMAC systems, an attribute that can be positively exploited to increase process productivity. The results from this investigation demonstrate that enhancements in binding capacities and affinities were achieved with these new IMAC resins and chosen NT1A tagged protein. Further, differences in the binding performances of the bis(tacn) xylenyl-bridged ligands were consistent with the distance between the metal binding centres of the two tacn moieties, the flexibility of the ligand and the potential contribution from the aromatic ring of the xylenyl group to undergo π/π stacking interactions with the tagged proteins. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus)

    PubMed Central

    Gautier, Célia; Guenin, Sophie-Penelope; Riest-Fery, Isabelle; Perry, Tahlia Jade; Legros, Céline; Nosjean, Olivier; Simonneaux, Valerie; Grützner, Frank

    2018-01-01

    Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals. PMID:29529033

  1. Characterization of the Mel1c melatoninergic receptor in platypus (Ornithorhynchus anatinus).

    PubMed

    Gautier, Célia; Guenin, Sophie-Penelope; Riest-Fery, Isabelle; Perry, Tahlia Jade; Legros, Céline; Nosjean, Olivier; Simonneaux, Valerie; Grützner, Frank; Boutin, Jean A

    2018-01-01

    Melatonin is a neurohormone produced in both animals and plants. It binds at least three G-protein-coupled receptors: MT1 and MT2, and Mel1cGPR. Mammalian GPR50 evolved from the reptilian/avian Mel1c and lost its capacity to bind melatonin in all the therian mammal species that have been tested. In order to determine if binding is lost in the oldest surviving mammalian lineage of monotremes we investigated whether the melatonin receptor has the ability to bind melatonin in the platypus (Ornithorhynchus anatinus), and evaluated its pharmacological profile. Sequence and phylogenetic analysis showed that platypus has in fact retained the ancestral Mel1c and has the capacity to bind melatonin similar to other mammalian melatonin receptors (MT1 and MT2), with an affinity in the 1 nM range. We also investigated the binding of a set of melatoninergic ligands used previously to characterize the molecular pharmacology of the melatonin receptors from sheep, rats, mice, and humans and found that the general profiles of these compounds make Mel1c resemble human MT1 more than MT2. This work shows that the loss of GPR50 binding evolved after the divergence of monotremes less than 190MYA in therian mammals.

  2. Down-modulation of receptors for phorbol ester tumor promoter in primary epidermal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solanki, V.; Slaga, T.J.

    1982-01-01

    The specific (20-/sup 3/H)phorbol 12,13-dibutyrate ((/sup 3/H)PDBu) binding to intact epidermal cells displayed the phenomenon of down-modulation, i.e., the specific binding of (/sup 3/H)PDBu to its receptors on primary epidermal cells reached a maximum within 1 h and steadily declined thereafter. The apparent down-modulation of radiolabel resulted from a partial loss in the total number of receptors; the affinity of receptors for the ligand was essentially unchanged. A number of agents such as chloroquine, methylamine, or arginine which are known to prevent clustering, down-modulation, and/or internalization of several hormone receptors did not affect the down-modulation of phorbol ester receptors. Furthermore,more » cycloheximide had no effect either on down-modulation or on the binding capacity of cells. The surface binding capacity of down-modulated cells following a 90-min incubation with unlabeled ligand was almost returned to normal within 1 h. The effect of the antidepressant drug chlorpromazine, which is known to interact with calmodulin, on (/sup 3/H)PDBu binding was also investigated. Our data indicate that the effect of chlorpromazine on (/sup 3/H)PDBu binding is probably unrelated to its calmodulin-binding activity.« less

  3. Binding of Thyrotropin-Releasing Hormone to Plasma Membranes of Bovine Anterior Pituitary Gland

    PubMed Central

    Labrie, Fernand; Barden, Nicholas; Poirier, Guy; De Lean, Andre

    1972-01-01

    An assay for the binding of [3H]thyrotropin-releasing hormone ([3H]TRH) is described. Plasma membranes isolated from bovine anterior pituitary gland bind about 600 femtomoles of this hormone per mg of protein, as compared to 15 femtomoles per mg of protein in the total adenohypophyseal homogenate (40-fold purification). The equilibrium constant of membrane receptor-[3H]TRH binding at 0°C is 4.3 × 107 L·M-1, or a half-maximal binding of this hormone at 23 nM. The binding is time-dependent; addition of unlabeled hormone induces dissociation of the receptor-[3H]TRH complex with a half-life of 14 min. The binding of TRH is not altered by 10 μM melanocyte-stimulating hormone-release inhibiting hormone, lysine-vasopressin, adrenocorticotropin, growth hormone, prolactin, luteinizing hormone, insulin, glucagon, L-thyroxine, or L-triiodothyronine. K+ and Mg++ increase formation of the receptor-TRH complex at optimal concentrations of 5-25 mM and 0.5-2.5 mM, respectively, with inhibition at higher concentrations. Ca++ inhibits binding of TRH at all concentrations tested. PMID:4621548

  4. Effects of transcutaneous electrical nerve stimulation on pain, walking function, respiratory muscle strength and vital capacity in kidney donors: a protocol of a randomized controlled trial

    PubMed Central

    2013-01-01

    Background Pain is a negative factor in the recovery process of postoperative patients, causing pulmonary alterations and complications and affecting functional capacity. Thus, it is plausible to introduce transcutaneous electrical nerve stimulation (TENS) for pain relief to subsequently reduce complications caused by this pain in the postoperative period. The objective of this paper is to assess the effects of TENS on pain, walking function, respiratory muscle strength and vital capacity in kidney donors. Methods/design Seventy-four patients will be randomly allocated into 2 groups: active TENS or placebo TENS. All patients will be assessed for pain intensity, walk function (Iowa Gait Test), respiratory muscle strength (maximal inspiratory pressure and maximal expiratory pressure) and vital capacity before and after the TENS application. The data will be collected by an assessor who is blinded to the group allocation. Discussion This study is the first to examine the effects of TENS in this population. TENS during the postoperative period may result in pain relief and improvements in pulmonary tests and mobility, thus leading to an improved quality of life and further promoting organ donation. Trial registration Registro Brasileiro de Ensaios Clinicos (ReBEC), number RBR-8xtkjp. PMID:23311705

  5. Can recording only the day-time voided volumes predict bladder capacity?

    PubMed

    Cho, Won Yeol; Kim, Seong Cheol; Kim, Sun-Ouck; Park, Sungchan; Lee, Sang Don; Chung, Jae Min; Kim, Kyung Do; Moon, Du Geon; Kim, Young Sig; Kim, Jun Mo

    2018-05-01

    This study aimed to demonstrate a method to easily assess bladder capacity using knowledge of day-time voided volumes, which can be obtained even from patients with nocturnal enuresis where the first morning void cannot accurately predict the bladder capacity due to bladder emptying overnight. We evaluated 177 healthy children from 7 Korean medical centres entered the study between January 2008 and January 2009. Voided volumes measured for more than 48 hours were recorded in the frequency volume chart (FVC). Most voided volumes during day-time were showed between 30% and 80% of the maximal voided volume (MVV). The maximal voided volume during day-time (MVVDT) was significantly less than the MVV (179.5±71.1 mL vs. 227.0±79.2 mL, p<0.001). The correlation coefficients with the MVV were 0.801 for the estimated MVV using the MVVDT (MVVDT×1.25), which suggested a fairly strong relationship between the MVVDT×1.25 and the MVV. The MVV derived from the FVC excluding the FMV was less than if the FMV had been included. When an accurate first morning voided volume cannot be obtained, as in patients with nocturnal enuresis, calculating MVVDT×1.25 allows estimation of the bladder capacity in place of the MVV.

  6. Independent-Trajectory Thermodynamic Integration: a practical guide to protein-drug binding free energy calculations using distributed computing.

    PubMed

    Lawrenz, Morgan; Baron, Riccardo; Wang, Yi; McCammon, J Andrew

    2012-01-01

    The Independent-Trajectory Thermodynamic Integration (IT-TI) approach for free energy calculation with distributed computing is described. IT-TI utilizes diverse conformational sampling obtained from multiple, independent simulations to obtain more reliable free energy estimates compared to single TI predictions. The latter may significantly under- or over-estimate the binding free energy due to finite sampling. We exemplify the advantages of the IT-TI approach using two distinct cases of protein-ligand binding. In both cases, IT-TI yields distributions of absolute binding free energy estimates that are remarkably centered on the target experimental values. Alternative protocols for the practical and general application of IT-TI calculations are investigated. We highlight a protocol that maximizes predictive power and computational efficiency.

  7. Cooperation in scale-free networks with limited associative capacities

    NASA Astrophysics Data System (ADS)

    Poncela, Julia; Gómez-Gardeñes, Jesús; Moreno, Yamir

    2011-05-01

    In this work we study the effect of limiting the number of interactions (the associative capacity) that a node can establish per round of a prisoner’s dilemma game. We focus on the way this limitation influences the level of cooperation sustained by scale-free networks. We show that when the game includes cooperation costs, limiting the associative capacity of nodes to a fixed quantity renders in some cases larger values of cooperation than in the unrestricted scenario. This allows one to define an optimum capacity for which cooperation is maximally enhanced. Finally, for the case without cooperation costs, we find that even a tight limitation of the associative capacity of nodes yields the same levels of cooperation as in the original network.

  8. Putative melatonin receptors in a human biological clock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completelymore » inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.« less

  9. Determination of the binding properties of p-cresyl glucuronide to human serum albumin.

    PubMed

    Yi, Dan; Monteiro, Elisa Bernardes; Chambert, Stéphane; Soula, Hédi A; Daleprane, Julio B; Soulage, Christophe O

    2018-04-26

    p-Cresyl glucuronide (p-CG) is a by-product of tyrosine metabolism that accumulates in patients with end-stage renal disease. p-CG binding to human serum albumin in physiological conditions (37°C, pH 7.40) was studied by ultrafiltration (MWCO 10 kDa) and data were analyzed assuming one binding site. The estimated value of the association constant was 2.77×10 3  M -1 and a maximal stoichiometry of 3.80 mol per mole. At a concentration relevant for end-stage renal patients, p-CG was 23% bound to albumin. Competition experiments, using fluorescent probes, demonstrated that p-CG did not bind to Sudlow's site I or site II. The p-CG did not interfere with the binding of p-cresyl-sulfate or indoxyl sulfate to serum albumin. Copyright © 2018. Published by Elsevier B.V.

  10. Ca sup 2+ binding capacity of cytoplasmic proteins from rod photoreceptors is mainly due to arrestin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppertz, B.; Weyand, I.; Bauer, P.J.

    1990-06-05

    Arrestin (also called S-antigen or 48-kDa protein) binds to photoexcited and phosphorylated rhodopsin and, thereby, blocks competitively the activation of transducin. Using Ca{sup 2+} titration in the presence of the indicator arsenazo III and {sup 45}Ca{sup 2+} autoradiography, we show that arrestin is a Ca2(+)-binding protein. The Ca{sup 2+} binding capacity of arresting-containing protein extracts from bovine rod outer segments is about twice as high as that of arrestin-depleted extracts. The difference in the Ca{sup 2+} binding of arrestin-containing and arrestin-depleted protein extracts was attributed to arrestin. Both, these difference-measurements of protein extracts and the measurements of purified arrestin yieldmore » dissociation constants for the Ca{sup 2+} binding of arrestin between 2 and 4 microM. The titration curves are consistent with a molar ratio of one Ca{sup 2+} binding site per arrestin. No Ca{sup 2+} binding in the micromolar range was found in extracts containing mainly transducin and cGMP-phosphodiesterase. Since arrestin is one of the most abundant proteins in rod photoreceptors occurring presumably up to millimolar concentrations in rod outer segments, we suggest that aside from its function to prevent the activation of transducin, arrestin acts probably as an intracellular Ca{sup 2+} buffer.« less

  11. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks

    PubMed Central

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-01-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns. PMID:26291608

  12. A Three-Threshold Learning Rule Approaches the Maximal Capacity of Recurrent Neural Networks.

    PubMed

    Alemi, Alireza; Baldassi, Carlo; Brunel, Nicolas; Zecchina, Riccardo

    2015-08-01

    Understanding the theoretical foundations of how memories are encoded and retrieved in neural populations is a central challenge in neuroscience. A popular theoretical scenario for modeling memory function is the attractor neural network scenario, whose prototype is the Hopfield model. The model simplicity and the locality of the synaptic update rules come at the cost of a poor storage capacity, compared with the capacity achieved with perceptron learning algorithms. Here, by transforming the perceptron learning rule, we present an online learning rule for a recurrent neural network that achieves near-maximal storage capacity without an explicit supervisory error signal, relying only upon locally accessible information. The fully-connected network consists of excitatory binary neurons with plastic recurrent connections and non-plastic inhibitory feedback stabilizing the network dynamics; the memory patterns to be memorized are presented online as strong afferent currents, producing a bimodal distribution for the neuron synaptic inputs. Synapses corresponding to active inputs are modified as a function of the value of the local fields with respect to three thresholds. Above the highest threshold, and below the lowest threshold, no plasticity occurs. In between these two thresholds, potentiation/depression occurs when the local field is above/below an intermediate threshold. We simulated and analyzed a network of binary neurons implementing this rule and measured its storage capacity for different sizes of the basins of attraction. The storage capacity obtained through numerical simulations is shown to be close to the value predicted by analytical calculations. We also measured the dependence of capacity on the strength of external inputs. Finally, we quantified the statistics of the resulting synaptic connectivity matrix, and found that both the fraction of zero weight synapses and the degree of symmetry of the weight matrix increase with the number of stored patterns.

  13. Decreasing methylation of pectin caused by nitric oxide leads to higher aluminium binding in cell walls and greater aluminium sensitivity of wheat roots

    PubMed Central

    Sun, Chengliang; Lu, Lingli; Yu, Yan; Liu, Lijuan; Hu, Yan; Ye, Yiquan; Jin, Chongwei; Lin, Xianyong

    2016-01-01

    Nitric oxide (NO) is an important bioactive molecule involved in cell wall metabolism, which has been recognized as a major target of aluminium (Al) toxicity. We have investigated the effects of Al-induced NO production on cell wall composition and the subsequent Al-binding capacity in roots of an Al-sensitive cultivar of wheat (Triticum aestivum L. cv. Yang-5). We found that Al exposure induced NO accumulation in the root tips. Eliminating NO production with an NO scavenger (cPTIO) significantly alleviated the Al-induced inhibition of root growth and thus reduced Al accumulation. Elimination of NO, however, did not significantly affect malate efflux or rhizosphere pH changes under Al exposure. Levels of cell wall polysaccharides (pectin, hemicelluloses 1, and hemicelluloses 2) and pectin methylesterase activity, as well as pectin demethylation in the root apex, significantly increased under Al treatment. Exogenous cPTIO application significantly decreased pectin methylesterase activity and increased the degree of methylation of pectin in the root cell wall, thus decreasing the Al-binding capacity of pectin. These results suggest that the Al-induced enhanced production of NO decreases cell wall pectin methylation, thus increasing the Al-binding capacity of pectin and negatively regulating Al tolerance in wheat. PMID:26663393

  14. Pulmonary function of children with acute leukemia in maintenance phase of chemotherapy☆

    PubMed Central

    de Macêdo, Thalita Medeiros Fernandes; Campos, Tania Fernandes; Mendes, Raquel Emanuele de França; França, Danielle Corrêa; Chaves, Gabriela Suéllen da Silva; de Mendonça, Karla Morganna Pereira Pinto

    2014-01-01

    OBJECTIVE: The aim of this study was to assess the pulmonary function of children with acute leukemia. METHODS: Cross-sectional observational analytical study that enrolled 34 children divided into groups A (17 with acute leukemia in the maintenance phase of chemotherapy) and B (17 healthy children). The groups were matched for sex, age and height. Spirometry was measured using a spirometer Microloop Viasys(r) in accordance with American Thoracic Society and European Respiratory Society guidelines. Maximal respiratory pressures were measured with an MVD300 digital manometer (Globalmed(r)). Maximal inspiratory pressures and maximal expiratory pressures were measured from residual volume and total lung capacity, respectively. RESULTS: Group A showed a significant decrease in maximal inspiratory pressures when compared to group B. No significant difference was found between the spirometric values of the two groups, nor was there any difference between maximal inspiratory pressure and maximal expiratory pressure values in group A compared to the lower limit values proposed as reference. CONCLUSION: Children with acute leukemia, myeloid or lymphoid, during the maintenance phase of chemotherapy exhibited unchanged spirometric variables and maximal expiratory pressure; However, there was a decrease in inspiratory muscle strength. PMID:25510995

  15. Transmitting Information by Propagation in an Ocean Waveguide: Computation of Acoustic Field Capacity

    DTIC Science & Technology

    2015-06-17

    progress, Eq. (4) is evaluated in terms of the differential entropy h. The integrals can be identified as differential entropy terms by expanding the log...all ran- dom vectors p with a given covariance matrix, the entropy of p is maximized when p is ZMCSCG since a normal distribution maximizes the... entropy over all distributions with the same covariance [9, 18], implying that this is the optimal distribution on s as well. In addition, of all the

  16. Stimulus Sensitivity of a Spiking Neural Network Model

    NASA Astrophysics Data System (ADS)

    Chevallier, Julien

    2018-02-01

    Some recent papers relate the criticality of complex systems to their maximal capacity of information processing. In the present paper, we consider high dimensional point processes, known as age-dependent Hawkes processes, which have been used to model spiking neural networks. Using mean-field approximation, the response of the network to a stimulus is computed and we provide a notion of stimulus sensitivity. It appears that the maximal sensitivity is achieved in the sub-critical regime, yet almost critical for a range of biologically relevant parameters.

  17. Simultaneously learning DNA motif along with its position and sequence rank preferences through expectation maximization algorithm.

    PubMed

    Zhang, ZhiZhuo; Chang, Cheng Wei; Hugo, Willy; Cheung, Edwin; Sung, Wing-Kin

    2013-03-01

    Although de novo motifs can be discovered through mining over-represented sequence patterns, this approach misses some real motifs and generates many false positives. To improve accuracy, one solution is to consider some additional binding features (i.e., position preference and sequence rank preference). This information is usually required from the user. This article presents a de novo motif discovery algorithm called SEME (sampling with expectation maximization for motif elicitation), which uses pure probabilistic mixture model to model the motif's binding features and uses expectation maximization (EM) algorithms to simultaneously learn the sequence motif, position, and sequence rank preferences without asking for any prior knowledge from the user. SEME is both efficient and accurate thanks to two important techniques: the variable motif length extension and importance sampling. Using 75 large-scale synthetic datasets, 32 metazoan compendium benchmark datasets, and 164 chromatin immunoprecipitation sequencing (ChIP-Seq) libraries, we demonstrated the superior performance of SEME over existing programs in finding transcription factor (TF) binding sites. SEME is further applied to a more difficult problem of finding the co-regulated TF (coTF) motifs in 15 ChIP-Seq libraries. It identified significantly more correct coTF motifs and, at the same time, predicted coTF motifs with better matching to the known motifs. Finally, we show that the learned position and sequence rank preferences of each coTF reveals potential interaction mechanisms between the primary TF and the coTF within these sites. Some of these findings were further validated by the ChIP-Seq experiments of the coTFs. The application is available online.

  18. Freeway bottleneck removals : workshop enhancement and technology transfer.

    DOT National Transportation Integrated Search

    2009-12-01

    As transportation improvement projects become increasingly costly and complex and as funding sources are not : keeping pace with needs in highly urbanized areas, it becomes critical that existing freeway systems be finetuned to : maximize capacity...

  19. Cardiorespiratory responses to exercise after bed rest in men and women

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Bernauer, E. M.; Stremel, R. W.; Greenleaf, J. E.

    1977-01-01

    The purpose of this study was to compare cardiorespiratory responses of men and women to submaximal and maximal workloads before and after bed rest (BR). Fifteen male college students (19-23 yr) and eight female nurses (23-34 yr) underwent 14 d and 17 d, respectively, of bed rest. The maximal work capacity test was performed in the supine position on a bicycle ergometer just before and immediately after bed rest. Compared with pre-BR values, after bed rest the maximal ventilatory volume was essentially unchanged in the men (+1.8%) and women (+2.3%), but maximal heart rate was elevated from 185 to 193 b/min (+4.3%) in the men and from 181 to 187 b/min (3.3%) in the women. Mean corpuscular volume was unchanged in both groups pre- and post-bed rest. It is concluded that the proportional deterioration in maximal VO2 following prolonged bed rest was essentially the same in young men and women.

  20. Physiological Interpretation of the Slope during an Isokinetic Fatigue Test.

    PubMed

    Bosquet, L; Gouadec, K; Berryman, N; Duclos, C; Gremeaux, V; Croisier, J-L

    2015-07-01

    To assess the relationship between selected measures (the slope and average performance) obtained during a high intensity isokinetic fatigue test of the knee (FAT) and relevant measures of anaerobic and aerobic capacities. 20 well-trained cyclists performed 3 randomly ordered sessions involving a FAT consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°.s(-1), a maximal continuous graded exercise test (GXT), and a Wingate anaerobic test (WAnT). The slope calculated from peak torque (PT) and total work (TW) of knee extensors was highly associated to maximal PT (r=-0.86) and maximal TW (r=-0.87) measured during FAT, and moderately associated to peak power output measured during the WAnT (r=-0.64 to -0.71). Average PT and average TW were highly associated to maximal PT (r=0.93) and maximal TW (r=0.96), to mean power output measured during WAnT (r=0.83-0.90) and moderately associated to maximal oxygen uptake (0.58-0.67). In conclusion, the slope is mainly determined by maximal anaerobic power, while average performance is a composite measure depending on both aerobic and anaerobic energy systems according to proportions that are determined by the duration of the test. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Maximal oxygen uptake is proportional to muscle fiber oxidative capacity, from chronic heart failure patients to professional cyclists.

    PubMed

    van der Zwaard, Stephan; de Ruiter, C Jo; Noordhof, Dionne A; Sterrenburg, Renske; Bloemers, Frank W; de Koning, Jos J; Jaspers, Richard T; van der Laarse, Willem J

    2016-09-01

    V̇o2 max during whole body exercise is presumably constrained by oxygen delivery to mitochondria rather than by mitochondria's ability to consume oxygen. Humans and animals have been reported to exploit only 60-80% of their mitochondrial oxidative capacity at maximal oxygen uptake (V̇o2 max). However, ex vivo quantification of mitochondrial overcapacity is complicated by isolation or permeabilization procedures. An alternative method for estimating mitochondrial oxidative capacity is via enzyme histochemical quantification of succinate dehydrogenase (SDH) activity. We determined to what extent V̇o2 max attained during cycling exercise differs from mitochondrial oxidative capacity predicted from SDH activity of vastus lateralis muscle in chronic heart failure patients, healthy controls, and cyclists. V̇o2 max was assessed in 20 healthy subjects and 28 cyclists, and SDH activity was determined from biopsy cryosections of vastus lateralis using quantitative histochemistry. Similar data from our laboratory of 14 chronic heart failure patients and 6 controls were included. Mitochondrial oxidative capacity was predicted from SDH activity using estimated skeletal muscle mass and the relationship between ex vivo fiber V̇o2 max and SDH activity of isolated single muscle fibers and myocardial trabecula under hyperoxic conditions. Mitochondrial oxidative capacity predicted from SDH activity was related (r(2) = 0.89, P < 0.001) to V̇o2 max measured during cycling in subjects with V̇o2 max ranging from 9.8 to 79.0 ml·kg(-1)·min(-1) V̇o2 max measured during cycling was on average 90 ± 14% of mitochondrial oxidative capacity. We conclude that human V̇o2 max is related to mitochondrial oxidative capacity predicted from skeletal muscle SDH activity. Mitochondrial oxidative capacity is likely marginally limited by oxygen supply to mitochondria. Copyright © 2016 the American Physiological Society.

  2. Metal binding characterization and conformational studies using Raman microscopy of resin-bound poly(aspartic acid).

    PubMed

    Stair, Jacqueline L; Holcombe, James A

    2007-03-01

    The metal binding capacities, conditional stability constants, and secondary structure of immobilized polyaspartic acid (PLAsp) (n = 6, 20, and 30) on TentaGel resin were determined when binding Mg2+, Co2+, Cd2+, and Ni2+. Metal binding to the synthesized peptides was evaluated using breakthrough curves from a packed microcolumn and flame atomic absorption spectrophotometry (FAAS) detection. The metal capacities reached values of 590, 2160, and 3710 mumol of metal/g of resin for the 6-mer, 20-mer, and 30-mer, respectively, and this resulted in 2-3 residues per metal for all peptides and metals tested. Surprisingly, the concentrated environment of the resin along with the spatial distribution of attachment groups allowed for most residues to participate in metal binding regardless of the peptide length. Conditional stability constants calculated using single metal binding isotherms indicated that binding strength decreased as the chain length increased on the resin. Raman microscopy on single beads was used to determine PLAsp secondary structure, and all peptides were of a mixed conformation (i.e., beta-sheets, alpha-helices, random chain, etc.) during neutral conditioning and metal binding. Uniquely, the longer 20-mer and 30-mer peptides showed a distinct change from a mixed conformation to beta-sheets and alpha-helices during metal release with acid. This study confirms that metal release by longer immobilized peptides is often assisted by a conformational change, which easily spoils the binding cavity, while shorter peptides may release metal primarily by H+ displacement.

  3. Stress, Workload and Physiology Demand During Extravehicular Activity: A Pilot Study

    PubMed Central

    Rai, Balwant; Kaur, Jasdeep; Foing, Bernard H

    2012-01-01

    Background: Extravehicular activity (EVA), such as exercise performed under unique environmental conditions, is essential for supporting daily living in weightlessness and for further space exploration like long Mars mission. Aim: The study was planned stress, workload, and physiological demands of simulated Mars exploration. Materials and Methods: In this study, the six-person crew lived (24 hours) for 14 days during a short-term stay at the Mars Desert Research Station. The heart rates, salivary cortisol, workload, peak oxygen uptake or maximal aerobic capacity of the crew are measured before, during and after an EVA. Results: Data for heart rate showed the same trend as peak oxygen uptake or maximal aerobic capacity, with a maximal increase to 85% of peak. The rating of subscale showed a significant increase in EVA as compared to run. Salivary cortisol levels and heart rates were increased in both groups, although significant increased of cortisol levels and heart rates more in EVA as compared to hill running crew members. Conclusion: Further study is required on large scale taken into account of limitations of this study and including other physiological and psychological parameters in Mars analog environment. PMID:22754877

  4. Binding site size limit of the 2:1 pyrrole-imidazole polyamide-DNA motif.

    PubMed Central

    Kelly, J J; Baird, E E; Dervan, P B

    1996-01-01

    Polyamides containing N-methylimidazole (Im) and N-methylpyrrole (Py) amino acids can be combined in antiparallel side-by-side dimeric complexes for sequence-specific recognition in the minor groove of DNA. Six polyamides containing three to eight rings bind DNA sites 5-10 bp in length, respectively. Quantitative DNase I footprint titration experiments demonstrate that affinity maximizes and is similar at ring sizes of five, six, and seven. Sequence specificity decreases as the length of the polyamides increases beyond five rings. These results provide useful guidelines for the design of new polyamides that bind longer DNA sites with enhanced affinity and specificity. Images Fig. 4 PMID:8692930

  5. Molecular dynamics simulations of AP/HMX composite with a modified force field.

    PubMed

    Zhu, Wei; Wang, Xijun; Xiao, Jijun; Zhu, Weihua; Sun, Huai; Xiao, Heming

    2009-08-15

    An all-atom force field for ammonium perchlorate (AP) is developed with the framework of pcff force field. The structural parameters of AP obtained with the modified force field are in good agreement with experimental values. Molecular dynamics (MD) simulations have been performed to investigate AP/HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane) composite at different temperatures. The binding energies, thermal expansion coefficient, and the trigger bond lengths of HMX in the AP/HMX composite have been obtained. The binding energies of the system increase slightly with temperature increasing, peak at 245K, and then gradually decrease. The volume thermal expansion coefficient of the AP/HMX composite has been derived from the volume variation with temperature. As the temperature rises, the maximal lengths of the trigger bond N-NO(2) of HMX increase gradually. The simulated results indicate that the maximal length of trigger bond can be used as a criterion for judging the sensitivity of energetic composite.

  6. Bilirubin Binding Capacity in the Preterm Neonate.

    PubMed

    Amin, Sanjiv B

    2016-06-01

    Total serum/plasma bilirubin (TB), the biochemical measure currently used to evaluate and manage hyperbilirubinemia, is not a useful predictor of bilirubin-induced neurotoxicity in premature infants. Altered bilirubin-albumin binding in premature infants limits the usefulness of TB in premature infants. In this article, bilirubin-albumin binding, a modifying factor for bilirubin-induced neurotoxicity, in premature infants is reviewed. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Caffeine inhibition of GLUT1 is dependent on the activation state of the transporter.

    PubMed

    Gunnink, Leesha K; Busscher, Brianna M; Wodarek, Jeremy A; Rosette, Kylee A; Strohbehn, Lauren E; Looyenga, Brendan D; Louters, Larry L

    2017-06-01

    Caffeine has been shown to be a robust uncompetitive inhibitor of glucose uptake in erythrocytes. It preferentially binds to the nucleotide-binding site on GLUT1 in its tetrameric form and mimics the inhibitory action of ATP. Here we demonstrate that caffeine is also a dose-dependent, uncompetitive inhibitor of 2-deoxyglucose (2DG) uptake in L929 fibroblasts. The inhibitory effect on 2DG uptake in these cells was reversible with a rapid onset and was additive to the competitive inhibitory effects of glucose itself, confirming that caffeine does not interfere with glucose binding. We also report for the first time that caffeine inhibition was additive to inhibition by curcumin, suggesting distinct binding sites for curcumin and caffeine. In contrast, caffeine inhibition was not additive to that of cytochalasin B, consistent with previous data that reported that these two inhibitors have overlapping binding sites. More importantly, we show that the magnitude of maximal caffeine inhibition in L929 cells is much lower than in erythrocytes (35% compared to 90%). Two epithelial cell lines, HCLE and HK2, have both higher concentrations of GLUT1 and increased basal 2DG uptake (3-4 fold) compared to L929 cells, and subsequently display greater maximal inhibition by caffeine (66-70%). Interestingly, activation of 2DG uptake (3-fold) in L929 cells by glucose deprivation shifted the responsiveness of these cells to caffeine inhibition (35%-70%) without a change in total GLUT1 concentration. These data indicate that the inhibition of caffeine is dependent on the activity state of GLUT1, not merely on the concentration. Copyright © 2017 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  8. The abundance and organization of polypeptides associated with antigens of the Rh blood group system.

    PubMed

    Gardner, B; Anstee, D J; Mawby, W J; Tanner, M J; von dem Borne, A E

    1991-06-01

    Twelve murine monoclonal antibodies, which react with human red cells of common Rh phenotype but give weak or negative reactions with Rh null erythrocytes, were used in quantitative binding assays and competitive binding assays to investigate the abundance and organization of polypeptides involved in the expression of antigens of the Rh blood group system. Antibodies of the R6A-type (R6A, BRIC-69, BRIC-207) and the 2D10-type (MB-2D10, LA18.18, LA23.40) recognize related structures and 100,000-200,000 molecules of each antibody bind maximally to erythrocytes of common Rh phenotype. Antibodies of the BRIC-125 type (BRICs 32, 122, 125, 126, 168, 211) recognize structures that are unrelated to those recognized by R6A-type and 2D10-type antibodies and between 10,000 and 50,000 antibody molecules bind maximally to erythrocytes of the common Rh phenotype. The binding of antibodies of the R6A-type and the 2D10-type, but not of antibodies of the BRIC-125-type could be partially inhibited by human anti-D antibodies (polyclonal and monoclonal) and a murine anti-e-like antibody. These results are consistent with evidence (Moore & Green 1987; Avent et al., 1988b) that the Rh blood group antigens are associated with a complex that comprises two groups of related polypeptides of M(r) 30,000 and M(r) 35,000-100,000, respectively, and suggest that there are 1-2 x 10(5) copies of this complex per erythrocyte. The polypeptide recognized by antibodies of the BRIC-125 type is likely to be associated with this complex.

  9. Novel Peptide with Specific Calcium-Binding Capacity from Schizochytrium sp. Protein Hydrolysates and Calcium Bioavailability in Caco-2 Cells

    PubMed Central

    Cai, Xixi; Lin, Jiaping; Wang, Shaoyun

    2016-01-01

    Peptide-calcium can probably be a suitable supplement to improve calcium absorption in the human body. In this study, a specific peptide Phe-Tyr (FY) with calcium-binding capacity was purified from Schizochytrium sp. protein hydrolysates through gel filtration chromatography and reversed phase HPLC. The calcium-binding capacity of FY reached 128.77 ± 2.57 μg/mg. Results of ultraviolet spectroscopy, fluorescence spectroscopy, and infrared spectroscopy showed that carboxyl groups, amino groups, and amido groups were the major chelating sites. FY-Ca exhibited excellent thermal stability and solubility, which were beneficial to be absorbed and transported in the basic intestinal tract of the human body. Moreover, the calcium bioavailability in Caco-2 cells showed that FY-Ca could enhance calcium uptake efficiency by more than three times when compared with CaCl2, and protect calcium ions against dietary inhibitors, such as tannic acid, oxalate, phytate, and Zn2+. Our findings further the progress of algae-based peptide-calcium, suggesting that FY-Ca has the potential to be developed as functionally nutraceutical additives. PMID:28036002

  10. In vitro digestibility of goat milk and kefir with a new standardised static digestion method (INFOGEST cost action) and bioactivities of the resultant peptides.

    PubMed

    Nehir El, Sedef; Karakaya, Sibel; Simsek, Sebnem; Dupont, Didier; Menfaatli, Esra; Eker, Alper Tolga

    2015-07-01

    The hydrolysis degrees of goat milk and kefir during simulated gastrointestinal digestion and some bioactivities of the resulting peptides after fermentation and digestion were studied. A static in vitro digestion method by the COST FA1005 Action INFOGEST was used and goat milk and kefir were partially hydrolyzed during the gastric phase and had above 80% hydrolysis after duodenal digestion. There were no differences between the digestibility of goat milk and kefir (p > 0.05). Goat milk and kefir displayed about 7-fold antioxidant activity after digestion (p < 0.05). Fermentation showed no effect on the calcium-binding capacity of the samples (p > 0.05), however, after in vitro digestion calcium-binding capacity of the goat milk and kefir increased 2 and 5 fold, respectively (p < 0.05). Digested goat milk and kefir showed a higher dose-dependent inhibitory effect on α-amylase compared to undigested samples (p < 0.05). α-Glucosidase inhibitory activities and in vitro bile acid-binding capacities of the samples were not determined at the studied concentrations.

  11. Influence of activated carbon characteristics on toluene and hexane adsorption: Application of surface response methodology

    NASA Astrophysics Data System (ADS)

    Izquierdo, Mª Teresa; de Yuso, Alicia Martínez; Valenciano, Raquel; Rubio, Begoña; Pino, Mª Rosa

    2013-01-01

    The objective of this study was to evaluate the adsorption capacity of toluene and hexane over activated carbons prepared according an experimental design, considering as variables the activation temperature, the impregnation ratio and the activation time. The response surface methodology was applied to optimize the adsorption capacity of the carbons regarding the preparation conditions that determine the physicochemical characteristics of the activated carbons. The methodology of preparation produced activated carbons with surface areas and micropore volumes as high as 1128 m2/g and 0.52 cm3/g, respectively. Moreover, the activated carbons exhibit mesoporosity, ranging from 64.6% to 89.1% the percentage of microporosity. The surface chemistry was characterized by TPD, FTIR and acid-base titration obtaining different values of surface groups from the different techniques because the limitation of each technique, but obtaining similar trends for the activated carbons studied. The exhaustive characterization of the activated carbons allows to state that the measured surface area does not explain the adsorption capacity for either toluene or n-hexane. On the other hand, the surface chemistry does not explain the adsorption results either. A compromise between physical and chemical characteristics can be obtained from the appropriate activation conditions, and the response surface methodology gives the optimal activated carbon to maximize adsorption capacity. Low activation temperature, intermediate impregnation ratio lead to high toluene and n-hexane adsorption capacities depending on the activation time, which a determining factor to maximize toluene adsorption.

  12. Supervised Phase II Cardiac Exercise Therapy Shortens the Recovery of Exercise Capacity in Patients with Acute Myocardial Infarction

    PubMed Central

    Lee, Chih-Wei; Wang, Ji-Hung; Hsieh, Jen-Che; Hsieh, Tsung-Cheng; Wu, Yu-Zu; Chen, Tung-Wei; Huang, Chien-Hui

    2014-01-01

    [Purpose] To investigate the effects of Phase II cardiac exercise therapy (CET) on exercise capacity and changes in coronary risk factors (CRFs) of patients with acute myocardial infarction (AMI). [Subjects] Thirty male subjects with AMI were divided into an experimental group (EG) and a control group (CG). Another 30 age-matched subjects with patent coronary arteries served as a normal-control group (NCG). [Methods] Subjects in EG (n=20) trained using a stationary bicycle for 30 min at their target heart rate twice a week for 8 weeks. Exercise capacity was defined as the maximal metabolic equivalents (METs) that subjects reached during the symptom-limited maximal exercise test. HR, BP and RPP were recorded. Subjects in EG and CG received exercise tests and screening for CRFs at the beginning of, end of, and 3 months after Phase II CET, while subjects in NCG participated only in the 1st test. [Results] METs of CG did not improve until the 3rd test, while RPP at the 2nd test showed a significant increase. However, EG showed increased METs at the 2nd test without increase of RPP, and increased their high density lipoprotein cholesterol (HDL-C) during the follow-up period between the 2nd and 3rd tests. [Conclusion] Phase II CET shortens the recovery time of exercise capacity, helps to maintain the gained exercise capacity and increases HDL-C in phase III. PMID:25276046

  13. Mitochondrial uncoupling reduces exercise capacity despite several skeletal muscle metabolic adaptations.

    PubMed

    Schlagowski, A I; Singh, F; Charles, A L; Gali Ramamoorthy, T; Favret, F; Piquard, F; Geny, B; Zoll, J

    2014-02-15

    The effects of mitochondrial uncoupling on skeletal muscle mitochondrial adaptation and maximal exercise capacity are unknown. In this study, rats were divided into a control group (CTL, n = 8) and a group treated with 2,4-dinitrophenol, a mitochondrial uncoupler, for 28 days (DNP, 30 mg·kg(-1)·day(-1) in drinking water, n = 8). The DNP group had a significantly lower body mass (P < 0.05) and a higher resting oxygen uptake (Vo2, P < 0.005). The incremental treadmill test showed that maximal running speed and running economy (P < 0.01) were impaired but that maximal Vo2 (Vo2max) was higher in the DNP-treated rats (P < 0.05). In skinned gastrocnemius fibers, basal respiration (V0) was higher (P < 0.01) in the DNP-treated animals, whereas the acceptor control ratio (ACR, Vmax/V0) was significantly lower (P < 0.05), indicating a reduction in OXPHOS efficiency. In skeletal muscle, DNP activated the mitochondrial biogenesis pathway, as indicated by changes in the mRNA expression of PGC1-α and -β, NRF-1 and -2, and TFAM, and increased the mRNA expression of cytochrome oxidase 1 (P < 0.01). The expression of two mitochondrial proteins (prohibitin and Ndufs 3) was higher after DNP treatment. Mitochondrial fission 1 protein (Fis-1) was increased in the DNP group (P < 0.01), but mitofusin-1 and -2 were unchanged. Histochemical staining for NADH dehydrogenase and succinate dehydrogenase activity in the gastrocnemius muscle revealed an increase in the proportion of oxidative fibers after DNP treatment. Our study shows that mitochondrial uncoupling induces several skeletal muscle adaptations, highlighting the role of mitochondrial coupling as a critical factor for maximal exercise capacities. These results emphasize the importance of investigating the qualitative aspects of mitochondrial function in addition to the amount of mitochondria.

  14. [3H]-nitrendipine binding in membranes obtained from hypoxic and reoxygenated heart.

    PubMed

    Matucci, R; Bennardini, F; Sciammarella, M L; Baccaro, C; Stendardi, I; Franconi, F; Giotti, A

    1987-04-01

    We compared the binding properties of [3H]-nitrendipine in heart membranes from normal guinea-pig heart and from hypoxic or hypoxic and reoxygenated heart. The [3H]-nitrendipine binds a single class of high capacity (Bmax 667.2 +/- 105.2) with high affinity (KD 0.14 +/- 0.02) binding sites. By contrast, in membranes of hypoxic and reoxygenated heart the Bmax decreases significantly while it remains unaffected during hypoxia. Xanthinoxidase activity is increased in hypoxic-reoxygenated hearts.

  15. Effects of upper-body sprint-interval training on strength and endurance capacities in female cross-country skiers

    PubMed Central

    Vandbakk, Kristine; Welde, Boye; Kruken, Andrea Hovstein; Baumgart, Julia; Ettema, Gertjan; Karlsen, Trine; Sandbakk, Øyvind

    2017-01-01

    This study compared the effects of adding upper-body sprint-intervals or continuous double poling endurance training to the normal training on maximal upper-body strength and endurance capacity in female cross-country skiers. In total, 17 female skiers (age: 18.1±0.8yr, body mass: 60±7 kg, maximal oxygen uptake (VO2max): 3.30±0.37 L.min-1) performed an 8-week training intervention. Here, either two weekly sessions of six to eight 30-s maximal upper-body double poling sprint-intervals (SIG, n = 8) or 45–75 min of continuous low-to-moderate intensity double poling on roller skis (CG, n = 9) were added to their training. Before and after the intervention, the participants were tested for physiological and kinematical responses during submaximal and maximal diagonal and double poling treadmill roller skiing. Additionally, we measured maximal upper-body strength (1RM) and average power at 40% 1RM in a poling-specific strength exercise. SIG improved absolute VO2max in diagonal skiing more than CG (8% vs 2%, p<0.05), and showed a tendency towards higher body-mass normalized VO2max (7% vs 2%, p = 0.07). Both groups had an overall improvement in double poling peak oxygen uptake (10% vs 6% for SIG and CG) (both p<0.01), but no group-difference was observed. SIG improved 1RM strength more than CG (18% vs 10%, p<0.05), while there was a tendency for difference in average power at 40% 1RM (20% vs 14%, p = 0.06). Oxygen cost and kinematics (cycle length and rate) in double poling and diagonal remained unchanged in both groups. In conclusion, our study demonstrates that adding upper-body sprint-interval training is more effective than continuous endurance training in improving upper-body maximal strength and VO2max. PMID:28241030

  16. Relationships between self-reported health related quality of life and measures of standardized exercise capacity and metabolic efficiency in a middle-aged and aged healthy population.

    PubMed

    Lindholm, E; Brevinge, H; Bergh, C H; Körner, U; Lundholm, K

    2003-08-01

    The purpose of this study was to evaluate to what extent self-reported health related quality of life (HRQL), assessed by the Swedish standard version of the Medical Outcome Study Short-Form 36 (SF-36), is related to measured exercise capacity and metabolic efficiency in a cohort of healthy subjects from the Gothenburg area of Sweden. Individuals were invited to take part in the evaluation where HRQL was compared with the maximal power output expressed in Watts assessed during a standardized treadmill test with incremental work loads. Whole body respiratory gas exchanges (CO2/O2) were simultaneously measured. Estimate of metabolic efficiency was derived from oxygen uptake per Watt produced (ml O2/min/W) near maximal work. The health status profile in the current population largely agreed with normative data from an age- and gender-matched reference group, although some measured scores were slightly better than reference scores. Males and females had a similar relationship between energy cost (ml O2/min) for production of maximal work (W), while the regressions for maximal exercise power and age were significantly different between males and females (p < 0.01). The overall metabolic efficiency was the same in individuals between 40 and 74 years of age (10.4 +/- 0.07 ml O2/min/ Watt). Maximal exercise power was only related to the SF-36 subscale physical functioning (PF), but unrelated to other physical subscales such as role limitations due to physical problems, good general health and vitality. There was also a discrepancy between measured maximal power and PF in many subjects, particularly in males who experienced either intact or severely reduced PF. Our results demonstrate that simultaneous measurements of self-reported and objective measures of PF should add a more integrated view for evaluation of therapeutic effectiveness, since the overall correlation was poor between objective and subjective scores among individuals.

  17. Capacity Maximizing Constellations

    NASA Technical Reports Server (NTRS)

    Barsoum, Maged; Jones, Christopher

    2010-01-01

    Some non-traditional signal constellations have been proposed for transmission of data over the Additive White Gaussian Noise (AWGN) channel using such channel-capacity-approaching codes as low-density parity-check (LDPC) or turbo codes. Computational simulations have shown performance gains of more than 1 dB over traditional constellations. These gains could be translated to bandwidth- efficient communications, variously, over longer distances, using less power, or using smaller antennas. The proposed constellations have been used in a bit-interleaved coded modulation system employing state-ofthe-art LDPC codes. In computational simulations, these constellations were shown to afford performance gains over traditional constellations as predicted by the gap between the parallel decoding capacity of the constellations and the Gaussian capacity

  18. Techno-functional properties and in vitro bile acid-binding capacities of tamarillo (Solanum betaceum Cav.) hydrocolloids.

    PubMed

    Gannasin, Sri Puvanesvari; Adzahan, Noranizan Mohd; Mustafa, Shuhaimi; Muhammad, Kharidah

    2016-04-01

    Hydrocolloids were extracted from seed mucilage and the pulp fractions from red tamarillo (Solanum betaceum Cav.) mesocarp, and characterisation of their techno-functional properties and in vitro bile acid-binding capacities was performed. The seed mucilage hydrocolloids that were extracted, using either 1% citric acid (THC) or water (THW), had a good foaming capacity (32-36%), whereas the pulp hydrocolloids that were extracted, using 72% ethanol (THE) or 20mM HEPES buffer (THH), had no foaming capacity. The pulp hydrocolloid, however, possessed high oil-holding and water-holding capacities in the range of 3.3-3.6 g oil/g dry sample and 25-27 g water/g dry sample, respectively. This enabled the pulp hydrocolloid to entrap more bile acids (35-38% at a hydrocolloid concentration of 2%) in its gelatinous network in comparison to commercial oat fibre and other hydrocolloids studied. The exceptional emulsifying properties (80-96%) of both hydrocolloids suggest their potential applications as food emulsifiers and bile acid binders. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Binding of Radioactive Benzylpenicillin to Sporulating Bacillus Cultures: Chemistry and Fluctuations in Specific Binding Capacity

    PubMed Central

    Lawrence, Paul J.; Rogolsky, Marvin; Hanh, Vo Thi

    1971-01-01

    The chemistry of the binding of 14C-benzylpenicillin to sporulating cultures of Bacillus megaterium and B. subtilis is similar to that in a 4-hr vegetative culture of Staphylococcus aureus. Unlabeled penicillins prevent the binding of 14C-benzylpenicillin, but benzylpenicilloic acid and benzylpenilloic acid do not. Bound antibiotic can be removed from cells with neutral hydroxylamine at 25 C. Sporulating cultures display two intervals of enhanced binding, whereas binding to stationaryphase S. aureus cells remains constant. The first period of increased binding activity occurs during formation of the spore septum or cell wall primordium development, and the second coincides with cortex biosynthesis. PMID:4942758

  20. Statistics of optimal information flow in ensembles of regulatory motifs

    NASA Astrophysics Data System (ADS)

    Crisanti, Andrea; De Martino, Andrea; Fiorentino, Jonathan

    2018-02-01

    Genetic regulatory circuits universally cope with different sources of noise that limit their ability to coordinate input and output signals. In many cases, optimal regulatory performance can be thought to correspond to configurations of variables and parameters that maximize the mutual information between inputs and outputs. Since the mid-2000s, such optima have been well characterized in several biologically relevant cases. Here we use methods of statistical field theory to calculate the statistics of the maximal mutual information (the "capacity") achievable by tuning the input variable only in an ensemble of regulatory motifs, such that a single controller regulates N targets. Assuming (i) sufficiently large N , (ii) quenched random kinetic parameters, and (iii) small noise affecting the input-output channels, we can accurately reproduce numerical simulations both for the mean capacity and for the whole distribution. Our results provide insight into the inherent variability in effectiveness occurring in regulatory systems with heterogeneous kinetic parameters.

  1. A comparison of maximal inspiratory pressure and forced vital capacity as potential criteria for initiating non-invasive ventilation in amyotrophic lateral sclerosis.

    PubMed

    Mendoza, Michelle; Gelinas, Deborah F; Moore, Dan H; Miller, Robert G

    2007-04-01

    Using a retrospective analysis of 161 patients with amyotrophic lateral sclerosis (ALS) from the Western ALS study group (WALS) database, the sensitivity of maximal inspiratory pressure (MIP)< -60 cm H(2)O and forced vital capacity (FVC)< 50% as US Medicare thresholds for initiating non-invasive ventilation (NIV) were compared. Sixty-five per cent of patients at enrollment met the MIP criterion, compared with only 8% of patients who met the FVC criterion. There were no cases in which FVC< 50% antedated MIP< -60 cm H(2)O. The longitudinal data showed that patients reached the MIP criterion 4 to 6.5 months earlier than the FVC criterion. For patients with clinical signs and symptoms needing treatment with NIV, a MIP< -60 cm H(2)O allows US clinicians to obtain non-invasive ventilatory support for patients earlier than if using the FVC criterion alone.

  2. Phosphate-binding protein from Polaromonas JS666: purification, characterization, crystallization and sulfur SAD phasing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pegos, Vanessa R.; Hey, Louis; LaMirande, Jacob

    Phosphate-binding proteins (PBPs) are key proteins that belong to the bacterial ABC-type phosphate transporters. PBPs are periplasmic (or membrane-anchored) proteins that capture phosphate anions from the environment and release them to the transmembrane transporter. Recent work has suggested that PBPs have evolved for high affinity as well as high selectivity. In particular, a short, unique hydrogen bond between the phosphate anion and an aspartate residue has been shown to be critical for selectivity, yet is not strictly conserved in PBPs. Here, the PBP fromPolaromonasJS666 is focused on. Interestingly, this PBP is predicted to harbor different phosphate-binding residues to currently knownmore » PBPs. Here, it is shown that the PBP fromPolaromonasJS666 is capable of binding phosphate, with a maximal binding activity at pH 8. Its structure is expected to reveal its binding-cleft configuration as well as its phosphate-binding mode. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.35 Å resolution of the PBP fromPolaromonasJS666 are reported.« less

  3. Correlation between urodynamic function and 3D cat scan anatomy in neobladders: does it exist?

    PubMed

    Crivellaro, S; Mami, E; Wald, C; Smith, J J; Kocjancic, E; Stoffel, J; Bresette, J; Libertino, J A

    2009-01-01

    We compared the functional and anatomical differences among three different orthotopic neobladders, utilizing video urodynamics and 3D CT to determine what parameters, if any, correlate to function. Thirty-four patients were able to participate in the evaluation of their neobladder by 3D CT and video urodynamics. Three different orthotopic neobladders were identified (12 ileal, 7 ileocecal, 15 sigmoid). Multiple measurements, observations and functional data have been obtained. Statistical analysis for this study employed a linear regression test and an odds ratio calculation (using StatSoft V. 5.1). In comparing three different neobladders, no significant differences were noted. Looking at the entire population, the following association was statistically significant in linear correlation: the maximal capacity and the neobladder volume; the pressure at the maximal capacity and the distance from the symphysis, the pressure at maximal flow and both the distance from the symphysis and the thickness of the neobladder. The distance from the left femoral head was directly correlated with the post void residual and inversely correlated with the maximal flow. The Odds ratio calculation revealed (with significant P < 0.05) that the further the center of the neobladder is from the right femoral head, the higher risk of incontinence. The study seems to show no significant anatomical or functional difference among the three different types of neobladders. A possible correlation between the position of the neobladder and urinary incontinence is suggested, recognizing further study in a larger population is required.

  4. Comprehensive meta-analysis of Signal Transducers and Activators of Transcription (STAT) genomic binding patterns discerns cell-specific cis-regulatory modules

    PubMed Central

    2013-01-01

    Background Cytokine-activated transcription factors from the STAT (Signal Transducers and Activators of Transcription) family control common and context-specific genetic programs. It is not clear to what extent cell-specific features determine the binding capacity of seven STAT members and to what degree they share genetic targets. Molecular insight into the biology of STATs was gained from a meta-analysis of 29 available ChIP-seq data sets covering genome-wide occupancy of STATs 1, 3, 4, 5A, 5B and 6 in several cell types. Results We determined that the genomic binding capacity of STATs is primarily defined by the cell type and to a lesser extent by individual family members. For example, the overlap of shared binding sites between STATs 3 and 5 in T cells is greater than that between STAT5 in T cells and non-T cells. Even for the top 1,000 highly enriched STAT binding sites, ~15% of STAT5 binding sites in mouse female liver are shared by other STATs in different cell types while in T cells ~90% of STAT5 binding sites are co-occupied by STAT3, STAT4 and STAT6. In addition, we identified 116 cis-regulatory modules (CRM), which are recognized by all STAT members across cell types defining a common JAK-STAT signature. Lastly, in liver STAT5 binding significantly coincides with binding of the cell-specific transcription factors HNF4A, FOXA1 and FOXA2 and is associated with cell-type specific gene transcription. Conclusions Our results suggest that genomic binding of STATs is primarily determined by the cell type and further specificity is achieved in part by juxtaposed binding of cell-specific transcription factors. PMID:23324445

  5. Studies on the interactions between purified bovine caseins and alkaline-earth-metalions

    PubMed Central

    Dickson, I. R.; Perkins, D. J.

    1971-01-01

    1. Alkaline-earth-metal cations at low concentrations form soluble complexes with bovine caseins. The relative order of binding capacities is: Mg2+>Ca2+>Ba2+>Sr2+. 2. The cations interact with both free ionized carboxyl groups of aspartic acid and glutamic acid and with monoester phosphate groups covalently bound to serine and threonine; at low concentrations of the cations interactions are predominantly with the phosphate groups. 3. The order of binding capacities for purified components of the casein complex is: αs1-casein>β-casein>κ-casein. PMID:5166590

  6. Solubility and binding properties of PEGylated lysozyme derivatives with increasing molecular weight on hydrophobic-interaction chromatographic resins.

    PubMed

    Müller, Egbert; Josic, Djuro; Schröder, Tim; Moosmann, Anna

    2010-07-09

    Dynamic binding capacities and resolution of PEGylated lysozyme derivatives with varying molecular weights of poly (ethylene) glycol (PEG) with 5 kDa, 10 kDa and 30 kDa for HIC resins and columns are presented. To find the optimal range for the operating conditions, solubility studies were performed by high-throughput analyses in a 96-well plate format, and optimal salt concentrations and pH values were determined. The solubility of PEG-proteins was strongly influenced by the length of the PEG moiety. Large differences in the solubilities of PEGylated lysozymes in two different salts, ammonium sulfate and sodium chloride were found. Solubility of PEGylated lysozyme derivatives in ammonium sulfate decreases with increased length of attached PEG chains. In sodium chloride all PEGylated lysozyme derivatives are fully soluble in a concentration range between 0.1 mg protein/ml and 10 mg protein/ml. The binding capacities for PEGylated lysozyme to HIC resins are dependent on the salt type and molecular weight of the PEG polymer. In both salt solutions, ammonium sulfate and sodium chloride, the highest binding capacity of the resin was found for 5 kDa PEGylated lysozyme. For both native lysozyme and 30 kDa mono-PEGylated lysozyme the binding capacities were lower. In separation experiments on a TSKgel Butyl-NPR hydrophobic-interaction column with ammonium sulfate as mobile phase, the elution order was: native lysozyme, 5 kDa mono-PEGylated lysozyme and oligo-PEGylated lysozyme. This elution order was found to be reversed when sodium chloride was used. Furthermore, the resolution of the three mono-PEGylated forms was not possible with this column and ammonium sulfate as mobile phase. In 4 M sodium chloride a resolution of all PEGylated lysozyme forms was achieved. A tentative explanation for these phenomena can be the increased solvation of the PEG polymers in sodium chloride which changes the usual attractive hydrophobic forces in ammonium sulfate to more repulsive hydration forces in this hydrotrophic salt.

  7. A Joint Theory and Experimental Project in the Synthesis and Testing of Porous COFs for On-Board Vehicular Hydrogen Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaghi, Omar M.; Goddard, William A.

    2013-06-29

    Conventional storage of large amounts of hydrogen in its molecular form is difficult and expensive because it requires employing either extremely high pressure gas or very low temperature liquid. Because of the importance of hydrogen as a fuel, the DOE has set system targets for hydrogen storage of gravimetric (5.5 wt%) and volumetric (40 g/L) densities to be achieved by 2015. From our continuous efforts on hydrogen storage, it is believed that metalation of highly porous solids with high-valence metals is promising and provides a rational direction to realize high volumetric hydrogen density near room temperature. This grant was focusedmore » on the study of high surface area covalent organic frameworks (COFs) with these specific objectives (1) to introduce potential metal binding sites through the COF synthesis and (2) to implement metalation experiments and evaluate their respective hydrogen adsorption properties. To maximize our efforts, simulation calculations were also performed (prior to experiments) for the prediction of binding enthalpy of hydrogen for molecular building units containing transition metals and promising COF structures to increase volumetric hydrogen uptake at room temperature. In this effort, first molecular building units with optimal binding energy for hydrogen storage (20 kJ/mol) were designed by quantum mechanical (QM) methods. Employing these results, it was revealed that one of metalated COFs takes up 60 g/L (total) of H2 at 100 bar and 298 K. To realize proposed COF structures, chemistry of COF synthesis has been developed; for instance, new air stable COFs were synthesized via hydrazone (COF-41 to 43) and imine condensation (COF-301, 320, 340, and 366) and some of them were tested the effect on metalation. Finally, a new triazine COF with high volumetric hydrogen uptake capacity was presented as a proposed future direction.« less

  8. Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead(II) adsorption.

    PubMed

    Hui, Chang-Ye; Guo, Yan; Yang, Xue-Qin; Zhang, Wen; Huang, Xian-Qing

    2018-05-01

    To improve the Pb 2+ biosorption capacity of the potential E. coli biosorbent, a putative Pb 2+ binding domain (PbBD) derived from PbrR was efficiently displayed on to the E. coli cell surface. The PbBD was obtained by truncating the N-terminal DNA-binding domain and C-terminal redundant amino acid residues of the Pb 2+ -sensing transcriptional factor PbrR. Whole-cell sorbents were constructed with the full-length PbrR and PbBD of PbrR genetically engineered onto the surface of E. coli cells using Lpp-OmpA as the anchor. Followed by a 1.71-fold higher display of PbBD than PbrR, the presence of PbBD on the surface of E. coli cells enabled a 1.92-fold higher Pb 2+ biosorption than that found in PbrR-displayed cells. Specific Pb 2+ binding via PbBD was the same as Pb 2+ binding via the full-length PbrR, with no observable decline even in the presence of Zn 2+ and Cd 2+ . Since surface-engineered E. coli cells with PbBD increased the Pb 2+ binding capacity and did not affect the adsorption selectivity, this suggests that surface display of the metal binding domain derived from MerR-like proteins may be used for the bioremediation of specific toxic heavy metals.

  9. Characterization of 18F-FPyKYNE-Losartan for Imaging AT1 Receptors.

    PubMed

    Hachem, Maryam; Tiberi, Mario; Ismail, Basma; Hunter, Chad R; Arksey, Natasha; Hadizad, Tayebeh; Beanlands, Rob S; deKemp, Robert A; DaSilva, Jean N

    2016-10-01

    Most physiologic effects of the renin angiotensin system (RAS) are mediated via the angiotensin (Ang) type 1 receptor (AT 1 R). The 18 F-FPyKYNE derivative of the clinically used AT 1 R blocker losartan exhibits high binding selectivity for kidney AT 1 R and rapid metabolism in rats. The aim of this study was to further assess the binding profile of this novel PET agent for imaging AT 1 R in rats and pigs. In vitro binding assays were performed with 18 F-FPyKYNE-losartan in rat kidneys. Male Sprague-Dawley rats were used to assess dosimetry, antagonistic efficacy via blood pressure measurements, and presence of labeled metabolites in kidneys. Test-retest PET imaging, blocking with AT 1 R antagonist candesartan (10 mg/kg), and plasma metabolism analysis were performed in female Yorkshire pigs. 18 F-FPyKYNE-losartan bound with high affinity (dissociation constant of 49.4 ± 18.0 nM and maximal binding of 348 ± 112 fmol/mm 2 ) to rat kidney AT 1 R. It bound strongly to plasma proteins in rats (97%), and its labeled metabolites displayed minimal interference on renal AT 1 R binding. FPyKYNE-losartan fully antagonized the Ang II pressor effect, albeit with 4-fold potency reduction (the effective dose inhibiting 50% of the Ang II-induced maximal pressor response of 25.5 mg/kg) relative to losartan. PET imaging exhibited high kidney-to-blood contrast and slow renal clearance, with an SUV of 14.1 ± 6.2. Excellent reproducibility was observed in the calculated test-retest variability (7.2% ± 0.75%). Only hydrophilic-labeled metabolites were present in plasma samples, and renal retention was reduced (-60%) at 10-15 min after blockade with candesartan. 18 F-FPyKYNE-losartan has a favorable binding profile and displays high potential for translational work in humans as an AT 1 R PET imaging agent. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  10. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in patients with mitochondrial myopathy.

    PubMed

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F M; Smeets, Hubert; Praet, Stephan F; van Loon, Luc J; Prompers, Jeanine J

    2017-05-01

    Muscle weakness and exercise intolerance negatively affect the quality of life of patients with mitochondrial myopathy. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated whether 1 wk of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in patients with mitochondrial myopathy. Ten patients with mitochondrial myopathy (40 ± 5 yr, maximal whole body oxygen uptake = 21.2 ± 3.2 ml·min -1 ·kg body wt -1 , maximal work load = 122 ± 26 W) received 8.5 mg·kg body wt -1 ·day -1 inorganic nitrate (~7 mmol) for 8 days. Whole body oxygen consumption at 50% of the maximal work load, in vivo skeletal muscle oxidative capacity (evaluated from postexercise phosphocreatine recovery using 31 P-magnetic resonance spectroscopy), and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a sixfold increase in plasma nitrate levels, nitrate supplementation did not affect whole body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for patients with mitochondrial myopathy was evaluated. We conclude that 1 wk of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested. Copyright © 2017 the American Physiological Society.

  11. Specificity of endurance, sprint and strength training on physical performance capacity in young athletes.

    PubMed

    Häkkinen, K; Mero, A; Kauhanen, H

    1989-03-01

    Three prebubescent athlete groups of endurance runners (E; n = 4), sprinters (S; n = 4) and weightlifters (WL; n = 4) and one control group (C; n = 6) as well as one junior but postpubescent weightlifter group (JWL; n = 6) volunteered as subjects in order to investigate specific effects of endurance, sprint and strength training on physical performance capacity during a 1 year follow-up period. The prepubescent E-group had higher (p less than 0.05) VO2 max (66.5 +/- 2.9 ml x kg1 x min-1) already at the beginning of the study than the other three groups. The prepubescent WL-group demonstrated greater (p less than 0.05) maximal muscular strength than the E-group and the WL-group increased its strength greatly by 21.4% (p less than 0.05) during the follow-up. No significant differences were observed in physical performance capacity between the prepubescent WL- and S-groups. Both groups demonstrated a slightly (ns.) better force-time curve recorded from the leg extensor muscles than the E-group and significant (p less than 0.05) increases occurred in these two groups in dynamic explosive performance during the follow-up. The postpubescent JWL-group demonstrated much greater (p less than 0.001) muscular mass and maximal strength than the prepubescent groups. No significant changes occurred in explosive types of performances in these athletes but significant (p less than 0.05) increase took place in the maximal neural activation and strength of the leg extensor muscles during the 1 year.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Rigidification of the autolysis loop enhances Na[superscript +] binding to thrombin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pozzi, Nicola; Chen, Raymond; Chen, Zhiwei

    2011-09-20

    Binding of Na{sup +} to thrombin ensures high activity toward physiological substrates and optimizes the procoagulant and prothrombotic roles of the enzyme in vivo. Under physiological conditions of pH and temperature, the binding affinity of Na{sup +} is weak due to large heat capacity and enthalpy changes associated with binding, and the K{sub d} = 80 mM ensures only 64% saturation of the site at the concentration of Na{sup +} in the blood (140 mM). Residues controlling Na{sup +} binding and activation have been identified. Yet, attempts to improve the interaction of Na{sup +} with thrombin and possibly increase catalyticmore » activity under physiological conditions have so far been unsuccessful. Here we report how replacement of the flexible autolysis loop of human thrombin with the homologous rigid domain of the murine enzyme results in a drastic (up to 10-fold) increase in Na{sup +} affinity and a significant improvement in the catalytic activity of the enzyme. Rigidification of the autolysis loop abolishes the heat capacity change associated with Na{sup +} binding observed in the wild-type and also increases the stability of thrombin. These findings have general relevance to protein engineering studies of clotting proteases and trypsin-like enzymes.« less

  13. Health Benefits of an Innovative Exercise Program for Mitochondrial Disorders.

    PubMed

    Fiuza-Luces, Carmen; Díez-Bermejo, Jorge; Fernández-DE LA Torre, Miguel; Rodríguez-Romo, Gabriel; Sanz-Ayán, Paz; Delmiro, Aitor; Munguía-Izquierdo, Diego; Rodríguez-Gómez, Irene; Ara, Ignacio; Domínguez-González, Cristina; Arenas, Joaquín; Martín, Miguel A; Lucia, Alejandro; Morán, María

    2018-06-01

    We determined the effects of an innovative 8-wk exercise intervention (aerobic, resistance, and inspiratory muscle training) for patients with mitochondrial disease. Several end points were assessed in 12 patients (19-59 yr, 4 women) at pretraining, posttraining, and after 4-wk detraining: aerobic power, muscle strength/power and maximal inspiratory pressure (main end points), ability to perform activities of daily living, body composition, quality of life, and blood myokines (secondary end points). The program was safe, with patients' adherence being 94% ± 5%. A significant time effect was found for virtually all main end points (P ≤ 0.004), indicating a training improvement. Similar findings (P ≤ 0.003) were found for activities of daily living tests, total/trunk/leg lean mass, total fat mass, femoral fracture risk, and general health perception. No differences were found for blood myokines, except for an acute exertional increase in interleukin 8 at posttraining/detraining (P = 0.002) and in fatty acid binding protein 3 at detraining (P = 0.002). An intervention including novel exercises for mitochondrial disease patients (e.g., inspiratory muscle training) produced benefits in numerous indicators of physical capacity and induced a previously unreported shift toward a healthier body composition phenotype.

  14. Substance p regulates puberty onset and fertility in the female mouse.

    PubMed

    Simavli, Serap; Thompson, Iain R; Maguire, Caroline A; Gill, John C; Carroll, Rona S; Wolfe, Andrew; Kaiser, Ursula B; Navarro, Víctor M

    2015-06-01

    Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1(-/-) mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice.

  15. An evanescent wave biosensor--Part I: Fluorescent signal acquisition from step-etched fiber optic probes.

    PubMed

    Anderson, G P; Golden, J P; Ligler, F S

    1994-06-01

    A fiber-optic biosensor capable of remote continuous monitoring has recently been designed. To permit sensing at locations separate from the optoelectronic instrumentation, long optical fibers are utilized. An evanescent wave immuno-probe is prepared by removing the cladding near the distal end of the fiber and covalently attaching antibodies to the core. Probes with a radius unaltered from that of the original core inefficiently returned the signal produced upon binding the fluorescent-labelled antigen. To elucidate the limiting factors in signal acquisition, a series of fibers with increasingly reduced probe core radius was examined. The results were consistent with the V-number mismatch, the difference in mode carrying capacity between the clad and unclad fiber, being a critical factor in limiting signal coupling from the fiber probe. However, it was also delineated that conditions which conserve excitation power, such that power in the evanescent wave is optimized, must also be met to obtain a maximal signal. The threshold sensitivity for the optimal step-etched fiber probe was improved by over 20-fold in an immunoassay, although, it was demonstrated that signal acquisition decreased along the probe length, suggesting that a sensor region of uniform radius is not ideal.

  16. New generation of electrochemical immunoassay based on polymeric nanoparticles for early detection of breast cancer

    PubMed Central

    Mouffouk, Fouzi; Aouabdi, Sihem; Al-Hetlani, Entesar; Serrai, Hacene; Alrefae, Tareq; Leo Chen, Liaohai

    2017-01-01

    Screening and early diagnosis are the key factors for the reduction of mortality rate and treatment cost of cancer. Therefore, sensitive and selective methods that can reveal the low abundance of cancer biomarkers in a biological sample are always desired. Here, we report the development of a novel electrochemical biosensor for early detection of breast cancer by using bioconjugated self-assembled pH-responsive polymeric micelles. The micelles were loaded with ferrocene molecules as “tracers” to specifically target cell surface-associated epithelial mucin (MUC1), a biomarker for breast and other solid carcinoma. The synthesis of target-specific, ferrocene-loaded polymeric micelles was confirmed, and the resulting sensor was capable of detecting the presence of MUC1 in a sample containing about 10 cells/mL. Such a high sensitivity was achieved by maximizing the loading capacity of ferrocene inside the polymeric micelles. Every single event of binding between the antibody and antigen was represented by the signal of hundreds of thousands of ferrocene molecules that were released from the polymeric micelles. This resulted in a significant increase in the intensity of the ferrocene signal detected by cyclic voltammetry. PMID:28450780

  17. Iron regulates expression of Bacillus cereus hemolysin II via global regulator Fur.

    PubMed

    Sineva, Elena; Shadrin, Andrey; Rodikova, Ekaterina A; Andreeva-Kovalevskaya, Zhanna I; Protsenko, Alexey S; Mayorov, Sergey G; Galaktionova, Darya Yu; Magelky, Erica; Solonin, Alexander S

    2012-07-01

    The capacity of pathogens to respond to environmental signals, such as iron concentration, is key to bacterial survival and establishment of a successful infection. Bacillus cereus is a widely distributed bacterium with distinct pathogenic properties. Hemolysin II (HlyII) is one of its pore-forming cytotoxins and has been shown to be involved in bacterial pathogenicity in a number of cell and animal models. Unlike many other B. cereus pathogenicity factors, HlyII is not regulated by pleiotropic transcriptional regulator PlcR but is controlled by its own regulator, HlyIIR. Using a combination of in vivo and in vitro techniques, we show that hlyII expression is also negatively regulated by iron by the global regulator Fur via direct interaction with the hlyII promoter. DNase I footprinting and in vitro transcription experiments indicate that Fur prevents RNA polymerase binding to the hlyII promoter. HlyII expression profiles demonstrate that both HlyIIR and Fur regulate HlyII expression in a concerted fashion, with the effect of Fur being maximal in the early stages of bacterial growth. In sum, these results show that Fur serves as a transcriptional repressor for hlyII expression.

  18. Nanoporous sorbent material as an oral phosphate binder and for aqueous phosphate, chromate, and arsenate removal

    PubMed Central

    Sangvanich, Thanapon; Ngamcherdtrakul, Worapol; Lee, Richard; Morry, Jingga; Castro, David; Fryxell, Glen E.; Yantasee, Wassana

    2014-01-01

    Phosphate removal is both biologically and environmentally important. Biologically, hyperphosphatemia is a critical condition in end-stage chronic kidney disease patients. Patients with hyperphosphatemia are treated long-term with oral phosphate binders to prevent phosphate absorption to the body by capturing phosphate in the gastrointestinal (GI) tract followed by fecal excretion. Environmentally, phosphate levels in natural water resources must be regulated according to limits set forth by the US Environmental Protection Agency. By utilizing nanotechnology and ligand design, we developed a new material to overcome limitations of traditional sorbent materials such as low phosphate binding capacity, slow binding kinetics, and negative interference by other anions. A phosphate binder based on iron-ethylenediamine on nanoporous silica (Fe-EDA-SAMMS) has been optimized for substrates and Fe(III) deposition methods. The Fe-EDA-SAMMS material had a 4-fold increase in phosphate binding capacity and a broader operating pH window compared to other reports. The material had a faster phosphate binding rate and was significantly less affected by other anions than Sevelamer HCl, the gold standard oral phosphate binder, and AG® 1-X8, a commercially available anion exchanger. It had less cytotoxicity to Caco-2 cells than lanthanum carbonate, another prescribed oral phosphate binder. The Fe-EDA-SAMMS also had high capacity for arsenate and chromate, two of the most toxic anions in natural water. PMID:25554735

  19. Melanin-Based Coatings as Lead-Binding Agents

    PubMed Central

    Sono, Karin; Lye, Diane; Moore, Christine A.; Boyd, W. Christopher; Gorlin, Thomas A.; Belitsky, Jason M.

    2012-01-01

    Interactions between metal ions and different forms of melanin play significant roles in melanin biochemistry. The binding properties of natural melanin and related synthetic materials can be exploited for nonbiological applications, potentially including water purification. A method for investigating metal ion-melanin interactions on solid support is described, with lead as the initial target. 2.5 cm discs of the hydrophobic polymer PVDF were coated with synthetic eumelanin from the tyrosinase-catalyzed polymerization of L-dopa, and with melanin extracted from human hair. Lead (Pb2+) binding was quantified by atomic absorption spectroscopy (flame mode), and the data was well fit by the Langmuir model. Langmuir affinities ranged from 3.4 · 103 to 2.2 · 104 M−1. At the maximum capacity observed, the synthetic eumelanin coating bound ~9% of its mass in lead. Binding of copper (Cu2+), zinc (Zn2+), and cadmium (Cd2+) to the synthetic-eumelanin-coated discs was also investigated. Under the conditions tested, the Langmuir affinities for Zn2+, Cd2+, and Cu2+ were 35%, 53%, and 77%, respectively, of the Langmuir affinity for Pb2+. The synthetic-eumelanin-coated discs have a slightly higher capacity for Cu2+ on a per mole basis than for Pb2+, and lower capacities for Cd2+ and Zn2+. The system described can be used to address biological questions and potentially be applied toward melanin-based water purification. PMID:22611345

  20. Important role of N108 residue in binding of bovine foamy virus transactivator Tas to viral promoters.

    PubMed

    Bing, Tiejun; Zhang, Suzhen; Liu, Xiaojuan; Liang, Zhibin; Shao, Peng; Zhang, Song; Qiao, Wentao; Tan, Juan

    2016-06-30

    Bovine foamy virus (BFV) encodes the transactivator BTas, which enhances viral gene transcription by binding to the long terminal repeat promoter and the internal promoter. In this study, we investigated the different replication capacities of two similar BFV full-length DNA clones, pBS-BFV-Y and pBS-BFV-B. Here, functional analysis of several chimeric clones revealed a major role for the C-terminal region of the viral genome in causing this difference. Furthermore, BTas-B, which is located in this C-terminal region, exhibited a 20-fold higher transactivation activity than BTas-Y. Sequence alignment showed that these two sequences differ only at amino acid 108, with BTas-B containing N108 and BTas-Y containing D108 at this position. Results of mutagenesis studies demonstrated that residue N108 is important for BTas binding to viral promoters. In addition, the N108D mutation in pBS-BFV-B reduced the viral replication capacity by about 1.5-fold. Our results suggest that residue N108 is important for BTas binding to BFV promoters and has a major role in BFV replication. These findings not only advances our understanding of the transactivation mechanism of BTas, but they also highlight the importance of certain sequence polymorphisms in modulating the replication capacity of isolated BFV clones.

  1. The effects of magnesium on potassium transport in ferret red cells.

    PubMed Central

    Flatman, P W

    1988-01-01

    1. The magnesium dependence of net and isotopic (using 86Rb as tracer) potassium transport was measured in fed ferret red cells. Bumetanide (0.1 mM) was used to dissect total flux into two components: bumetanide sensitive and bumetanide resistant. 2. Increasing the external magnesium concentration from zero (added) to 2 mM stimulated bumetanide-sensitive uptake by 16% but inhibited the bumetanide-resistant component by about 20%. 3. Ionophore A23187 was used to control internal magnesium concentration. A23187 was usually present in the cells during measurement of isotopic fluxes but was washed away before measurement of net fluxes. The magnesium-buffering characteristics of fed ferret red cells were assessed during these experiments. The cytoplasm acts as a high-capacity, low-affinity magnesium buffer over most of the range. Some high-affinity binding was seen in the presence of A23187 and 2 mM-EDTA. 4. A23187 itself slightly inhibits bumetanide-sensitive potassium transport. 5. Bumetanide-sensitive potassium transport is strongly dependent on the concentration of internal ionized magnesium. Transport is 35% maximal at 10(-7) M and increases up to the maximal rate at 1.3 mM. Further increase in ionized magnesium concentration to 3.5 mM has no additional effect. The curve relating activity to magnesium concentration is steepest at the physiological magnesium concentration. The effects of changing magnesium concentration are fully reversible. 6. Reduction of internal ionized magnesium concentration to 10(-7) M with A23187 and EDTA approximately doubles bumetanide-resistant potassium transport. 7. Bumetanide-sensitive fluxes occur via the sodium-potassium-chloride co-transport system under the conditions used. Results described in this paper thus suggest that internal magnesium may be an important physiological controller of sodium-potassium-chloride co-transport activity. PMID:3137332

  2. [Pulmonary function of children with acute leukemia in maintenance phase of chemotherapy].

    PubMed

    de Macêdo, Thalita Medeiros Fernandes; Campos, Tania Fernandes; Mendes, Raquel Emanuele de França; França, Danielle Corrêa; Chaves, Gabriela Suéllen da Silva; de Mendonça, Karla Morganna Pereira Pinto

    2014-12-01

    The aim of this study was to assess the pulmonary function of children with acute leukemia. Cross-sectional observational analytical study that enrolled 34 children divided into groups A (17 with acute leukemia in the maintenance phase of chemotherapy) and B (17 healthy children). The groups were matched for sex, age and height. Spirometry was measured using a spirometer Microloop Viasys(®) in accordance with American Thoracic Society and European Respiratory Society guidelines. Maximal respiratory pressures were measured with an MVD300 digital manometer (Globalmed(®)). Maximal inspiratory pressures and maximal expiratory pressures were measured from residual volume and total lung capacity, respectively. Group A showed a significant decrease in maximal inspiratory pressures when compared to group B. No significant difference was found between the spirometric values of the two groups, nor was there any difference between maximal inspiratory pressure and maximal expiratory pressure values in group A compared to the lower limit values proposed as reference. Children with acute leukemia, myeloid or lymphoid, during the maintenance phase of chemotherapy exhibited unchanged spirometric variables and maximal expiratory pressure; However, there was a decrease in inspiratory muscle strength. Copyright © 2014 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  3. Cluster analysis identifies three urodynamic patterns in patients with orthotopic neobladder reconstruction.

    PubMed

    Kim, Kwang Hyun; Yoon, Hyun Suk; Song, Wan; Choo, Hee Jung; Yoon, Hana; Chung, Woo Sik; Sim, Bong Suk; Lee, Dong Hyeon

    2017-01-01

    To classify patients with orthotopic neobladder based on urodynamic parameters using cluster analysis and to characterize the voiding function of each group. From January 2012 to November 2015, 142 patients with bladder cancer underwent radical cystectomy and Studer neobladder reconstruction at our institute. Of the 142 patients, 103 with complete urodynamic data and information on urinary functional outcomes were included in this study. K-means clustering was performed with urodynamic parameters which included maximal cystometric capacity, residual volume, maximal flow rate, compliance, and detrusor pressure at maximum flow rate. Three groups emerged by cluster analysis. Urodynamic parameters and urinary function outcomes were compared between three groups. Group 1 (n = 44) had ideal urodynamic parameters with a mean maximal bladder capacity of 513.3 ml and mean residual urine volume of 33.1 ml. Group 2 (n = 42) was characterized by small bladder capacity with low compliance. Patients in group 2 had higher rates of daytime incontinence and nighttime incontinence than patients in group 1. Group 3 (n = 17) was characterized by large residual urine volume with high compliance. When we examined gender differences in urodynamics and functional outcomes, residual urine volume and the rate of daytime incontinence were only marginally significant. However, females were significantly more likely to belong to group 2 or 3 (P = 0.003). In multivariate analysis to identify factors associated with group 1 which has the most ideal urodynamic pattern, age (OR 0.95, P = 0.017) and male gender (OR 7.57, P = 0.003) were identified as significant factors. While patients with ileal neobladder present with various voiding symptoms, three urodynamic patterns were identified by cluster analysis. Approximately half of patients had ideal urodynamic parameters. The other two groups were characterized by large residual urine and small capacity bladder with low compliance. Young age and male gender appear to have a favorable impact on urodynamic and voiding outcomes in patients undergoing orthotopic neobladder reconstruction.

  4. Development of the Hospital Ship Replacement (HSR) Concept - Maximizing Capability & Affordability

    DTIC Science & Technology

    2014-08-01

    be restricted by weight when it comes to passenger capacity. For verification, these patient capacity estimates were compared to seating ...ABSTRACT The Center for Innovation in Ship Design (CISD) requested a design effort to refine and expand upon a previous development of a concept that...could serve as a replacement for the existing hospital ships, USNS Mercy (T-AHS 19) and USNS Comfort (T-AHS 20). These ships are over 35 years old and

  5. Aerobic capacity in speed-power athletes aged 20-90 years vs endurance runners and untrained participants.

    PubMed

    Kusy, K; Zieliński, J

    2014-02-01

    We studied relationships between age and aerobic capacity in three groups of subjects adhering to different exercise modalities. A total of 203 men aged 20-90 years were examined: 52 speed-power track and field athletes (SP), 89 endurance runners (ER) and 62 untrained individuals (UT). Maximal exercise characteristics were obtained during a graded treadmill test until exhaustion: oxygen uptake (VO2max), heart rate (HRmax), oxygen pulse (O2 Pulsemax) and maximal distance (Distmax). Information about training history and weekly training amount was collected. A linear model of regression was adopted. VO2max in SP was lower than in ER, but significantly higher than in UT. The cross-sectional rates of decline in body mass-adjusted VO2max and Distmax were significantly smaller in SP than in ER and UT. About 80 years of age, the levels of VO2max and Distmax reached similar values in SP and ER. The decline in HRmax, but not in O2 Pulsemax was suggested as a cardiac adaptation accounting for between-group differences in VO2max loss. Weekly training volume was a significant positive predictor of age-related changes in aerobic capacity. In conclusion, not only endurance, but also speed-power exercise appears adequate to ensure an elevated aerobic capacity at old age. © 2012 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Low-level carbon monoxide exposure and work capacity at 1600 meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiser, P.C.; Cropp, G.J.A.; Morrill, C.G.

    At sea level, low-level carbon monoxide (CO) exposure impairs exercise performance. To determine if altitude residence at 1600 m augments this CO effect, two studies of graded treadmill work capacity were done. The Initial Study investigated nine, non-smoking male subjects breathing either filtered air (FA) or 28 ppm CO in filtered air. End-exercise carboxyhemoglobin (HbCO) levels averaged 0.9 %HbCO breathing FA and 4.7 %HbCO breathing CO. Total work performance and aerobic work capacity were reduced. Work heart rate was elevated, and post-exercise left ventricular ejection time breathing CO did not shorten to the same degree as with FA exposure. COmore » exposure resulted in a lower anaerobic threshold, and a greater minute ventilation occurred at work rates heavier than the anaerobic threshold due to an increased blood lactate level. The Dose-Response Study exposed twelve subjects to FA or CO such that the end-exercise HbCO levels were 0.7, 3.5, 5.4 and 8.7 %HbCO. Exercise performance and aerobic work capacity were impaired in proportion to the CO exposure. In both studies, maximal cardio-pulmonary responses were not different, but submaximal exercise changes were elevated breathing CO. Thus, in healthy young men residing near 1600 m, an increase in low-level CO exposure produced a linear decrement in maximal aerobic performance similar to that reported at sea level.« less

  7. A 3-D seismic investigation of the Ray gas storage reef, Macomb County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, S.F.; Dixon, R.A.

    1994-08-01

    A 4.2 mi[sup 2] 3-D seismic survey was acquired over the Ray Niagaran reef gas storage field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the storage reservoir. Goals of the survey were to (1) determine if additional storage capacity could be found either as extensions to the Ray reef or as undiscovered satellite reefs, (2) investigate the relationship between the main body and a low-relief gas well east of the reef, and (3) determine if seismic data can be used to quantify reservoir parameters to maximize the productive capacity of infillmore » wells. Interpretation of the 3-D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and a possible relationship between porosity and seismic amplitude was investigated. A potential connection between the main reef and the low-relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3-D seismic data, and underscores the necessity of such a survey prior to developing a new storage reservoir.« less

  8. Walking Capacity Is Positively Related with Heart Rate Variability in Symptomatic Peripheral Artery Disease.

    PubMed

    Lima, A H R A; Soares, A H G; Cucato, G G; Leicht, A S; Franco, F G M; Wolosker, N; Ritti-Dias, R M

    2016-07-01

    The aim was to investigate the association between walking capacity and HRV in patients with symptomatic peripheral artery disease (PAD). This was a cross sectional study. Ninety-five patients were recruited. Patients undertook a supine position for 20 minutes, with the final 10 minutes used to examine for resting HRV. Time domain, frequency domain, and non-linear indices were evaluated. A maximal treadmill test (Gardner protocol) was performed to assess maximal walking distance (MWD) and claudication distance (CD) in groups of PAD patients based upon their walking abilities (low, moderate, high). Differences between PAD patient groups were examined using non-parametric analyses, and Spearman rank correlations identified the relationship between MWD and CD, and HRV parameters. Symptomatic PAD patients with high MWD exhibited significantly greater HRV than patients with low MWD. Furthermore, MWD was positively associated with time domain and non-linear indices of HRV (all p < .05). However, no statistically significant correlations were observed between CD and HRV parameters or between PAD groups. A greater walking capacity is associated with better HRV in symptomatic PAD patients. Copyright © 2016 European Society for Vascular Surgery. Published by Elsevier Ltd. All rights reserved.

  9. Optimizing the robustness of electrical power systems against cascading failures.

    PubMed

    Zhang, Yingrui; Yağan, Osman

    2016-06-21

    Electrical power systems are one of the most important infrastructures that support our society. However, their vulnerabilities have raised great concern recently due to several large-scale blackouts around the world. In this paper, we investigate the robustness of power systems against cascading failures initiated by a random attack. This is done under a simple yet useful model based on global and equal redistribution of load upon failures. We provide a comprehensive understanding of system robustness under this model by (i) deriving an expression for the final system size as a function of the size of initial attacks; (ii) deriving the critical attack size after which system breaks down completely; (iii) showing that complete system breakdown takes place through a first-order (i.e., discontinuous) transition in terms of the attack size; and (iv) establishing the optimal load-capacity distribution that maximizes robustness. In particular, we show that robustness is maximized when the difference between the capacity and initial load is the same for all lines; i.e., when all lines have the same redundant space regardless of their initial load. This is in contrast with the intuitive and commonly used setting where capacity of a line is a fixed factor of its initial load.

  10. Plasticity of muscle function in a thermoregulating ectotherm (Crocodylus porosus): biomechanics and metabolism.

    PubMed

    Seebacher, Frank; James, Rob S

    2008-03-01

    Thermoregulation and thermal sensitivity of performance are thought to have coevolved so that performance is optimized within the selected body temperature range. However, locomotor performance in thermoregulating crocodiles (Crocodylus porosus) is plastic and maxima shift to different selected body temperatures in different thermal environments. Here we test the hypothesis that muscle metabolic and biomechanical parameters are optimized at the body temperatures selected in different thermal environments. Hence, we related indices of anaerobic (lactate dehydrogenase) and aerobic (cytochrome c oxidase) metabolic capacities and myofibrillar ATPase activity to the biomechanics of isometric and work loop caudofemoralis muscle function. Maximal isometric stress (force per muscle cross-sectional area) did not change with thermal acclimation, but muscle work loop power output increased with cold acclimation as a result of shorter activation and relaxation times. The thermal sensitivity of myofibrillar ATPase activity decreased with cold acclimation in caudofemoralis muscle. Neither aerobic nor anaerobic metabolic capacities were directly linked to changes in muscle performance during thermal acclimation, although there was a negative relationship between anaerobic capacity and isometric twitch stress in cold-acclimated animals. We conclude that by combining thermoregulation with plasticity in biomechanical function, crocodiles maximize performance in environments with highly variable thermal properties.

  11. Physical-layer security analysis of a quantum-noise randomized cipher based on the wire-tap channel model.

    PubMed

    Jiao, Haisong; Pu, Tao; Zheng, Jilin; Xiang, Peng; Fang, Tao

    2017-05-15

    The physical-layer security of a quantum-noise randomized cipher (QNRC) system is, for the first time, quantitatively evaluated with secrecy capacity employed as the performance metric. Considering quantum noise as a channel advantage for legitimate parties over eavesdroppers, the specific wire-tap models for both channels of the key and data are built with channel outputs yielded by quantum heterodyne measurement; the general expressions of secrecy capacities for both channels are derived, where the matching codes are proved to be uniformly distributed. The maximal achievable secrecy rate of the system is proposed, under which secrecy of both the key and data is guaranteed. The influences of various system parameters on secrecy capacities are assessed in detail. The results indicate that QNRC combined with proper channel codes is a promising framework of secure communication for long distance with high speed, which can be orders of magnitude higher than the perfect secrecy rates of other encryption systems. Even if the eavesdropper intercepts more signal power than the legitimate receiver, secure communication (up to Gb/s) can still be achievable. Moreover, the secrecy of running key is found to be the main constraint to the systemic maximal secrecy rate.

  12. The effect of prolonged intrauterine hyperinsulinemia on iron utilization in fetal sheep.

    PubMed

    Georgieff, M K; Widness, J A; Mills, M M; Stonestreet, B S

    1989-11-01

    Newborn infants of poorly controlled insulin-dependent diabetic mothers demonstrate a redistribution of iron from serum and tissue stores into red blood cells. These changes may be due to increases in iron utilization during augmented Hb synthesis, which compensates for chronic intrauterine hypoxemia induced by prolonged fetal hyperinsulinemia. We tested this hypothesis by measuring plasma iron, total iron-binding capacity, percent iron-binding capacity saturation (total iron-binding capacity saturation), Hb concentration, total red cell Hb, and total red cell iron in the arterial blood of 11 chronically instrumented fetal sheep after 7-12 d of infusion with 15 U/day of insulin (n = 5) or placebo (n = 6). The insulin-infused fetal sheep had higher mean +/- SD plasma insulin concentrations (448 +/- 507 versus 11 +/- 8 mU/L; p less than 0.001) and lower arterial oxygen saturations (38 +/- 7 versus 54 +/- 9%; p less than 0.02). The insulin-infused group had a lower mean plasma iron concentration (20.8 +/- 10.9 versus 42.1 +/- 14.7 microM/L; p less than 0.02) and total iron-binding capacity saturation (36 +/- 20 versus 64 +/- 22%; p less than 0.02) and a higher total red cell Hb (45.4 +/- 8.7 versus 32.6 +/- 8.8 g; p less than 0.02) and total red cell iron content (154 +/- 29 versus 111 +/- 29 mg; p less than 0.02) when compared with the placebo group. Seven to 12 d of intrauterine hyperinsulinemia decreases serum iron and increases total red cell iron, most likely by stimulating increased Hb synthesis in response to low arterial oxygen saturation.(ABSTRACT TRUNCATED AT 250 WORDS)

  13. Avian Nanostructured Tissues as Models for New Defensive Coatings and Photonic Crystal Fibers

    DTIC Science & Technology

    2012-03-31

    promiscuous binding capacity of chitin , the chemical backbone of the arthropod cuticle (Kumar 2000). This polysaccharide binds many proteins and other...properties. The greater refractive index contrast between light and dark layers afforded by chitin may allow Arthropoda to attain brighter and more 71

  14. The Thermal Stabilization of Vaccines Against Agents of Bioterrorism

    DTIC Science & Technology

    2005-09-01

    to determine (1) whether rPA in the formulation buffer in the absence of excipients binds to Alhydrogel®and (2) the binding capacity . The aluminum...botulinum toxin (Allergan), A ricin vaccine (DOR Biopharma ) and a vaccine against Norwalk virus (Ligocyte) were also initiated and are in various

  15. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots.

    PubMed

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-06

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625 /S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  16. Magnetic, core-shell structured and surface molecularly imprinted polymers for the rapid and selective recognition of salicylic acid from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Zulei; Niu, Dechao; Li, Yongsheng; Shi, Jianlin

    2018-03-01

    In this work, a novel kind of magnetic, core-shell structured and surface molecularly imprinted polymers (MMIPs) for the recognition of salicylic acid (SA) was facilely synthesized through a surface imprinting and sol-gel polymerization approach. The as-synthesized MMIPs exhibit uniform core-shell structure and favorable magnetic properties with a saturation magnetization of 22.8 emu g-1. The binding experiments demonstrated that MMIPs possessed high binding and specific recognition capacity, as well as fast binding kinetics and phase separation rate. The maximum binding capacity of MMIPs is around 36.8 mg g-1, nearly 6 times that of the magnetic non-imprinted polymers (MNIPs). Moreover, the selectivity experiments show that all the relative selectivity coefficients towards SA over its structure analogs are higher than 18, further indicating the markedly enhanced binding selectivity of MMIPs. Furthermore, the MMIPs were successfully applied for the determination of SA in environmental water samples with the recovery rates ranging from 94.0 to 108.0 %. This strategy may provide a versatile approach for the fabrication of well-defined molecularly imprinted polymers on nanomaterials for the analysis of complicated matrixes.

  17. A CE-FL based method for real-time detection of in-capillary self-assembly of the nanoconjugates of polycysteine ligand and quantum dots

    NASA Astrophysics Data System (ADS)

    Wang, Jianhao; Zhu, Zhilan; Qiu, Lin; Wang, Jianpeng; Wang, Xiang; Xiao, Qicai; Xia, Jiang; Liu, Li; Liu, Xiaoqian; Feng, Wei; Wang, Jinmei; Miao, Peng; Gao, Liqian

    2018-07-01

    Small molecules with free thiol groups always show high binding affinity to quantum dots (QDs). However, it is still highly challenging to detect the binding capacity between thiol-containing molecules and QDs inside a capillary. To conquer this limitation, a capillary electrophoresis with fluorescence detection (CE-FL) based assay was proposed and established to investigate the binding capacity between QDs and a poly-thiolated peptide (ATTO 590-DDSSGGCCPGCC, ATTO-C4). Interestingly, the results showed that interval time had a great influence on QDs and ATTO-C4 self-assembly, which can be attributed to longer interval time benefitting the binding of QDs to ATTO-C4. The stability assays on ATTO-C4-QD assembly indicated that high concentration of imidazole or GSH had a high capability of competing with the bound ATTO-C4, evidenced by dramatically dropping of S 625/S 565 ratio from 0.78 to 0.30 or 0.29. Therefore, all these results above suggested that this novel CE-FL based detection assay could be successfully applied to the binding studies between QDs and thiol-containing biomolecules.

  18. LH-RH binding to purified pituitary plasma membranes: absence of adenylate cyclase activation.

    PubMed

    Clayton, R N; Shakespear, R A; Marshall, J C

    1978-06-01

    Purified bovine pituitary plasma membranes possess two specific LH-RH binding sites. The high affinity site (2.5 X 10(9) l/mol) has low capacity (9 X 10(-15) mol/mg membrane protein) while the low affinity site 6.1 X 10(5) l/mol) has a much higher capacity (1.1 X 10(-10) mol/mg). Specific LH-RH binding to plasma membranes is increased 8.5-fold during purification from homogenate whilst adenylate cyclase activity is enriched 7--8-fold. Distribution of specific LH-RH binding to sucrose density gradient interface fractions parallels that of adenylate cyclase activity. Mg2+ and Ca2+ inhibit specific [125I]LH-RH binding at micromolar concentrations. Synthetic LH-RH, up to 250 microgram/ml, failed to stimulate adenylase cyclase activity of the purified bovine membranes. Using a crude 10,800 g rat pituitary membrane preparation, LH-RH similarly failed to activate adenylate cyclase even in the presence of guanyl nucleotides. These data confirm the presence of LH-RH receptor sites on pituitary plasma membranes and suggest that LH-RH-induced gonadotrophin release may be mediated by mechanisms other than activation of adenylate cyclase.

  19. Gold Binding by Native and Chemically Modified Hops Biomasses

    PubMed Central

    López, M. Laura; Peralta-Videa, J. R.; de la Rosa, G.; Armendáriz, V.; Herrera, I.; Troiani, H.; Henning, J.

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass (Humulus lupulus) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding at pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively. PMID:18365087

  20. Testing the Underlying Chemical Principles of the Biotic Ligand Model (BLM) to Marine Copper Systems: Measuring Copper Speciation Using Fluorescence Quenching.

    PubMed

    Tait, Tara N; McGeer, James C; Smith, D Scott

    2018-01-01

    Speciation of copper in marine systems strongly influences the ability of copper to cause toxicity. Natural organic matter (NOM) contains many binding sites which provides a protective effect on copper toxicity. The purpose of this study was to characterize copper binding with NOM using fluorescence quenching techniques. Fluorescence quenching of NOM with copper was performed on nine sea water samples. The resulting stability constants and binding capacities were consistent with literature values of marine NOM, showing strong binding with [Formula: see text] values from 7.64 to 10.2 and binding capacities ranging from 15 to 3110 nmol mg [Formula: see text] Free copper concentrations estimated at total dissolved copper concentrations corresponding to previously published rotifer effect concentrations, in the same nine samples, were statistically the same as the range of free copper calculated for the effect concentration in NOM-free artificial seawater. These data confirms the applicability of fluorescence spectroscopy techniques for NOM and copper speciation characterization in sea water and demonstrates that such measured speciation is consistent with the chemical principles underlying the biotic ligand model approach for bioavailability-based metals risk assessment.

  1. Removal of cyanotoxins from surface water resources using reusable molecularly imprinted polymer adsorbents.

    PubMed

    Krupadam, Reddithota J; Patel, Govind P; Balasubramanian, Rajasekhar

    2012-06-01

    Microcystins (MCs; cyclic heptapeptides) are produced by freshwater cyanobacteria and cause public health concern in potable water supplies. There are more than 60 types of MCs identified to date, of which MC-LR is the most common found worldwide. For MC-LR, the WHO has established a threshold value of 1 μg L(-1) for drinking water. The present MCs removal methods such as coagulation, flocculation, adsorption, and filtration showed low efficiency for removing dissolved MC fraction from surface waters to the stipulated limit prescribed by WHO based on MC health impacts. The search for cost-effective and efficient removal method is still warranted for remediation of dissolved MC-LR-contaminated water resources. Molecularly imprinted polymer (MIP) adsorbent has been prepared using non-covalent imprinting approach. Using MC-LR as a template, itaconic acid as a functional monomer, and ethylene glycol dimethacrylate as a cross-linking monomer, a MIP has been synthesized. Computer simulations were used to design effective binding sites for MC-LR binding in aqueous solutions. Batch binding adsorption assay was followed to determine binding capacity of MIP under the influence of environmental parameters such as total dissolved solids and pH. The adsorptive removal of MC-LR from lake water has been investigated using MIPs. The MIP showed excellent adsorption potential toward MC-LR in aqueous solutions with a binding capacity of 3.64 μg mg(-1) which is about 60% and 70% more than the commercially used powdered activated carbon (PAC) and resin XAD, respectively. Environmental parameters such as total organic carbon (represented as chemical oxygen demand (COD)) and total dissolved solids (TDS) showed no significant interference up to 300 mg L(-1) for MC-LR removal from lake water samples. It was found that the binding sites on PAC and XAD have more affinity toward COD and TDS than the MC-LR. Further, the adsorption capacity of the MIP was evaluated rigorously by its repeated contact with fresh lake water, and it was found that the adsorption capacity of the MIP did not change even after seven adsorption/desorption cycles. The contaminated water of MC-LR (1.0 μg L(-1)) of 3,640 L could be treated by 1 g of MIP with an estimated cost of US $1.5. The adsorption capacity of the MIP is 40% more than commercially used PAC and resins and also the polymer showed reusable potential which is one of the important criteria in selection of cyanotoxins remediation methods.

  2. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using ({sup 125}I)melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37{degree}C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of ({sup 125}I)melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8more » fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of ({sup 125}I)melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the ({sup 125}I)melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland.« less

  3. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water

    PubMed Central

    Chitpong, Nithinart; Husson, Scott M.

    2016-01-01

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (Rh) measurements for PAA and PIA obtained from dynamic light scattering, which show that Rh values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration. PMID:27999394

  4. Nanofiber Ion-Exchange Membranes for the Rapid Uptake and Recovery of Heavy Metals from Water.

    PubMed

    Chitpong, Nithinart; Husson, Scott M

    2016-12-20

    An evaluation of the performance of polyelectrolyte-modified nanofiber membranes was undertaken to determine their efficacy in the rapid uptake and recovery of heavy metals from impaired waters. The membranes were prepared by grafting poly(acrylic acid) (PAA) and poly(itaconic acid) (PIA) to cellulose nanofiber mats. Performance measurements quantified the dynamic ion-exchange capacity for cadmium (Cd), productivity, and recovery of Cd(II) from the membranes by regeneration. The dynamic binding capacities of Cd(II) on both types of nanofiber membrane were independent of the linear flow velocity, with a residence time of as low as 2 s. Analysis of breakthrough curves indicated that the mass flow rate increased rapidly at constant applied pressure after membranes approached equilibrium load capacity for Cd(II), apparently due to a collapse of the polymer chains on the membrane surface, leading to an increased porosity. This mechanism is supported by hydrodynamic radius (R h ) measurements for PAA and PIA obtained from dynamic light scattering, which show that R h values decrease upon Cd(II) binding. Volumetric productivity was high for the nanofiber membranes, and reached 0.55 mg Cd/g/min. The use of ethylenediaminetetraacetic acid as regeneration reagent was effective in fully recovering Cd(II) from the membranes. Ion-exchange capacities were constant over five cycles of binding-regeneration.

  5. Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Evaluation of Maximal Oxygen Uptake and Submaximal Estimates of VO2max Before, During, and After Long Duration International Space Station Missions (VO2max) will document changes in maximum oxygen uptake for crewmembers onboard the International Space Station (ISS) on long-duration missions, greater than 90 days. This investigation will establish the characteristics of VO2max during flight and assess the validity of the current methods of tracking aerobic capacity change during and following the ISS missions.

  6. The minor house dust mite allergen Der p 13 is a fatty acid-binding protein and an activator of a TLR2-mediated innate immune response.

    PubMed

    Satitsuksanoa, P; Kennedy, M; Gilis, D; Le Mignon, M; Suratannon, N; Soh, W T; Wongpiyabovorn, J; Chatchatee, P; Vangveravong, M; Rerkpattanapipat, T; Sangasapaviliya, A; Piboonpocanun, S; Nony, E; Ruxrungtham, K; Jacquet, A

    2016-10-01

    The house dust mite (HDM) allergen Der p 13 could be a lipid-binding protein able to activate key innate signaling pathways in the initiation of the allergic response. We investigated the IgE reactivity of recombinant Der p 13 (rDer p 13), its lipid-binding activities, and its capacity to stimulate airway epithelium cells. Purified rDer p 13 was characterized by mass spectrometry, circular dichroism, fluorescence-based lipid-binding assays, and in silico structural prediction. IgE-binding activity and allergenic potential of Der p 13 were examined by ELISA, basophil degranulation assays, and in vitro airway epithelial cell activation assays. Protein modeling and biophysical analysis indicated that Der p 13 adopts a β-barrel structure with a predominately apolar pocket representing a potential binding site for hydrophobic ligands. Fluorescent lipid-binding assays confirmed that the protein is highly selective for ligands and that it binds a fatty acid with a dissociation constant typical of lipid transporter proteins. The low IgE-binding frequency (7%, n = 224) in Thai HDM-allergic patients as well as the limited propensity to activate basophil degranulation classifies Der p 13 as a minor HDM allergen. Nevertheless, the protein with its presumptively associated lipid(s) triggered the production of IL-8 and GM-CSF in respiratory epithelial cells through a TLR2-, MyD88-, NF-kB-, and MAPK-dependent signaling pathway. Although a minor allergen, Der p 13 may, through its lipid-binding capacity, play a role in the initiation of the HDM-allergic response through TLR2 activation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Molecular Evolution of the Oxygen-Binding Hemerythrin Domain

    PubMed Central

    Alvarez-Carreño, Claudia; Becerra, Arturo; Lazcano, Antonio

    2016-01-01

    Background The evolution of oxygenic photosynthesis during Precambrian times entailed the diversification of strategies minimizing reactive oxygen species-associated damage. Four families of oxygen-carrier proteins (hemoglobin, hemerythrin and the two non-homologous families of arthropodan and molluscan hemocyanins) are known to have evolved independently the capacity to bind oxygen reversibly, providing cells with strategies to cope with the evolutionary pressure of oxygen accumulation. Oxygen-binding hemerythrin was first studied in marine invertebrates but further research has made it clear that it is present in the three domains of life, strongly suggesting that its origin predated the emergence of eukaryotes. Results Oxygen-binding hemerythrins are a monophyletic sub-group of the hemerythrin/HHE (histidine, histidine, glutamic acid) cation-binding domain. Oxygen-binding hemerythrin homologs were unambiguously identified in 367/2236 bacterial, 21/150 archaeal and 4/135 eukaryotic genomes. Overall, oxygen-binding hemerythrin homologues were found in the same proportion as single-domain and as long protein sequences. The associated functions of protein domains in long hemerythrin sequences can be classified in three major groups: signal transduction, phosphorelay response regulation, and protein binding. This suggests that in many organisms the reversible oxygen-binding capacity was incorporated in signaling pathways. A maximum-likelihood tree of oxygen-binding hemerythrin homologues revealed a complex evolutionary history in which lateral gene transfer, duplications and gene losses appear to have played an important role. Conclusions Hemerythrin is an ancient protein domain with a complex evolutionary history. The distinctive iron-binding coordination site of oxygen-binding hemerythrins evolved first in prokaryotes, very likely prior to the divergence of Firmicutes and Proteobacteria, and spread into many bacterial, archaeal and eukaryotic species. The later evolution of the oxygen-binding hemerythrin domain in both prokaryotes and eukaryotes led to a wide variety of functions, ranging from protection against oxidative damage in anaerobic and microaerophilic organisms, to oxygen supplying to particular enzymes and pathways in aerobic and facultative species. PMID:27336621

  8. Theoretical Study of Fe(CO)n-

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Baushlicher, Charles W., Jr.

    1995-01-01

    The structures and CO binding energies are computed for Fe(CO)n- using a hybrid density functional theory (DFT) approach. The structures and ground states can be explained in terms of maximizing the Fe to CO 2pi* donation and minimizing Fe-CO 5 sigma repulsion. The trends in the CO binding energies for Fe(CO)n- and the differences between the trends for Fe(CO)n- and Fe(CO)n are also explained. For Fe(CO)n-, the second, third, and fourth CO bonding energies are in good agreement with experiment, while the first is too small. The first CO binding is also too small using the coupled cluster singles and doubles approach including a perturbation estimate of the connected triple excitations.

  9. Sex Differences in Serotonin 1 Receptor Binding in Rat Brain

    NASA Astrophysics Data System (ADS)

    Fischette, Christine T.; Biegon, Anat; McEwen, Bruce S.

    1983-10-01

    Male and female rats exhibit sex differences in binding by serotonin 1 receptors in discrete areas of the brain, some of which have been implicated in the control of ovulation and of gonadotropin release. The sex-specific changes in binding, which occur in response to the same hormonal (estrogenic) stimulus, are due to changes in the number of binding sites. Castration alone also affects the number of binding sites in certain areas. The results lead to the conclusion that peripheral hormones modulate binding by serotonin 1 receptors. The status of the serotonin receptor system may affect the reproductive capacity of an organism and may be related to sex-linked emotional disturbances in humans.

  10. Effects of a high-intensity intermittent training program on aerobic capacity and lipid profile in trained subjects

    PubMed Central

    Ouerghi, Nejmeddine; Khammassi, Marwa; Boukorraa, Sami; Feki, Moncef; Kaabachi, Naziha; Bouassida, Anissa

    2014-01-01

    Background Data regarding the effect of training on plasma lipids are controversial. Most studies have addressed continuous or long intermittent training programs. The present study evaluated the effect of short-short high-intensity intermittent training (HIIT) on aerobic capacity and plasma lipids in soccer players. Methods The study included 24 male subjects aged 21–26 years, divided into three groups: experimental group 1 (EG1, n=8) comprising soccer players who exercised in addition to regular short-short HIIT twice a week for 12 weeks; experimental group 2 (EG2, n=8) comprising soccer players who exercised in a regular football training program; and a control group (CG, n=8) comprising untrained subjects who did not practice regular physical activity. Maximal aerobic velocity and maximal oxygen uptake along with plasma lipids were measured before and after 6 weeks and 12 weeks of the respective training program. Results Compared with basal values, maximal oxygen uptake had significantly increased in EG1 (from 53.3±4.0 mL/min/kg to 54.8±3.0 mL/min/kg at 6 weeks [P<0.05] and to 57.0±3.2 mL/min/kg at 12 weeks [P<0.001]). Maximal oxygen uptake was increased only after 12 weeks in EG2 (from 52.8±2.7 mL/min/kg to 54.2±2.6 mL/min/kg, [P<0.05]), but remain unchanged in CG. After 12 weeks of training, maximal oxygen uptake was significantly higher in EG1 than in EG2 (P<0.05). During training, no significant changes in plasma lipids occurred. However, after 12 weeks, total and low-density lipoprotein cholesterol levels had decreased (by about 2%) in EG1 but increased in CG. High-density lipoprotein cholesterol levels increased in EG1 and EG2, but decreased in CG. Plasma triglycerides decreased by 8% in EG1 and increased by about 4% in CG. Conclusion Twelve weeks of short-short HIIT improves aerobic capacity. Although changes in the lipid profile were not significant after this training program, they may have a beneficial impact on health. PMID:25378960

  11. Carbachol does not down-regulate substance P receptors in pancreatic acini.

    PubMed

    Patto, R J; Vinayek, R; Jensen, R T; Gardner, J D

    1992-01-01

    In a previous study, we found that first incubating guinea pig pancreatic acini with carbachol caused desensitization of the enzyme secretory response to cholecystokinin-octapeptide (CCK-8), bombesin, and carbachol but not that to substance P. This carbachol-induced desensitization could be accounted for by carbachol-induced down-regulation of receptors for CCK-8, bombesin, and carbachol. Although carbachol did not desensitize the enzyme secretory response to substance P, an effect of carbachol on substance P receptors was not examined. In the present study, in dispersed acini from guinea pig pancreas, substance P caused a twofold increase in amylase secretion. Stimulation was half-maximal at 0.7 nM and was maximal at 10 nM. Analysis of the ability of substance P to inhibit binding of 125I-substance P to substance P receptors indicated that acini possess a single class of receptors for substance P (Kd = 0.8 +/- 0.1 nM; Bmax = 1,037 +/- 145 fmol/mg of DNA). There was a close correlation between the relative potency with which substance P stimulated amylase secretion (0.7 nM) and the potency for inhibiting binding of 125I-substance P (Kd = 0.8 nM). First incubating pancreatic acini with carbachol did not alter either substance P-stimulated enzyme secretion or binding of 125I-substance P to substance P receptors, whereas in the same experiments, carbachol reduced binding of 125I-CCK-8 to cholecystokinin receptors by 50% and decreased in CCK-8-stimulated enzyme secretion by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Receptor-binding region in human choriogonadotropin/lutropin. beta. subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keutmann, H.T.; Charlesworth, M.C.; Mason, K.A.

    1987-04-01

    Synthetic fragments have not been widely used thus far to evaluate structure-activity relations in the glycoprotein hormones. The authors prepared a series of peptides representing the intercysteine loop sequence (residues 38-57) in human choriogonadotropin (hCG) and lutropin (hLH) ..beta.. subunits, anticipating that it might be oriented toward the surface and accessible to receptors. The peptides were characterized chemically and tested for bioactivity by binding to rat ovarian membrane receptor and stimulation of Leydig cell testosterone production. The hCG..beta..-(38-57) and hLH..beta..-(38-57) peptides inhibited binding of /sup 125/I-labeled hCG half-maximally at 1.51 x 10/sup -4/ and 2.03 x 10/sup -5/ M, respectively,more » while other peptide hormones and fragments from elsewhere in the ..beta.. subunit were inactive. Both peptides stimulated testosterone production, with half-maximal responses at 3.55 x 10/sup -5/ M (hCG) and 2.18 x 10/sup -5/ M (hLH). By radioimmunoassay with an antibody to thyroglobulin-conjugated hCG..beta..-(38-57) peptide, native hCG and ..beta.. subunit were highly reactive, as were the reduced and carboxymethylated subunit and peptide. These results indicate that the 38-57 region of ..beta.. subunit is exposed on the surface and constitutes a component in the receptor-binding domain for hCG and hLH. A region of amphipathic-helical structure in the 38-57 sequence may promote hormone-receptor interactions in a manner proposed for several other peptide hormones.« less

  13. Redistricting Is Less Torturous When a Computer Does the Nitty-Gritty for You.

    ERIC Educational Resources Information Center

    Rust, Albert O.; Judd, Frank F.

    1984-01-01

    Describes "optimization" computer programing to aid in school redistricting. Using diverse demographic data, the computer plots district boundaries to minimize children's walking distance and maximize safety, improve racial balance, and keep enrollment within school capacity. (TE)

  14. Assessing deficit irrigation strategies for corn using simulation.

    USDA-ARS?s Scientific Manuscript database

    Declining groundwater levels in the Ogallala aquifer due to withdrawals exceeding annual recharge result in diminished well capacities that eventually become incapable of meeting full crop water needs. Producers need recommendations for deficit irrigation strategies that can maximize net returns in ...

  15. Effects of guanyl nucleotides on CCKB receptor binding in brain tissue and continuous cell lines: a comparative study.

    PubMed

    Kaufmann, R; Schöneberg, T; Henklein, P; Meyer, R; Martin, H; Ott, T

    1995-07-01

    The effects of non-hydrolyzable guanyl nucleotide analogue GTP-gamma S on CCKB receptor binding in human and guinea-pig cortex, Jurkat T-cells, rat pituitary GH3 cells, rat glioma C6 cells and human small cell lung cancer NCI-H69 cells were investigated by using [3H]CCK-8S saturation and competition binding studies. GTP-gamma S caused inhibition of specific [3H]CCK-8S binding in a concentration dependent manner with a plateau at 10-25 microM. 25 microM GTP-gamma S resulted in a small but significant increase in Kd and IC50 values with amount very similar in all CCKB receptor models tested. However, the maximal number of specific [3H]CCK-8S binding sites (Bmax) was unaffected. Results suggest that CCKB receptors are G-protein coupled in a similar way to human and guinea-pig cortex, Jurkat cells, GH3 cells, C6 cells and NCI-H69 cells.

  16. Stoichiometry for α-bungarotoxin block of α7 acetylcholine receptors

    NASA Astrophysics Data System (ADS)

    Dacosta, Corrie J. B.; Free, Chris R.; Sine, Steven M.

    2015-08-01

    α-Bungarotoxin (α-Btx) binds to the five agonist binding sites on the homopentameric α7-acetylcholine receptor, yet the number of bound α-Btx molecules required to prevent agonist-induced channel opening remains unknown. To determine the stoichiometry for α-Btx blockade, we generate receptors comprised of wild-type and α-Btx-resistant subunits, tag one of the subunit types with conductance mutations to report subunit stoichiometry, and following incubation with α-Btx, monitor opening of individual receptor channels with defined subunit stoichiometry. We find that a single α-Btx-sensitive subunit confers nearly maximal suppression of channel opening, despite four binding sites remaining unoccupied by α-Btx and accessible to the agonist. Given structural evidence that α-Btx locks the agonist binding site in an inactive conformation, we conclude that the dominant mechanism of antagonism is non-competitive, originating from conformational arrest of the binding sites, and that the five α7 subunits are interdependent and maintain conformational symmetry in the open channel state.

  17. Calcium/calmodulin-dependent kinase II phosphorylation of the GABAA receptor alpha1 subunit modulates benzodiazepine binding.

    PubMed

    Churn, Severn B; Rana, Aniruddha; Lee, Kangmin; Parsons, J Travis; De Blas, Angel; Delorenzo, Robert J

    2002-09-01

    gamma-Aminobutyric acid (GABA) is the primary neurotransmitter that is responsible for the fast inhibitory synaptic transmission in the central nervous system. A major post-translational mechanism that can rapidly regulate GABAAR function is receptor phosphorylation. This study was designed to test the effect of endogenous calcium and calmodulin-dependent kinase II (CaM kinase II) activation on both allosteric modulator binding and GABAA receptor subunit phosphorylation. Endogenous CaM kinase II activity was stimulated, and GABAA receptors were subsequently analyzed for bothallosteric modulator binding properties and immunoprecipitated and analyzed for subunit phosphorylation levels. A significant increase in allosteric-modulator binding of the GABAAR was observed under conditions maximal for CaM kinase II activation. In addition, CaM kinase II activation resulted in a direct increase in phosphorylation of the GABAA receptor alpha1 subunit. The data suggest that the CaM kinase II-dependent phosphorylation of the GABAA receptor alpha1 subunit modulated allosteric modulator binding to the GABAA receptor.

  18. Point mutation increases a form of the NK1 receptor with high affinity for neurokinin A and B and septide

    PubMed Central

    Ciucci, Alessandra; Palma, Carla; Manzini, Stefano; Werge, Thomas M

    1998-01-01

    The binding modalities of substance P and neurokinin A on the wild type and Gly166 to-Cys mutant NK1 receptors expressed on CHO cells were investigated in homologous and heterologous binding experiments using both radiolabelled substance P and neurokinin A.On the wild type NK1 receptor NKA displaces radiolabelled substance P with very low apparent affinity, despite its high-affinity binding constant (determined in homologous binding experiments). The Gly166 to-Cys substitution in the NK1 tachykinin receptor greatly enhances the apparent affinity of neurokinin A in competition for radiolabelled substance P, but it does not change the binding constant of neurokinin A. The mutation, thereby, eliminates the discrepancy between the low apparent affinity and the high binding constant of neurokinin A.On the wild type receptor the binding capacity of neurokinin A is significantly smaller than that of substance P. In contrast, the two tachykinins bind to approximately the same number of sites on the mutant receptor.Simultaneous mass action law analysis of binding data in which multiple radioligands were employed in parallel demonstrated that a one-site model was unable to accommodate all the experimental data, whereas a two-site model provided a dramatically better description.These two receptor-sites display equally high affinity for substance P, while neurokinin A strongly discriminates between a high and a low affinity component. The binding affinities of neurokinin A are not affected by the mutation, which instead specifically alters the distribution between receptor sites in favour of a high affinity neurokinin A binding form.The low apparent affinity and binding capacity of neurokinin A on the wild type receptor results from neurokinin A binding with high affinity only to a fraction of the sites labelled by substance P. The mutation increases the proportion of this site, and consequently enhances the apparent affinity and binding capacity of neurokinin A.The binding modalities of septide-like ligands (i.e. neurokinin B, SP(6-11), SP-methyl ester) are affected similarly to neurokinin A and are better resolved into two sites. The mutation leaves the affinity of these ligands for the two receptor forms unchanged, but increases the fraction of high-affinity sites. On the other hand, the binding of non-peptide and peptide antagonists (SR140.333 and FK888) behaved similarly to substance P with a single high affinity site that is unaffected by the mutation.These findings may suggest that the NK1 receptor exists in two different forms with similar affinity for substance P and NK1 antagonists, but with a high and a low affinity for neurokinin A and septide-like ligands. Hence, the Gly166 in the NK1 receptor would seem to control the distribution between a pan-reactive form and a substance P-selective form of the receptor. PMID:9786514

  19. Entanglement capacity of nonlocal Hamiltonians: A geometric approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lari, Behzad; Hassan, Ali Saif M.; Joag, Pramod S.

    We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for N-qubit pure states [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 77, 062334 (2008)]. This geometric method has the distinct advantage that it gives the experimentally implementable criteria to ensure the optimal entanglement production rate without requiring a detailed knowledge of the state of the two qubit system. For the production of entanglement in practice, we need criteria for optimal entanglement production, which can be checked inmore » situ without any need to know the state, as experimentally finding out the state of a quantum system is generally a formidable task. Further, we use our method to quantify the entanglement capacity in higher level and multipartite systems. We quantify the entanglement capacity for two qutrits and find the maximal entanglement generation rate and the corresponding state for the general isotropic interaction between qutrits, using the entanglement measure of N-qudit pure states proposed by us [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 80, 042302 (2009)]. Next we quantify the genuine three qubit entanglement capacity for a general interaction between qubits. We obtain the maximum entanglement generation rate and the corresponding three qubit state for a general isotropic interaction between qubits. The state maximizing the entanglement generation rate is of the Greenberger-Horne-Zeilinger class. To the best of our knowledge, the entanglement capacities for two qutrit and three qubit systems have not been reported earlier.« less

  20. On the intrinsic constraint of bacterial growth rate: M. tuberculosis's view of the protein translation capacity.

    PubMed

    Zhu, Manlu; Dai, Xiongfeng

    2018-01-15

    In nature, the maximal growth rates vary widely among different bacteria species. Fast-growing bacteria species such as Escherichia coli can have a shortest generation time of 20 min. Slow-growing bacteria species are perhaps best known for Mycobacterium tuberculosis, a human pathogen with a generation time being no less than 16 h. Despite of the significant progress made on understanding the pathogenesis of M. tuberculosis, we know little on the origin of its intriguingly slow growth. From a global view, the intrinsic constraint of the maximal growth rate of bacteria remains to be a fundamental question in microbiology. In this review, we analyze and discuss this issue from the angle of protein translation capacity, which is the major demand for cell growth. Based on quantitative analysis, we propose four parameters: rRNA chain elongation rate, abundance of RNA polymerase engaged in rRNA synthesis, polypeptide chain elongation rate, and active ribosome fraction, which potentially limit the maximal growth rate of bacteria. We further discuss the relation of these parameters with the growth rate for M. tuberculosis as well as other bacterial species. We highlight future comprehensive investigation of these parameters for different bacteria species to understand how bacteria set their own specific growth rates.

  1. Effect of chromatographic conditions and plasmid DNA size on the dynamic binding capacity of a monolithic support.

    PubMed

    Bicho, Diana; Sousa, Ângela; Sousa, Fani; Queiroz, João; Tomaz, Cãndida

    2014-09-01

    DNA therapies are becoming recognized alternatives for the treatment and prevention of severe pathologies. Although most current trials have used plasmids <10 kbp, in the future larger plasmids would be required. The purpose of this work was to study the chromatographic behavior of nongrafted carbonyldiimidazole monolithic disks using plasmids with different sizes under hydrophobic conditions. Thereunto, the purification of several plasmids was performed. Higher size plasmids needed lower ammonium sulfate concentration, due to the greater number of interactions between the plasmids and monolith. The dynamic binding capacity experiments for the different plasmids revealed a lower capacity for bigger plasmids. It was also verified that the increase of salt concentration from 2.5 to 3 M of ammonium sulfate increased the capacity. At the highest salt concentration, a slight improvement in the capacity using lower flow rate was observed, possibly due to compaction of plasmid molecules and its better organization on the monolith channels. Finally, a low pH also had a positive effect on the capacity. So, this monolithic support proved to be appropriate to purify the supercoiled isoform of different plasmids with different sizes, providing a valuable instrument as a purification technique. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Demonstration of clomipramine and venlafaxine occupation at serotonin reuptake sites in man in vivo.

    PubMed

    Malizia, A L; Melichar, J M; Brown, D J; Gunn, R N; Reynolds, A; Jones, T; Nutt, D J

    1997-01-01

    We describe the use of 11CRTI-55 and the Multiple Objects Coincidences Counter (MOCC) to detect in-vivo binding to peripheral serotonin reuptake sites (left chest comprising platelet and lung serotonin reuptake sites) in man. Displacement and preloading experiments with clomipramine and venlafaxine in two healthy volunteers demonstrated that 11CRTI-55 binding is decreased in a dose-dependent fashion by both these drugs which bind to the serotonin transporter. In addition parallel data from the total head curve (representing 11CRTI-55 binding to central serotonin and dopamine (DA) reuptake sites) suggest that prior blockade of the serotonin transporter may be a useful strategy to maximize radioactive counts in the head when measuring the DA transporter. The MOCC is likely to be useful to determine sequential indices of relative serotonin reuptake blockade in patients on treatment.

  3. Rapid incremental methods for the determination of serum iron and iron-binding capacity

    PubMed Central

    Beale, R. N.; Bostrom, J. O.; Taylor, R. F.

    1961-01-01

    Rapid methods depending on differential absorptiometry are described for the determination of the transferrin iron content and the latent iron-binding capacity of blood serum. Each determination requires as little as 0·5 ml. serum. The methods are well adapted for routine use in the `average' laboratory. Three or four sera may be completely analysed in 30 minutes. All operations are carried out in the cells or tubes used for the colorimetric measurements, no precipitation or heating being employed at any stage. Critical investigations of the reliability of the methods are attempted and ranges of normal values are included. PMID:13866116

  4. Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals.

    PubMed

    Liu, Yuanyue; Merinov, Boris V; Goddard, William A

    2016-04-05

    It is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table. We demonstrate this with quantum mechanics calculations for a wide range of substrate materials (not limited to C) covering a variety of structures and chemical compositions. The phenomenon arises from the competition between trends in the ionization energy and the ion-substrate coupling, down the columns of the periodic table. Consequently, the cathodic voltage for Na and Mg is expected to be lower than those for other metals in the same column. This generality provides a basis for analyzing the binding of alkali and alkaline earth metal atoms over a broad range of systems.

  5. Xyloglucan-cellulose interaction depends on the sidechains and molecular weight of xyloglucan.

    PubMed

    Lima, Denis U; Loh, Watson; Buckeridge, Marcos S

    2004-05-01

    Recent papers have brought evidence against the hypothesis that the fucosyl branching of primary wall xyloglucans (Xg) are responsible for their higher capacity of binding to cellulose. Reinforcement of this questioning has been obtained in this work where we show that the binding capacity was improved when the molecular weight (MW) of the Xg polymers is decreased by enzymatic hydrolysis. Moreover, the enthalpy changes associated with the adsorption process between Xg and cellulose is similar for Xgs with similar MW (but differing in the fine structure such as the presence/absence of fucose). On the basis of these results, we suggest that the fine structure and MW of Xg determines the energy and amount of binding to cellulose, respectively. Thus, the occurrence of different fine structural domains of Xg (e.g. the presence of fucose and the distribution of galactoses) might have several different functions in the wall. Besides the structural function in primary wall, these results might have impact on the packing features of storage Xg in seed cotyledons, since the MW and absence of fucose could also be associated with the self-association capacity. Copyright 2004 Elsevier SAS

  6. INFLAMMATORY MARKERS ASSOCIATED WITH TRAUMA AND INFECTION IN RED-TAILED HAWKS (BUTEO JAMAICENSIS) IN THE USA.

    PubMed

    Lee, Kelly A; Goetting, Valerie S; Tell, Lisa A

    2015-10-01

    Changes in inflammatory marker concentrations or activity can be used to monitor health and disease condition of domestic animals but have not been applied with the same frequency to wildlife. We measured concentrations or activity of six inflammatory markers (ceruloplasmin, haptoglobin, mannan-binding lectin-dependent complement [MBL/complement], unsaturated iron-binding capacity (UIBC) and total iron-binding capacity (TIBC), and plasma iron) in apparently healthy and sick or injured Red-tailed Hawks (Buteo jamaicensis). Haptoglobin and ceruloplasmin activities were consistently elevated in sick or injured hawks (2.1 and 2.5 times higher, respectively), and plasma iron concentrations decreased (0.46 times lower), relative to those of healthy birds. There were no differences between healthy and unhealthy hawks in TIBC and UIBC concentrations or MBL/complement activity. Therefore, haptoglobin, ceruloplasmin, and plasma iron would be useful inclusions in a panel of inflammatory markers for monitoring health in raptors.

  7. Receptors for luteinizing hormone-releasing hormone (LHRH) in Dunning R3327 prostate cancers and rat anterior pituitaries after treatment with a sustained delivery system of LHRH antagonist SB-75.

    PubMed

    Srkalovic, G; Bokser, L; Radulovic, S; Korkut, E; Schally, A V

    1990-12-01

    Membrane receptors for LHRH were evaluated in Dunning R3327 prostate cancers and rat anterior pituitaries. The receptors were characterized both in untreated animals and after in vivo treatment with microcapsules of the agonist D-Trp6-LHRH and a sustained delivery system releasing different doses (23.8, 47.6, 71.4 micrograms/day) of LHRH antagonist [Ac-D-Nal(2)1-D-Phe(4Cl)2-D-Pal(3)3,D-Cit6, D-Ala10]-LHRH (SB-75). The therapy, which lasted 8 weeks, strongly inhibited tumor growth. A group of normal Sprague-Dawley male rats was also treated for 6 weeks with microcapsules of SB-75 releasing 25 micrograms/day. In the Dunning tumors from the control group, ligand [125I, D-Trp6]-LHRH was bound to two classes of binding sites [dissociation constant, class a (Kda) = 1.01 +/- 0.30 x 10(-9) M; Kdb = 1.71 +/- 0.41 x 10(-6) M; maximal binding capacity of receptors, class a (Bmaxa) = 48.66 +/- 22.13 fmol/mg of protein; Bmaxb = 92.10 +/- 29.40 pmol/mg of protein] in both kinetic and equilibrium studies. Treatment with D-Trp6-LHRH produced down-regulation of membrane receptors for LHRH in Dunning tumors. Microcapsules of SB-75 resulted in dose-dependent up-regulation of binding sites for LHRH in Dunning tumors. Analysis of the binding data showed that interaction of labeled D-Trp6-LHRH with binding sites in anterior pituitaries was consistent with the presence of a single class of noncooperative receptors (Kd = 43.75 x 10(-9) M; Bmax = 5.25 pmol/mg membrane proteins). Prolonged treatment with microcapsules of D-Trp6-LHRH reduced both Bmax and Kd. Lower doses of SB-75 (23.8 and 47.6 micrograms/day) produced up-regulation, whereas the highest dose (71.4 micrograms/day) resulted in down-regulation of binding sites for LHRH in rat pituitaries. In normal Sprague-Dawley rats, treatment with microcapsules of SB-75 (25 micrograms/day) for 6 weeks produced a slight increase in the number of available binding sites (Bmax = 2.35 +/- 0.82 pmol/mg membrane protein) and a moderate decrease in affinity (Kd = 35.10 +/- 15.19 x 10(-9) M) of pituitary membrane receptors for LHRH. The findings provide additional support for the view that LHRH analogs exert direct effects on tumor cells. Our findings indicate that prolonged treatment with high doses of modern LHRH antagonists produces down-regulation of pituitary receptors. Our work in tumors also implies that some differences may exist between LHRH receptors, even in the same tissue, leading to the concept of subclassification of LHRH receptors.

  8. Differential inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors.

    PubMed

    Lockhart, B; Closier, M; Howard, K; Steward, C; Lestage, P

    2001-04-01

    The potential interaction of acetylcholinesterase inhibitors with cholinergic receptors may play a significant role in the therapeutic and/or side-effects associated with this class of compound. In the present study, the capacity of acetylcholinesterase inhibitors to interact with muscarinic receptors was assessed by their ability to displace both [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding in rat brain membranes. The [3H]-quinuclinidyl benzilate/[3H]-oxotremorine-M affinity ratios permitted predictions to be made of either the antagonist or agonist properties of the different compounds. A series of compounds, representative of the principal classes of acetylcholinesterase inhibitors, displaced [3H]-oxotremorine-M binding with high-to-moderate potency (ambenonium>neostigmine=pyridostigmine=tacrine>physostigmine> edrophonium=galanthamine>desoxypeganine) whereas only ambenonium and tacrine displaced [3H]-quinuclinidyl benzilate binding. Inhibitors such as desoxypeganine, parathion and gramine demonstrated negligible inhibition of the binding of both radioligands. Scatchard plots constructed from the inhibition of [3H]-oxotremorine-M binding in the absence and presence of different inhibitors showed an unaltered Bmax and a reduced affinity constant, indicative of potential competitive or allosteric mechanisms. The capacity of acetylcholinesterase inhibitors, with the exception of tacrine and ambenonium, to displace bound [3H]-oxotremorine-M in preference to [3H]quinuclinidyl benzilate predicts that the former compounds could act as potential agonists at muscarinic receptors. Moreover, the rank order for potency in inhibiting acetylcholinesterase (ambenonium>neostigmine=physostigmine =tacrine>pyridostigmine=edrophonium=galanthamine >desoxypeganine>parathion>gramine) indicated that the most effective inhibitors of acetylcholinesterase also displaced [3H]-oxotremorine-M to the greatest extent. The capacity of these inhibitors to displace [3H]-oxotremorine-M binding preclude their utilisation for the prevention of acetylcholine catabolism in rat brain membranes, the latter being required to estimate the binding of acetylcholine to [3H]-oxotremorine-M-labelled muscarinic receptors. However, fasciculin-2, a potent peptide inhibitor of acetylcholinesterase (IC50 24 nM), did prevent catabolism of acetylcholine in rat brain membranes with an atypical inhibition isotherm of [3H]-oxotremorine-M binding, thus permitting an estimation of the "global affinity" of acetylcholine (Ki 85 nM) for [3H]-oxotremorine-M-labelled muscarinic receptors in rat brain.

  9. Thermodynamics of T cell receptor – peptide/MHC interactions: progress and opportunities

    PubMed Central

    Armstrong, Kathryn M.; Insaidoo, Francis K.; Baker, Brian M.

    2013-01-01

    αβ T cell receptors (TCR) recognize peptide antigens presented by class I or class II major histocompatibility complex molecules (pMHC). Here we review the use of thermodynamic measurements in the study of TCR-pMHC interactions, with attention to the diversity in binding thermodynamics and how this is related to the variation in TCR-pMHC interfaces. We show that there is no enthalpic or entropic signature for TCR binding; rather, enthalpy and entropy changes vary in a compensatory manner that reflects a narrow free energy window for the interactions that have been characterized. Binding enthalpy and entropy changes do not correlate with structural features such as buried surface area or the number of hydrogen bonds within TCR-pMHC interfaces, possibly reflecting the myriad of contributors to binding thermodynamics, but likely also reflecting a reliance on van’t Hoff over calorimetric measurements and the unaccounted influence of equilibria linked to binding. TCR-pMHC binding heat capacity changes likewise vary considerably. In some cases the heat capacity changes are consistent with conformational differences between bound and free receptors, but there is little data indicating these conformational differences represent the need to organize commonly disordered CDR loops. In this regard, we discuss how thermodynamics may provide additional insight into conformational changes occurring upon TCR binding. Finally, we highlight opportunities for the further use of thermodynamic measurements in the study of TCR-pMHC interactions, not only for understanding TCR binding in general, but for understanding specifics of individual interactions and the engineering of T cell receptors with desired molecular recognition properties. PMID:18496839

  10. Development of gastrointestinal surface. VIII. Lectin identification of carbohydrate differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pang, K.Y.; Bresson, J.L.; Walker, W.A.

    Binding of microvillus membranes (MVM) from newborn and adult rats by concanavalin A (Con A), Ulex europaeus (UEA I), Dolichos bifluorus (DBA), and Triticum vulgaris (WGA) was examined to determine the availability of carbohydrate-containing sites for these lectins on the intestinal surface during development. Consistent patterns of differences in the reaction of MVM with these lectins were found. Con A and UEA had much higher reactivities to MVM of adult than newborn rats. /sup 125/I-labeled-UEA gel overlay experiments revealed the abundance of UEA-binding sites in MVM of adult rat in contrast to the two binding sites in MVM of amore » newborn rat. DBA bound only to MVM of the adults, and very few binding sites were found in immature MVM. In contrast to these lectins, WGA binding was much higher in MVM of the newborns and decreased with maturation. Additional experiments on the age dependence of UEA and DBA reactivities revealed that the most striking changes occur in animals from 2 to 2 wk of age. In MVM from 2-wk-old rats, there were only 13.9% and < 0.2% of the adult binding capacities for UEA and DBA, respectively. By the time the animals were 4 wk old, the binding capacity for UEA had attained close to the level of the adults, whereas for DBA it reached 71.3% of the adult value. These results provide definite evidence of changes in the intestinal surface during perinatal development.« less

  11. Extracellular polymeric substances facilitate the biosorption of phenanthrene on cyanobacteria Microcystis aeruginosa.

    PubMed

    Bai, Leilei; Xu, Huacheng; Wang, Changhui; Deng, Jiancai; Jiang, Helong

    2016-11-01

    Phytoplankton-derived extracellular polymeric substances (EPS) are of vital importance for the biogeochemical cycles of hydrophobic organic pollutants in lake ecosystems. In this study, roles of loosely-bound EPS (LB-EPS) and tightly bound EPS (TB-EPS) in biosorption of phenanthrene (PHE) on a typical cyanobacteria Microcystis aeruginosa were investigated. The results showed that the biosorption of PHE on M. aeruginosa cell varied lasted 24 h, while the binding of PHE to LB-EPS and TB-EPS reached equilibrium within less than 2 h. The equilibrium biosorption capacities of M. aeruginosa cell, LB-EPS and TB-EPS were 6.78, 12.31, and 9.47 μg mg(-1), respectively, indicating that the binding of PHE to EPS was a considerable process involved in biosorption. Fluorescence quenching titration revealed that increasing temperature induced more binding sites in EPS for PHE and the binding process was driven by electrostatic force and hydrophobic interactions. Interestingly, dynamic and static quenching processes occurred simultaneously for the binding of PHE to protein-like substances in EPS, whereas the binding of PHE to humic-like substances belonged to static quenching. The relatively higher contents of proteins in LB-EPS produced a stronger binding capacity of PHE. Overall, the interactions between hydrophobic organic pollutants and cyanobacterial EPS are favorable to the bioaccumulation of hydrophobic organic pollutants in cyanobacteria and facilitate the regulatory function of cyanobacterial biomass as a biological pump. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. High affinity binding of 125I-neurotensin to dispersed cells from chicken liver and brain.

    PubMed

    Mitra, S P; Carraway, R E

    1997-01-01

    Dispersed cells from chicken brain and liver were found to possess cell surface binding sites for 125I-neurotensin (125I-NT). Scatchard analyses indicated the presence of high affinity (K4, 25-80 pM) and low affinity (Kd, 250-450 pM) components in adult tissues. Binding capacity was reduced 25-40% by incubation with pertussis toxin. Ontogenetic studies indicated that NT receptor capacity increased approximately 20-fold from the embryonic stage to adult. Cross-linking of 125I-NT to intact cells labeled one major band (52 kDa, > or = 90%) and two minor bands (40 and 90 kDa, < or = 10%) which could represent distinct NT-receptors or one receptor partly degraded or cross-linked to G-protein(s). The binding of 125I-NT to dispersed cells was enhanced by reduction with dithoithreitol and suppressed by alkylation with N-ethyl-maleimide (NEM), maleimidocaproic acid (MCA) and p-chloromercuribenzenesulfonate (PCMBS). Since MCA and PCMBS do not permeate cells, this suggests that the sulfhydryl group(s) critical to binding are located within the NT receptor itself. Preincubation of cells with NT prior to treatment with NEM diminished its inhibitory effect, suggesting that the critical SH-group(s) were within the NT binding pocket or were protected by an allosteric effect. These results suggest that one or more of the nine cysteine residues in the NT receptor is involved in the NT binding reaction.

  13. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study

    NASA Astrophysics Data System (ADS)

    Warren, Daniel R.; Partridge, Mike

    2016-12-01

    Positron emission tomography (PET) using 18F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ({{P}{{\\text{O}2}}} ) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ˜4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (˜20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of {{P}{{\\text{O}2}}} and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local {{P}{{\\text{O}2}}} of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue {{P}{{\\text{O}2}}} : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ˜5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing {{P}{{\\text{O}2}}} and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription) is likely to be based on dynamic PET analysis.

  14. The role of necrosis, acute hypoxia and chronic hypoxia in 18F-FMISO PET image contrast: a computational modelling study.

    PubMed

    Warren, Daniel R; Partridge, Mike

    2016-12-21

    Positron emission tomography (PET) using 18 F-fluoromisonidazole (FMISO) is a promising technique for imaging tumour hypoxia, and a potential target for radiotherapy dose-painting. However, the relationship between FMISO uptake and oxygen partial pressure ([Formula: see text]) is yet to be quantified fully. Tissue oxygenation varies over distances much smaller than clinical PET resolution (<100 μm versus  ∼4 mm), and cyclic variations in tumour perfusion have been observed on timescales shorter than typical FMISO PET studies (∼20 min versus a few hours). Furthermore, tracer uptake may be decreased in voxels containing some degree of necrosis. This work develops a computational model of FMISO uptake in millimetre-scale tumour regions. Coupled partial differential equations govern the evolution of oxygen and FMISO distributions, and a dynamic vascular source map represents temporal variations in perfusion. Local FMISO binding capacity is modulated by the necrotic fraction. Outputs include spatiotemporal maps of [Formula: see text] and tracer accumulation, enabling calculation of tissue-to-blood ratios (TBRs) and time-activity curves (TACs) as a function of mean tissue oxygenation. The model is characterised using experimental data, finding half-maximal FMISO binding at local [Formula: see text] of 1.4 mmHg (95% CI: 0.3-2.6 mmHg) and half-maximal necrosis at 1.2 mmHg (0.1-4.9 mmHg). Simulations predict a non-linear non-monotonic relationship between FMISO activity (4 hr post-injection) and mean tissue [Formula: see text] : tracer uptake rises sharply from negligible levels in avascular tissue, peaking at  ∼5 mmHg and declining towards blood activity in well-oxygenated conditions. Greater temporal variation in perfusion increases peak TBRs (range 2.20-5.27) as a result of smaller predicted necrotic fraction, rather than fundamental differences in FMISO accumulation under acute hypoxia. Identical late FMISO uptake can occur in regions with differing [Formula: see text] and necrotic fraction, but simulated TACs indicate that additional early-phase information may allow discrimination of hypoxic and necrotic signals. We conclude that a robust approach to FMISO interpretation (and dose-painting prescription) is likely to be based on dynamic PET analysis.

  15. Examining Strategies to Build and Sustain Healthy Aging Programming Collaboratives

    ERIC Educational Resources Information Center

    Altpeter, Mary; Schneider, Ellen Caylor; Whitelaw, Nancy

    2014-01-01

    Background: Community collaboratives provide a means to build local capacity, reduce service fragmentation and duplication, maximize efficiency, and create synergies for "systems change". But what are the collaborative practices that aging services providers and other stakeholders employ for "system change" and…

  16. Opioid receptor mediated anticonvulsant effect of pentazocine.

    PubMed

    Khanna, N; Khosla, R; Kohli, J

    1998-01-01

    Intraperitoneal (i.p.) administration of (+/-) pentazocine (10, 30 & 50 mg/kg), a Sigma opioid agonist, resulted in a dose dependent anticonvulsant action against maximal electroshock seizures in mice. This anticonvulsant effect of pentazocine was not antagonized by both the doses of naloxone (1 and 10 mg/kg) suggesting thereby that its anticonvulsant action is probably mediated by Sigma opiate binding sites. Its anticonvulsant effect was potentiated by both the anticonvulsant drugs viz. diazepam and diphenylhydantoin. Morphine, mu opioid agonist, on the other hand, failed to protect the animals against maximal electroshock seizures when it was given in doses of 10-40 mg/kg body wt.

  17. Endocrine changes of Paralichthys olivaceus after oral administration with exogenous growth hormone

    NASA Astrophysics Data System (ADS)

    Liu, Zong-Zhu; Xu, De-Wu; Wang, Yong; Xu, Yong-Li; Zhang, Pei-Jun

    2000-12-01

    Recombinant salmon growth hormone contained in yeast was given for 5 months to flounder in its diet. Both free and total specific binding sites for the growth hormone were examined in liver membranes of control and treated fish. The association constants of both free and total specific binding sites were of the same order (1 nM-1), and no significant difference was found between any two groups in the capacity of their free binding sites. The capacity of total binding sites in the liver of treated fish increased significantly compared with that of control. Insulin-like growth factor I (IGF-I) levels in the plasma of treated fish increased by 22.61% (P<0.05), compared with that of control. While the T4 levels in plasma did not increase significantly (from 1.35±0.91 ng/ml to 2.29±1.13 ng/ml), T3 levels were elevated significantly (from 1.78±1.14 ng/ml to 4.87±1.22 ng/ml, P<0.01), as compared with that of control.

  18. Heat Capacity Changes and Disorder-to-Order Transitions in Allosteric Activation.

    PubMed

    Cressman, William J; Beckett, Dorothy

    2016-01-19

    Allosteric coupling in proteins is ubiquitous but incompletely understood, particularly in systems characterized by coupling over large distances. Binding of the allosteric effector, bio-5'-AMP, to the Escherichia coli biotin protein ligase, BirA, enhances the protein's dimerization free energy by -4 kcal/mol. Previous studies revealed that disorder-to-order transitions at the effector binding and dimerization sites, which are separated by 33 Å, are integral to functional coupling. Perturbations to the transition at the ligand binding site alter both ligand binding and coupled dimerization. Alanine substitutions in four loops on the dimerization surface yield a range of energetic effects on dimerization. A glycine to alanine substitution at position 142 in one of these loops results in a complete loss of allosteric coupling, disruption of the disorder-to-order transitions at both functional sites, and a decreased affinity for the effector. In this work, allosteric communication between the effector binding and dimerization surfaces in BirA was further investigated by performing isothermal titration calorimetry measurements on nine proteins with alanine substitutions in three dimerization surface loops. In contrast to BirAG142A, at 20 °C all variants bind to bio-5'-AMP with free energies indistinguishable from that measured for wild-type BirA. However, the majority of the variants exhibit altered heat capacity changes for effector binding. Moreover, the ΔCp values correlate with the dimerization free energies of the effector-bound proteins. These thermodynamic results, combined with structural information, indicate that allosteric activation of the BirA monomer involves formation of a network of intramolecular interactions on the dimerization surface in response to bio-5'-AMP binding at the distant effector binding site.

  19. Determination of DNA Binding Behavior of FoxA1 Constructs Using a Gold Nanoparticle-Based High Throughput Assay

    NASA Astrophysics Data System (ADS)

    Aung, Khin Moh Moh; Lim, Michelle Gek Liang; Hong, Shuzhen; Cheung, Edwin; Su, Xiaodi

    Forkhead box protein 1 (FoxA1) is a member of the forkhead family of winged-helix transcription factors. It plays crucial roles in the development and differentiation of multiple organs and in the regulation of estrogen-stimulated genes. In this study, in order to determine the regions of FoxA1 necessary for efficient Deoxyribonucleic Acid (DNA) binding, we cloned, expressed and purified a series of FoxA1 constructs that contain either the DNA Binding Domain (DBD), the Transcription Activation Domain (TAD), or both. We determined the DNA binding behavior of these constructs using traditional electrophoretic mobility shift assay (EMSA) and a recently developed gold nanoparticles (AuNPs)-based fast screening method. We conclude that just the DBD region alone is not sufficient for protein-DNA binding activity. Amino acids flanking the upstream of the DBD region are required for maximal DNA binding activity. Through this study, we have also further validated the AuNPs assay for its generality and expanded the existing protocol for comparing the DNA binding behavior of multiple proteins of different charge properties and molecular weights.

  20. Flavonoid Regulation of HCN2 Channels*

    PubMed Central

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  1. Multilayer affinity adsorption of albumin on polymer brushes modified membranes in a continuous-flow system.

    PubMed

    Hu, Meng-Xin; Li, Xiang; Li, Ji-Nian; Huang, Jing-Jing; Ren, Ge-Rui

    2018-02-23

    Polymer brushes modified surfaces have been widely used for protein immobilization and isolation. Modification of membranes with polymer brushes increases the surface concentration of affinity ligands used for protein binding. Albumin is one of the transporting proteins and shows a high affinity to bile acids. In this work, the modified membranes with cholic acid-containing polymer brushes can be facilely prepared by the immobilization of cholic acid on the poly(2-hydroxyethyl methacrylate) grafted microporous polypropylene membranes (MPPMs) for affinity adsorption of albumin. ATR/FT-IR and X-ray photoelectron spectroscopy were used to characterize the chemical composition of the modified membranes. Water contact angle measurements were used to analyze the hydrophilic/hydrophobic properties of the membrane surface. The modified MPPMs show a high affinity to albumin and have little non-specific adsorption of hemoglobin. The dynamic binding capacity of albumin in the continous-flow system increases with the cycle number and feed rate as the binding degree of cholic acid is moderate. The highest binding capacity of affinity membranes is about 52.49 g/m 2 membrane, which is about 24 times more than the monolayer binding capacity. These results reveal proteins could be captured in multilayers by the polymer brushes containing affinity ligands similar to the polymer brushes containing ion-exchange groups, which open up the potential of the polymer brushes containing affinity ligands in protein or another components separation. And the cholic acid containing polymer brushes modified membranes has the promising potential for albumin separation and purification rapidly from serum or fermented solution in medical diagnosis and bioseparation. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Thermodynamics of Interaction between Some Cellulose Ethers and SDS by Titration Microcalorimetry.

    PubMed

    Singh; Nilsson

    1999-05-01

    The interaction between certain nonionic cellulose ethers (ethyl hydroxyethyl cellulose and hydroxypropyl methyl cellulose) and sodium dodecyl sulphate (SDS) has been investigated using isothermal titration microcalorimetry at temperatures between 25-50 degrees C. The observed heat flow curves have been interpreted in terms of a plausible mechanism of the interaction of the substituent groups with SDS monomers and clusters. The data have been related to changes occuring in the system at the macro- and microscopic levels with the addition of surfactants and with temperature. The process consists predominantly of polymer-surfactant interactions initially and surfactant-surfactant interactions at the later stages. A phenomenological model of the cooperative interaction (adsorption) process has been derived, and earlier published equilibrium binding data have been used to recover binding constants and Gibbs energy changes for this process. The adsorption enthalpies and entropies have been recovered along with the heat capacity change. The enthalpic cost of confining the nonpolar regions of the polymers in surfactant clusters is high, but the entropy gain from release of hydration shell water molecules as well as increased freedom of movement of these nonpolar regions in the clusters gives the process a strong entropic driving force. The process is entropy-driven initially and converts to being both enthalpy and entropy-driven at high SDS concentrations. An enthalpy-entropy compensation behavior is seen. Strongly negative heat capacity changes have been obtained resulting from the transfer of nonpolar groups from aqueous into nonpolar environments, as well as a reduction of conformational domains that the chains can populate. Changes in these two components cause the heat capacity change to become less negative at the higher binding levels. The system can be classified as exhibiting nonclassical hydrophobic binding at the later stages of binding. Copyright 1999 Academic Press.

  3. Distribution and Kinetics of Lipoprotein-Bound Lipoteichoic Acid

    PubMed Central

    Levels, Johannes H. M.; Abraham, Philip R.; van Barreveld, Erik P.; Meijers, Joost C. M.; van Deventer, Sander J. H.

    2003-01-01

    Lipoteichoic acid (LTA), a major cell wall component of gram-positive bacteria, is an amphipathic anionic glycolipid with structural similarities to lipopolysaccharide (LPS) from gram-negative bacteria. LTA has been implicated as one of the primary immunostimulatory components that may trigger the systemic inflammatory response syndrome. Plasma lipoproteins have been shown to sequester LPS, which results in attenuation of the host response to infection, but little is known about the LTA binding characteristics of plasma lipid particles. In this study, we have examined the LTA binding capacities and association kinetics of the major lipoprotein classes under simulated physiological conditions in human whole blood (ex vivo) by using biologically active, fluorescently labeled LTA and high-performance gel permeation chromatography. The average distribution of an LTA preparation from Staphylococcus aureus in whole blood from 10 human volunteers revealed that >95% of the LTA was associated with total plasma lipoproteins in the following proportions: high-density lipoprotein (HDL), 68% ± 10%; low-density lipoprotein (LDL), 28% ± 8%; and very low density lipoprotein (VLDL), 4% ± 5%. The saturation capacity of lipoproteins for LTA was in excess of 150 μg/ml. The LTA distribution was temperature dependent, with an optimal binding between 22 and 37°C. The binding of LTA by lipoproteins was essentially complete within 10 min and was followed by a subsequent redistribution from HDL and VLDL to LDL. We conclude that HDL has the highest binding capacity for LTA and propose that the loading and redistribution of LTA among plasma lipoproteins is a specific process that closely resembles that previously described for LPS (J. H. M. Levels, P. R. Abraham, A. van den Ende, and S. J. H. van Deventer, Infect. Immun. 68:2821-2828, 2001). PMID:12761109

  4. Glucocorticoid receptor ligand binding in monocytic cells using a microplate assay.

    PubMed

    Jansen, J; Uitdehaag, B; Koper, J W; van Den Berg, T K

    1999-01-01

    Glucocorticoids have profound effects on macrophage function and are widely used as anti-inflammatory drugs. Glucocorticoids receptor (GR) ligand binding capacity is a major determinant of cellular glucocorticoid sensitivity. The number and affinity of GR can be measured in a whole cell binding assay using (3)H-dexamethasone. Here, we describe a rapid and simple microplate assay for GR measurement using the human promonocytic cell line THP-1. Copyright 2000 S. Karger AG, Basel.

  5. Comparative studies on drug binding to the purified and pharmaceutical-grade human serum albumins: Bridging between basic research and clinical applications of albumin.

    PubMed

    Ashrafi-Kooshk, Mohammad Reza; Ebrahimi, Farangis; Ranjbar, Samira; Ghobadi, Sirous; Moradi, Nastaran; Khodarahmi, Reza

    2015-09-01

    Human serum albumin (HSA), the most abundant protein in blood plasma, is a monomeric multidomain protein that possesses an extraordinary capacity for binding, so that serves as a circulating depot for endogenous and exogenous compounds. During the heat sterilization process, the structure of pharmaceutical-grade HSA may change and some of its activities may be lost. In this study, to provide deeper insight on this issue, we investigated drug-binding and some physicochemical properties of purified albumin (PA) and pharmaceutical-grade albumin (PGA) using two known drugs (indomethacin and ibuprofen). PGA displayed significantly lower drug binding capacity compared to PA. Analysis of the quenching and thermodynamic parameters indicated that intermolecular interactions between the drugs and the proteins are different from each other. Surface hydrophobicity as well as the stability of PGA decreased compared to PA, also surface hydrophobicity of PA and PGA increased upon drugs binding. Also, kinetic analysis of pseudo-esterase activities indicated that Km and Vmax parameters for PGA enzymatic activity are more and less than those of PA, respectively. This in vitro study demonstrates that the specific drug binding of PGA is significantly reduced. Such studies can act as connecting bridge between basic research discoveries and clinical applications. Copyright © 2015 The International Alliance for Biological Standardization. Published by Elsevier Ltd. All rights reserved.

  6. The Glycine Synaptic Receptor: Evidence That Strychnine Binding Is Associated with the Ionic Conductance Mechanism

    PubMed Central

    Young, Anne B.; Snyder, Solomon H.

    1974-01-01

    The ability of a series of anions to inhibit [3H]strychnine binding to spinal cord synaptic membranes correlates closely with their neurophysiologic capacity to reverse inhibitory postsynaptic potentials in the mammalian spinal cord. Seven neurophysiologically active anions are also effective inhibitors of [3H]strychnine binding with mean effective doses ranging from 160 to 620 mM. Seven other anions that are ineffective neurophysiologically also fail to alter strychnine binding. Chloride inhibits strychnine binding in a noncompetitive fashion. Hill plots of the displacement of [3H]strychnine by chloride give coefficients of 2.3-2.7. The inhibition of strychnine binding by these anions suggests that strychnine binding is closely associated with the ionic conductance mechanism for chloride in the glycine receptor. PMID:4372600

  7. Influence of heat and moisture exchanger use on measurements performed with manovacuometer and respirometer in healthy adults.

    PubMed

    Lucato, Jeanette Janaina Jaber; Nogueira da Cunha, Thiago Marraccini; Rocha, Sara Solange Oliveira Costa; Palmieri de Carvalho, Fernanda Maria; Botega, Daniele Cristina; Torquato, Jamili Anbar; Gimenes, Ana Cristina; Righetti, Renato Fraga

    2015-01-01

    The use of evaluation tools such as the manovacuometer and respirometer is frequent and disinfection is usually limited to the external surfaces, which is insufficient and raises concerns because of the potential spread of infectious diseases. Hydrophobic heat and moisture exchangers (HME) are used in mechanical ventilation and have microbiological filters, which can possibly reduce contamination, increasing the safety of related procedures. It is unknown, however, if the addition of an exchanger affects the measurements obtained. Aim of this study was to verify if the use of an HME interferes in maximal inspiratory and expiratory pressures assessed using the manovacuometer and vital capacity evaluated using the respirometer in healthy adults. A controlled transversal trial was carried out. Twenty healthy young adults were included in the study. Vital capacity by respirometer and, maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) were assessed with and without the use of HME. No significant difference was found between the values pre and post HME use in vital capacity measurements: (3878.8 ± 202.2 mL vs. 3925.5 ± 206.0 mL, p = 0.116) and the respiratory muscle strength measurements: MIP (-99.0 ± 8.9 vs -95.5 ± 9.0 cm H2O, p = 0.149) and MEP (92.5 ± 7.5 vs 92.5 ± 7.7 cm H2O, p = 1.0) respectively. We conclude that the use of HME does not modify the lung volumes or respiratory muscle strength, and can be used in order to reduce the occurrence of pulmonary infection.

  8. Optimal control of Atlantic population Canada geese

    USGS Publications Warehouse

    Hauser, C.E.; Runge, M.C.; Cooch, E.G.; Johnson, F.A.; Harvey, W.F.

    2007-01-01

    Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.

  9. The association of serum long-chain n-3 PUFA and hair mercury with exercise cardiac power in men.

    PubMed

    Tajik, Behnam; Kurl, Sudhir; Tuomainen, Tomi-Pekka; Virtanen, Jyrki K

    2016-08-01

    Long-chain n-3 PUFA from fish and exercise capacity are associated with CVD risk. Fish, especially large and old predatory fish, may contain Hg, which may attenuate the inverse association of long-chain n-3 PUFA with CVD. However, the associations of long-chain n-3 PUFA or Hg exposure with exercise capacity are not well known. We aimed to evaluate the associations of serum long-chain n-3 PUFA EPA, docosapentaenoic acid (DPA) and DHA and hair Hg with exercise cardiac power (ECP, a ratio of VO2max:maximal systolic blood pressure (SBP) during an exercise test), a measure for exercise capacity. For this, data from the population-based Kuopio Ischaemic Heart Disease Risk Factor Study were analysed cross-sectionally in order to determine the associations between serum long-chain n-3 PUFA, hair Hg and ECP in 1672 men without CVD, aged 42-60 years. After multivariate adjustments, serum total long-chain n-3 PUFA concentration was associated with higher ECP and VO2max (P trend across quartiles=0·04 and P trend=0·02, respectively), but not with maximal SBP (P trend=0·69). Associations were generally similar when EPA, DPA and DHA were evaluated individually. Hair Hg was not associated with ECP, VO2max or maximal SBP. However, the associations of total long-chain n-3 PUFA (P interaction=0·03) and EPA (P interaction=0·02) with higher VO2max were stronger among men with lower hair Hg. Higher serum long-chain n-3 PUFA concentration, mainly a marker for fish consumption in this study population, was associated with higher ECP and VO2max in middle-aged men from eastern Finland.

  10. Physiological and physical characteristics of elite dragon boat paddlers.

    PubMed

    Ho, Sarah R; Smith, Richard M; Chapman, Philip G; Sinclair, Peter J; Funato, Kazuo

    2013-01-01

    The objectives of this study were to profile the physiological and physical characteristics of elite dragon boat paddlers, to identify characteristics that predict race performance and to quantify the metabolic energy contributions to simulated 200-m and 500-m dragon boat racing. Eleven, national level, male, Japanese dragon boat paddlers completed a battery of tests on a paddling ergometer including an incremental maximal aerobic capacity test, a 2-minute maximal accumulated oxygen deficit (MAOD) test, and simulated 200-m and 500-m races. A physiological and physical profile of subjects was compiled. Results showed that 200-m race performance correlated with flexed arm girth and excess postexercise oxygen consumption (EPOC) measured in the 30 minutes after the MAOD test, whereas 500-m race performance correlated with body fat percentage, relaxed and flexed arm girth, MAOD, EPOC, and peak power during the MAOD test. Stepwise multiple regression revealed that flexed arm girth was the most powerful predictor of 200-m and 500-m race performance, followed by EPOC with the combination of these 2 factors able to explain 74% and 68% of the variance in 200-m and 500-m race performance, respectively. Aerobic energy contributions for 200-m (50 seconds) and 500-m (1 minute 50 seconds) races were (mean (95% confidence intervals)) 52.1% (range, 47.4-56.8%) and 67.5% (range, 60.1-77.8%), respectively. In conclusion, coaches should develop training programs targeted at developing upper-body musculature and increasing anaerobic capacity because these factors are the strongest predictors of 200-m and 500-m race performance. Given the substantial aerobic energy contributions even for a 200-m race event, coaches should aim to increase the maximal aerobic capacity of the paddler in preparation for both 200-m and 500-m events.

  11. Binding of corroded ions to human saliva.

    PubMed

    Mueller, H J

    1985-05-01

    Employing equilibrium dialysis, the binding abilities of Cu, Al, Co and Cr ions from corroded Cu-Al and Co-Cr dental casting alloys towards human saliva and two of its gel chromatographic fractions were determined. Results indicate that both Cu and Co bind to human saliva i.e. 0.045 and 0.027 mg/mg protein, respectively. Besides possessing the largest binding ability, Cu also possessed the largest binding capacity. The saturation of Cu binding was not reached up to the limit of 0.35 mg protein/ml employed in the tests, while Co reached full saturation at about 0.2 mg protein/ml. Chromium showed absolutely no binding to human saliva while Al ions did not pass through the dialysis membranes. Compared to the binding with solutions that were synthetically made up to contain added salivary-type proteins, it is shown that the binding to human saliva is about 1 order of magnitude larger, at least for Cu ions.

  12. Prion removal effect of a specific affinity ligand introduced into the manufacturing process of the pharmaceutical quality solvent/detergent (S/D)-treated plasma OctaplasLG.

    PubMed

    Neisser-Svae, A; Bailey, A; Gregori, L; Heger, A; Jordan, S; Behizad, M; Reichl, H; Römisch, J; Svae, T-E

    2009-10-01

    A new chromatographic step for the selective binding of abnormal prion protein (PrP(Sc)) was developed, and optimization for PrP(Sc) capture was achieved by binding to an affinity ligand attached to synthetic resin particles. This step was implemented into the manufacturing process of the solvent/detergent (S/D)-treated biopharmaceutical quality plasma Octaplas to further improve the safety margin in terms of risk for variant Creutzfeldt-Jakob disease (vCJD) transmission. Intermediates and Octaplas final container material, spiked with hamster brain-derived PrP(Sc)-containing fractions, were used for experiments to establish the feasibility of introducing this novel chromatography step. The binding capacity per millilitre of ligand gel was determined under the selected manufacturing conditions. In addition, the specificity of the ligand gel to bind PrP(Sc) from human sources was investigated. A validated Western blot test was used for the identification and quantification of PrP(Sc). A reduction factor of > or = 3.0 log(10) could be demonstrated by Western blotting, utilizing the relevant Octaplas matrix from manufacturing. In this particular cell-free plasma solution, the PrP(Sc) binding capacity of the selected gel was very high (> or = 6 log(10) ID(50)/ml, equivalent to roughly 10 log(10) ID(50)/column at manufacturing scale). The gel binds specifically PrP(Sc) from both animal (hamster and mouse) and human (sporadic and variant CJD) sources. This new single-use, disposable PrP(Sc)-harvesting gel ensures a very high capacity in terms of removing the pathogenic agent causing vCJD from the new generation OctaplasLG, in the event that prions can be found in plasma from donors incubating the disease and thereby contaminating the raw material plasma used for manufacturing.

  13. Tea Dietary Fiber Improves Serum and Hepatic Lipid Profiles in Mice Fed a High Cholesterol Diet.

    PubMed

    Guo, Wenxin; Shu, Yang; Yang, Xiaoping

    2016-06-01

    Tea dietary fiber (TDF) was prepared from tea residues and modified to get cellulose-modified TDF (CTDF) by cellulase or micronized TDF (MTDF) by ultrafine grinding. The in vitro lipid-binding capacities of the three fibers and their effects on serum and hepatic lipid profiles in mice fed a high cholesterol diet were evaluated. The results showed that the three fibers had excellent lipid-binding capacities, and the cholesterol- and sodium cholate-binding capacities of CTDF and MTDF were significantly higher than those of TDF. Animal studies showed that, compared to model control, the three fibers significantly decreased mice average daily gain, gain: feed, and liver index, reduced total cholesterol (TC), triglyceride, and low density lipoprotein-cholesterol of serum and liver, increased serum and hepatic high density lipoprotein-cholesterol to TC ratio, and promoted the excretion of fecal lipids, and they also significantly increased the activities of superoxide dismutase and glutathione peroxidase of serum and liver, and decreased lipid peroxidation; moreover, the effects of CTDF and MTDF were better than that of TDF. It was concluded that the three fibers could improve serum and hepatic lipid profiles in mice fed a high cholesterol diet and the mechanism of action might be due to the promotion of fecal excretion of lipids through their lipid-binding ability and the inhibition of lipid peroxidation. These findings suggest that tea dietary fiber has the potential to be used as a functional ingredient to control cardiovascular disease.

  14. Effects of saw palmetto extract on micturition reflex of rats and its autonomic receptor binding activity.

    PubMed

    Oki, Tomomi; Suzuki, Mayumi; Nishioka, Yasuhiko; Yasuda, Akio; Umegaki, Keizo; Yamada, Shizuo

    2005-04-01

    We examined the effects of saw palmetto extract (SPE) on the rat micturition reflex and on autonomic receptors in the lower urinary tract. The effect of SPE was examined on cystometrograms of anesthetized rats induced by intravesical infusion of saline or 0.1% acetic acid. SHR/NDmc-cp (cp/cp) rats received repeat oral administration of SPE and nighttime urodynamic function was determined. The autonomic receptor binding activity of SPE in the rat bladder and prostate was examined by radioligand binding assay. Intraduodenal administration of SPE (60 mg/kg) in anesthetized rat cystometry caused a significant increase in the micturition interval, micturition volume and bladder capacity during intravesical saline infusion. Also, similar administration of SPE at doses of 12 and 20 mg/kg significantly reversed the shortened micturition interval as well as the decreased micturition volume and bladder capacity due to 0.1% acetic acid infusion in a dose dependent manner. In conscious SHR/NDmc-cp (cp/cp) rats repeat oral administration of SPE (6 mg/kg daily) constantly increased the micturition interval and concomitantly decreased voiding frequency. SPE inhibited specific binding of [H]NMS ([N-methyl-H]scopolamine methyl chloride) (bladder) and [H]prazosin (prostate) with IC50 values of 46.1 and 183 microg/ml, respectively. SPE significantly alleviates urodynamic symptoms in hyperactive rat bladders by increasing bladder capacity and subsequently prolonging the micturition interval. Our data may support the clinical efficacy of SPE for the treatment of lower urinary tract symptoms.

  15. Muscarinic and alpha 1-adrenergic receptor binding characteristics of saw palmetto extract in rat lower urinary tract.

    PubMed

    Suzuki, Mayumi; Oki, Tomomi; Sugiyama, Tomomi; Umegaki, Keizo; Uchida, Shinya; Yamada, Shizuo

    2007-06-01

    To elucidate the in vitro and ex vivo effects of saw palmetto extract (SPE) on autonomic receptors in the rat lower urinary tract. The in vitro binding affinities for alpha 1-adrenergic, muscarinic, and purinergic receptors in the rat prostate and bladder were measured by radioligand binding assays. Rats received vehicle or SPE (0.6 to 60 mg/kg/day) orally for 4 weeks, and alpha 1-adrenergic and muscarinic receptor binding in tissues of these rats were measured. Saw palmetto extract inhibited specific binding of [3H]prazosin and [N-methyl-3H]scopolamine methyl chloride (NMS) but not alpha, beta-methylene adenosine triphosphate [2,8-(3)H]tetrasodium salt in the rat prostate and bladder. The binding activity of SPE for muscarinic receptors was four times greater than that for alpha 1-adrenergic receptors. Scatchard analysis revealed that SPE significantly reduced the maximal number of binding sites (Bmax) for each radioligand in the prostate and bladder under in vitro condition. Repeated oral administration of SPE to rats brought about significant alteration in Bmax for prostatic [3H]prazosin binding and for bladder [3H]NMS binding. Such alteration by SPE was selective to the receptors in the lower urinary tract. Saw palmetto extract exerts significant binding activity on autonomic receptors in the lower urinary tract under in vitro and in vivo conditions.

  16. Cell surface distribution and intracellular fate of asialoglycoproteins: a morphological and biochemical study of isolated rat hepatocytes and monolayer cultures

    PubMed Central

    Zeitlin, PL; Hubbard, AL

    1982-01-01

    A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs. PMID:6282890

  17. Fe-FeS2 adsorbent prepared with iron powder and pyrite by facile ball milling and its application for arsenic removal.

    PubMed

    Min, Xiaobo; Li, Yangwenjun; Ke, Yong; Shi, Meiqing; Chai, Liyuan; Xue, Ke

    2017-07-01

    Arsenic is one of the major pollutants and a worldwide concern because of its toxicity and chronic effects on human health. An adsorbent of Fe-FeS 2 mixture for effective arsenic removal was successfully prepared by mechanical ball milling. The products before and after arsenic adsorption were characterized with scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The adsorbent shows high arsenic removal efficiency when molar ratio of iron to pyrite is 5:5. The experimental data of As(III) adsorption are fitted well with the Langmuir isotherm model with a maximal adsorption capacity of 101.123 mg/g. And As(V) data were described perfectly by the Freundlich model with a maximal adsorption capacity of 58.341 L/mg. As(III) is partial oxidized to As(V) during the adsorption process. High arsenic uptake capability and cost-effectiveness of waste make it potentially attractive for arsenic removal.

  18. Paradoxical roles of hydrogen in electrochemical performance of graphene: High rate capacity and atomistic origins

    DOE PAGES

    Ye, Jianchao C.; Ong, Mitchell T.; Heo, Tae Wook; ...

    2015-11-05

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp 2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexesmore » in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. Furthermore, these findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes.« less

  19. Universal roles of hydrogen in electrochemical performance of graphene: high rate capacity and atomistic origins

    PubMed Central

    Ye, Jianchao; Ong, Mitchell T.; Heo, Tae Wook; Campbell, Patrick G.; Worsley, Marcus A.; Liu, Yuanyue; Shin, Swanee J.; Charnvanichborikarn, Supakit; Matthews, Manyalibo J.; Bagge-Hansen, Michael; Lee, Jonathan R.I.; Wood, Brandon C.; Wang, Y. Morris

    2015-01-01

    Atomic hydrogen exists ubiquitously in graphene materials made by chemical methods. Yet determining the effect of hydrogen on the electrochemical performance of graphene remains a significant challenge. Here we report the experimental observations of high rate capacity in hydrogen-treated 3-dimensional (3D) graphene nanofoam electrodes for lithium ion batteries. Structural and electronic characterization suggests that defect sites and hydrogen play synergistic roles in disrupting sp2 graphene to facilitate fast lithium transport and reversible surface binding, as evidenced by the fast charge-transfer kinetics and increased capacitive contribution in hydrogen-treated 3D graphene. In concert with experiments, multiscale calculations reveal that defect complexes in graphene are prerequisite for low-temperature hydrogenation, and that the hydrogenation of defective or functionalized sites at strained domain boundaries plays a beneficial role in improving rate capacity by opening gaps to facilitate easier Li penetration. Additional reversible capacity is provided by enhanced lithium binding near hydrogen-terminated edge sites. These findings provide qualitative insights in helping the design of graphene-based materials for high-power electrodes. PMID:26536830

  20. Ibrutinib targets mutant-EGFR kinase with a distinct binding conformation.

    PubMed

    Wang, Aoli; Yan, Xiao-E; Wu, Hong; Wang, Wenchao; Hu, Chen; Chen, Cheng; Zhao, Zheng; Zhao, Peng; Li, Xixiang; Wang, Li; Wang, Beilei; Ye, Zi; Wang, Jinhua; Wang, Chu; Zhang, Wei; Gray, Nathanael S; Weisberg, Ellen L; Chen, Liang; Liu, Jing; Yun, Cai-Hong; Liu, Qingsong

    2016-10-25

    Ibrutinib, a clinically approved irreversible BTK kinase inhibitor for Mantle Cell Lymphoma (MCL) and Chronic Lymphocytic Leukemia (CLL) etc, has been reported to be potent against EGFR mutant kinase and currently being evaluated in clinic for Non Small Cell Lung Cancer (NSCLC). Through EGFR wt/mutant engineered isogenic BaF3 cell lines we confirmed the irreversible binding mode of Ibrutinib with EGFR wt/mutant kinase via Cys797. However, comparing to typical irreversible EGFR inhibitor, such as WZ4002, the washing-out experiments revealed a much less efficient covalent binding for Ibrutinib. The biochemical binding affinity examination in the EGFR L858R/T790M kinase revealed that, comparing to more efficient irreversible inhibitor WZ4002 (Kd: 0.074 μM), Ibrutinib exhibited less efficient binding (Kd: 0.18 μM). An X-ray crystal structure of EGFR (T790M) in complex with Ibrutinib exhibited a unique DFG-in/c-Helix-out inactive binding conformation, which partially explained the less efficiency of covalent binding and provided insight for further development of highly efficient irreversible binding inhibitor for the EGFR mutant kinase. These results also imply that, unlike the canonical irreversible inhibitor, sustained effective concentration might be required for Ibrutinib in order to achieve the maximal efficacy in the clinic application against EGFR driven NSCLC.

  1. Gold Binding by Native and Chemically Modified Hops Biomasses

    DOE PAGES

    López, M. Laura; Gardea-Torresdey, J. L.; Peralta-Videa, J. R.; ...

    2005-01-01

    Heavy metals from mining, smelting operations and other industrial processing facilities pollute wastewaters worldwide. Extraction of metals from industrial effluents has been widely studied due to the economic advantages and the relative ease of technical implementation. Consequently, the search for new and improved methodologies for the recovery of gold has increased. In this particular research, the use of cone hops biomass ( Humulus lupulus ) was investigated as a new option for gold recovery. The results showed that the gold binding to native hops biomass was pH dependent from pH 2 to pH 6, with a maximum percentage binding atmore » pH 3. Time dependency studies demonstrated that Au(III) binding to native and modified cone hops biomasses was found to be time independent at pH 2 while at pH 5, it was time dependent. Capacity experiments demonstrated that at pH 2, esterified hops biomass bound 33.4 mg Au/g of biomass, while native and hydrolyzed hops biomasses bound 28.2 and 12.0 mg Au/g of biomass, respectively. However, at pH 5 the binding capacities were 38.9, 37.8 and 11.4 mg of Au per gram of native, esterified and hydrolyzed hops biomasses, respectively.« less

  2. The in vitro interactions between serum lipoproteins and proteoglycans of the neointima of rabbit aorta after a single balloon catheter injury.

    PubMed

    Alavi, M Z; Richardson, M; Moore, S

    1989-02-01

    The effect of injury-induced alterations in the aortic neointimal proteoglycans on their binding with homologous serum lipoproteins was examined. Proteoglycans of the aortic intimal-medial tissues of rabbits that had undergone denudation with a balloon catheter 12 weeks earlier were isolated after homogenization of the tissues in 0.33 M sucrose, ultracentrifugation and subsequently by gel-exclusion chromatography. Lipoproteins from the plasma of healthy donors were prepared by sequential, ultracentrifugal floatation after density adjustment with KBr. To study the interactions, aliquots of electrophoretically pure very low-density lipoproteins (VLDL, d less than 1.006 g/ml), low-density lipoproteins (LDL, d = 1.019-1.063 g/ml), or high-density lipoproteins (HDL, d = 1.210 g/ml) were incubated with proteoglycans in the presence of Ca++ and Mg++ at 4 C. The amount of cholesterol found in the resulting pellet was measured as a marker of the binding capacity of the proteoglycans. Among lipoprotein fractions both VLDL and LDL showed strong binding with proteoglycans, whereas no appreciable binding was observed when incubation experiments were done with HDL. There were significant differences in the lipoprotein binding capacity of proteoglycan of control and injured animals, indicating that injury induced changes in proteoglycan composition exert profound influences on their ionic interactions.

  3. Improvement in exercise performance by inhalation of methoxamine in patients with impaired left ventricular function.

    PubMed

    Cabanes, L; Costes, F; Weber, S; Regnard, J; Benvenuti, C; Castaigne, A; Guerin, F; Lockhart, A

    1992-06-18

    Bronchial hyperresponsiveness to cholinergic stimuli such as the inhalation of methacholine is common in patients with impaired left ventricular function. Such hyperresponsiveness is best explained by cholinergic vasodilation of blood vessels in the small airways, with extravasation of plasma due to high left ventricular filling pressure. Because this vasodilation may be prevented by the inhalation of the vasoconstrictor agent methoxamine, we studied the effect of methoxamine on exercise performance in patients with chronic left ventricular dysfunction. We studied 19 patients with a mean left ventricular ejection fraction of 22 +/- 4 percent and moderate exertional dyspnea. In the first part of the study, we performed treadmill exercise tests in 10 patients (group 1) at a constant maximal workload to assess the effects of 10 mg of inhaled methoxamine on the duration of exercise (a measure of endurance). In the second part of the study, we used a graded exercise protocol in nine additional patients (group 2) to assess the effects of inhaled methoxamine on maximal exercise capacity and oxygen consumption. Both studies were carried out after the patients inhaled methoxamine or placebo given according to a randomized, double-blind, crossover design. In group 1, the mean (+/- SD) duration of exercise increased from 293 +/- 136 seconds after the inhalation of placebo to 612 +/- 257 seconds after the inhalation of methoxamine (P = 0.001). In group 2, exercise time (a measure of maximal exercise capacity) increased from 526 +/- 236 seconds after placebo administration to 578 +/- 255 seconds after methoxamine (P = 0.006), and peak oxygen consumption increased from 18.5 +/- 6.0 to 20.0 +/- 6.0 ml per minute per kilogram of body weight (P = 0.03). The inhalation of methoxamine enhanced exercise performance in patients with chronic left ventricular dysfunction. However, the improvement in the duration of exercise at a constant workload (endurance) was much more than the improvement in maximal exercise capacity assessed with a progressive workload. These data suggest that exercise-induced vasodilation of airway vessels may contribute to exertional dyspnea in such patients. Whether or not inhaled methoxamine can provide long-term benefit in patients with heart failure will require further study.

  4. Physiological differences in professional basketball players as a function of playing position and level of play.

    PubMed

    Sallet, P; Perrier, D; Ferret, J M; Vitelli, V; Baverel, G

    2005-09-01

    The aim of this investigation is to evaluate the physical and physiological characteristics of different first (ProA) and second division (ProB) professional basketball players, and to relate them to playing position and level of play. A total of 58 players were divided into ProA and ProB groups and were assessed for physical characteristics, maximal treadmill test and a 30 s all-out test. The sample included 22 centers, 22 forwards and 14 guards. Centers were significantly taller and heavier (203.9+/-5.3 cm and 103.9+/-12.4 kg) than forwards (195.8+/-4.8 cm and 89.4+/-7.1 kg) and guards (185.7+/-6.9 and 82+/-8.8 kg) and also had higher body fat percentages than the other groups. Forwards were also significantly taller than guards. Centers presented a lower maximal aerobic velocity (kmxh-1) than guards (15.5+/-1.2 vs 16.8+/-1.5, P<0.05) on the maximal treadmill test and a lower maximal velocity (rpm) than forwards (156.5+/-18.4 vs 170.3+/-18.3, P<0.05) on the 30 s all-out test. VO2max (mlxmin-1xkg-1) was significantly lower for ProA (53.7+/-6.7) compared to ProB (56.5+/-7.7) players and the fatigue index on the 30 s all-out test was higher for the ProA group (P<0.05). Many physical differences, most notably size, exist between players as a function of their playing position. But these differences have no relationship to the level of play of professional players. General aerobic capacity is fairly homogeneous between playing position and level of play, even if there are observable VO2max differences due to inter-individual profiles. On the other hand, anaerobic capacity seems to be a better predictor of playing level even though it is not clear whether such capacity comes from specific training in ProA, or from an initial selection criteria.

  5. Exercise-induced TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle.

    PubMed

    Frøsig, Christian; Pehmøller, Christian; Birk, Jesper B; Richter, Erik A; Wojtaszewski, Jørgen F P

    2010-11-15

    TBC1D1 is a Rab-GTPase activating protein involved in regulation of GLUT4 translocation in skeletal muscle. We here evaluated exercise-induced regulation of TBC1D1 Ser237 phosphorylation and 14-3-3 protein binding capacity in human skeletal muscle. In separate experiments healthy men performed all-out cycle exercise lasting either 30 s, 2  min or 20  min. After all exercise protocols, TBC1D1 Ser237 phosphorylation increased (∼70-230%, P < 0.005), with the greatest response observed after 20  min of cycling. Interestingly, capacity of TBC1D1 to bind 14-3-3 protein showed a similar pattern of regulation, increasing 60-250% (P < 0.001). Furthermore, recombinant 5AMP-activated protein kinase (AMPK) induced both Ser237 phosphorylation and 14-3-3 binding properties on human TBC1D1 when evaluated in vitro. To further characterize the role of AMPK as an upstream kinase regulating TBC1D1, extensor digitorum longus muscle (EDL) from whole body α1 or α2 AMPK knock-out and wild-type mice were stimulated to contract in vitro. In wild-type and α1 knock-out mice, contractions resulted in a similar ∼100% increase (P < 0.001) in Ser237 phosphorylation. Interestingly, muscle of α2 knock-out mice were characterized by reduced protein content of TBC1D1 (∼50%, P < 0.001) as well as in basal and contraction-stimulated (∼60%, P < 0.001) Ser237 phosphorylation, even after correction for the reduced TBC1D1 protein content. This study shows that TBC1D1 is Ser237 phosphorylated and 14-3-3 protein binding capacity is increased in response to exercise in human skeletal muscle. Furthermore, we show that the catalytic α2 AMPK subunit is the main (but probably not the only) donor of AMPK activity regulating TBC1D1 Ser237 phosphorylation in mouse EDL muscle.

  6. Ventilatory parameters and maximal respiratory pressure changes with age in Duchenne muscular dystrophy patients.

    PubMed

    Gayraud, Jerome; Ramonatxo, Michele; Rivier, François; Humberclaude, Véronique; Petrof, Basil; Matecki, Stefan

    2010-06-01

    The aim of this longitudinal study was to precise, in children with Duchenne muscular dystrophy, the respective functional interest of ventilatory parameters (Vital capacity, total lung capacity and forced expiratory volume in one second [FEV(1)]) in comparison to maximal inspiratory pressure (Pimax) during growth. In ten boys the mean age of 9.1 +/- 1 years) to mean age of 16 +/- 1.4 years followed over a period of 7 years, we found that: (1) ventilatory parameters expressed in percentage of predicted value, after a normal ascending phase, start to decrease between 11 and 12 years, (2) Pimax presented only a decreasing phase since the beginning of the study and thus was already at 67% of predicted value at 12 years while ventilatory parameters was still normal, (3) after 12 years the mean slopes of decrease per year of vital capacity and FEV1 were higher (10.7 and 10.4%) than that of Pimax (6.9%), (4) at 15 years mean values of vital capacity and FEV1 (53.3 and 49.5% of predicted values) was simlar to that of Pimax (48.3%). In conclusion, if at early stages of the disease, Pimax is a more reliable index of respiratory impaiment than ventilatory parameters, the follow-up of ventilatory parameters, when they start to decrease, is a better indicator of disease progression and, at advanced stages they provided same information about the functional impact of disease.

  7. Exercise starts and ends in the brain.

    PubMed

    Kayser, Bengt

    2003-10-01

    Classically the limit to endurance of exercise is explained in terms of metabolic capacity. Cardio-respiratory capacity and muscle fatigue are thought to set the limit and the majority of studies on factors limiting endurance exercise discuss issues such as maximal oxygen uptake (VO2max), aerobic enzyme capacity, cardiac output, glycogen stores, etc. However, this paradigm does not explain the limitation to endurance exercise with large muscle groups at altitude, when at exhaustion exercise is ended without limb locomotor muscle fatigue and with sub-maximal cardiac output. A simple fact provides a basis for an explanation. Voluntary exercise starts and ends in the brain. It starts with spatial and temporal recruitment of motor units and ends with their de-recruitment. A conscious decision precedes a voluntary effort. The end of effort is again volitional and a forced conscious decision to stop precedes it, but it is unknown what forces the off-switch of recruitment at exhaustion although sensation of exertion certainly plays a role. An alternative model explaining the limitation of exercise endurance thus proposes that the central nervous system integrates input from various sources all related to the exercise and limits the intensity and duration of recruitment of limb skeletal muscle to prevent jeopardizing the integrity of the organism. This model acknowledges the cardio-respiratory and muscle metabolic capacities as prime actors on the performance scene, while crediting the central nervous system for its pivotal role as the ultimate site where exercise starts and ends.

  8. The fourth dimension of life: fractal geometry and allometric scaling of organisms.

    PubMed

    West, G B; Brown, J H; Enquist, B J

    1999-06-04

    Fractal-like networks effectively endow life with an additional fourth spatial dimension. This is the origin of quarter-power scaling that is so pervasive in biology. Organisms have evolved hierarchical branching networks that terminate in size-invariant units, such as capillaries, leaves, mitochondria, and oxidase molecules. Natural selection has tended to maximize both metabolic capacity, by maximizing the scaling of exchange surface areas, and internal efficiency, by minimizing the scaling of transport distances and times. These design principles are independent of detailed dynamics and explicit models and should apply to virtually all organisms.

  9. Increased Notch3 Activity Mediates pathological Changes in Structure of Cerebral arteries

    PubMed Central

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank; Joutel, Anne

    2016-01-01

    CADASIL, the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred prior to myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3R170C/R170C) exhibited similar reductions in arterial lumen, and both TgNotch3R169C and Notch3R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. PMID:27821617

  10. Increased Notch3 Activity Mediates Pathological Changes in Structure of Cerebral Arteries.

    PubMed

    Baron-Menguy, Celine; Domenga-Denier, Valérie; Ghezali, Lamia; Faraci, Frank M; Joutel, Anne

    2017-01-01

    CADASIL (Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy), the most frequent genetic cause of stroke and vascular dementia, is caused by highly stereotyped mutations in the NOTCH3 receptor, which is predominantly expressed in vascular smooth muscle. The well-established TgNotch3 R169C mouse model develops characteristic features of the human disease, with deposition of NOTCH3 and other proteins, including TIMP3 (tissue inhibitor of metalloproteinase 3), on brain vessels, as well as reduced maximal dilation, and attenuated myogenic tone of cerebral arteries, but without elevated blood pressure. Increased TIMP3 levels were recently shown to be a major determinant of altered myogenic tone. In this study, we investigated the contribution of TIMP3 and Notch3 signaling to the impairment of maximal vasodilator capacity caused by the archetypal R169C mutation. Maximally dilated cerebral arteries in TgNotch3 R169C mice exhibited a decrease in lumen diameter over a range of physiological pressures that occurred before myogenic tone deficits. This defect was not prevented by genetic reduction of TIMP3 in TgNotch3 R169C mice and was not observed in mice overexpressing TIMP3. Knock-in mice with the R169C mutation (Notch3 R170C/R170C ) exhibited similar reductions in arterial lumen, and both TgNotch3 R169C and Notch3 R170C/R170C mice showed increased cerebral artery expression of Notch3 target genes. Reduced maximal vasodilation was prevented by conditional reduction of Notch activity in smooth muscle of TgNotch3 R169C mice and mimicked by conditional activation of Notch3 in smooth muscle, an effect that was blood pressure-independent. We conclude that increased Notch3 activity mediates reduction in maximal dilator capacity of cerebral arteries in CADASIL and may contribute to reductions in cerebral blood flow. © 2016 American Heart Association, Inc.

  11. Maximal exercise and muscle oxygen extraction in acclimatizing lowlanders and high altitude natives

    PubMed Central

    Lundby, Carsten; Sander, Mikael; van Hall, Gerrit; Saltin, Bengt; Calbet, José A L

    2006-01-01

    The tight relation between arterial oxygen content and maximum oxygen uptake () within a given person at sea level is diminished with altitude acclimatization. An explanation often suggested for this mismatch is impairment of the muscle O2 extraction capacity with chronic hypoxia, and is the focus of the present study. We have studied six lowlanders during maximal exercise at sea level (SL) and with acute (AH) exposure to 4100 m altitude, and again after 2 (W2) and 8 weeks (W8) of altitude sojourn, where also eight high altitude native (Nat) Aymaras were studied. Fractional arterial muscle O2 extraction at maximal exercise was 90.0 ± 1.0% in the Danish lowlanders at sea level, and remained close to this value in all situations. In contrast to this, fractional arterial O2 extraction was 83.2 ± 2.8% in the high altitude natives, and did not change with the induction of normoxia. The capillary oxygen conductance of the lower extremity, a measure of oxygen diffusing capacity, was decreased in the Danish lowlanders after 8 weeks of acclimatization, but was still higher than the value obtained from the high altitude natives. The values were (in ml min−1 mmHg−1) 55.2 ± 3.7 (SL), 48.0 ± 1.7 (W2), 37.8 ± 0.4 (W8) and 27.7 ± 1.5 (Nat). However, when correcting oxygen conductance for the observed reduction in maximal leg blood flow with acclimatization the effect diminished. When calculating a hypothetical leg at altitude using either the leg blood flow or the O2 conductance values obtained at sea level, the former values were almost completely restored to sea level values. This would suggest that the major determinant for not to increase with acclimatization is the observed reduction in maximal leg blood flow and O2 conductance. PMID:16581864

  12. Specific binding of magnetic nanoparticle probes to platelets in whole blood detected by magnetorelaxometry

    NASA Astrophysics Data System (ADS)

    Eberbeck, Dietmar; Wiekhorst, Frank; Steinhoff, Uwe; Schwarz, Kay Oliver; Kummrow, Andreas; Kammel, Martin; Neukammer, Jörg; Trahms, Lutz

    2009-05-01

    The binding of monoclonal antibodies labelled with magnetic nanoparticles to CD61 surface proteins expressed by platelets in whole blood samples was measured by magnetorelaxometry. This technique is sensitive to immobilization of the magnetic labels upon binding. Control experiments with previous saturation of the epitopes on the platelet surfaces demonstrated the specificity of the binding. The kinetics of the antibody antigen reaction is accessible with a temporal resolution of 12 s. The minimal detectable platelet concentration is about 2000 μL -1 (sample volume 150 μL). The proportionality of the magnetic relaxation amplitude to the number of bound labels allows a quantification of the antibody binding capacity.

  13. Staphylococcal surface display of metal-binding polyhistidyl peptides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Samuelson, P.; Wernerus, H.; Svedberg, M.

    2000-03-01

    Recombinant Staphylococcus xylosus and Staphylococcus carnosus strains were generated with surface-exposed chimeric proteins containing polyhistidyl peptides designed for binding to divalent metal ions. Surface accessibility of the chimeric surface proteins was demonstrated and the chimeric surface proteins were found to be functional in terms of metal binding, since the recombinant staphylococcal cells were shown to have gained Ni{sup 2+}- and Cd{sup 2+}-binding capacity, suggesting that such bacteria could find use in bioremediation of heavy metals. This is, to their knowledge, the first time that recombinant, surface-exposed metal-binding peptides have been expressed on gram-positive bacteria. Potential environmental or biosensor applications formore » such recombinant staphylococci as biosorbents are discussed.« less

  14. Interleukin 1 amplifies receptor-mediated activation of phospholipase A2 in 3T3 fibroblasts.

    PubMed Central

    Burch, R M; Connor, J R; Axelrod, J

    1988-01-01

    Human recombinant interleukin 1 alpha (IL-1 alpha) and IL-1 beta stimulated prostaglandin E2 synthesis in 3T3 fibroblasts in a time- and concentration-dependent manner. Enhanced prostaglandin E2 synthesis after IL-1 treatment was apparent by 1 hr and continued to increase for at least 2 days. Half-maximal stimulation occurred at 0.5 pM IL-1 alpha or IL-1 beta, and both interleukins were equally effective, with maximal stimulation occurring in response to 5-10 pM IL-1. In contrast to IL-1, bradykinin stimulation of prostaglandin E2 synthesis is rapid; its effect is maximal by 5 min. In cells that had been pretreated with IL-1 for 24 hr, prostaglandin E2 synthesis in response to bradykinin was amplified more than 10-fold. IL-1 also amplified the receptor-mediated formation of prostaglandin E2 by bombesin and thrombin. The lymphokine did not affect bradykinin receptor number or affinity. IL-1 treatment induced phospholipase A2 and cyclooxygenase but not phospholipase C or prostaglandin E isomerase. It also enhanced bradykinin-stimulated GTPase activity, suggesting possible induction of the GTP-binding regulatory protein coupled to the bradykinin receptor. Thus, IL-1 enhanced receptor-mediated release of prostaglandin E2 in response to bradykinin, bombesin, and thrombin by increasing the cellular levels of phospholipase A2, cyclooxygenase, and GTP-binding regulatory protein(s). PMID:2901097

  15. Hydrogel droplet microarrays with trapped antibody-functionalized beads for multiplexed protein analysis.

    PubMed

    Li, Huiyan; Leulmi, Rym Feriel; Juncker, David

    2011-02-07

    Antibody microarrays are a powerful tool for rapid, multiplexed profiling of proteins. 3D microarray substrates have been developed to improve binding capacity, assay sensitivity, and mass transport, however, they often rely on photopolymers which are difficult to manufacture and have a small pore size that limits mass transport and demands long incubation time. Here, we present a novel 3D antibody microarray format based on the entrapment of antibody-coated microbeads within alginate droplets that were spotted onto a glass slide using an inkjet. Owing to the low concentration of alginate used, the gels were highly porous to proteins, and together with the 3D architecture helped enhance mass transport during the assays. The spotting parameters were optimized for the attachment of the alginate to the substrate. Beads with 0.2 µm, 0.5 µm and 1 µm diameter were tested and 1 µm beads were selected based on their superior retention within the hydrogel. The beads were found to be distributed within the entire volume of the gel droplet using confocal microscopy. The assay time and the concentration of beads in the gels were investigated for maximal binding signal using one-step immunoassays. As a proof of concept, six proteins including cytokines (TNFα, IL-8 and MIP/CCL4), breast cancer biomarkers (CEA and HER2) and one cancer-related protein (ENG) were profiled in multiplex using sandwich assays down to pg mL(-1) concentrations with 1 h incubation without agitation in both buffer solutions and 10% serum. These results illustrate the potential of beads-in-gel microarrays for highly sensitive and multiplexed protein analysis.

  16. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    NASA Astrophysics Data System (ADS)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti-AF options.

  17. Effect of antiischemic therapy on coronary flow reserve and the pressure-maximal coronary flow relationship in anesthetized swine.

    PubMed

    McFalls, E O; Duncker, D J; Sassen, L M; Gho, B C; Verdouw, P D

    1991-12-01

    The effect of nifedipine (0.5, 1.0, and 2.0 micrograms/kg/min), metoprolol (0.1, 0.5, and 1.0 mg/kg), the beta 1-selective adrenoceptor partial agonist epanolol (10, 50, and 200 micrograms/kg), or equivalent volumes of isotonic saline (n = 6, in each group), on coronary blood flow capacity were studied in anesthetized swine. Intracoronary bolus injections of adenosine (20 micrograms/kg/0.2 ml) were administered without and during three levels of coronary stenosis, prior to and following each dose of drug, to obtain maximal coronary blood flows at different perfusion pressures in the autoregulatory range. Coronary perfusion pressures were varied by partial inflation of a balloon around the left anterior descending coronary artery. Special care was taken that the stenoses not lead to myocardial ischemia. Three indices of coronary blood flow capacity were used: absolute coronary flow reserve (ACFR, the ratio of maximal to resting coronary blood flow), the slope and the extrapolated pressure at zero flow (Pzf) of the pressure-maximal coronary flow (PMCF) relationship, and relative coronary flow reserve (RCFR, the ratio of maximal coronary blood flow with a stenosis to maximal coronary blood flow without a stenosis) at two of the three levels of stenosis. Nifedipine decreased ACFR from 4.5 +/- 1.9 to 1.9 +/- 0.3 (mean +/- SD; p less than 0.05), reflecting in part the increase in resting coronary blood flow. The nifedipine-induced changes in maximal coronary blood flow were not only due to a drop in perfusion pressure, as the slope of the PMCF relationship decreased from 2.27 +/- 0.49 ml/(min.mm Hg) to 1.54 +/- 0.51 ml/(min.mm Hg) (p less than 0.05), and Pzf decreased from 30 +/- 4 mm Hg to 20 +/- 7 mm Hg (p less than 0.05). Consequently, calculated maximal coronary blood flow was attenuated from 114 +/- 31 ml/min to 93 +/- 37 ml/min at 80 mm Hg, but was enhanced from 23 +/- 13 to 37 +/- 24 ml/min at 40 mm Hg coronary perfusion pressure. In concert with the change in the PMCF relationship, RCFR at equivalent severe stenosis increased from 0.33 +/- 0.06 to 0.47 +/- 0.10 (p less than 0.05). No changes were observed with metoprolol, epanolol, or saline. The effect of nifedipine on the PMCF relationship not only provides a mechanism for the drug's antiischemic action, but should also be considered in the interpretation of coronary flow reserve measurements in patients on nifedipine treatment.

  18. A 3D seismic investigation of the Ray Gas Storage Reef in Macomb County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schaefer, S.F.; Dixon, R.A.

    1995-09-01

    A 4.2 square mile 3D seismic survey was acquired over the Ray Niagaran Reef Gas Storage Field in southeast Michigan as part of a program to maximize storage capacity and gas deliverability of the field. Goals of the survey were: (1) to determine if additional storage capacity could be found, either as extensions to the main reef or as undiscovered satellite reefs, (2) to determine if 3D seismic data can be utilized to quantify reservoir parameters in order to maximize the productive capacity of infill wells, and (3) to investigate the relationship between the main reef body and a lowmore » relief/flow volume gas well east of the reef. Interpretation of the 3D seismic data resulted in a detailed image of the reef, using several interpretive techniques. A seismic reflection within the reef was correlated with a known porosity zone, and the relationship between porosity and seismic amplitude was investigated. A possible connection between the main reef and the low relief gas well was identified. This project illustrates the economic value of investigating an existing storage reef with 3D seismic data, and underscores the necessity of acquiring such a survey prior to developing a new storage reservoir.« less

  19. Acute effects of inspiratory muscle warm-up on pulmonary function in healthy subjects.

    PubMed

    Özdal, Mustafa

    2016-06-15

    The acute effects of inspiratory muscle warm-up on pulmonary functions were examined in 26 healthy male subjects using the pulmonary function test (PFT) in three different trials. The control trial (CON) did not involve inspiratory muscle warm-up, while the placebo (IMWp) and experimental (IMW) trials involved inspiratory muscle warm-up. There were no significant changes between the IMWp and CON trials (p>0.05). All the PFT measurements, including slow vital capacity, inspiratory vital capacity, forced vital capacity, forced expiratory volume in one second, maximal voluntary ventilation, and maximal inspiratory pressure were significantly increased by 3.55%, 12.52%, 5.00%, 2.75%, 2.66%, and 7.03% respectively, in the subjects in the IMW trial than those in the CON trial (p<0.05). These results show that inspiratory muscle warm-up improved the pulmonary functions. The mechanisms responsible for these improvements are probably associated with the concomitant increase in the inspiratory muscle strength, and the cooperation of the upper thorax, neck, and respiratory muscles, and increased level of reactive O2 species in muscle tissue, and potentially improvement of muscle O2 delivery-to-utilization. However, further investigation is required to determine the precise mechanisms responsible from among these candidates. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Land-use efficiency of big solar.

    PubMed

    Hernandez, Rebecca R; Hoffacker, Madison K; Field, Christopher B

    2014-01-21

    As utility-scale solar energy (USSE) systems increase in size and numbers globally, there is a growing interest in understanding environmental interactions between solar energy development and land-use decisions. Maximizing the efficient use of land for USSE is one of the major challenges in realizing the full potential of solar energy; however, the land-use efficiency (LUE; Wm(-2)) of USSE remains ambiguous. We quantified the capacity-based LUE of 183 USSE installations (>20 MW; planned, under construction, and operating) using California as a case study. In California, USSE installations are concentrated in the Central Valley and interior regions of southern California and have a LUE of 35.0 Wm(-2). The installations occupy approximately 86,000 ha and more land is allocated for photovoltaic schemes (72 294 ha) than for concentrating solar power (13,604 ha). Photovoltaic installations are greater in abundance (93%) than concentrating solar power, but technology type and nameplate capacity has no impact on capacity-based LUE. More USSE installations are on private land (80%) and have a significantly greater LUE (35.8 Wm(-2)) than installations on public land (25.4 Wm(-2)). Our findings can be used to better understand and improve the LUE of USSE, thereby maximizing economic, energetic, and environmental returns on investments.

  1. Coagulation factor VII variants resistant to inhibitory antibodies.

    PubMed

    Branchini, Alessio; Baroni, Marcello; Pfeiffer, Caroline; Batorova, Angelika; Giansily-Blaizot, Muriel; Schved, Jean F; Mariani, Guglielmo; Bernardi, Francesco; Pinotti, Mirko

    2014-11-01

    Replacement therapy is currently used to prevent and treat bleeding episodes in coagulation factor deficiencies. However, structural differences between the endogenous and therapeutic proteins might increase the risk for immune complications. This study was aimed at identifying factor (F)VII variants resistant to inhibitory antibodies developed after treatment with recombinant activated factor VII (rFVIIa) in a FVII-deficient patient homozygous for the p.A354V-p.P464Hfs mutation, which predicts trace levels of an elongated FVII variant in plasma. We performed fluorescent bead-based binding, ELISA-based competition as well as fluorogenic functional (activated FX and thrombin generation) assays in plasma and with recombinant proteins. We found that antibodies displayed higher affinity for the active than for the zymogen FVII (half-maximal binding at 0.54 ± 0.04 and 0.78 ± 0.07 BU/ml, respectively), and inhibited the coagulation initiation phase with a second-order kinetics. Isotypic analysis showed a polyclonal response with a large predominance of IgG1. We hypothesised that structural differences in the carboxyl-terminus between the inherited FVII and the therapeutic molecules contributed to the immune response. Intriguingly, a naturally-occurring, poorly secreted and 5-residue truncated FVII (FVII-462X) escaped inhibition. Among a series of truncated rFVII molecules, we identified a well-secreted and catalytically competent variant (rFVII-464X) with reduced binding to antibodies (half-maximal binding at 0.198 ± 0.003 BU/ml) as compared to the rFVII-wt (0.032 ± 0.002 BU/ml), which led to a 40-time reduced inhibition in activated FX generation assays. Taken together our results provide a paradigmatic example of mutation-related inhibitory antibodies, strongly support the FVII carboxyl-terminus as their main target and identify inhibitor-resistant FVII variants.

  2. Nanobio interfaces: charge control of enzyme/inorganic interfaces for advanced biocatalysis.

    PubMed

    Deshapriya, Inoka K; Kumar, Challa V

    2013-11-19

    Specific approaches to the rational design of nanobio interfaces for enzyme and protein binding to nanomaterials are vital for engineering advanced, functional nanobiomaterials for biocatalysis, sensing, and biomedical applications. This feature article presents an overview of our recent discoveries on structural, functional, and mechanistic details of how enzymes interact with inorganic nanomaterials and how they can be controlled in a systematic manner using α-Zr(IV)phosphate (α-ZrP) as a model system. The interactions of a number of enzymes having a wide array of surface charges, sizes, and functional groups are investigated. Interactions are carefully controlled to screen unfavorable repulsions and enhance favorable interactions for high affinity, structure retention, and activity preservation. In specific cases, catalytic activities and substrate selectivities are improved over those of the pristine enzymes, and two examples of high activity near the boiling point of water have been demonstrated. Isothermal titration calorimetric studies indicated that enzyme binding is coupled to ion sequestration or release to or from the nanobio interface, and binding is controlled in a rational manner. We learned that (1) bound enzyme stabilities are improved by lowering the entropy of the denatured state; (2) maximal loadings are obtained by matching charge footprints of the enzyme and the nanomaterial surface; (3) binding affinities are improved by ion sequestration at the nanobio interface; and (4) maximal enzyme structure retention is obtained by biophilizing the nanobio interface with protein glues. The chemical and physical manipulations of the nanobio interface are significant not only for understanding the complex behaviors of enzymes at biological interfaces but also for desiging better functional nanobiomaterials for a wide variety of practical applications.

  3. Fundamental considerations in ski binding analysis.

    PubMed

    Mote, C D; Hull, M L

    1976-01-01

    1. The static adjustment of a ski binding by hand or by available machines is only an adjustment and is neither a static nor a dynamic evaluation of the binding design. Bindings of different design with identical static adjustments will perform differently in environments in which the forces are static or dynamic. 2. The concept of binding release force is a useful measure of binding adjustment, but it is inappropriate as a criterion for binding evaluation. First, it does not direct attention toward the injury causing mechanism, strain, or displacement in the leg. Second, it is only part of the evaluation in dynamic problems. 3. The binding release decision in present bindings is displacement controlled. The relative displacement of the boot and ski is the system variable. For any specified relative displacement the binding force can be any of an infinite number of possibilities determined by the loading path. 4. The response of the leg-ski system to external impulses applied to the ski is independent of the boot-ski relative motion as long as the boot recenters quickly in the binding. Response is dependent upon the external impulse plus system inertia, damping and stiffness. 5. When tested under half sinusoidal forces applied to a test ski, all bindings will demonstrate static and impulse loading regions. In the static region the force drives the binding to a relative release displacement. In the impulse region the initial velocity of the ski drives the binding to a release displacement. 6. The transition between the static and impulse loading regions is determined by the binding's capacity to store and dissipate energy along the principal loading path. Increased energy capacity necessitates larger external impulses to produce release. 7. In all bindings examined to date, the transmitted leg displacement or strain at release under static loading exceeds leg strain under dynamic or impact loading. Because static loading is responsible for many injuries, a skier should be able to release his bindings in every mode by simply pulling or twisting his foot outward. If that cannot be done without injury, the skier has identified for himself one type of fall that will result in injury. 8. And lastly, a little advice from Ben Franklin--"Carelessness does more harm than a want of knowledge."

  4. Quantification of Oxygen Consumption in Retina Ex Vivo Demonstrates Limited Reserve Capacity of Photoreceptor Mitochondria

    PubMed Central

    Kooragayala, Keshav; Gotoh, Norimoto; Cogliati, Tiziana; Nellissery, Jacob; Kaden, Talia R.; French, Stephanie; Balaban, Robert; Li, Wei; Covian, Raul; Swaroop, Anand

    2015-01-01

    Purpose Cell death in neurodegeneration occurs at the convergence of diverse metabolic pathways. In the retina, a common underlying mechanism involves mitochondrial dysfunction since photoreceptor homeostasis and survival are highly susceptible to altered aerobic energy metabolism. We sought to develop an assay to directly measure oxygen consumption in intact retina with the goal of identifying alterations in respiration during photoreceptor dysfunction and degeneration. Methods Circular punches of freshly isolated mouse retina, adjacent to the optic nerve head, were used in the microplate-based Seahorse Extracellular Flux Analyzer to measure oxygen consumption. Tissue integrity was evaluated by propidium iodide staining and live imaging. Different substrates were tested for mitochondrial respiration. Basal and maximal respiration were expressed as oxygen consumption rate (OCR) and respectively measured in Ames' medium before and after the addition of mitochondrial uncoupler, BAM15. Results We show that glucose is an essential substrate for retinal mitochondria. At baseline, mitochondria respiration in the intact wild-type retina was close to maximal, with limited reserve capacity. Similar OCR and limited mitochondrial reserve capacity was also observed in cone-only Nrl−/− retina. However, the retina of Pde6brd1/rd1, Cep290rd16/rd16 and Rpgrip1−/− mice, all with dysfunctional or no photoreceptors, had reduced OCR and higher mitochondrial reserve capacity. Conclusions We have optimized a method to directly measure oxygen consumption in acutely isolated, ex vivo mouse retina and demonstrate that photoreceptors have low mitochondrial reserve capacity. Our data provide a plausible explanation for the high vulnerability of photoreceptors to altered energy homeostasis caused by mutations or metabolic challenges. PMID:26747773

  5. Ice age fish in a warming world: minimal variation in thermal acclimation capacity among lake trout (Salvelinus namaycush) populations

    PubMed Central

    Kelly, Nicholas I.; Burness, Gary; McDermid, Jenni L.; Wilson, Chris C.

    2014-01-01

    In the face of climate change, the persistence of cold-adapted species will depend on their adaptive capacity for physiological traits within and among populations. The lake trout (Salvelinus namaycush) is a cold-adapted salmonid and a relict from the last ice age that is well suited as a model species for studying the predicted effects of climate change on coldwater fishes. We investigated the thermal acclimation capacity of upper temperature resistance and metabolism of lake trout from four populations across four acclimation temperatures. Individuals were reared from egg fertilization onward in a common environment and, at 2 years of age, were acclimated to 8, 11, 15 or 19°C. Although one population had a slightly higher maximal metabolic rate (MMR), higher metabolic scope for activity and faster metabolic recovery across all temperatures, there was no interpopulation variation for critical thermal maximum (CTM) or routine metabolic rate (RMR) or for the thermal acclimation capacity of CTM, RMR, MMR or metabolic scope. Across the four acclimation temperatures, there was a 3°C maximal increase in CTM and 3-fold increase in RMR for all populations. Above 15°C, a decline in MMR and increase in RMR resulted in sharply reduced metabolic scope for all populations acclimated at 19°C. Together, these data suggest there is limited variation among lake trout populations in thermal physiology or capacity for thermal acclimatization, and that climate change may impact lake trout populations in a similar manner across a wide geographical range. Understanding the effect of elevated temperatures on the thermal physiology of this economically and ecologically important cold-adapted species will help inform management and conservation strategies for the long-term sustainability of lake trout populations. PMID:27293646

  6. Leaping lizards landing on leaves: escape-induced jumps in the rainforest canopy challenge the adhesive limits of geckos.

    PubMed

    Higham, Timothy E; Russell, Anthony P; Niklas, Karl J

    2017-06-01

    The remarkable adhesive capabilities of geckos have garnered attention from scientists and the public for centuries. Geckos are known to have an adhesive load-bearing capacity far in excess (by 100-fold or more) of that required to support their body mass or accommodate the loading imparted during maximal locomotor acceleration. Few studies, however, have investigated the ecological contexts in which geckos use their adhesive system and how this may influence its properties. Here we develop a modelling framework to assess whether their prodigious adhesive capacity ever comes under selective challenge. Our investigation is based upon observations of escape-induced aerial descents of canopy-dwelling arboreal geckos that are rapidly arrested by clinging to leaf surfaces in mid-fall. We integrate ecological observations, adhesive force measurements, and body size and shape measurements of museum specimens to conduct simulations. Using predicted bending mechanics of petioles and leaf midribs, we find that the drag coefficient of the gecko, the size of the gecko and the size of the leaf determine impact forces. Regardless of the landing surface, safety factors for geckos range from a maximum of just over 10 to a minimum of well under one, which would be the point at which the adhesive system fails. In contrast to previous research that intimates that gecko frictional adhesive capacity is excessive relative to body mass, we demonstrate that realistic conditions in nature may result in frictional capacity being pushed to its limit. The rapid arrest of the lizard from its falling velocity likely results in the maximal loading to which the adhesive system is exposed during normal activities. We suggest that such activities might be primary determinants in driving their high frictional adhesive capacity. © 2017 The Author(s).

  7. Relationship Between Post-exercise Heart Rate Recovery and Changing Ratio of Cardiopulmonary Exercise Capacity.

    PubMed

    Kim, Ji-Hyun; Choe, Yu-Ri; Song, Min-Keun; Choi, In-Sung; Han, Jae-Young

    2017-12-01

    To determine whether heart rate recovery (HRR) following an exercise tolerance test (ETT) is correlated with a changing ratio of peak oxygen consumption (VO 2 ) and maximal metabolic equivalents (MET max ). A total of 60 acute myocardial infarction (AMI) patients who underwent ETT at both assessment points - 3 weeks (T0) after the AMI attack and 3 months after T0 (T1) were included. After achieving a peak workload, the treadmill was stopped with a 5-minute cooldown period, and the patients recovered in a comfortable and relaxed seated position. HRR was defined as the difference between the maximal heart rate (HR max ) and the HR measured at specific time intervals - immediately after the cool down period (HRR-0) and 3 minutes after the completion of the ETT (HRR-3). HRR-0 and HRR-3 increased over time, whereas VO 2max and MET max did not show significant changes. There was a positive correlation between HRR at T0 and the exercise capacity at T0. HRR at T0 also showed a positive correlation with the exercise capacity at T1. There was no significant correlation between HRR measured at T0 and the change in the ratio of VO 2max and MET max , as calculated by subtracting VO 2max and MET max obtained at T0 from those obtained at T1, divided by VO 2max at T0 and multiplied by 100. Post-exercise HRR measured at 3 weeks after the AMI onset can reflect the exercise capacity 3 months after the first ETT. However, it may be difficult to correlate post-exercise HRR at T0 with the degree of increase in cardiopulmonary exercise capacity in patients with AMI.

  8. Physical activity, sedentary behavior, and aerobic capacity in persons with multiple sclerosis.

    PubMed

    Motl, Robert W; Sandroff, Brian M; Pilutti, Lara A; Klaren, Rachel E; Baynard, Tracy; Fernhall, Bo

    2017-01-15

    There is substantial evidence that exercise training improves aerobic capacity among people with multiple sclerosis (MS), but less is known about the associations between physical activity and sedentary behaviors with aerobic capacity. This study examined if objectively-measured moderate-to-vigorous (MVPA) and light (LPA) physical activity and sedentary behavior were associated with peak aerobic capacity (VO 2 peak) measured using an established protocol for conducting a maximal, incremental exercise test in persons with MS. The study involved a cross-sectional, observational study design and included 49 persons with MS. Participants wore an accelerometer around the waist during the waking hours for a 7-day period as a measure of physical activity and sedentary behaviors, and completed a maximal, incremental exercise test on an electronically-braked, computer-controlled cycle ergometer with open-circuit spirometry for measuring VO 2 peak. VO 2 peak was significantly correlated with MVPA (r=0.53, p<0.001) and LPA (r=0.39, p<0.01), but not sedentary behavior (r=-0.12, p=0.44). Linear regression analysis indicated that MVPA (B=0.19, SE B=0.04, β=0.51, p<0.001) and LPA (B=0.02, SE B=0.01, β=0.30, p<0.05), but not sedentary behavior (B=-0.01, SE B=0.01, β=-0.14, p=0.26), explained significant variance in VO 2 peak (R 2 =0.40). We provide the first evidence that MVPA and LPA represent concurrent correlates of VO 2 peak and both could be targeted for improving aerobic capacity in persons with MS. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Maximum step length: relationships to age and knee and hip extensor capacities.

    PubMed

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2007-07-01

    Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.

  10. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study.

    PubMed

    Rice, Treva K; Sarzynski, Mark A; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M; Teran-Garcia, Margarita; Rao, D C; Bouchard, Claude; Rankinen, Tuomo

    2012-08-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO(2)60), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO(2)60 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1-29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO(2)60 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P < 1.0 × 10(-5)) for ΔVO(2)60. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO(2)60 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance.

  11. Fine mapping of a QTL on chromosome 13 for submaximal exercise capacity training response: the HERITAGE Family Study

    PubMed Central

    Rice, Treva K.; Sarzynski, Mark A.; Sung, Yun Ju; Argyropoulos, George; Stütz, Adrian M.; Teran-Garcia, Margarita; Rao, D. C.; Bouchard, Claude

    2014-01-01

    Although regular exercise improves submaximal aerobic capacity, there is large variability in its response to exercise training. While this variation is thought to be partly due to genetic differences, relatively little is known about the causal genes. Submaximal aerobic capacity traits in the current report include the responses of oxygen consumption (ΔVO260), power output (ΔWORK60), and cardiac output (ΔQ60) at 60% of VO2max to a standardized 20-week endurance exercise training program. Genome-wide linkage analysis in 475 HERITAGE Family Study Caucasians identified a locus on chromosome 13q for ΔVO260 (LOD = 3.11). Follow-up fine mapping involved a dense marker panel of over 1,800 single-nucleotide polymorphisms (SNPs) in a 7.9-Mb region (21.1–29.1 Mb from p-terminus). Single-SNP analyses found 14 SNPs moderately associated with both ΔVO260 at P ≤ 0.005 and the correlated traits of ΔWORK60 and ΔQ60 at P < 0.05. Haplotype analyses provided several strong signals (P<1.0 × 10−5) for ΔVO260. Overall, association analyses narrowed the target region and included potential biological candidate genes (MIPEP and SGCG). Consistent with maximal heritability estimates of 23%, up to 20% of the phenotypic variance in ΔVO260 was accounted for by these SNPs. These results implicate candidate genes on chromosome 13q12 for the ability to improve submaximal exercise capacity in response to regular exercise. Submaximal exercise at 60% of maximal capacity is an exercise intensity that falls well within the range recommended in the Physical Activity Guidelines for Americans and thus has potential public health relevance. PMID:22170014

  12. Intentional Design of Student Organizations to Optimize Leadership Development.

    PubMed

    Mainella, Felicia C

    2017-09-01

    This chapter addresses how a group's organizational structure can promote or hinder the leadership capacity of its members. The information in this chapter provides insight into structuring student organizations in a way to maximize all members' leadership development. © 2017 Wiley Periodicals, Inc., A Wiley Company.

  13. Rural Policy in a New Century.

    ERIC Educational Resources Information Center

    Marshall, Ray

    Past rural policies are reviewed, noting the effects of globalization and information technology. Rural business profits can be maximized by direct cost or value-added competition, but cost competition limits the development of productive capacity and leads to unequal income distribution. In contrast, value-added competition could create steep…

  14. Building Organizational Capacity: Strategic Management in Higher Education

    ERIC Educational Resources Information Center

    Toma, J. Douglas

    2010-01-01

    Every university or college president envisions bold initiatives--big projects intended to change the nature of an institution with significant implications across all sectors. How can leaders and senior managers charged with implementing reforms effectively frame their work and anticipate potential pitfalls? No organization can maximize its…

  15. Structural Reorganization and the Cooperative Binding of Single-stranded Telomere DNA in Sterkiella nova*

    PubMed Central

    Buczek, Pawel; Horvath, Martin P.

    2009-01-01

    In Sterkiella nova, α and β telomere proteins bind cooperatively with single-stranded DNA to form a ternary α·β·DNA complex. Association of telomere protein subunits is DNA-dependent, and α-β association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, α and DNA first form a stable α·DNA complex followed by addition of β in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different with ΔCp = −305 ± 3 cal mol−1 K−1 for α binding with DNA and ΔCp = −2010 ± 20 cal mol−1 K−1 for addition of β to complete the α·β·DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed α·β complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of β. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length β or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of β. PMID:17082188

  16. Effects of detraining on anthropometry, aerobic capacity and functional ability in adults with Down syndrome.

    PubMed

    Boer, P H

    2018-01-01

    Structured exercise has shown to improve parameters of functional fitness in adults with Down syndrome (DS). However, few, if any, continue to exercise after exercise intervention studies. Consequently, the purpose of this study was to determine the effects of detraining on anthropometry, aerobic capacity and functional ability of adults with DS. In a previous study, forty-two participants either performed 12 weeks of interval training, continuous aerobic training or no training (CON). After 3 months of detraining, the same participants were tested again for anthropometry, aerobic capacity, leg strength and functional ability. Significant reductions in maximal aerobic capacity, time to exhaustion and both functional test items were reported for both exercise groups compared to CON (p < .05). No significant differences were reported between the exercise groups concerning aerobic and functional capacity reductions. Detraining occurred significantly in both exercise groups regarding parameters associated with aerobic and functional capacity. © 2017 John Wiley & Sons Ltd.

  17. Potential of goat probiotic to bind mutagens.

    PubMed

    Apás, Ana Lidia; González, Silvia Nelina; Arena, Mario Eduardo

    2014-08-01

    The mutagen binding ability of the goat probiotics (Lactobacillus reuteri DDL 19, Lactobacillus alimentarius DDL 48, Enterococcus faecium DDE 39, and Bifidobacterium bifidum DDBA) was evaluated. The oral administration of these probiotics reduced fecal mutagens and intestinal cancer markers in goats. Secondly, the effects of probiotics against the mutagenesis induced by sodium azide (SA), and Benzopyrene (B[α]P) by performing the modified Ames test using Salmonella typhimurium TA 100 was investigated. The capacity to bind benzopyrene and the stability of the bacterial-mutagen complex was analyzed by HPLC. The dismutagenic potential against both mutagens was proportional to probiotic concentration. Results showed that probiotic antimutagenic capacity against SA was ranging from 13 to 78%. The mixture of four goat probiotics (MGP) displayed higher antimutagenic activity against SA than any individual strains at the same cell concentration. This study shows that the highest diminution of mutagenicity in presence of B[α]P (74%) was observed in presence of MGP. The antimutagenic activity of nearly all the individual probiotic and the MGP were in concordance with the B[α]P binding determined by HPLC. According to our results, the B[α]P binding to probiotic was irreversible still after being washed with DMSO solution. The stability of the toxic compounds-bacterial cell binding is a key consideration when probiotic antimutagenic property is evaluated. MGP exhibits the ability to bind and detoxify potent mutagens, and this property can be useful in supplemented foods for goats since it can lead to the removal of potent mutagens and protect and enhance ruminal health and hence food safety of consumers. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Functional interaction of CCAAT/enhancer-binding-protein-α basic region mutants with E2F transcription factors and DNA.

    PubMed

    Kowenz-Leutz, Elisabeth; Schuetz, Anja; Liu, Qingbin; Knoblich, Maria; Heinemann, Udo; Leutz, Achim

    2016-07-01

    The transcription factor CCAAT/enhancer-binding protein α (C/EBPα) regulates cell cycle arrest and terminal differentiation of neutrophils and adipocytes. Mutations in the basic leucine zipper domain (bZip) of C/EBPα are associated with acute myeloid leukemia. A widely used murine transforming C/EBPα basic region mutant (BRM2) entails two bZip point mutations (I294A/R297A). BRM2 has been discordantly described as defective for DNA binding or defective for interaction with E2F. We have separated the two BRM2 mutations to shed light on the intertwined reciprocity between C/EBPα-E2F-DNA interactions. Both, C/EBPα I294A and R297A retain transactivation capacity and interaction with E2F-DP. The C/EBPα R297A mutation destabilized DNA binding, whereas the C/EBPα I294A mutation enhanced binding to DNA. The C/EBPα R297A mutant, like BRM2, displayed enhanced interaction with E2F-DP but failed to repress E2F-dependent transactivation although both mutants were readily suppressed by E2F1 for transcription through C/EBP cis-regulatory sites. In contrast, the DNA binding enhanced C/EBPα I294A mutant displayed increased repression of E2F-DP mediated transactivation and resisted E2F-DP mediated repression. Thus, the efficient repression of E2F dependent S-phase genes and the activation of differentiation genes reside in the balanced DNA binding capacity of C/EBPα. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Respiratory function in facioscapulohumeral muscular dystrophy 1.

    PubMed

    Wohlgemuth, M; Horlings, C G C; van der Kooi, E L; Gilhuis, H J; Hendriks, J C M; van der Maarel, S M; van Engelen, B G M; Heijdra, Y F; Padberg, G W

    2017-06-01

    To test the hypothesis that wheelchair dependency and (kypho-)scoliosis are risk factors for developing respiratory insufficiency in facioscapulohumeral muscular dystrophy, we examined 81 patients with facioscapulohumeral muscular dystrophy 1 of varying degrees of severity ranging from ambulatory patients to wheelchair-bound patients. We examined the patients neurologically and by conducting pulmonary function tests: Forced Vital Capacity, Forced Expiratory Volume in 1 second, and static maximal inspiratory and expiratory mouth pressures. We did not find pulmonary function test abnormalities in ambulant facioscapulohumeral muscular dystrophy patients. Even though none of the patients complained of respiratory dysfunction, mild to severe respiratory insufficiency was found in more than one third of the wheelchair-dependent patients. Maximal inspiratory pressures and maximal expiratory pressures were decreased in most patients, with a trend that maximal expiratory pressures were more affected than maximal inspiratory pressures. Wheelchair-dependent patients with (kypho-)scoliosis showed the most restricted lung function. Wheelchair-dependent patients with (kypho-)scoliosis are at risk for developing respiratory function impairment. We advise examining this group of facioscapulohumeral muscular dystrophy patients periodically, even in the absence of symptoms of respiratory insufficiency, given its frequency and impact on daily life and the therapeutic consequences. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Colorectal mucus binds DC-SIGN and inhibits HIV-1 trans-infection of CD4+ T-lymphocytes.

    PubMed

    Stax, Martijn J; Mouser, Emily E I M; van Montfort, Thijs; Sanders, Rogier W; de Vries, Henry J C; Dekker, Henk L; Herrera, Carolina; Speijer, Dave; Pollakis, Georgios; Paxton, William A

    2015-01-01

    Bodily secretions, including breast milk and semen, contain factors that modulate HIV-1 infection. Since anal intercourse caries one of the highest risks for HIV-1 transmission, our aim was to determine whether colorectal mucus (CM) also contains factors interfering with HIV-1 infection and replication. CM from a number of individuals was collected and tested for the capacity to bind DC-SIGN and inhibit HIV-1 cis- or trans-infection of CD4+ T-lymphocytes. To this end, a DC-SIGN binding ELISA, a gp140 trimer competition ELISA and HIV-1 capture/ transfer assays were utilized. Subsequently we aimed to identify the DC-SIGN binding component through biochemical characterization and mass spectrometry analysis. CM was shown to bind DC-SIGN and competes with HIV-1 gp140 trimer for binding. Pre-incubation of Raji-DC-SIGN cells or immature dendritic cells (iDCs) with CM potently inhibits DC-SIGN mediated trans-infection of CD4+ T-lymphocytes with CCR5 and CXCR4 using HIV-1 strains, while no effect on direct infection is observed. Preliminary biochemical characterization demonstrates that the component seems to be large (>100kDa), heat and proteinase K resistant, binds in a α1-3 mannose independent manner and is highly variant between individuals. Immunoprecipitation using DC-SIGN-Fc coated agarose beads followed by mass spectrometry indicated lactoferrin (fragments) and its receptor (intelectin-1) as candidates. Using ELISA we showed that lactoferrin levels within CM correlate with DC-SIGN binding capacity. In conclusion, CM can bind the C-type lectin DC-SIGN and block HIV-1 trans-infection of both CCR5 and CXCR4 using HIV-1 strains. Furthermore, our data indicate that lactoferrin is a DC-SIGN binding component of CM. These results indicate that CM has the potential to interfere with pathogen transmission and modulate immune responses at the colorectal mucosa.

Top