Approximate, computationally efficient online learning in Bayesian spiking neurons.
Kuhlmann, Levin; Hauser-Raspe, Michael; Manton, Jonathan H; Grayden, David B; Tapson, Jonathan; van Schaik, André
2014-03-01
Bayesian spiking neurons (BSNs) provide a probabilistic interpretation of how neurons perform inference and learning. Online learning in BSNs typically involves parameter estimation based on maximum-likelihood expectation-maximization (ML-EM) which is computationally slow and limits the potential of studying networks of BSNs. An online learning algorithm, fast learning (FL), is presented that is more computationally efficient than the benchmark ML-EM for a fixed number of time steps as the number of inputs to a BSN increases (e.g., 16.5 times faster run times for 20 inputs). Although ML-EM appears to converge 2.0 to 3.6 times faster than FL, the computational cost of ML-EM means that ML-EM takes longer to simulate to convergence than FL. FL also provides reasonable convergence performance that is robust to initialization of parameter estimates that are far from the true parameter values. However, parameter estimation depends on the range of true parameter values. Nevertheless, for a physiologically meaningful range of parameter values, FL gives very good average estimation accuracy, despite its approximate nature. The FL algorithm therefore provides an efficient tool, complementary to ML-EM, for exploring BSN networks in more detail in order to better understand their biological relevance. Moreover, the simplicity of the FL algorithm means it can be easily implemented in neuromorphic VLSI such that one can take advantage of the energy-efficient spike coding of BSNs.
Evaluating low pass filters on SPECT reconstructed cardiac orientation estimation
NASA Astrophysics Data System (ADS)
Dwivedi, Shekhar
2009-02-01
Low pass filters can affect the quality of clinical SPECT images by smoothing. Appropriate filter and parameter selection leads to optimum smoothing that leads to a better quantification followed by correct diagnosis and accurate interpretation by the physician. This study aims at evaluating the low pass filters on SPECT reconstruction algorithms. Criteria for evaluating the filters are estimating the SPECT reconstructed cardiac azimuth and elevation angle. Low pass filters studied are butterworth, gaussian, hamming, hanning and parzen. Experiments are conducted using three reconstruction algorithms, FBP (filtered back projection), MLEM (maximum likelihood expectation maximization) and OSEM (ordered subsets expectation maximization), on four gated cardiac patient projections (two patients with stress and rest projections). Each filter is applied with varying cutoff and order for each reconstruction algorithm (only butterworth used for MLEM and OSEM). The azimuth and elevation angles are calculated from the reconstructed volume and the variation observed in the angles with varying filter parameters is reported. Our results demonstrate that behavior of hamming, hanning and parzen filter (used with FBP) with varying cutoff is similar for all the datasets. Butterworth filter (cutoff > 0.4) behaves in a similar fashion for all the datasets using all the algorithms whereas with OSEM for a cutoff < 0.4, it fails to generate cardiac orientation due to oversmoothing, and gives an unstable response with FBP and MLEM. This study on evaluating effect of low pass filter cutoff and order on cardiac orientation using three different reconstruction algorithms provides an interesting insight into optimal selection of filter parameters.
NASA Astrophysics Data System (ADS)
Stützer, K.; Bert, C.; Enghardt, W.; Helmbrecht, S.; Parodi, K.; Priegnitz, M.; Saito, N.; Fiedler, F.
2013-08-01
In-beam positron emission tomography (PET) has been proven to be a reliable technique in ion beam radiotherapy for the in situ and non-invasive evaluation of the correct dose deposition in static tumour entities. In the presence of intra-fractional target motion an appropriate time-resolved (four-dimensional, 4D) reconstruction algorithm has to be used to avoid reconstructed activity distributions suffering from motion-related blurring artefacts and to allow for a dedicated dose monitoring. Four-dimensional reconstruction algorithms from diagnostic PET imaging that can properly handle the typically low counting statistics of in-beam PET data have been adapted and optimized for the characteristics of the double-head PET scanner BASTEI installed at GSI Helmholtzzentrum Darmstadt, Germany (GSI). Systematic investigations with moving radioactive sources demonstrate the more effective reduction of motion artefacts by applying a 4D maximum likelihood expectation maximization (MLEM) algorithm instead of the retrospective co-registration of phasewise reconstructed quasi-static activity distributions. Further 4D MLEM results are presented from in-beam PET measurements of irradiated moving phantoms which verify the accessibility of relevant parameters for the dose monitoring of intra-fractionally moving targets. From in-beam PET listmode data sets acquired together with a motion surrogate signal, valuable images can be generated by the 4D MLEM reconstruction for different motion patterns and motion-compensated beam delivery techniques.
Han, Miaomiao; Guo, Zhirong; Liu, Haifeng; Li, Qinghua
2018-05-01
Tomographic Gamma Scanning (TGS) is a method used for the nondestructive assay of radioactive wastes. In TGS, the actual irregular edge voxels are regarded as regular cubic voxels in the traditional treatment method. In this study, in order to improve the performance of TGS, a novel edge treatment method is proposed that considers the actual shapes of these voxels. The two different edge voxel treatment methods were compared by computing the pixel-level relative errors and normalized mean square errors (NMSEs) between the reconstructed transmission images and the ideal images. Both methods were coupled with two different interative algorithms comprising Algebraic Reconstruction Technique (ART) with a non-negativity constraint and Maximum Likelihood Expectation Maximization (MLEM). The results demonstrated that the traditional method for edge voxel treatment can introduce significant error and that the real irregular edge voxel treatment method can improve the performance of TGS by obtaining better transmission reconstruction images. With the real irregular edge voxel treatment method, MLEM algorithm and ART algorithm can be comparable when assaying homogenous matrices, but MLEM algorithm is superior to ART algorithm when assaying heterogeneous matrices. Copyright © 2018 Elsevier Ltd. All rights reserved.
Yang, Defu; Wang, Lin; Chen, Dongmei; Yan, Chenggang; He, Xiaowei; Liang, Jimin; Chen, Xueli
2018-05-17
The reconstruction of bioluminescence tomography (BLT) is severely ill-posed due to the insufficient measurements and diffuses nature of the light propagation. Predefined permissible source region (PSR) combined with regularization terms is one common strategy to reduce such ill-posedness. However, the region of PSR is usually hard to determine and can be easily affected by subjective consciousness. Hence, we theoretically developed a filtered maximum likelihood expectation maximization (fMLEM) method for BLT. Our method can avoid predefining the PSR and provide a robust and accurate result for global reconstruction. In the method, the simplified spherical harmonics approximation (SP N ) was applied to characterize diffuse light propagation in medium, and the statistical estimation-based MLEM algorithm combined with a filter function was used to solve the inverse problem. We systematically demonstrated the performance of our method by the regular geometry- and digital mouse-based simulations and a liver cancer-based in vivo experiment. Graphical abstract The filtered MLEM-based global reconstruction method for BLT.
Application and performance of an ML-EM algorithm in NEXT
NASA Astrophysics Data System (ADS)
Simón, A.; Lerche, C.; Monrabal, F.; Gómez-Cadenas, J. J.; Álvarez, V.; Azevedo, C. D. R.; Benlloch-Rodríguez, J. M.; Borges, F. I. G. M.; Botas, A.; Cárcel, S.; Carrión, J. V.; Cebrián, S.; Conde, C. A. N.; Díaz, J.; Diesburg, M.; Escada, J.; Esteve, R.; Felkai, R.; Fernandes, L. M. P.; Ferrario, P.; Ferreira, A. L.; Freitas, E. D. C.; Goldschmidt, A.; González-Díaz, D.; Gutiérrez, R. M.; Hauptman, J.; Henriques, C. A. O.; Hernandez, A. I.; Hernando Morata, J. A.; Herrero, V.; Jones, B. J. P.; Labarga, L.; Laing, A.; Lebrun, P.; Liubarsky, I.; López-March, N.; Losada, M.; Martín-Albo, J.; Martínez-Lema, G.; Martínez, A.; McDonald, A. D.; Monteiro, C. M. B.; Mora, F. J.; Moutinho, L. M.; Muñoz Vidal, J.; Musti, M.; Nebot-Guinot, M.; Novella, P.; Nygren, D. R.; Palmeiro, B.; Para, A.; Pérez, J.; Querol, M.; Renner, J.; Ripoll, L.; Rodríguez, J.; Rogers, L.; Santos, F. P.; dos Santos, J. M. F.; Sofka, C.; Sorel, M.; Stiegler, T.; Toledo, J. F.; Torrent, J.; Tsamalaidze, Z.; Veloso, J. F. C. A.; Webb, R.; White, J. T.; Yahlali, N.
2017-08-01
The goal of the NEXT experiment is the observation of neutrinoless double beta decay in 136Xe using a gaseous xenon TPC with electroluminescent amplification and specialized photodetector arrays for calorimetry and tracking. The NEXT Collaboration is exploring a number of reconstruction algorithms to exploit the full potential of the detector. This paper describes one of them: the Maximum Likelihood Expectation Maximization (ML-EM) method, a generic iterative algorithm to find maximum-likelihood estimates of parameters that has been applied to solve many different types of complex inverse problems. In particular, we discuss a bi-dimensional version of the method in which the photosensor signals integrated over time are used to reconstruct a transverse projection of the event. First results show that, when applied to detector simulation data, the algorithm achieves nearly optimal energy resolution (better than 0.5% FWHM at the Q value of 136Xe) for events distributed over the full active volume of the TPC.
Optical tomography by means of regularized MLEM
NASA Astrophysics Data System (ADS)
Majer, Charles L.; Urbanek, Tina; Peter, Jörg
2015-09-01
To solve the inverse problem involved in fluorescence mediated tomography a regularized maximum likelihood expectation maximization (MLEM) reconstruction strategy is proposed. This technique has recently been applied to reconstruct galaxy clusters in astronomy and is adopted here. The MLEM algorithm is implemented as Richardson-Lucy (RL) scheme and includes entropic regularization and a floating default prior. Hence, the strategy is very robust against measurement noise and also avoids converging into noise patterns. Normalized Gaussian filtering with fixed standard deviation is applied for the floating default kernel. The reconstruction strategy is investigated using the XFM-2 homogeneous mouse phantom (Caliper LifeSciences Inc., Hopkinton, MA) with known optical properties. Prior to optical imaging, X-ray CT tomographic data of the phantom were acquire to provide structural context. Phantom inclusions were fit with various fluorochrome inclusions (Cy5.5) for which optical data at 60 projections over 360 degree have been acquired, respectively. Fluorochrome excitation has been accomplished by scanning laser point illumination in transmission mode (laser opposite to camera). Following data acquisition, a 3D triangulated mesh is derived from the reconstructed CT data which is then matched with the various optical projection images through 2D linear interpolation, correlation and Fourier transformation in order to assess translational and rotational deviations between the optical and CT imaging systems. Preliminary results indicate that the proposed regularized MLEM algorithm, when driven with a constant initial condition, yields reconstructed images that tend to be smoother in comparison to classical MLEM without regularization. Once the floating default prior is included this bias was significantly reduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemaire, H.; Barat, E.; Carrel, F.
In this work, we tested Maximum likelihood expectation-maximization (MLEM) algorithms optimized for gamma imaging applications on two recent coded mask gamma cameras. We respectively took advantage of the characteristics of the GAMPIX and Caliste HD-based gamma cameras: noise reduction thanks to mask/anti-mask procedure but limited energy resolution for GAMPIX, high energy resolution for Caliste HD. One of our short-term perspectives is the test of MAPEM algorithms integrating specific prior values for the data to reconstruct adapted to the gamma imaging topic. (authors)
Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib
2016-02-07
Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical FDG-PET study also revealed that for the same noise level, a higher contrast recovery can be obtained by increasing the number of TOF subsets. It can be concluded that the proposed TOF weighting matrix pre-computation and subsetization approaches enable to further accelerate and improve the convergence properties of OSEM and MLEM algorithms, thus opening new avenues for accelerated TOF PET image reconstruction.
NASA Astrophysics Data System (ADS)
Mehranian, Abolfazl; Kotasidis, Fotis; Zaidi, Habib
2016-02-01
Time-of-flight (TOF) positron emission tomography (PET) technology has recently regained popularity in clinical PET studies for improving image quality and lesion detectability. Using TOF information, the spatial location of annihilation events is confined to a number of image voxels along each line of response, thereby the cross-dependencies of image voxels are reduced, which in turns results in improved signal-to-noise ratio and convergence rate. In this work, we propose a novel approach to further improve the convergence of the expectation maximization (EM)-based TOF PET image reconstruction algorithm through subsetization of emission data over TOF bins as well as azimuthal bins. Given the prevalence of TOF PET, we elaborated the practical and efficient implementation of TOF PET image reconstruction through the pre-computation of TOF weighting coefficients while exploiting the same in-plane and axial symmetries used in pre-computation of geometric system matrix. In the proposed subsetization approach, TOF PET data were partitioned into a number of interleaved TOF subsets, with the aim of reducing the spatial coupling of TOF bins and therefore to improve the convergence of the standard maximum likelihood expectation maximization (MLEM) and ordered subsets EM (OSEM) algorithms. The comparison of on-the-fly and pre-computed TOF projections showed that the pre-computation of the TOF weighting coefficients can considerably reduce the computation time of TOF PET image reconstruction. The convergence rate and bias-variance performance of the proposed TOF subsetization scheme were evaluated using simulated, experimental phantom and clinical studies. Simulations demonstrated that as the number of TOF subsets is increased, the convergence rate of MLEM and OSEM algorithms is improved. It was also found that for the same computation time, the proposed subsetization gives rise to further convergence. The bias-variance analysis of the experimental NEMA phantom and a clinical FDG-PET study also revealed that for the same noise level, a higher contrast recovery can be obtained by increasing the number of TOF subsets. It can be concluded that the proposed TOF weighting matrix pre-computation and subsetization approaches enable to further accelerate and improve the convergence properties of OSEM and MLEM algorithms, thus opening new avenues for accelerated TOF PET image reconstruction.
Time-of-flight PET image reconstruction using origin ensembles.
Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven
2015-03-07
The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.
Time-of-flight PET image reconstruction using origin ensembles
NASA Astrophysics Data System (ADS)
Wülker, Christian; Sitek, Arkadiusz; Prevrhal, Sven
2015-03-01
The origin ensemble (OE) algorithm is a novel statistical method for minimum-mean-square-error (MMSE) reconstruction of emission tomography data. This method allows one to perform reconstruction entirely in the image domain, i.e. without the use of forward and backprojection operations. We have investigated the OE algorithm in the context of list-mode (LM) time-of-flight (TOF) PET reconstruction. In this paper, we provide a general introduction to MMSE reconstruction, and a statistically rigorous derivation of the OE algorithm. We show how to efficiently incorporate TOF information into the reconstruction process, and how to correct for random coincidences and scattered events. To examine the feasibility of LM-TOF MMSE reconstruction with the OE algorithm, we applied MMSE-OE and standard maximum-likelihood expectation-maximization (ML-EM) reconstruction to LM-TOF phantom data with a count number typically registered in clinical PET examinations. We analyzed the convergence behavior of the OE algorithm, and compared reconstruction time and image quality to that of the EM algorithm. In summary, during the reconstruction process, MMSE-OE contrast recovery (CRV) remained approximately the same, while background variability (BV) gradually decreased with an increasing number of OE iterations. The final MMSE-OE images exhibited lower BV and a slightly lower CRV than the corresponding ML-EM images. The reconstruction time of the OE algorithm was approximately 1.3 times longer. At the same time, the OE algorithm can inherently provide a comprehensive statistical characterization of the acquired data. This characterization can be utilized for further data processing, e.g. in kinetic analysis and image registration, making the OE algorithm a promising approach in a variety of applications.
Lee, Jae H.; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T.; Seo, Youngho
2014-01-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting. PMID:27081299
Lee, Jae H; Yao, Yushu; Shrestha, Uttam; Gullberg, Grant T; Seo, Youngho
2014-11-01
The primary goal of this project is to implement the iterative statistical image reconstruction algorithm, in this case maximum likelihood expectation maximum (MLEM) used for dynamic cardiac single photon emission computed tomography, on Spark/GraphX. This involves porting the algorithm to run on large-scale parallel computing systems. Spark is an easy-to- program software platform that can handle large amounts of data in parallel. GraphX is a graph analytic system running on top of Spark to handle graph and sparse linear algebra operations in parallel. The main advantage of implementing MLEM algorithm in Spark/GraphX is that it allows users to parallelize such computation without any expertise in parallel computing or prior knowledge in computer science. In this paper we demonstrate a successful implementation of MLEM in Spark/GraphX and present the performance gains with the goal to eventually make it useable in clinical setting.
Mapping chemicals in air using an environmental CAT scanning system: evaluation of algorithms
NASA Astrophysics Data System (ADS)
Samanta, A.; Todd, L. A.
A new technique is being developed which creates near real-time maps of chemical concentrations in air for environmental and occupational environmental applications. This technique, we call Environmental CAT Scanning, combines the real-time measuring technique of open-path Fourier transform infrared spectroscopy with the mapping capabilitites of computed tomography to produce two-dimensional concentration maps. With this system, a network of open-path measurements is obtained over an area; measurements are then processed using a tomographic algorithm to reconstruct the concentrations. This research focussed on the process of evaluating and selecting appropriate reconstruction algorithms, for use in the field, by using test concentration data from both computer simultation and laboratory chamber studies. Four algorithms were tested using three types of data: (1) experimental open-path data from studies that used a prototype opne-path Fourier transform/computed tomography system in an exposure chamber; (2) synthetic open-path data generated from maps created by kriging point samples taken in the chamber studies (in 1), and; (3) synthetic open-path data generated using a chemical dispersion model to create time seires maps. The iterative algorithms used to reconstruct the concentration data were: Algebraic Reconstruction Technique without Weights (ART1), Algebraic Reconstruction Technique with Weights (ARTW), Maximum Likelihood with Expectation Maximization (MLEM) and Multiplicative Algebraic Reconstruction Technique (MART). Maps were evaluated quantitatively and qualitatively. In general, MART and MLEM performed best, followed by ARTW and ART1. However, algorithm performance varied under different contaminant scenarios. This study showed the importance of using a variety of maps, particulary those generated using dispersion models. The time series maps provided a more rigorous test of the algorithms and allowed distinctions to be made among the algorithms. A comprehensive evaluation of algorithms, for the environmental application of tomography, requires the use of a battery of test concentration data before field implementation, which models reality and tests the limits of the algorithms.
Joint reconstruction of activity and attenuation in Time-of-Flight PET: A Quantitative Analysis.
Rezaei, Ahmadreza; Deroose, Christophe M; Vahle, Thomas; Boada, Fernando; Nuyts, Johan
2018-03-01
Joint activity and attenuation reconstruction methods from time of flight (TOF) positron emission tomography (PET) data provide an effective solution to attenuation correction when no (or incomplete/inaccurate) information on the attenuation is available. One of the main barriers limiting their use in clinical practice is the lack of validation of these methods on a relatively large patient database. In this contribution, we aim at validating the activity reconstructions of the maximum likelihood activity reconstruction and attenuation registration (MLRR) algorithm on a whole-body patient data set. Furthermore, a partial validation (since the scale problem of the algorithm is avoided for now) of the maximum likelihood activity and attenuation reconstruction (MLAA) algorithm is also provided. We present a quantitative comparison of the joint reconstructions to the current clinical gold-standard maximum likelihood expectation maximization (MLEM) reconstruction with CT-based attenuation correction. Methods: The whole-body TOF-PET emission data of each patient data set is processed as a whole to reconstruct an activity volume covering all the acquired bed positions, which helps to reduce the problem of a scale per bed position in MLAA to a global scale for the entire activity volume. Three reconstruction algorithms are used: MLEM, MLRR and MLAA. A maximum likelihood (ML) scaling of the single scatter simulation (SSS) estimate to the emission data is used for scatter correction. The reconstruction results are then analyzed in different regions of interest. Results: The joint reconstructions of the whole-body patient data set provide better quantification in case of PET and CT misalignments caused by patient and organ motion. Our quantitative analysis shows a difference of -4.2% (±2.3%) and -7.5% (±4.6%) between the joint reconstructions of MLRR and MLAA compared to MLEM, averaged over all regions of interest, respectively. Conclusion: Joint activity and attenuation estimation methods provide a useful means to estimate the tracer distribution in cases where CT-based attenuation images are subject to misalignments or are not available. With an accurate estimate of the scatter contribution in the emission measurements, the joint TOF-PET reconstructions are within clinical acceptable accuracy. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Reconstruction of multiple-pinhole micro-SPECT data using origin ensembles.
Lyon, Morgan C; Sitek, Arkadiusz; Metzler, Scott D; Moore, Stephen C
2016-10-01
The authors are currently developing a dual-resolution multiple-pinhole microSPECT imaging system based on three large NaI(Tl) gamma cameras. Two multiple-pinhole tungsten collimator tubes will be used sequentially for whole-body "scout" imaging of a mouse, followed by high-resolution (hi-res) imaging of an organ of interest, such as the heart or brain. Ideally, the whole-body image will be reconstructed in real time such that data need only be acquired until the area of interest can be visualized well-enough to determine positioning for the hi-res scan. The authors investigated the utility of the origin ensemble (OE) algorithm for online and offline reconstructions of the scout data. This algorithm operates directly in image space, and can provide estimates of image uncertainty, along with reconstructed images. Techniques for accelerating the OE reconstruction were also introduced and evaluated. System matrices were calculated for our 39-pinhole scout collimator design. SPECT projections were simulated for a range of count levels using the MOBY digital mouse phantom. Simulated data were used for a comparison of OE and maximum-likelihood expectation maximization (MLEM) reconstructions. The OE algorithm convergence was evaluated by calculating the total-image entropy and by measuring the counts in a volume-of-interest (VOI) containing the heart. Total-image entropy was also calculated for simulated MOBY data reconstructed using OE with various levels of parallelization. For VOI measurements in the heart, liver, bladder, and soft-tissue, MLEM and OE reconstructed images agreed within 6%. Image entropy converged after ∼2000 iterations of OE, while the counts in the heart converged earlier at ∼200 iterations of OE. An accelerated version of OE completed 1000 iterations in <9 min for a 6.8M count data set, with some loss of image entropy performance, whereas the same dataset required ∼79 min to complete 1000 iterations of conventional OE. A combination of the two methods showed decreased reconstruction time and no loss of performance when compared to conventional OE alone. OE-reconstructed images were found to be quantitatively and qualitatively similar to MLEM, yet OE also provided estimates of image uncertainty. Some acceleration of the reconstruction can be gained through the use of parallel computing. The OE algorithm is useful for reconstructing multiple-pinhole SPECT data and can be easily modified for real-time reconstruction.
NASA Astrophysics Data System (ADS)
Hong, Inki; Cho, Sanghee; Michel, Christian J.; Casey, Michael E.; Schaefferkoetter, Joshua D.
2014-09-01
A new data handling method is presented for improving the image noise distribution and reducing bias when reconstructing very short frames from low count dynamic PET acquisition. The new method termed ‘Complementary Frame Reconstruction’ (CFR) involves the indirect formation of a count-limited emission image in a short frame through subtraction of two frames with longer acquisition time, where the short time frame data is excluded from the second long frame data before the reconstruction. This approach can be regarded as an alternative to the AML algorithm recently proposed by Nuyts et al, as a method to reduce the bias for the maximum likelihood expectation maximization (MLEM) reconstruction of count limited data. CFR uses long scan emission data to stabilize the reconstruction and avoids modification of algorithms such as MLEM. The subtraction between two long frame images, naturally allows negative voxel values and significantly reduces bias introduced in the final image. Simulations based on phantom and clinical data were used to evaluate the accuracy of the reconstructed images to represent the true activity distribution. Applicability to determine the arterial input function in human and small animal studies is also explored. In situations with limited count rate, e.g. pediatric applications, gated abdominal, cardiac studies, etc., or when using limited doses of short-lived isotopes such as 15O-water, the proposed method will likely be preferred over independent frame reconstruction to address bias and noise issues.
Dual-Particle Imaging System with Neutron Spectroscopy for Safeguard Applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamel, Michael C.; Weber, Thomas M.
2017-11-01
A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used iterative list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. For MLEM a stopping condition is required to achieve a good quality solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a goodmore » candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution. The application of SOE to the DPI is presented in this work.« less
Robust statistical reconstruction for charged particle tomography
Schultz, Larry Joe; Klimenko, Alexei Vasilievich; Fraser, Andrew Mcleod; Morris, Christopher; Orum, John Christopher; Borozdin, Konstantin N; Sossong, Michael James; Hengartner, Nicolas W
2013-10-08
Systems and methods for charged particle detection including statistical reconstruction of object volume scattering density profiles from charged particle tomographic data to determine the probability distribution of charged particle scattering using a statistical multiple scattering model and determine a substantially maximum likelihood estimate of object volume scattering density using expectation maximization (ML/EM) algorithm to reconstruct the object volume scattering density. The presence of and/or type of object occupying the volume of interest can be identified from the reconstructed volume scattering density profile. The charged particle tomographic data can be cosmic ray muon tomographic data from a muon tracker for scanning packages, containers, vehicles or cargo. The method can be implemented using a computer program which is executable on a computer.
Muon tomography imaging improvement using optimized limited angle data
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Simon, Sean; Kindem, Joel; Luo, Weidong; Sossong, Michael J.; Steiger, Matthew
2014-05-01
Image resolution of muon tomography is limited by the range of zenith angles of cosmic ray muons and the flux rate at sea level. Low flux rate limits the use of advanced data rebinning and processing techniques to improve image quality. By optimizing the limited angle data, however, image resolution can be improved. To demonstrate the idea, physical data of tungsten blocks were acquired on a muon tomography system. The angular distribution and energy spectrum of muons measured on the system was also used to generate simulation data of tungsten blocks of different arrangement (geometry). The data were grouped into subsets using the zenith angle and volume images were reconstructed from the data subsets using two algorithms. One was a distributed PoCA (point of closest approach) algorithm and the other was an accelerated iterative maximal likelihood/expectation maximization (MLEM) algorithm. Image resolution was compared for different subsets. Results showed that image resolution was better in the vertical direction for subsets with greater zenith angles and better in the horizontal plane for subsets with smaller zenith angles. The overall image resolution appeared to be the compromise of that of different subsets. This work suggests that the acquired data can be grouped into different limited angle data subsets for optimized image resolution in desired directions. Use of multiple images with resolution optimized in different directions can improve overall imaging fidelity and the intended applications.
Scanning linear estimation: improvements over region of interest (ROI) methods
NASA Astrophysics Data System (ADS)
Kupinski, Meredith K.; Clarkson, Eric W.; Barrett, Harrison H.
2013-03-01
In tomographic medical imaging, a signal activity is typically estimated by summing voxels from a reconstructed image. We introduce an alternative estimation scheme that operates on the raw projection data and offers a substantial improvement, as measured by the ensemble mean-square error (EMSE), when compared to using voxel values from a maximum-likelihood expectation-maximization (MLEM) reconstruction. The scanning-linear (SL) estimator operates on the raw projection data and is derived as a special case of maximum-likelihood estimation with a series of approximations to make the calculation tractable. The approximated likelihood accounts for background randomness, measurement noise and variability in the parameters to be estimated. When signal size and location are known, the SL estimate of signal activity is unbiased, i.e. the average estimate equals the true value. By contrast, unpredictable bias arising from the null functions of the imaging system affect standard algorithms that operate on reconstructed data. The SL method is demonstrated for two different tasks: (1) simultaneously estimating a signal’s size, location and activity; (2) for a fixed signal size and location, estimating activity. Noisy projection data are realistically simulated using measured calibration data from the multi-module multi-resolution small-animal SPECT imaging system. For both tasks, the same set of images is reconstructed using the MLEM algorithm (80 iterations), and the average and maximum values within the region of interest (ROI) are calculated for comparison. This comparison shows dramatic improvements in EMSE for the SL estimates. To show that the bias in ROI estimates affects not only absolute values but also relative differences, such as those used to monitor the response to therapy, the activity estimation task is repeated for three different signal sizes.
Angle Statistics Reconstruction: a robust reconstruction algorithm for Muon Scattering Tomography
NASA Astrophysics Data System (ADS)
Stapleton, M.; Burns, J.; Quillin, S.; Steer, C.
2014-11-01
Muon Scattering Tomography (MST) is a technique for using the scattering of cosmic ray muons to probe the contents of enclosed volumes. As a muon passes through material it undergoes multiple Coulomb scattering, where the amount of scattering is dependent on the density and atomic number of the material as well as the path length. Hence, MST has been proposed as a means of imaging dense materials, for instance to detect special nuclear material in cargo containers. Algorithms are required to generate an accurate reconstruction of the material density inside the volume from the muon scattering information and some have already been proposed, most notably the Point of Closest Approach (PoCA) and Maximum Likelihood/Expectation Maximisation (MLEM) algorithms. However, whilst PoCA-based algorithms are easy to implement, they perform rather poorly in practice. Conversely, MLEM is a complicated algorithm to implement and computationally intensive and there is currently no published, fast and easily-implementable algorithm that performs well in practice. In this paper, we first provide a detailed analysis of the source of inaccuracy in PoCA-based algorithms. We then motivate an alternative method, based on ideas first laid out by Morris et al, presenting and fully specifying an algorithm that performs well against simulations of realistic scenarios. We argue this new algorithm should be adopted by developers of Muon Scattering Tomography as an alternative to PoCA.
NASA Astrophysics Data System (ADS)
Moliner, L.; Correcher, C.; González, A. J.; Conde, P.; Hernández, L.; Orero, A.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.
2013-02-01
In this work we present an innovative algorithm for the reconstruction of PET images based on the List-Mode (LM) technique which improves their spatial resolution compared to results obtained with current MLEM algorithms. This study appears as a part of a large project with the aim of improving diagnosis in early Alzheimer disease stages by means of a newly developed hybrid PET-MR insert. At the present, Alzheimer is the most relevant neurodegenerative disease and the best way to apply an effective treatment is its early diagnosis. The PET device will consist of several monolithic LYSO crystals coupled to SiPM detectors. Monolithic crystals can reduce scanner costs with the advantage to enable implementation of very small virtual pixels in their geometry. This is especially useful for LM reconstruction algorithms, since they do not need a pre-calculated system matrix. We have developed an LM algorithm which has been initially tested with a large aperture (186 mm) breast PET system. Such an algorithm instead of using the common lines of response, incorporates a novel calculation of tubes of response. The new approach improves the volumetric spatial resolution about a factor 2 at the border of the field of view when compared with traditionally used MLEM algorithm. Moreover, it has also shown to decrease the image noise, thus increasing the image quality.
Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.
Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias
2016-12-01
Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.
Navarro, Jorge; Ring, Terry A.; Nigg, David W.
2015-03-01
A deconvolution method for a LaBr₃ 1"x1" detector for nondestructive Advanced Test Reactor (ATR) fuel burnup applications was developed. The method consisted of obtaining the detector response function, applying a deconvolution algorithm to 1”x1” LaBr₃ simulated, data along with evaluating the effects that deconvolution have on nondestructively determining ATR fuel burnup. The simulated response function of the detector was obtained using MCNPX as well with experimental data. The Maximum-Likelihood Expectation Maximization (MLEM) deconvolution algorithm was selected to enhance one-isotope source-simulated and fuel- simulated spectra. The final evaluation of the study consisted of measuring the performance of the fuel burnup calibrationmore » curve for the convoluted and deconvoluted cases. The methodology was developed in order to help design a reliable, high resolution, rugged and robust detection system for the ATR fuel canal capable of collecting high performance data for model validation, along with a system that can calculate burnup and using experimental scintillator detector data.« less
Convergence optimization of parametric MLEM reconstruction for estimation of Patlak plot parameters.
Angelis, Georgios I; Thielemans, Kris; Tziortzi, Andri C; Turkheimer, Federico E; Tsoumpas, Charalampos
2011-07-01
In dynamic positron emission tomography data many researchers have attempted to exploit kinetic models within reconstruction such that parametric images are estimated directly from measurements. This work studies a direct parametric maximum likelihood expectation maximization algorithm applied to [(18)F]DOPA data using reference-tissue input function. We use a modified version for direct reconstruction with a gradually descending scheme of subsets (i.e. 18-6-1) initialized with the FBP parametric image for faster convergence and higher accuracy. The results compared with analytic reconstructions show quantitative robustness (i.e. minimal bias) and clinical reproducibility within six human acquisitions in the region of clinical interest. Bland-Altman plots for all the studies showed sufficient quantitative agreement between the direct reconstructed parametric maps and the indirect FBP (--0.035x+0.48E--5). Copyright © 2011 Elsevier Ltd. All rights reserved.
Respiratory motion correction in emission tomography image reconstruction.
Reyes, Mauricio; Malandain, Grégoire; Koulibaly, Pierre Malick; González Ballester, Miguel A; Darcourt, Jacques
2005-01-01
In Emission Tomography imaging, respiratory motion causes artifacts in lungs and cardiac reconstructed images, which lead to misinterpretations and imprecise diagnosis. Solutions like respiratory gating, correlated dynamic PET techniques, list-mode data based techniques and others have been tested with improvements over the spatial activity distribution in lungs lesions, but with the disadvantages of requiring additional instrumentation or discarding part of the projection data used for reconstruction. The objective of this study is to incorporate respiratory motion correction directly into the image reconstruction process, without any additional acquisition protocol consideration. To this end, we propose an extension to the Maximum Likelihood Expectation Maximization (MLEM) algorithm that includes a respiratory motion model, which takes into account the displacements and volume deformations produced by the respiratory motion during the data acquisition process. We present results from synthetic simulations incorporating real respiratory motion as well as from phantom and patient data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation ofmore » the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed providing 180 degrees of projection data every 54s can produce measurements of blood pool and myocardial TACs. This has important application in the circulation of coronary flow reserve using rest/stress dynamic cardiac SPECT. They system matrices are used in maximum likelihood and maximum a posterior formulations in estimation theory where through iterative algorithms (conjugate gradient, expectation maximization, or maximum a posteriori probability algorithms) the solution is determined that maximizes a likelihood or a posteriori probability function.« less
NASA Astrophysics Data System (ADS)
Faber, T. L.; Raghunath, N.; Tudorascu, D.; Votaw, J. R.
2009-02-01
Image quality is significantly degraded even by small amounts of patient motion in very high-resolution PET scanners. Existing correction methods that use known patient motion obtained from tracking devices either require multi-frame acquisitions, detailed knowledge of the scanner, or specialized reconstruction algorithms. A deconvolution algorithm has been developed that alleviates these drawbacks by using the reconstructed image to estimate the original non-blurred image using maximum likelihood estimation maximization (MLEM) techniques. A high-resolution digital phantom was created by shape-based interpolation of the digital Hoffman brain phantom. Three different sets of 20 movements were applied to the phantom. For each frame of the motion, sinograms with attenuation and three levels of noise were simulated and then reconstructed using filtered backprojection. The average of the 20 frames was considered the motion blurred image, which was restored with the deconvolution algorithm. After correction, contrast increased from a mean of 2.0, 1.8 and 1.4 in the motion blurred images, for the three increasing amounts of movement, to a mean of 2.5, 2.4 and 2.2. Mean error was reduced by an average of 55% with motion correction. In conclusion, deconvolution can be used for correction of motion blur when subject motion is known.
Beyond filtered backprojection: A reconstruction software package for ion beam microtomography data
NASA Astrophysics Data System (ADS)
Habchi, C.; Gordillo, N.; Bourret, S.; Barberet, Ph.; Jovet, C.; Moretto, Ph.; Seznec, H.
2013-01-01
A new version of the TomoRebuild data reduction software package is presented, for the reconstruction of scanning transmission ion microscopy tomography (STIMT) and particle induced X-ray emission tomography (PIXET) images. First, we present a state of the art of the reconstruction codes available for ion beam microtomography. The algorithm proposed here brings several advantages. It is a portable, multi-platform code, designed in C++ with well-separated classes for easier use and evolution. Data reduction is separated in different steps and the intermediate results may be checked if necessary. Although no additional graphic library or numerical tool is required to run the program as a command line, a user friendly interface was designed in Java, as an ImageJ plugin. All experimental and reconstruction parameters may be entered either through this plugin or directly in text format files. A simple standard format is proposed for the input of experimental data. Optional graphic applications using the ROOT interface may be used separately to display and fit energy spectra. Regarding the reconstruction process, the filtered backprojection (FBP) algorithm, already present in the previous version of the code, was optimized so that it is about 10 times as fast. In addition, Maximum Likelihood Expectation Maximization (MLEM) and its accelerated version Ordered Subsets Expectation Maximization (OSEM) algorithms were implemented. A detailed user guide in English is available. A reconstruction example of experimental data from a biological sample is given. It shows the capability of the code to reduce noise in the sinograms and to deal with incomplete data, which puts a new perspective on tomography using low number of projections or limited angle.
NASA Astrophysics Data System (ADS)
Winant, Celeste D.; Aparici, Carina Mari; Zelnik, Yuval R.; Reutter, Bryan W.; Sitek, Arkadiusz; Bacharach, Stephen L.; Gullberg, Grant T.
2012-01-01
Computer simulations, a phantom study and a human study were performed to determine whether a slowly rotating single-photon computed emission tomography (SPECT) system could provide accurate arterial input functions for quantification of myocardial perfusion imaging using kinetic models. The errors induced by data inconsistency associated with imaging with slow camera rotation during tracer injection were evaluated with an approach called SPECT/P (dynamic SPECT from positron emission tomography (PET)) and SPECT/D (dynamic SPECT from database of SPECT phantom projections). SPECT/P simulated SPECT-like dynamic projections using reprojections of reconstructed dynamic 94Tc-methoxyisobutylisonitrile (94Tc-MIBI) PET images acquired in three human subjects (1 min infusion). This approach was used to evaluate the accuracy of estimating myocardial wash-in rate parameters K1 for rotation speeds providing 180° of projection data every 27 or 54 s. Blood input and myocardium tissue time-activity curves (TACs) were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. For the second method (SPECT/D), an anthropomorphic cardiac torso phantom was used to create real SPECT dynamic projection data of a tracer distribution derived from 94Tc-MIBI PET scans in the blood pool, myocardium, liver and background. This method introduced attenuation, collimation and scatter into the modeling of dynamic SPECT projections. Both approaches were used to evaluate the accuracy of estimating myocardial wash-in parameters for rotation speeds providing 180° of projection data every 27 and 54 s. Dynamic cardiac SPECT was also performed in a human subject at rest using a hybrid SPECT/CT scanner. Dynamic measurements of 99mTc-tetrofosmin in the myocardium were obtained using an infusion time of 2 min. Blood input, myocardium tissue and liver TACs were estimated using the same spatiotemporal splines. The spatiotemporal maximum-likelihood expectation-maximization (4D ML-EM) reconstructions gave more accurate reconstructions than did standard frame-by-frame static 3D ML-EM reconstructions. The SPECT/P results showed that 4D ML-EM reconstruction gave higher and more accurate estimates of K1 than did 3D ML-EM, yielding anywhere from a 44% underestimation to 24% overestimation for the three patients. The SPECT/D results showed that 4D ML-EM reconstruction gave an overestimation of 28% and 3D ML-EM gave an underestimation of 1% for K1. For the patient study the 4D ML-EM reconstruction provided continuous images as a function of time of the concentration in both ventricular cavities and myocardium during the 2 min infusion. It is demonstrated that a 2 min infusion with a two-headed SPECT system rotating 180° every 54 s can produce measurements of blood pool and myocardial TACs, though the SPECT simulation studies showed that one must sample at least every 30 s to capture a 1 min infusion input function.
Limited angle C-arm tomosynthesis reconstruction algorithms
NASA Astrophysics Data System (ADS)
Malalla, Nuhad A. Y.; Xu, Shiyu; Chen, Ying
2015-03-01
In this paper, C-arm tomosynthesis with digital detector was investigated as a novel three dimensional (3D) imaging technique. Digital tomosythses is an imaging technique to provide 3D information of the object by reconstructing slices passing through the object, based on a series of angular projection views with respect to the object. C-arm tomosynthesis provides two dimensional (2D) X-ray projection images with rotation (-/+20 angular range) of both X-ray source and detector. In this paper, four representative reconstruction algorithms including point by point back projection (BP), filtered back projection (FBP), simultaneous algebraic reconstruction technique (SART) and maximum likelihood expectation maximization (MLEM) were investigated. Dataset of 25 projection views of 3D spherical object that located at center of C-arm imaging space was simulated from 25 angular locations over a total view angle of 40 degrees. With reconstructed images, 3D mesh plot and 2D line profile of normalized pixel intensities on focus reconstruction plane crossing the center of the object were studied with each reconstruction algorithm. Results demonstrated the capability to generate 3D information from limited angle C-arm tomosynthesis. Since C-arm tomosynthesis is relatively compact, portable and can avoid moving patients, it has been investigated for different clinical applications ranging from tumor surgery to interventional radiology. It is very important to evaluate C-arm tomosynthesis for valuable applications.
Event-by-event PET image reconstruction using list-mode origin ensembles algorithm
NASA Astrophysics Data System (ADS)
Andreyev, Andriy
2016-03-01
There is a great demand for real time or event-by-event (EBE) image reconstruction in emission tomography. Ideally, as soon as event has been detected by the acquisition electronics, it needs to be used in the image reconstruction software. This would greatly speed up the image reconstruction since most of the data will be processed and reconstructed while the patient is still undergoing the scan. Unfortunately, the current industry standard is that the reconstruction of the image would not start until all the data for the current image frame would be acquired. Implementing an EBE reconstruction for MLEM family of algorithms is possible, but not straightforward as multiple (computationally expensive) updates to the image estimate are required. In this work an alternative Origin Ensembles (OE) image reconstruction algorithm for PET imaging is converted to EBE mode and is investigated whether it is viable alternative for real-time image reconstruction. In OE algorithm all acquired events are seen as points that are located somewhere along the corresponding line-of-responses (LORs), together forming a point cloud. Iteratively, with a multitude of quasi-random shifts following the likelihood function the point cloud converges to a reflection of an actual radiotracer distribution with the degree of accuracy that is similar to MLEM. New data can be naturally added into the point cloud. Preliminary results with simulated data show little difference between regular reconstruction and EBE mode, proving the feasibility of the proposed approach.
Evaluation of two methods for using MR information in PET reconstruction
NASA Astrophysics Data System (ADS)
Caldeira, L.; Scheins, J.; Almeida, P.; Herzog, H.
2013-02-01
Using magnetic resonance (MR) information in maximum a posteriori (MAP) algorithms for positron emission tomography (PET) image reconstruction has been investigated in the last years. Recently, three methods to introduce this information have been evaluated and the Bowsher prior was considered the best. Its main advantage is that it does not require image segmentation. Another method that has been widely used for incorporating MR information is using boundaries obtained by segmentation. This method has also shown improvements in image quality. In this paper, two methods for incorporating MR information in PET reconstruction are compared. After a Bayes parameter optimization, the reconstructed images were compared using the mean squared error (MSE) and the coefficient of variation (CV). MSE values are 3% lower in Bowsher than using boundaries. CV values are 10% lower in Bowsher than using boundaries. Both methods performed better than using no prior, that is, maximum likelihood expectation maximization (MLEM) or MAP without anatomic information in terms of MSE and CV. Concluding, incorporating MR information using the Bowsher prior gives better results in terms of MSE and CV than boundaries. MAP algorithms showed again to be effective in noise reduction and convergence, specially when MR information is incorporated. The robustness of the priors in respect to noise and inhomogeneities in the MR image has however still to be performed.
Evaluation of Bias and Variance in Low-count OSEM List Mode Reconstruction
Jian, Y; Planeta, B; Carson, R E
2016-01-01
Statistical algorithms have been widely used in PET image reconstruction. The maximum likelihood expectation maximization (MLEM) reconstruction has been shown to produce bias in applications where images are reconstructed from a relatively small number of counts. In this study, image bias and variability in low-count OSEM reconstruction are investigated on images reconstructed with MOLAR (motion-compensation OSEM list-mode algorithm for resolution-recovery reconstruction) platform. A human brain ([11C]AFM) and a NEMA phantom are used in the simulation and real experiments respectively, for the HRRT and Biograph mCT. Image reconstructions were repeated with different combination of subsets and iterations. Regions of interest (ROIs) were defined on low-activity and high-activity regions to evaluate the bias and noise at matched effective iteration numbers (iterations x subsets). Minimal negative biases and no positive biases were found at moderate count levels and less than 5% negative bias was found using extremely low levels of counts (0.2 M NEC). At any given count level, other factors, such as subset numbers and frame-based scatter correction may introduce small biases (1–5%) in the reconstructed images. The observed bias was substantially lower than that reported in the literature, perhaps due to the use of point spread function and/or other implementation methods in MOLAR. PMID:25479254
NASA Astrophysics Data System (ADS)
Vandenberghe, Stefaan; Staelens, Steven; Byrne, Charles L.; Soares, Edward J.; Lemahieu, Ignace; Glick, Stephen J.
2006-06-01
In discrete detector PET, natural pixels are image basis functions calculated from the response of detector pairs. By using reconstruction with natural pixel basis functions, the discretization of the object into a predefined grid can be avoided. Here, we propose to use generalized natural pixel reconstruction. Using this approach, the basis functions are not the detector sensitivity functions as in the natural pixel case but uniform parallel strips. The backprojection of the strip coefficients results in the reconstructed image. This paper proposes an easy and efficient way to generate the matrix M directly by Monte Carlo simulation. Elements of the generalized natural pixel system matrix are formed by calculating the intersection of a parallel strip with the detector sensitivity function. These generalized natural pixels are easier to use than conventional natural pixels because the final step from solution to a square pixel representation is done by simple backprojection. Due to rotational symmetry in the PET scanner, the matrix M is block circulant and only the first blockrow needs to be stored. Data were generated using a fast Monte Carlo simulator using ray tracing. The proposed method was compared to a listmode MLEM algorithm, which used ray tracing for doing forward and backprojection. Comparison of the algorithms with different phantoms showed that an improved resolution can be obtained using generalized natural pixel reconstruction with accurate system modelling. In addition, it was noted that for the same resolution a lower noise level is present in this reconstruction. A numerical observer study showed the proposed method exhibited increased performance as compared to a standard listmode EM algorithm. In another study, more realistic data were generated using the GATE Monte Carlo simulator. For these data, a more uniform contrast recovery and a better contrast-to-noise performance were observed. It was observed that major improvements in contrast recovery were obtained with MLEM when the correct system matrix was used instead of simple ray tracing. The correct modelling was the major cause of improved contrast for the same background noise. Less important factors were the choice of the algorithm (MLEM performed better than ART) and the basis functions (generalized natural pixels gave better results than pixels).
A Stochastic Imaging Technique for Spatio-Spectral Characterization of Special Nuclear Material
NASA Astrophysics Data System (ADS)
Hamel, Michael C.
Radiation imaging is advantageous for detecting, locating and characterizing special nuclear material (SNM) in complex environments. A dual-particle imager (DPI) has been designed that is capable of detecting gamma-ray and neutron signatures from shielded SNM. The system combines liquid organic and NaI(Tl) scintillators to form a combined Compton and neutron scatter camera. Effective image reconstruction of detected particles is a crucial component for maximizing the performance of the system; however, a key deficiency exists in the widely used list-mode maximum-likelihood estimation-maximization (MLEM) image reconstruction technique. The steady-state solution produced by this iterative method will have poor quality compared to solutions produced with fewer iterations. A stopping condition is required to achieve a better solution but these conditions fail to achieve maximum image quality. Stochastic origin ensembles (SOE) imaging is a good candidate to address this problem as it uses Markov chain Monte Carlo to reach a stochastic steady-state solution that has image quality comparable to the best MLEM solution. The application of SOE to the DPI is presented in this work. SOE was originally applied in medical imaging applications with no mechanism to isolate spectral information based on location. This capability is critical for non-proliferation applications as complex radiation environments with multiple sources are often encountered. This dissertation extends the SOE algorithm to produce spatially dependent spectra and presents experimental result showing that the technique was effective for isolating a 4.1-kg mass of weapons grade plutonium (WGPu) when other neutron and gamma-ray sources were present. This work also demonstrates the DPI as an effective tool for localizing and characterizing highly enriched uranium (HEU). A series of experiments were performed with the DPI using a deuterium-deuterium (DD) and deuterium-tritium (DT) neutron generator, as well as AmLi, to interrogate a 13.7-kg sphere of HEU. In all cases, the neutrons and gamma rays produced from induced fission were successfully discriminated from the interrogating particles to localize the HEU. For characterization, the fast neutron and gamma-ray spectra were recorded from multiple HEU configurations with low-Z and high-Z moderation. Further characterization of the configurations used the measured neutron lifetime to show that the DPI can be used to infer multiplication.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, B; Smith, C; La Riviere, P
2016-06-15
Purpose: To evaluate the resolution and sensitivity of XIL imaging using a surface radiance simulation based on optical diffusion and maximum likelihood expectation maximization (MLEM) image reconstruction. XIL imaging seeks to determine the distribution of luminescent nanophosphors, which could be used as nanodosimeters or radiosensitizers. Methods: The XIL simulation generated a homogeneous slab with optical properties similar to tissue. X-ray activated nanophosphors were placed at 1.0 cm depth in the tissue in concentrations of 10{sup −4} g/mL in two volumes of 10 mm{sup 3} with varying separations between each other. An analytical optical diffusion model determined the surface radiance frommore » the photon distributions generated at depth in the tissue by the nanophosphors. The simulation then determined the detected luminescent signal collected with a f/1.0 aperture lens and back-illuminated EMCCD camera. The surface radiance was deconvolved using a MLEM algorithm to estimate the nanophosphors distribution and the resolution. To account for both Poisson and Gaussian noise, a shifted Poisson imaging model was used in the deconvolution. The deconvolved distributions were fitted to a Gaussian after radial averaging to measure the full width at half maximum (FWHM) and the peak to peak distance between distributions was measured to determine the resolving power. Results: Simulated surface radiances for doses from 1mGy to 100 cGy were computed. Each image was deconvolved using 1000 iterations. At 1mGy, deconvolution reduced the FWHM of the nanophosphors distribution by 65% and had a resolving power is 3.84 mm. Decreasing the dose from 100 cGy to 1 mGy increased the FWHM by 22% but allowed for a dose reduction of a factor of 1000. Conclusion: Deconvolving the detected surface radiance allows for dose reduction while maintaining the resolution of the nanophosphors. It proves to be a useful technique in overcoming the resolution limitations of diffuse optical imaging in tissue. C. S. acknowledges support from the NIH National Institute of General Medical Sciences (Award number R25GM109439, Project Title: University of Chicago Initiative for Maximizing Student Development, IMSD). B. Q. and P. L. acknowledge support from NIH grant R01EB017293.« less
Angelis, G I; Reader, A J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2011-07-07
Iterative expectation maximization (EM) techniques have been extensively used to solve maximum likelihood (ML) problems in positron emission tomography (PET) image reconstruction. Although EM methods offer a robust approach to solving ML problems, they usually suffer from slow convergence rates. The ordered subsets EM (OSEM) algorithm provides significant improvements in the convergence rate, but it can cycle between estimates converging towards the ML solution of each subset. In contrast, gradient-based methods, such as the recently proposed non-monotonic maximum likelihood (NMML) and the more established preconditioned conjugate gradient (PCG), offer a globally convergent, yet equally fast, alternative to OSEM. Reported results showed that NMML provides faster convergence compared to OSEM; however, it has never been compared to other fast gradient-based methods, like PCG. Therefore, in this work we evaluate the performance of two gradient-based methods (NMML and PCG) and investigate their potential as an alternative to the fast and widely used OSEM. All algorithms were evaluated using 2D simulations, as well as a single [(11)C]DASB clinical brain dataset. Results on simulated 2D data show that both PCG and NMML achieve orders of magnitude faster convergence to the ML solution compared to MLEM and exhibit comparable performance to OSEM. Equally fast performance is observed between OSEM and PCG for clinical 3D data, but NMML seems to perform poorly. However, with the addition of a preconditioner term to the gradient direction, the convergence behaviour of NMML can be substantially improved. Although PCG is a fast convergent algorithm, the use of a (bent) line search increases the complexity of the implementation, as well as the computational time involved per iteration. Contrary to previous reports, NMML offers no clear advantage over OSEM or PCG, for noisy PET data. Therefore, we conclude that there is little evidence to replace OSEM as the algorithm of choice for many applications, especially given that in practice convergence is often not desired for algorithms seeking ML estimates.
Multi-ray-based system matrix generation for 3D PET reconstruction
NASA Astrophysics Data System (ADS)
Moehrs, Sascha; Defrise, Michel; Belcari, Nicola; DelGuerra, Alberto; Bartoli, Antonietta; Fabbri, Serena; Zanetti, Gianluigi
2008-12-01
Iterative image reconstruction algorithms for positron emission tomography (PET) require a sophisticated system matrix (model) of the scanner. Our aim is to set up such a model offline for the YAP-(S)PET II small animal imaging tomograph in order to use it subsequently with standard ML-EM (maximum-likelihood expectation maximization) and OSEM (ordered subset expectation maximization) for fully three-dimensional image reconstruction. In general, the system model can be obtained analytically, via measurements or via Monte Carlo simulations. In this paper, we present the multi-ray method, which can be considered as a hybrid method to set up the system model offline. It incorporates accurate analytical (geometric) considerations as well as crystal depth and crystal scatter effects. At the same time, it has the potential to model seamlessly other physical aspects such as the positron range. The proposed method is based on multiple rays which are traced from/to the detector crystals through the image volume. Such a ray-tracing approach itself is not new; however, we derive a novel mathematical formulation of the approach and investigate the positioning of the integration (ray-end) points. First, we study single system matrix entries and show that the positioning and weighting of the ray-end points according to Gaussian integration give better results compared to equally spaced integration points (trapezoidal integration), especially if only a small number of integration points (rays) are used. Additionally, we show that, for a given variance of the single matrix entries, the number of rays (events) required to calculate the whole matrix is a factor of 20 larger when using a pure Monte-Carlo-based method. Finally, we analyse the quality of the model by reconstructing phantom data from the YAP-(S)PET II scanner.
Design and performance evaluation of a high resolution IRI-microPET preclinical scanner
NASA Astrophysics Data System (ADS)
Islami rad, S. Z.; Peyvandi, R. Gholipour; lehdarboni, M. Askari; Ghafari, A. A.
2015-05-01
PET for small animal, IRI-microPET, was designed and built at the NSTRI. The scanner is made of four detectors positioned on a rotating gantry at a distance 50 mm from the center. Each detector consists of a 10×10 crystal matrix of 2×2×10 mm3 directly coupled to a PS-PMT. A position encoding circuit for specific PS-PMT has been designed, built and tested with a PD-MFS-2MS/s-8/14 data acquisition board. After implementing reconstruction algorithms (FBP, MLEM and SART) on sinograms, images quality and system performance were evaluated by energy resolution, timing resolution, spatial resolution, scatter fraction, sensitivity, RMS contrast and SNR parameters. The energy spectra were obtained for the crystals with an energy window of 300-700 keV. The energy resolution in 511 keV averaged over all modules, detectors, and crystals, was 23.5%. A timing resolution of 2.4 ns FWHM obtained by coincidence timing spectrum was measured with crystal LYSO. The radial and tangential resolutions for 18F (1.15-mm inner diameter) at the center of the field of view were 1.81 mm and 1.90 mm, respectively. At a radial offset of 5 mm, the FWHM values were 1.96 and 2.06 mm. The system scatter fraction was 7.1% for the mouse phantom. The sensitivity was measured for different energy windows, leading to a sensitivity of 1.74% at the center of FOV. Also, images quality was evaluated by RMS contrast and SNR factors, and the results show that the reconstructed images by MLEM algorithm have the best RMS contrast, and SNR. The IRI-microPET presents high image resolution, low scatter fraction values and improved SNR for animal studies.
Simulation study of a high performance brain PET system with dodecahedral geometry.
Tao, Weijie; Chen, Gaoyu; Weng, Fenghua; Zan, Yunlong; Zhao, Zhixiang; Peng, Qiyu; Xu, Jianfeng; Huang, Qiu
2018-05-25
In brain imaging, the spherical PET system achieves the highest sensitivity when the solid angle is concerned. However it is not practical. In this work we designed an alternative sphere-like scanner, the dodecahedral scanner, which has a high sensitivity in imaging and a high feasibility to manufacture. We simulated this system and compared the performance with a few other dedicated brain PET systems. Monte Carlo simulations were conducted to generate data of the dedicated brain PET system with the dodecahedral geometry (11 regular pentagon detectors). The data were then reconstructed using the in-house developed software with the fully three-dimensional maximum-likelihood expectation maximization (3D-MLEM) algorithm. Results show that the proposed system has a high sensitivity distribution for the whole field of view (FOV). With a depth-of-interaction (DOI) resolution around 6.67 mm, the proposed system achieves the spatial resolution of 1.98 mm. Our simulation study also shows that the proposed system improves the image contrast and reduces noise compared with a few other dedicated brain PET systems. Finally, simulations with the Hoffman phantom show the potential application of the proposed system in clinical applications. In conclusion, the proposed dodecahedral PET system is potential for widespread applications in high-sensitivity, high-resolution PET imaging, to lower the injected dose. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhu, Yansong; Jha, Abhinav K.; Dreyer, Jakob K.; Le, Hanh N. D.; Kang, Jin U.; Roland, Per E.; Wong, Dean F.; Rahmim, Arman
2017-02-01
Fluorescence molecular tomography (FMT) is a promising tool for real time in vivo quantification of neurotransmission (NT) as we pursue in our BRAIN initiative effort. However, the acquired image data are noisy and the reconstruction problem is ill-posed. Further, while spatial sparsity of the NT effects could be exploited, traditional compressive-sensing methods cannot be directly applied as the system matrix in FMT is highly coherent. To overcome these issues, we propose and assess a three-step reconstruction method. First, truncated singular value decomposition is applied on the data to reduce matrix coherence. The resultant image data are input to a homotopy-based reconstruction strategy that exploits sparsity via l1 regularization. The reconstructed image is then input to a maximum-likelihood expectation maximization (MLEM) algorithm that retains the sparseness of the input estimate and improves upon the quantitation by accurate Poisson noise modeling. The proposed reconstruction method was evaluated in a three-dimensional simulated setup with fluorescent sources in a cuboidal scattering medium with optical properties simulating human brain cortex (reduced scattering coefficient: 9.2 cm-1, absorption coefficient: 0.1 cm-1 and tomographic measurements made using pixelated detectors. In different experiments, fluorescent sources of varying size and intensity were simulated. The proposed reconstruction method provided accurate estimates of the fluorescent source intensity, with a 20% lower root mean square error on average compared to the pure-homotopy method for all considered source intensities and sizes. Further, compared with conventional l2 regularized algorithm, overall, the proposed method reconstructed substantially more accurate fluorescence distribution. The proposed method shows considerable promise and will be tested using more realistic simulations and experimental setups.
Multi-pinhole SPECT Imaging with Silicon Strip Detectors
Peterson, Todd E.; Shokouhi, Sepideh; Furenlid, Lars R.; Wilson, Donald W.
2010-01-01
Silicon double-sided strip detectors offer outstanding instrinsic spatial resolution with reasonable detection efficiency for iodine-125 emissions. This spatial resolution allows for multiple-pinhole imaging at low magnification, minimizing the problem of multiplexing. We have conducted imaging studies using a prototype system that utilizes a detector of 300-micrometer thickness and 50-micrometer strip pitch together with a 23-pinhole collimator. These studies include an investigation of the synthetic-collimator imaging approach, which combines multiple-pinhole projections acquired at multiple magnifications to obtain tomographic reconstructions from limited-angle data using the ML-EM algorithm. Sub-millimeter spatial resolution was obtained, demonstrating the basic validity of this approach. PMID:20953300
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, X.D.; Tsui, B.M.W.; Gregoriou, G.K.
The goal of the investigation was to study the effectiveness of the corrective reconstruction methods in cardiac SPECT using a realistic phantom and to qualitatively and quantitatively evaluate the reconstructed images using bull's-eye plots. A 3D mathematical phantom which realistically models the anatomical structures of the cardiac-torso region of patients was used. The phantom allows simulation of both the attenuation distribution and the uptake of radiopharmaceuticals in different organs. Also, the phantom can be easily modified to simulate different genders and variations in patient anatomy. Two-dimensional projection data were generated from the phantom and included the effects of attenuation andmore » detector response blurring. The reconstruction methods used in the study included the conventional filtered backprojection (FBP) with no attenuation compensation, and the first-order Chang algorithm, an iterative filtered backprojection algorithm (IFBP), the weighted least square conjugate gradient algorithm and the ML-EM algorithm with non-uniform attenuation compensation. The transaxial reconstructed images were rearranged into short-axis slices from which bull's-eye plots of the count density distribution in the myocardium were generated.« less
Agostini, Denis; Marie, Pierre-Yves; Ben-Haim, Simona; Rouzet, François; Songy, Bernard; Giordano, Alessandro; Gimelli, Alessia; Hyafil, Fabien; Sciagrà, Roberto; Bucerius, Jan; Verberne, Hein J; Slart, Riemer H J A; Lindner, Oliver; Übleis, Christopher; Hacker, Marcus
2016-12-01
The trade-off between resolution and count sensitivity dominates the performance of standard gamma cameras and dictates the need for relatively high doses of radioactivity of the used radiopharmaceuticals in order to limit image acquisition duration. The introduction of cadmium-zinc-telluride (CZT)-based cameras may overcome some of the limitations against conventional gamma cameras. CZT cameras used for the evaluation of myocardial perfusion have been shown to have a higher count sensitivity compared to conventional single photon emission computed tomography (SPECT) techniques. CZT image quality is further improved by the development of a dedicated three-dimensional iterative reconstruction algorithm, based on maximum likelihood expectation maximization (MLEM), which corrects for the loss in spatial resolution due to line response function of the collimator. All these innovations significantly reduce imaging time and result in a lower patient's radiation exposure compared with standard SPECT. To guide current and possible future users of the CZT technique for myocardial perfusion imaging, the Cardiovascular Committee of the European Association of Nuclear Medicine, starting from the experience of its members, has decided to examine the current literature regarding procedures and clinical data on CZT cameras. The committee hereby aims 1) to identify the main acquisitions protocols; 2) to evaluate the diagnostic and prognostic value of CZT derived myocardial perfusion, and finally 3) to determine the impact of CZT on radiation exposure.
NASA Astrophysics Data System (ADS)
Gianoli, Chiara; Kurz, Christopher; Riboldi, Marco; Bauer, Julia; Fontana, Giulia; Baroni, Guido; Debus, Jürgen; Parodi, Katia
2016-06-01
A clinical trial named PROMETHEUS is currently ongoing for inoperable hepatocellular carcinoma (HCC) at the Heidelberg Ion Beam Therapy Center (HIT, Germany). In this framework, 4D PET-CT datasets are acquired shortly after the therapeutic treatment to compare the irradiation induced PET image with a Monte Carlo PET prediction resulting from the simulation of treatment delivery. The extremely low count statistics of this measured PET image represents a major limitation of this technique, especially in presence of target motion. The purpose of the study is to investigate two different 4D PET motion compensation strategies towards the recovery of the whole count statistics for improved image quality of the 4D PET-CT datasets for PET-based treatment verification. The well-known 4D-MLEM reconstruction algorithm, embedding the motion compensation in the reconstruction process of 4D PET sinograms, was compared to a recently proposed pre-reconstruction motion compensation strategy, which operates in sinogram domain by applying the motion compensation to the 4D PET sinograms. With reference to phantom and patient datasets, advantages and drawbacks of the two 4D PET motion compensation strategies were identified. The 4D-MLEM algorithm was strongly affected by inverse inconsistency of the motion model but demonstrated the capability to mitigate the noise-break-up effects. Conversely, the pre-reconstruction warping showed less sensitivity to inverse inconsistency but also more noise in the reconstructed images. The comparison was performed by relying on quantification of PET activity and ion range difference, typically yielding similar results. The study demonstrated that treatment verification of moving targets could be accomplished by relying on the whole count statistics image quality, as obtained from the application of 4D PET motion compensation strategies. In particular, the pre-reconstruction warping was shown to represent a promising choice when combined with intra-reconstruction smoothing.
Patch-based image reconstruction for PET using prior-image derived dictionaries
NASA Astrophysics Data System (ADS)
Tahaei, Marzieh S.; Reader, Andrew J.
2016-09-01
In PET image reconstruction, regularization is often needed to reduce the noise in the resulting images. Patch-based image processing techniques have recently been successfully used for regularization in medical image reconstruction through a penalized likelihood framework. Re-parameterization within reconstruction is another powerful regularization technique in which the object in the scanner is re-parameterized using coefficients for spatially-extensive basis vectors. In this work, a method for extracting patch-based basis vectors from the subject’s MR image is proposed. The coefficients for these basis vectors are then estimated using the conventional MLEM algorithm. Furthermore, using the alternating direction method of multipliers, an algorithm for optimizing the Poisson log-likelihood while imposing sparsity on the parameters is also proposed. This novel method is then utilized to find sparse coefficients for the patch-based basis vectors extracted from the MR image. The results indicate the superiority of the proposed methods to patch-based regularization using the penalized likelihood framework.
Comparison of methods for H*(10) calculation from measured LaBr3(Ce) detector spectra.
Vargas, A; Cornejo, N; Camp, A
2018-07-01
The Universitat Politecnica de Catalunya (UPC) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) have evaluated methods based on stripping, conversion coefficients and Maximum Likelihood Estimation using Expectation Maximization (ML-EM) in calculating the H*(10) rates from photon pulse-height spectra acquired with a spectrometric LaBr 3 (Ce)(1.5″ × 1.5″) detector. There is a good agreement between results of the different H*(10) rate calculation methods using the spectra measured at the UPC secondary standard calibration laboratory in Barcelona. From the outdoor study at ESMERALDA station in Madrid, it can be concluded that the analysed methods provide results quite similar to those obtained with the reference RSS ionization chamber. In addition, the spectrometric detectors can also facilitate radionuclide identification. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillan, Kyle; Marleau, Peter; Brubaker, Erik
In coded aperture imaging, one of the most important factors determining the quality of reconstructed images is the choice of mask/aperture pattern. In many applications, uniformly redundant arrays (URAs) are widely accepted as the optimal mask pattern. Under ideal conditions, thin and highly opaque masks, URA patterns are mathematically constructed to provide artifact-free reconstruction however, the number of URAs for a chosen number of mask elements is limited and when highly penetrating particles such as fast neutrons and high-energy gamma-rays are being imaged, the optimum is seldom achieved. In this case more robust mask patterns that provide better reconstructed imagemore » quality may exist. Through the use of heuristic optimization methods and maximum likelihood expectation maximization (MLEM) image reconstruction, we show that for both point and extended neutron sources a random mask pattern can be optimized to provide better image quality than that of a URA.« less
Patent and exclusivity status of essential medicines for non-communicable disease.
Mackey, Tim K; Liang, Bryan A
2012-01-01
The threat of non-communicable diseases ("NCDs") is increasingly becoming a global health crisis and are pervasive in high, middle, and low-income populations resulting in an estimated 36 million deaths per year. There is a need to assess intellectual property rights ("IPRs") that may impede generic production and availability and affordability to essential NCD medicines. Using the data sources listed below, the study design systematically eliminated NCD drugs that had no patent/exclusivity provisions on API, dosage, or administration route. The first step identified essential medicines that treat certain high disease burden NCDs. A second step examined the patent and exclusivity status of active ingredient, dosage and listed route of administration using exclusion criteria outlined in this study. We examined the patent and exclusivity status of medicines listed in the World Health Organization's ("WHO") Model List of Essential Drugs (Medicines) ("MLEM") and other WHO sources for drugs treating certain NCDs. i.e., cardiovascular and respiratory disease, cancers, and diabetes. We utilized the USA Food and Drug Administration Orange Book and the USA Patent and Trademark Office databases as references given the predominant number of medicines registered in the USA. Of the 359 MLEM medicines identified, 22% (79/359) address targeted NCDs. Of these 79, only eight required in-depth patent or exclusivity assessment. Upon further review, no NCD MLEM medicines had study patent or exclusivity protection for reviewed criteria. We find that ensuring availability and affordability of potential generic formulations of NCD MLEM medicines appears to be more complex than the presence of IPRs with API, dosage, or administration patent or exclusivity protection. Hence, more sophisticated analysis of NCD barriers to generic availability and affordability should be conducted in order to ensure equitable access to global populations for these essential medicines.
Image reconstructions from super-sampled data sets with resolution modeling in PET imaging.
Li, Yusheng; Matej, Samuel; Metzler, Scott D
2014-12-01
Spatial resolution in positron emission tomography (PET) is still a limiting factor in many imaging applications. To improve the spatial resolution for an existing scanner with fixed crystal sizes, mechanical movements such as scanner wobbling and object shifting have been considered for PET systems. Multiple acquisitions from different positions can provide complementary information and increased spatial sampling. The objective of this paper is to explore an efficient and useful reconstruction framework to reconstruct super-resolution images from super-sampled low-resolution data sets. The authors introduce a super-sampling data acquisition model based on the physical processes with tomographic, downsampling, and shifting matrices as its building blocks. Based on the model, we extend the MLEM and Landweber algorithms to reconstruct images from super-sampled data sets. The authors also derive a backprojection-filtration-like (BPF-like) method for the super-sampling reconstruction. Furthermore, they explore variant methods for super-sampling reconstructions: the separate super-sampling resolution-modeling reconstruction and the reconstruction without downsampling to further improve image quality at the cost of more computation. The authors use simulated reconstruction of a resolution phantom to evaluate the three types of algorithms with different super-samplings at different count levels. Contrast recovery coefficient (CRC) versus background variability, as an image-quality metric, is calculated at each iteration for all reconstructions. The authors observe that all three algorithms can significantly and consistently achieve increased CRCs at fixed background variability and reduce background artifacts with super-sampled data sets at the same count levels. For the same super-sampled data sets, the MLEM method achieves better image quality than the Landweber method, which in turn achieves better image quality than the BPF-like method. The authors also demonstrate that the reconstructions from super-sampled data sets using a fine system matrix yield improved image quality compared to the reconstructions using a coarse system matrix. Super-sampling reconstructions with different count levels showed that the more spatial-resolution improvement can be obtained with higher count at a larger iteration number. The authors developed a super-sampling reconstruction framework that can reconstruct super-resolution images using the super-sampling data sets simultaneously with known acquisition motion. The super-sampling PET acquisition using the proposed algorithms provides an effective and economic way to improve image quality for PET imaging, which has an important implication in preclinical and clinical region-of-interest PET imaging applications.
In which developing countries are patents on essential medicines being filed?
Beall, Reed F; Blanchet, Rosanne; Attaran, Amir
2017-06-26
This article is based upon data gathered during a study conducted in partnership with the World Intellectual Property Organization on the patent status of products appearing on the World Health Organization's 2013 Model List of Essential Medicines (MLEM). It is a statistical analysis aimed at answering: in which developing countries are patents on essential medicines being filed? Patent data were collected by linking those listed in the United States and Canada's medicine patent registers to corresponding patents in developing countries using two international patent databases (INPADOC and Derwent) via a commerical-grade patent search platform (Thomson Innovation). The respective supplier companies were then contacted to correct and verify our data. We next tallied the number of MLEM patents per developing country. Spearman correlations were done to assess bivariate relationships between variables, and a multivariate regression model was developed to explain the number of MLEM patents in each country using SPSS 23.0. A subset of 20 of the 375 (5%) products on the 2013 MLEM fit our inclusion criteria. The patent estate reports (i.e., the global list of patents for a given drug) varied greatly in their number with a median of 48 patents (interquartile range [IQR]: 26-76). Their geographic reach had a median of 15% of the developing countries sampled (IQR: 8-28%). The number of developing countries covered appeared to increase with the age of the patent estate (r = .433, p = 0.028). The number of MLEM patents per country was significantly positively associated with human development index (HDI), gross domestic income (GDI) per capita, total healthcare expenditure per capita, population size, the Rule of Law Index, and average education level. Population size, GDI per capita, and healthcare expenditure (in % of national expenditure) were predictors of the number of MLEM patents in countries (p = 0.001, p = 0.001, p = 0.009, respectively). Population size was the most important predictor (β = 0.59), followed by income (GDI per capita) (β = 0.32), and healthcare expenditure (β = 0.15). Holding the other factors constant, (i) 14.3 million more people, (ii) $833.33 more per capita (GDI), or (iii) 0.88% more of national spending on healthcare resulted in 1 additional essential medicine patent. Population was a powerful predictor of the number of patent filings in developing countries along with GDI and healthcare expenditure. The age and historical context of the patent estate may make a difference in the number of patents and countries covered. Broad surveillance and benchmarking of the global medicine patent landscape is valuable for detecting significant shifts that may occur over time. With improved international medicine patent transparency by companies and data available through third parties, such studies will be increasingly feasible.
A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2015-02-01
A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.
Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib
2016-01-01
Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate Ki as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting Ki images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit Ki bias of sPatlak analysis at regions with non-negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source Software for Tomographic Image Reconstruction (STIR) platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced Ki target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D vs. the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10–20 sub-iterations. Moreover, systematic reduction in Ki % bias and improved TBR were observed for gPatlak vs. sPatlak. Finally, validation on clinical WB dynamic data demonstrated the clinical feasibility and superior Ki CNR performance for the proposed 4D framework compared to indirect Patlak and SUV imaging. PMID:27383991
NASA Astrophysics Data System (ADS)
Karakatsanis, Nicolas A.; Casey, Michael E.; Lodge, Martin A.; Rahmim, Arman; Zaidi, Habib
2016-08-01
Whole-body (WB) dynamic PET has recently demonstrated its potential in translating the quantitative benefits of parametric imaging to the clinic. Post-reconstruction standard Patlak (sPatlak) WB graphical analysis utilizes multi-bed multi-pass PET acquisition to produce quantitative WB images of the tracer influx rate K i as a complimentary metric to the semi-quantitative standardized uptake value (SUV). The resulting K i images may suffer from high noise due to the need for short acquisition frames. Meanwhile, a generalized Patlak (gPatlak) WB post-reconstruction method had been suggested to limit K i bias of sPatlak analysis at regions with non-negligible 18F-FDG uptake reversibility; however, gPatlak analysis is non-linear and thus can further amplify noise. In the present study, we implemented, within the open-source software for tomographic image reconstruction platform, a clinically adoptable 4D WB reconstruction framework enabling efficient estimation of sPatlak and gPatlak images directly from dynamic multi-bed PET raw data with substantial noise reduction. Furthermore, we employed the optimization transfer methodology to accelerate 4D expectation-maximization (EM) convergence by nesting the fast image-based estimation of Patlak parameters within each iteration cycle of the slower projection-based estimation of dynamic PET images. The novel gPatlak 4D method was initialized from an optimized set of sPatlak ML-EM iterations to facilitate EM convergence. Initially, realistic simulations were conducted utilizing published 18F-FDG kinetic parameters coupled with the XCAT phantom. Quantitative analyses illustrated enhanced K i target-to-background ratio (TBR) and especially contrast-to-noise ratio (CNR) performance for the 4D versus the indirect methods and static SUV. Furthermore, considerable convergence acceleration was observed for the nested algorithms involving 10-20 sub-iterations. Moreover, systematic reduction in K i % bias and improved TBR were observed for gPatlak versus sPatlak. Finally, validation on clinical WB dynamic data demonstrated the clinical feasibility and superior K i CNR performance for the proposed 4D framework compared to indirect Patlak and SUV imaging.
NASA Astrophysics Data System (ADS)
Min, Byung Jun; Choi, Yong; Lee, Nam-Yong; Lee, Kisung; Ahn, Young Bok; Joung, Jinhun
2009-07-01
The aim of this study was to design a multipinhole (MP) collimator with lead vertical septa coupled to a high-resolution detector module containing silicon drift detectors (SDDs) with an intrinsic resolution approaching the sub-millimeter level. Monte Carlo simulations were performed to determine pinhole parameters such as pinhole diameter, focal length, and number of pinholes. Effects of parallax error and collimator penetration were investigated for the new MP collimator design. The MP detector module was evaluated using reconstructed images of resolution and mathematical cardiac torso (MCAT) phantoms. In addition, the reduced angular sampling effect was investigated over 180°. The images were reconstructed using dedicated maximum likelihood expectation maximization (MLEM) algorithm. An MP collimator with 81-pinhole was designed with a 2-mm-diameter pinhole and a focal length of 40 mm . Planar sensitivity and resolution obtained using the devised MP collimator were 3.9 cps/μCi and 6 mm full-width at half-maximum (FWHM) at a 10 cm distance. The parallax error and penetration ratio were significantly improved using the proposed MP collimation design. The simulation results demonstrated that the proposed MP detector provided enlarged imaging field of view (FOV) and improved the angular sampling effect in resolution and MCAT phantom studies. Moreover, the novel design enables tomography images by simultaneously obtaining eight projections with eight-detector modules located along the 180° orbit surrounding a patient, which allows designing of a stationary cardiac SPECT. In conclusion, the MP collimator with lead vertical septa was designed to have comparable system resolution and sensitivity to those of the low-energy high-resolution (LEHR) collimator per detector. The system sensitivity with an eight-detector configuration would be four times higher than that with a standard dual-detector cardiac SPECT.
A new augmentation based algorithm for extracting maximal chordal subgraphs
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2014-10-18
If every cycle of a graph is chordal length greater than three then it contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms’more » parallelizability. In our paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. Finally, we experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.« less
NASA Astrophysics Data System (ADS)
Lee, Taewoong; Lee, Hyounggun; Lee, Wonho
2015-10-01
This study evaluated the use of Compton imaging technology to monitor prompt gamma rays emitted by 10B in boron neutron capture therapy (BNCT) applied to a computerized human phantom. The Monte Carlo method, including particle-tracking techniques, was used for simulation. The distribution of prompt gamma rays emitted by the phantom during irradiation with neutron beams is closely associated with the distribution of the boron in the phantom. Maximum likelihood expectation maximization (MLEM) method was applied to the information obtained from the detected prompt gamma rays to reconstruct the distribution of the tumor including the boron uptake regions (BURs). The reconstructed Compton images of the prompt gamma rays were combined with the cross-sectional images of the human phantom. Quantitative analysis of the intensity curves showed that all combined images matched the predetermined conditions of the simulation. The tumors including the BURs were distinguishable if they were more than 2 cm apart.
C-arm technique using distance driven method for nephrolithiasis and kidney stones detection
NASA Astrophysics Data System (ADS)
Malalla, Nuhad; Sun, Pengfei; Chen, Ying; Lipkin, Michael E.; Preminger, Glenn M.; Qin, Jun
2016-04-01
Distance driven represents a state of art method that used for reconstruction for x-ray techniques. C-arm tomography is an x-ray imaging technique that provides three dimensional information of the object by moving the C-shaped gantry around the patient. With limited view angle, C-arm system was investigated to generate volumetric data of the object with low radiation dosage and examination time. This paper is a new simulation study with two reconstruction methods based on distance driven including: simultaneous algebraic reconstruction technique (SART) and Maximum Likelihood expectation maximization (MLEM). Distance driven is an efficient method that has low computation cost and free artifacts compared with other methods such as ray driven and pixel driven methods. Projection images of spherical objects were simulated with a virtual C-arm system with a total view angle of 40 degrees. Results show the ability of limited angle C-arm technique to generate three dimensional images with distance driven reconstruction.
Azad, Ariful; Buluç, Aydın
2016-05-16
We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less
NASA Astrophysics Data System (ADS)
Lalush, D. S.; Tsui, B. M. W.
1998-06-01
We study the statistical convergence properties of two fast iterative reconstruction algorithms, the rescaled block-iterative (RBI) and ordered subset (OS) EM algorithms, in the context of cardiac SPECT with 3D detector response modeling. The Monte Carlo method was used to generate nearly noise-free projection data modeling the effects of attenuation, detector response, and scatter from the MCAT phantom. One thousand noise realizations were generated with an average count level approximating a typical T1-201 cardiac study. Each noise realization was reconstructed using the RBI and OS algorithms for cases with and without detector response modeling. For each iteration up to twenty, we generated mean and variance images, as well as covariance images for six specific locations. Both OS and RBI converged in the mean to results that were close to the noise-free ML-EM result using the same projection model. When detector response was not modeled in the reconstruction, RBI exhibited considerably lower noise variance than OS for the same resolution. When 3D detector response was modeled, the RBI-EM provided a small improvement in the tradeoff between noise level and resolution recovery, primarily in the axial direction, while OS required about half the number of iterations of RBI to reach the same resolution. We conclude that OS is faster than RBI, but may be sensitive to errors in the projection model. Both OS-EM and RBI-EM are effective alternatives to the EVIL-EM algorithm, but noise level and speed of convergence depend on the projection model used.
Uncovering the overlapping community structure of complex networks by maximal cliques
NASA Astrophysics Data System (ADS)
Li, Junqiu; Wang, Xingyuan; Cui, Yaozu
2014-12-01
In this paper, a unique algorithm is proposed to detect overlapping communities in the un-weighted and weighted networks with considerable accuracy. The maximal cliques, overlapping vertex, bridge vertex and isolated vertex are introduced. First, all the maximal cliques are extracted by the algorithm based on the deep and bread searching. Then two maximal cliques can be merged into a larger sub-graph by some given rules. In addition, the proposed algorithm successfully finds overlapping vertices and bridge vertices between communities. Experimental results using some real-world networks data show that the performance of the proposed algorithm is satisfactory.
A Submillimeter Resolution PET Prototype Evaluated With an 18F Inkjet Printed Phantom
NASA Astrophysics Data System (ADS)
Schneider, Florian R.; Hohberg, Melanie; Mann, Alexander B.; Paul, Stephan; Ziegler, Sibylle I.
2015-10-01
This work presents a submillimeter resolution PET (Positron Emission Tomography) scanner prototype based on SiPM/MPPC arrays (Silicon Photomultiplier/Multi Pixel Photon Counter). Onto each active area a 1 ×1 ×20 mm3 LYSO (Lutetium-Yttrium-Oxyorthosilicate) scintillator crystal is coupled one-to-one. Two detector modules facing each other in a distance of 10.0 cm have been set up with in total 64 channels that are digitized by SADCs (Sampling Analog to Digital Converters) with 80 MHz, 10 bit resolution and FPGA (Field Programmable Gate Array) based extraction of energy and time information. Since standard phantoms are not sufficient for testing submillimeter resolution at which positron range is an issue, a 18F inkjet printed phantom has been used to explore the limit in spatial resolution. The phantom could be successfully reconstructed with an iterative MLEM (Maximum Likelihood Expectation Maximization) and an analytically calculated system matrix based on the DRF (Detector Response Function) model. The system yields a coincidence time resolution of 4.8 ns FWHM, an energy resolution of 20%-30% FWHM and a spatial resolution of 0.8 mm.
Simultaneous maximum a posteriori longitudinal PET image reconstruction
NASA Astrophysics Data System (ADS)
Ellis, Sam; Reader, Andrew J.
2017-09-01
Positron emission tomography (PET) is frequently used to monitor functional changes that occur over extended time scales, for example in longitudinal oncology PET protocols that include routine clinical follow-up scans to assess the efficacy of a course of treatment. In these contexts PET datasets are currently reconstructed into images using single-dataset reconstruction methods. Inspired by recently proposed joint PET-MR reconstruction methods, we propose to reconstruct longitudinal datasets simultaneously by using a joint penalty term in order to exploit the high degree of similarity between longitudinal images. We achieved this by penalising voxel-wise differences between pairs of longitudinal PET images in a one-step-late maximum a posteriori (MAP) fashion, resulting in the MAP simultaneous longitudinal reconstruction (SLR) method. The proposed method reduced reconstruction errors and visually improved images relative to standard maximum likelihood expectation-maximisation (ML-EM) in simulated 2D longitudinal brain tumour scans. In reconstructions of split real 3D data with inserted simulated tumours, noise across images reconstructed with MAP-SLR was reduced to levels equivalent to doubling the number of detected counts when using ML-EM. Furthermore, quantification of tumour activities was largely preserved over a variety of longitudinal tumour changes, including changes in size and activity, with larger changes inducing larger biases relative to standard ML-EM reconstructions. Similar improvements were observed for a range of counts levels, demonstrating the robustness of the method when used with a single penalty strength. The results suggest that longitudinal regularisation is a simple but effective method of improving reconstructed PET images without using resolution degrading priors.
NASA Astrophysics Data System (ADS)
Wei, Chengying; Xiong, Cuilian; Liu, Huanlin
2017-12-01
Maximal multicast stream algorithm based on network coding (NC) can improve the network's throughput for wavelength-division multiplexing (WDM) networks, which however is far less than the network's maximal throughput in terms of theory. And the existing multicast stream algorithms do not give the information distribution pattern and routing in the meantime. In the paper, an improved genetic algorithm is brought forward to maximize the optical multicast throughput by NC and to determine the multicast stream distribution by hybrid chromosomes construction for multicast with single source and multiple destinations. The proposed hybrid chromosomes are constructed by the binary chromosomes and integer chromosomes, while the binary chromosomes represent optical multicast routing and the integer chromosomes indicate the multicast stream distribution. A fitness function is designed to guarantee that each destination can receive the maximum number of decoding multicast streams. The simulation results showed that the proposed method is far superior over the typical maximal multicast stream algorithms based on NC in terms of network throughput in WDM networks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, B.M.W.; Frey, E.C.; Lalush, D.S.
1996-12-31
We investigated methods to accurately reconstruct 180{degrees} truncated TCT and SPECT projection data obtained from a right-angle dual-camera SPECT system for myocardial SPECT with attenuation compensation. The 180{degrees} data reconstruction methods would permit substantial savings in transmission data acquisition time. Simulation data from the 3D MCAT phantom and clinical data from large patients were used in the evaluation study. Different transmission reconstruction methods including the FBP, transmission ML-EM, transmission ML-SA, and BIT algorithms with and without using the body contour as support, were used in the TCT image reconstructions. The accuracy of both the TCT and attenuation compensated SPECT imagesmore » were evaluated for different degrees of truncation and noise levels. We found that using the FBP reconstructed TCT images resulted in higher count density in the left ventricular (LV) wall of the attenuation compensated SPECT images. The LV wall count density obtained using the iteratively reconstructed TCT images with and without support were similar to each other and were more accurate than that using the FBP. However, the TCT images obtained with support show fewer image artifacts than without support. Among the iterative reconstruction algorithms, the ML-SA algorithm provides the most accurate reconstruction but is the slowest. The BIT algorithm is the fastest but shows the most image artifacts. We conclude that accurate attenuation compensated images can be obtained with truncated 180{degrees} data from large patients using a right-angle dual-camera SPECT system.« less
Hierarchical trie packet classification algorithm based on expectation-maximization clustering.
Bi, Xia-An; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm.
Noise-enhanced clustering and competitive learning algorithms.
Osoba, Osonde; Kosko, Bart
2013-01-01
Noise can provably speed up convergence in many centroid-based clustering algorithms. This includes the popular k-means clustering algorithm. The clustering noise benefit follows from the general noise benefit for the expectation-maximization algorithm because many clustering algorithms are special cases of the expectation-maximization algorithm. Simulations show that noise also speeds up convergence in stochastic unsupervised competitive learning, supervised competitive learning, and differential competitive learning. Copyright © 2012 Elsevier Ltd. All rights reserved.
AUC-Maximizing Ensembles through Metalearning.
LeDell, Erin; van der Laan, Mark J; Petersen, Maya
2016-05-01
Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree.
AUC-Maximizing Ensembles through Metalearning
LeDell, Erin; van der Laan, Mark J.; Peterson, Maya
2016-01-01
Area Under the ROC Curve (AUC) is often used to measure the performance of an estimator in binary classification problems. An AUC-maximizing classifier can have significant advantages in cases where ranking correctness is valued or if the outcome is rare. In a Super Learner ensemble, maximization of the AUC can be achieved by the use of an AUC-maximining metalearning algorithm. We discuss an implementation of an AUC-maximization technique that is formulated as a nonlinear optimization problem. We also evaluate the effectiveness of a large number of different nonlinear optimization algorithms to maximize the cross-validated AUC of the ensemble fit. The results provide evidence that AUC-maximizing metalearners can, and often do, out-perform non-AUC-maximizing metalearning methods, with respect to ensemble AUC. The results also demonstrate that as the level of imbalance in the training data increases, the Super Learner ensemble outperforms the top base algorithm by a larger degree. PMID:27227721
A Model and Simple Iterative Algorithm for Redundancy Analysis.
ERIC Educational Resources Information Center
Fornell, Claes; And Others
1988-01-01
This paper shows that redundancy maximization with J. K. Johansson's extension can be accomplished via a simple iterative algorithm based on H. Wold's Partial Least Squares. The model and the iterative algorithm for the least squares approach to redundancy maximization are presented. (TJH)
Compton camera study for high efficiency SPECT and benchmark with Anger system
NASA Astrophysics Data System (ADS)
Fontana, M.; Dauvergne, D.; Létang, J. M.; Ley, J.-L.; Testa, É.
2017-12-01
Single photon emission computed tomography (SPECT) is at present one of the major techniques for non-invasive diagnostics in nuclear medicine. The clinical routine is mostly based on collimated cameras, originally proposed by Hal Anger. Due to the presence of mechanical collimation, detection efficiency and energy acceptance are limited and fixed by the system’s geometrical features. In order to overcome these limitations, the application of Compton cameras for SPECT has been investigated for several years. In this study we compare a commercial SPECT-Anger device, the General Electric HealthCare Infinia system with a High Energy General Purpose (HEGP) collimator, and the Compton camera prototype under development by the French collaboration CLaRyS, through Monte Carlo simulations (GATE—GEANT4 Application for Tomographic Emission—version 7.1 and GEANT4 version 9.6, respectively). Given the possible introduction of new radio-emitters at higher energies intrinsically allowed by the Compton camera detection principle, the two detectors are exposed to point-like sources at increasing primary gamma energies, from actual isotopes already suggested for nuclear medicine applications. The Compton camera prototype is first characterized for SPECT application by studying the main parameters affecting its imaging performance: detector energy resolution and random coincidence rate. The two detector performances are then compared in terms of radial event distribution, detection efficiency and final image, obtained by gamma transmission analysis for the Anger system, and with an iterative List Mode-Maximum Likelihood Expectation Maximization (LM-MLEM) algorithm for the Compton reconstruction. The results show for the Compton camera a detection efficiency increased by a factor larger than an order of magnitude with respect to the Anger camera, associated with an enhanced spatial resolution for energies beyond 500 keV. We discuss the advantages of Compton camera application for SPECT if compared to present commercial Anger systems, with particular focus on dose delivered to the patient, examination time, and spatial uncertainties.
Quantitative accuracy of the closed-form least-squares solution for targeted SPECT.
Shcherbinin, S; Celler, A
2010-10-07
The aim of this study is to investigate the quantitative accuracy of the closed-form least-squares solution (LSS) for single photon emission computed tomography (SPECT). The main limitation for employing this method in actual clinical reconstructions is the computational cost related to operations with a large-sized system matrix. However, in some clinical situations, the size of the system matrix can be decreased using targeted reconstruction. For example, some oncology SPECT studies are characterized by intense tracer uptakes that are localized in relatively small areas, while the remaining parts of the patient body have only a low activity background. Conventional procedures reconstruct the activity distribution in the whole object, which leads to relatively poor image accuracy/resolution for tumors while computer resources are wasted, trying to rebuild diagnostically useless background. In this study, we apply a concept of targeted reconstruction to SPECT phantom experiments imitating such oncology scans. Our approach includes two major components: (i) disconnection of the entire imaging system of equations and extraction of only those parts that correspond to the targets, i.e., regions of interest (ROI) encompassing active containers/tumors and (ii) generation of the closed-form LSS for each target ROI. We compared these ROI-based LSS with those reconstructed by the conventional MLEM approach. The analysis of the five processed cases from two phantom experiments demonstrated that the LSS approach outperformed MLEM in terms of the noise level inside ROI. On the other hand, MLEM better recovered total activity if the number of iterations was large enough. For the experiment without background activity, the ROI-based LSS led to noticeably better spatial activity distribution inside ROI. However, the distributions pertaining to both approaches were practically identical for the experiment with the concentration ratio 7:1 between the containers and the background.
Quantum speedup in solving the maximal-clique problem
NASA Astrophysics Data System (ADS)
Chang, Weng-Long; Yu, Qi; Li, Zhaokai; Chen, Jiahui; Peng, Xinhua; Feng, Mang
2018-03-01
The maximal-clique problem, to find the maximally sized clique in a given graph, is classically an NP-complete computational problem, which has potential applications ranging from electrical engineering, computational chemistry, and bioinformatics to social networks. Here we develop a quantum algorithm to solve the maximal-clique problem for any graph G with n vertices with quadratic speedup over its classical counterparts, where the time and spatial complexities are reduced to, respectively, O (√{2n}) and O (n2) . With respect to oracle-related quantum algorithms for the NP-complete problems, we identify our algorithm as optimal. To justify the feasibility of the proposed quantum algorithm, we successfully solve a typical clique problem for a graph G with two vertices and one edge by carrying out a nuclear magnetic resonance experiment involving four qubits.
Hierarchical trie packet classification algorithm based on expectation-maximization clustering
Bi, Xia-an; Zhao, Junxia
2017-01-01
With the development of computer network bandwidth, packet classification algorithms which are able to deal with large-scale rule sets are in urgent need. Among the existing algorithms, researches on packet classification algorithms based on hierarchical trie have become an important packet classification research branch because of their widely practical use. Although hierarchical trie is beneficial to save large storage space, it has several shortcomings such as the existence of backtracking and empty nodes. This paper proposes a new packet classification algorithm, Hierarchical Trie Algorithm Based on Expectation-Maximization Clustering (HTEMC). Firstly, this paper uses the formalization method to deal with the packet classification problem by means of mapping the rules and data packets into a two-dimensional space. Secondly, this paper uses expectation-maximization algorithm to cluster the rules based on their aggregate characteristics, and thereby diversified clusters are formed. Thirdly, this paper proposes a hierarchical trie based on the results of expectation-maximization clustering. Finally, this paper respectively conducts simulation experiments and real-environment experiments to compare the performances of our algorithm with other typical algorithms, and analyzes the results of the experiments. The hierarchical trie structure in our algorithm not only adopts trie path compression to eliminate backtracking, but also solves the problem of low efficiency of trie updates, which greatly improves the performance of the algorithm. PMID:28704476
LOR-interleaving image reconstruction for PET imaging with fractional-crystal collimation
NASA Astrophysics Data System (ADS)
Li, Yusheng; Matej, Samuel; Karp, Joel S.; Metzler, Scott D.
2015-01-01
Positron emission tomography (PET) has become an important modality in medical and molecular imaging. However, in most PET applications, the resolution is still mainly limited by the physical crystal sizes or the detector’s intrinsic spatial resolution. To achieve images with better spatial resolution in a central region of interest (ROI), we have previously proposed using collimation in PET scanners. The collimator is designed to partially mask detector crystals to detect lines of response (LORs) within fractional crystals. A sequence of collimator-encoded LORs is measured with different collimation configurations. This novel collimated scanner geometry makes the reconstruction problem challenging, as both detector and collimator effects need to be modeled to reconstruct high-resolution images from collimated LORs. In this paper, we present a LOR-interleaving (LORI) algorithm, which incorporates these effects and has the advantage of reusing existing reconstruction software, to reconstruct high-resolution images for PET with fractional-crystal collimation. We also develop a 3D ray-tracing model incorporating both the collimator and crystal penetration for simulations and reconstructions of the collimated PET. By registering the collimator-encoded LORs with the collimator configurations, high-resolution LORs are restored based on the modeled transfer matrices using the non-negative least-squares method and EM algorithm. The resolution-enhanced images are then reconstructed from the high-resolution LORs using the MLEM or OSEM algorithm. For validation, we applied the LORI method to a small-animal PET scanner, A-PET, with a specially designed collimator. We demonstrate through simulated reconstructions with a hot-rod phantom and MOBY phantom that the LORI reconstructions can substantially improve spatial resolution and quantification compared to the uncollimated reconstructions. The LORI algorithm is crucial to improve overall image quality of collimated PET, which can have significant implications in preclinical and clinical ROI imaging applications.
Hudson, H M; Ma, J; Green, P
1994-01-01
Many algorithms for medical image reconstruction adopt versions of the expectation-maximization (EM) algorithm. In this approach, parameter estimates are obtained which maximize a complete data likelihood or penalized likelihood, in each iteration. Implicitly (and sometimes explicitly) penalized algorithms require smoothing of the current reconstruction in the image domain as part of their iteration scheme. In this paper, we discuss alternatives to EM which adapt Fisher's method of scoring (FS) and other methods for direct maximization of the incomplete data likelihood. Jacobi and Gauss-Seidel methods for non-linear optimization provide efficient algorithms applying FS in tomography. One approach uses smoothed projection data in its iterations. We investigate the convergence of Jacobi and Gauss-Seidel algorithms with clinical tomographic projection data.
Measurement and Structural Model Class Separation in Mixture CFA: ML/EM versus MCMC
ERIC Educational Resources Information Center
Depaoli, Sarah
2012-01-01
Parameter recovery was assessed within mixture confirmatory factor analysis across multiple estimator conditions under different simulated levels of mixture class separation. Mixture class separation was defined in the measurement model (through factor loadings) and the structural model (through factor variances). Maximum likelihood (ML) via the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kagie, Matthew J.; Lanterman, Aaron D.
2017-12-01
This paper addresses parameter estimation for an optical transient signal when the received data has been right-censored. We develop an expectation-maximization (EM) algorithm to estimate the amplitude of a Poisson intensity with a known shape in the presence of additive background counts, where the measurements are subject to saturation effects. We compare the results of our algorithm with those of an EM algorithm that is unaware of the censoring.
An Online Algorithm for Maximizing Submodular Functions
2007-12-20
dynamics of the social network are known. In theory, our online algorithms could be used to adapt a marketing campaign to unknown or time-varying social...An Online Algorithm for Maximizing Submodular Functions Matthew Streeter Daniel Golovin December 20, 2007 CMU-CS-07-171 School of Computer Science...number. 1. REPORT DATE 20 DEC 2007 2. REPORT TYPE 3. DATES COVERED 00-00-2007 to 00-00-2007 4. TITLE AND SUBTITLE An Online Algorithm for
Detecting community structure via the maximal sub-graphs and belonging degrees in complex networks
NASA Astrophysics Data System (ADS)
Cui, Yaozu; Wang, Xingyuan; Eustace, Justine
2014-12-01
Community structure is a common phenomenon in complex networks, and it has been shown that some communities in complex networks often overlap each other. So in this paper we propose a new algorithm to detect overlapping community structure in complex networks. To identify the overlapping community structure, our algorithm firstly extracts fully connected sub-graphs which are maximal sub-graphs from original networks. Then two maximal sub-graphs having the key pair-vertices can be merged into a new larger sub-graph using some belonging degree functions. Furthermore we extend the modularity function to evaluate the proposed algorithm. In addition, overlapping nodes between communities are founded successfully. Finally we report the comparison between the modularity and the computational complexity of the proposed algorithm with some other existing algorithms. The experimental results show that the proposed algorithm gives satisfactory results.
Maximal clique enumeration with data-parallel primitives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lessley, Brenton; Perciano, Talita; Mathai, Manish
The enumeration of all maximal cliques in an undirected graph is a fundamental problem arising in several research areas. We consider maximal clique enumeration on shared-memory, multi-core architectures and introduce an approach consisting entirely of data-parallel operations, in an effort to achieve efficient and portable performance across different architectures. We study the performance of the algorithm via experiments varying over benchmark graphs and architectures. Overall, we observe that our algorithm achieves up to a 33-time speedup and 9-time speedup over state-of-the-art distributed and serial algorithms, respectively, for graphs with higher ratios of maximal cliques to total cliques. Further, we attainmore » additional speedups on a GPU architecture, demonstrating the portable performance of our data-parallel design.« less
Receiver Diversity Combining Using Evolutionary Algorithms in Rayleigh Fading Channel
Akbari, Mohsen; Manesh, Mohsen Riahi
2014-01-01
In diversity combining at the receiver, the output signal-to-noise ratio (SNR) is often maximized by using the maximal ratio combining (MRC) provided that the channel is perfectly estimated at the receiver. However, channel estimation is rarely perfect in practice, which results in deteriorating the system performance. In this paper, an imperialistic competitive algorithm (ICA) is proposed and compared with two other evolutionary based algorithms, namely, particle swarm optimization (PSO) and genetic algorithm (GA), for diversity combining of signals travelling across the imperfect channels. The proposed algorithm adjusts the combiner weights of the received signal components in such a way that maximizes the SNR and minimizes the bit error rate (BER). The results indicate that the proposed method eliminates the need of channel estimation and can outperform the conventional diversity combining methods. PMID:25045725
Image enhancement in positron emission mammography
NASA Astrophysics Data System (ADS)
Slavine, Nikolai V.; Seiler, Stephen; McColl, Roderick W.; Lenkinski, Robert E.
2017-02-01
Purpose: To evaluate an efficient iterative deconvolution method (RSEMD) for improving the quantitative accuracy of previously reconstructed breast images by commercial positron emission mammography (PEM) scanner. Materials and Methods: The RSEMD method was tested on breast phantom data and clinical PEM imaging data. Data acquisition was performed on a commercial Naviscan Flex Solo II PEM camera. This method was applied to patient breast images previously reconstructed with Naviscan software (MLEM) to determine improvements in resolution, signal to noise ratio (SNR) and contrast to noise ratio (CNR.) Results: In all of the patients' breast studies the post-processed images proved to have higher resolution and lower noise as compared with images reconstructed by conventional methods. In general, the values of SNR reached a plateau at around 6 iterations with an improvement factor of about 2 for post-processed Flex Solo II PEM images. Improvements in image resolution after the application of RSEMD have also been demonstrated. Conclusions: A rapidly converging, iterative deconvolution algorithm with a novel resolution subsets-based approach RSEMD that operates on patient DICOM images has been used for quantitative improvement in breast imaging. The RSEMD method can be applied to clinical PEM images to improve image quality to diagnostically acceptable levels and will be crucial in order to facilitate diagnosis of tumor progression at the earliest stages. The RSEMD method can be considered as an extended Richardson-Lucy algorithm with multiple resolution levels (resolution subsets).
Patent and Exclusivity Status of Essential Medicines for Non-Communicable Disease
Mackey, Tim K.; Liang, Bryan A.
2012-01-01
Objective The threat of non-communicable diseases (“NCDs”) is increasingly becoming a global health crisis and are pervasive in high, middle, and low-income populations resulting in an estimated 36 million deaths per year. There is a need to assess intellectual property rights (“IPRs”) that may impede generic production and availability and affordability to essential NCD medicines. Methods Using the data sources listed below, the study design systematically eliminated NCD drugs that had no patent/exclusivity provisions on API, dosage, or administration route. The first step identified essential medicines that treat certain high disease burden NCDs. A second step examined the patent and exclusivity status of active ingredient, dosage and listed route of administration using exclusion criteria outlined in this study. Materials We examined the patent and exclusivity status of medicines listed in the World Health Organization’s (“WHO”) Model List of Essential Drugs (Medicines) (“MLEM”) and other WHO sources for drugs treating certain NCDs. i.e., cardiovascular and respiratory disease, cancers, and diabetes. We utilized the USA Food and Drug Administration Orange Book and the USA Patent and Trademark Office databases as references given the predominant number of medicines registered in the USA. Results Of the 359 MLEM medicines identified, 22% (79/359) address targeted NCDs. Of these 79, only eight required in-depth patent or exclusivity assessment. Upon further review, no NCD MLEM medicines had study patent or exclusivity protection for reviewed criteria. Conclusions We find that ensuring availability and affordability of potential generic formulations of NCD MLEM medicines appears to be more complex than the presence of IPRs with API, dosage, or administration patent or exclusivity protection. Hence, more sophisticated analysis of NCD barriers to generic availability and affordability should be conducted in order to ensure equitable access to global populations for these essential medicines. PMID:23226453
An implementation of the NiftyRec medical imaging library for PIXE-tomography reconstruction
NASA Astrophysics Data System (ADS)
Michelet, C.; Barberet, P.; Desbarats, P.; Giovannelli, J.-F.; Schou, C.; Chebil, I.; Delville, M.-H.; Gordillo, N.; Beasley, D. G.; Devès, G.; Moretto, P.; Seznec, H.
2017-08-01
A new development of the TomoRebuild software package is presented, including ;thick sample; correction for non linear X-ray production (NLXP) and X-ray absorption (XA). As in the previous versions, C++ programming with standard libraries was used for easier portability. Data reduction requires different steps which may be run either from a command line instruction or via a user friendly interface, developed as a portable Java plugin in ImageJ. All experimental and reconstruction parameters can be easily modified, either directly in the ASCII parameter files or via the ImageJ interface. A detailed user guide in English is provided. Sinograms and final reconstructed images are generated in usual binary formats that can be read by most public domain graphic softwares. New MLEM and OSEM methods are proposed, using optimized methods from the NiftyRec medical imaging library. An overview of the different medical imaging methods that have been used for ion beam microtomography applications is presented. In TomoRebuild, PIXET data reduction is performed for each chemical element independently and separately from STIMT, except for two steps where the fusion of STIMT and PIXET data is required: the calculation of the correction matrix and the normalization of PIXET data to obtain mass fraction distributions. Correction matrices for NLXP and XA are calculated using procedures extracted from the DISRA code, taking into account a large X-ray detection solid angle. For this, the 3D STIMT mass density distribution is used, considering a homogeneous global composition. A first example of PIXET experiment using two detectors is presented. Reconstruction results are compared and found in good agreement between different codes: FBP, NiftyRec MLEM and OSEM of the TomoRebuild software package, the original DISRA, its accelerated version provided in JPIXET and the accelerated MLEM version of JPIXET, with or without correction.
A Genetic-Based Scheduling Algorithm to Minimize the Makespan of the Grid Applications
NASA Astrophysics Data System (ADS)
Entezari-Maleki, Reza; Movaghar, Ali
Task scheduling algorithms in grid environments strive to maximize the overall throughput of the grid. In order to maximize the throughput of the grid environments, the makespan of the grid tasks should be minimized. In this paper, a new task scheduling algorithm is proposed to assign tasks to the grid resources with goal of minimizing the total makespan of the tasks. The algorithm uses the genetic approach to find the suitable assignment within grid resources. The experimental results obtained from applying the proposed algorithm to schedule independent tasks within grid environments demonstrate the applicability of the algorithm in achieving schedules with comparatively lower makespan in comparison with other well-known scheduling algorithms such as, Min-min, Max-min, RASA and Sufferage algorithms.
Deterministic quantum annealing expectation-maximization algorithm
NASA Astrophysics Data System (ADS)
Miyahara, Hideyuki; Tsumura, Koji; Sughiyama, Yuki
2017-11-01
Maximum likelihood estimation (MLE) is one of the most important methods in machine learning, and the expectation-maximization (EM) algorithm is often used to obtain maximum likelihood estimates. However, EM heavily depends on initial configurations and fails to find the global optimum. On the other hand, in the field of physics, quantum annealing (QA) was proposed as a novel optimization approach. Motivated by QA, we propose a quantum annealing extension of EM, which we call the deterministic quantum annealing expectation-maximization (DQAEM) algorithm. We also discuss its advantage in terms of the path integral formulation. Furthermore, by employing numerical simulations, we illustrate how DQAEM works in MLE and show that DQAEM moderate the problem of local optima in EM.
Performance Enhancement of the RatCAP Awake Rate Brain PET System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaska, P.; Vaska, P.; Woody, C.
The first full prototype of the RatCAP PET system, designed to image the brain of a rat while conscious, has been completed. Initial results demonstrated excellent spatial resolution, 1.8 mm FWHM with filtered backprojection and <1.5 mm FWHM with a Monte Carlo based MLEM method. However, noise equivalent countrate studies indicated the need for better timing to mitigate the effect of randoms. Thus, the front-end ASIC has been redesigned to minimize time walk, an accurate coincidence time alignment method has been implemented, and a variance reduction technique for the randoms is being developed. To maximize the quantitative capabilities required formore » neuroscience, corrections are being implemented and validated for positron range and photon noncollinearity, scatter (including outside the field of view), attenuation, randoms, and detector efficiency (deadtime is negligible). In addition, a more robust and compact PCI-based optical data acquisition system has been built to replace the original VME-based system while retaining the linux-based data processing and image reconstruction codes. Finally, a number of new animal imaging experiments have been carried out to demonstrate the performance of the RatCAP in real imaging situations, including an F-18 fluoride bone scan, a C-11 raclopride scan, and a dynamic C-11 methamphetamine scan.« less
Jiang, Shanghai
2017-01-01
X-ray fluorescence computed tomography (XFCT) based on sheet beam can save a huge amount of time to obtain a whole set of projections using synchrotron. However, it is clearly unpractical for most biomedical research laboratories. In this paper, polychromatic X-ray fluorescence computed tomography with sheet-beam geometry is tested by Monte Carlo simulation. First, two phantoms (A and B) filled with PMMA are used to simulate imaging process through GEANT 4. Phantom A contains several GNP-loaded regions with the same size (10 mm) in height and diameter but different Au weight concentration ranging from 0.3% to 1.8%. Phantom B contains twelve GNP-loaded regions with the same Au weight concentration (1.6%) but different diameter ranging from 1 mm to 9 mm. Second, discretized presentation of imaging model is established to reconstruct more accurate XFCT images. Third, XFCT images of phantoms A and B are reconstructed by filter back-projection (FBP) and maximum likelihood expectation maximization (MLEM) with and without correction, respectively. Contrast-to-noise ratio (CNR) is calculated to evaluate all the reconstructed images. Our results show that it is feasible for sheet-beam XFCT system based on polychromatic X-ray source and the discretized imaging model can be used to reconstruct more accurate images. PMID:28567054
A priori motion models for four-dimensional reconstruction in gated cardiac SPECT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lalush, D.S.; Tsui, B.M.W.; Cui, Lin
1996-12-31
We investigate the benefit of incorporating a priori assumptions about cardiac motion in a fully four-dimensional (4D) reconstruction algorithm for gated cardiac SPECT. Previous work has shown that non-motion-specific 4D Gibbs priors enforcing smoothing in time and space can control noise while preserving resolution. In this paper, we evaluate methods for incorporating known heart motion in the Gibbs prior model. The new model is derived by assigning motion vectors to each 4D voxel, defining the movement of that volume of activity into the neighboring time frames. Weights for the Gibbs cliques are computed based on these {open_quotes}most likely{close_quotes} motion vectors.more » To evaluate, we employ the mathematical cardiac-torso (MCAT) phantom with a new dynamic heart model that simulates the beating and twisting motion of the heart. Sixteen realistically-simulated gated datasets were generated, with noise simulated to emulate a real Tl-201 gated SPECT study. Reconstructions were performed using several different reconstruction algorithms, all modeling nonuniform attenuation and three-dimensional detector response. These include ML-EM with 4D filtering, 4D MAP-EM without prior motion assumption, and 4D MAP-EM with prior motion assumptions. The prior motion assumptions included both the correct motion model and incorrect models. Results show that reconstructions using the 4D prior model can smooth noise and preserve time-domain resolution more effectively than 4D linear filters. We conclude that modeling of motion in 4D reconstruction algorithms can be a powerful tool for smoothing noise and preserving temporal resolution in gated cardiac studies.« less
NASA Astrophysics Data System (ADS)
Yeh, Cheng-Ta; Lin, Yi-Kuei; Yang, Jo-Yun
2018-07-01
Network reliability is an important performance index for many real-life systems, such as electric power systems, computer systems and transportation systems. These systems can be modelled as stochastic-flow networks (SFNs) composed of arcs and nodes. Most system supervisors respect the network reliability maximization by finding the optimal multi-state resource assignment, which is one resource to each arc. However, a disaster may cause correlated failures for the assigned resources, affecting the network reliability. This article focuses on determining the optimal resource assignment with maximal network reliability for SFNs. To solve the problem, this study proposes a hybrid algorithm integrating the genetic algorithm and tabu search to determine the optimal assignment, called the hybrid GA-TS algorithm (HGTA), and integrates minimal paths, recursive sum of disjoint products and the correlated binomial distribution to calculate network reliability. Several practical numerical experiments are adopted to demonstrate that HGTA has better computational quality than several popular soft computing algorithms.
Evaluation of mathematical algorithms for automatic patient alignment in radiosurgery.
Williams, Kenneth M; Schulte, Reinhard W; Schubert, Keith E; Wroe, Andrew J
2015-06-01
Image registration techniques based on anatomical features can serve to automate patient alignment for intracranial radiosurgery procedures in an effort to improve the accuracy and efficiency of the alignment process as well as potentially eliminate the need for implanted fiducial markers. To explore this option, four two-dimensional (2D) image registration algorithms were analyzed: the phase correlation technique, mutual information (MI) maximization, enhanced correlation coefficient (ECC) maximization, and the iterative closest point (ICP) algorithm. Digitally reconstructed radiographs from the treatment planning computed tomography scan of a human skull were used as the reference images, while orthogonal digital x-ray images taken in the treatment room were used as the captured images to be aligned. The accuracy of aligning the skull with each algorithm was compared to the alignment of the currently practiced procedure, which is based on a manual process of selecting common landmarks, including implanted fiducials and anatomical skull features. Of the four algorithms, three (phase correlation, MI maximization, and ECC maximization) demonstrated clinically adequate (ie, comparable to the standard alignment technique) translational accuracy and improvements in speed compared to the interactive, user-guided technique; however, the ICP algorithm failed to give clinically acceptable results. The results of this work suggest that a combination of different algorithms may provide the best registration results. This research serves as the initial groundwork for the translation of automated, anatomy-based 2D algorithms into a real-world system for 2D-to-2D image registration and alignment for intracranial radiosurgery. This may obviate the need for invasive implantation of fiducial markers into the skull and may improve treatment room efficiency and accuracy. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Weber, James Daniel
1999-11-01
This dissertation presents a new algorithm that allows a market participant to maximize its individual welfare in the electricity spot market. The use of such an algorithm in determining market equilibrium points, called Nash equilibria, is also demonstrated. The start of the algorithm is a spot market model that uses the optimal power flow (OPF), with a full representation of the transmission system. The OPF is also extended to model consumer behavior, and a thorough mathematical justification for the inclusion of the consumer model in the OPF is presented. The algorithm utilizes price and dispatch sensitivities, available from the Hessian matrix of the OPF, to help determine an optimal change in an individual's bid. The algorithm is shown to be successful in determining local welfare maxima, and the prospects for scaling the algorithm up to realistically sized systems are very good. Assuming a market in which all participants maximize their individual welfare, economic equilibrium points, called Nash equilibria, are investigated. This is done by iteratively solving the individual welfare maximization algorithm for each participant until a point is reached where all individuals stop modifying their bids. It is shown that these Nash equilibria can be located in this manner. However, it is also demonstrated that equilibria do not always exist, and are not always unique when they do exist. It is also shown that individual welfare is a highly nonconcave function resulting in many local maxima. As a result, a more global optimization technique, using a genetic algorithm (GA), is investigated. The genetic algorithm is successfully demonstrated on several systems. It is also shown that a GA can be developed using special niche methods, which allow a GA to converge to several local optima at once. Finally, the last chapter of this dissertation covers the development of a new computer visualization routine for power system analysis: contouring. The contouring algorithm is demonstrated to be useful in visualizing bus-based and transmission line-based quantities.
NASA Astrophysics Data System (ADS)
Job, Joshua; Wang, Zhihui; Rønnow, Troels; Troyer, Matthias; Lidar, Daniel
2014-03-01
We report on experimental work benchmarking the performance of the D-Wave Two programmable annealer on its native Ising problem, and a comparison to available classical algorithms. In this talk we will focus on the comparison with an algorithm originally proposed and implemented by Alex Selby. This algorithm uses dynamic programming to repeatedly optimize over randomly selected maximal induced trees of the problem graph starting from a random initial state. If one is looking for a quantum advantage over classical algorithms, one should compare to classical algorithms which are designed and optimized to maximally take advantage of the structure of the type of problem one is using for the comparison. In that light, this classical algorithm should serve as a good gauge for any potential quantum speedup for the D-Wave Two.
A maximally stable extremal region based scene text localization method
NASA Astrophysics Data System (ADS)
Xiao, Chengqiu; Ji, Lixin; Gao, Chao; Li, Shaomei
2015-07-01
Text localization in natural scene images is an important prerequisite for many content-based image analysis tasks. This paper proposes a novel text localization algorithm. Firstly, a fast pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSER) as basic character candidates. Secondly, these candidates are filtered by using the properties of fitting ellipse and the distribution properties of characters to exclude most non-characters. Finally, a new extremal regions projection merging algorithm is designed to group character candidates into words. Experimental results show that the proposed method has an advantage in speed and achieve relatively high precision and recall rates than the latest published algorithms.
Noise suppressed partial volume correction for cardiac SPECT/CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Chung; Liu, Chi, E-mail: chi.liu@yale.edu
Purpose: Partial volume correction (PVC) methods typically improve quantification at the expense of increased image noise and reduced reproducibility. In this study, the authors developed a novel voxel-based PVC method that incorporates anatomical knowledge to improve quantification while suppressing noise for cardiac SPECT/CT imaging. Methods: In the proposed method, the SPECT images were first reconstructed using anatomical-based maximum a posteriori (AMAP) with Bowsher’s prior to penalize noise while preserving boundaries. A sequential voxel-by-voxel PVC approach (Yang’s method) was then applied on the AMAP reconstruction using a template response. This template response was obtained by forward projecting a template derived frommore » a contrast-enhanced CT image, and then reconstructed using AMAP to model the partial volume effects (PVEs) introduced by both the system resolution and the smoothing applied during reconstruction. To evaluate the proposed noise suppressed PVC (NS-PVC), the authors first simulated two types of cardiac SPECT studies: a {sup 99m}Tc-tetrofosmin myocardial perfusion scan and a {sup 99m}Tc-labeled red blood cell (RBC) scan on a dedicated cardiac multiple pinhole SPECT/CT at both high and low count levels. The authors then applied the proposed method on a canine equilibrium blood pool study following injection with {sup 99m}Tc-RBCs at different count levels by rebinning the list-mode data into shorter acquisitions. The proposed method was compared to MLEM reconstruction without PVC, two conventional PVC methods, including Yang’s method and multitarget correction (MTC) applied on the MLEM reconstruction, and AMAP reconstruction without PVC. Results: The results showed that the Yang’s method improved quantification, however, yielded increased noise and reduced reproducibility in the regions with higher activity. MTC corrected for PVE on high count data with amplified noise, although yielded the worst performance among all the methods tested on low-count data. AMAP effectively suppressed noise and reduced the spill-in effect in the low activity regions. However it was unable to reduce the spill-out effect in high activity regions. NS-PVC yielded superior performance in terms of both quantitative assessment and visual image quality while improving reproducibility. Conclusions: The results suggest that NS-PVC may be a promising PVC algorithm for application in low-dose protocols, and in gated and dynamic cardiac studies with low counts.« less
Multiway spectral community detection in networks
NASA Astrophysics Data System (ADS)
Zhang, Xiao; Newman, M. E. J.
2015-11-01
One of the most widely used methods for community detection in networks is the maximization of the quality function known as modularity. Of the many maximization techniques that have been used in this context, some of the most conceptually attractive are the spectral methods, which are based on the eigenvectors of the modularity matrix. Spectral algorithms have, however, been limited, by and large, to the division of networks into only two or three communities, with divisions into more than three being achieved by repeated two-way division. Here we present a spectral algorithm that can directly divide a network into any number of communities. The algorithm makes use of a mapping from modularity maximization to a vector partitioning problem, combined with a fast heuristic for vector partitioning. We compare the performance of this spectral algorithm with previous approaches and find it to give superior results, particularly in cases where community sizes are unbalanced. We also give demonstrative applications of the algorithm to two real-world networks and find that it produces results in good agreement with expectations for the networks studied.
A New Algorithm to Optimize Maximal Information Coefficient
Luo, Feng; Yuan, Zheming
2016-01-01
The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001
Real-time topic-aware influence maximization using preprocessing.
Chen, Wei; Lin, Tian; Yang, Cheng
2016-01-01
Influence maximization is the task of finding a set of seed nodes in a social network such that the influence spread of these seed nodes based on certain influence diffusion model is maximized. Topic-aware influence diffusion models have been recently proposed to address the issue that influence between a pair of users are often topic-dependent and information, ideas, innovations etc. being propagated in networks are typically mixtures of topics. In this paper, we focus on the topic-aware influence maximization task. In particular, we study preprocessing methods to avoid redoing influence maximization for each mixture from scratch. We explore two preprocessing algorithms with theoretical justifications. Our empirical results on data obtained in a couple of existing studies demonstrate that one of our algorithms stands out as a strong candidate providing microsecond online response time and competitive influence spread, with reasonable preprocessing effort.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Sood, S; Badkul, R
Purpose: To compare dose distributions calculated using PB-hete vs. XVMC algorithms for SRT treatments of cavernous sinus tumors. Methods: Using PB-hete SRT, five patients with cavernous sinus tumors received the prescription dose of 25 Gy in 5 fractions for planning target volume PTV(V100%)=95%. Gross tumor volume (GTV) and organs at risk (OARs) were delineated on T1/T2 MRI-CT-fused images. PTV (range 2.1–84.3cc, mean=21.7cc) was generated using a 5mm uniform-margin around GTV. PB-hete SRT plans included a combination of non-coplanar conformal arcs/static beams delivered by Novalis-TX consisting of HD-MLCs and a 6MV-SRS(1000 MU/min) beam. Plans were re-optimized using XVMC algorithm with identicalmore » beam geometry and MLC positions. Comparison of plan specific PTV(V99%), maximal, mean, isocenter doses, and total monitor units(MUs) were evaluated. Maximal dose to OARs such as brainstem, optic-pathway, spinal cord, and lenses as well as normal tissue volume receiving 12Gy(V12) were compared between two algorithms. All analysis was performed using two-tailed paired t-tests of an upper-bound p-value of <0.05. Results: Using either algorithm, no dosimetrically significant differences in PTV coverage (PTVV99%,maximal, mean, isocenter doses) and total number of MUs were observed (all p-values >0.05, mean ratios within 2%). However, maximal doses to optic-chiasm and nerves were significantly under-predicted using PB-hete (p=0.04). Maximal brainstem, spinal cord, lens dose and V12 were all comparable between two algorithms, with exception of one patient with the largest PTV who exhibited 11% higher V12 with XVMC. Conclusion: Unlike lung tumors, XVMC and PB-hete treatment plans provided similar PTV coverage for cavernous sinus tumors. Majority of OARs doses were comparable between two algorithms, except for small structures such as optic chiasm/nerves which could potentially receive higher doses when using XVMC algorithm. Special attention may need to be paid on a case-by-case basis when planning for sinus SRT based on tumor size and location to OARs particularly the optic apparatus.« less
Efficient data communication protocols for wireless networks
NASA Astrophysics Data System (ADS)
Zeydan, Engin
In this dissertation, efficient decentralized algorithms are investigated for cost minimization problems in wireless networks. For wireless sensor networks, we investigate both the reduction in the energy consumption and throughput maximization problems separately using multi-hop data aggregation for correlated data in wireless sensor networks. The proposed algorithms exploit data redundancy using a game theoretic framework. For energy minimization, routes are chosen to minimize the total energy expended by the network using best response dynamics to local data. The cost function used in routing takes into account distance, interference and in-network data aggregation. The proposed energy-efficient correlation-aware routing algorithm significantly reduces the energy consumption in the network and converges in a finite number of steps iteratively. For throughput maximization, we consider both the interference distribution across the network and correlation between forwarded data when establishing routes. Nodes along each route are chosen to minimize the interference impact in their neighborhood and to maximize the in-network data aggregation. The resulting network topology maximizes the global network throughput and the algorithm is guaranteed to converge with a finite number of steps using best response dynamics. For multiple antenna wireless ad-hoc networks, we present distributed cooperative and regret-matching based learning schemes for joint transmit beanformer and power level selection problem for nodes operating in multi-user interference environment. Total network transmit power is minimized while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching based power minimization algorithms, transmit beanformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to pure strategy Nash equilibrium with high probability throughout the iterations in the interference impaired network. On the other hand, the regret-matching learning algorithm is noncooperative and requires minimum amount of overhead. The proposed cooperative and regret-matching based distributed algorithms are also compared with centralized solutions through simulation results.
NASA Astrophysics Data System (ADS)
Hui, Z.; Cheng, P.; Ziggah, Y. Y.; Nie, Y.
2018-04-01
Filtering is a key step for most applications of airborne LiDAR point clouds. Although lots of filtering algorithms have been put forward in recent years, most of them suffer from parameters setting or thresholds adjusting, which will be time-consuming and reduce the degree of automation of the algorithm. To overcome this problem, this paper proposed a threshold-free filtering algorithm based on expectation-maximization. The proposed algorithm is developed based on an assumption that point clouds are seen as a mixture of Gaussian models. The separation of ground points and non-ground points from point clouds can be replaced as a separation of a mixed Gaussian model. Expectation-maximization (EM) is applied for realizing the separation. EM is used to calculate maximum likelihood estimates of the mixture parameters. Using the estimated parameters, the likelihoods of each point belonging to ground or object can be computed. After several iterations, point clouds can be labelled as the component with a larger likelihood. Furthermore, intensity information was also utilized to optimize the filtering results acquired using the EM method. The proposed algorithm was tested using two different datasets used in practice. Experimental results showed that the proposed method can filter non-ground points effectively. To quantitatively evaluate the proposed method, this paper adopted the dataset provided by the ISPRS for the test. The proposed algorithm can obtain a 4.48 % total error which is much lower than most of the eight classical filtering algorithms reported by the ISPRS.
Semi-automated Image Processing for Preclinical Bioluminescent Imaging.
Slavine, Nikolai V; McColl, Roderick W
Bioluminescent imaging is a valuable noninvasive technique for investigating tumor dynamics and specific biological molecular events in living animals to better understand the effects of human disease in animal models. The purpose of this study was to develop and test a strategy behind automated methods for bioluminescence image processing from the data acquisition to obtaining 3D images. In order to optimize this procedure a semi-automated image processing approach with multi-modality image handling environment was developed. To identify a bioluminescent source location and strength we used the light flux detected on the surface of the imaged object by CCD cameras. For phantom calibration tests and object surface reconstruction we used MLEM algorithm. For internal bioluminescent sources we used the diffusion approximation with balancing the internal and external intensities on the boundary of the media and then determined an initial order approximation for the photon fluence we subsequently applied a novel iterative deconvolution method to obtain the final reconstruction result. We find that the reconstruction techniques successfully used the depth-dependent light transport approach and semi-automated image processing to provide a realistic 3D model of the lung tumor. Our image processing software can optimize and decrease the time of the volumetric imaging and quantitative assessment. The data obtained from light phantom and lung mouse tumor images demonstrate the utility of the image reconstruction algorithms and semi-automated approach for bioluminescent image processing procedure. We suggest that the developed image processing approach can be applied to preclinical imaging studies: characteristics of tumor growth, identify metastases, and potentially determine the effectiveness of cancer treatment.
NASA Technical Reports Server (NTRS)
Bauer, Frank (Technical Monitor); Luquette, Richard J.; Sanner, Robert M.
2003-01-01
Precision Formation Flying is an enabling technology for a variety of proposed space-based observatories, including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), the associated MAXIM pathfinder mission, and the Stellar Imager. An essential element of the technology is the control algorithm. This paper discusses the development of a nonlinear, six-degree of freedom (6DOF) control algorithm for maintaining the relative position and attitude of a spacecraft within a formation. The translation dynamics are based on the equations of motion for the restricted three body problem. The control law guarantees the tracking error convergences to zero, based on a Lyapunov analysis. The simulation, modelled after the MAXIM Pathfinder mission, maintains the relative position and attitude of a Follower spacecraft with respect to a Leader spacecraft, stationed near the L2 libration point in the Sun-Earth system.
Ning, Jing; Chen, Yong; Piao, Jin
2017-07-01
Publication bias occurs when the published research results are systematically unrepresentative of the population of studies that have been conducted, and is a potential threat to meaningful meta-analysis. The Copas selection model provides a flexible framework for correcting estimates and offers considerable insight into the publication bias. However, maximizing the observed likelihood under the Copas selection model is challenging because the observed data contain very little information on the latent variable. In this article, we study a Copas-like selection model and propose an expectation-maximization (EM) algorithm for estimation based on the full likelihood. Empirical simulation studies show that the EM algorithm and its associated inferential procedure performs well and avoids the non-convergence problem when maximizing the observed likelihood. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Optimisation of the mean boat velocity in rowing.
Rauter, G; Baumgartner, L; Denoth, J; Riener, R; Wolf, P
2012-01-01
In rowing, motor learning may be facilitated by augmented feedback that displays the ratio between actual mean boat velocity and maximal achievable mean boat velocity. To provide this ratio, the aim of this work was to develop and evaluate an algorithm calculating an individual maximal mean boat velocity. The algorithm optimised the horizontal oar movement under constraints such as the individual range of the horizontal oar displacement, individual timing of catch and release and an individual power-angle relation. Immersion and turning of the oar were simplified, and the seat movement of a professional rower was implemented. The feasibility of the algorithm, and of the associated ratio between actual boat velocity and optimised boat velocity, was confirmed by a study on four subjects: as expected, advanced rowing skills resulted in higher ratios, and the maximal mean boat velocity depended on the range of the horizontal oar displacement.
Clustering performance comparison using K-means and expectation maximization algorithms.
Jung, Yong Gyu; Kang, Min Soo; Heo, Jun
2014-11-14
Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.
Interval-based reconstruction for uncertainty quantification in PET
NASA Astrophysics Data System (ADS)
Kucharczak, Florentin; Loquin, Kevin; Buvat, Irène; Strauss, Olivier; Mariano-Goulart, Denis
2018-02-01
A new directed interval-based tomographic reconstruction algorithm, called non-additive interval based expectation maximization (NIBEM) is presented. It uses non-additive modeling of the forward operator that provides intervals instead of single-valued projections. The detailed approach is an extension of the maximum likelihood—expectation maximization algorithm based on intervals. The main motivation for this extension is that the resulting intervals have appealing properties for estimating the statistical uncertainty associated with the reconstructed activity values. After reviewing previously published theoretical concepts related to interval-based projectors, this paper describes the NIBEM algorithm and gives examples that highlight the properties and advantages of this interval valued reconstruction.
Approximated mutual information training for speech recognition using myoelectric signals.
Guo, Hua J; Chan, A D C
2006-01-01
A new training algorithm called the approximated maximum mutual information (AMMI) is proposed to improve the accuracy of myoelectric speech recognition using hidden Markov models (HMMs). Previous studies have demonstrated that automatic speech recognition can be performed using myoelectric signals from articulatory muscles of the face. Classification of facial myoelectric signals can be performed using HMMs that are trained using the maximum likelihood (ML) algorithm; however, this algorithm maximizes the likelihood of the observations in the training sequence, which is not directly associated with optimal classification accuracy. The AMMI training algorithm attempts to maximize the mutual information, thereby training the HMMs to optimize their parameters for discrimination. Our results show that AMMI training consistently reduces the error rates compared to these by the ML training, increasing the accuracy by approximately 3% on average.
NASA Astrophysics Data System (ADS)
Singh, Ranjan Kumar; Rinawa, Moti Lal
2018-04-01
The residual stresses arising in fiber-reinforced laminates during their curing in closed molds lead to changes in the composites after their removal from the molds and cooling. One of these dimensional changes of angle sections is called springback. The parameters such as lay-up, stacking sequence, material system, cure temperature, thickness etc play important role in it. In present work, it is attempted to optimize lay-up and stacking sequence for maximization of flexural stiffness and minimization of springback angle. The search algorithms are employed to obtain best sequence through repair strategy such as swap. A new search algorithm, termed as lay-up search algorithm (LSA) is also proposed, which is an extension of permutation search algorithm (PSA). The efficacy of PSA and LSA is tested on the laminates with a range of lay-ups. A computer code is developed on MATLAB implementing the above schemes. Also, the strategies for multi objective optimization using search algorithms are suggested and tested.
NASA Technical Reports Server (NTRS)
Zak, Michail
2008-01-01
A report discusses an algorithm for a new kind of dynamics based on a quantum- classical hybrid-quantum-inspired maximizer. The model is represented by a modified Madelung equation in which the quantum potential is replaced by different, specially chosen 'computational' potential. As a result, the dynamics attains both quantum and classical properties: it preserves superposition and entanglement of random solutions, while allowing one to measure its state variables, using classical methods. Such optimal combination of characteristics is a perfect match for quantum-inspired computing. As an application, an algorithm for global maximum of an arbitrary integrable function is proposed. The idea of the proposed algorithm is very simple: based upon the Quantum-inspired Maximizer (QIM), introduce a positive function to be maximized as the probability density to which the solution is attracted. Then the larger value of this function will have the higher probability to appear. Special attention is paid to simulation of integer programming and NP-complete problems. It is demonstrated that the problem of global maximum of an integrable function can be found in polynomial time by using the proposed quantum- classical hybrid. The result is extended to a constrained maximum with applications to integer programming and TSP (Traveling Salesman Problem).
Lin, Yunyue; Wu, Qishi; Cai, Xiaoshan; ...
2010-01-01
Data transmission from sensor nodes to a base station or a sink node often incurs significant energy consumption, which critically affects network lifetime. We generalize and solve the problem of deploying multiple base stations to maximize network lifetime in terms of two different metrics under one-hop and multihop communication models. In the one-hop communication model, the sensors far away from base stations always deplete their energy much faster than others. We propose an optimal solution and a heuristic approach based on the minimal enclosing circle algorithm to deploy a base station at the geometric center of each cluster. In themore » multihop communication model, both base station location and data routing mechanism need to be considered in maximizing network lifetime. We propose an iterative algorithm based on rigorous mathematical derivations and use linear programming to compute the optimal routing paths for data transmission. Simulation results show the distinguished performance of the proposed deployment algorithms in maximizing network lifetime.« less
Generalized expectation-maximization segmentation of brain MR images
NASA Astrophysics Data System (ADS)
Devalkeneer, Arnaud A.; Robe, Pierre A.; Verly, Jacques G.; Phillips, Christophe L. M.
2006-03-01
Manual segmentation of medical images is unpractical because it is time consuming, not reproducible, and prone to human error. It is also very difficult to take into account the 3D nature of the images. Thus, semi- or fully-automatic methods are of great interest. Current segmentation algorithms based on an Expectation- Maximization (EM) procedure present some limitations. The algorithm by Ashburner et al., 2005, does not allow multichannel inputs, e.g. two MR images of different contrast, and does not use spatial constraints between adjacent voxels, e.g. Markov random field (MRF) constraints. The solution of Van Leemput et al., 1999, employs a simplified model (mixture coefficients are not estimated and only one Gaussian is used by tissue class, with three for the image background). We have thus implemented an algorithm that combines the features of these two approaches: multichannel inputs, intensity bias correction, multi-Gaussian histogram model, and Markov random field (MRF) constraints. Our proposed method classifies tissues in three iterative main stages by way of a Generalized-EM (GEM) algorithm: (1) estimation of the Gaussian parameters modeling the histogram of the images, (2) correction of image intensity non-uniformity, and (3) modification of prior classification knowledge by MRF techniques. The goal of the GEM algorithm is to maximize the log-likelihood across the classes and voxels. Our segmentation algorithm was validated on synthetic data (with the Dice metric criterion) and real data (by a neurosurgeon) and compared to the original algorithms by Ashburner et al. and Van Leemput et al. Our combined approach leads to more robust and accurate segmentation.
Attarwala, Ali Asgar; Karanja, Yvonne Wanjiku; Hardiansyah, Deni; Romanó, Chiara; Roscher, Mareike; Wängler, Björn; Glatting, Gerhard
2017-06-01
In this study the performance characteristics of the Albira II PET sub-system and the response of the system for the following radionuclides 18 F, 68 Ga and 64 Cu was analyzed. The Albira II tri-modal system (Bruker BioSpin MRI GmbH, Ettlingen, Germany) is a pre-clinical device for PET, SPECT and CT. The PET sub-system uses single continuous crystal detectors of lutetium yttrium orthosilicate (LYSO). The detector assembly consists of three rings of 8 detector modules. The transaxial field of view (FOV) has a diameter of 80mm and the axial FOV is 148mm. A NEMA NU-4 image quality phantom (Data Spectrum Corporation, Durham, USA) having five rods with diameters of 1, 2, 3, 4 and 5mm and a uniform central region was used. Measurements with 18 F, 68 Ga and 64 Cu were performed in list mode acquisition over 10h. Data were reconstructed using a maximum-likelihood expectation-maximization (MLEM) algorithm with iteration numbers between 5 and 50. System sensitivity, count rate linearity, convergence and recovery coefficients were analyzed. The sensitivities for the entire FOV (non-NEMA method) for 18 F, 68 Ga and 64 Cu were (3.78±0.05)%, (3.97±0.18)% and (3.79±0.37)%, respectively. The sensitivity based on the NEMA protocol using the 22 Na point source yielded (5.53±0.06)%. Dead-time corrected true counts were linear for activities ≤7MBq ( 18 F and 68 Ga) and ≤17MBq ( 64 Cu) in the phantom. The radial, tangential and axial full widths at half maximum (FWHMs) were 1.52, 1.47 and 1.48mm. Recovery coefficients for the uniform region with a total activity of 8MBq in the phantom were (0.97±0.05), (0.98±0.06), (0.98±0.06) for 18 F, 68 Ga and 64 Cu, respectively. The Albira II pre-clinical PET system has an adequate sensitivity range and the system linearity is suitable for the range of activities used for pre-clinical imaging. Overall, the system showed a favorable image quality for pre-clinical applications. Copyright © 2017. Published by Elsevier GmbH.
A high resolution prototype small-animal PET scanner dedicated to mouse brain imaging
Yang, Yongfeng; Bec, Julien; Zhou, Jian; Zhang, Mengxi; Judenhofer, Martin S; Bai, Xiaowei; Di, Kun; Wu, Yibao; Rodriguez, Mercedes; Dokhale, Purushottam; Shah, Kanai S.; Farrell, Richard; Qi, Jinyi; Cherry, Simon R.
2017-01-01
A prototype small-animal PET scanner was developed based on depth-encoding detectors using dual-ended readout of very small scintillator elements to produce high and uniform spatial resolution suitable for imaging the mouse brain. Methods The scanner consists of 16 tapered dual-ended readout detectors arranged in a ring of diameter 61 mm. The axial field of view is 7 mm and the transaxial field of view is 30 mm. The scintillator arrays consist of 14×14 lutetium oxyorthosilicate (LSO) elements, with a crystal size of 0.43×0.43 mm2 at the front end and 0.80×0.43 mm2 at the back end, and the crystal elements are 13 mm long. The arrays are read out by 8×8 mm2 and a 13×8 mm2 position-sensitive avalanche photodiodes (PSAPDs) placed at opposite ends of the array. Standard nuclear instrumentation module (NIM) electronics and a custom designed multiplexer are used for signal processing. Results The detector performance was measured and all except the very edge crystals could be clearly resolved. The average detector intrinsic spatial resolution in the axial direction was 0.61 mm. A depth of interaction resolution of 1.7 mm was achieved. The sensitivity of the scanner at center of the field of view was 1.02% for a lower energy threshold of 150 keV and 0.68% for a lower energy threshold of 250 keV. The spatial resolution within a field of view that can accommodate the entire mouse brain was ~0.6 mm using a 3D Maximum Likelihood-Expectation Maximization (ML-EM) reconstruction algorithm. Images of a micro hot-rod phantom showed that rods with diameter down to 0.5 mm could be resolved. First in vivo studies were obtained using 18F-fluoride and confirmed that 0.6 mm resolution can be achieved in the mouse head in vivo. Brain imaging studies with 18F-fluorodeoxyglucose were also acquired. Conclusion A prototype PET scanner achieving a spatial resolution approaching the physical limits for a small-bore PET scanner set by positron range and acolinearity was developed. Future plans are to add more detector rings to extend the axial field of view of the scanner and increase sensitivity. PMID:27013696
General form of a cooperative gradual maximal covering location problem
NASA Astrophysics Data System (ADS)
Bagherinejad, Jafar; Bashiri, Mahdi; Nikzad, Hamideh
2018-07-01
Cooperative and gradual covering are two new methods for developing covering location models. In this paper, a cooperative maximal covering location-allocation model is developed (CMCLAP). In addition, both cooperative and gradual covering concepts are applied to the maximal covering location simultaneously (CGMCLP). Then, we develop an integrated form of a cooperative gradual maximal covering location problem, which is called a general CGMCLP. By setting the model parameters, the proposed general model can easily be transformed into other existing models, facilitating general comparisons. The proposed models are developed without allocation for physical signals and with allocation for non-physical signals in discrete location space. Comparison of the previously introduced gradual maximal covering location problem (GMCLP) and cooperative maximal covering location problem (CMCLP) models with our proposed CGMCLP model in similar data sets shows that the proposed model can cover more demands and acts more efficiently. Sensitivity analyses are performed to show the effect of related parameters and the model's validity. Simulated annealing (SA) and a tabu search (TS) are proposed as solution algorithms for the developed models for large-sized instances. The results show that the proposed algorithms are efficient solution approaches, considering solution quality and running time.
Zeng, Nianyin; Wang, Zidong; Li, Yurong; Du, Min; Cao, Jie; Liu, Xiaohui
2013-12-01
In this paper, the expectation maximization (EM) algorithm is applied to the modeling of the nano-gold immunochromatographic assay (nano-GICA) via available time series of the measured signal intensities of the test and control lines. The model for the nano-GICA is developed as the stochastic dynamic model that consists of a first-order autoregressive stochastic dynamic process and a noisy measurement. By using the EM algorithm, the model parameters, the actual signal intensities of the test and control lines, as well as the noise intensity can be identified simultaneously. Three different time series data sets concerning the target concentrations are employed to demonstrate the effectiveness of the introduced algorithm. Several indices are also proposed to evaluate the inferred models. It is shown that the model fits the data very well.
Distributed-Memory Fast Maximal Independent Set
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanewala Appuhamilage, Thejaka Amila J.; Zalewski, Marcin J.; Lumsdaine, Andrew
The Maximal Independent Set (MIS) graph problem arises in many applications such as computer vision, information theory, molecular biology, and process scheduling. The growing scale of MIS problems suggests the use of distributed-memory hardware as a cost-effective approach to providing necessary compute and memory resources. Luby proposed four randomized algorithms to solve the MIS problem. All those algorithms are designed focusing on shared-memory machines and are analyzed using the PRAM model. These algorithms do not have direct efficient distributed-memory implementations. In this paper, we extend two of Luby’s seminal MIS algorithms, “Luby(A)” and “Luby(B),” to distributed-memory execution, and we evaluatemore » their performance. We compare our results with the “Filtered MIS” implementation in the Combinatorial BLAS library for two types of synthetic graph inputs.« less
Improving Search Algorithms by Using Intelligent Coordinates
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Bandari, Esfandiar
2004-01-01
We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent eta is self-interested; it sets its variable to maximize its own function g (sub eta). Three factors govern such a distributed algorithm's performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit alI three factors by modifying a search algorithm's exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based player engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.
Dong, J; Hayakawa, Y; Kober, C
2014-01-01
When metallic prosthetic appliances and dental fillings exist in the oral cavity, the appearance of metal-induced streak artefacts is not avoidable in CT images. The aim of this study was to develop a method for artefact reduction using the statistical reconstruction on multidetector row CT images. Adjacent CT images often depict similar anatomical structures. Therefore, reconstructed images with weak artefacts were attempted using projection data of an artefact-free image in a neighbouring thin slice. Images with moderate and strong artefacts were continuously processed in sequence by successive iterative restoration where the projection data was generated from the adjacent reconstructed slice. First, the basic maximum likelihood-expectation maximization algorithm was applied. Next, the ordered subset-expectation maximization algorithm was examined. Alternatively, a small region of interest setting was designated. Finally, the general purpose graphic processing unit machine was applied in both situations. The algorithms reduced the metal-induced streak artefacts on multidetector row CT images when the sequential processing method was applied. The ordered subset-expectation maximization and small region of interest reduced the processing duration without apparent detriments. A general-purpose graphic processing unit realized the high performance. A statistical reconstruction method was applied for the streak artefact reduction. The alternative algorithms applied were effective. Both software and hardware tools, such as ordered subset-expectation maximization, small region of interest and general-purpose graphic processing unit achieved fast artefact correction.
Pal, Suvra; Balakrishnan, Narayanaswamy
2018-05-01
In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.
Constrained Fisher Scoring for a Mixture of Factor Analyzers
2016-09-01
expectation -maximization algorithm with similar computational requirements. Lastly, we demonstrate the efficacy of the proposed method for learning a... expectation maximization 44 Gene T Whipps 301 394 2372Unclassified Unclassified Unclassified UU ii Approved for public release; distribution is unlimited...14 3.6 Relationship with Expectation -Maximization 16 4. Simulation Examples 16 4.1 Synthetic MFA Example 17 4.2 Manifold Learning Example 22 5
Comparison of OPC job prioritization schemes to generate data for mask manufacturing
NASA Astrophysics Data System (ADS)
Lewis, Travis; Veeraraghavan, Vijay; Jantzen, Kenneth; Kim, Stephen; Park, Minyoung; Russell, Gordon; Simmons, Mark
2015-03-01
Delivering mask ready OPC corrected data to the mask shop on-time is critical for a foundry to meet the cycle time commitment for a new product. With current OPC compute resource sharing technology, different job scheduling algorithms are possible, such as, priority based resource allocation and fair share resource allocation. In order to maximize computer cluster efficiency, minimize the cost of the data processing and deliver data on schedule, the trade-offs of each scheduling algorithm need to be understood. Using actual production jobs, each of the scheduling algorithms will be tested in a production tape-out environment. Each scheduling algorithm will be judged on its ability to deliver data on schedule and the trade-offs associated with each method will be analyzed. It is now possible to introduce advance scheduling algorithms to the OPC data processing environment to meet the goals of on-time delivery of mask ready OPC data while maximizing efficiency and reducing cost.
ERIC Educational Resources Information Center
Weissman, Alexander
2013-01-01
Convergence of the expectation-maximization (EM) algorithm to a global optimum of the marginal log likelihood function for unconstrained latent variable models with categorical indicators is presented. The sufficient conditions under which global convergence of the EM algorithm is attainable are provided in an information-theoretic context by…
Generation of Referring Expressions: Assessing the Incremental Algorithm
ERIC Educational Resources Information Center
van Deemter, Kees; Gatt, Albert; van der Sluis, Ielka; Power, Richard
2012-01-01
A substantial amount of recent work in natural language generation has focused on the generation of "one-shot" referring expressions whose only aim is to identify a target referent. Dale and Reiter's Incremental Algorithm (IA) is often thought to be the best algorithm for maximizing the similarity to referring expressions produced by people. We…
Harmony search algorithm: application to the redundancy optimization problem
NASA Astrophysics Data System (ADS)
Nahas, Nabil; Thien-My, Dao
2010-09-01
The redundancy optimization problem is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system performance, given different system-level constraints. This article presents an efficient algorithm based on the harmony search algorithm (HSA) to solve this optimization problem. The HSA is a new nature-inspired algorithm which mimics the improvization process of music players. Two kinds of problems are considered in testing the proposed algorithm, with the first limited to the binary series-parallel system, where the problem consists of a selection of elements and redundancy levels used to maximize the system reliability given various system-level constraints; the second problem for its part concerns the multi-state series-parallel systems with performance levels ranging from perfect operation to complete failure, and in which identical redundant elements are included in order to achieve a desirable level of availability. Numerical results for test problems from previous research are reported and compared. The results of HSA showed that this algorithm could provide very good solutions when compared to those obtained through other approaches.
Dong, Jian; Hayakawa, Yoshihiko; Kannenberg, Sven; Kober, Cornelia
2013-02-01
The objective of this study was to reduce metal-induced streak artifact on oral and maxillofacial x-ray computed tomography (CT) images by developing the fast statistical image reconstruction system using iterative reconstruction algorithms. Adjacent CT images often depict similar anatomical structures in thin slices. So, first, images were reconstructed using the same projection data of an artifact-free image. Second, images were processed by the successive iterative restoration method where projection data were generated from reconstructed image in sequence. Besides the maximum likelihood-expectation maximization algorithm, the ordered subset-expectation maximization algorithm (OS-EM) was examined. Also, small region of interest (ROI) setting and reverse processing were applied for improving performance. Both algorithms reduced artifacts instead of slightly decreasing gray levels. The OS-EM and small ROI reduced the processing duration without apparent detriments. Sequential and reverse processing did not show apparent effects. Two alternatives in iterative reconstruction methods were effective for artifact reduction. The OS-EM algorithm and small ROI setting improved the performance. Copyright © 2012 Elsevier Inc. All rights reserved.
Optimization of laminated stacking sequence for buckling load maximization by genetic algorithm
NASA Technical Reports Server (NTRS)
Le Riche, Rodolphe; Haftka, Raphael T.
1992-01-01
The use of a genetic algorithm to optimize the stacking sequence of a composite laminate for buckling load maximization is studied. Various genetic parameters including the population size, the probability of mutation, and the probability of crossover are optimized by numerical experiments. A new genetic operator - permutation - is proposed and shown to be effective in reducing the cost of the genetic search. Results are obtained for a graphite-epoxy plate, first when only the buckling load is considered, and then when constraints on ply contiguity and strain failure are added. The influence on the genetic search of the penalty parameter enforcing the contiguity constraint is studied. The advantage of the genetic algorithm in producing several near-optimal designs is discussed.
A Local Scalable Distributed Expectation Maximization Algorithm for Large Peer-to-Peer Networks
NASA Technical Reports Server (NTRS)
Bhaduri, Kanishka; Srivastava, Ashok N.
2009-01-01
This paper offers a local distributed algorithm for expectation maximization in large peer-to-peer environments. The algorithm can be used for a variety of well-known data mining tasks in a distributed environment such as clustering, anomaly detection, target tracking to name a few. This technology is crucial for many emerging peer-to-peer applications for bioinformatics, astronomy, social networking, sensor networks and web mining. Centralizing all or some of the data for building global models is impractical in such peer-to-peer environments because of the large number of data sources, the asynchronous nature of the peer-to-peer networks, and dynamic nature of the data/network. The distributed algorithm we have developed in this paper is provably-correct i.e. it converges to the same result compared to a similar centralized algorithm and can automatically adapt to changes to the data and the network. We show that the communication overhead of the algorithm is very low due to its local nature. This monitoring algorithm is then used as a feedback loop to sample data from the network and rebuild the model when it is outdated. We present thorough experimental results to verify our theoretical claims.
Using a genetic algorithm to optimize a water-monitoring network for accuracy and cost effectiveness
NASA Astrophysics Data System (ADS)
Julich, R. J.
2004-05-01
The purpose of this project is to determine the optimal spatial distribution of water-monitoring wells to maximize important data collection and to minimize the cost of managing the network. We have employed a genetic algorithm (GA) towards this goal. The GA uses a simple fitness measure with two parts: the first part awards a maximal score to those combinations of hydraulic head observations whose net uncertainty is closest to the value representing all observations present, thereby maximizing accuracy; the second part applies a penalty function to minimize the number of observations, thereby minimizing the overall cost of the monitoring network. We used the linear statistical inference equation to calculate standard deviations on predictions from a numerical model generated for the 501-observation Death Valley Regional Flow System as the basis for our uncertainty calculations. We have organized the results to address the following three questions: 1) what is the optimal design strategy for a genetic algorithm to optimize this problem domain; 2) what is the consistency of solutions over several optimization runs; and 3) how do these results compare to what is known about the conceptual hydrogeology? Our results indicate the genetic algorithms are a more efficient and robust method for solving this class of optimization problems than have been traditional optimization approaches.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Chen; Maitra, Ranjan
2011-01-01
We propose a model-based approach for clustering time series regression data in an unsupervised machine learning framework to identify groups under the assumption that each mixture component follows a Gaussian autoregressive regression model of order p. Given the number of groups, the traditional maximum likelihood approach of estimating the parameters using the expectation-maximization (EM) algorithm can be employed, although it is computationally demanding. The somewhat fast tune to the EM folk song provided by the Alternating Expectation Conditional Maximization (AECM) algorithm can alleviate the problem to some extent. In this article, we develop an alternative partial expectation conditional maximization algorithmmore » (APECM) that uses an additional data augmentation storage step to efficiently implement AECM for finite mixture models. Results on our simulation experiments show improved performance in both fewer numbers of iterations and computation time. The methodology is applied to the problem of clustering mutual funds data on the basis of their average annual per cent returns and in the presence of economic indicators.« less
One-way quantum computing in superconducting circuits
NASA Astrophysics Data System (ADS)
Albarrán-Arriagada, F.; Alvarado Barrios, G.; Sanz, M.; Romero, G.; Lamata, L.; Retamal, J. C.; Solano, E.
2018-03-01
We propose a method for the implementation of one-way quantum computing in superconducting circuits. Measurement-based quantum computing is a universal quantum computation paradigm in which an initial cluster state provides the quantum resource, while the iteration of sequential measurements and local rotations encodes the quantum algorithm. Up to now, technical constraints have limited a scalable approach to this quantum computing alternative. The initial cluster state can be generated with available controlled-phase gates, while the quantum algorithm makes use of high-fidelity readout and coherent feedforward. With current technology, we estimate that quantum algorithms with above 20 qubits may be implemented in the path toward quantum supremacy. Moreover, we propose an alternative initial state with properties of maximal persistence and maximal connectedness, reducing the required resources of one-way quantum computing protocols.
Multiuser TOA Estimation Algorithm in DS-CDMA Sparse Channel for Radiolocation
NASA Astrophysics Data System (ADS)
Kim, Sunwoo
This letter considers multiuser time delay estimation in a sparse channel environment for radiolocation. The generalized successive interference cancellation (GSIC) algorithm is used to eliminate the multiple access interference (MAI). To adapt GSIC to sparse channels the alternating maximization (AM) algorithm is considered, and the continuous time delay of each path is estimated without requiring a priori known data sequences.
Biclustering Protein Complex Interactions with a Biclique FindingAlgorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Chris; Zhang, Anne Ya; Holbrook, Stephen
2006-12-01
Biclustering has many applications in text mining, web clickstream mining, and bioinformatics. When data entries are binary, the tightest biclusters become bicliques. We propose a flexible and highly efficient algorithm to compute bicliques. We first generalize the Motzkin-Straus formalism for computing the maximal clique from L{sub 1} constraint to L{sub p} constraint, which enables us to provide a generalized Motzkin-Straus formalism for computing maximal-edge bicliques. By adjusting parameters, the algorithm can favor biclusters with more rows less columns, or vice verse, thus increasing the flexibility of the targeted biclusters. We then propose an algorithm to solve the generalized Motzkin-Straus optimizationmore » problem. The algorithm is provably convergent and has a computational complexity of O(|E|) where |E| is the number of edges. It relies on a matrix vector multiplication and runs efficiently on most current computer architectures. Using this algorithm, we bicluster the yeast protein complex interaction network. We find that biclustering protein complexes at the protein level does not clearly reflect the functional linkage among protein complexes in many cases, while biclustering at protein domain level can reveal many underlying linkages. We show several new biologically significant results.« less
Development and deployment of the Collimated Directional Radiation Detection System
NASA Astrophysics Data System (ADS)
Guckes, Amber L.; Barzilov, Alexander
2017-09-01
The Collimated Directional Radiation Detection System (CDRDS) is capable of imaging radioactive sources in two dimensions (as a directional detector). The detection medium of the CDRDS is a single Cs2LiYCl6:Ce3+ scintillator cell enriched in 7Li (CLYC-7). The CLYC-7 is surrounded by a heterogeneous high-density polyethylene (HDPE) and lead (Pb) collimator. These materials make-up a coded aperture inlaid in the collimator. The collimator is rotated 360° by a stepper motor which enables time-encoded imaging of a radioactive source. The CDRDS is capable of spectroscopy and pulse shape discrimination (PSD) of photons and fast neutrons. The measurements of a radioactive source are carried out in discrete time steps that correlate to the angular rotation of the collimator. The measurement results are processed using a maximum likelihood expectation (MLEM) algorithm to create an image of the measured radiation. This collimator design allows for the directional detection of photons and fast neutrons simultaneously by utilizing only one CLYC-7 scintillator. Directional detection of thermal neutrons can also be performed by utilizing another suitable scintillator. Moreover, the CDRDS is portable, robust, and user friendly. This unit is capable of utilizing wireless data transfer for possible radiation mapping and network-centric applications. The CDRDS was tested by performing laboratory measurements with various gamma-ray and neutron sources.
NASA Astrophysics Data System (ADS)
Ward, V. L.; Singh, R.; Reed, P. M.; Keller, K.
2014-12-01
As water resources problems typically involve several stakeholders with conflicting objectives, multi-objective evolutionary algorithms (MOEAs) are now key tools for understanding management tradeoffs. Given the growing complexity of water planning problems, it is important to establish if an algorithm can consistently perform well on a given class of problems. This knowledge allows the decision analyst to focus on eliciting and evaluating appropriate problem formulations. This study proposes a multi-objective adaptation of the classic environmental economics "Lake Problem" as a computationally simple but mathematically challenging MOEA benchmarking problem. The lake problem abstracts a fictional town on a lake which hopes to maximize its economic benefit without degrading the lake's water quality to a eutrophic (polluted) state through excessive phosphorus loading. The problem poses the challenge of maintaining economic activity while confronting the uncertainty of potentially crossing a nonlinear and potentially irreversible pollution threshold beyond which the lake is eutrophic. Objectives for optimization are maximizing economic benefit from lake pollution, maximizing water quality, maximizing the reliability of remaining below the environmental threshold, and minimizing the probability that the town will have to drastically change pollution policies in any given year. The multi-objective formulation incorporates uncertainty with a stochastic phosphorus inflow abstracting non-point source pollution. We performed comprehensive diagnostics using 6 algorithms: Borg, MOEAD, eMOEA, eNSGAII, GDE3, and NSGAII to ascertain their controllability, reliability, efficiency, and effectiveness. The lake problem abstracts elements of many current water resources and climate related management applications where there is the potential for crossing irreversible, nonlinear thresholds. We show that many modern MOEAs can fail on this test problem, indicating its suitability as a useful and nontrivial benchmarking problem.
Incremental k-core decomposition: Algorithms and evaluation
Sariyuce, Ahmet Erdem; Gedik, Bugra; Jacques-SIlva, Gabriela; ...
2016-02-01
A k-core of a graph is a maximal connected subgraph in which every vertex is connected to at least k vertices in the subgraph. k-core decomposition is often used in large-scale network analysis, such as community detection, protein function prediction, visualization, and solving NP-hard problems on real networks efficiently, like maximal clique finding. In many real-world applications, networks change over time. As a result, it is essential to develop efficient incremental algorithms for dynamic graph data. In this paper, we propose a suite of incremental k-core decomposition algorithms for dynamic graph data. These algorithms locate a small subgraph that ismore » guaranteed to contain the list of vertices whose maximum k-core values have changed and efficiently process this subgraph to update the k-core decomposition. We present incremental algorithms for both insertion and deletion operations, and propose auxiliary vertex state maintenance techniques that can further accelerate these operations. Our results show a significant reduction in runtime compared to non-incremental alternatives. We illustrate the efficiency of our algorithms on different types of real and synthetic graphs, at varying scales. Furthermore, for a graph of 16 million vertices, we observe relative throughputs reaching a million times, relative to the non-incremental algorithms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Silva, Adão; Gameiro, Atílio
2014-01-01
We present in this work a low-complexity algorithm to solve the sum rate maximization problem in multiuser MIMO broadcast channels with downlink beamforming. Our approach decouples the user selection problem from the resource allocation problem and its main goal is to create a set of quasiorthogonal users. The proposed algorithm exploits physical metrics of the wireless channels that can be easily computed in such a way that a null space projection power can be approximated efficiently. Based on the derived metrics we present a mathematical model that describes the dynamics of the user selection process which renders the user selection problem into an integer linear program. Numerical results show that our approach is highly efficient to form groups of quasiorthogonal users when compared to previously proposed algorithms in the literature. Our user selection algorithm achieves a large portion of the optimum user selection sum rate (90%) for a moderate number of active users. PMID:24574928
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Paul, Prokash; Bhattacharyya, Debangsu; Turton, Richard; ...
2017-06-06
Here, a novel sensor network design (SND) algorithm is developed for maximizing process efficiency while minimizing sensor network cost for a nonlinear dynamic process with an estimator-based control system. The multiobjective optimization problem is solved following a lexicographic approach where the process efficiency is maximized first followed by minimization of the sensor network cost. The partial net present value, which combines the capital cost due to the sensor network and the operating cost due to deviation from the optimal efficiency, is proposed as an alternative objective. The unscented Kalman filter is considered as the nonlinear estimator. The large-scale combinatorial optimizationmore » problem is solved using a genetic algorithm. The developed SND algorithm is applied to an acid gas removal (AGR) unit as part of an integrated gasification combined cycle (IGCC) power plant with CO 2 capture. Due to the computational expense, a reduced order nonlinear model of the AGR process is identified and parallel computation is performed during implementation.« less
Allenby, Mark C; Misener, Ruth; Panoskaltsis, Nicki; Mantalaris, Athanasios
2017-02-01
Three-dimensional (3D) imaging techniques provide spatial insight into environmental and cellular interactions and are implemented in various fields, including tissue engineering, but have been restricted by limited quantification tools that misrepresent or underutilize the cellular phenomena captured. This study develops image postprocessing algorithms pairing complex Euclidean metrics with Monte Carlo simulations to quantitatively assess cell and microenvironment spatial distributions while utilizing, for the first time, the entire 3D image captured. Although current methods only analyze a central fraction of presented confocal microscopy images, the proposed algorithms can utilize 210% more cells to calculate 3D spatial distributions that can span a 23-fold longer distance. These algorithms seek to leverage the high sample cost of 3D tissue imaging techniques by extracting maximal quantitative data throughout the captured image.
McTwo: a two-step feature selection algorithm based on maximal information coefficient.
Ge, Ruiquan; Zhou, Manli; Luo, Youxi; Meng, Qinghan; Mai, Guoqin; Ma, Dongli; Wang, Guoqing; Zhou, Fengfeng
2016-03-23
High-throughput bio-OMIC technologies are producing high-dimension data from bio-samples at an ever increasing rate, whereas the training sample number in a traditional experiment remains small due to various difficulties. This "large p, small n" paradigm in the area of biomedical "big data" may be at least partly solved by feature selection algorithms, which select only features significantly associated with phenotypes. Feature selection is an NP-hard problem. Due to the exponentially increased time requirement for finding the globally optimal solution, all the existing feature selection algorithms employ heuristic rules to find locally optimal solutions, and their solutions achieve different performances on different datasets. This work describes a feature selection algorithm based on a recently published correlation measurement, Maximal Information Coefficient (MIC). The proposed algorithm, McTwo, aims to select features associated with phenotypes, independently of each other, and achieving high classification performance of the nearest neighbor algorithm. Based on the comparative study of 17 datasets, McTwo performs about as well as or better than existing algorithms, with significantly reduced numbers of selected features. The features selected by McTwo also appear to have particular biomedical relevance to the phenotypes from the literature. McTwo selects a feature subset with very good classification performance, as well as a small feature number. So McTwo may represent a complementary feature selection algorithm for the high-dimensional biomedical datasets.
ERIC Educational Resources Information Center
von Davier, Matthias
2016-01-01
This report presents results on a parallel implementation of the expectation-maximization (EM) algorithm for multidimensional latent variable models. The developments presented here are based on code that parallelizes both the E step and the M step of the parallel-E parallel-M algorithm. Examples presented in this report include item response…
SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maitree, R; Guzman, G; Chundury, A
Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness ofmore » available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and qualitative assessment, the proposed approach has superior noise reduction and anatomical structures preservation capabilities over existing noise removal methods. Senior Author Dr. Deshan Yang received research funding form ViewRay and Varian.« less
Statistical mechanics of influence maximization with thermal noise
NASA Astrophysics Data System (ADS)
Lynn, Christopher W.; Lee, Daniel D.
2017-03-01
The problem of optimally distributing a budget of influence among individuals in a social network, known as influence maximization, has typically been studied in the context of contagion models and deterministic processes, which fail to capture stochastic interactions inherent in real-world settings. Here, we show that by introducing thermal noise into influence models, the dynamics exactly resemble spins in a heterogeneous Ising system. In this way, influence maximization in the presence of thermal noise has a natural physical interpretation as maximizing the magnetization of an Ising system given a budget of external magnetic field. Using this statistical mechanical formulation, we demonstrate analytically that for small external-field budgets, the optimal influence solutions exhibit a highly non-trivial temperature dependence, focusing on high-degree hub nodes at high temperatures and on easily influenced peripheral nodes at low temperatures. For the general problem, we present a projected gradient ascent algorithm that uses the magnetic susceptibility to calculate locally optimal external-field distributions. We apply our algorithm to synthetic and real-world networks, demonstrating that our analytic results generalize qualitatively. Our work establishes a fruitful connection with statistical mechanics and demonstrates that influence maximization depends crucially on the temperature of the system, a fact that has not been appreciated by existing research.
Coverability graphs for a class of synchronously executed unbounded Petri net
NASA Technical Reports Server (NTRS)
Stotts, P. David; Pratt, Terrence W.
1990-01-01
After detailing a variant of the concurrent-execution rule for firing of maximal subsets, in which the simultaneous firing of conflicting transitions is prohibited, an algorithm is constructed for generating the coverability graph of a net executed under this synchronous firing rule. The omega insertion criteria in the algorithm are shown to be valid for any net on which the algorithm terminates. It is accordingly shown that the set of nets on which the algorithm terminates includes the 'conflict-free' class.
A Survey of Parallel Sorting Algorithms.
1981-12-01
see that, in this algorithm, each Processor i, for 1 itp -2, interacts directly only with Processors i+l and i-l. Processor j 0 only interacts with...Chan76] Chandra, A.K., "Maximal Parallelism in Matrix Multiplication," IBM Report RC. 6193, Watson Research Center, Yorktown Heights, N.Y., October 1976
An EM Algorithm for Maximum Likelihood Estimation of Process Factor Analysis Models
ERIC Educational Resources Information Center
Lee, Taehun
2010-01-01
In this dissertation, an Expectation-Maximization (EM) algorithm is developed and implemented to obtain maximum likelihood estimates of the parameters and the associated standard error estimates characterizing temporal flows for the latent variable time series following stationary vector ARMA processes, as well as the parameters defining the…
Dynamic Distributed Cooperative Control of Multiple Heterogeneous Resources
2012-10-01
of the UAVs to maximize the total sensor footprint over the region of interest. The algorithm utilized to solve this problem was based on sampling a...and moving obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an algorithm to keep moving UAVs equally spaced...Planning Algorithms , Cambridge University Press, 2006. 11. Ma, C. S. and Miller, R. H., “Mixed integer linear programming trajectory generation for
Model-based clustering for RNA-seq data.
Si, Yaqing; Liu, Peng; Li, Pinghua; Brutnell, Thomas P
2014-01-15
RNA-seq technology has been widely adopted as an attractive alternative to microarray-based methods to study global gene expression. However, robust statistical tools to analyze these complex datasets are still lacking. By grouping genes with similar expression profiles across treatments, cluster analysis provides insight into gene functions and networks, and hence is an important technique for RNA-seq data analysis. In this manuscript, we derive clustering algorithms based on appropriate probability models for RNA-seq data. An expectation-maximization algorithm and another two stochastic versions of expectation-maximization algorithms are described. In addition, a strategy for initialization based on likelihood is proposed to improve the clustering algorithms. Moreover, we present a model-based hybrid-hierarchical clustering method to generate a tree structure that allows visualization of relationships among clusters as well as flexibility of choosing the number of clusters. Results from both simulation studies and analysis of a maize RNA-seq dataset show that our proposed methods provide better clustering results than alternative methods such as the K-means algorithm and hierarchical clustering methods that are not based on probability models. An R package, MBCluster.Seq, has been developed to implement our proposed algorithms. This R package provides fast computation and is publicly available at http://www.r-project.org
Analytical optimal pulse shapes obtained with the aid of genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co; Arango, Carlos A.; Reyes, Andrés
2015-09-28
We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding themore » interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.« less
A hierarchical word-merging algorithm with class separability measure.
Wang, Lei; Zhou, Luping; Shen, Chunhua; Liu, Lingqiao; Liu, Huan
2014-03-01
In image recognition with the bag-of-features model, a small-sized visual codebook is usually preferred to obtain a low-dimensional histogram representation and high computational efficiency. Such a visual codebook has to be discriminative enough to achieve excellent recognition performance. To create a compact and discriminative codebook, in this paper we propose to merge the visual words in a large-sized initial codebook by maximally preserving class separability. We first show that this results in a difficult optimization problem. To deal with this situation, we devise a suboptimal but very efficient hierarchical word-merging algorithm, which optimally merges two words at each level of the hierarchy. By exploiting the characteristics of the class separability measure and designing a novel indexing structure, the proposed algorithm can hierarchically merge 10,000 visual words down to two words in merely 90 seconds. Also, to show the properties of the proposed algorithm and reveal its advantages, we conduct detailed theoretical analysis to compare it with another hierarchical word-merging algorithm that maximally preserves mutual information, obtaining interesting findings. Experimental studies are conducted to verify the effectiveness of the proposed algorithm on multiple benchmark data sets. As shown, it can efficiently produce more compact and discriminative codebooks than the state-of-the-art hierarchical word-merging algorithms, especially when the size of the codebook is significantly reduced.
Maximal Neighbor Similarity Reveals Real Communities in Networks
Žalik, Krista Rizman
2015-01-01
An important problem in the analysis of network data is the detection of groups of densely interconnected nodes also called modules or communities. Community structure reveals functions and organizations of networks. Currently used algorithms for community detection in large-scale real-world networks are computationally expensive or require a priori information such as the number or sizes of communities or are not able to give the same resulting partition in multiple runs. In this paper we investigate a simple and fast algorithm that uses the network structure alone and requires neither optimization of pre-defined objective function nor information about number of communities. We propose a bottom up community detection algorithm in which starting from communities consisting of adjacent pairs of nodes and their maximal similar neighbors we find real communities. We show that the overall advantage of the proposed algorithm compared to the other community detection algorithms is its simple nature, low computational cost and its very high accuracy in detection communities of different sizes also in networks with blurred modularity structure consisting of poorly separated communities. All communities identified by the proposed method for facebook network and E-Coli transcriptional regulatory network have strong structural and functional coherence. PMID:26680448
Multiple Ordinal Regression by Maximizing the Sum of Margins
Hamsici, Onur C.; Martinez, Aleix M.
2016-01-01
Human preferences are usually measured using ordinal variables. A system whose goal is to estimate the preferences of humans and their underlying decision mechanisms requires to learn the ordering of any given sample set. We consider the solution of this ordinal regression problem using a Support Vector Machine algorithm. Specifically, the goal is to learn a set of classifiers with common direction vectors and different biases correctly separating the ordered classes. Current algorithms are either required to solve a quadratic optimization problem, which is computationally expensive, or are based on maximizing the minimum margin (i.e., a fixed margin strategy) between a set of hyperplanes, which biases the solution to the closest margin. Another drawback of these strategies is that they are limited to order the classes using a single ranking variable (e.g., perceived length). In this paper, we define a multiple ordinal regression algorithm based on maximizing the sum of the margins between every consecutive class with respect to one or more rankings (e.g., perceived length and weight). We provide derivations of an efficient, easy-to-implement iterative solution using a Sequential Minimal Optimization procedure. We demonstrate the accuracy of our solutions in several datasets. In addition, we provide a key application of our algorithms in estimating human subjects’ ordinal classification of attribute associations to object categories. We show that these ordinal associations perform better than the binary one typically employed in the literature. PMID:26529784
Large-Scale Multiantenna Multisine Wireless Power Transfer
NASA Astrophysics Data System (ADS)
Huang, Yang; Clerckx, Bruno
2017-11-01
Wireless Power Transfer (WPT) is expected to be a technology reshaping the landscape of low-power applications such as the Internet of Things, Radio Frequency identification (RFID) networks, etc. Although there has been some progress towards multi-antenna multi-sine WPT design, the large-scale design of WPT, reminiscent of massive MIMO in communications, remains an open challenge. In this paper, we derive efficient multiuser algorithms based on a generalizable optimization framework, in order to design transmit sinewaves that maximize the weighted-sum/minimum rectenna output DC voltage. The study highlights the significant effect of the nonlinearity introduced by the rectification process on the design of waveforms in multiuser systems. Interestingly, in the single-user case, the optimal spatial domain beamforming, obtained prior to the frequency domain power allocation optimization, turns out to be Maximum Ratio Transmission (MRT). In contrast, in the general weighted sum criterion maximization problem, the spatial domain beamforming optimization and the frequency domain power allocation optimization are coupled. Assuming channel hardening, low-complexity algorithms are proposed based on asymptotic analysis, to maximize the two criteria. The structure of the asymptotically optimal spatial domain precoder can be found prior to the optimization. The performance of the proposed algorithms is evaluated. Numerical results confirm the inefficiency of the linear model-based design for the single and multi-user scenarios. It is also shown that as nonlinear model-based designs, the proposed algorithms can benefit from an increasing number of sinewaves.
Performance of Blind Source Separation Algorithms for FMRI Analysis using a Group ICA Method
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D.
2007-01-01
Independent component analysis (ICA) is a popular blind source separation (BSS) technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist, however the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely information maximization, maximization of non-gaussianity, joint diagonalization of cross-cumulant matrices, and second-order correlation based methods when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study the variability among different ICA algorithms and propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA, and JADE all yield reliable results; each having their strengths in specific areas. EVD, an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for the iterative ICA algorithms, it is important to investigate the variability of the estimates from different runs. We test the consistency of the iterative algorithms, Infomax and FastICA, by running the algorithm a number of times with different initializations and note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis. PMID:17540281
Performance of blind source separation algorithms for fMRI analysis using a group ICA method.
Correa, Nicolle; Adali, Tülay; Calhoun, Vince D
2007-06-01
Independent component analysis (ICA) is a popular blind source separation technique that has proven to be promising for the analysis of functional magnetic resonance imaging (fMRI) data. A number of ICA approaches have been used for fMRI data analysis, and even more ICA algorithms exist; however, the impact of using different algorithms on the results is largely unexplored. In this paper, we study the performance of four major classes of algorithms for spatial ICA, namely, information maximization, maximization of non-Gaussianity, joint diagonalization of cross-cumulant matrices and second-order correlation-based methods, when they are applied to fMRI data from subjects performing a visuo-motor task. We use a group ICA method to study variability among different ICA algorithms, and we propose several analysis techniques to evaluate their performance. We compare how different ICA algorithms estimate activations in expected neuronal areas. The results demonstrate that the ICA algorithms using higher-order statistical information prove to be quite consistent for fMRI data analysis. Infomax, FastICA and joint approximate diagonalization of eigenmatrices (JADE) all yield reliable results, with each having its strengths in specific areas. Eigenvalue decomposition (EVD), an algorithm using second-order statistics, does not perform reliably for fMRI data. Additionally, for iterative ICA algorithms, it is important to investigate the variability of estimates from different runs. We test the consistency of the iterative algorithms Infomax and FastICA by running the algorithm a number of times with different initializations, and we note that they yield consistent results over these multiple runs. Our results greatly improve our confidence in the consistency of ICA for fMRI data analysis.
Mass and Volume Optimization of Space Flight Medical Kits
NASA Technical Reports Server (NTRS)
Keenan, A. B.; Foy, Millennia Hope; Myers, Jerry
2014-01-01
Resource allocation is a critical aspect of space mission planning. All resources, including medical resources, are subject to a number of mission constraints such a maximum mass and volume. However, unlike many resources, there is often limited understanding in how to optimize medical resources for a mission. The Integrated Medical Model (IMM) is a probabilistic model that estimates medical event occurrences and mission outcomes for different mission profiles. IMM simulates outcomes and describes the impact of medical events in terms of lost crew time, medical resource usage, and the potential for medically required evacuation. Previously published work describes an approach that uses the IMM to generate optimized medical kits that maximize benefit to the crew subject to mass and volume constraints. We improve upon the results obtained previously and extend our approach to minimize mass and volume while meeting some benefit threshold. METHODS We frame the medical kit optimization problem as a modified knapsack problem and implement an algorithm utilizing dynamic programming. Using this algorithm, optimized medical kits were generated for 3 mission scenarios with the goal of minimizing the medical kit mass and volume for a specified likelihood of evacuation or Crew Health Index (CHI) threshold. The algorithm was expanded to generate medical kits that maximize likelihood of evacuation or CHI subject to mass and volume constraints. RESULTS AND CONCLUSIONS In maximizing benefit to crew health subject to certain constraints, our algorithm generates medical kits that more closely resemble the unlimited-resource scenario than previous approaches which leverage medical risk information generated by the IMM. Our work here demonstrates that this algorithm provides an efficient and effective means to objectively allocate medical resources for spaceflight missions and provides an effective means of addressing tradeoffs in medical resource allocations and crew mission success parameters.
Automatic control algorithm effects on energy production
NASA Technical Reports Server (NTRS)
Mcnerney, G. M.
1981-01-01
A computer model was developed using actual wind time series and turbine performance data to simulate the power produced by the Sandia 17-m VAWT operating in automatic control. The model was used to investigate the influence of starting algorithms on annual energy production. The results indicate that, depending on turbine and local wind characteristics, a bad choice of a control algorithm can significantly reduce overall energy production. The model can be used to select control algorithms and threshold parameters that maximize long term energy production. The results from local site and turbine characteristics were generalized to obtain general guidelines for control algorithm design.
Data-driven advice for applying machine learning to bioinformatics problems
Olson, Randal S.; La Cava, William; Mustahsan, Zairah; Varik, Akshay; Moore, Jason H.
2017-01-01
As the bioinformatics field grows, it must keep pace not only with new data but with new algorithms. Here we contribute a thorough analysis of 13 state-of-the-art, commonly used machine learning algorithms on a set of 165 publicly available classification problems in order to provide data-driven algorithm recommendations to current researchers. We present a number of statistical and visual comparisons of algorithm performance and quantify the effect of model selection and algorithm tuning for each algorithm and dataset. The analysis culminates in the recommendation of five algorithms with hyperparameters that maximize classifier performance across the tested problems, as well as general guidelines for applying machine learning to supervised classification problems. PMID:29218881
3D image reconstruction algorithms for cryo-electron-microscopy images of virus particles
NASA Astrophysics Data System (ADS)
Doerschuk, Peter C.; Johnson, John E.
2000-11-01
A statistical model for the object and the complete image formation process in cryo electron microscopy of viruses is presented. Using this model, maximum likelihood reconstructions of the 3D structure of viruses are computed using the expectation maximization algorithm and an example based on Cowpea mosaic virus is provided.
Weighted Least Squares Fitting Using Ordinary Least Squares Algorithms.
ERIC Educational Resources Information Center
Kiers, Henk A. L.
1997-01-01
A general approach for fitting a model to a data matrix by weighted least squares (WLS) is studied. The approach consists of iteratively performing steps of existing algorithms for ordinary least squares fitting of the same model and is based on maximizing a function that majorizes WLS loss function. (Author/SLD)
Optimization-Based Model Fitting for Latent Class and Latent Profile Analyses
ERIC Educational Resources Information Center
Huang, Guan-Hua; Wang, Su-Mei; Hsu, Chung-Chu
2011-01-01
Statisticians typically estimate the parameters of latent class and latent profile models using the Expectation-Maximization algorithm. This paper proposes an alternative two-stage approach to model fitting. The first stage uses the modified k-means and hierarchical clustering algorithms to identify the latent classes that best satisfy the…
Slope Estimation in Noisy Piecewise Linear Functions✩
Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy
2014-01-01
This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure. PMID:25419020
Slope Estimation in Noisy Piecewise Linear Functions.
Ingle, Atul; Bucklew, James; Sethares, William; Varghese, Tomy
2015-03-01
This paper discusses the development of a slope estimation algorithm called MAPSlope for piecewise linear data that is corrupted by Gaussian noise. The number and locations of slope change points (also known as breakpoints) are assumed to be unknown a priori though it is assumed that the possible range of slope values lies within known bounds. A stochastic hidden Markov model that is general enough to encompass real world sources of piecewise linear data is used to model the transitions between slope values and the problem of slope estimation is addressed using a Bayesian maximum a posteriori approach. The set of possible slope values is discretized, enabling the design of a dynamic programming algorithm for posterior density maximization. Numerical simulations are used to justify choice of a reasonable number of quantization levels and also to analyze mean squared error performance of the proposed algorithm. An alternating maximization algorithm is proposed for estimation of unknown model parameters and a convergence result for the method is provided. Finally, results using data from political science, finance and medical imaging applications are presented to demonstrate the practical utility of this procedure.
Coverage maximization under resource constraints using a nonuniform proliferating random walk.
Saha, Sudipta; Ganguly, Niloy
2013-02-01
Information management services on networks, such as search and dissemination, play a key role in any large-scale distributed system. One of the most desirable features of these services is the maximization of the coverage, i.e., the number of distinctly visited nodes under constraints of network resources as well as time. However, redundant visits of nodes by different message packets (modeled, e.g., as walkers) initiated by the underlying algorithms for these services cause wastage of network resources. In this work, using results from analytical studies done in the past on a K-random-walk-based algorithm, we identify that redundancy quickly increases with an increase in the density of the walkers. Based on this postulate, we design a very simple distributed algorithm which dynamically estimates the density of the walkers and thereby carefully proliferates walkers in sparse regions. We use extensive computer simulations to test our algorithm in various kinds of network topologies whereby we find it to be performing particularly well in networks that are highly clustered as well as sparse.
Trust Maximization in Social Networks
NASA Astrophysics Data System (ADS)
Zhan, Justin; Fang, Xing
Trust is a human-related phenomenon in social networks. Trust research on social networks has gained much attention on its usefulness, and on modeling propagations. There is little focus on finding maximum trust in social networks which is particularly important when a social network is oriented by certain tasks. In this paper, we propose a trust maximization algorithm based on the task-oriented social networks.
Power maximization of a point absorber wave energy converter using improved model predictive control
NASA Astrophysics Data System (ADS)
Milani, Farideh; Moghaddam, Reihaneh Kardehi
2017-08-01
This paper considers controlling and maximizing the absorbed power of wave energy converters for irregular waves. With respect to physical constraints of the system, a model predictive control is applied. Irregular waves' behavior is predicted by Kalman filter method. Owing to the great influence of controller parameters on the absorbed power, these parameters are optimized by imperialist competitive algorithm. The results illustrate the method's efficiency in maximizing the extracted power in the presence of unknown excitation force which should be predicted by Kalman filter.
Informationally Efficient Multi-User Communication
2010-01-01
DSM algorithms, the Op- timal Spectrum Balancing ( OSB ) algorithm and the Iterative Spectrum Balanc- ing (ISB) algorithm, were proposed to solve the...problem of maximization of a weighted rate-sum across all users [CYM06, YL06]. OSB has an exponential complexity in the number of users. ISB only has a...the duality gap min λ1,λ2 D (λ1, λ2) − max P1,P2 f (P1,P2) is not zero. Fig. 3.3 summarizes the three key steps of a dual method, the OSB algorithm
Cost-efficient scheduling of FAST observations
NASA Astrophysics Data System (ADS)
Luo, Qi; Zhao, Laiping; Yu, Ce; Xiao, Jian; Sun, Jizhou; Zhu, Ming; Zhong, Yi
2018-03-01
A cost-efficient schedule for the Five-hundred-meter Aperture Spherical radio Telescope (FAST) requires to maximize the number of observable proposals and the overall scientific priority, and minimize the overall slew-cost generated by telescope shifting, while taking into account the constraints including the astronomical objects visibility, user-defined observable times, avoiding Radio Frequency Interference (RFI). In this contribution, first we solve the problem of maximizing the number of observable proposals and scientific priority by modeling it as a Minimum Cost Maximum Flow (MCMF) problem. The optimal schedule can be found by any MCMF solution algorithm. Then, for minimizing the slew-cost of the generated schedule, we devise a maximally-matchable edges detection-based method to reduce the problem size, and propose a backtracking algorithm to find the perfect matching with minimum slew-cost. Experiments on a real dataset from NASA/IPAC Extragalactic Database (NED) show that, the proposed scheduler can increase the usage of available times with high scientific priority and reduce the slew-cost significantly in a very short time.
Mirroring co-evolving trees in the light of their topologies.
Hajirasouliha, Iman; Schönhuth, Alexander; de Juan, David; Valencia, Alfonso; Sahinalp, S Cenk
2012-05-01
Determining the interaction partners among protein/domain families poses hard computational problems, in particular in the presence of paralogous proteins. Available approaches aim to identify interaction partners among protein/domain families through maximizing the similarity between trimmed versions of their phylogenetic trees. Since maximization of any natural similarity score is computationally difficult, many approaches employ heuristics to evaluate the distance matrices corresponding to the tree topologies in question. In this article, we devise an efficient deterministic algorithm which directly maximizes the similarity between two leaf labeled trees with edge lengths, obtaining a score-optimal alignment of the two trees in question. Our algorithm is significantly faster than those methods based on distance matrix comparison: 1 min on a single processor versus 730 h on a supercomputer. Furthermore, we outperform the current state-of-the-art exhaustive search approach in terms of precision, while incurring acceptable losses in recall. A C implementation of the method demonstrated in this article is available at http://compbio.cs.sfu.ca/mirrort.htm
Balakrishnan, Narayanaswamy; Pal, Suvra
2016-08-01
Recently, a flexible cure rate survival model has been developed by assuming the number of competing causes of the event of interest to follow the Conway-Maxwell-Poisson distribution. This model includes some of the well-known cure rate models discussed in the literature as special cases. Data obtained from cancer clinical trials are often right censored and expectation maximization algorithm can be used in this case to efficiently estimate the model parameters based on right censored data. In this paper, we consider the competing cause scenario and assuming the time-to-event to follow the Weibull distribution, we derive the necessary steps of the expectation maximization algorithm for estimating the parameters of different cure rate survival models. The standard errors of the maximum likelihood estimates are obtained by inverting the observed information matrix. The method of inference developed here is examined by means of an extensive Monte Carlo simulation study. Finally, we illustrate the proposed methodology with a real data on cancer recurrence. © The Author(s) 2013.
SMV⊥: Simplex of maximal volume based upon the Gram-Schmidt process
NASA Astrophysics Data System (ADS)
Salazar-Vazquez, Jairo; Mendez-Vazquez, Andres
2015-10-01
In recent years, different algorithms for Hyperspectral Image (HI) analysis have been introduced. The high spectral resolution of these images allows to develop different algorithms for target detection, material mapping, and material identification for applications in Agriculture, Security and Defense, Industry, etc. Therefore, from the computer science's point of view, there is fertile field of research for improving and developing algorithms in HI analysis. In some applications, the spectral pixels of a HI can be classified using laboratory spectral signatures. Nevertheless, for many others, there is no enough available prior information or spectral signatures, making any analysis a difficult task. One of the most popular algorithms for the HI analysis is the N-FINDR because it is easy to understand and provides a way to unmix the original HI in the respective material compositions. The N-FINDR is computationally expensive and its performance depends on a random initialization process. This paper proposes a novel idea to reduce the complexity of the N-FINDR by implementing a bottom-up approach based in an observation from linear algebra and the use of the Gram-Schmidt process. Therefore, the Simplex of Maximal Volume Perpendicular (SMV⊥) algorithm is proposed for fast endmember extraction in hyperspectral imagery. This novel algorithm has complexity O(n) with respect to the number of pixels. In addition, the evidence shows that SMV⊥ calculates a bigger volume, and has lower computational time complexity than other poular algorithms on synthetic and real scenarios.
Planning, Execution, and Assessment of Effects-Based Operations (EBO)
2006-05-01
time of execution that would maximize the likelihood of achieving a desired effect. GMU has developed a methodology, named ECAD -EA (Effective...Algorithm EBO Effects Based Operations ECAD -EA Effective Course of Action-Evolutionary Algorithm GMU George Mason University GUI Graphical...Probability Profile Generation ........................................................72 A.2.11 Running ECAD -EA (Effective Courses of Action Determination
Directly Reconstructing Principal Components of Heterogeneous Particles from Cryo-EM Images
Tagare, Hemant D.; Kucukelbir, Alp; Sigworth, Fred J.; Wang, Hongwei; Rao, Murali
2015-01-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the (posterior) likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the inluenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. PMID:26049077
Todor, Nicolae; Todor, Irina; Săplăcan, Gavril
2014-01-01
The linear combination of variables is an attractive method in many medical analyses targeting a score to classify patients. In the case of ROC curves the most popular problem is to identify the linear combination which maximizes area under curve (AUC). This problem is complete closed when normality assumptions are met. With no assumption of normality search algorithm are avoided because it is accepted that we have to evaluate AUC n(d) times where n is the number of distinct observation and d is the number of variables. For d = 2, using particularities of AUC formula, we described an algorithm which lowered the number of evaluations of AUC from n(2) to n(n-1) + 1. For d > 2 our proposed solution is an approximate method by considering equidistant points on the unit sphere in R(d) where we evaluate AUC. The algorithms were applied to data from our lab to predict response of treatment by a set of molecular markers in cervical cancers patients. In order to evaluate the strength of our algorithms a simulation was added. In the case of no normality presented algorithms are feasible. For many variables computation time could be increased but acceptable.
Pulse shape optimization for electron-positron production in rotating fields
NASA Astrophysics Data System (ADS)
Fillion-Gourdeau, François; Hebenstreit, Florian; Gagnon, Denis; MacLean, Steve
2017-07-01
We optimize the pulse shape and polarization of time-dependent electric fields to maximize the production of electron-positron pairs via strong field quantum electrodynamics processes. The pulse is parametrized in Fourier space by a B -spline polynomial basis, which results in a relatively low-dimensional parameter space while still allowing for a large number of electric field modes. The optimization is performed by using a parallel implementation of the differential evolution, one of the most efficient metaheuristic algorithms. The computational performance of the numerical method and the results on pair production are compared with a local multistart optimization algorithm. These techniques allow us to determine the pulse shape and field polarization that maximize the number of produced pairs in computationally accessible regimes.
2010-01-01
Background The Maximal Pairing Problem (MPP) is the prototype of a class of combinatorial optimization problems that are of considerable interest in bioinformatics: Given an arbitrary phylogenetic tree T and weights ωxy for the paths between any two pairs of leaves (x, y), what is the collection of edge-disjoint paths between pairs of leaves that maximizes the total weight? Special cases of the MPP for binary trees and equal weights have been described previously; algorithms to solve the general MPP are still missing, however. Results We describe a relatively simple dynamic programming algorithm for the special case of binary trees. We then show that the general case of multifurcating trees can be treated by interleaving solutions to certain auxiliary Maximum Weighted Matching problems with an extension of this dynamic programming approach, resulting in an overall polynomial-time solution of complexity (n4 log n) w.r.t. the number n of leaves. The source code of a C implementation can be obtained under the GNU Public License from http://www.bioinf.uni-leipzig.de/Software/Targeting. For binary trees, we furthermore discuss several constrained variants of the MPP as well as a partition function approach to the probabilistic version of the MPP. Conclusions The algorithms introduced here make it possible to solve the MPP also for large trees with high-degree vertices. This has practical relevance in the field of comparative phylogenetics and, for example, in the context of phylogenetic targeting, i.e., data collection with resource limitations. PMID:20525185
Chapman, Benjamin P; Weiss, Alexander; Duberstein, Paul R
2016-12-01
Statistical learning theory (SLT) is the statistical formulation of machine learning theory, a body of analytic methods common in "big data" problems. Regression-based SLT algorithms seek to maximize predictive accuracy for some outcome, given a large pool of potential predictors, without overfitting the sample. Research goals in psychology may sometimes call for high dimensional regression. One example is criterion-keyed scale construction, where a scale with maximal predictive validity must be built from a large item pool. Using this as a working example, we first introduce a core principle of SLT methods: minimization of expected prediction error (EPE). Minimizing EPE is fundamentally different than maximizing the within-sample likelihood, and hinges on building a predictive model of sufficient complexity to predict the outcome well, without undue complexity leading to overfitting. We describe how such models are built and refined via cross-validation. We then illustrate how 3 common SLT algorithms-supervised principal components, regularization, and boosting-can be used to construct a criterion-keyed scale predicting all-cause mortality, using a large personality item pool within a population cohort. Each algorithm illustrates a different approach to minimizing EPE. Finally, we consider broader applications of SLT predictive algorithms, both as supportive analytic tools for conventional methods, and as primary analytic tools in discovery phase research. We conclude that despite their differences from the classic null-hypothesis testing approach-or perhaps because of them-SLT methods may hold value as a statistically rigorous approach to exploratory regression. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Angelis, G I; Reader, A J; Markiewicz, P J; Kotasidis, F A; Lionheart, W R; Matthews, J C
2013-08-07
Recent studies have demonstrated the benefits of a resolution model within iterative reconstruction algorithms in an attempt to account for effects that degrade the spatial resolution of the reconstructed images. However, these algorithms suffer from slower convergence rates, compared to algorithms where no resolution model is used, due to the additional need to solve an image deconvolution problem. In this paper, a recently proposed algorithm, which decouples the tomographic and image deconvolution problems within an image-based expectation maximization (EM) framework, was evaluated. This separation is convenient, because more computational effort can be placed on the image deconvolution problem and therefore accelerate convergence. Since the computational cost of solving the image deconvolution problem is relatively small, multiple image-based EM iterations do not significantly increase the overall reconstruction time. The proposed algorithm was evaluated using 2D simulations, as well as measured 3D data acquired on the high-resolution research tomograph. Results showed that bias reduction can be accelerated by interleaving multiple iterations of the image-based EM algorithm solving the resolution model problem, with a single EM iteration solving the tomographic problem. Significant improvements were observed particularly for voxels that were located on the boundaries between regions of high contrast within the object being imaged and for small regions of interest, where resolution recovery is usually more challenging. Minor differences were observed using the proposed nested algorithm, compared to the single iteration normally performed, when an optimal number of iterations are performed for each algorithm. However, using the proposed nested approach convergence is significantly accelerated enabling reconstruction using far fewer tomographic iterations (up to 70% fewer iterations for small regions). Nevertheless, the optimal number of nested image-based EM iterations is hard to be defined and it should be selected according to the given application.
NASA Astrophysics Data System (ADS)
Ushijima, T.; Yeh, W.
2013-12-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provides the maximum information about unknown hydraulic conductivity in a confined, anisotropic aquifer. The design employs a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. Because that the formulated problem is non-convex and contains integer variables (necessitating a combinatorial search), for a realistically-scaled model, the problem may be difficult, if not impossible, to solve through traditional mathematical programming techniques. Genetic Algorithms (GAs) are designed to search out the global optimum; however because a GA requires a large number of calls to a groundwater model, the formulated optimization problem may still be infeasible to solve. To overcome this, Proper Orthogonal Decomposition (POD) is applied to the groundwater model to reduce its dimension. The information matrix in the full model space can then be searched without solving the full model.
Zhang, Pan; Moore, Cristopher
2014-01-01
Modularity is a popular measure of community structure. However, maximizing the modularity can lead to many competing partitions, with almost the same modularity, that are poorly correlated with each other. It can also produce illusory ‘‘communities’’ in random graphs where none exist. We address this problem by using the modularity as a Hamiltonian at finite temperature and using an efficient belief propagation algorithm to obtain the consensus of many partitions with high modularity, rather than looking for a single partition that maximizes it. We show analytically and numerically that the proposed algorithm works all of the way down to the detectability transition in networks generated by the stochastic block model. It also performs well on real-world networks, revealing large communities in some networks where previous work has claimed no communities exist. Finally we show that by applying our algorithm recursively, subdividing communities until no statistically significant subcommunities can be found, we can detect hierarchical structure in real-world networks more efficiently than previous methods. PMID:25489096
Optimal design of solidification processes
NASA Technical Reports Server (NTRS)
Dantzig, Jonathan A.; Tortorelli, Daniel A.
1991-01-01
An optimal design algorithm is presented for the analysis of general solidification processes, and is demonstrated for the growth of GaAs crystals in a Bridgman furnace. The system is optimal in the sense that the prespecified temperature distribution in the solidifying materials is obtained to maximize product quality. The optimization uses traditional numerical programming techniques which require the evaluation of cost and constraint functions and their sensitivities. The finite element method is incorporated to analyze the crystal solidification problem, evaluate the cost and constraint functions, and compute the sensitivities. These techniques are demonstrated in the crystal growth application by determining an optimal furnace wall temperature distribution to obtain the desired temperature profile in the crystal, and hence to maximize the crystal's quality. Several numerical optimization algorithms are studied to determine the proper convergence criteria, effective 1-D search strategies, appropriate forms of the cost and constraint functions, etc. In particular, we incorporate the conjugate gradient and quasi-Newton methods for unconstrained problems. The efficiency and effectiveness of each algorithm is presented in the example problem.
Algorithm comparison for schedule optimization in MR fingerprinting.
Cohen, Ouri; Rosen, Matthew S
2017-09-01
In MR Fingerprinting, the flip angles and repetition times are chosen according to a pseudorandom schedule. In previous work, we have shown that maximizing the discrimination between different tissue types by optimizing the acquisition schedule allows reductions in the number of measurements required. The ideal optimization algorithm for this application remains unknown, however. In this work we examine several different optimization algorithms to determine the one best suited for optimizing MR Fingerprinting acquisition schedules. Copyright © 2017 Elsevier Inc. All rights reserved.
When Does Reward Maximization Lead to Matching Law?
Sakai, Yutaka; Fukai, Tomoki
2008-01-01
What kind of strategies subjects follow in various behavioral circumstances has been a central issue in decision making. In particular, which behavioral strategy, maximizing or matching, is more fundamental to animal's decision behavior has been a matter of debate. Here, we prove that any algorithm to achieve the stationary condition for maximizing the average reward should lead to matching when it ignores the dependence of the expected outcome on subject's past choices. We may term this strategy of partial reward maximization “matching strategy”. Then, this strategy is applied to the case where the subject's decision system updates the information for making a decision. Such information includes subject's past actions or sensory stimuli, and the internal storage of this information is often called “state variables”. We demonstrate that the matching strategy provides an easy way to maximize reward when combined with the exploration of the state variables that correctly represent the crucial information for reward maximization. Our results reveal for the first time how a strategy to achieve matching behavior is beneficial to reward maximization, achieving a novel insight into the relationship between maximizing and matching. PMID:19030101
Supervisory Power Management Control Algorithms for Hybrid Electric Vehicles. A Survey
Malikopoulos, Andreas
2014-03-31
The growing necessity for environmentally benign hybrid propulsion systems has led to the development of advanced power management control algorithms to maximize fuel economy and minimize pollutant emissions. This paper surveys the control algorithms for hybrid electric vehicles (HEVs) and plug-in HEVs (PHEVs) that have been reported in the literature to date. The exposition ranges from parallel, series, and power split HEVs and PHEVs and includes a classification of the algorithms in terms of their implementation and the chronological order of their appearance. Remaining challenges and potential future research directions are also discussed.
EM in high-dimensional spaces.
Draper, Bruce A; Elliott, Daniel L; Hayes, Jeremy; Baek, Kyungim
2005-06-01
This paper considers fitting a mixture of Gaussians model to high-dimensional data in scenarios where there are fewer data samples than feature dimensions. Issues that arise when using principal component analysis (PCA) to represent Gaussian distributions inside Expectation-Maximization (EM) are addressed, and a practical algorithm results. Unlike other algorithms that have been proposed, this algorithm does not try to compress the data to fit low-dimensional models. Instead, it models Gaussian distributions in the (N - 1)-dimensional space spanned by the N data samples. We are able to show that this algorithm converges on data sets where low-dimensional techniques do not.
Algorithmic Perspectives on Problem Formulations in MDO
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia M.; Lewis, Robert Michael
2000-01-01
This work is concerned with an approach to formulating the multidisciplinary optimization (MDO) problem that reflects an algorithmic perspective on MDO problem solution. The algorithmic perspective focuses on formulating the problem in light of the abilities and inabilities of optimization algorithms, so that the resulting nonlinear programming problem can be solved reliably and efficiently by conventional optimization techniques. We propose a modular approach to formulating MDO problems that takes advantage of the problem structure, maximizes the autonomy of implementation, and allows for multiple easily interchangeable problem statements to be used depending on the available resources and the characteristics of the application problem.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul, P.; Bhattacharyya, D.; Turton, R.
2012-01-01
Future integrated gasification combined cycle (IGCC) power plants with CO{sub 2} capture will face stricter operational and environmental constraints. Accurate values of relevant states/outputs/disturbances are needed to satisfy these constraints and to maximize the operational efficiency. Unfortunately, a number of these process variables cannot be measured while a number of them can be measured, but have low precision, reliability, or signal-to-noise ratio. In this work, a sensor placement (SP) algorithm is developed for optimal selection of sensor location, number, and type that can maximize the plant efficiency and result in a desired precision of the relevant measured/unmeasured states. In thismore » work, an SP algorithm is developed for an selective, dual-stage Selexol-based acid gas removal (AGR) unit for an IGCC plant with pre-combustion CO{sub 2} capture. A comprehensive nonlinear dynamic model of the AGR unit is developed in Aspen Plus Dynamics® (APD) and used to generate a linear state-space model that is used in the SP algorithm. The SP algorithm is developed with the assumption that an optimal Kalman filter will be implemented in the plant for state and disturbance estimation. The algorithm is developed assuming steady-state Kalman filtering and steady-state operation of the plant. The control system is considered to operate based on the estimated states and thereby, captures the effects of the SP algorithm on the overall plant efficiency. The optimization problem is solved by Genetic Algorithm (GA) considering both linear and nonlinear equality and inequality constraints. Due to the very large number of candidate sets available for sensor placement and because of the long time that it takes to solve the constrained optimization problem that includes more than 1000 states, solution of this problem is computationally expensive. For reducing the computation time, parallel computing is performed using the Distributed Computing Server (DCS®) and the Parallel Computing® toolbox from Mathworks®. In this presentation, we will share our experience in setting up parallel computing using GA in the MATLAB® environment and present the overall approach for achieving higher computational efficiency in this framework.« less
Triangular Alignment (TAME). A Tensor-based Approach for Higher-order Network Alignment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohammadi, Shahin; Gleich, David F.; Kolda, Tamara G.
2015-11-01
Network alignment is an important tool with extensive applications in comparative interactomics. Traditional approaches aim to simultaneously maximize the number of conserved edges and the underlying similarity of aligned entities. We propose a novel formulation of the network alignment problem that extends topological similarity to higher-order structures and provide a new objective function that maximizes the number of aligned substructures. This objective function corresponds to an integer programming problem, which is NP-hard. Consequently, we approximate this objective function as a surrogate function whose maximization results in a tensor eigenvalue problem. Based on this formulation, we present an algorithm called Triangularmore » AlignMEnt (TAME), which attempts to maximize the number of aligned triangles across networks. We focus on alignment of triangles because of their enrichment in complex networks; however, our formulation and resulting algorithms can be applied to general motifs. Using a case study on the NAPABench dataset, we show that TAME is capable of producing alignments with up to 99% accuracy in terms of aligned nodes. We further evaluate our method by aligning yeast and human interactomes. Our results indicate that TAME outperforms the state-of-art alignment methods both in terms of biological and topological quality of the alignments.« less
Polarity related influence maximization in signed social networks.
Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng
2014-01-01
Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods.
Polarity Related Influence Maximization in Signed Social Networks
Li, Dong; Xu, Zhi-Ming; Chakraborty, Nilanjan; Gupta, Anika; Sycara, Katia; Li, Sheng
2014-01-01
Influence maximization in social networks has been widely studied motivated by applications like spread of ideas or innovations in a network and viral marketing of products. Current studies focus almost exclusively on unsigned social networks containing only positive relationships (e.g. friend or trust) between users. Influence maximization in signed social networks containing both positive relationships and negative relationships (e.g. foe or distrust) between users is still a challenging problem that has not been studied. Thus, in this paper, we propose the polarity-related influence maximization (PRIM) problem which aims to find the seed node set with maximum positive influence or maximum negative influence in signed social networks. To address the PRIM problem, we first extend the standard Independent Cascade (IC) model to the signed social networks and propose a Polarity-related Independent Cascade (named IC-P) diffusion model. We prove that the influence function of the PRIM problem under the IC-P model is monotonic and submodular Thus, a greedy algorithm can be used to achieve an approximation ratio of 1-1/e for solving the PRIM problem in signed social networks. Experimental results on two signed social network datasets, Epinions and Slashdot, validate that our approximation algorithm for solving the PRIM problem outperforms state-of-the-art methods. PMID:25061986
NASA Astrophysics Data System (ADS)
Xu, Xibao; Zhang, Jianming; Zhou, Xiaojian
2006-10-01
This paper presents a model integrating GIS, cellular automata (CA) and genetic algorithm (GA) in urban spatial optimization. The model involves three objectives of the maximization of land-use efficiency, the maximization of urban spatial harmony and appropriate proportion of each land-use type. CA submodel is designed with standard Moore neighbor and three transition rules to maximize the land-use efficiency and urban spatial harmony, according to the land-use suitability and spatial harmony index. GA submodel is designed with four constraints and seven steps for the maximization of urban spatial harmony and appropriate proportion of each land-use type, including encoding, initializing, calculating fitness, selection, crossover, mutation and elitism. GIS is used to prepare for the input data sets for the model and perform spatial analysis on the results, while CA and GA are integrated to optimize urban spatial structure, programmed with Matlab 7 and coupled with GIS loosely. Lanzhou, a typical valley-basin city with fast urban development, is chosen as the case study. At the end, a detail analysis and evaluation of the spatial optimization with the model are made, and it proves to be a powerful tool in optimizing urban spatial structure and make supplement for urban planning and policy-makers.
ERIC Educational Resources Information Center
Song, Hairong; Ferrer, Emilio
2009-01-01
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Effect of filters and reconstruction algorithms on I-124 PET in Siemens Inveon PET scanner
NASA Astrophysics Data System (ADS)
Ram Yu, A.; Kim, Jin Su
2015-10-01
Purpose: To assess the effects of filtering and reconstruction on Siemens I-124 PET data. Methods: A Siemens Inveon PET was used. Spatial resolution of I-124 was measured to a transverse offset of 50 mm from the center FBP, 2D ordered subset expectation maximization (OSEM2D), 3D re-projection algorithm (3DRP), and maximum a posteriori (MAP) methods were tested. Non-uniformity (NU), recovery coefficient (RC), and spillover ratio (SOR) parameterized image quality. Mini deluxe phantom data of I-124 was also assessed. Results: Volumetric resolution was 7.3 mm3 from the transverse FOV center when FBP reconstruction algorithms with ramp filter was used. MAP yielded minimal NU with β =1.5. OSEM2D yielded maximal RC. SOR was below 4% for FBP with ramp, Hamming, Hanning, or Shepp-Logan filters. Based on the mini deluxe phantom results, an FBP with Hanning or Parzen filters, or a 3DRP with Hanning filter yielded feasible I-124 PET data.Conclusions: Reconstruction algorithms and filters were compared. FBP with Hanning or Parzen filters, or 3DRP with Hanning filter yielded feasible data for quantifying I-124 PET.
Hartmann, Klaas; Steel, Mike
2006-08-01
The Noah's Ark Problem (NAP) is a comprehensive cost-effectiveness methodology for biodiversity conservation that was introduced by Weitzman (1998) and utilizes the phylogenetic tree containing the taxa of interest to assess biodiversity. Given a set of taxa, each of which has a particular survival probability that can be increased at some cost, the NAP seeks to allocate limited funds to conserving these taxa so that the future expected biodiversity is maximized. Finding optimal solutions using this framework is a computationally difficult problem to which a simple and efficient "greedy" algorithm has been proposed in the literature and applied to conservation problems. We show that, although algorithms of this type cannot produce optimal solutions for the general NAP, there are two restricted scenarios of the NAP for which a greedy algorithm is guaranteed to produce optimal solutions. The first scenario requires the taxa to have equal conservation cost; the second scenario requires an ultrametric tree. The NAP assumes a linear relationship between the funding allocated to conservation of a taxon and the increased survival probability of that taxon. This relationship is briefly investigated and one variation is suggested that can also be solved using a greedy algorithm.
Genetic algorithms used for the optimization of light-emitting diodes and solar thermal collectors
NASA Astrophysics Data System (ADS)
Mayer, Alexandre; Bay, Annick; Gaouyat, Lucie; Nicolay, Delphine; Carletti, Timoteo; Deparis, Olivier
2014-09-01
We present a genetic algorithm (GA) we developed for the optimization of light-emitting diodes (LED) and solar thermal collectors. The surface of a LED can be covered by periodic structures whose geometrical and material parameters must be adjusted in order to maximize the extraction of light. The optimization of these parameters by the GA enabled us to get a light-extraction efficiency η of 11.0% from a GaN LED (for comparison, the flat material has a light-extraction efficiency η of only 3.7%). The solar thermal collector we considered consists of a waffle-shaped Al substrate with NiCrOx and SnO2 conformal coatings. We must in this case maximize the solar absorption α while minimizing the thermal emissivity ɛ in the infrared. A multi-objective genetic algorithm has to be implemented in this case in order to determine optimal geometrical parameters. The parameters we obtained using the multi-objective GA enable α~97.8% and ɛ~4.8%, which improves results achieved previously when considering a flat substrate. These two applications demonstrate the interest of genetic algorithms for addressing complex problems in physics.
Halper, Sean M; Cetnar, Daniel P; Salis, Howard M
2018-01-01
Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.
Runway Operations Planning: A Two-Stage Heuristic Algorithm
NASA Technical Reports Server (NTRS)
Anagnostakis, Ioannis; Clarke, John-Paul
2003-01-01
The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.
NASA Astrophysics Data System (ADS)
Xi, Songnan; Zoltowski, Michael D.
2008-04-01
Multiuser multiple-input multiple-output (MIMO) systems are considered in this paper. We continue our research on uplink transmit beamforming design for multiple users under the assumption that the full multiuser channel state information, which is the collection of the channel state information between each of the users and the base station, is known not only to the receiver but also to all the transmitters. We propose an algorithm for designing optimal beamforming weights in terms of maximizing the signal-to-interference-plus-noise ratio (SINR). Through statistical modeling, we decouple the original mathematically intractable optimization problem and achieved a closed-form solution. As in our previous work, the minimum mean-squared error (MMSE) receiver with successive interference cancellation (SIC) is adopted for multiuser detection. The proposed scheme is compared with an existing jointly optimized transceiver design, referred to as the joint transceiver in this paper, and our previously proposed eigen-beamforming algorithm. Simulation results demonstrate that our algorithm, with much less computational burden, accomplishes almost the same performance as the joint transceiver for spatially independent MIMO channel and even better performance for spatially correlated MIMO channels. And it always works better than our previously proposed eigen beamforming algorithm.
NASA Astrophysics Data System (ADS)
Aslan, Serdar; Taylan Cemgil, Ali; Akın, Ata
2016-08-01
Objective. In this paper, we aimed for the robust estimation of the parameters and states of the hemodynamic model by using blood oxygen level dependent signal. Approach. In the fMRI literature, there are only a few successful methods that are able to make a joint estimation of the states and parameters of the hemodynamic model. In this paper, we implemented a maximum likelihood based method called the particle smoother expectation maximization (PSEM) algorithm for the joint state and parameter estimation. Main results. Former sequential Monte Carlo methods were only reliable in the hemodynamic state estimates. They were claimed to outperform the local linearization (LL) filter and the extended Kalman filter (EKF). The PSEM algorithm is compared with the most successful method called square-root cubature Kalman smoother (SCKS) for both state and parameter estimation. SCKS was found to be better than the dynamic expectation maximization (DEM) algorithm, which was shown to be a better estimator than EKF, LL and particle filters. Significance. PSEM was more accurate than SCKS for both the state and the parameter estimation. Hence, PSEM seems to be the most accurate method for the system identification and state estimation for the hemodynamic model inversion literature. This paper do not compare its results with Tikhonov-regularized Newton—CKF (TNF-CKF), a recent robust method which works in filtering sense.
Robust radio interferometric calibration using the t-distribution
NASA Astrophysics Data System (ADS)
Kazemi, S.; Yatawatta, S.
2013-10-01
A major stage of radio interferometric data processing is calibration or the estimation of systematic errors in the data and the correction for such errors. A stochastic error (noise) model is assumed, and in most cases, this underlying model is assumed to be Gaussian. However, outliers in the data due to interference or due to errors in the sky model would have adverse effects on processing based on a Gaussian noise model. Most of the shortcomings of calibration such as the loss in flux or coherence, and the appearance of spurious sources, could be attributed to the deviations of the underlying noise model. In this paper, we propose to improve the robustness of calibration by using a noise model based on Student's t-distribution. Student's t-noise is a special case of Gaussian noise when the variance is unknown. Unlike Gaussian-noise-model-based calibration, traditional least-squares minimization would not directly extend to a case when we have a Student's t-noise model. Therefore, we use a variant of the expectation-maximization algorithm, called the expectation-conditional maximization either algorithm, when we have a Student's t-noise model and use the Levenberg-Marquardt algorithm in the maximization step. We give simulation results to show the robustness of the proposed calibration method as opposed to traditional Gaussian-noise-model-based calibration, especially in preserving the flux of weaker sources that are not included in the calibration model.
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System.
Chinnadurai, Sunil; Selvaprabhu, Poongundran; Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-09-18
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach's algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme.
Worst-Case Energy Efficiency Maximization in a 5G Massive MIMO-NOMA System
Jeong, Yongchae; Jiang, Xueqin; Lee, Moon Ho
2017-01-01
In this paper, we examine the robust beamforming design to tackle the energy efficiency (EE) maximization problem in a 5G massive multiple-input multiple-output (MIMO)-non-orthogonal multiple access (NOMA) downlink system with imperfect channel state information (CSI) at the base station. A novel joint user pairing and dynamic power allocation (JUPDPA) algorithm is proposed to minimize the inter user interference and also to enhance the fairness between the users. This work assumes imperfect CSI by adding uncertainties to channel matrices with worst-case model, i.e., ellipsoidal uncertainty model (EUM). A fractional non-convex optimization problem is formulated to maximize the EE subject to the transmit power constraints and the minimum rate requirement for the cell edge user. The designed problem is difficult to solve due to its nonlinear fractional objective function. We firstly employ the properties of fractional programming to transform the non-convex problem into its equivalent parametric form. Then, an efficient iterative algorithm is proposed established on the constrained concave-convex procedure (CCCP) that solves and achieves convergence to a stationary point of the above problem. Finally, Dinkelbach’s algorithm is employed to determine the maximum energy efficiency. Comprehensive numerical results illustrate that the proposed scheme attains higher worst-case energy efficiency as compared with the existing NOMA schemes and the conventional orthogonal multiple access (OMA) scheme. PMID:28927019
NASA Astrophysics Data System (ADS)
Ferrari, Ulisse
A maximal entropy model provides the least constrained probability distribution that reproduces experimental averages of an observables set. In this work we characterize the learning dynamics that maximizes the log-likelihood in the case of large but finite datasets. We first show how the steepest descent dynamics is not optimal as it is slowed down by the inhomogeneous curvature of the model parameters space. We then provide a way for rectifying this space which relies only on dataset properties and does not require large computational efforts. We conclude by solving the long-time limit of the parameters dynamics including the randomness generated by the systematic use of Gibbs sampling. In this stochastic framework, rather than converging to a fixed point, the dynamics reaches a stationary distribution, which for the rectified dynamics reproduces the posterior distribution of the parameters. We sum up all these insights in a ``rectified'' Data-Driven algorithm that is fast and by sampling from the parameters posterior avoids both under- and over-fitting along all the directions of the parameters space. Through the learning of pairwise Ising models from the recording of a large population of retina neurons, we show how our algorithm outperforms the steepest descent method. This research was supported by a Grant from the Human Brain Project (HBP CLAP).
Wang, Rui; Zhou, Yongquan; Zhao, Chengyan; Wu, Haizhou
2015-01-01
Multi-threshold image segmentation is a powerful image processing technique that is used for the preprocessing of pattern recognition and computer vision. However, traditional multilevel thresholding methods are computationally expensive because they involve exhaustively searching the optimal thresholds to optimize the objective functions. To overcome this drawback, this paper proposes a flower pollination algorithm with a randomized location modification. The proposed algorithm is used to find optimal threshold values for maximizing Otsu's objective functions with regard to eight medical grayscale images. When benchmarked against other state-of-the-art evolutionary algorithms, the new algorithm proves itself to be robust and effective through numerical experimental results including Otsu's objective values and standard deviations.
Energy-driven scheduling algorithm for nanosatellite energy harvesting maximization
NASA Astrophysics Data System (ADS)
Slongo, L. K.; Martínez, S. V.; Eiterer, B. V. B.; Pereira, T. G.; Bezerra, E. A.; Paiva, K. V.
2018-06-01
The number of tasks that a satellite may execute in orbit is strongly related to the amount of energy its Electrical Power System (EPS) is able to harvest and to store. The manner the stored energy is distributed within the satellite has also a great impact on the CubeSat's overall efficiency. Most CubeSat's EPS do not prioritize energy constraints in their formulation. Unlike that, this work proposes an innovative energy-driven scheduling algorithm based on energy harvesting maximization policy. The energy harvesting circuit is mathematically modeled and the solar panel I-V curves are presented for different temperature and irradiance levels. Considering the models and simulations, the scheduling algorithm is designed to keep solar panels working close to their maximum power point by triggering tasks in the appropriate form. Tasks execution affects battery voltage, which is coupled to the solar panels through a protection circuit. A software based Perturb and Observe strategy allows defining the tasks to be triggered. The scheduling algorithm is tested in FloripaSat, which is an 1U CubeSat. A test apparatus is proposed to emulate solar irradiance variation, considering the satellite movement around the Earth. Tests have been conducted to show that the scheduling algorithm improves the CubeSat energy harvesting capability by 4.48% in a three orbit experiment and up to 8.46% in a single orbit cycle in comparison with the CubeSat operating without the scheduling algorithm.
NASA Astrophysics Data System (ADS)
Jafari, Hamed; Salmasi, Nasser
2015-09-01
The nurse scheduling problem (NSP) has received a great amount of attention in recent years. In the NSP, the goal is to assign shifts to the nurses in order to satisfy the hospital's demand during the planning horizon by considering different objective functions. In this research, we focus on maximizing the nurses' preferences for working shifts and weekends off by considering several important factors such as hospital's policies, labor laws, governmental regulations, and the status of nurses at the end of the previous planning horizon in one of the largest hospitals in Iran i.e., Milad Hospital. Due to the shortage of available nurses, at first, the minimum total number of required nurses is determined. Then, a mathematical programming model is proposed to solve the problem optimally. Since the proposed research problem is NP-hard, a meta-heuristic algorithm based on simulated annealing (SA) is applied to heuristically solve the problem in a reasonable time. An initial feasible solution generator and several novel neighborhood structures are applied to enhance performance of the SA algorithm. Inspired from our observations in Milad hospital, random test problems are generated to evaluate the performance of the SA algorithm. The results of computational experiments indicate that the applied SA algorithm provides solutions with average percentage gap of 5.49 % compared to the upper bounds obtained from the mathematical model. Moreover, the applied SA algorithm provides significantly better solutions in a reasonable time than the schedules provided by the head nurses.
Ziacchi, Matteo; Palmisano, Pietro; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe
2018-04-01
: Modern pacemakers have an increasing number of programable parameters and specific algorithms designed to optimize pacing therapy in relation to the individual characteristics of patients. When choosing the most appropriate pacemaker type and programing, the following variables must be taken into account: the type of bradyarrhythmia at the time of pacemaker implantation; the cardiac chamber requiring pacing, and the percentage of pacing actually needed to correct the rhythm disorder; the possible association of multiple rhythm disturbances and conduction diseases; the evolution of conduction disorders during follow-up. The goals of device programing are to preserve or restore the heart rate response to metabolic and hemodynamic demands; to maintain physiological conduction; to maximize device longevity; to detect, prevent, and treat atrial arrhythmia. In patients with sinus node disease, the optimal pacing mode is DDDR. Based on all the available evidence, in this setting, we consider appropriate the activation of the following algorithms: rate responsive function in patients with chronotropic incompetence; algorithms to maximize intrinsic atrioventricular conduction in the absence of atrioventricular blocks; mode-switch algorithms; algorithms for autoadaptive management of the atrial pacing output; algorithms for the prevention and treatment of atrial tachyarrhythmias in the subgroup of patients with atrial tachyarrhythmias/atrial fibrillation. The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features.
A computer method for schedule processing and quick-time updating.
NASA Technical Reports Server (NTRS)
Mccoy, W. H.
1972-01-01
A schedule analysis program is presented which can be used to process any schedule with continuous flow and with no loops. Although generally thought of as a management tool, it has applicability to such extremes as music composition and computer program efficiency analysis. Other possibilities for its use include the determination of electrical power usage during some operation such as spacecraft checkout, and the determination of impact envelopes for the purpose of scheduling payloads in launch processing. At the core of the described computer method is an algorithm which computes the position of each activity bar on the output waterfall chart. The algorithm is basically a maximal-path computation which gives to each node in the schedule network the maximal path from the initial node to the given node.
NASA Astrophysics Data System (ADS)
Obulesu, O.; Rama Mohan Reddy, A., Dr; Mahendra, M.
2017-08-01
Detecting regular and efficient cyclic models is the demanding activity for data analysts due to unstructured, vigorous and enormous raw information produced from web. Many existing approaches generate large candidate patterns in the occurrence of huge and complex databases. In this work, two novel algorithms are proposed and a comparative examination is performed by considering scalability and performance parameters. The first algorithm is, EFPMA (Extended Regular Model Detection Algorithm) used to find frequent sequential patterns from the spatiotemporal dataset and the second one is, ETMA (Enhanced Tree-based Mining Algorithm) for detecting effective cyclic models with symbolic database representation. EFPMA is an algorithm grows models from both ends (prefixes and suffixes) of detected patterns, which results in faster pattern growth because of less levels of database projection compared to existing approaches such as Prefixspan and SPADE. ETMA uses distinct notions to store and manage transactions data horizontally such as segment, sequence and individual symbols. ETMA exploits a partition-and-conquer method to find maximal patterns by using symbolic notations. Using this algorithm, we can mine cyclic models in full-series sequential patterns including subsection series also. ETMA reduces the memory consumption and makes use of the efficient symbolic operation. Furthermore, ETMA only records time-series instances dynamically, in terms of character, series and section approaches respectively. The extent of the pattern and proving efficiency of the reducing and retrieval techniques from synthetic and actual datasets is a really open & challenging mining problem. These techniques are useful in data streams, traffic risk analysis, medical diagnosis, DNA sequence Mining, Earthquake prediction applications. Extensive investigational outcomes illustrates that the algorithms outperforms well towards efficiency and scalability than ECLAT, STNR and MAFIA approaches.
New descriptor for skeletons of planar shapes: the calypter
NASA Astrophysics Data System (ADS)
Pirard, Eric; Nivart, Jean-Francois
1994-05-01
The mathematical definition of the skeleton as the locus of centers of maximal inscribed discs is a nondigitizable one. The idea presented in this paper is to incorporate the skeleton information and the chain-code of the contour into a single descriptor by associating to each point of a contour the center and radius of the maximum inscribed disc tangent at that point. This new descriptor is called calypter. The encoding of a calypter is a three stage algorithm: (1) chain coding of the contour; (2) euclidean distance transformation, (3) climbing on the distance relief from each point of the contour towards the corresponding maximal inscribed disc center. Here we introduce an integer euclidean distance transform called the holodisc distance transform. The major interest of this holodisc transform is to confer 8-connexity to the isolevels of the generated distance relief thereby allowing a climbing algorithm to proceed step by step towards the centers of the maximal inscribed discs. The calypter has a cyclic structure delivering high speed access to the skeleton data. Its potential uses are in high speed euclidean mathematical morphology, shape processing, and analysis.
A multiple scales approach to maximal superintegrability
NASA Astrophysics Data System (ADS)
Gubbiotti, G.; Latini, D.
2018-07-01
In this paper we present a simple, algorithmic test to establish if a Hamiltonian system is maximally superintegrable or not. This test is based on a very simple corollary of a theorem due to Nekhoroshev and on a perturbative technique called the multiple scales method. If the outcome is positive, this test can be used to suggest maximal superintegrability, whereas when the outcome is negative it can be used to disprove it. This method can be regarded as a finite dimensional analog of the multiple scales method as a way to produce soliton equations. We use this technique to show that the real counterpart of a mechanical system found by Jules Drach in 1935 is, in general, not maximally superintegrable. We give some hints on how this approach could be applied to classify maximally superintegrable systems by presenting a direct proof of the well-known Bertrand’s theorem.
Directly reconstructing principal components of heterogeneous particles from cryo-EM images.
Tagare, Hemant D; Kucukelbir, Alp; Sigworth, Fred J; Wang, Hongwei; Rao, Murali
2015-08-01
Structural heterogeneity of particles can be investigated by their three-dimensional principal components. This paper addresses the question of whether, and with what algorithm, the three-dimensional principal components can be directly recovered from cryo-EM images. The first part of the paper extends the Fourier slice theorem to covariance functions showing that the three-dimensional covariance, and hence the principal components, of a heterogeneous particle can indeed be recovered from two-dimensional cryo-EM images. The second part of the paper proposes a practical algorithm for reconstructing the principal components directly from cryo-EM images without the intermediate step of calculating covariances. This algorithm is based on maximizing the posterior likelihood using the Expectation-Maximization algorithm. The last part of the paper applies this algorithm to simulated data and to two real cryo-EM data sets: a data set of the 70S ribosome with and without Elongation Factor-G (EF-G), and a data set of the influenza virus RNA dependent RNA Polymerase (RdRP). The first principal component of the 70S ribosome data set reveals the expected conformational changes of the ribosome as the EF-G binds and unbinds. The first principal component of the RdRP data set reveals a conformational change in the two dimers of the RdRP. Copyright © 2015 Elsevier Inc. All rights reserved.
Inverting Monotonic Nonlinearities by Entropy Maximization
López-de-Ipiña Pena, Karmele; Caiafa, Cesar F.
2016-01-01
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results. PMID:27780261
Inverting Monotonic Nonlinearities by Entropy Maximization.
Solé-Casals, Jordi; López-de-Ipiña Pena, Karmele; Caiafa, Cesar F
2016-01-01
This paper proposes a new method for blind inversion of a monotonic nonlinear map applied to a sum of random variables. Such kinds of mixtures of random variables are found in source separation and Wiener system inversion problems, for example. The importance of our proposed method is based on the fact that it permits to decouple the estimation of the nonlinear part (nonlinear compensation) from the estimation of the linear one (source separation matrix or deconvolution filter), which can be solved by applying any convenient linear algorithm. Our new nonlinear compensation algorithm, the MaxEnt algorithm, generalizes the idea of Gaussianization of the observation by maximizing its entropy instead. We developed two versions of our algorithm based either in a polynomial or a neural network parameterization of the nonlinear function. We provide a sufficient condition on the nonlinear function and the probability distribution that gives a guarantee for the MaxEnt method to succeed compensating the distortion. Through an extensive set of simulations, MaxEnt is compared with existing algorithms for blind approximation of nonlinear maps. Experiments show that MaxEnt is able to successfully compensate monotonic distortions outperforming other methods in terms of the obtained Signal to Noise Ratio in many important cases, for example when the number of variables in a mixture is small. Besides its ability for compensating nonlinearities, MaxEnt is very robust, i.e. showing small variability in the results.
A Target Coverage Scheduling Scheme Based on Genetic Algorithms in Directional Sensor Networks
Gil, Joon-Min; Han, Youn-Hee
2011-01-01
As a promising tool for monitoring the physical world, directional sensor networks (DSNs) consisting of a large number of directional sensors are attracting increasing attention. As directional sensors in DSNs have limited battery power and restricted angles of sensing range, maximizing the network lifetime while monitoring all the targets in a given area remains a challenge. A major technique to conserve the energy of directional sensors is to use a node wake-up scheduling protocol by which some sensors remain active to provide sensing services, while the others are inactive to conserve their energy. In this paper, we first address a Maximum Set Covers for DSNs (MSCD) problem, which is known to be NP-complete, and present a greedy algorithm-based target coverage scheduling scheme that can solve this problem by heuristics. This scheme is used as a baseline for comparison. We then propose a target coverage scheduling scheme based on a genetic algorithm that can find the optimal cover sets to extend the network lifetime while monitoring all targets by the evolutionary global search technique. To verify and evaluate these schemes, we conducted simulations and showed that the schemes can contribute to extending the network lifetime. Simulation results indicated that the genetic algorithm-based scheduling scheme had better performance than the greedy algorithm-based scheme in terms of maximizing network lifetime. PMID:22319387
Genetic Algorithm Optimization of Phononic Bandgap Structures
2006-09-01
a GA with a computational finite element method for solving the acoustic wave equation, and find optimal designs for both metal-matrix composite...systems consisting of Ti/SiC, and H2O-filled porous ceramic media, by maximizing the relative acoustic bandgap for these media. The term acoustic here...stress minimization, global optimization, phonon bandgap, genetic algorithm, periodic elastic media, inhomogeneity, inclusion, porous media, acoustic
Competitive Facility Location with Random Demands
NASA Astrophysics Data System (ADS)
Uno, Takeshi; Katagiri, Hideki; Kato, Kosuke
2009-10-01
This paper proposes a new location problem of competitive facilities, e.g. shops and stores, with uncertain demands in the plane. By representing the demands for facilities as random variables, the location problem is formulated to a stochastic programming problem, and for finding its solution, three deterministic programming problems: expectation maximizing problem, probability maximizing problem, and satisfying level maximizing problem are considered. After showing that one of their optimal solutions can be found by solving 0-1 programming problems, their solution method is proposed by improving the tabu search algorithm with strategic vibration. Efficiency of the solution method is shown by applying to numerical examples of the facility location problems.
On local search for bi-objective knapsack problems.
Liefooghe, Arnaud; Paquete, Luís; Figueira, José Rui
2013-01-01
In this article, a local search approach is proposed for three variants of the bi-objective binary knapsack problem, with the aim of maximizing the total profit and minimizing the total weight. First, an experimental study on a given structural property of connectedness of the efficient set is conducted. Based on this property, a local search algorithm is proposed and its performance is compared to exact algorithms in terms of runtime and quality metrics. The experimental results indicate that this simple local search algorithm is able to find a representative set of optimal solutions in most of the cases, and in much less time than exact algorithms.
Energy Aware Clustering Algorithms for Wireless Sensor Networks
NASA Astrophysics Data System (ADS)
Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian
2011-09-01
The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.
Modified kernel-based nonlinear feature extraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, J.; Perkins, S. J.; Theiler, J. P.
2002-01-01
Feature Extraction (FE) techniques are widely used in many applications to pre-process data in order to reduce the complexity of subsequent processes. A group of Kernel-based nonlinear FE ( H E ) algorithms has attracted much attention due to their high performance. However, a serious limitation that is inherent in these algorithms -- the maximal number of features extracted by them is limited by the number of classes involved -- dramatically degrades their flexibility. Here we propose a modified version of those KFE algorithms (MKFE), This algorithm is developed from a special form of scatter-matrix, whose rank is not determinedmore » by the number of classes involved, and thus breaks the inherent limitation in those KFE algorithms. Experimental results suggest that MKFE algorithm is .especially useful when the training set is small.« less
Algorithmic detectability threshold of the stochastic block model
NASA Astrophysics Data System (ADS)
Kawamoto, Tatsuro
2018-03-01
The assumption that the values of model parameters are known or correctly learned, i.e., the Nishimori condition, is one of the requirements for the detectability analysis of the stochastic block model in statistical inference. In practice, however, there is no example demonstrating that we can know the model parameters beforehand, and there is no guarantee that the model parameters can be learned accurately. In this study, we consider the expectation-maximization (EM) algorithm with belief propagation (BP) and derive its algorithmic detectability threshold. Our analysis is not restricted to the community structure but includes general modular structures. Because the algorithm cannot always learn the planted model parameters correctly, the algorithmic detectability threshold is qualitatively different from the one with the Nishimori condition.
NASA Astrophysics Data System (ADS)
Peralta, Richard C.; Forghani, Ali; Fayad, Hala
2014-04-01
Many real water resources optimization problems involve conflicting objectives for which the main goal is to find a set of optimal solutions on, or near to the Pareto front. E-constraint and weighting multiobjective optimization techniques have shortcomings, especially as the number of objectives increases. Multiobjective Genetic Algorithms (MGA) have been previously proposed to overcome these difficulties. Here, an MGA derives a set of optimal solutions for multiobjective multiuser conjunctive use of reservoir, stream, and (un)confined groundwater resources. The proposed methodology is applied to a hydraulically and economically nonlinear system in which all significant flows, including stream-aquifer-reservoir-diversion-return flow interactions, are simulated and optimized simultaneously for multiple periods. Neural networks represent constrained state variables. The addressed objectives that can be optimized simultaneously in the coupled simulation-optimization model are: (1) maximizing water provided from sources, (2) maximizing hydropower production, and (3) minimizing operation costs of transporting water from sources to destinations. Results show the efficiency of multiobjective genetic algorithms for generating Pareto optimal sets for complex nonlinear multiobjective optimization problems.
Optimizing interconnections to maximize the spectral radius of interdependent networks
NASA Astrophysics Data System (ADS)
Chen, Huashan; Zhao, Xiuyan; Liu, Feng; Xu, Shouhuai; Lu, Wenlian
2017-03-01
The spectral radius (i.e., the largest eigenvalue) of the adjacency matrices of complex networks is an important quantity that governs the behavior of many dynamic processes on the networks, such as synchronization and epidemics. Studies in the literature focused on bounding this quantity. In this paper, we investigate how to maximize the spectral radius of interdependent networks by optimally linking k internetwork connections (or interconnections for short). We derive formulas for the estimation of the spectral radius of interdependent networks and employ these results to develop a suite of algorithms that are applicable to different parameter regimes. In particular, a simple algorithm is to link the k nodes with the largest k eigenvector centralities in one network to the node in the other network with a certain property related to both networks. We demonstrate the applicability of our algorithms via extensive simulations. We discuss the physical implications of the results, including how the optimal interconnections can more effectively decrease the threshold of epidemic spreading in the susceptible-infected-susceptible model and the threshold of synchronization of coupled Kuramoto oscillators.
Liu, Haiguang; Spence, John C H
2014-11-01
Crystallographic auto-indexing algorithms provide crystal orientations and unit-cell parameters and assign Miller indices based on the geometric relations between the Bragg peaks observed in diffraction patterns. However, if the Bravais symmetry is higher than the space-group symmetry, there will be multiple indexing options that are geometrically equivalent, and hence many ways to merge diffraction intensities from protein nanocrystals. Structure factor magnitudes from full reflections are required to resolve this ambiguity but only partial reflections are available from each XFEL shot, which must be merged to obtain full reflections from these 'stills'. To resolve this chicken-and-egg problem, an expectation maximization algorithm is described that iteratively constructs a model from the intensities recorded in the diffraction patterns as the indexing ambiguity is being resolved. The reconstructed model is then used to guide the resolution of the indexing ambiguity as feedback for the next iteration. Using both simulated and experimental data collected at an X-ray laser for photosystem I in the P63 space group (which supports a merohedral twinning indexing ambiguity), the method is validated.
An Incentive-based Online Optimization Framework for Distribution Grids
Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun; ...
2017-10-09
This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less
An Incentive-based Online Optimization Framework for Distribution Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xinyang; Dall'Anese, Emiliano; Chen, Lijun
This article formulates a time-varying social-welfare maximization problem for distribution grids with distributed energy resources (DERs) and develops online distributed algorithms to identify (and track) its solutions. In the considered setting, network operator and DER-owners pursue given operational and economic objectives, while concurrently ensuring that voltages are within prescribed limits. The proposed algorithm affords an online implementation to enable tracking of the solutions in the presence of time-varying operational conditions and changing optimization objectives. It involves a strategy where the network operator collects voltage measurements throughout the feeder to build incentive signals for the DER-owners in real time; DERs thenmore » adjust the generated/consumed powers in order to avoid the violation of the voltage constraints while maximizing given objectives. Stability of the proposed schemes is analytically established and numerically corroborated.« less
Chow, Sy-Miin; Lu, Zhaohua; Sherwood, Andrew; Zhu, Hongtu
2016-03-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation-maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed.
Improving search algorithms by using intelligent coordinates
NASA Astrophysics Data System (ADS)
Wolpert, David; Tumer, Kagan; Bandari, Esfandiar
2004-01-01
We consider algorithms that maximize a global function G in a distributed manner, using a different adaptive computational agent to set each variable of the underlying space. Each agent η is self-interested; it sets its variable to maximize its own function gη. Three factors govern such a distributed algorithm’s performance, related to exploration/exploitation, game theory, and machine learning. We demonstrate how to exploit all three factors by modifying a search algorithm’s exploration stage: rather than random exploration, each coordinate of the search space is now controlled by a separate machine-learning-based “player” engaged in a noncooperative game. Experiments demonstrate that this modification improves simulated annealing (SA) by up to an order of magnitude for bin packing and for a model of an economic process run over an underlying network. These experiments also reveal interesting small-world phenomena.
Dragonfly: an implementation of the expand-maximize-compress algorithm for single-particle imaging.
Ayyer, Kartik; Lan, Ti-Yen; Elser, Veit; Loh, N Duane
2016-08-01
Single-particle imaging (SPI) with X-ray free-electron lasers has the potential to change fundamentally how biomacromolecules are imaged. The structure would be derived from millions of diffraction patterns, each from a different copy of the macromolecule before it is torn apart by radiation damage. The challenges posed by the resultant data stream are staggering: millions of incomplete, noisy and un-oriented patterns have to be computationally assembled into a three-dimensional intensity map and then phase reconstructed. In this paper, the Dragonfly software package is described, based on a parallel implementation of the expand-maximize-compress reconstruction algorithm that is well suited for this task. Auxiliary modules to simulate SPI data streams are also included to assess the feasibility of proposed SPI experiments at the Linac Coherent Light Source, Stanford, California, USA.
Chow, Sy- Miin; Lu, Zhaohua; Zhu, Hongtu; Sherwood, Andrew
2014-01-01
The past decade has evidenced the increased prevalence of irregularly spaced longitudinal data in social sciences. Clearly lacking, however, are modeling tools that allow researchers to fit dynamic models to irregularly spaced data, particularly data that show nonlinearity and heterogeneity in dynamical structures. We consider the issue of fitting multivariate nonlinear differential equation models with random effects and unknown initial conditions to irregularly spaced data. A stochastic approximation expectation–maximization algorithm is proposed and its performance is evaluated using a benchmark nonlinear dynamical systems model, namely, the Van der Pol oscillator equations. The empirical utility of the proposed technique is illustrated using a set of 24-h ambulatory cardiovascular data from 168 men and women. Pertinent methodological challenges and unresolved issues are discussed. PMID:25416456
On Maximizing the Throughput of Packet Transmission under Energy Constraints.
Wu, Weiwei; Dai, Guangli; Li, Yan; Shan, Feng
2018-06-23
More and more Internet of Things (IoT) wireless devices have been providing ubiquitous services over the recent years. Since most of these devices are powered by batteries, a fundamental trade-off to be addressed is the depleted energy and the achieved data throughput in wireless data transmission. By exploiting the rate-adaptive capacities of wireless devices, most existing works on energy-efficient data transmission try to design rate-adaptive transmission policies to maximize the amount of transmitted data bits under the energy constraints of devices. Such solutions, however, cannot apply to scenarios where data packets have respective deadlines and only integrally transmitted data packets contribute. Thus, this paper introduces a notion of weighted throughput, which measures how much total value of data packets are successfully and integrally transmitted before their own deadlines. By designing efficient rate-adaptive transmission policies, this paper aims to make the best use of the energy and maximize the weighted throughput. What is more challenging but with practical significance, we consider the fading effect of wireless channels in both offline and online scenarios. In the offline scenario, we develop an optimal algorithm that computes the optimal solution in pseudo-polynomial time, which is the best possible solution as the problem undertaken is NP-hard. In the online scenario, we propose an efficient heuristic algorithm based on optimal properties derived for the optimal offline solution. Simulation results validate the efficiency of the proposed algorithm.
Chapman, Benjamin P.; Weiss, Alexander; Duberstein, Paul
2016-01-01
Statistical learning theory (SLT) is the statistical formulation of machine learning theory, a body of analytic methods common in “big data” problems. Regression-based SLT algorithms seek to maximize predictive accuracy for some outcome, given a large pool of potential predictors, without overfitting the sample. Research goals in psychology may sometimes call for high dimensional regression. One example is criterion-keyed scale construction, where a scale with maximal predictive validity must be built from a large item pool. Using this as a working example, we first introduce a core principle of SLT methods: minimization of expected prediction error (EPE). Minimizing EPE is fundamentally different than maximizing the within-sample likelihood, and hinges on building a predictive model of sufficient complexity to predict the outcome well, without undue complexity leading to overfitting. We describe how such models are built and refined via cross-validation. We then illustrate how three common SLT algorithms–Supervised Principal Components, Regularization, and Boosting—can be used to construct a criterion-keyed scale predicting all-cause mortality, using a large personality item pool within a population cohort. Each algorithm illustrates a different approach to minimizing EPE. Finally, we consider broader applications of SLT predictive algorithms, both as supportive analytic tools for conventional methods, and as primary analytic tools in discovery phase research. We conclude that despite their differences from the classic null-hypothesis testing approach—or perhaps because of them–SLT methods may hold value as a statistically rigorous approach to exploratory regression. PMID:27454257
Polyhedral Interpolation for Optimal Reaction Control System Jet Selection
NASA Technical Reports Server (NTRS)
Gefert, Leon P.; Wright, Theodore
2014-01-01
An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.
Reconstructing liver shape and position from MR image slices using an active shape model
NASA Astrophysics Data System (ADS)
Fenchel, Matthias; Thesen, Stefan; Schilling, Andreas
2008-03-01
We present an algorithm for fully automatic reconstruction of 3D position, orientation and shape of the human liver from a sparsely covering set of n 2D MR slice images. Reconstructing the shape of an organ from slice images can be used for scan planning, for surgical planning or other purposes where 3D anatomical knowledge has to be inferred from sparse slices. The algorithm is based on adapting an active shape model of the liver surface to a given set of slice images. The active shape model is created from a training set of liver segmentations from a group of volunteers. The training set is set up with semi-manual segmentations of T1-weighted volumetric MR images. Searching for the optimal shape model that best fits to the image data is done by maximizing a similarity measure based on local appearance at the surface. Two different algorithms for the active shape model search are proposed and compared: both algorithms seek to maximize the a-posteriori probability of the grey level appearance around the surface while constraining the surface to the space of valid shapes. The first algorithm works by using grey value profile statistics in normal direction. The second algorithm uses average and variance images to calculate the local surface appearance on the fly. Both algorithms are validated by fitting the active shape model to abdominal 2D slice images and comparing the shapes, which have been reconstructed, to the manual segmentations and to the results of active shape model searches from 3D image data. The results turn out to be promising and competitive to active shape model segmentations from 3D data.
Optimized 3D stitching algorithm for whole body SPECT based on transition error minimization (TEM)
NASA Astrophysics Data System (ADS)
Cao, Xinhua; Xu, Xiaoyin; Voss, Stephan
2017-02-01
Standard Single Photon Emission Computed Tomography (SPECT) has a limited field of view (FOV) and cannot provide a 3D image of an entire long whole body SPECT. To produce a 3D whole body SPECT image, two to five overlapped SPECT FOVs from head to foot are acquired and assembled using image stitching. Most commercial software from medical imaging manufacturers applies a direct mid-slice stitching method to avoid blurring or ghosting from 3D image blending. Due to intensity changes across the middle slice of overlapped images, direct mid-slice stitching often produces visible seams in the coronal and sagittal views and maximal intensity projection (MIP). In this study, we proposed an optimized algorithm to reduce the visibility of stitching edges. The new algorithm computed, based on transition error minimization (TEM), a 3D stitching interface between two overlapped 3D SPECT images. To test the suggested algorithm, four studies of 2-FOV whole body SPECT were used and included two different reconstruction methods (filtered back projection (FBP) and ordered subset expectation maximization (OSEM)) as well as two different radiopharmaceuticals (Tc-99m MDP for bone metastases and I-131 MIBG for neuroblastoma tumors). Relative transition errors of stitched whole body SPECT using mid-slice stitching and the TEM-based algorithm were measured for objective evaluation. Preliminary experiments showed that the new algorithm reduced the visibility of the stitching interface in the coronal, sagittal, and MIP views. Average relative transition errors were reduced from 56.7% of mid-slice stitching to 11.7% of TEM-based stitching. The proposed algorithm also avoids blurring artifacts by preserving the noise properties of the original SPECT images.
Multi-pass encoding of hyperspectral imagery with spectral quality control
NASA Astrophysics Data System (ADS)
Wasson, Steven; Walker, William
2015-05-01
Multi-pass encoding is a technique employed in the field of video compression that maximizes the quality of an encoded video sequence within the constraints of a specified bit rate. This paper presents research where multi-pass encoding is extended to the field of hyperspectral image compression. Unlike video, which is primarily intended to be viewed by a human observer, hyperspectral imagery is processed by computational algorithms that generally attempt to classify the pixel spectra within the imagery. As such, these algorithms are more sensitive to distortion in the spectral dimension of the image than they are to perceptual distortion in the spatial dimension. The compression algorithm developed for this research, which uses the Karhunen-Loeve transform for spectral decorrelation followed by a modified H.264/Advanced Video Coding (AVC) encoder, maintains a user-specified spectral quality level while maximizing the compression ratio throughout the encoding process. The compression performance may be considered near-lossless in certain scenarios. For qualitative purposes, this paper presents the performance of the compression algorithm for several Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Hyperion datasets using spectral angle as the spectral quality assessment function. Specifically, the compression performance is illustrated in the form of rate-distortion curves that plot spectral angle versus bits per pixel per band (bpppb).
Huda, Shamsul; Yearwood, John; Togneri, Roberto
2009-02-01
This paper attempts to overcome the tendency of the expectation-maximization (EM) algorithm to locate a local rather than global maximum when applied to estimate the hidden Markov model (HMM) parameters in speech signal modeling. We propose a hybrid algorithm for estimation of the HMM in automatic speech recognition (ASR) using a constraint-based evolutionary algorithm (EA) and EM, the CEL-EM. The novelty of our hybrid algorithm (CEL-EM) is that it is applicable for estimation of the constraint-based models with many constraints and large numbers of parameters (which use EM) like HMM. Two constraint-based versions of the CEL-EM with different fusion strategies have been proposed using a constraint-based EA and the EM for better estimation of HMM in ASR. The first one uses a traditional constraint-handling mechanism of EA. The other version transforms a constrained optimization problem into an unconstrained problem using Lagrange multipliers. Fusion strategies for the CEL-EM use a staged-fusion approach where EM has been plugged with the EA periodically after the execution of EA for a specific period of time to maintain the global sampling capabilities of EA in the hybrid algorithm. A variable initialization approach (VIA) has been proposed using a variable segmentation to provide a better initialization for EA in the CEL-EM. Experimental results on the TIMIT speech corpus show that CEL-EM obtains higher recognition accuracies than the traditional EM algorithm as well as a top-standard EM (VIA-EM, constructed by applying the VIA to EM).
Maximum-likelihood soft-decision decoding of block codes using the A* algorithm
NASA Technical Reports Server (NTRS)
Ekroot, L.; Dolinar, S.
1994-01-01
The A* algorithm finds the path in a finite depth binary tree that optimizes a function. Here, it is applied to maximum-likelihood soft-decision decoding of block codes where the function optimized over the codewords is the likelihood function of the received sequence given each codeword. The algorithm considers codewords one bit at a time, making use of the most reliable received symbols first and pursuing only the partially expanded codewords that might be maximally likely. A version of the A* algorithm for maximum-likelihood decoding of block codes has been implemented for block codes up to 64 bits in length. The efficiency of this algorithm makes simulations of codes up to length 64 feasible. This article details the implementation currently in use, compares the decoding complexity with that of exhaustive search and Viterbi decoding algorithms, and presents performance curves obtained with this implementation of the A* algorithm for several codes.
Optimization of cutting parameters for machining time in turning process
NASA Astrophysics Data System (ADS)
Mavliutov, A. R.; Zlotnikov, E. G.
2018-03-01
This paper describes the most effective methods for nonlinear constraint optimization of cutting parameters in the turning process. Among them are Linearization Programming Method with Dual-Simplex algorithm, Interior Point method, and Augmented Lagrangian Genetic Algorithm (ALGA). Every each of them is tested on an actual example – the minimization of production rate in turning process. The computation was conducted in the MATLAB environment. The comparative results obtained from the application of these methods show: The optimal value of the linearized objective and the original function are the same. ALGA gives sufficiently accurate values, however, when the algorithm uses the Hybrid function with Interior Point algorithm, the resulted values have the maximal accuracy.
A Constant-Factor Approximation Algorithm for the Link Building Problem
NASA Astrophysics Data System (ADS)
Olsen, Martin; Viglas, Anastasios; Zvedeniouk, Ilia
In this work we consider the problem of maximizing the PageRank of a given target node in a graph by adding k new links. We consider the case that the new links must point to the given target node (backlinks). Previous work [7] shows that this problem has no fully polynomial time approximation schemes unless P = NP. We present a polynomial time algorithm yielding a PageRank value within a constant factor from the optimal. We also consider the naive algorithm where we choose backlinks from nodes with high PageRank values compared to the outdegree and show that the naive algorithm performs much worse on certain graphs compared to the constant factor approximation scheme.
Classification VIA Information-Theoretic Fusion of Vector-Magnetic and Acoustic Sensor Data
2007-04-01
10) where tBsBtBsBtBsBtsB zzyyxx, . (11) The operation in (10) may be viewed as a vector matched- filter on to estimate )(tB CPARv . In summary...choosing to maximize the classification information in Y are described in Section 3.2. A 3.2. Maximum mutual information ( MMI ) features We begin with a...review of several desirable properties of features that maximize a mutual information ( MMI ) criterion. Then we review a particular algorithm [2
Severson, Carl A; Pendharkar, Sachin R; Ronksley, Paul E; Tsai, Willis H
2015-01-01
To assess the ability of electronic health data and existing screening tools to identify clinically significant obstructive sleep apnea (OSA), as defined by symptomatic or severe OSA. The present retrospective cohort study of 1041 patients referred for sleep diagnostic testing was undertaken at a tertiary sleep centre in Calgary, Alberta. A diagnosis of clinically significant OSA or an alternative sleep diagnosis was assigned to each patient through blinded independent chart review by two sleep physicians. Predictive variables were identified from online questionnaire data, and diagnostic algorithms were developed. The performance of electronically derived algorithms for identifying patients with clinically significant OSA was determined. Diagnostic performance of these algorithms was compared with versions of the STOP-Bang questionnaire and adjusted neck circumference score (ANC) derived from electronic data. Electronic questionnaire data were highly sensitive (>95%) at identifying clinically significant OSA, but not specific. Sleep diagnostic testing-determined respiratory disturbance index was very specific (specificity ≥95%) for clinically relevant disease, but not sensitive (<35%). Derived algorithms had similar accuracy to the STOP-Bang or ANC, but required fewer questions and calculations. These data suggest that a two-step process using a small number of clinical variables (maximizing sensitivity) and objective diagnostic testing (maximizing specificity) is required to identify clinically significant OSA. When used in an online setting, simple algorithms can identify clinically relevant OSA with similar performance to existing decision rules such as the STOP-Bang or ANC.
NASA Astrophysics Data System (ADS)
Mousavi, Seyed Hosein; Nazemi, Ali; Hafezalkotob, Ashkan
2015-03-01
With the formation of the competitive electricity markets in the world, optimization of bidding strategies has become one of the main discussions in studies related to market designing. Market design is challenged by multiple objectives that need to be satisfied. The solution of those multi-objective problems is searched often over the combined strategy space, and thus requires the simultaneous optimization of multiple parameters. The problem is formulated analytically using the Nash equilibrium concept for games composed of large numbers of players having discrete and large strategy spaces. The solution methodology is based on a characterization of Nash equilibrium in terms of minima of a function and relies on a metaheuristic optimization approach to find these minima. This paper presents some metaheuristic algorithms to simulate how generators bid in the spot electricity market viewpoint of their profit maximization according to the other generators' strategies, such as genetic algorithm (GA), simulated annealing (SA) and hybrid simulated annealing genetic algorithm (HSAGA) and compares their results. As both GA and SA are generic search methods, HSAGA is also a generic search method. The model based on the actual data is implemented in a peak hour of Tehran's wholesale spot market in 2012. The results of the simulations show that GA outperforms SA and HSAGA on computing time, number of function evaluation and computing stability, as well as the results of calculated Nash equilibriums by GA are less various and different from each other than the other algorithms.
On Social Optima of Non-Cooperative Mean Field Games
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Sen; Zhang, Wei; Zhao, Lin
This paper studies the social optima in noncooperative mean-field games for a large population of agents with heterogeneous stochastic dynamic systems. Each agent seeks to maximize an individual utility functional, and utility functionals of different agents are coupled through a mean field term that depends on the mean of the population states/controls. The paper has the following contributions. First, we derive a set of control strategies for the agents that possess *-Nash equilibrium property, and converge to the mean-field Nash equilibrium as the population size goes to infinity. Second, we study the social optimal in the mean field game. Wemore » derive the conditions, termed the socially optimal conditions, under which the *-Nash equilibrium of the mean field game maximizes the social welfare. Third, a primal-dual algorithm is proposed to compute the *-Nash equilibrium of the mean field game. Since the *-Nash equilibrium of the mean field game is socially optimal, we can compute the equilibrium by solving the social welfare maximization problem, which can be addressed by a decentralized primal-dual algorithm. Numerical simulations are presented to demonstrate the effectiveness of the proposed approach.« less
Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach
NASA Astrophysics Data System (ADS)
Tunc, Sait; Donmez, Mehmet Ali; Kozat, Suleyman Serdar
2013-06-01
We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.
Disk Density Tuning of a Maximal Random Packing
Ebeida, Mohamed S.; Rushdi, Ahmad A.; Awad, Muhammad A.; Mahmoud, Ahmed H.; Yan, Dong-Ming; English, Shawn A.; Owens, John D.; Bajaj, Chandrajit L.; Mitchell, Scott A.
2016-01-01
We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations. PMID:27563162
Disk Density Tuning of a Maximal Random Packing.
Ebeida, Mohamed S; Rushdi, Ahmad A; Awad, Muhammad A; Mahmoud, Ahmed H; Yan, Dong-Ming; English, Shawn A; Owens, John D; Bajaj, Chandrajit L; Mitchell, Scott A
2016-08-01
We introduce an algorithmic framework for tuning the spatial density of disks in a maximal random packing, without changing the sizing function or radii of disks. Starting from any maximal random packing such as a Maximal Poisson-disk Sampling (MPS), we iteratively relocate, inject (add), or eject (remove) disks, using a set of three successively more-aggressive local operations. We may achieve a user-defined density, either more dense or more sparse, almost up to the theoretical structured limits. The tuned samples are conflict-free, retain coverage maximality, and, except in the extremes, retain the blue noise randomness properties of the input. We change the density of the packing one disk at a time, maintaining the minimum disk separation distance and the maximum domain coverage distance required of any maximal packing. These properties are local, and we can handle spatially-varying sizing functions. Using fewer points to satisfy a sizing function improves the efficiency of some applications. We apply the framework to improve the quality of meshes, removing non-obtuse angles; and to more accurately model fiber reinforced polymers for elastic and failure simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pokhrel, D; Badkul, R; Jiang, H
Purpose: To compare dose distributions calculated using the iPlan XVMC algorithm and heterogeneities corrected/uncorrected Pencil Beam (PB-hete/PB-homo) algorithms for SBRT treatments of lung tumors. Methods: Ten patients with centrally located solitary lung tumors were treated using MC-based SBRT to 60Gy in 5 fractions for PTVV100%=95%. ITV was delineated on MIP-images based on 4D-CT scans. PTVs(ITV+5mm margins) ranged from 10.1–106.5cc(mean=48.6cc). MC-SBRT plans were generated with a combination of non-coplanar conformal arcs/beams using iPlan-XVMC-algorithm (BrainLABiPlan ver.4.1.2) for Novalis-TX consisting of HD-MLCs and 6MV-SRS(1000MU/min) mode, following RTOG 0813 dosimetric criteria. For comparison, PB-hete/PB-homo algorithms were used to re-calculate dose distributions using same beammore » configurations, MLCs/monitor units. Plans were evaluated with isocenter/maximal/mean doses to PTV. Normal lung doses were evaluated with V5/V10/V20 and mean-lung-dose(MLD), excluding PTV. Other OAR doses such as maximal spinal cord/2cc-esophagus/max bronchial tree (BT/maximal heart doses were tabulated. Results: Maximal/mean/isocenter doses to PTV calculated by PB-hete were uniformly larger than MC plans by a factors of 1.09/1.13/1.07, on average, whereas they were consistently lower by PB-homo by a factors of 0.9/0.84/0.9, respectively. The volume covered by 5Gy/10Gy/20Gy isodose-lines of the lung were comparable (average within±3%) when calculated by PB-hete compared to XVMC, but, consistently lower by PB-homo by a factors of 0.90/0.88/0.85, respectively. MLD was higher with PB-hete by 1.05, but, lower by PB-homo by 0.9, on average, compared to XVMC. XVMC max-cord/max-BT/max-heart and 2cc of esophagus doses were comparable to PB-hete; however, PB-homo underestimates by a factors of 0.82/0.89/0.88/0.86, on average, respectively. Conclusion: PB-hete significantly overestimates dose to PTV relative to XVMC -hence underdosing the target. MC is more complex and accurate with tissue-heterogeneities.The magnitude of variation significantly varies with ‘small-island-tumor’ surrounded by low-density lung tissues -PB algorithms lacks later electron scattering. Dose calculation with XVMC for lung SBRT is routinely performed in our clinic, its performance for head'neck/sinus cases will also be investigated.« less
Deterministic annealing for density estimation by multivariate normal mixtures
NASA Astrophysics Data System (ADS)
Kloppenburg, Martin; Tavan, Paul
1997-03-01
An approach to maximum-likelihood density estimation by mixtures of multivariate normal distributions for large high-dimensional data sets is presented. Conventionally that problem is tackled by notoriously unstable expectation-maximization (EM) algorithms. We remove these instabilities by the introduction of soft constraints, enabling deterministic annealing. Our developments are motivated by the proof that algorithmically stable fuzzy clustering methods that are derived from statistical physics analogs are special cases of EM procedures.
Anytime synthetic projection: Maximizing the probability of goal satisfaction
NASA Technical Reports Server (NTRS)
Drummond, Mark; Bresina, John L.
1990-01-01
A projection algorithm is presented for incremental control rule synthesis. The algorithm synthesizes an initial set of goal achieving control rules using a combination of situation probability and estimated remaining work as a search heuristic. This set of control rules has a certain probability of satisfying the given goal. The probability is incrementally increased by synthesizing additional control rules to handle 'error' situations the execution system is likely to encounter when following the initial control rules. By using situation probabilities, the algorithm achieves a computationally effective balance between the limited robustness of triangle tables and the absolute robustness of universal plans.
NASA Technical Reports Server (NTRS)
Phinney, D. E. (Principal Investigator)
1980-01-01
An algorithm for estimating spectral crop calendar shifts of spring small grains was applied to 1978 spring wheat fields. The algorithm provides estimates of the date of peak spectral response by maximizing the cross correlation between a reference profile and the observed multitemporal pattern of Kauth-Thomas greenness for a field. A methodology was developed for estimation of crop development stage from the date of peak spectral response. Evaluation studies showed that the algorithm provided stable estimates with no geographical bias. Crop development stage estimates had a root mean square error near 10 days. The algorithm was recommended for comparative testing against other models which are candidates for use in AgRISTARS experiments.
Fusing face-verification algorithms and humans.
O'Toole, Alice J; Abdi, Hervé; Jiang, Fang; Phillips, P Jonathon
2007-10-01
It has been demonstrated recently that state-of-the-art face-recognition algorithms can surpass human accuracy at matching faces over changes in illumination. The ranking of algorithms and humans by accuracy, however, does not provide information about whether algorithms and humans perform the task comparably or whether algorithms and humans can be fused to improve performance. In this paper, we fused humans and algorithms using partial least square regression (PLSR). In the first experiment, we applied PLSR to face-pair similarity scores generated by seven algorithms participating in the Face Recognition Grand Challenge. The PLSR produced an optimal weighting of the similarity scores, which we tested for generality with a jackknife procedure. Fusing the algorithms' similarity scores using the optimal weights produced a twofold reduction of error rate over the most accurate algorithm. Next, human-subject-generated similarity scores were added to the PLSR analysis. Fusing humans and algorithms increased the performance to near-perfect classification accuracy. These results are discussed in terms of maximizing face-verification accuracy with hybrid systems consisting of multiple algorithms and humans.
Resource-aware taxon selection for maximizing phylogenetic diversity.
Pardi, Fabio; Goldman, Nick
2007-06-01
Phylogenetic diversity (PD) is a useful metric for selecting taxa in a range of biological applications, for example, bioconservation and genomics, where the selection is usually constrained by the limited availability of resources. We formalize taxon selection as a conceptually simple optimization problem, aiming to maximize PD subject to resource constraints. This allows us to take into account the different amounts of resources required by the different taxa. Although this is a computationally difficult problem, we present a dynamic programming algorithm that solves it in pseudo-polynomial time. Our algorithm can also solve many instances of the Noah's Ark Problem, a more realistic formulation of taxon selection for biodiversity conservation that allows for taxon-specific extinction risks. These instances extend the set of problems for which solutions are available beyond previously known greedy-tractable cases. Finally, we discuss the relevance of our results to real-life scenarios.
NASA Astrophysics Data System (ADS)
Zhang, Zhengfang; Chen, Weifeng
2018-05-01
Maximization of the smallest eigenfrequency of the linearized elasticity system with area constraint is investigated. The elasticity system is extended into a large background domain, but the void is vacuum and not filled with ersatz material. The piecewise constant level set (PCLS) method is applied to present two regions, the original material region and the void region. A quadratic PCLS function is proposed to represent the characteristic function. Consequently, the functional derivative of the smallest eigenfrequency with respect to PCLS function takes nonzero value in the original material region and zero in the void region. A penalty gradient algorithm is proposed, which initializes the whole background domain with the original material and decreases the area of original material region till the area constraint is satisfied. 2D and 3D numerical examples are presented, illustrating the validity of the proposed algorithm.
WFIRST: Exoplanet Target Selection and Scheduling with Greedy Optimization
NASA Astrophysics Data System (ADS)
Keithly, Dean; Garrett, Daniel; Delacroix, Christian; Savransky, Dmitry
2018-01-01
We present target selection and scheduling algorithms for missions with direct imaging of exoplanets, and the Wide Field Infrared Survey Telescope (WFIRST) in particular, which will be equipped with a coronagraphic instrument (CGI). Optimal scheduling of CGI targets can maximize the expected value of directly imaged exoplanets (completeness). Using target completeness as a reward metric and integration time plus overhead time as a cost metric, we can maximize the sum completeness for a mission with a fixed duration. We optimize over these metrics to create a list of target stars using a greedy optimization algorithm based off altruistic yield optimization (AYO) under ideal conditions. We simulate full missions using EXOSIMS by observing targets in this list for their predetermined integration times. In this poster, we report the theoretical maximum sum completeness, mean number of detected exoplanets from Monte Carlo simulations, and the ideal expected value of the simulated missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Youngrok
2013-05-15
Heterogeneity exists on a data set when samples from di erent classes are merged into the data set. Finite mixture models can be used to represent a survival time distribution on heterogeneous patient group by the proportions of each class and by the survival time distribution within each class as well. The heterogeneous data set cannot be explicitly decomposed to homogeneous subgroups unless all the samples are precisely labeled by their origin classes; such impossibility of decomposition is a barrier to overcome for estimating nite mixture models. The expectation-maximization (EM) algorithm has been used to obtain maximum likelihood estimates ofmore » nite mixture models by soft-decomposition of heterogeneous samples without labels for a subset or the entire set of data. In medical surveillance databases we can find partially labeled data, that is, while not completely unlabeled there is only imprecise information about class values. In this study we propose new EM algorithms that take advantages of using such partial labels, and thus incorporate more information than traditional EM algorithms. We particularly propose four variants of the EM algorithm named EM-OCML, EM-PCML, EM-HCML and EM-CPCML, each of which assumes a specific mechanism of missing class values. We conducted a simulation study on exponential survival trees with five classes and showed that the advantages of incorporating substantial amount of partially labeled data can be highly signi cant. We also showed model selection based on AIC values fairly works to select the best proposed algorithm on each specific data set. A case study on a real-world data set of gastric cancer provided by Surveillance, Epidemiology and End Results (SEER) program showed a superiority of EM-CPCML to not only the other proposed EM algorithms but also conventional supervised, unsupervised and semi-supervised learning algorithms.« less
SPECT data acquisition and image reconstruction in a stationary small animal SPECT/MRI system
NASA Astrophysics Data System (ADS)
Xu, Jingyan; Chen, Si; Yu, Jianhua; Meier, Dirk; Wagenaar, Douglas J.; Patt, Bradley E.; Tsui, Benjamin M. W.
2010-04-01
The goal of the study was to investigate data acquisition strategies and image reconstruction methods for a stationary SPECT insert that can operate inside an MRI scanner with a 12 cm bore diameter for simultaneous SPECT/MRI imaging of small animals. The SPECT insert consists of 3 octagonal rings of 8 MR-compatible CZT detectors per ring surrounding a multi-pinhole (MPH) collimator sleeve. Each pinhole is constructed to project the field-of-view (FOV) to one CZT detector. All 24 pinholes are focused to a cylindrical FOV of 25 mm in diameter and 34 mm in length. The data acquisition strategies we evaluated were optional collimator rotations to improve tomographic sampling; and the image reconstruction methods were iterative ML-EM with and without compensation for the geometric response function (GRF) of the MPH collimator. For this purpose, we developed an analytic simulator that calculates the system matrix with the GRF models of the MPH collimator. The simulator was used to generate projection data of a digital rod phantom with pinhole aperture sizes of 1 mm and 2 mm and with different collimator rotation patterns. Iterative ML-EM reconstruction with and without GRF compensation were used to reconstruct the projection data from the central ring of 8 detectors only, and from all 24 detectors. Our results indicated that without GRF compensation and at the default design of 24 projection views, the reconstructed images had significant artifacts. Accurate GRF compensation substantially improved the reconstructed image resolution and reduced image artifacts. With accurate GRF compensation, useful reconstructed images can be obtained using 24 projection views only. This last finding potentially enables dynamic SPECT (and/or MRI) studies in small animals, one of many possible application areas of the SPECT/MRI system. Further research efforts are warranted including experimentally measuring the system matrix for improved geometrical accuracy, incorporating the co-registered MRI image in SPECT reconstruction, and exploring potential applications of the simultaneous SPECT/MRI SA system including dynamic SPECT studies.
Motion Cueing Algorithm Development: Initial Investigation and Redesign of the Algorithms
NASA Technical Reports Server (NTRS)
Telban, Robert J.; Wu, Weimin; Cardullo, Frank M.; Houck, Jacob A. (Technical Monitor)
2000-01-01
In this project four motion cueing algorithms were initially investigated. The classical algorithm generated results with large distortion and delay and low magnitude. The NASA adaptive algorithm proved to be well tuned with satisfactory performance, while the UTIAS adaptive algorithm produced less desirable results. Modifications were made to the adaptive algorithms to reduce the magnitude of undesirable spikes. The optimal algorithm was found to have the potential for improved performance with further redesign. The center of simulator rotation was redefined. More terms were added to the cost function to enable more tuning flexibility. A new design approach using a Fortran/Matlab/Simulink setup was employed. A new semicircular canals model was incorporated in the algorithm. With these changes results show the optimal algorithm has some advantages over the NASA adaptive algorithm. Two general problems observed in the initial investigation required solutions. A nonlinear gain algorithm was developed that scales the aircraft inputs by a third-order polynomial, maximizing the motion cues while remaining within the operational limits of the motion system. A braking algorithm was developed to bring the simulator to a full stop at its motion limit and later release the brake to follow the cueing algorithm output.
Wind farm optimization using evolutionary algorithms
NASA Astrophysics Data System (ADS)
Ituarte-Villarreal, Carlos M.
In recent years, the wind power industry has focused its efforts on solving the Wind Farm Layout Optimization (WFLO) problem. Wind resource assessment is a pivotal step in optimizing the wind-farm design and siting and, in determining whether a project is economically feasible or not. In the present work, three (3) different optimization methods are proposed for the solution of the WFLO: (i) A modified Viral System Algorithm applied to the optimization of the proper location of the components in a wind-farm to maximize the energy output given a stated wind environment of the site. The optimization problem is formulated as the minimization of energy cost per unit produced and applies a penalization for the lack of system reliability. The viral system algorithm utilized in this research solves three (3) well-known problems in the wind-energy literature; (ii) a new multiple objective evolutionary algorithm to obtain optimal placement of wind turbines while considering the power output, cost, and reliability of the system. The algorithm presented is based on evolutionary computation and the objective functions considered are the maximization of power output, the minimization of wind farm cost and the maximization of system reliability. The final solution to this multiple objective problem is presented as a set of Pareto solutions and, (iii) A hybrid viral-based optimization algorithm adapted to find the proper component configuration for a wind farm with the introduction of the universal generating function (UGF) analytical approach to discretize the different operating or mechanical levels of the wind turbines in addition to the various wind speed states. The proposed methodology considers the specific probability functions of the wind resource to describe their proper behaviors to account for the stochastic comportment of the renewable energy components, aiming to increase their power output and the reliability of these systems. The developed heuristic considers a variable number of system components and wind turbines with different operating characteristics and sizes, to have a more heterogeneous model that can deal with changes in the layout and in the power generation requirements over the time. Moreover, the approach evaluates the impact of the wind-wake effect of the wind turbines upon one another to describe and evaluate the power production capacity reduction of the system depending on the layout distribution of the wind turbines.
WE-AB-204-10: Evaluation of a Novel Dedicated Breast PET System (Mammi-PET)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Z; Swanson, T; O’Connor, M
2015-06-15
Purpose: To evaluate the performance characteristics of a novel dedicated breast PET system (Mammi-PET, Oncovision). The system has 2 detector rings giving axial/transaxial field of view of 8/17 cm. Each ring consists of 12 monolithic LYSO modules coupled to PSPMTs. Methods: Uniformity, sensitivity, energy and spatial resolution were measured according to NEMA standards. Count rate performance was investigated using a source of F-18 (1384uCi) decayed over 5 half-lives. A prototype PET phantom was imaged for 20 min to evaluate image quality, recovery coefficients and partial volume effects. Under an IRB-approved protocol, 11 patients who just underwent whole body PET/CT examsmore » were imaged prone with the breast pendulant at 5–10 minutes/breast. Image quality was assessed with and without scatter/attenuation correction and using different reconstruction algorithms. Results: Integral/differential uniformity were 9.8%/6.0% respectively. System sensitivity was 2.3% on axis, 2.2% and 2.8% at 3.8 cm and 7.8 cm off-axis. Mean energy resolution of all modules was 23.3%. Spatial resolution (FWHM) was 1.82 mm and 2.90 mm on axis and 5.8 cm off axis. Three cylinders (14 mm diameter) in the PET phantom were filled with activity concentration ratios of 4:1, 3:1, and 2:1 relative to the background. Measured cylinder to background ratios were 2.6, 1.8 and 1.5 (without corrections) and 3.6, 2.3 and 1.5 (with attenuation/scatter correction). Five cylinders (14, 10, 6, 4 and 2 mm diameter) each with an activity ratio of 4:1 were measured and showed recovery coefficients of 1, 0.66, 0.45, 0.18 and 0.18 (without corrections), and 1, 0.53, 0.30, 0.13 and 0 (with attenuation/scatter correction). Optimal phantom image quality was obtained with 3D MLEM algorithm, >20 iterations and without attenuation/scatter correction. Conclusion: The MAMMI system demonstrated good performance characteristics. Further work is needed to determine the optimal reconstruction parameters for qualitative and quantitative applications.« less
Gauge-free cluster variational method by maximal messages and moment matching.
Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico
2017-04-01
We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer
Yu, Hongyan; Zhang, Yongqiang; Yang, Yuanyuan; Ji, Luyue
2017-01-01
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively. PMID:28820496
Energy Efficiency Maximization for WSNs with Simultaneous Wireless Information and Power Transfer.
Yu, Hongyan; Zhang, Yongqiang; Guo, Songtao; Yang, Yuanyuan; Ji, Luyue
2017-08-18
Recently, the simultaneous wireless information and power transfer (SWIPT) technique has been regarded as a promising approach to enhance performance of wireless sensor networks with limited energy supply. However, from a green communication perspective, energy efficiency optimization for SWIPT system design has not been investigated in Wireless Rechargeable Sensor Networks (WRSNs). In this paper, we consider the tradeoffs between energy efficiency and three factors including spectral efficiency, the transmit power and outage target rate for two different modes, i.e., power splitting (PS) and time switching modes (TS), at the receiver. Moreover, we formulate the energy efficiency maximization problem subject to the constraints of minimum Quality of Service (QoS), minimum harvested energy and maximum transmission power as non-convex optimization problem. In particular, we focus on optimizing power control and power allocation policy in PS and TS modes to maximize energy efficiency of data transmission. For PS and TS modes, we propose the corresponding algorithm to characterize a non-convex optimization problem that takes into account the circuit power consumption and the harvested energy. By exploiting nonlinear fractional programming and Lagrangian dual decomposition, we propose suboptimal iterative algorithms to obtain the solutions of non-convex optimization problems. Furthermore, we derive the outage probability and effective throughput from the scenarios that the transmitter does not or partially know the channel state information (CSI) of the receiver. Simulation results illustrate that the proposed optimal iterative algorithm can achieve optimal solutions within a small number of iterations and various tradeoffs between energy efficiency and spectral efficiency, transmit power and outage target rate, respectively.
Gauge-free cluster variational method by maximal messages and moment matching
NASA Astrophysics Data System (ADS)
Domínguez, Eduardo; Lage-Castellanos, Alejandro; Mulet, Roberto; Ricci-Tersenghi, Federico
2017-04-01
We present an implementation of the cluster variational method (CVM) as a message passing algorithm. The kind of message passing algorithm used for CVM, usually named generalized belief propagation (GBP), is a generalization of the belief propagation algorithm in the same way that CVM is a generalization of the Bethe approximation for estimating the partition function. However, the connection between fixed points of GBP and the extremal points of the CVM free energy is usually not a one-to-one correspondence because of the existence of a gauge transformation involving the GBP messages. Our contribution is twofold. First, we propose a way of defining messages (fields) in a generic CVM approximation, such that messages arrive on a given region from all its ancestors, and not only from its direct parents, as in the standard parent-to-child GBP. We call this approach maximal messages. Second, we focus on the case of binary variables, reinterpreting the messages as fields enforcing the consistency between the moments of the local (marginal) probability distributions. We provide a precise rule to enforce all consistencies, avoiding any redundancy, that would otherwise lead to a gauge transformation on the messages. This moment matching method is gauge free, i.e., it guarantees that the resulting GBP is not gauge invariant. We apply our maximal messages and moment matching GBP to obtain an analytical expression for the critical temperature of the Ising model in general dimensions at the level of plaquette CVM. The values obtained outperform Bethe estimates, and are comparable with loop corrected belief propagation equations. The method allows for a straightforward generalization to disordered systems.
Lee, Jong-Seok; Park, Cheol Hoon
2010-08-01
We propose a novel stochastic optimization algorithm, hybrid simulated annealing (SA), to train hidden Markov models (HMMs) for visual speech recognition. In our algorithm, SA is combined with a local optimization operator that substitutes a better solution for the current one to improve the convergence speed and the quality of solutions. We mathematically prove that the sequence of the objective values converges in probability to the global optimum in the algorithm. The algorithm is applied to train HMMs that are used as visual speech recognizers. While the popular training method of HMMs, the expectation-maximization algorithm, achieves only local optima in the parameter space, the proposed method can perform global optimization of the parameters of HMMs and thereby obtain solutions yielding improved recognition performance. The superiority of the proposed algorithm to the conventional ones is demonstrated via isolated word recognition experiments.
Nakrani, Sunil; Tovey, Craig
2007-12-01
An Internet hosting center hosts services on its server ensemble. The center must allocate servers dynamically amongst services to maximize revenue earned from hosting fees. The finite server ensemble, unpredictable request arrival behavior and server reallocation cost make server allocation optimization difficult. Server allocation closely resembles honeybee forager allocation amongst flower patches to optimize nectar influx. The resemblance inspires a honeybee biomimetic algorithm. This paper describes details of the honeybee self-organizing model in terms of information flow and feedback, analyzes the homology between the two problems and derives the resulting biomimetic algorithm for hosting centers. The algorithm is assessed for effectiveness and adaptiveness by comparative testing against benchmark and conventional algorithms. Computational results indicate that the new algorithm is highly adaptive to widely varying external environments and quite competitive against benchmark assessment algorithms. Other swarm intelligence applications are briefly surveyed, and some general speculations are offered regarding their various degrees of success.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Ellis, Sam; Reader, Andrew J
2018-04-26
Many clinical contexts require the acquisition of multiple positron emission tomography (PET) scans of a single subject, for example, to observe and quantitate changes in functional behaviour in tumors after treatment in oncology. Typically, the datasets from each of these scans are reconstructed individually, without exploiting the similarities between them. We have recently shown that sharing information between longitudinal PET datasets by penalizing voxel-wise differences during image reconstruction can improve reconstructed images by reducing background noise and increasing the contrast-to-noise ratio of high-activity lesions. Here, we present two additional novel longitudinal difference-image priors and evaluate their performance using two-dimesional (2D) simulation studies and a three-dimensional (3D) real dataset case study. We have previously proposed a simultaneous difference-image-based penalized maximum likelihood (PML) longitudinal image reconstruction method that encourages sparse difference images (DS-PML), and in this work we propose two further novel prior terms. The priors are designed to encourage longitudinal images with corresponding differences which have (a) low entropy (DE-PML), and (b) high sparsity in their spatial gradients (DTV-PML). These two new priors and the originally proposed longitudinal prior were applied to 2D-simulated treatment response [ 18 F]fluorodeoxyglucose (FDG) brain tumor datasets and compared to standard maximum likelihood expectation-maximization (MLEM) reconstructions. These 2D simulation studies explored the effects of penalty strengths, tumor behaviour, and interscan coupling on reconstructed images. Finally, a real two-scan longitudinal data series acquired from a head and neck cancer patient was reconstructed with the proposed methods and the results compared to standard reconstruction methods. Using any of the three priors with an appropriate penalty strength produced images with noise levels equivalent to those seen when using standard reconstructions with increased counts levels. In tumor regions, each method produces subtly different results in terms of preservation of tumor quantitation and reconstruction root mean-squared error (RMSE). In particular, in the two-scan simulations, the DE-PML method produced tumor means in close agreement with MLEM reconstructions, while the DTV-PML method produced the lowest errors due to noise reduction within the tumor. Across a range of tumor responses and different numbers of scans, similar results were observed, with DTV-PML producing the lowest errors of the three priors and DE-PML producing the lowest bias. Similar improvements were observed in the reconstructions of the real longitudinal datasets, although imperfect alignment of the two PET images resulted in additional changes in the difference image that affected the performance of the proposed methods. Reconstruction of longitudinal datasets by penalizing difference images between pairs of scans from a data series allows for noise reduction in all reconstructed images. An appropriate choice of penalty term and penalty strength allows for this noise reduction to be achieved while maintaining reconstruction performance in regions of change, either in terms of quantitation of mean intensity via DE-PML, or in terms of tumor RMSE via DTV-PML. Overall, improving the image quality of longitudinal datasets via simultaneous reconstruction has the potential to improve upon currently used methods, allow dose reduction, or reduce scan time while maintaining image quality at current levels. © 2018 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, Peng; Hutton, Brian F.; Holstensson, Maria
2015-12-15
Purpose: The energy spectrum for a cadmium zinc telluride (CZT) detector has a low energy tail due to incomplete charge collection and intercrystal scattering. Due to these solid-state detector effects, scatter would be overestimated if the conventional triple-energy window (TEW) method is used for scatter and crosstalk corrections in CZT-based imaging systems. The objective of this work is to develop a scatter and crosstalk correction method for {sup 99m}Tc/{sup 123}I dual-radionuclide imaging for a CZT-based dedicated cardiac SPECT system with pinhole collimators (GE Discovery NM 530c/570c). Methods: A tailing model was developed to account for the low energy tail effectsmore » of the CZT detector. The parameters of the model were obtained using {sup 99m}Tc and {sup 123}I point source measurements. A scatter model was defined to characterize the relationship between down-scatter and self-scatter projections. The parameters for this model were obtained from Monte Carlo simulation using SIMIND. The tailing and scatter models were further incorporated into a projection count model, and the primary and self-scatter projections of each radionuclide were determined with a maximum likelihood expectation maximization (MLEM) iterative estimation approach. The extracted scatter and crosstalk projections were then incorporated into MLEM image reconstruction as an additive term in forward projection to obtain scatter- and crosstalk-corrected images. The proposed method was validated using Monte Carlo simulation, line source experiment, anthropomorphic torso phantom studies, and patient studies. The performance of the proposed method was also compared to that obtained with the conventional TEW method. Results: Monte Carlo simulations and line source experiment demonstrated that the TEW method overestimated scatter while their proposed method provided more accurate scatter estimation by considering the low energy tail effect. In the phantom study, improved defect contrasts were observed with both correction methods compared to no correction, especially for the images of {sup 99m}Tc in dual-radionuclide imaging where there is heavy contamination from {sup 123}I. In this case, the nontransmural defect contrast was improved from 0.39 to 0.47 with the TEW method and to 0.51 with their proposed method and the transmural defect contrast was improved from 0.62 to 0.74 with the TEW method and to 0.73 with their proposed method. In the patient study, the proposed method provided higher myocardium-to-blood pool contrast than that of the TEW method. Similar to the phantom experiment, the improvement was the most substantial for the images of {sup 99m}Tc in dual-radionuclide imaging. In this case, the myocardium-to-blood pool ratio was improved from 7.0 to 38.3 with the TEW method and to 63.6 with their proposed method. Compared to the TEW method, the proposed method also provided higher count levels in the reconstructed images in both phantom and patient studies, indicating reduced overestimation of scatter. Using the proposed method, consistent reconstruction results were obtained for both single-radionuclide data with scatter correction and dual-radionuclide data with scatter and crosstalk corrections, in both phantom and human studies. Conclusions: The authors demonstrate that the TEW method leads to overestimation in scatter and crosstalk for the CZT-based imaging system while the proposed scatter and crosstalk correction method can provide more accurate self-scatter and down-scatter estimations for quantitative single-radionuclide and dual-radionuclide imaging.« less
Muñoz, Mario A; Smith-Miles, Kate A
2017-01-01
This article presents a method for the objective assessment of an algorithm's strengths and weaknesses. Instead of examining the performance of only one or more algorithms on a benchmark set, or generating custom problems that maximize the performance difference between two algorithms, our method quantifies both the nature of the test instances and the algorithm performance. Our aim is to gather information about possible phase transitions in performance, that is, the points in which a small change in problem structure produces algorithm failure. The method is based on the accurate estimation and characterization of the algorithm footprints, that is, the regions of instance space in which good or exceptional performance is expected from an algorithm. A footprint can be estimated for each algorithm and for the overall portfolio. Therefore, we select a set of features to generate a common instance space, which we validate by constructing a sufficiently accurate prediction model. We characterize the footprints by their area and density. Our method identifies complementary performance between algorithms, quantifies the common features of hard problems, and locates regions where a phase transition may lie.
Orbit Clustering Based on Transfer Cost
NASA Technical Reports Server (NTRS)
Gustafson, Eric D.; Arrieta-Camacho, Juan J.; Petropoulos, Anastassios E.
2013-01-01
We propose using cluster analysis to perform quick screening for combinatorial global optimization problems. The key missing component currently preventing cluster analysis from use in this context is the lack of a useable metric function that defines the cost to transfer between two orbits. We study several proposed metrics and clustering algorithms, including k-means and the expectation maximization algorithm. We also show that proven heuristic methods such as the Q-law can be modified to work with cluster analysis.
Aralis, Hilary; Brookmeyer, Ron
2017-01-01
Multistate models provide an important method for analyzing a wide range of life history processes including disease progression and patient recovery following medical intervention. Panel data consisting of the states occupied by an individual at a series of discrete time points are often used to estimate transition intensities of the underlying continuous-time process. When transition intensities depend on the time elapsed in the current state and back transitions between states are possible, this intermittent observation process presents difficulties in estimation due to intractability of the likelihood function. In this manuscript, we present an iterative stochastic expectation-maximization algorithm that relies on a simulation-based approximation to the likelihood function and implement this algorithm using rejection sampling. In a simulation study, we demonstrate the feasibility and performance of the proposed procedure. We then demonstrate application of the algorithm to a study of dementia, the Nun Study, consisting of intermittently-observed elderly subjects in one of four possible states corresponding to intact cognition, impaired cognition, dementia, and death. We show that the proposed stochastic expectation-maximization algorithm substantially reduces bias in model parameter estimates compared to an alternative approach used in the literature, minimal path estimation. We conclude that in estimating intermittently observed semi-Markov models, the proposed approach is a computationally feasible and accurate estimation procedure that leads to substantial improvements in back transition estimates.
Variational Gaussian approximation for Poisson data
NASA Astrophysics Data System (ADS)
Arridge, Simon R.; Ito, Kazufumi; Jin, Bangti; Zhang, Chen
2018-02-01
The Poisson model is frequently employed to describe count data, but in a Bayesian context it leads to an analytically intractable posterior probability distribution. In this work, we analyze a variational Gaussian approximation to the posterior distribution arising from the Poisson model with a Gaussian prior. This is achieved by seeking an optimal Gaussian distribution minimizing the Kullback-Leibler divergence from the posterior distribution to the approximation, or equivalently maximizing the lower bound for the model evidence. We derive an explicit expression for the lower bound, and show the existence and uniqueness of the optimal Gaussian approximation. The lower bound functional can be viewed as a variant of classical Tikhonov regularization that penalizes also the covariance. Then we develop an efficient alternating direction maximization algorithm for solving the optimization problem, and analyze its convergence. We discuss strategies for reducing the computational complexity via low rank structure of the forward operator and the sparsity of the covariance. Further, as an application of the lower bound, we discuss hierarchical Bayesian modeling for selecting the hyperparameter in the prior distribution, and propose a monotonically convergent algorithm for determining the hyperparameter. We present extensive numerical experiments to illustrate the Gaussian approximation and the algorithms.
Scalable learning method for feedforward neural networks using minimal-enclosing-ball approximation.
Wang, Jun; Deng, Zhaohong; Luo, Xiaoqing; Jiang, Yizhang; Wang, Shitong
2016-06-01
Training feedforward neural networks (FNNs) is one of the most critical issues in FNNs studies. However, most FNNs training methods cannot be directly applied for very large datasets because they have high computational and space complexity. In order to tackle this problem, the CCMEB (Center-Constrained Minimum Enclosing Ball) problem in hidden feature space of FNN is discussed and a novel learning algorithm called HFSR-GCVM (hidden-feature-space regression using generalized core vector machine) is developed accordingly. In HFSR-GCVM, a novel learning criterion using L2-norm penalty-based ε-insensitive function is formulated and the parameters in the hidden nodes are generated randomly independent of the training sets. Moreover, the learning of parameters in its output layer is proved equivalent to a special CCMEB problem in FNN hidden feature space. As most CCMEB approximation based machine learning algorithms, the proposed HFSR-GCVM training algorithm has the following merits: The maximal training time of the HFSR-GCVM training is linear with the size of training datasets and the maximal space consumption is independent of the size of training datasets. The experiments on regression tasks confirm the above conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.
On the Structure of a Best Possible Crossover Selection Strategy in Genetic Algorithms
NASA Astrophysics Data System (ADS)
Lässig, Jörg; Hoffmann, Karl Heinz
The paper considers the problem of selecting individuals in the current population in genetic algorithms for crossover to find a solution with high fitness for a given optimization problem. Many different schemes have been described in the literature as possible strategies for this task but so far comparisons have been predominantly empirical. It is shown that if one wishes to maximize any linear function of the final state probabilities, e.g. the fitness of the best individual in the final population of the algorithm, then a best probability distribution for selecting an individual in each generation is a rectangular distribution over the individuals sorted in descending sequence by their fitness values. This means uniform probabilities have to be assigned to a group of the best individuals of the population but probabilities equal to zero to individuals with lower fitness, assuming that the probability distribution to choose individuals from the current population can be chosen independently for each iteration and each individual. This result is then generalized also to typical practically applied performance measures, such as maximizing the expected fitness value of the best individual seen in any generation.
Error field optimization in DIII-D using extremum seeking control
Lanctot, M. J.; Olofsson, K. E. J.; Capella, M.; ...
2016-06-03
A closed-loop error field control algorithm is implemented in the Plasma Control System of the DIII-D tokamak and used to identify optimal control currents during a single plasma discharge. The algorithm, based on established extremum seeking control theory, exploits the link in tokamaks between maximizing the toroidal angular momentum and minimizing deleterious non-axisymmetric magnetic fields. Slowly-rotating n = 1 fields (the dither), generated by external coils, are used to perturb the angular momentum, monitored in real-time using a charge-exchange spectroscopy diagnostic. Simple signal processing of the rotation measurements extracts information about the rotation gradient with respect to the control coilmore » currents. This information is used to converge the control coil currents to a point that maximizes the toroidal angular momentum. The technique is well-suited for multi-coil, multi-harmonic error field optimizations in disruption sensitive devices as it does not require triggering locked tearing modes or plasma current disruptions. Control simulations highlight the importance of the initial search direction on the rate of the convergence, and identify future algorithm upgrades that may allow more rapid convergence that projects to convergence times in ITER on the order of tens of seconds.« less
Chitalia, Rhea; Mueller, Jenna; Fu, Henry L; Whitley, Melodi Javid; Kirsch, David G; Brown, J Quincy; Willett, Rebecca; Ramanujam, Nimmi
2016-09-01
Fluorescence microscopy can be used to acquire real-time images of tissue morphology and with appropriate algorithms can rapidly quantify features associated with disease. The objective of this study was to assess the ability of various segmentation algorithms to isolate fluorescent positive features (FPFs) in heterogeneous images and identify an approach that can be used across multiple fluorescence microscopes with minimal tuning between systems. Specifically, we show a variety of image segmentation algorithms applied to images of stained tumor and muscle tissue acquired with 3 different fluorescence microscopes. Results indicate that a technique called maximally stable extremal regions followed by thresholding (MSER + Binary) yielded the greatest contrast in FPF density between tumor and muscle images across multiple microscopy systems.
Research reactor loading pattern optimization using estimation of distribution algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, S.; Ziver, K.; AMCG Group, RM Consultants, Abingdon
2006-07-01
A new evolutionary search based approach for solving the nuclear reactor loading pattern optimization problems is presented based on the Estimation of Distribution Algorithms. The optimization technique developed is then applied to the maximization of the effective multiplication factor (K{sub eff}) of the Imperial College CONSORT research reactor (the last remaining civilian research reactor in the United Kingdom). A new elitism-guided searching strategy has been developed and applied to improve the local convergence together with some problem-dependent information based on the 'stand-alone K{sub eff} with fuel coupling calculations. A comparison study between the EDAs and a Genetic Algorithm with Heuristicmore » Tie Breaking Crossover operator has shown that the new algorithm is efficient and robust. (authors)« less
Coverage-maximization in networks under resource constraints.
Nandi, Subrata; Brusch, Lutz; Deutsch, Andreas; Ganguly, Niloy
2010-06-01
Efficient coverage algorithms are essential for information search or dispersal in all kinds of networks. We define an extended coverage problem which accounts for constrained resources of consumed bandwidth B and time T . Our solution to the network challenge is here studied for regular grids only. Using methods from statistical mechanics, we develop a coverage algorithm with proliferating message packets and temporally modulated proliferation rate. The algorithm performs as efficiently as a single random walker but O(B(d-2)/d) times faster, resulting in significant service speed-up on a regular grid of dimension d . The algorithm is numerically compared to a class of generalized proliferating random walk strategies and on regular grids shown to perform best in terms of the product metric of speed and efficiency.
Multiobjective optimization of temporal processes.
Song, Zhe; Kusiak, Andrew
2010-06-01
This paper presents a dynamic predictive-optimization framework of a nonlinear temporal process. Data-mining (DM) and evolutionary strategy algorithms are integrated in the framework for solving the optimization model. DM algorithms learn dynamic equations from the process data. An evolutionary strategy algorithm is then applied to solve the optimization problem guided by the knowledge extracted by the DM algorithm. The concept presented in this paper is illustrated with the data from a power plant, where the goal is to maximize the boiler efficiency and minimize the limestone consumption. This multiobjective optimization problem can be either transformed into a single-objective optimization problem through preference aggregation approaches or into a Pareto-optimal optimization problem. The computational results have shown the effectiveness of the proposed optimization framework.
Parallel State Space Construction for a Model Checking Based on Maximality Semantics
NASA Astrophysics Data System (ADS)
El Abidine Bouneb, Zine; Saīdouni, Djamel Eddine
2009-03-01
The main limiting factor of the model checker integrated in the concurrency verification environment FOCOVE [1, 2], which use the maximality based labeled transition system (noted MLTS) as a true concurrency model[3, 4], is currently the amount of available physical memory. Many techniques have been developed to reduce the size of a state space. An interesting technique among them is the alpha equivalence reduction. Distributed memory execution environment offers yet another choice. The main contribution of the paper is to show that the parallel state space construction algorithm proposed in [5], which is based on interleaving semantics using LTS as semantic model, may be adapted easily to the distributed implementation of the alpha equivalence reduction for the maximality based labeled transition systems.
Caffeine dosing strategies to optimize alertness during sleep loss.
Vital-Lopez, Francisco G; Ramakrishnan, Sridhar; Doty, Tracy J; Balkin, Thomas J; Reifman, Jaques
2018-05-28
Sleep loss, which affects about one-third of the US population, can severely impair physical and neurobehavioural performance. Although caffeine, the most widely used stimulant in the world, can mitigate these effects, currently there are no tools to guide the timing and amount of caffeine consumption to optimize its benefits. In this work, we provide an optimization algorithm, suited for mobile computing platforms, to determine when and how much caffeine to consume, so as to safely maximize neurobehavioural performance at the desired time of the day, under any sleep-loss condition. The algorithm is based on our previously validated Unified Model of Performance, which predicts the effect of caffeine consumption on a psychomotor vigilance task. We assessed the algorithm by comparing the caffeine-dosing strategies (timing and amount) it identified with the dosing strategies used in four experimental studies, involving total and partial sleep loss. Through computer simulations, we showed that the algorithm yielded caffeine-dosing strategies that enhanced performance of the predicted psychomotor vigilance task by up to 64% while using the same total amount of caffeine as in the original studies. In addition, the algorithm identified strategies that resulted in equivalent performance to that in the experimental studies while reducing caffeine consumption by up to 65%. Our work provides the first quantitative caffeine optimization tool for designing effective strategies to maximize neurobehavioural performance and to avoid excessive caffeine consumption during any arbitrary sleep-loss condition. © 2018 The Authors. Journal of Sleep Research published by John Wiley & Sons Ltd on behalf of European Sleep Research Society.
Learning from Demonstration: Generalization via Task Segmentation
NASA Astrophysics Data System (ADS)
Ettehadi, N.; Manaffam, S.; Behal, A.
2017-10-01
In this paper, a motion segmentation algorithm design is presented with the goal of segmenting a learned trajectory from demonstration such that each segment is locally maximally different from its neighbors. This segmentation is then exploited to appropriately scale (dilate/squeeze and/or rotate) a nominal trajectory learned from a few demonstrations on a fixed experimental setup such that it is applicable to different experimental settings without expanding the dataset and/or retraining the robot. The algorithm is computationally efficient in the sense that it allows facile transition between different environments. Experimental results using the Baxter robotic platform showcase the ability of the algorithm to accurately transfer a feeding task.
Algorithmic Trading with Developmental and Linear Genetic Programming
NASA Astrophysics Data System (ADS)
Wilson, Garnett; Banzhaf, Wolfgang
A developmental co-evolutionary genetic programming approach (PAM DGP) and a standard linear genetic programming (LGP) stock trading systemare applied to a number of stocks across market sectors. Both GP techniques were found to be robust to market fluctuations and reactive to opportunities associated with stock price rise and fall, with PAMDGP generating notably greater profit in some stock trend scenarios. Both algorithms were very accurate at buying to achieve profit and selling to protect assets, while exhibiting bothmoderate trading activity and the ability to maximize or minimize investment as appropriate. The content of the trading rules produced by both algorithms are also examined in relation to stock price trend scenarios.
SPECIES RICHNESS AND BIODIVERSITY CONSERVATION PRIORITIES IN BRITISH COLUMBIA
Patterns in the geographic distribution of seven species groups were used to identify important areas for conservation in British Columbia, Canada. Potential priority sites for conservation were determined using an integer programming algorithm that maximized the number of speci...
The application of dynamic programming in production planning
NASA Astrophysics Data System (ADS)
Wu, Run
2017-05-01
Nowadays, with the popularity of the computers, various industries and fields are widely applying computer information technology, which brings about huge demand for a variety of application software. In order to develop software meeting various needs with most economical cost and best quality, programmers must design efficient algorithms. A superior algorithm can not only soul up one thing, but also maximize the benefits and generate the smallest overhead. As one of the common algorithms, dynamic programming algorithms are used to solving problems with some sort of optimal properties. When solving problems with a large amount of sub-problems that needs repetitive calculations, the ordinary sub-recursive method requires to consume exponential time, and dynamic programming algorithm can reduce the time complexity of the algorithm to the polynomial level, according to which we can conclude that dynamic programming algorithm is a very efficient compared to other algorithms reducing the computational complexity and enriching the computational results. In this paper, we expound the concept, basic elements, properties, core, solving steps and difficulties of the dynamic programming algorithm besides, establish the dynamic programming model of the production planning problem.
Robust generative asymmetric GMM for brain MR image segmentation.
Ji, Zexuan; Xia, Yong; Zheng, Yuhui
2017-11-01
Accurate segmentation of brain tissues from magnetic resonance (MR) images based on the unsupervised statistical models such as Gaussian mixture model (GMM) has been widely studied during last decades. However, most GMM based segmentation methods suffer from limited accuracy due to the influences of noise and intensity inhomogeneity in brain MR images. To further improve the accuracy for brain MR image segmentation, this paper presents a Robust Generative Asymmetric GMM (RGAGMM) for simultaneous brain MR image segmentation and intensity inhomogeneity correction. First, we develop an asymmetric distribution to fit the data shapes, and thus construct a spatial constrained asymmetric model. Then, we incorporate two pseudo-likelihood quantities and bias field estimation into the model's log-likelihood, aiming to exploit the neighboring priors of within-cluster and between-cluster and to alleviate the impact of intensity inhomogeneity, respectively. Finally, an expectation maximization algorithm is derived to iteratively maximize the approximation of the data log-likelihood function to overcome the intensity inhomogeneity in the image and segment the brain MR images simultaneously. To demonstrate the performances of the proposed algorithm, we first applied the proposed algorithm to a synthetic brain MR image to show the intermediate illustrations and the estimated distribution of the proposed algorithm. The next group of experiments is carried out in clinical 3T-weighted brain MR images which contain quite serious intensity inhomogeneity and noise. Then we quantitatively compare our algorithm to state-of-the-art segmentation approaches by using Dice coefficient (DC) on benchmark images obtained from IBSR and BrainWeb with different level of noise and intensity inhomogeneity. The comparison results on various brain MR images demonstrate the superior performances of the proposed algorithm in dealing with the noise and intensity inhomogeneity. In this paper, the RGAGMM algorithm is proposed which can simply and efficiently incorporate spatial constraints into an EM framework to simultaneously segment brain MR images and estimate the intensity inhomogeneity. The proposed algorithm is flexible to fit the data shapes, and can simultaneously overcome the influence of noise and intensity inhomogeneity, and hence is capable of improving over 5% segmentation accuracy comparing with several state-of-the-art algorithms. Copyright © 2017 Elsevier B.V. All rights reserved.
Using the Auditory Hazard Assessment Algorithm for Humans (AHAAH) Software, Beta Release W93e
2009-09-01
Hazard Assessment Algorithm for Humans (AHAAH) Does The AHAAH is an electro- acoustic model of the ear used to evaluate the hazard of impulse sounds...format is commonly used for recording music ; thus, these are typically stereo files and contain a “right” and a “left” channel as well as a header... acoustic data (sometimes deliberately induced in recording to maximize the digitizer’s dynamic range), it must be removed. When Set Baseline is
Image authentication using distributed source coding.
Lin, Yao-Chung; Varodayan, David; Girod, Bernd
2012-01-01
We present a novel approach using distributed source coding for image authentication. The key idea is to provide a Slepian-Wolf encoded quantized image projection as authentication data. This version can be correctly decoded with the help of an authentic image as side information. Distributed source coding provides the desired robustness against legitimate variations while detecting illegitimate modification. The decoder incorporating expectation maximization algorithms can authenticate images which have undergone contrast, brightness, and affine warping adjustments. Our authentication system also offers tampering localization by using the sum-product algorithm.
Ant colony system algorithm for the optimization of beer fermentation control.
Xiao, Jie; Zhou, Ze-Kui; Zhang, Guang-Xin
2004-12-01
Beer fermentation is a dynamic process that must be guided along a temperature profile to obtain the desired results. Ant colony system algorithm was applied to optimize the kinetic model of this process. During a fixed period of fermentation time, a series of different temperature profiles of the mixture were constructed. An optimal one was chosen at last. Optimal temperature profile maximized the final ethanol production and minimized the byproducts concentration and spoilage risk. The satisfactory results obtained did not require much computation effort.
Statistical Mechanics of Combinatorial Auctions
NASA Astrophysics Data System (ADS)
Galla, Tobias; Leone, Michele; Marsili, Matteo; Sellitto, Mauro; Weigt, Martin; Zecchina, Riccardo
2006-09-01
Combinatorial auctions are formulated as frustrated lattice gases on sparse random graphs, allowing the determination of the optimal revenue by methods of statistical physics. Transitions between computationally easy and hard regimes are found and interpreted in terms of the geometric structure of the space of solutions. We introduce an iterative algorithm to solve intermediate and large instances, and discuss competing states of optimal revenue and maximal number of satisfied bidders. The algorithm can be generalized to the hard phase and to more sophisticated auction protocols.
Constructing Optimal Coarse-Grained Sites of Huge Biomolecules by Fluctuation Maximization.
Li, Min; Zhang, John Zenghui; Xia, Fei
2016-04-12
Coarse-grained (CG) models are valuable tools for the study of functions of large biomolecules on large length and time scales. The definition of CG representations for huge biomolecules is always a formidable challenge. In this work, we propose a new method called fluctuation maximization coarse-graining (FM-CG) to construct the CG sites of biomolecules. The defined residual in FM-CG converges to a maximal value as the number of CG sites increases, allowing an optimal CG model to be rigorously defined on the basis of the maximum. More importantly, we developed a robust algorithm called stepwise local iterative optimization (SLIO) to accelerate the process of coarse-graining large biomolecules. By means of the efficient SLIO algorithm, the computational cost of coarse-graining large biomolecules is reduced to within the time scale of seconds, which is far lower than that of conventional simulated annealing. The coarse-graining of two huge systems, chaperonin GroEL and lengsin, indicates that our new methods can coarse-grain huge biomolecular systems with up to 10,000 residues within the time scale of minutes. The further parametrization of CG sites derived from FM-CG allows us to construct the corresponding CG models for studies of the functions of huge biomolecular systems.
Determining A Purely Symbolic Transfer Function from Symbol Streams: Theory and Algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Christopher H
Transfer function modeling is a \\emph{standard technique} in classical Linear Time Invariant and Statistical Process Control. The work of Box and Jenkins was seminal in developing methods for identifying parameters associated with classicalmore » $(r,s,k)$$ transfer functions. Discrete event systems are often \\emph{used} for modeling hybrid control structures and high-level decision problems. \\emph{Examples include} discrete time, discrete strategy repeated games. For these games, a \\emph{discrete transfer function in the form of} an accurate hidden Markov model of input-output relations \\emph{could be used to derive optimal response strategies.} In this paper, we develop an algorithm \\emph{for} creating probabilistic \\textit{Mealy machines} that act as transfer function models for discrete event dynamic systems (DEDS). Our models are defined by three parameters, $$(l_1, l_2, k)$ just as the Box-Jenkins transfer function models. Here $$l_1$$ is the maximal input history lengths to consider, $$l_2$$ is the maximal output history lengths to consider and $k$ is the response lag. Using related results, We show that our Mealy machine transfer functions are optimal in the sense that they maximize the mutual information between the current known state of the DEDS and the next observed input/output pair.« less
MeV gamma-ray observation with a well-defined point spread function based on electron tracking
NASA Astrophysics Data System (ADS)
Takada, A.; Tanimori, T.; Kubo, H.; Mizumoto, T.; Mizumura, Y.; Komura, S.; Kishimoto, T.; Takemura, T.; Yoshikawa, K.; Nakamasu, Y.; Matsuoka, Y.; Oda, M.; Miyamoto, S.; Sonoda, S.; Tomono, D.; Miuchi, K.; Kurosawa, S.; Sawano, T.
2016-07-01
The field of MeV gamma-ray astronomy has not opened up until recently owing to imaging difficulties. Compton telescopes and coded-aperture imaging cameras are used as conventional MeV gamma-ray telescopes; however their observations are obstructed by huge background, leading to uncertainty of the point spread function (PSF). Conventional MeV gamma-ray telescopes imaging utilize optimizing algorithms such as the ML-EM method, making it difficult to define the correct PSF, which is the uncertainty of a gamma-ray image on the celestial sphere. Recently, we have defined and evaluated the PSF of an electron-tracking Compton camera (ETCC) and a conventional Compton telescope, and thereby obtained an important result: The PSF strongly depends on the precision of the recoil direction of electron (scatter plane deviation, SPD) and is not equal to the angular resolution measure (ARM). Now, we are constructing a 30 cm-cubic ETCC for a second balloon experiment, Sub-MeV gamma ray Imaging Loaded-on-balloon Experiment: SMILE-II. The current ETCC has an effective area of 1 cm2 at 300 keV, a PSF of 10° at FWHM for 662 keV, and a large field of view of 3 sr. We will upgrade this ETCC to have an effective area of several cm2 and a PSF of 5° using a CF4-based gas. Using the upgraded ETCC, our observation plan for SMILE-II is to map of the electron-positron annihilation line and the 1.8 MeV line from 26Al. In this paper, we will report on the current performance of the ETCC and on our observation plan.
Hybrid Parallel-Slant Hole Collimators for SPECT Imaging
NASA Astrophysics Data System (ADS)
Bai, Chuanyong; Shao, Ling; Ye, Jinghan; Durbin, M.; Petrillo, M.
2004-06-01
We propose a new collimator geometry, the hybrid parallel-slant (HPS) hole geometry, to improve sensitivity for SPECT imaging with large field of view (LFOV) gamma cameras. A HPS collimator has one segment with parallel holes and one or more segments with slant holes. The collimator can be mounted on a conventional SPECT LFOV system that uses parallel-beam collimators, and no additional detector or collimator motion is required for data acquisition. The parallel segment of the collimator allows for the acquisition of a complete data set of the organs-of-interest and the slant segments provide additional data. In this work, simulation studies of an MCAT phantom were performed with a HPS collimator with one slant segment. The slant direction points from patient head to patient feet with a slant angle of 30/spl deg/. We simulated 64 projection views over 180/spl deg/ with the modeling of nonuniform attenuation effect, and then reconstructed images using an MLEM algorithm that incorporated the hybrid geometry. It was shown that sensitivity to the cardiac region of the phantom was increased by approximately 50% when using the HPS collimator compared with a parallel-hole collimator. No visible artifacts were observed in the myocardium and the signal-to-noise ratio (SNR) of the myocardium walls was improved. Compared with collimators with other geometries, using a HPS collimator has the following advantages: (a) significant sensitivity increase; (b) a complete data set obtained from the parallel segment that allows for artifact-free image reconstruction; and (c) no additional collimator or detector motion. This work demonstrates the potential value of hybrid geometry in collimator design for LFOV SPECT imaging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, H; Yoon, D; Jung, J
Purpose: The purpose of this study is to suggest a tumor monitoring technique using prompt gamma rays emitted during the reaction between an antiproton and a boron particle, and to verify the increase of the therapeutic effectiveness of the antiproton boron fusion therapy using Monte Carlo simulation code. Methods: We acquired the percentage depth dose of the antiproton beam from a water phantom with and without three boron uptake regions (region A, B, and C) using F6 tally of MCNPX. The tomographic image was reconstructed using prompt gamma ray events from the reaction between the antiproton and boron during themore » treatment from 32 projections (reconstruction algorithm: MLEM). For the image reconstruction, we were performed using a 80 × 80 pixel matrix with a pixel size of 5 mm. The energy window was set as a 10 % energy window. Results: The prompt gamma ray peak for imaging was observed at 719 keV in the energy spectrum using the F8 tally fuction (energy deposition tally) of the MCNPX code. The tomographic image shows that the boron uptake regions were successfully identified from the simulation results. In terms of the receiver operating characteristic curve analysis, the area under the curve values were 0.647 (region A), 0.679 (region B), and 0.632 (region C). The SNR values increased as the tumor diameter increased. The CNR indicated the relative signal intensity within different regions. The CNR values also increased as the different of BURs diamter increased. Conclusion: We confirmed the feasibility of tumor monitoring during the antiproton therapy as well as the superior therapeutic effect of the antiproton boron fusion therapy. This result can be beneficial for the development of a more accurate particle therapy.« less
Positron Emission Mammography with Multiple Angle Acquisition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark F. Smith; Stan Majewski; Raymond R. Raylman
2002-11-01
Positron emission mammography (PEM) of F-18 fluorodeoxyglucose (FbG) uptake in breast tumors with dedicated detectors typically has been accomplished with two planar detectors in a fixed position with the breast under compression. The potential use of PEM imaging at two detector positions to guide stereotactic breast biopsy has motivated us to use PEM coincidence data acquired at two or more detector positions together in a single image reconstruction. Multiple angle PEM acquisition and iterative image reconstruction were investigated using point source and compressed breast phantom acquisitions with 5, 9, 12 and 15 mm diameter spheres and a simulated tumor:background activitymore » concentration ratio of 6:1. Image reconstruction was performed with an iterative MLEM algorithm that used coincidence events between any two detector pixels on opposed detector heads at each detector position. This present study compared two acquisition protocols: 2 angle acquisition with detector angular positions of -15 and +15 degrees and 11 angle acquisition with detector positions spaced at 3 degree increments over the range -15 to +15 degrees. Three-dimensional image resolution was assessed for the point source acquisitions, and contrast and signal-to-noise metrics were evaluated for the compressed breast phantom with different simulated tumor sizes. Radial and tangential resolutions were similar for the two protocols, while normal resolution was better for the 2 angle acquisition. Analysis is complicated by the asymmetric point spread functions. Signal- to-noise vs. contrast tradeoffs were better for 11 angle acquisition for the smallest visible 9 mm sphere, while tradeoff results were mixed for the larger and more easily visible 12 mm and 15 mm diameter spheres. Additional study is needed to better understand the performance of limited angle tomography for PEM. PEM tomography experiments with complete angular sampling are planned.« less
Combined SRCT & FXCT - The next steps
NASA Astrophysics Data System (ADS)
Hall, C.; Acres, R. G.; Winnett, A.; Wang, F.
2016-03-01
One of the goals in developing synchrotron radiation x-ray computed tomography (SRCT) for biomedical specimens, is allowing particular tissues and cell types to be marked in the images. This is equivalent to the staining in histology, which enables researchers to visualise and measure tissue structure and biochemical processes within the specimen. Some progress in this direction for SRCT is being made, using a variety of contrast agents that alter the natural x-ray attenuation of the marked tissue [1]. However there are limits to the usefulness of these attenuation altering techniques. Often high concentrations of potentially disruptive chemicals are required with reduced compatibility for in-vivo studies. Another image highlighting technique which might prove more sensitive is x-ray fluorescence imaging. In this case usually endogenous elemental markers are visualised. We would like to develop a lower resolution, but wider field of view means of three-dimensional (3-D) fluorescence imaging compatible with SRCT. We have previously proposed a technique in which x-ray fluorescence CT (FXCT) and SRCT data can be collected simultaneously [2]. This work resulted in proof of concept modelling, and a simple experiment test system. We show data here which demonstrate a two-dimensional (2-D) reconstruction of an iodine fluorescence map from a phantom. Measurements were performed with a fixed beam modulating mask using the Imaging and Medical beam line (IMBL) at the Australian Synchrotron. Fluorescence data was obtained during a CT scan using a single point detector, while transmission data was simultaneously collected using an area detector. A maximum likelihood expectation maximisation (MLEM) iterative algorithm was used to reconstruct the fluorescence map. We report on technique development and now believe compressive sensing (CS) imaging techniques suit SRCT and may overcome the issues encountered so far in combining SRCT and FXCT.
Smartphone-based low light detection for bioluminescence application
USDA-ARS?s Scientific Manuscript database
We report a smartphone-based device and associated imaging-processing algorithm to maximize the sensitivity of standard smartphone cameras, that can detect the presence of single-digit pW of radiant flux intensity. The proposed hardware and software, called bioluminescent-based analyte quantitation ...
Learning Time-Varying Coverage Functions
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2015-01-01
Coverage functions are an important class of discrete functions that capture the law of diminishing returns arising naturally from applications in social network analysis, machine learning, and algorithmic game theory. In this paper, we propose a new problem of learning time-varying coverage functions, and develop a novel parametrization of these functions using random features. Based on the connection between time-varying coverage functions and counting processes, we also propose an efficient parameter learning algorithm based on likelihood maximization, and provide a sample complexity analysis. We applied our algorithm to the influence function estimation problem in information diffusion in social networks, and show that with few assumptions about the diffusion processes, our algorithm is able to estimate influence significantly more accurately than existing approaches on both synthetic and real world data. PMID:25960624
Learning Time-Varying Coverage Functions.
Du, Nan; Liang, Yingyu; Balcan, Maria-Florina; Song, Le
2014-12-08
Coverage functions are an important class of discrete functions that capture the law of diminishing returns arising naturally from applications in social network analysis, machine learning, and algorithmic game theory. In this paper, we propose a new problem of learning time-varying coverage functions, and develop a novel parametrization of these functions using random features. Based on the connection between time-varying coverage functions and counting processes, we also propose an efficient parameter learning algorithm based on likelihood maximization, and provide a sample complexity analysis. We applied our algorithm to the influence function estimation problem in information diffusion in social networks, and show that with few assumptions about the diffusion processes, our algorithm is able to estimate influence significantly more accurately than existing approaches on both synthetic and real world data.
NASA Astrophysics Data System (ADS)
Khachaturov, R. V.
2015-01-01
The basic properties of a new type of lattices—a lattice of cubes—are described. It is shown that, with a suitable choice of union and intersection operations, the set of all subcubes of an N-cube forms a lattice, which is called a lattice of cubes. Algorithms for constructing such lattices are described, and the results produced by these algorithms in the case of lattices of various dimensions are illustrated. It is proved that a lattice of cubes is a lattice with supplements, which makes it possible to minimize and maximize supermodular functions on it. Examples of such functions are given. The possibility of applying previously developed efficient optimization algorithms to the formulation and solution of new classes of problems on lattices of cubes.
Improved Approximation Algorithms for Item Pricing with Bounded Degree and Valuation
NASA Astrophysics Data System (ADS)
Hamane, Ryoso; Itoh, Toshiya
When a store sells items to customers, the store wishes to decide the prices of the items to maximize its profit. If the store sells the items with low (resp. high) prices, the customers buy more (resp. less) items, which provides less profit to the store. It would be hard for the store to decide the prices of items. Assume that a store has a set V of n items and there is a set C of m customers who wish to buy those items. The goal of the store is to decide the price of each item to maximize its profit. We refer to this maximization problem as an item pricing problem. We classify the item pricing problems according to how many items the store can sell or how the customers valuate the items. If the store can sell every item i with unlimited (resp. limited) amount, we refer to this as unlimited supply (resp. limited supply). We say that the item pricing problem is single-minded if each customer j∈C wishes to buy a set ej⊆V of items and assigns valuation w(ej)≥0. For the single-minded item pricing problems (in unlimited supply), Balcan and Blum regarded them as weighted k-hypergraphs and gave several approximation algorithms. In this paper, we focus on the (pseudo) degree of k-hypergraphs and the valuation ratio, i. e., the ratio between the smallest and the largest valuations. Then for the single-minded item pricing problems (in unlimited supply), we show improved approximation algorithms (for k-hypergraphs, general graphs, bipartite graphs, etc.) with respect to the maximum (pseudo) degree and the valuation ratio.
Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng
2016-01-01
This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications. PMID:27835670
Zhang, ZhiZhuo; Chang, Cheng Wei; Hugo, Willy; Cheung, Edwin; Sung, Wing-Kin
2013-03-01
Although de novo motifs can be discovered through mining over-represented sequence patterns, this approach misses some real motifs and generates many false positives. To improve accuracy, one solution is to consider some additional binding features (i.e., position preference and sequence rank preference). This information is usually required from the user. This article presents a de novo motif discovery algorithm called SEME (sampling with expectation maximization for motif elicitation), which uses pure probabilistic mixture model to model the motif's binding features and uses expectation maximization (EM) algorithms to simultaneously learn the sequence motif, position, and sequence rank preferences without asking for any prior knowledge from the user. SEME is both efficient and accurate thanks to two important techniques: the variable motif length extension and importance sampling. Using 75 large-scale synthetic datasets, 32 metazoan compendium benchmark datasets, and 164 chromatin immunoprecipitation sequencing (ChIP-Seq) libraries, we demonstrated the superior performance of SEME over existing programs in finding transcription factor (TF) binding sites. SEME is further applied to a more difficult problem of finding the co-regulated TF (coTF) motifs in 15 ChIP-Seq libraries. It identified significantly more correct coTF motifs and, at the same time, predicted coTF motifs with better matching to the known motifs. Finally, we show that the learned position and sequence rank preferences of each coTF reveals potential interaction mechanisms between the primary TF and the coTF within these sites. Some of these findings were further validated by the ChIP-Seq experiments of the coTFs. The application is available online.
Ji, Xiaoting; Niu, Yifeng; Shen, Lincheng
2016-01-01
This paper presents a robust satisficing decision-making method for Unmanned Aerial Vehicles (UAVs) executing complex missions in an uncertain environment. Motivated by the info-gap decision theory, we formulate this problem as a novel robust satisficing optimization problem, of which the objective is to maximize the robustness while satisfying some desired mission requirements. Specifically, a new info-gap based Markov Decision Process (IMDP) is constructed to abstract the uncertain UAV system and specify the complex mission requirements with the Linear Temporal Logic (LTL). A robust satisficing policy is obtained to maximize the robustness to the uncertain IMDP while ensuring a desired probability of satisfying the LTL specifications. To this end, we propose a two-stage robust satisficing solution strategy which consists of the construction of a product IMDP and the generation of a robust satisficing policy. In the first stage, a product IMDP is constructed by combining the IMDP with an automaton representing the LTL specifications. In the second, an algorithm based on robust dynamic programming is proposed to generate a robust satisficing policy, while an associated robustness evaluation algorithm is presented to evaluate the robustness. Finally, through Monte Carlo simulation, the effectiveness of our algorithms is demonstrated on an UAV search mission under severe uncertainty so that the resulting policy can maximize the robustness while reaching the desired performance level. Furthermore, by comparing the proposed method with other robust decision-making methods, it can be concluded that our policy can tolerate higher uncertainty so that the desired performance level can be guaranteed, which indicates that the proposed method is much more effective in real applications.
Fast algorithm of adaptive Fourier series
NASA Astrophysics Data System (ADS)
Gao, You; Ku, Min; Qian, Tao
2018-05-01
Adaptive Fourier decomposition (AFD, precisely 1-D AFD or Core-AFD) was originated for the goal of positive frequency representations of signals. It achieved the goal and at the same time offered fast decompositions of signals. There then arose several types of AFDs. AFD merged with the greedy algorithm idea, and in particular, motivated the so-called pre-orthogonal greedy algorithm (Pre-OGA) that was proven to be the most efficient greedy algorithm. The cost of the advantages of the AFD type decompositions is, however, the high computational complexity due to the involvement of maximal selections of the dictionary parameters. The present paper offers one formulation of the 1-D AFD algorithm by building the FFT algorithm into it. Accordingly, the algorithm complexity is reduced, from the original $\\mathcal{O}(M N^2)$ to $\\mathcal{O}(M N\\log_2 N)$, where $N$ denotes the number of the discretization points on the unit circle and $M$ denotes the number of points in $[0,1)$. This greatly enhances the applicability of AFD. Experiments are carried out to show the high efficiency of the proposed algorithm.
Adaptive recurrence quantum entanglement distillation for two-Kraus-operator channels
NASA Astrophysics Data System (ADS)
Ruan, Liangzhong; Dai, Wenhan; Win, Moe Z.
2018-05-01
Quantum entanglement serves as a valuable resource for many important quantum operations. A pair of entangled qubits can be shared between two agents by first preparing a maximally entangled qubit pair at one agent, and then sending one of the qubits to the other agent through a quantum channel. In this process, the deterioration of entanglement is inevitable since the noise inherent in the channel contaminates the qubit. To address this challenge, various quantum entanglement distillation (QED) algorithms have been developed. Among them, recurrence algorithms have advantages in terms of implementability and robustness. However, the efficiency of recurrence QED algorithms has not been investigated thoroughly in the literature. This paper puts forth two recurrence QED algorithms that adapt to the quantum channel to tackle the efficiency issue. The proposed algorithms have guaranteed convergence for quantum channels with two Kraus operators, which include phase-damping and amplitude-damping channels. Analytical results show that the convergence speed of these algorithms is improved from linear to quadratic and one of the algorithms achieves the optimal speed. Numerical results confirm that the proposed algorithms significantly improve the efficiency of QED.
Energy Efficient Data Transmission for Sensors with Wireless Charging
Luo, Junzhou; Wu, Weiwei; Gao, Hong
2018-01-01
This paper studies the problem of maximizing the energy utilization for data transmission in sensors with periodical wireless charging process while taking into account the thermal effect. Two classes of problems are analyzed: one is the case that wireless charging can process for only a limited period of time, and the other is the case that wireless charging can process for a long enough time. Algorithms are proposed to solve the problems and analysis of these algorithms are also provided. For the first problem, three subproblems are studied, and, for the general problem, we give an algorithm that can derive a performance bound of (1−12m)(OPT−E) compared to an optimal solution. In addition, for the second problem, we provide an algorithm with 2m2m−1OPT+1 performance bound for the general problem. Simulations confirm the analysis of the algorithms. PMID:29419770
Energy Efficient Data Transmission for Sensors with Wireless Charging.
Fang, Xiaolin; Luo, Junzhou; Wu, Weiwei; Gao, Hong
2018-02-08
This paper studies the problem of maximizing the energy utilization for data transmission in sensors with periodical wireless charging process while taking into account the thermal effect. Two classes of problems are analyzed: one is the case that wireless charging can process for only a limited period of time, and the other is the case that wireless charging can process for a long enough time. Algorithms are proposed to solve the problems and analysis of these algorithms are also provided. For the first problem, three subproblems are studied, and, for the general problem, we give an algorithm that can derive a performance bound of ( 1 - 1 2 m ) ( O P T - E ) compared to an optimal solution. In addition, for the second problem, we provide an algorithm with 2 m 2 m - 1 O P T + 1 performance bound for the general problem. Simulations confirm the analysis of the algorithms.
Maximum likelihood estimates, from censored data, for mixed-Weibull distributions
NASA Astrophysics Data System (ADS)
Jiang, Siyuan; Kececioglu, Dimitri
1992-06-01
A new algorithm for estimating the parameters of mixed-Weibull distributions from censored data is presented. The algorithm follows the principle of maximum likelihood estimate (MLE) through the expectation and maximization (EM) algorithm, and it is derived for both postmortem and nonpostmortem time-to-failure data. It is concluded that the concept of the EM algorithm is easy to understand and apply (only elementary statistics and calculus are required). The log-likelihood function cannot decrease after an EM sequence; this important feature was observed in all of the numerical calculations. The MLEs of the nonpostmortem data were obtained successfully for mixed-Weibull distributions with up to 14 parameters in a 5-subpopulation, mixed-Weibull distribution. Numerical examples indicate that some of the log-likelihood functions of the mixed-Weibull distributions have multiple local maxima; therefore, the algorithm should start at several initial guesses of the parameter set.
Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications.
Achakulvisut, Titipat; Acuna, Daniel E; Ruangrong, Tulakan; Kording, Konrad
2016-01-01
Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate.
Science Concierge: A Fast Content-Based Recommendation System for Scientific Publications
Achakulvisut, Titipat; Acuna, Daniel E.; Ruangrong, Tulakan; Kording, Konrad
2016-01-01
Finding relevant publications is important for scientists who have to cope with exponentially increasing numbers of scholarly material. Algorithms can help with this task as they help for music, movie, and product recommendations. However, we know little about the performance of these algorithms with scholarly material. Here, we develop an algorithm, and an accompanying Python library, that implements a recommendation system based on the content of articles. Design principles are to adapt to new content, provide near-real time suggestions, and be open source. We tested the library on 15K posters from the Society of Neuroscience Conference 2015. Human curated topics are used to cross validate parameters in the algorithm and produce a similarity metric that maximally correlates with human judgments. We show that our algorithm significantly outperformed suggestions based on keywords. The work presented here promises to make the exploration of scholarly material faster and more accurate. PMID:27383424
Ng, C M
2013-10-01
The development of a population PK/PD model, an essential component for model-based drug development, is both time- and labor-intensive. A graphical-processing unit (GPU) computing technology has been proposed and used to accelerate many scientific computations. The objective of this study was to develop a hybrid GPU-CPU implementation of parallelized Monte Carlo parametric expectation maximization (MCPEM) estimation algorithm for population PK data analysis. A hybrid GPU-CPU implementation of the MCPEM algorithm (MCPEMGPU) and identical algorithm that is designed for the single CPU (MCPEMCPU) were developed using MATLAB in a single computer equipped with dual Xeon 6-Core E5690 CPU and a NVIDIA Tesla C2070 GPU parallel computing card that contained 448 stream processors. Two different PK models with rich/sparse sampling design schemes were used to simulate population data in assessing the performance of MCPEMCPU and MCPEMGPU. Results were analyzed by comparing the parameter estimation and model computation times. Speedup factor was used to assess the relative benefit of parallelized MCPEMGPU over MCPEMCPU in shortening model computation time. The MCPEMGPU consistently achieved shorter computation time than the MCPEMCPU and can offer more than 48-fold speedup using a single GPU card. The novel hybrid GPU-CPU implementation of parallelized MCPEM algorithm developed in this study holds a great promise in serving as the core for the next-generation of modeling software for population PK/PD analysis.
An Elegant Sufficiency: Load-Aware Differentiated Scheduling of Data Transfers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kettimuthu, Rajkumar; Vardoyan, Gayane; Agrawal, Gagan
2015-11-15
We investigate the file transfer scheduling problem, where transfers among different endpoints must be scheduled to maximize pertinent metrics. We propose two new algorithms that exploit the fact that the aggregate bandwidth obtained over a network or at a storage system tends to increase with the number of concurrent transfers—but only up to a certain limit. The first algorithm, SEAL, uses runtime information and data-driven models to approximate system load and adapt transfer schedules and concurrency so as to maximize performance while avoiding saturation. We implement this algorithm using GridFTP as the transfer protocol and evaluate it using real transfermore » logs in a production WAN environment. Results show that SEAL can improve average slowdowns and turnaround times by up to 25% and worst-case slowdown and turnaround times by up to 50%, compared with the best-performing baseline scheme. Our second algorithm, STEAL, further leverages user-supplied categorization of transfers as either “interactive” (requiring immediate processing) or “batch” (less time-critical). Results show that STEAL reduces the average slowdown of interactive transfers by 63% compared to the best-performing baseline and by 21% compared to SEAL. For batch transfers, compared to the best-performing baseline, STEAL improves by 18% the utilization of the bandwidth unused by interactive transfers. By elegantly ensuring a sufficient, but not excessive, allocation of concurrency to the right transfers, we significantly improve overall performance despite constraints.« less
DOT National Transportation Integrated Search
2002-11-01
This paper develops an algorithm for optimally locating surveillance technologies with an emphasis on Automatic Vehicle Identification tag readers by maximizing the benefit that would accrue from measuring travel times on a transportation network. Th...
Image segmentation using hidden Markov Gauss mixture models.
Pyun, Kyungsuk; Lim, Johan; Won, Chee Sun; Gray, Robert M
2007-07-01
Image segmentation is an important tool in image processing and can serve as an efficient front end to sophisticated algorithms and thereby simplify subsequent processing. We develop a multiclass image segmentation method using hidden Markov Gauss mixture models (HMGMMs) and provide examples of segmentation of aerial images and textures. HMGMMs incorporate supervised learning, fitting the observation probability distribution given each class by a Gauss mixture estimated using vector quantization with a minimum discrimination information (MDI) distortion. We formulate the image segmentation problem using a maximum a posteriori criteria and find the hidden states that maximize the posterior density given the observation. We estimate both the hidden Markov parameter and hidden states using a stochastic expectation-maximization algorithm. Our results demonstrate that HMGMM provides better classification in terms of Bayes risk and spatial homogeneity of the classified objects than do several popular methods, including classification and regression trees, learning vector quantization, causal hidden Markov models (HMMs), and multiresolution HMMs. The computational load of HMGMM is similar to that of the causal HMM.
Formation Flying Design and Applications in Weak Stability Boundary Regions
NASA Technical Reports Server (NTRS)
Folta, David
2003-01-01
Weak Stability regions serve as superior locations for interferometric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observing efficiency. Design of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of WSB solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in WSB regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numerical methods for attaining constrained formation geometries and controlling their dynamical evolution. This paper presents a survey of formation missions in the WSB regions and a brief description of the formation design using numerical and dynamical techniques.
Formation flying design and applications in weak stability boundary regions.
Folta, David
2004-05-01
Weak stability regions serve as superior locations for interferomertric scientific investigations. These regions are often selected to minimize environmental disturbances and maximize observation efficiency. Designs of formations in these regions are becoming ever more challenging as more complex missions are envisioned. The development of algorithms to enable the capability for formation design must be further enabled to incorporate better understanding of weak stability boundary solution space. This development will improve the efficiency and expand the capabilities of current approaches. The Goddard Space Flight Center (GSFC) is currently supporting multiple formation missions in weak stability boundary regions. This end-to-end support consists of mission operations, trajectory design, and control. It also includes both algorithm and software development. The Constellation-X, Maxim, and Stellar Imager missions are examples of the use of improved numeric methods to attain constrained formation geometries and control their dynamical evolution. This paper presents a survey of formation missions in the weak stability boundary regions and a brief description of formation design using numerical and dynamical techniques.
NASA Astrophysics Data System (ADS)
Liu, Zhihui; Wang, Haitao; Dong, Tao; Yin, Jie; Zhang, Tingting; Guo, Hui; Li, Dequan
2018-02-01
In this paper, the cognitive multi-beam satellite system, i.e., two satellite networks coexist through underlay spectrum sharing, is studied, and the power and spectrum allocation method is employed for interference control and throughput maximization. Specifically, the multi-beam satellite with flexible payload reuses the authorized spectrum of the primary satellite, adjusting its transmission band as well as power for each beam to limit its interference on the primary satellite below the prescribed threshold and maximize its own achievable rate. This power and spectrum allocation problem is formulated as a mixed nonconvex programming. For effective solving, we first introduce the concept of signal to leakage plus noise ratio (SLNR) to decouple multiple transmit power variables in the both objective and constraint, and then propose a heuristic algorithm to assign spectrum sub-bands. After that, a stepwise plus slice-wise algorithm is proposed to implement the discrete power allocation. Finally, simulation results show that adopting cognitive technology can improve spectrum efficiency of the satellite communication.
Unsupervised Deep Hashing With Pseudo Labels for Scalable Image Retrieval.
Zhang, Haofeng; Liu, Li; Long, Yang; Shao, Ling
2018-04-01
In order to achieve efficient similarity searching, hash functions are designed to encode images into low-dimensional binary codes with the constraint that similar features will have a short distance in the projected Hamming space. Recently, deep learning-based methods have become more popular, and outperform traditional non-deep methods. However, without label information, most state-of-the-art unsupervised deep hashing (DH) algorithms suffer from severe performance degradation for unsupervised scenarios. One of the main reasons is that the ad-hoc encoding process cannot properly capture the visual feature distribution. In this paper, we propose a novel unsupervised framework that has two main contributions: 1) we convert the unsupervised DH model into supervised by discovering pseudo labels; 2) the framework unifies likelihood maximization, mutual information maximization, and quantization error minimization so that the pseudo labels can maximumly preserve the distribution of visual features. Extensive experiments on three popular data sets demonstrate the advantages of the proposed method, which leads to significant performance improvement over the state-of-the-art unsupervised hashing algorithms.
Gillis, Anne M
2014-10-01
The results from numerous clinical studies provide guidance for optimizing outcomes related to RV or biventricular pacing in the pacemaker and ICD populations. (1) Programming algorithms to minimize RV pacing is imperative in patients with dual-chamber pacemakers who have intrinsic AV conduction or intermittent AV conduction block. (2) Dual-chamber ICDs should be avoided in candidates without an indication for bradycardia pacing. (3) Alternate RV septal pacing sites may be considered at the time of pacemaker implantation. (4) Biventricular pacing may be beneficial in some patients with mild LV dysfunction. (5) LV lead placement at the site of latest LV activation is desirable. (6) Programming CRT systems to achieve biventricular/LV pacing >98.5% is important. (7) Protocols for AV and VV optimization in patients with CRT are not recommended after device implantation but may be considered for CRT nonresponders. (8) Novel algorithms to maximize the benefit of CRT are in evolution further.
Sim, Jaehyun; Sim, Jun; Park, Eunsung; Lee, Julian
2015-06-01
Many proteins undergo large-scale motions where relatively rigid domains move against each other. The identification of rigid domains, as well as the hinge residues important for their relative movements, is important for various applications including flexible docking simulations. In this work, we develop a method for protein rigid domain identification based on an exhaustive enumeration of maximal rigid domains, the rigid domains not fully contained within other domains. The computation is performed by mapping the problem to that of finding maximal cliques in a graph. A minimal set of rigid domains are then selected, which cover most of the protein with minimal overlap. In contrast to the results of existing methods that partition a protein into non-overlapping domains using approximate algorithms, the rigid domains obtained from exact enumeration naturally contain overlapping regions, which correspond to the hinges of the inter-domain bending motion. The performance of the algorithm is demonstrated on several proteins. © 2015 Wiley Periodicals, Inc.
A De-centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper, we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is decentralized, scalable, and overlaps the node coordination time with that of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
A De-Centralized Scheduling and Load Balancing Algorithm for Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Arora, Manish; Das, Sajal K.; Biswas, Rupak; Biegel, Bryan (Technical Monitor)
2002-01-01
In the past two decades, numerous scheduling and load balancing techniques have been proposed for locally distributed multiprocessor systems. However, they all suffer from significant deficiencies when extended to a Grid environment: some use a centralized approach that renders the algorithm unscalable, while others assume the overhead involved in searching for appropriate resources to be negligible. Furthermore, classical scheduling algorithms do not consider a Grid node to be N-resource rich and merely work towards maximizing the utilization of one of the resources. In this paper we propose a new scheduling and load balancing algorithm for a generalized Grid model of N-resource nodes that not only takes into account the node and network heterogeneity, but also considers the overhead involved in coordinating among the nodes. Our algorithm is de-centralized, scalable, and overlaps the node coordination time of the actual processing of ready jobs, thus saving valuable clock cycles needed for making decisions. The proposed algorithm is studied by conducting simulations using the Message Passing Interface (MPI) paradigm.
NASA Astrophysics Data System (ADS)
Martens, Koen J. A.; Bader, Arjen N.; Baas, Sander; Rieger, Bernd; Hohlbein, Johannes
2018-03-01
We present a fast and model-free 2D and 3D single-molecule localization algorithm that allows more than 3 × 106 localizations per second to be calculated on a standard multi-core central processing unit with localization accuracies in line with the most accurate algorithms currently available. Our algorithm converts the region of interest around a point spread function to two phase vectors (phasors) by calculating the first Fourier coefficients in both the x- and y-direction. The angles of these phasors are used to localize the center of the single fluorescent emitter, and the ratio of the magnitudes of the two phasors is a measure for astigmatism, which can be used to obtain depth information (z-direction). Our approach can be used both as a stand-alone algorithm for maximizing localization speed and as a first estimator for more time consuming iterative algorithms.
Sort-Mid tasks scheduling algorithm in grid computing.
Reda, Naglaa M; Tawfik, A; Marzok, Mohamed A; Khamis, Soheir M
2015-11-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan.
Sort-Mid tasks scheduling algorithm in grid computing
Reda, Naglaa M.; Tawfik, A.; Marzok, Mohamed A.; Khamis, Soheir M.
2014-01-01
Scheduling tasks on heterogeneous resources distributed over a grid computing system is an NP-complete problem. The main aim for several researchers is to develop variant scheduling algorithms for achieving optimality, and they have shown a good performance for tasks scheduling regarding resources selection. However, using of the full power of resources is still a challenge. In this paper, a new heuristic algorithm called Sort-Mid is proposed. It aims to maximizing the utilization and minimizing the makespan. The new strategy of Sort-Mid algorithm is to find appropriate resources. The base step is to get the average value via sorting list of completion time of each task. Then, the maximum average is obtained. Finally, the task has the maximum average is allocated to the machine that has the minimum completion time. The allocated task is deleted and then, these steps are repeated until all tasks are allocated. Experimental tests show that the proposed algorithm outperforms almost other algorithms in terms of resources utilization and makespan. PMID:26644937
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning. PMID:29209191
Matsubara, Takashi
2017-01-01
Precise spike timing is considered to play a fundamental role in communications and signal processing in biological neural networks. Understanding the mechanism of spike timing adjustment would deepen our understanding of biological systems and enable advanced engineering applications such as efficient computational architectures. However, the biological mechanisms that adjust and maintain spike timing remain unclear. Existing algorithms adopt a supervised approach, which adjusts the axonal conduction delay and synaptic efficacy until the spike timings approximate the desired timings. This study proposes a spike timing-dependent learning model that adjusts the axonal conduction delay and synaptic efficacy in both unsupervised and supervised manners. The proposed learning algorithm approximates the Expectation-Maximization algorithm, and classifies the input data encoded into spatio-temporal spike patterns. Even in the supervised classification, the algorithm requires no external spikes indicating the desired spike timings unlike existing algorithms. Furthermore, because the algorithm is consistent with biological models and hypotheses found in existing biological studies, it could capture the mechanism underlying biological delay learning.
Application of the EM algorithm to radiographic images.
Brailean, J C; Little, D; Giger, M L; Chen, C T; Sullivan, B J
1992-01-01
The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.
Nuclear fuel management optimization using genetic algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeChaine, M.D.; Feltus, M.A.
1995-07-01
The code independent genetic algorithm reactor optimization (CIGARO) system has been developed to optimize nuclear reactor loading patterns. It uses genetic algorithms (GAs) and a code-independent interface, so any reactor physics code (e.g., CASMO-3/SIMULATE-3) can be used to evaluate the loading patterns. The system is compared to other GA-based loading pattern optimizers. Tests were carried out to maximize the beginning of cycle k{sub eff} for a pressurized water reactor core loading with a penalty function to limit power peaking. The CIGARO system performed well, increasing the k{sub eff} after lowering the peak power. Tests of a prototype parallel evaluation methodmore » showed the potential for a significant speedup.« less
Model-based sensor-less wavefront aberration correction in optical coherence tomography.
Verstraete, Hans R G W; Wahls, Sander; Kalkman, Jeroen; Verhaegen, Michel
2015-12-15
Several sensor-less wavefront aberration correction methods that correct nonlinear wavefront aberrations by maximizing the optical coherence tomography (OCT) signal are tested on an OCT setup. A conventional coordinate search method is compared to two model-based optimization methods. The first model-based method takes advantage of the well-known optimization algorithm (NEWUOA) and utilizes a quadratic model. The second model-based method (DONE) is new and utilizes a random multidimensional Fourier-basis expansion. The model-based algorithms achieve lower wavefront errors with up to ten times fewer measurements. Furthermore, the newly proposed DONE method outperforms the NEWUOA method significantly. The DONE algorithm is tested on OCT images and shows a significantly improved image quality.
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
Supervised detection of exoplanets in high-contrast imaging sequences
NASA Astrophysics Data System (ADS)
Gomez Gonzalez, C. A.; Absil, O.; Van Droogenbroeck, M.
2018-06-01
Context. Post-processing algorithms play a key role in pushing the detection limits of high-contrast imaging (HCI) instruments. State-of-the-art image processing approaches for HCI enable the production of science-ready images relying on unsupervised learning techniques, such as low-rank approximations, for generating a model point spread function (PSF) and subtracting the residual starlight and speckle noise. Aims: In order to maximize the detection rate of HCI instruments and survey campaigns, advanced algorithms with higher sensitivities to faint companions are needed, especially for the speckle-dominated innermost region of the images. Methods: We propose a reformulation of the exoplanet detection task (for ADI sequences) that builds on well-established machine learning techniques to take HCI post-processing from an unsupervised to a supervised learning context. In this new framework, we present algorithmic solutions using two different discriminative models: SODIRF (random forests) and SODINN (neural networks). We test these algorithms on real ADI datasets from VLT/NACO and VLT/SPHERE HCI instruments. We then assess their performances by injecting fake companions and using receiver operating characteristic analysis. This is done in comparison with state-of-the-art ADI algorithms, such as ADI principal component analysis (ADI-PCA). Results: This study shows the improved sensitivity versus specificity trade-off of the proposed supervised detection approach. At the diffraction limit, SODINN improves the true positive rate by a factor ranging from 2 to 10 (depending on the dataset and angular separation) with respect to ADI-PCA when working at the same false-positive level. Conclusions: The proposed supervised detection framework outperforms state-of-the-art techniques in the task of discriminating planet signal from speckles. In addition, it offers the possibility of re-processing existing HCI databases to maximize their scientific return and potentially improve the demographics of directly imaged exoplanets.
Multipass Target Search in Natural Environments
Otte, Michael W.; Sofge, Donald; Gupta, Satyandra K.
2017-01-01
Consider a disaster scenario where search and rescue workers must search difficult to access buildings during an earthquake or flood. Often, finding survivors a few hours sooner results in a dramatic increase in saved lives, suggesting the use of drones for expedient rescue operations. Entropy can be used to quantify the generation and resolution of uncertainty. When searching for targets, maximizing mutual information of future sensor observations will minimize expected target location uncertainty by minimizing the entropy of the future estimate. Motion planning for multi-target autonomous search requires planning over an area with an imperfect sensor and may require multiple passes, which is hindered by the submodularity property of mutual information. Further, mission duration constraints must be handled accordingly, requiring consideration of the vehicle’s dynamics to generate feasible trajectories and must plan trajectories spanning the entire mission duration, something which most information gathering algorithms are incapable of doing. If unanticipated changes occur in an uncertain environment, new plans must be generated quickly. In addition, planning multipass trajectories requires evaluating path dependent rewards, requiring planning in the space of all previously selected actions, compounding the problem. We present an anytime algorithm for autonomous multipass target search in natural environments. The algorithm is capable of generating long duration dynamically feasible multipass coverage plans that maximize mutual information using a variety of techniques such as ϵ-admissible heuristics to speed up the search. To the authors’ knowledge this is the first attempt at efficiently solving multipass target search problems of such long duration. The proposed algorithm is based on best first branch and bound and is benchmarked against state of the art algorithms adapted to the problem in natural Simplex environments, gathering the most information in the given search time. PMID:29099087
Estimating the size of the solution space of metabolic networks
Braunstein, Alfredo; Mulet, Roberto; Pagnani, Andrea
2008-01-01
Background Cellular metabolism is one of the most investigated system of biological interactions. While the topological nature of individual reactions and pathways in the network is quite well understood there is still a lack of comprehension regarding the global functional behavior of the system. In the last few years flux-balance analysis (FBA) has been the most successful and widely used technique for studying metabolism at system level. This method strongly relies on the hypothesis that the organism maximizes an objective function. However only under very specific biological conditions (e.g. maximization of biomass for E. coli in reach nutrient medium) the cell seems to obey such optimization law. A more refined analysis not assuming extremization remains an elusive task for large metabolic systems due to algorithmic limitations. Results In this work we propose a novel algorithmic strategy that provides an efficient characterization of the whole set of stable fluxes compatible with the metabolic constraints. Using a technique derived from the fields of statistical physics and information theory we designed a message-passing algorithm to estimate the size of the affine space containing all possible steady-state flux distributions of metabolic networks. The algorithm, based on the well known Bethe approximation, can be used to approximately compute the volume of a non full-dimensional convex polytope in high dimensions. We first compare the accuracy of the predictions with an exact algorithm on small random metabolic networks. We also verify that the predictions of the algorithm match closely those of Monte Carlo based methods in the case of the Red Blood Cell metabolic network. Then we test the effect of gene knock-outs on the size of the solution space in the case of E. coli central metabolism. Finally we analyze the statistical properties of the average fluxes of the reactions in the E. coli metabolic network. Conclusion We propose a novel efficient distributed algorithmic strategy to estimate the size and shape of the affine space of a non full-dimensional convex polytope in high dimensions. The method is shown to obtain, quantitatively and qualitatively compatible results with the ones of standard algorithms (where this comparison is possible) being still efficient on the analysis of large biological systems, where exact deterministic methods experience an explosion in algorithmic time. The algorithm we propose can be considered as an alternative to Monte Carlo sampling methods. PMID:18489757
González, M; Gutiérrez, C; Martínez, R
2012-09-01
A two-dimensional bisexual branching process has recently been presented for the analysis of the generation-to-generation evolution of the number of carriers of a Y-linked gene. In this model, preference of females for males with a specific genetic characteristic is assumed to be determined by an allele of the gene. It has been shown that the behavior of this kind of Y-linked gene is strongly related to the reproduction law of each genotype. In practice, the corresponding offspring distributions are usually unknown, and it is necessary to develop their estimation theory in order to determine the natural selection of the gene. Here we deal with the estimation problem for the offspring distribution of each genotype of a Y-linked gene when the only observable data are each generation's total numbers of males of each genotype and of females. We set out the problem in a non parametric framework and obtain the maximum likelihood estimators of the offspring distributions using an expectation-maximization algorithm. From these estimators, we also derive the estimators for the reproduction mean of each genotype and forecast the distribution of the future population sizes. Finally, we check the accuracy of the algorithm by means of a simulation study.
The Balloon Popping Problem Revisited: Lower and Upper Bounds
NASA Astrophysics Data System (ADS)
Jung, Hyunwoo; Chwa, Kyung-Yong
We consider the balloon popping problem introduced by Immorlica et al. in 2007 [13]. This problem is directly related to the problem of profit maximization in online auctions, where an auctioneer is selling a collection of identical items to anonymous unit-demand bidders. The auctioneer has the full knowledge of bidders’ private valuations for the items and tries to maximize his profit. Compared with the profit of fixed price schemes, the competitive ratio of Immorlica et al.’s algorithm was in the range [1.64, 4.33]. In this paper, we narrow the gap to [1.659, 2].
Enumerating all maximal frequent subtrees in collections of phylogenetic trees
2014-01-01
Background A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. Results We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Conclusions Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees. PMID:25061474
Enumerating all maximal frequent subtrees in collections of phylogenetic trees.
Deepak, Akshay; Fernández-Baca, David
2014-01-01
A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.
Rough sets and Laplacian score based cost-sensitive feature selection
Yu, Shenglong
2018-01-01
Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of “good” features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms. PMID:29912884
Hierarchical heuristic search using a Gaussian mixture model for UAV coverage planning.
Lin, Lanny; Goodrich, Michael A
2014-12-01
During unmanned aerial vehicle (UAV) search missions, efficient use of UAV flight time requires flight paths that maximize the probability of finding the desired subject. The probability of detecting the desired subject based on UAV sensor information can vary in different search areas due to environment elements like varying vegetation density or lighting conditions, making it likely that the UAV can only partially detect the subject. This adds another dimension of complexity to the already difficult (NP-Hard) problem of finding an optimal search path. We present a new class of algorithms that account for partial detection in the form of a task difficulty map and produce paths that approximate the payoff of optimal solutions. The algorithms use the mode goodness ratio heuristic that uses a Gaussian mixture model to prioritize search subregions. The algorithms search for effective paths through the parameter space at different levels of resolution. We compare the performance of the new algorithms against two published algorithms (Bourgault's algorithm and LHC-GW-CONV algorithm) in simulated searches with three real search and rescue scenarios, and show that the new algorithms outperform existing algorithms significantly and can yield efficient paths that yield payoffs near the optimal.
Rough sets and Laplacian score based cost-sensitive feature selection.
Yu, Shenglong; Zhao, Hong
2018-01-01
Cost-sensitive feature selection learning is an important preprocessing step in machine learning and data mining. Recently, most existing cost-sensitive feature selection algorithms are heuristic algorithms, which evaluate the importance of each feature individually and select features one by one. Obviously, these algorithms do not consider the relationship among features. In this paper, we propose a new algorithm for minimal cost feature selection called the rough sets and Laplacian score based cost-sensitive feature selection. The importance of each feature is evaluated by both rough sets and Laplacian score. Compared with heuristic algorithms, the proposed algorithm takes into consideration the relationship among features with locality preservation of Laplacian score. We select a feature subset with maximal feature importance and minimal cost when cost is undertaken in parallel, where the cost is given by three different distributions to simulate different applications. Different from existing cost-sensitive feature selection algorithms, our algorithm simultaneously selects out a predetermined number of "good" features. Extensive experimental results show that the approach is efficient and able to effectively obtain the minimum cost subset. In addition, the results of our method are more promising than the results of other cost-sensitive feature selection algorithms.
Efficient Approximation Algorithms for Weighted $b$-Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.
2016-01-01
We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less
VDA, a Method of Choosing a Better Algorithm with Fewer Validations
Kluger, Yuval
2011-01-01
The multitude of bioinformatics algorithms designed for performing a particular computational task presents end-users with the problem of selecting the most appropriate computational tool for analyzing their biological data. The choice of the best available method is often based on expensive experimental validation of the results. We propose an approach to design validation sets for method comparison and performance assessment that are effective in terms of cost and discrimination power. Validation Discriminant Analysis (VDA) is a method for designing a minimal validation dataset to allow reliable comparisons between the performances of different algorithms. Implementation of our VDA approach achieves this reduction by selecting predictions that maximize the minimum Hamming distance between algorithmic predictions in the validation set. We show that VDA can be used to correctly rank algorithms according to their performances. These results are further supported by simulations and by realistic algorithmic comparisons in silico. VDA is a novel, cost-efficient method for minimizing the number of validation experiments necessary for reliable performance estimation and fair comparison between algorithms. Our VDA software is available at http://sourceforge.net/projects/klugerlab/files/VDA/ PMID:22046256
Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays
Salt, Julián; Guinaldo, María; Chacón, Jesús
2018-01-01
In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n-input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant. PMID:29747441
Weather prediction using a genetic memory
NASA Technical Reports Server (NTRS)
Rogers, David
1990-01-01
Kanaerva's sparse distributed memory (SDM) is an associative memory model based on the mathematical properties of high dimensional binary address spaces. Holland's genetic algorithms are a search technique for high dimensional spaces inspired by evolutional processes of DNA. Genetic Memory is a hybrid of the above two systems, in which the memory uses a genetic algorithm to dynamically reconfigure its physical storage locations to reflect correlations between the stored addresses and data. This architecture is designed to maximize the ability of the system to scale-up to handle real world problems.
Optimal rail container shipment planning problem in multimodal transportation
NASA Astrophysics Data System (ADS)
Cao, Chengxuan; Gao, Ziyou; Li, Keping
2012-09-01
The optimal rail container shipment planning problem in multimodal transportation is studied in this article. The characteristics of the multi-period planning problem is presented and the problem is formulated as a large-scale 0-1 integer programming model, which maximizes the total profit generated by all freight bookings accepted in a multi-period planning horizon subject to the limited capacities. Two heuristic algorithms are proposed to obtain an approximate optimal solution of the problem. Finally, numerical experiments are conducted to demonstrate the proposed formulation and heuristic algorithms.
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
Optimal Control for Aperiodic Dual-Rate Systems With Time-Varying Delays.
Aranda-Escolástico, Ernesto; Salt, Julián; Guinaldo, María; Chacón, Jesús; Dormido, Sebastián
2018-05-09
In this work, we consider a dual-rate scenario with slow input and fast output. Our objective is the maximization of the decay rate of the system through the suitable choice of the n -input signals between two measures (periodic sampling) and their times of application. The optimization algorithm is extended for time-varying delays in order to make possible its implementation in networked control systems. We provide experimental results in an air levitation system to verify the validity of the algorithm in a real plant.
Network clustering and community detection using modulus of families of loops.
Shakeri, Heman; Poggi-Corradini, Pietro; Albin, Nathan; Scoglio, Caterina
2017-01-01
We study the structure of loops in networks using the notion of modulus of loop families. We introduce an alternate measure of network clustering by quantifying the richness of families of (simple) loops. Modulus tries to minimize the expected overlap among loops by spreading the expected link usage optimally. We propose weighting networks using these expected link usages to improve classical community detection algorithms. We show that the proposed method enhances the performance of certain algorithms, such as spectral partitioning and modularity maximization heuristics, on standard benchmarks.
Optimal placement of excitations and sensors for verification of large dynamical systems
NASA Technical Reports Server (NTRS)
Salama, M.; Rose, T.; Garba, J.
1987-01-01
The computationally difficult problem of the optimal placement of excitations and sensors to maximize the observed measurements is studied within the framework of combinatorial optimization, and is solved numerically using a variation of the simulated annealing heuristic algorithm. Results of numerical experiments including a square plate and a 960 degrees-of-freedom Control of Flexible Structure (COFS) truss structure, are presented. Though the algorithm produces suboptimal solutions, its generality and simplicity allow the treatment of complex dynamical systems which would otherwise be difficult to handle.
A Lyapunov based approach to energy maximization in renewable energy technologies
NASA Astrophysics Data System (ADS)
Iyasere, Erhun
This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.
Membership-degree preserving discriminant analysis with applications to face recognition.
Yang, Zhangjing; Liu, Chuancai; Huang, Pu; Qian, Jianjun
2013-01-01
In pattern recognition, feature extraction techniques have been widely employed to reduce the dimensionality of high-dimensional data. In this paper, we propose a novel feature extraction algorithm called membership-degree preserving discriminant analysis (MPDA) based on the fisher criterion and fuzzy set theory for face recognition. In the proposed algorithm, the membership degree of each sample to particular classes is firstly calculated by the fuzzy k-nearest neighbor (FKNN) algorithm to characterize the similarity between each sample and class centers, and then the membership degree is incorporated into the definition of the between-class scatter and the within-class scatter. The feature extraction criterion via maximizing the ratio of the between-class scatter to the within-class scatter is applied. Experimental results on the ORL, Yale, and FERET face databases demonstrate the effectiveness of the proposed algorithm.
SubspaceEM: A Fast Maximum-a-posteriori Algorithm for Cryo-EM Single Particle Reconstruction
Dvornek, Nicha C.; Sigworth, Fred J.; Tagare, Hemant D.
2015-01-01
Single particle reconstruction methods based on the maximum-likelihood principle and the expectation-maximization (E–M) algorithm are popular because of their ability to produce high resolution structures. However, these algorithms are computationally very expensive, requiring a network of computational servers. To overcome this computational bottleneck, we propose a new mathematical framework for accelerating maximum-likelihood reconstructions. The speedup is by orders of magnitude and the proposed algorithm produces similar quality reconstructions compared to the standard maximum-likelihood formulation. Our approach uses subspace approximations of the cryo-electron microscopy (cryo-EM) data and projection images, greatly reducing the number of image transformations and comparisons that are computed. Experiments using simulated and actual cryo-EM data show that speedup in overall execution time compared to traditional maximum-likelihood reconstruction reaches factors of over 300. PMID:25839831
Statistical reconstruction for cosmic ray muon tomography.
Schultz, Larry J; Blanpied, Gary S; Borozdin, Konstantin N; Fraser, Andrew M; Hengartner, Nicolas W; Klimenko, Alexei V; Morris, Christopher L; Orum, Chris; Sossong, Michael J
2007-08-01
Highly penetrating cosmic ray muons constantly shower the earth at a rate of about 1 muon per cm2 per minute. We have developed a technique which exploits the multiple Coulomb scattering of these particles to perform nondestructive inspection without the use of artificial radiation. In prior work [1]-[3], we have described heuristic methods for processing muon data to create reconstructed images. In this paper, we present a maximum likelihood/expectation maximization tomographic reconstruction algorithm designed for the technique. This algorithm borrows much from techniques used in medical imaging, particularly emission tomography, but the statistics of muon scattering dictates differences. We describe the statistical model for multiple scattering, derive the reconstruction algorithm, and present simulated examples. We also propose methods to improve the robustness of the algorithm to experimental errors and events departing from the statistical model.
Multi-objective optimal design of sandwich panels using a genetic algorithm
NASA Astrophysics Data System (ADS)
Xu, Xiaomei; Jiang, Yiping; Pueh Lee, Heow
2017-10-01
In this study, an optimization problem concerning sandwich panels is investigated by simultaneously considering the two objectives of minimizing the panel mass and maximizing the sound insulation performance. First of all, the acoustic model of sandwich panels is discussed, which provides a foundation to model the acoustic objective function. Then the optimization problem is formulated as a bi-objective programming model, and a solution algorithm based on the non-dominated sorting genetic algorithm II (NSGA-II) is provided to solve the proposed model. Finally, taking an example of a sandwich panel that is expected to be used as an automotive roof panel, numerical experiments are carried out to verify the effectiveness of the proposed model and solution algorithm. Numerical results demonstrate in detail how the core material, geometric constraints and mechanical constraints impact the optimal designs of sandwich panels.
Novel multimodality segmentation using level sets and Jensen-Rényi divergence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markel, Daniel, E-mail: daniel.markel@mail.mcgill.ca; Zaidi, Habib; Geneva Neuroscience Center, Geneva University, CH-1205 Geneva
2013-12-15
Purpose: Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. Methods: A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set activemore » contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. Results: The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with aR{sup 2} value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. Conclusions: The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.« less
Novel multimodality segmentation using level sets and Jensen-Rényi divergence.
Markel, Daniel; Zaidi, Habib; El Naqa, Issam
2013-12-01
Positron emission tomography (PET) is playing an increasing role in radiotherapy treatment planning. However, despite progress, robust algorithms for PET and multimodal image segmentation are still lacking, especially if the algorithm were extended to image-guided and adaptive radiotherapy (IGART). This work presents a novel multimodality segmentation algorithm using the Jensen-Rényi divergence (JRD) to evolve the geometric level set contour. The algorithm offers improved noise tolerance which is particularly applicable to segmentation of regions found in PET and cone-beam computed tomography. A steepest gradient ascent optimization method is used in conjunction with the JRD and a level set active contour to iteratively evolve a contour to partition an image based on statistical divergence of the intensity histograms. The algorithm is evaluated using PET scans of pharyngolaryngeal squamous cell carcinoma with the corresponding histological reference. The multimodality extension of the algorithm is evaluated using 22 PET/CT scans of patients with lung carcinoma and a physical phantom scanned under varying image quality conditions. The average concordance index (CI) of the JRD segmentation of the PET images was 0.56 with an average classification error of 65%. The segmentation of the lung carcinoma images had a maximum diameter relative error of 63%, 19.5%, and 14.8% when using CT, PET, and combined PET/CT images, respectively. The estimated maximal diameters of the gross tumor volume (GTV) showed a high correlation with the macroscopically determined maximal diameters, with a R(2) value of 0.85 and 0.88 using the PET and PET/CT images, respectively. Results from the physical phantom show that the JRD is more robust to image noise compared to mutual information and region growing. The JRD has shown improved noise tolerance compared to mutual information for the purpose of PET image segmentation. Presented is a flexible framework for multimodal image segmentation that can incorporate a large number of inputs efficiently for IGART.
Fast GPU-based computation of spatial multigrid multiframe LMEM for PET.
Nassiri, Moulay Ali; Carrier, Jean-François; Després, Philippe
2015-09-01
Significant efforts were invested during the last decade to accelerate PET list-mode reconstructions, notably with GPU devices. However, the computation time per event is still relatively long, and the list-mode efficiency on the GPU is well below the histogram-mode efficiency. Since list-mode data are not arranged in any regular pattern, costly accesses to the GPU global memory can hardly be optimized and geometrical symmetries cannot be used. To overcome obstacles that limit the acceleration of reconstruction from list-mode on the GPU, a multigrid and multiframe approach of an expectation-maximization algorithm was developed. The reconstruction process is started during data acquisition, and calculations are executed concurrently on the GPU and the CPU, while the system matrix is computed on-the-fly. A new convergence criterion also was introduced, which is computationally more efficient on the GPU. The implementation was tested on a Tesla C2050 GPU device for a Gemini GXL PET system geometry. The results show that the proposed algorithm (multigrid and multiframe list-mode expectation-maximization, MGMF-LMEM) converges to the same solution as the LMEM algorithm more than three times faster. The execution time of the MGMF-LMEM algorithm was 1.1 s per million of events on the Tesla C2050 hardware used, for a reconstructed space of 188 x 188 x 57 voxels of 2 x 2 x 3.15 mm3. For 17- and 22-mm simulated hot lesions, the MGMF-LMEM algorithm led on the first iteration to contrast recovery coefficients (CRC) of more than 75 % of the maximum CRC while achieving a minimum in the relative mean square error. Therefore, the MGMF-LMEM algorithm can be used as a one-pass method to perform real-time reconstructions for low-count acquisitions, as in list-mode gated studies. The computation time for one iteration and 60 millions of events was approximately 66 s.
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie
2017-03-01
A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.
McGinn, Patrick J; MacQuarrie, Scott P; Choi, Jerome; Tartakovsky, Boris
2017-01-01
In this study, production of the microalga Scenedesmus AMDD in a 300 L continuous flow photobioreactor was maximized using an online flow (dilution rate) control algorithm. To enable online control, biomass concentration was estimated in real time by measuring chlorophyll-related culture fluorescence. A simple microalgae growth model was developed and used to solve the optimization problem aimed at maximizing the photobioreactor productivity. When optimally controlled, Scenedesmus AMDD culture demonstrated an average volumetric biomass productivity of 0.11 g L -1 d -1 over a 25 day cultivation period, equivalent to a 70 % performance improvement compared to the same photobioreactor operated as a turbidostat. The proposed approach for optimizing photobioreactor flow can be adapted to a broad range of microalgae cultivation systems.
Design of optimized piezoelectric HDD-sliders
NASA Astrophysics Data System (ADS)
Nakasone, Paulo H.; Yoo, Jeonghoon; Silva, Emilio C. N.
2010-04-01
As storage data density in hard-disk drives (HDDs) increases for constant or miniaturizing sizes, precision positioning of HDD heads becomes a more relevant issue to ensure enormous amounts of data to be properly written and read. Since the traditional single-stage voice coil motor (VCM) cannot satisfy the positioning requirement of high-density tracks per inch (TPI) HDDs, dual-stage servo systems have been proposed to overcome this matter, by using VCMs to coarsely move the HDD head while piezoelectric actuators provides fine and fast positioning. Thus, the aim of this work is to apply topology optimization method (TOM) to design novel piezoelectric HDD heads, by finding optimal placement of base-plate and piezoelectric material to high precision positioning HDD heads. Topology optimization method is a structural optimization technique that combines the finite element method (FEM) with optimization algorithms. The laminated finite element employs the MITC (mixed interpolation of tensorial components) formulation to provide accurate and reliable results. The topology optimization uses a rational approximation of material properties to vary the material properties between 'void' and 'filled' portions. The design problem consists in generating optimal structures that provide maximal displacements, appropriate structural stiffness and resonance phenomena avoidance. The requirements are achieved by applying formulations to maximize displacements, minimize structural compliance and maximize resonance frequencies. This paper presents the implementation of the algorithms and show results to confirm the feasibility of this approach.
Maximum Likelihood and Minimum Distance Applied to Univariate Mixture Distributions.
ERIC Educational Resources Information Center
Wang, Yuh-Yin Wu; Schafer, William D.
This Monte-Carlo study compared modified Newton (NW), expectation-maximization algorithm (EM), and minimum Cramer-von Mises distance (MD), used to estimate parameters of univariate mixtures of two components. Data sets were fixed at size 160 and manipulated by mean separation, variance ratio, component proportion, and non-normality. Results…
NASA Technical Reports Server (NTRS)
Karmarkar, J. S.
1972-01-01
Proposal of an algorithmic procedure, based on mathematical programming methods, to design compensators for hyperstable discrete model-reference adaptive systems (MRAS). The objective of the compensator is to render the MRAS insensitive to initial parameter estimates within a maximized hypercube in the model parameter space.
ERIC Educational Resources Information Center
Casabianca, Jodi M.; Lewis, Charles
2015-01-01
Loglinear smoothing (LLS) estimates the latent trait distribution while making fewer assumptions about its form and maintaining parsimony, thus leading to more precise item response theory (IRT) item parameter estimates than standard marginal maximum likelihood (MML). This article provides the expectation-maximization algorithm for MML estimation…
Stochastic Approximation Methods for Latent Regression Item Response Models
ERIC Educational Resources Information Center
von Davier, Matthias; Sinharay, Sandip
2010-01-01
This article presents an application of a stochastic approximation expectation maximization (EM) algorithm using a Metropolis-Hastings (MH) sampler to estimate the parameters of an item response latent regression model. Latent regression item response models are extensions of item response theory (IRT) to a latent variable model with covariates…
Zecchin, Chiara; Facchinetti, Andrea; Sparacino, Giovanni; Dalla Man, Chiara; Manohar, Chinmay; Levine, James A; Basu, Ananda; Kudva, Yogish C; Cobelli, Claudio
2013-10-01
In type 1 diabetes mellitus (T1DM), physical activity (PA) lowers the risk of cardiovascular complications but hinders the achievement of optimal glycemic control, transiently boosting insulin action and increasing hypoglycemia risk. Quantitative investigation of relationships between PA-related signals and glucose dynamics, tracked using, for example, continuous glucose monitoring (CGM) sensors, have been barely explored. In the clinic, 20 control and 19 T1DM subjects were studied for 4 consecutive days. They underwent low-intensity PA sessions daily. PA was tracked by the PA monitoring system (PAMS), a system comprising accelerometers and inclinometers. Variations on glucose dynamics were tracked estimating first- and second-order time derivatives of glucose concentration from CGM via Bayesian smoothing. Short-time effects of PA on glucose dynamics were quantified through the partial correlation function in the interval (0, 60 min) after starting PA. Correlation of PA with glucose time derivatives is evident. In T1DM, the negative correlation with the first-order glucose time derivative is maximal (absolute value) after 15 min of PA, whereas the positive correlation is maximal after 40-45 min. The negative correlation between the second-order time derivative and PA is maximal after 5 min, whereas the positive correlation is maximal after 35-40 min. Control subjects provided similar results but with positive and negative correlation peaks anticipated of 5 min. Quantitative information on correlation between mild PA and short-term glucose dynamics was obtained. This represents a preliminary important step toward incorporation of PA information in more realistic physiological models of the glucose-insulin system usable in T1DM simulators, in development of closed-loop artificial pancreas control algorithms, and in CGM-based prediction algorithms for generation of hypoglycemic alerts.
NASA Astrophysics Data System (ADS)
Goharian, E.; Gailey, R.; Maples, S.; Azizipour, M.; Sandoval Solis, S.; Fogg, G. E.
2017-12-01
The drought incidents and growing water scarcity in California have a profound effect on human, agricultural, and environmental water needs. California experienced multi-year droughts, which have caused groundwater overdraft and dropping groundwater levels, and dwindling of major reservoirs. These concerns call for a stringent evaluation of future water resources sustainability and security in the state. To answer to this call, Sustainable Groundwater Management Act (SGMA) was passed in 2014 to promise a sustainable groundwater management in California by 2042. SGMA refers to managed aquifer recharge (MAR) as a key management option, especially in areas with high variation in water availability intra- and inter-annually, to secure the refill of underground water storage and return of groundwater quality to a desirable condition. The hybrid optimization of an integrated water resources system provides an opportunity to adapt surface reservoir operations for enhancement in groundwater recharge. Here, to re-operate Folsom Reservoir, objectives are maximizing the storage in the whole American-Cosumnes watershed and maximizing hydropower generation from Folsom Reservoir. While a linear programing (LP) module tends to maximize the total groundwater recharge by distributing and spreading water over suitable lands in basin, a genetic based algorithm, Non-dominated Sorting Genetic Algorithm II (NSGA-II), layer above it controls releases from the reservoir to secure the hydropower generation, carry-over storage in reservoir, available water for replenishment, and downstream water requirements. The preliminary results show additional releases from the reservoir for groundwater recharge during high flow seasons. Moreover, tradeoffs between the objectives describe that new operation performs satisfactorily to increase the storage in the basin, with nonsignificant effects on other objectives.
Accurate HLA type inference using a weighted similarity graph.
Xie, Minzhu; Li, Jing; Jiang, Tao
2010-12-14
The human leukocyte antigen system (HLA) contains many highly variable genes. HLA genes play an important role in the human immune system, and HLA gene matching is crucial for the success of human organ transplantations. Numerous studies have demonstrated that variation in HLA genes is associated with many autoimmune, inflammatory and infectious diseases. However, typing HLA genes by serology or PCR is time consuming and expensive, which limits large-scale studies involving HLA genes. Since it is much easier and cheaper to obtain single nucleotide polymorphism (SNP) genotype data, accurate computational algorithms to infer HLA gene types from SNP genotype data are in need. To infer HLA types from SNP genotypes, the first step is to infer SNP haplotypes from genotypes. However, for the same SNP genotype data set, the haplotype configurations inferred by different methods are usually inconsistent, and it is often difficult to decide which one is true. In this paper, we design an accurate HLA gene type inference algorithm by utilizing SNP genotype data from pedigrees, known HLA gene types of some individuals and the relationship between inferred SNP haplotypes and HLA gene types. Given a set of haplotypes inferred from the genotypes of a population consisting of many pedigrees, the algorithm first constructs a weighted similarity graph based on a new haplotype similarity measure and derives constraint edges from known HLA gene types. Based on the principle that different HLA gene alleles should have different background haplotypes, the algorithm searches for an optimal labeling of all the haplotypes with unknown HLA gene types such that the total weight among the same HLA gene types is maximized. To deal with ambiguous haplotype solutions, we use a genetic algorithm to select haplotype configurations that tend to maximize the same optimization criterion. Our experiments on a previously typed subset of the HapMap data show that the algorithm is highly accurate, achieving an accuracy of 96% for gene HLA-A, 95% for HLA-B, 97% for HLA-C, 84% for HLA-DRB1, 98% for HLA-DQA1 and 97% for HLA-DQB1 in a leave-one-out test. Our algorithm can infer HLA gene types from neighboring SNP genotype data accurately. Compared with a recent approach on the same input data, our algorithm achieved a higher accuracy. The code of our algorithm is available to the public for free upon request to the corresponding authors.
Morgan, R; Gallagher, M
2012-01-01
In this paper we extend a previously proposed randomized landscape generator in combination with a comparative experimental methodology to study the behavior of continuous metaheuristic optimization algorithms. In particular, we generate two-dimensional landscapes with parameterized, linear ridge structure, and perform pairwise comparisons of algorithms to gain insight into what kind of problems are easy and difficult for one algorithm instance relative to another. We apply this methodology to investigate the specific issue of explicit dependency modeling in simple continuous estimation of distribution algorithms. Experimental results reveal specific examples of landscapes (with certain identifiable features) where dependency modeling is useful, harmful, or has little impact on mean algorithm performance. Heat maps are used to compare algorithm performance over a large number of landscape instances and algorithm trials. Finally, we perform a meta-search in the landscape parameter space to find landscapes which maximize the performance between algorithms. The results are related to some previous intuition about the behavior of these algorithms, but at the same time lead to new insights into the relationship between dependency modeling in EDAs and the structure of the problem landscape. The landscape generator and overall methodology are quite general and extendable and can be used to examine specific features of other algorithms.
Constrained Multiobjective Biogeography Optimization Algorithm
Mo, Hongwei; Xu, Zhidan; Xu, Lifang; Wu, Zhou; Ma, Haiping
2014-01-01
Multiobjective optimization involves minimizing or maximizing multiple objective functions subject to a set of constraints. In this study, a novel constrained multiobjective biogeography optimization algorithm (CMBOA) is proposed. It is the first biogeography optimization algorithm for constrained multiobjective optimization. In CMBOA, a disturbance migration operator is designed to generate diverse feasible individuals in order to promote the diversity of individuals on Pareto front. Infeasible individuals nearby feasible region are evolved to feasibility by recombining with their nearest nondominated feasible individuals. The convergence of CMBOA is proved by using probability theory. The performance of CMBOA is evaluated on a set of 6 benchmark problems and experimental results show that the CMBOA performs better than or similar to the classical NSGA-II and IS-MOEA. PMID:25006591
Enhanced facial texture illumination normalization for face recognition.
Luo, Yong; Guan, Ye-Peng
2015-08-01
An uncontrolled lighting condition is one of the most critical challenges for practical face recognition applications. An enhanced facial texture illumination normalization method is put forward to resolve this challenge. An adaptive relighting algorithm is developed to improve the brightness uniformity of face images. Facial texture is extracted by using an illumination estimation difference algorithm. An anisotropic histogram-stretching algorithm is proposed to minimize the intraclass distance of facial skin and maximize the dynamic range of facial texture distribution. Compared with the existing methods, the proposed method can more effectively eliminate the redundant information of facial skin and illumination. Extensive experiments show that the proposed method has superior performance in normalizing illumination variation and enhancing facial texture features for illumination-insensitive face recognition.
Li, Xia; Guo, Meifang; Su, Yongfu
2016-01-01
In this article, a new multidirectional monotone hybrid iteration algorithm for finding a solution to the split common fixed point problem is presented for two countable families of quasi-nonexpansive mappings in Banach spaces. Strong convergence theorems are proved. The application of the result is to consider the split common null point problem of maximal monotone operators in Banach spaces. Strong convergence theorems for finding a solution of the split common null point problem are derived. This iteration algorithm can accelerate the convergence speed of iterative sequence. The results of this paper improve and extend the recent results of Takahashi and Yao (Fixed Point Theory Appl 2015:87, 2015) and many others .
Deist, T M; Gorissen, B L
2016-02-07
High-dose-rate brachytherapy is a tumor treatment method where a highly radioactive source is brought in close proximity to the tumor. In this paper we develop a simulated annealing algorithm to optimize the dwell times at preselected dwell positions to maximize tumor coverage under dose-volume constraints on the organs at risk. Compared to existing algorithms, our algorithm has advantages in terms of speed and objective value and does not require an expensive general purpose solver. Its success mainly depends on exploiting the efficiency of matrix multiplication and a careful selection of the neighboring states. In this paper we outline its details and make an in-depth comparison with existing methods using real patient data.
Automatic CT Brain Image Segmentation Using Two Level Multiresolution Mixture Model of EM
NASA Astrophysics Data System (ADS)
Jiji, G. Wiselin; Dehmeshki, Jamshid
2014-04-01
Tissue classification in computed tomography (CT) brain images is an important issue in the analysis of several brain dementias. A combination of different approaches for the segmentation of brain images is presented in this paper. A multi resolution algorithm is proposed along with scaled versions using Gaussian filter and wavelet analysis that extends expectation maximization (EM) algorithm. It is found that it is less sensitive to noise and got more accurate image segmentation than traditional EM. Moreover the algorithm has been applied on 20 sets of CT of the human brain and compared with other works. The segmentation results show the advantages of the proposed work have achieved more promising results and the results have been tested with Doctors.
Shouval, Roni; Labopin, Myriam; Unger, Ron; Giebel, Sebastian; Ciceri, Fabio; Schmid, Christoph; Esteve, Jordi; Baron, Frederic; Gorin, Norbert Claude; Savani, Bipin; Shimoni, Avichai; Mohty, Mohamad; Nagler, Arnon
2016-01-01
Models for prediction of allogeneic hematopoietic stem transplantation (HSCT) related mortality partially account for transplant risk. Improving predictive accuracy requires understating of prediction limiting factors, such as the statistical methodology used, number and quality of features collected, or simply the population size. Using an in-silico approach (i.e., iterative computerized simulations), based on machine learning (ML) algorithms, we set out to analyze these factors. A cohort of 25,923 adult acute leukemia patients from the European Society for Blood and Marrow Transplantation (EBMT) registry was analyzed. Predictive objective was non-relapse mortality (NRM) 100 days following HSCT. Thousands of prediction models were developed under varying conditions: increasing sample size, specific subpopulations and an increasing number of variables, which were selected and ranked by separate feature selection algorithms. Depending on the algorithm, predictive performance plateaued on a population size of 6,611-8,814 patients, reaching a maximal area under the receiver operator characteristic curve (AUC) of 0.67. AUCs' of models developed on specific subpopulation ranged from 0.59 to 0.67 for patients in second complete remission and receiving reduced intensity conditioning, respectively. Only 3-5 variables were necessary to achieve near maximal AUCs. The top 3 ranking variables, shared by all algorithms were disease stage, donor type, and conditioning regimen. Our findings empirically demonstrate that with regards to NRM prediction, few variables "carry the weight" and that traditional HSCT data has been "worn out". "Breaking through" the predictive boundaries will likely require additional types of inputs.
NASA Astrophysics Data System (ADS)
Ushijima, Timothy T.; Yeh, William W.-G.
2013-10-01
An optimal experimental design algorithm is developed to select locations for a network of observation wells that provide maximum information about unknown groundwater pumping in a confined, anisotropic aquifer. The design uses a maximal information criterion that chooses, among competing designs, the design that maximizes the sum of squared sensitivities while conforming to specified design constraints. The formulated optimization problem is non-convex and contains integer variables necessitating a combinatorial search. Given a realistic large-scale model, the size of the combinatorial search required can make the problem difficult, if not impossible, to solve using traditional mathematical programming techniques. Genetic algorithms (GAs) can be used to perform the global search; however, because a GA requires a large number of calls to a groundwater model, the formulated optimization problem still may be infeasible to solve. As a result, proper orthogonal decomposition (POD) is applied to the groundwater model to reduce its dimensionality. Then, the information matrix in the full model space can be searched without solving the full model. Results from a small-scale test case show identical optimal solutions among the GA, integer programming, and exhaustive search methods. This demonstrates the GA's ability to determine the optimal solution. In addition, the results show that a GA with POD model reduction is several orders of magnitude faster in finding the optimal solution than a GA using the full model. The proposed experimental design algorithm is applied to a realistic, two-dimensional, large-scale groundwater problem. The GA converged to a solution for this large-scale problem.
NASA Astrophysics Data System (ADS)
Davis, Jeremy E.; Bednar, Amy E.; Goodin, Christopher T.; Durst, Phillip J.; Anderson, Derek T.; Bethel, Cindy L.
2017-05-01
Particle swarm optimization (PSO) and genetic algorithms (GAs) are two optimization techniques from the field of computational intelligence (CI) for search problems where a direct solution can not easily be obtained. One such problem is finding an optimal set of parameters for the maximally stable extremal region (MSER) algorithm to detect areas of interest in imagery. Specifically, this paper describes the design of a GA and PSO for optimizing MSER parameters to detect stop signs in imagery produced via simulation for use in an autonomous vehicle navigation system. Several additions to the GA and PSO are required to successfully detect stop signs in simulated images. These additions are a primary focus of this paper and include: the identification of an appropriate fitness function, the creation of a variable mutation operator for the GA, an anytime algorithm modification to allow the GA to compute a solution quickly, the addition of an exponential velocity decay function to the PSO, the addition of an "execution best" omnipresent particle to the PSO, and the addition of an attractive force component to the PSO velocity update equation. Experimentation was performed with the GA using various combinations of selection, crossover, and mutation operators and experimentation was also performed with the PSO using various combinations of neighborhood topologies, swarm sizes, cognitive influence scalars, and social influence scalars. The results of both the GA and PSO optimized parameter sets are presented. This paper details the benefits and drawbacks of each algorithm in terms of detection accuracy, execution speed, and additions required to generate successful problem specific parameter sets.
NASA Astrophysics Data System (ADS)
Mayvan, Ali D.; Aghaeinia, Hassan; Kazemi, Mohammad
2017-12-01
This paper focuses on robust transceiver design for throughput enhancement on the interference channel (IC), under imperfect channel state information (CSI). In this paper, two algorithms are proposed to improve the throughput of the multi-input multi-output (MIMO) IC. Each transmitter and receiver has, respectively, M and N antennas and IC operates in a time division duplex mode. In the first proposed algorithm, each transceiver adjusts its filter to maximize the expected value of signal-to-interference-plus-noise ratio (SINR). On the other hand, the second algorithm tries to minimize the variances of the SINRs to hedge against the variability due to CSI error. Taylor expansion is exploited to approximate the effect of CSI imperfection on mean and variance. The proposed robust algorithms utilize the reciprocity of wireless networks to optimize the estimated statistical properties in two different working modes. Monte Carlo simulations are employed to investigate sum rate performance of the proposed algorithms and the advantage of incorporating variation minimization into the transceiver design.
Multi-task feature selection in microarray data by binary integer programming.
Lan, Liang; Vucetic, Slobodan
2013-12-20
A major challenge in microarray classification is that the number of features is typically orders of magnitude larger than the number of examples. In this paper, we propose a novel feature filter algorithm to select the feature subset with maximal discriminative power and minimal redundancy by solving a quadratic objective function with binary integer constraints. To improve the computational efficiency, the binary integer constraints are relaxed and a low-rank approximation to the quadratic term is applied. The proposed feature selection algorithm was extended to solve multi-task microarray classification problems. We compared the single-task version of the proposed feature selection algorithm with 9 existing feature selection methods on 4 benchmark microarray data sets. The empirical results show that the proposed method achieved the most accurate predictions overall. We also evaluated the multi-task version of the proposed algorithm on 8 multi-task microarray datasets. The multi-task feature selection algorithm resulted in significantly higher accuracy than when using the single-task feature selection methods.
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems
Mohamed, Mohamed A.; Eltamaly, Ali M.; Alolah, Abdulrahman I.
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers. PMID:27513000
PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems.
Mohamed, Mohamed A; Eltamaly, Ali M; Alolah, Abdulrahman I
2016-01-01
This paper introduces an optimal sizing algorithm for a hybrid renewable energy system using smart grid load management application based on the available generation. This algorithm aims to maximize the system energy production and meet the load demand with minimum cost and highest reliability. This system is formed by photovoltaic array, wind turbines, storage batteries, and diesel generator as a backup source of energy. Demand profile shaping as one of the smart grid applications is introduced in this paper using load shifting-based load priority. Particle swarm optimization is used in this algorithm to determine the optimum size of the system components. The results obtained from this algorithm are compared with those from the iterative optimization technique to assess the adequacy of the proposed algorithm. The study in this paper is performed in some of the remote areas in Saudi Arabia and can be expanded to any similar regions around the world. Numerous valuable results are extracted from this study that could help researchers and decision makers.
Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M
2014-05-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.
Mohamed, Ahmed F.; Elarini, Mahdi M.; Othman, Ahmed M.
2013-01-01
One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507
Algorithms of maximum likelihood data clustering with applications
NASA Astrophysics Data System (ADS)
Giada, Lorenzo; Marsili, Matteo
2002-12-01
We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.
Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.
Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B
2011-02-01
This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks.
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-10-09
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms.
Joint Power Charging and Routing in Wireless Rechargeable Sensor Networks
Jia, Jie; Chen, Jian; Deng, Yansha; Wang, Xingwei; Aghvami, Abdol-Hamid
2017-01-01
The development of wireless power transfer (WPT) technology has inspired the transition from traditional battery-based wireless sensor networks (WSNs) towards wireless rechargeable sensor networks (WRSNs). While extensive efforts have been made to improve charging efficiency, little has been done for routing optimization. In this work, we present a joint optimization model to maximize both charging efficiency and routing structure. By analyzing the structure of the optimization model, we first decompose the problem and propose a heuristic algorithm to find the optimal charging efficiency for the predefined routing tree. Furthermore, by coding the many-to-one communication topology as an individual, we further propose to apply a genetic algorithm (GA) for the joint optimization of both routing and charging. The genetic operations, including tree-based recombination and mutation, are proposed to obtain a fast convergence. Our simulation results show that the heuristic algorithm reduces the number of resident locations and the total moving distance. We also show that our proposed algorithm achieves a higher charging efficiency compared with existing algorithms. PMID:28991200
Effective Iterated Greedy Algorithm for Flow-Shop Scheduling Problems with Time lags
NASA Astrophysics Data System (ADS)
ZHAO, Ning; YE, Song; LI, Kaidian; CHEN, Siyu
2017-05-01
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algorithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% computational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1991-01-01
The authors introduce two criteria for the evaluation and selection of assembly plans. The first criterion is to maximize the number of different sequences in which the assembly tasks can be executed. The second criterion is to minimize the total assembly time through simultaneous execution of assembly tasks. An algorithm that performs a heuristic search for the best assembly plan over the AND/OR graph representation of assembly plans is discussed. Admissible heuristics for each of the two criteria introduced are presented. Some implementation issues that affect the computational efficiency are addressed.
A joint precoding scheme for indoor downlink multi-user MIMO VLC systems
NASA Astrophysics Data System (ADS)
Zhao, Qiong; Fan, Yangyu; Kang, Bochao
2017-11-01
In this study, we aim to improve the system performance and reduce the implementation complexity of precoding scheme for visible light communication (VLC) systems. By incorporating the power-method algorithm and the block diagonalization (BD) algorithm, we propose a joint precoding scheme for indoor downlink multi-user multi-input-multi-output (MU-MIMO) VLC systems. In this scheme, we apply the BD algorithm to eliminate the co-channel interference (CCI) among users firstly. Secondly, the power-method algorithm is used to search the precoding weight for each user based on the optimal criterion of signal to interference plus noise ratio (SINR) maximization. Finally, the optical power restrictions of VLC systems are taken into account to constrain the precoding weight matrix. Comprehensive computer simulations in two scenarios indicate that the proposed scheme always has better bit error rate (BER) performance and lower computation complexity than that of the traditional scheme.
NASA Astrophysics Data System (ADS)
Khambampati, A. K.; Rashid, A.; Kim, B. S.; Liu, Dong; Kim, S.; Kim, K. Y.
2010-04-01
EIT has been used for the dynamic estimation of organ boundaries. One specific application in this context is the estimation of lung boundaries during pulmonary circulation. This would help track the size and shape of lungs of the patients suffering from diseases like pulmonary edema and acute respiratory failure (ARF). The dynamic boundary estimation of the lungs can also be utilized to set and control the air volume and pressure delivered to the patients during artificial ventilation. In this paper, the expectation-maximization (EM) algorithm is used as an inverse algorithm to estimate the non-stationary lung boundary. The uncertainties caused in Kalman-type filters due to inaccurate selection of model parameters are overcome using EM algorithm. Numerical experiments using chest shaped geometry are carried out with proposed method and the performance is compared with extended Kalman filter (EKF). Results show superior performance of EM in estimation of the lung boundary.
Resource-constrained scheduling with hard due windows and rejection penalties
NASA Astrophysics Data System (ADS)
Garcia, Christopher
2016-09-01
This work studies a scheduling problem where each job must be either accepted and scheduled to complete within its specified due window, or rejected altogether. Each job has a certain processing time and contributes a certain profit if accepted or penalty cost if rejected. There is a set of renewable resources, and no resource limit can be exceeded at any time. Each job requires a certain amount of each resource when processed, and the objective is to maximize total profit. A mixed-integer programming formulation and three approximation algorithms are presented: a priority rule heuristic, an algorithm based on the metaheuristic for randomized priority search and an evolutionary algorithm. Computational experiments comparing these four solution methods were performed on a set of generated benchmark problems covering a wide range of problem characteristics. The evolutionary algorithm outperformed the other methods in most cases, often significantly, and never significantly underperformed any method.
Learning from Bees: An Approach for Influence Maximization on Viral Campaigns
Sankar, C. Prem; S., Asharaf
2016-01-01
Maximisation of influence propagation is a key ingredient to any viral marketing or socio-political campaigns. However, it is an NP-hard problem, and various approximate algorithms have been suggested to address the issue, though not largely successful. In this paper, we propose a bio-inspired approach to select the initial set of nodes which is significant in rapid convergence towards a sub-optimal solution in minimal runtime. The performance of the algorithm is evaluated using the re-tweet network of the hashtag #KissofLove on Twitter associated with the non-violent protest against the moral policing spread to many parts of India. Comparison with existing centrality based node ranking process the proposed method significant improvement on influence propagation. The proposed algorithm is one of the hardly few bio-inspired algorithms in network theory. We also report the results of the exploratory analysis of the network kiss of love campaign. PMID:27992472
Event-chain Monte Carlo algorithms for three- and many-particle interactions
NASA Astrophysics Data System (ADS)
Harland, J.; Michel, M.; Kampmann, T. A.; Kierfeld, J.
2017-02-01
We generalize the rejection-free event-chain Monte Carlo algorithm from many-particle systems with pairwise interactions to systems with arbitrary three- or many-particle interactions. We introduce generalized lifting probabilities between particles and obtain a general set of equations for lifting probabilities, the solution of which guarantees maximal global balance. We validate the resulting three-particle event-chain Monte Carlo algorithms on three different systems by comparison with conventional local Monte Carlo simulations: i) a test system of three particles with a three-particle interaction that depends on the enclosed triangle area; ii) a hard-needle system in two dimensions, where needle interactions constitute three-particle interactions of the needle end points; iii) a semiflexible polymer chain with a bending energy, which constitutes a three-particle interaction of neighboring chain beads. The examples demonstrate that the generalization to many-particle interactions broadens the applicability of event-chain algorithms considerably.
Redman, Joseph S; Natarajan, Yamini; Hou, Jason K; Wang, Jingqi; Hanif, Muzammil; Feng, Hua; Kramer, Jennifer R; Desiderio, Roxanne; Xu, Hua; El-Serag, Hashem B; Kanwal, Fasiha
2017-10-01
Natural language processing is a powerful technique of machine learning capable of maximizing data extraction from complex electronic medical records. We utilized this technique to develop algorithms capable of "reading" full-text radiology reports to accurately identify the presence of fatty liver disease. Abdominal ultrasound, computerized tomography, and magnetic resonance imaging reports were retrieved from the Veterans Affairs Corporate Data Warehouse from a random national sample of 652 patients. Radiographic fatty liver disease was determined by manual review by two physicians and verified with an expert radiologist. A split validation method was utilized for algorithm development. For all three imaging modalities, the algorithms could identify fatty liver disease with >90% recall and precision, with F-measures >90%. These algorithms could be used to rapidly screen patient records to establish a large cohort to facilitate epidemiological and clinical studies and examine the clinic course and outcomes of patients with radiographic hepatic steatosis.
Prediction of monthly rainfall in Victoria, Australia: Clusterwise linear regression approach
NASA Astrophysics Data System (ADS)
Bagirov, Adil M.; Mahmood, Arshad; Barton, Andrew
2017-05-01
This paper develops the Clusterwise Linear Regression (CLR) technique for prediction of monthly rainfall. The CLR is a combination of clustering and regression techniques. It is formulated as an optimization problem and an incremental algorithm is designed to solve it. The algorithm is applied to predict monthly rainfall in Victoria, Australia using rainfall data with five input meteorological variables over the period of 1889-2014 from eight geographically diverse weather stations. The prediction performance of the CLR method is evaluated by comparing observed and predicted rainfall values using four measures of forecast accuracy. The proposed method is also compared with the CLR using the maximum likelihood framework by the expectation-maximization algorithm, multiple linear regression, artificial neural networks and the support vector machines for regression models using computational results. The results demonstrate that the proposed algorithm outperforms other methods in most locations.
An intelligent identification algorithm for the monoclonal picking instrument
NASA Astrophysics Data System (ADS)
Yan, Hua; Zhang, Rongfu; Yuan, Xujun; Wang, Qun
2017-11-01
The traditional colony selection is mainly operated by manual mode, which takes on low efficiency and strong subjectivity. Therefore, it is important to develop an automatic monoclonal-picking instrument. The critical stage of the automatic monoclonal-picking and intelligent optimal selection is intelligent identification algorithm. An auto-screening algorithm based on Support Vector Machine (SVM) is proposed in this paper, which uses the supervised learning method, which combined with the colony morphological characteristics to classify the colony accurately. Furthermore, through the basic morphological features of the colony, system can figure out a series of morphological parameters step by step. Through the establishment of maximal margin classifier, and based on the analysis of the growth trend of the colony, the selection of the monoclonal colony was carried out. The experimental results showed that the auto-screening algorithm could screen out the regular colony from the other, which meets the requirement of various parameters.
Algorithm for Controlling a Centrifugal Compressor
NASA Technical Reports Server (NTRS)
Benedict, Scott M.
2004-01-01
An algorithm has been developed for controlling a centrifugal compressor that serves as the prime mover in a heatpump system. Experimental studies have shown that the operating conditions for maximum compressor efficiency are close to the boundary beyond which surge occurs. Compressor surge is a destructive condition in which there are instantaneous reversals of flow associated with a high outlet-to-inlet pressure differential. For a given cooling load, the algorithm sets the compressor speed at the lowest possible value while adjusting the inlet guide vane angle and diffuser vane angle to maximize efficiency, subject to an overriding requirement to prevent surge. The onset of surge is detected via the onset of oscillations of the electric current supplied to the compressor motor, associated with surge-induced oscillations of the torque exerted by and on the compressor rotor. The algorithm can be implemented in any of several computer languages.
Incorporating User Input in Template-Based Segmentation
Vidal, Camille; Beggs, Dale; Younes, Laurent; Jain, Sanjay K.; Jedynak, Bruno
2015-01-01
We present a simple and elegant method to incorporate user input in a template-based segmentation method for diseased organs. The user provides a partial segmentation of the organ of interest, which is used to guide the template towards its target. The user also highlights some elements of the background that should be excluded from the final segmentation. We derive by likelihood maximization a registration algorithm from a simple statistical image model in which the user labels are modeled as Bernoulli random variables. The resulting registration algorithm minimizes the sum of square differences between the binary template and the user labels, while preventing the template from shrinking, and penalizing for the inclusion of background elements into the final segmentation. We assess the performance of the proposed algorithm on synthetic images in which the amount of user annotation is controlled. We demonstrate our algorithm on the segmentation of the lungs of Mycobacterium tuberculosis infected mice from μCT images. PMID:26146532
Improved Snow Mapping Accuracy with Revised MODIS Snow Algorithm
NASA Technical Reports Server (NTRS)
Riggs, George; Hall, Dorothy K.
2012-01-01
The MODIS snow cover products have been used in over 225 published studies. From those reports, and our ongoing analysis, we have learned about the accuracy and errors in the snow products. Revisions have been made in the algorithms to improve the accuracy of snow cover detection in Collection 6 (C6), the next processing/reprocessing of the MODIS data archive planned to start in September 2012. Our objective in the C6 revision of the MODIS snow-cover algorithms and products is to maximize the capability to detect snow cover while minimizing snow detection errors of commission and omission. While the basic snow detection algorithm will not change, new screens will be applied to alleviate snow detection commission and omission errors, and only the fractional snow cover (FSC) will be output (the binary snow cover area (SCA) map will no longer be included).
Valiant load-balanced robust routing under hose model for WDM mesh networks
NASA Astrophysics Data System (ADS)
Zhang, Xiaoning; Li, Lemin; Wang, Sheng
2006-09-01
In this paper, we propose Valiant Load-Balanced robust routing scheme for WDM mesh networks under the model of polyhedral uncertainty (i.e., hose model), and the proposed routing scheme is implemented with traffic grooming approach. Our Objective is to maximize the hose model throughput. A mathematic formulation of Valiant Load-Balanced robust routing is presented and three fast heuristic algorithms are also proposed. When implementing Valiant Load-Balanced robust routing scheme to WDM mesh networks, a novel traffic-grooming algorithm called MHF (minimizing hop first) is proposed. We compare the three heuristic algorithms with the VPN tree under the hose model. Finally we demonstrate in the simulation results that MHF with Valiant Load-Balanced robust routing scheme outperforms the traditional traffic-grooming algorithm in terms of the throughput for the uniform/non-uniform traffic matrix under the hose model.
An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.
Vimalarani, C; Subramanian, R; Sivanandam, S N
2016-01-01
Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.
Wynant, Willy; Abrahamowicz, Michal
2016-11-01
Standard optimization algorithms for maximizing likelihood may not be applicable to the estimation of those flexible multivariable models that are nonlinear in their parameters. For applications where the model's structure permits separating estimation of mutually exclusive subsets of parameters into distinct steps, we propose the alternating conditional estimation (ACE) algorithm. We validate the algorithm, in simulations, for estimation of two flexible extensions of Cox's proportional hazards model where the standard maximum partial likelihood estimation does not apply, with simultaneous modeling of (1) nonlinear and time-dependent effects of continuous covariates on the hazard, and (2) nonlinear interaction and main effects of the same variable. We also apply the algorithm in real-life analyses to estimate nonlinear and time-dependent effects of prognostic factors for mortality in colon cancer. Analyses of both simulated and real-life data illustrate good statistical properties of the ACE algorithm and its ability to yield new potentially useful insights about the data structure. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Feng, Ju; Shen, Wen Zhong; Xu, Chang
2016-09-01
A new algorithm for multi-objective wind farm layout optimization is presented. It formulates the wind turbine locations as continuous variables and is capable of optimizing the number of turbines and their locations in the wind farm simultaneously. Two objectives are considered. One is to maximize the total power production, which is calculated by considering the wake effects using the Jensen wake model combined with the local wind distribution. The other is to minimize the total electrical cable length. This length is assumed to be the total length of the minimal spanning tree that connects all turbines and is calculated by using Prim's algorithm. Constraints on wind farm boundary and wind turbine proximity are also considered. An ideal test case shows the proposed algorithm largely outperforms a famous multi-objective genetic algorithm (NSGA-II). In the real test case based on the Horn Rev 1 wind farm, the algorithm also obtains useful Pareto frontiers and provides a wide range of Pareto optimal layouts with different numbers of turbines for a real-life wind farm developer.
Acceleration of the direct reconstruction of linear parametric images using nested algorithms.
Wang, Guobao; Qi, Jinyi
2010-03-07
Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.
On the use of harmony search algorithm in the training of wavelet neural networks
NASA Astrophysics Data System (ADS)
Lai, Kee Huong; Zainuddin, Zarita; Ong, Pauline
2015-10-01
Wavelet neural networks (WNNs) are a class of feedforward neural networks that have been used in a wide range of industrial and engineering applications to model the complex relationships between the given inputs and outputs. The training of WNNs involves the configuration of the weight values between neurons. The backpropagation training algorithm, which is a gradient-descent method, can be used for this training purpose. Nonetheless, the solutions found by this algorithm often get trapped at local minima. In this paper, a harmony search-based algorithm is proposed for the training of WNNs. The training of WNNs, thus can be formulated as a continuous optimization problem, where the objective is to maximize the overall classification accuracy. Each candidate solution proposed by the harmony search algorithm represents a specific WNN architecture. In order to speed up the training process, the solution space is divided into disjoint partitions during the random initialization step of harmony search algorithm. The proposed training algorithm is tested onthree benchmark problems from the UCI machine learning repository, as well as one real life application, namely, the classification of electroencephalography signals in the task of epileptic seizure detection. The results obtained show that the proposed algorithm outperforms the traditional harmony search algorithm in terms of overall classification accuracy.
Virtual Network Embedding via Monte Carlo Tree Search.
Haeri, Soroush; Trajkovic, Ljiljana
2018-02-01
Network virtualization helps overcome shortcomings of the current Internet architecture. The virtualized network architecture enables coexistence of multiple virtual networks (VNs) on an existing physical infrastructure. VN embedding (VNE) problem, which deals with the embedding of VN components onto a physical network, is known to be -hard. In this paper, we propose two VNE algorithms: MaVEn-M and MaVEn-S. MaVEn-M employs the multicommodity flow algorithm for virtual link mapping while MaVEn-S uses the shortest-path algorithm. They formalize the virtual node mapping problem by using the Markov decision process (MDP) framework and devise action policies (node mappings) for the proposed MDP using the Monte Carlo tree search algorithm. Service providers may adjust the execution time of the MaVEn algorithms based on the traffic load of VN requests. The objective of the algorithms is to maximize the profit of infrastructure providers. We develop a discrete event VNE simulator to implement and evaluate performance of MaVEn-M, MaVEn-S, and several recently proposed VNE algorithms. We introduce profitability as a new performance metric that captures both acceptance and revenue to cost ratios. Simulation results show that the proposed algorithms find more profitable solutions than the existing algorithms. Given additional computation time, they further improve embedding solutions.
NASA Astrophysics Data System (ADS)
Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda
2017-07-01
Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.
PEM-PCA: a parallel expectation-maximization PCA face recognition architecture.
Rujirakul, Kanokmon; So-In, Chakchai; Arnonkijpanich, Banchar
2014-01-01
Principal component analysis or PCA has been traditionally used as one of the feature extraction techniques in face recognition systems yielding high accuracy when requiring a small number of features. However, the covariance matrix and eigenvalue decomposition stages cause high computational complexity, especially for a large database. Thus, this research presents an alternative approach utilizing an Expectation-Maximization algorithm to reduce the determinant matrix manipulation resulting in the reduction of the stages' complexity. To improve the computational time, a novel parallel architecture was employed to utilize the benefits of parallelization of matrix computation during feature extraction and classification stages including parallel preprocessing, and their combinations, so-called a Parallel Expectation-Maximization PCA architecture. Comparing to a traditional PCA and its derivatives, the results indicate lower complexity with an insignificant difference in recognition precision leading to high speed face recognition systems, that is, the speed-up over nine and three times over PCA and Parallel PCA.
Buckling and weight optimization for non-coupled antisymmetric laminates
NASA Astrophysics Data System (ADS)
Bhatnagar, Aditi
This research work describes the application of genetic algorithms to weight minimization and buckling load maximization of the non-coupled antisymmetric composite laminated plates. Previous studies of composite tailoring were limited to symmetric and balanced laminates. With the availability of many methodologies for composite tailoring, genetic algorithm is preferably used because of its ability to handle discrete design variable and attain multiple near optimum design solutions. A comparative study is made between optimum symmetric-balanced laminate designs and optimum non-coupled antisymmetric laminate designs, both of which are subjected to biaxial in-plane compressive loads. With the implementation of various genetic algorithm operators such as selection, crossover and mutation, critical buckling load factors are obtained for the optimum stacking sequence for both types of laminates. The mechanical properties for non-coupled antisymmetric laminates is independent of all types of coupling effects such as bending-twisting coupling, bending-extension coupling, and shear-extension coupling, thus giving the laminate a non-coupling behavior. This is in contrast to that of symmetric-balanced laminates where finite bending-twisting coupling terms are present. Optimized laminate layups satisfying the constraints of balance, buckling and adjoining were obtained for two types of graphite epoxy rectangular composite laminated plates. The current research augments the laminate thickness minimization designs with both odd and even number of layers, and the optimum buckling load maximization designs by the introduction of non-coupled antisymmetric laminates.
Scheinker, Alexander; Baily, Scott; Young, Daniel; ...
2014-08-01
In this work, an implementation of a recently developed model-independent adaptive control scheme, for tuning uncertain and time varying systems, is demonstrated on the Los Alamos linear particle accelerator. The main benefits of the algorithm are its simplicity, ability to handle an arbitrary number of components without increased complexity, and the approach is extremely robust to measurement noise, a property which is both analytically proven and demonstrated in the experiments performed. We report on the application of this algorithm for simultaneous tuning of two buncher radio frequency (RF) cavities, in order to maximize beam acceptance into the accelerating electromagnetic fieldmore » cavities of the machine, with the tuning based only on a noisy measurement of the surviving beam current downstream from the two bunching cavities. The algorithm automatically responds to arbitrary phase shift of the cavity phases, automatically re-tuning the cavity settings and maximizing beam acceptance. Because it is model independent it can be utilized for continuous adaptation to time-variation of a large system, such as due to thermal drift, or damage to components, in which the remaining, functional components would be automatically re-tuned to compensate for the failing ones. We start by discussing the general model-independent adaptive scheme and how it may be digitally applied to a large class of multi-parameter uncertain systems, and then present our experimental results.« less
Active learning: learning a motor skill without a coach.
Huang, Vincent S; Shadmehr, Reza; Diedrichsen, Jörn
2008-08-01
When we learn a new skill (e.g., golf) without a coach, we are "active learners": we have to choose the specific components of the task on which to train (e.g., iron, driver, putter, etc.). What guides our selection of the training sequence? How do choices that people make compare with choices made by machine learning algorithms that attempt to optimize performance? We asked subjects to learn the novel dynamics of a robotic tool while moving it in four directions. They were instructed to choose their practice directions to maximize their performance in subsequent tests. We found that their choices were strongly influenced by motor errors: subjects tended to immediately repeat an action if that action had produced a large error. This strategy was correlated with better performance on test trials. However, even when participants performed perfectly on a movement, they did not avoid repeating that movement. The probability of repeating an action did not drop below chance even when no errors were observed. This behavior led to suboptimal performance. It also violated a strong prediction of current machine learning algorithms, which solve the active learning problem by choosing a training sequence that will maximally reduce the learner's uncertainty about the task. While we show that these algorithms do not provide an adequate description of human behavior, our results suggest ways to improve human motor learning by helping people choose an optimal training sequence.
Effects of Missing Data Methods in Structural Equation Modeling with Nonnormal Longitudinal Data
ERIC Educational Resources Information Center
Shin, Tacksoo; Davison, Mark L.; Long, Jeffrey D.
2009-01-01
The purpose of this study is to investigate the effects of missing data techniques in longitudinal studies under diverse conditions. A Monte Carlo simulation examined the performance of 3 missing data methods in latent growth modeling: listwise deletion (LD), maximum likelihood estimation using the expectation and maximization algorithm with a…
Grammars Leak: Modeling How Phonotactic Generalizations Interact within the Grammar
ERIC Educational Resources Information Center
Martin, Andrew
2011-01-01
I present evidence from Navajo and English that weaker, gradient versions of morpheme-internal phonotactic constraints, such as the ban on geminate consonants in English, hold even across prosodic word boundaries. I argue that these lexical biases are the result of a MAXIMUM ENTROPY phonotactic learning algorithm that maximizes the probability of…
Model-Based Reinforcement Learning under Concurrent Schedules of Reinforcement in Rodents
ERIC Educational Resources Information Center
Huh, Namjung; Jo, Suhyun; Kim, Hoseok; Sul, Jung Hoon; Jung, Min Whan
2009-01-01
Reinforcement learning theories postulate that actions are chosen to maximize a long-term sum of positive outcomes based on value functions, which are subjective estimates of future rewards. In simple reinforcement learning algorithms, value functions are updated only by trial-and-error, whereas they are updated according to the decision-maker's…
Distributed Name Servers: Naming and Caching in Large Distributed Computing Environments
1985-12-01
transmission rate of the communication medium1, transmission over a 56K bps line costs approx- imately 54r, and similarly, communication over a 9.6K...memories for modem computer systems attempt to maximize the hit ratio for a fixed-size cache by utilizing intelligent cache replacement algorithms
A New Algorithm to Create Balanced Teams Promoting More Diversity
ERIC Educational Resources Information Center
Dias, Teresa Galvão; Borges, José
2017-01-01
The problem of assigning students to teams can be described as maximising their profiles diversity within teams while minimising the differences among teams. This problem is commonly known as the maximally diverse grouping problem and it is usually formulated as maximising the sum of the pairwise distances among students within teams. We propose…
Distributed Sensing and Processing: A Graphical Model Approach
2005-11-30
that Ramanujan graph toplogies maximize the convergence rate of distributed detection consensus algorithms, improving over three orders of...small world type network designs. 14. SUBJECT TERMS Ramanujan graphs, sensor network topology, sensor network...that Ramanujan graphs, for which there are explicit algebraic constructions, have large eigenratios, converging much faster than structured graphs
Probabilistic distance-based quantizer design for distributed estimation
NASA Astrophysics Data System (ADS)
Kim, Yoon Hak
2016-12-01
We consider an iterative design of independently operating local quantizers at nodes that should cooperate without interaction to achieve application objectives for distributed estimation systems. We suggest as a new cost function a probabilistic distance between the posterior distribution and its quantized one expressed as the Kullback Leibler (KL) divergence. We first present the analysis that minimizing the KL divergence in the cyclic generalized Lloyd design framework is equivalent to maximizing the logarithmic quantized posterior distribution on the average which can be further computationally reduced in our iterative design. We propose an iterative design algorithm that seeks to maximize the simplified version of the posterior quantized distribution and discuss that our algorithm converges to a global optimum due to the convexity of the cost function and generates the most informative quantized measurements. We also provide an independent encoding technique that enables minimization of the cost function and can be efficiently simplified for a practical use of power-constrained nodes. We finally demonstrate through extensive experiments an obvious advantage of improved estimation performance as compared with the typical designs and the novel design techniques previously published.
Robust efficient video fingerprinting
NASA Astrophysics Data System (ADS)
Puri, Manika; Lubin, Jeffrey
2009-02-01
We have developed a video fingerprinting system with robustness and efficiency as the primary and secondary design criteria. In extensive testing, the system has shown robustness to cropping, letter-boxing, sub-titling, blur, drastic compression, frame rate changes, size changes and color changes, as well as to the geometric distortions often associated with camcorder capture in cinema settings. Efficiency is afforded by a novel two-stage detection process in which a fast matching process first computes a number of likely candidates, which are then passed to a second slower process that computes the overall best match with minimal false alarm probability. One key component of the algorithm is a maximally stable volume computation - a three-dimensional generalization of maximally stable extremal regions - that provides a content-centric coordinate system for subsequent hash function computation, independent of any affine transformation or extensive cropping. Other key features include an efficient bin-based polling strategy for initial candidate selection, and a final SIFT feature-based computation for final verification. We describe the algorithm and its performance, and then discuss additional modifications that can provide further improvement to efficiency and accuracy.
FOREX Trades: Can the Takens Algorithm Help to Obtain Steady Profit at Investment Reallocations?
NASA Astrophysics Data System (ADS)
Petrov, V. Yu.; Tribelsky, M. I.
2015-12-01
We report our preliminary results of application of the Takens algorithm to build a FOREX trade strategy, resulting in a steady long-time gain for a trader. The actual historical rates for pair EUR vs. USD are used. The values of various parameters of the problem including the "stop loss" and "take profit" thresholds are optimized to provide the maximal gain during the training period. Then, these values are employed for trades. We have succeeded to get the steady gain, if the spread is neglected. It proves that the FOREX market is predictable.
Efficiency of exchange schemes in replica exchange
NASA Astrophysics Data System (ADS)
Lingenheil, Martin; Denschlag, Robert; Mathias, Gerald; Tavan, Paul
2009-08-01
In replica exchange simulations a fast diffusion of the replicas through the temperature space maximizes the efficiency of the statistical sampling. Here, we compare the diffusion speed as measured by the round trip rates for four exchange algorithms. We find different efficiency profiles with optimal average acceptance probabilities ranging from 8% to 41%. The best performance is determined by benchmark simulations for the most widely used algorithm, which alternately tries to exchange all even and all odd replica pairs. By analytical mathematics we show that the excellent performance of this exchange scheme is due to the high diffusivity of the underlying random walk.
NASA Technical Reports Server (NTRS)
Lennington, R. K.; Malek, H.
1978-01-01
A clustering method, CLASSY, was developed, which alternates maximum likelihood iteration with a procedure for splitting, combining, and eliminating the resulting statistics. The method maximizes the fit of a mixture of normal distributions to the observed first through fourth central moments of the data and produces an estimate of the proportions, means, and covariances in this mixture. The mathematical model which is the basic for CLASSY and the actual operation of the algorithm is described. Data comparing the performances of CLASSY and ISOCLS on simulated and actual LACIE data are presented.
Groverian measure of entanglement for mixed states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapira, Daniel; Shimoni, Yishai; Biham, Ofer
2006-04-15
The Groverian entanglement measure, introduced earlier for pure quantum states of multiple qubits [O. Biham, M.A. Nielsen, and T. Osborne, Phys. Rev. A 65, 062312 (2002)], is generalized to the case of mixed states. The Groverian measure of a mixed state of n qubits is obtained by a purification procedure into a pure state of 2n qubits, followed by an optimization process, before the resulting state is fed into Grover's search algorithm. It is expressed in terms of the maximal success probability of the algorithm and in this sense provides an operational measure of entanglement.
NASA Astrophysics Data System (ADS)
Yuan, Jian-guo; Tong, Qing-zhen; Huang, Sheng; Wang, Yong
2013-11-01
An effective hierarchical reliable belief propagation (HRBP) decoding algorithm is proposed according to the structural characteristics of systematically constructed Gallager low-density parity-check (SCG-LDPC) codes. The novel decoding algorithm combines the layered iteration with the reliability judgment, and can greatly reduce the number of the variable nodes involved in the subsequent iteration process and accelerate the convergence rate. The result of simulation for SCG-LDPC(3969,3720) code shows that the novel HRBP decoding algorithm can greatly reduce the computing amount at the condition of ensuring the performance compared with the traditional belief propagation (BP) algorithm. The bit error rate (BER) of the HRBP algorithm is considerable at the threshold value of 15, but in the subsequent iteration process, the number of the variable nodes for the HRBP algorithm can be reduced by about 70% at the high signal-to-noise ratio (SNR) compared with the BP algorithm. When the threshold value is further increased, the HRBP algorithm will gradually degenerate into the layered-BP algorithm, but at the BER of 10-7 and the maximal iteration number of 30, the net coding gain (NCG) of the HRBP algorithm is 0.2 dB more than that of the BP algorithm, and the average iteration times can be reduced by about 40% at the high SNR. Therefore, the novel HRBP decoding algorithm is more suitable for optical communication systems.
Evaluation of Dynamic Channel and Power Assignment for Cognitive Networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Syed A. Ahmad; Umesh Shukla; Ryan E. Irwin
2011-03-01
In this paper, we develop a unifying optimization formulation to describe the Dynamic Channel and Power Assignment (DCPA) problem and evaluation method for comparing DCPA algorithms. DCPA refers to the allocation of transmit power and frequency channels to links in a cognitive network so as to maximize the total number of feasible links while minimizing the aggregate transmit power. We apply our evaluation method to five algorithms representative of DCPA used in literature. This comparison illustrates the tradeoffs between control modes (centralized versus distributed) and channel/power assignment techniques. We estimate the complexity of each algorithm. Through simulations, we evaluate themore » effectiveness of the algorithms in achieving feasible link allocations in the network, as well as their power efficiency. Our results indicate that, when few channels are available, the effectiveness of all algorithms is comparable and thus the one with smallest complexity should be selected. The Least Interfering Channel and Iterative Power Assignment (LICIPA) algorithm does not require cross-link gain information, has the overall lowest run time, and highest feasibility ratio of all the distributed algorithms; however, this comes at a cost of higher average power per link.« less
Offline Performance of the Filter Bank EEW Algorithm in the 2014 M6.0 South Napa Earthquake
NASA Astrophysics Data System (ADS)
Meier, M. A.; Heaton, T. H.; Clinton, J. F.
2014-12-01
Medium size events like the M6.0 South Napa earthquake are very challenging for EEW: the damage such events produce can be severe, but it is generally confined to relatively small zones around the epicenter and the shaking duration is short. This leaves a very short window for timely EEW alerts. Algorithms that wait for several stations to trigger before sending out EEW alerts are typically not fast enough for these kind of events because their blind zone (the zone where strong ground motions start before the warnings arrive) typically covers all or most of the area that experiences strong ground motions. At the same time, single station algorithms are often too unreliable to provide useful alerts. The filter bank EEW algorithm is a new algorithm that is designed to provide maximally accurate and precise earthquake parameter estimates with minimum data input, with the goal of producing reliable EEW alerts when only a very small number of stations have been reached by the p-wave. It combines the strengths of single station and network based algorithms in that it starts parameter estimates as soon as 0.5 seconds of data are available from the first station, but then perpetually incorporates additional data from the same or from any number of other stations. The algorithm analyzes the time dependent frequency content of real time waveforms with a filter bank. It then uses an extensive training data set to find earthquake records from the past that have had similar frequency content at a given time since the p-wave onset. The source parameters of the most similar events are used to parameterize a likelihood function for the source parameters of the ongoing event, which can then be maximized to find the most likely parameter estimates. Our preliminary results show that the filter bank EEW algorithm correctly estimated the magnitude of the South Napa earthquake to be ~M6 with only 1 second worth of data at the nearest station to the epicenter. This estimate is then confirmed when updates based on more data from stations at farther distances become available. Because these early estimates saturate at ~M6.5, however, the magnitude estimate might have had to be considered a minimum bound.
2014-01-01
Background Integrating and analyzing heterogeneous genome-scale data is a huge algorithmic challenge for modern systems biology. Bipartite graphs can be useful for representing relationships across pairs of disparate data types, with the interpretation of these relationships accomplished through an enumeration of maximal bicliques. Most previously-known techniques are generally ill-suited to this foundational task, because they are relatively inefficient and without effective scaling. In this paper, a powerful new algorithm is described that produces all maximal bicliques in a bipartite graph. Unlike most previous approaches, the new method neither places undue restrictions on its input nor inflates the problem size. Efficiency is achieved through an innovative exploitation of bipartite graph structure, and through computational reductions that rapidly eliminate non-maximal candidates from the search space. An iterative selection of vertices for consideration based on non-decreasing common neighborhood sizes boosts efficiency and leads to more balanced recursion trees. Results The new technique is implemented and compared to previously published approaches from graph theory and data mining. Formal time and space bounds are derived. Experiments are performed on both random graphs and graphs constructed from functional genomics data. It is shown that the new method substantially outperforms the best previous alternatives. Conclusions The new method is streamlined, efficient, and particularly well-suited to the study of huge and diverse biological data. A robust implementation has been incorporated into GeneWeaver, an online tool for integrating and analyzing functional genomics experiments, available at http://geneweaver.org. The enormous increase in scalability it provides empowers users to study complex and previously unassailable gene-set associations between genes and their biological functions in a hierarchical fashion and on a genome-wide scale. This practical computational resource is adaptable to almost any applications environment in which bipartite graphs can be used to model relationships between pairs of heterogeneous entities. PMID:24731198
NASA Astrophysics Data System (ADS)
Cram, Ana Catalina
As worldwide environmental awareness grow, alternative sources of energy have become important to mitigate climate change. Biogas in particular reduces greenhouse gas emissions that contribute to global warming and has the potential of providing 25% of the annual demand for natural gas in the U.S. In 2011, 55,000 metric tons of methane emissions were reduced and 301 metric tons of carbon dioxide emissions were avoided through the use of biogas alone. Biogas is produced by anaerobic digestion through the fermentation of organic material. It is mainly composed of methane with a rage of 50 to 80% in its concentration. Carbon dioxide covers 20 to 50% and small amounts of hydrogen, carbon monoxide and nitrogen. The biogas production systems are anaerobic digestion facilities and the optimal operation of an anaerobic digester requires the scheduling of all batches from multiple feedstocks during a specific time horizon. The availability times, biomass quantities, biogas production rates and storage decay rates must all be taken into account for maximal biogas production to be achieved during the planning horizon. Little work has been done to optimize the scheduling of different types of feedstock in anaerobic digestion facilities to maximize the total biogas produced by these systems. Therefore, in the present thesis, a new genetic algorithm is developed with the main objective of obtaining the optimal sequence in which different feedstocks will be processed and the optimal time to allocate to each feedstock in the digester with the main objective of maximizing the production of biogas considering different types of feedstocks, arrival times and decay rates. Moreover, all batches need to be processed in the digester in a specified time with the restriction that only one batch can be processed at a time. The developed algorithm is applied to 3 different examples and a comparison with results obtained in previous studies is presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Weigang; Graff, Pierre; Boettger, Thomas
2011-04-15
Purpose: To develop a spatially encoded dose difference maximal intensity projection (DD-MIP) as an online patient dose evaluation tool for visualizing the dose differences between the planning dose and dose on the treatment day. Methods: Megavoltage cone-beam CT (MVCBCT) images acquired on the treatment day are used for generating the dose difference index. Each index is represented by different colors for underdose, acceptable, and overdose regions. A maximal intensity projection (MIP) algorithm is developed to compress all the information of an arbitrary 3D dose difference index into a 2D DD-MIP image. In such an algorithm, a distance transformation is generatedmore » based on the planning CT. Then, two new volumes representing the overdose and underdose regions of the dose difference index are encoded with the distance transformation map. The distance-encoded indices of each volume are normalized using the skin distance obtained on the planning CT. After that, two MIPs are generated based on the underdose and overdose volumes with green-to-blue and green-to-red lookup tables, respectively. Finally, the two MIPs are merged with an appropriate transparency level and rendered in planning CT images. Results: The spatially encoded DD-MIP was implemented in a dose-guided radiotherapy prototype and tested on 33 MVCBCT images from six patients. The user can easily establish the threshold for the overdose and underdose. A 3% difference between the treatment and planning dose was used as the threshold in the study; hence, the DD-MIP shows red or blue color for the dose difference >3% or {<=}3%, respectively. With such a method, the overdose and underdose regions can be visualized and distinguished without being overshadowed by superficial dose differences. Conclusions: A DD-MIP algorithm was developed that compresses information from 3D into a single or two orthogonal projections while hinting the user whether the dose difference is on the skin surface or deeper.« less
Lievens, Yolande; Nulens, An; Gaber, Mousa Amr; Defraene, Gilles; De Wever, Walter; Stroobants, Sigrid; Van den Heuvel, Frank
2011-05-01
To evaluate the potential for dose escalation with intensity-modulated radiotherapy (IMRT) in positron emission tomography-based radiotherapy planning for locally advanced non-small-cell lung cancer (LA-NSCLC). For 35 LA-NSCLC patients, three-dimensional conformal radiotherapy and IMRT plans were made to a prescription dose (PD) of 66 Gy in 2-Gy fractions. Dose escalation was performed toward the maximal PD using secondary endpoint constraints for the lung, spinal cord, and heart, with de-escalation according to defined esophageal tolerance. Dose calculation was performed using the Eclipse pencil beam algorithm, and all plans were recalculated using a collapsed cone algorithm. The normal tissue complication probabilities were calculated for the lung (Grade 2 pneumonitis) and esophagus (acute toxicity, grade 2 or greater, and late toxicity). IMRT resulted in statistically significant decreases in the mean lung (p <.0001) and maximal spinal cord (p = .002 and 0005) doses, allowing an average increase in the PD of 8.6-14.2 Gy (p ≤.0001). This advantage was lost after de-escalation within the defined esophageal dose limits. The lung normal tissue complication probabilities were significantly lower for IMRT (p <.0001), even after dose escalation. For esophageal toxicity, IMRT significantly decreased the acute NTCP values at the low dose levels (p = .0009 and p <.0001). After maximal dose escalation, late esophageal tolerance became critical (p <.0001), especially when using IMRT, owing to the parallel increases in the esophageal dose and PD. In LA-NSCLC, IMRT offers the potential to significantly escalate the PD, dependent on the lung and spinal cord tolerance. However, parallel increases in the esophageal dose abolished the advantage, even when using collapsed cone algorithms. This is important to consider in the context of concomitant chemoradiotherapy schedules using IMRT. Copyright © 2011 Elsevier Inc. All rights reserved.
Order-constrained linear optimization.
Tidwell, Joe W; Dougherty, Michael R; Chrabaszcz, Jeffrey S; Thomas, Rick P
2017-11-01
Despite the fact that data and theories in the social, behavioural, and health sciences are often represented on an ordinal scale, there has been relatively little emphasis on modelling ordinal properties. The most common analytic framework used in psychological science is the general linear model, whose variants include ANOVA, MANOVA, and ordinary linear regression. While these methods are designed to provide the best fit to the metric properties of the data, they are not designed to maximally model ordinal properties. In this paper, we develop an order-constrained linear least-squares (OCLO) optimization algorithm that maximizes the linear least-squares fit to the data conditional on maximizing the ordinal fit based on Kendall's τ. The algorithm builds on the maximum rank correlation estimator (Han, 1987, Journal of Econometrics, 35, 303) and the general monotone model (Dougherty & Thomas, 2012, Psychological Review, 119, 321). Analyses of simulated data indicate that when modelling data that adhere to the assumptions of ordinary least squares, OCLO shows minimal bias, little increase in variance, and almost no loss in out-of-sample predictive accuracy. In contrast, under conditions in which data include a small number of extreme scores (fat-tailed distributions), OCLO shows less bias and variance, and substantially better out-of-sample predictive accuracy, even when the outliers are removed. We show that the advantages of OCLO over ordinary least squares in predicting new observations hold across a variety of scenarios in which researchers must decide to retain or eliminate extreme scores when fitting data. © 2017 The British Psychological Society.
Alanazi, Adwan; Elleithy, Khaled
2016-01-01
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node– continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches. PMID:27618048
Alanazi, Adwan; Elleithy, Khaled
2016-09-07
Successful transmission of online multimedia streams in wireless multimedia sensor networks (WMSNs) is a big challenge due to their limited bandwidth and power resources. The existing WSN protocols are not completely appropriate for multimedia communication. The effectiveness of WMSNs varies, and it depends on the correct location of its sensor nodes in the field. Thus, maximizing the multimedia coverage is the most important issue in the delivery of multimedia contents. The nodes in WMSNs are either static or mobile. Thus, the node connections change continuously due to the mobility in wireless multimedia communication that causes an additional energy consumption, and synchronization loss between neighboring nodes. In this paper, we introduce an Optimized Hidden Node Detection (OHND) paradigm. The OHND consists of three phases: hidden node detection, message exchange, and location detection. These three phases aim to maximize the multimedia node coverage, and improve energy efficiency, hidden node detection capacity, and packet delivery ratio. OHND helps multimedia sensor nodes to compute the directional coverage. Furthermore, an OHND is used to maintain a continuous node- continuous neighbor discovery process in order to handle the mobility of the nodes. We implement our proposed algorithms by using a network simulator (NS2). The simulation results demonstrate that nodes are capable of maintaining direct coverage and detecting hidden nodes in order to maximize coverage and multimedia node mobility. To evaluate the performance of our proposed algorithms, we compared our results with other known approaches.
A sustainable genetic algorithm for satellite resource allocation
NASA Technical Reports Server (NTRS)
Abbott, R. J.; Campbell, M. L.; Krenz, W. C.
1995-01-01
A hybrid genetic algorithm is used to schedule tasks for 8 satellites, which can be modelled as a robot whose task is to retrieve objects from a two dimensional field. The objective is to find a schedule that maximizes the value of objects retrieved. Typical of the real-world tasks to which this corresponds is the scheduling of ground contacts for a communications satellite. An important feature of our application is that the amount of time available for running the scheduler is not necessarily known in advance. This requires that the scheduler produce reasonably good results after a short period but that it also continue to improve its results if allowed to run for a longer period. We satisfy this requirement by developing what we call a sustainable genetic algorithm.
A graph-Laplacian-based feature extraction algorithm for neural spike sorting.
Ghanbari, Yasser; Spence, Larry; Papamichalis, Panos
2009-01-01
Analysis of extracellular neural spike recordings is highly dependent upon the accuracy of neural waveform classification, commonly referred to as spike sorting. Feature extraction is an important stage of this process because it can limit the quality of clustering which is performed in the feature space. This paper proposes a new feature extraction method (which we call Graph Laplacian Features, GLF) based on minimizing the graph Laplacian and maximizing the weighted variance. The algorithm is compared with Principal Components Analysis (PCA, the most commonly-used feature extraction method) using simulated neural data. The results show that the proposed algorithm produces more compact and well-separated clusters compared to PCA. As an added benefit, tentative cluster centers are output which can be used to initialize a subsequent clustering stage.
Ultrascalable petaflop parallel supercomputer
Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY
2010-07-20
A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
Multi-period project portfolio selection under risk considerations and stochastic income
NASA Astrophysics Data System (ADS)
Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood
2018-02-01
This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.
CUDA Optimization Strategies for Compute- and Memory-Bound Neuroimaging Algorithms
Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W.
2011-01-01
As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. PMID:21159404
CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms.
Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W
2012-06-01
As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
A Multifactorial, Criteria-based Progressive Algorithm for Hamstring Injury Treatment.
Mendiguchia, Jurdan; Martinez-Ruiz, Enrique; Edouard, Pascal; Morin, Jean-Benoît; Martinez-Martinez, Francisco; Idoate, Fernando; Mendez-Villanueva, Alberto
2017-07-01
Given the prevalence of hamstring injuries in football, a rehabilitation program that effectively promotes muscle tissue repair and functional recovery is paramount to minimize reinjury risk and optimize player performance and availability. This study aimed to assess the concurrent effectiveness of administering an individualized and multifactorial criteria-based algorithm (rehabilitation algorithm [RA]) on hamstring injury rehabilitation in comparison with using a general rehabilitation protocol (RP). Implementing a double-blind randomized controlled trial approach, two equal groups of 24 football players (48 total) completed either an RA group or a validated RP group 5 d after an acute hamstring injury. Within 6 months after return to sport, six hamstring reinjuries occurred in RP versus one injury in RA (relative risk = 6, 90% confidence interval = 1-35; clinical inference: very likely beneficial effect). The average duration of return to sport was possibly quicker (effect size = 0.34 ± 0.42) in RP (23.2 ± 11.7 d) compared with RA (25.5 ± 7.8 d) (-13.8%, 90% confidence interval = -34.0% to 3.4%; clinical inference: possibly small effect). At the time to return to sport, RA players showed substantially better 10-m time, maximal sprinting speed, and greater mechanical variables related to speed (i.e., maximum theoretical speed and maximal horizontal power) than the RP. Although return to sport was slower, male football players who underwent an individualized, multifactorial, criteria-based algorithm with a performance- and primary risk factor-oriented training program from the early stages of the process markedly decreased the risk of reinjury compared with a general protocol where long-length strength training exercises were prioritized.
Kiryu, Hisanori; Kin, Taishin; Asai, Kiyoshi
2007-02-15
Recent transcriptomic studies have revealed the existence of a considerable number of non-protein-coding RNA transcripts in higher eukaryotic cells. To investigate the functional roles of these transcripts, it is of great interest to find conserved secondary structures from multiple alignments on a genomic scale. Since multiple alignments are often created using alignment programs that neglect the special conservation patterns of RNA secondary structures for computational efficiency, alignment failures can cause potential risks of overlooking conserved stem structures. We investigated the dependence of the accuracy of secondary structure prediction on the quality of alignments. We compared three algorithms that maximize the expected accuracy of secondary structures as well as other frequently used algorithms. We found that one of our algorithms, called McCaskill-MEA, was more robust against alignment failures than others. The McCaskill-MEA method first computes the base pairing probability matrices for all the sequences in the alignment and then obtains the base pairing probability matrix of the alignment by averaging over these matrices. The consensus secondary structure is predicted from this matrix such that the expected accuracy of the prediction is maximized. We show that the McCaskill-MEA method performs better than other methods, particularly when the alignment quality is low and when the alignment consists of many sequences. Our model has a parameter that controls the sensitivity and specificity of predictions. We discussed the uses of that parameter for multi-step screening procedures to search for conserved secondary structures and for assigning confidence values to the predicted base pairs. The C++ source code that implements the McCaskill-MEA algorithm and the test dataset used in this paper are available at http://www.ncrna.org/papers/McCaskillMEA/. Supplementary data are available at Bioinformatics online.
Optimizing an experimental design for an electromagnetic experiment
NASA Astrophysics Data System (ADS)
Roux, Estelle; Garcia, Xavier
2013-04-01
Most of geophysical studies focus on data acquisition and analysis, but another aspect which is gaining importance is the discussion on acquisition of suitable datasets. This can be done through the design of an optimal experiment. Optimizing an experimental design implies a compromise between maximizing the information we get about the target and reducing the cost of the experiment, considering a wide range of constraints (logistical, financial, experimental …). We are currently developing a method to design an optimal controlled-source electromagnetic (CSEM) experiment to detect a potential CO2 reservoir and monitor this reservoir during and after CO2 injection. Our statistical algorithm combines the use of linearized inverse theory (to evaluate the quality of one given design via the objective function) and stochastic optimization methods like genetic algorithm (to examine a wide range of possible surveys). The particularity of our method is that it uses a multi-objective genetic algorithm that searches for designs that fit several objective functions simultaneously. One main advantage of this kind of technique to design an experiment is that it does not require the acquisition of any data and can thus be easily conducted before any geophysical survey. Our new experimental design algorithm has been tested with a realistic one-dimensional resistivity model of the Earth in the region of study (northern Spain CO2 sequestration test site). We show that a small number of well distributed observations have the potential to resolve the target. This simple test also points out the importance of a well chosen objective function. Finally, in the context of CO2 sequestration that motivates this study, we might be interested in maximizing the information we get about the reservoir layer. In that case, we show how the combination of two different objective functions considerably improve its resolution.
Banerjee, Arindam; Ghosh, Joydeep
2004-05-01
Competitive learning mechanisms for clustering, in general, suffer from poor performance for very high-dimensional (>1000) data because of "curse of dimensionality" effects. In applications such as document clustering, it is customary to normalize the high-dimensional input vectors to unit length, and it is sometimes also desirable to obtain balanced clusters, i.e., clusters of comparable sizes. The spherical kmeans (spkmeans) algorithm, which normalizes the cluster centers as well as the inputs, has been successfully used to cluster normalized text documents in 2000+ dimensional space. Unfortunately, like regular kmeans and its soft expectation-maximization-based version, spkmeans tends to generate extremely imbalanced clusters in high-dimensional spaces when the desired number of clusters is large (tens or more). This paper first shows that the spkmeans algorithm can be derived from a certain maximum likelihood formulation using a mixture of von Mises-Fisher distributions as the generative model, and in fact, it can be considered as a batch-mode version of (normalized) competitive learning. The proposed generative model is then adapted in a principled way to yield three frequency-sensitive competitive learning variants that are applicable to static data and produced high-quality and well-balanced clusters for high-dimensional data. Like kmeans, each iteration is linear in the number of data points and in the number of clusters for all the three algorithms. A frequency-sensitive algorithm to cluster streaming data is also proposed. Experimental results on clustering of high-dimensional text data sets are provided to show the effectiveness and applicability of the proposed techniques. Index Terms-Balanced clustering, expectation maximization (EM), frequency-sensitive competitive learning (FSCL), high-dimensional clustering, kmeans, normalized data, scalable clustering, streaming data, text clustering.
Validating predictions from climate envelope models
Watling, J.; Bucklin, D.; Speroterra, C.; Brandt, L.; Cabal, C.; Romañach, Stephanie S.; Mazzotti, Frank J.
2013-01-01
Climate envelope models are a potentially important conservation tool, but their ability to accurately forecast species’ distributional shifts using independent survey data has not been fully evaluated. We created climate envelope models for 12 species of North American breeding birds previously shown to have experienced poleward range shifts. For each species, we evaluated three different approaches to climate envelope modeling that differed in the way they treated climate-induced range expansion and contraction, using random forests and maximum entropy modeling algorithms. All models were calibrated using occurrence data from 1967–1971 (t1) and evaluated using occurrence data from 1998–2002 (t2). Model sensitivity (the ability to correctly classify species presences) was greater using the maximum entropy algorithm than the random forest algorithm. Although sensitivity did not differ significantly among approaches, for many species, sensitivity was maximized using a hybrid approach that assumed range expansion, but not contraction, in t2. Species for which the hybrid approach resulted in the greatest improvement in sensitivity have been reported from more land cover types than species for which there was little difference in sensitivity between hybrid and dynamic approaches, suggesting that habitat generalists may be buffered somewhat against climate-induced range contractions. Specificity (the ability to correctly classify species absences) was maximized using the random forest algorithm and was lowest using the hybrid approach. Overall, our results suggest cautious optimism for the use of climate envelope models to forecast range shifts, but also underscore the importance of considering non-climate drivers of species range limits. The use of alternative climate envelope models that make different assumptions about range expansion and contraction is a new and potentially useful way to help inform our understanding of climate change effects on species.
ERIC Educational Resources Information Center
Bouchet, Francois; Harley, Jason M.; Trevors, Gregory J.; Azevedo, Roger
2013-01-01
In this paper, we present the results obtained using a clustering algorithm (Expectation-Maximization) on data collected from 106 college students learning about the circulatory system with MetaTutor, an agent-based Intelligent Tutoring System (ITS) designed to foster self-regulated learning (SRL). The three extracted clusters were validated and…
Engblom, Henrik; Tufvesson, Jane; Jablonowski, Robert; Carlsson, Marcus; Aletras, Anthony H; Hoffmann, Pavel; Jacquier, Alexis; Kober, Frank; Metzler, Bernhard; Erlinge, David; Atar, Dan; Arheden, Håkan; Heiberg, Einar
2016-05-04
Late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) using magnitude inversion recovery (IR) or phase sensitive inversion recovery (PSIR) has become clinical standard for assessment of myocardial infarction (MI). However, there is no clinical standard for quantification of MI even though multiple methods have been proposed. Simple thresholds have yielded varying results and advanced algorithms have only been validated in single center studies. Therefore, the aim of this study was to develop an automatic algorithm for MI quantification in IR and PSIR LGE images and to validate the new algorithm experimentally and compare it to expert delineations in multi-center, multi-vendor patient data. The new automatic algorithm, EWA (Expectation Maximization, weighted intensity, a priori information), was implemented using an intensity threshold by Expectation Maximization (EM) and a weighted summation to account for partial volume effects. The EWA algorithm was validated in-vivo against triphenyltetrazolium-chloride (TTC) staining (n = 7 pigs with paired IR and PSIR images) and against ex-vivo high resolution T1-weighted images (n = 23 IR and n = 13 PSIR images). The EWA algorithm was also compared to expert delineation in 124 patients from multi-center, multi-vendor clinical trials 2-6 days following first time ST-elevation myocardial infarction (STEMI) treated with percutaneous coronary intervention (PCI) (n = 124 IR and n = 49 PSIR images). Infarct size by the EWA algorithm in vivo in pigs showed a bias to ex-vivo TTC of -1 ± 4%LVM (R = 0.84) in IR and -2 ± 3%LVM (R = 0.92) in PSIR images and a bias to ex-vivo T1-weighted images of 0 ± 4%LVM (R = 0.94) in IR and 0 ± 5%LVM (R = 0.79) in PSIR images. In multi-center patient studies, infarct size by the EWA algorithm showed a bias to expert delineation of -2 ± 6 %LVM (R = 0.81) in IR images (n = 124) and 0 ± 5%LVM (R = 0.89) in PSIR images (n = 49). The EWA algorithm was validated experimentally and in patient data with a low bias in both IR and PSIR LGE images. Thus, the use of EM and a weighted intensity as in the EWA algorithm, may serve as a clinical standard for the quantification of myocardial infarction in LGE CMR images. CHILL-MI: NCT01379261 . NCT01374321 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tumuluru, Jaya
Aims: The present case study is on maximizing the aqua feed properties using response surface methodology and genetic algorithm. Study Design: Effect of extrusion process variables like screw speed, L/D ratio, barrel temperature, and feed moisture content were analyzed to maximize the aqua feed properties like water stability, true density, and expansion ratio. Place and Duration of Study: This study was carried out in the Department of Agricultural and Food Engineering, Indian Institute of Technology, Kharagpur, India. Methodology: A variable length single screw extruder was used in the study. The process variables selected were screw speed (rpm), length-to-diameter (L/D) ratio,more » barrel temperature (degrees C), and feed moisture content (%). The pelletized aqua feed was analyzed for physical properties like water stability (WS), true density (TD), and expansion ratio (ER). Extrusion experimental data was collected by based on central composite design. The experimental data was further analyzed using response surface methodology (RSM) and genetic algorithm (GA) for maximizing feed properties. Results: Regression equations developed for the experimental data has adequately described the effect of process variables on the physical properties with coefficient of determination values (R2) of > 0.95. RSM analysis indicated WS, ER, and TD were maximized at L/D ratio of 12-13, screw speed of 60-80 rpm, feed moisture content of 30-40%, and barrel temperature of = 80 degrees C for ER and TD and > 90 degrees C for WS. Based on GA analysis, a maxium WS of 98.10% was predicted at a screw speed of 96.71 rpm, L/D radio of 13.67, barrel temperature of 96.26 degrees C, and feed moisture content of 33.55%. Maximum ER and TD of 0.99 and 1346.9 kg/m3 was also predicted at screw speed of 60.37 and 90.24 rpm, L/D ratio of 12.18 and 13.52, barrel temperature of 68.50 and 64.88 degrees C, and medium feed moisture content of 33.61 and 38.36%. Conclusion: The present data analysis indicated that WS is mainly governed by barrel temperature and feed moisture content, which might have resulted in formation of starch-protein complexes due to denaturation of protein and gelatinization of starch. Screw speed coupled with temperature and feed moisture content controlled the ER and TD values. Higher screw speeds might have reduced the viscosity of the feed dough resulting in higher TD and lower ER values. Based on RSM and GA analysis screw speed, barrel temperature and feed moisture content were the interacting process variables influencing maximum WS followed by ER and TD.« less
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem
Akutsah, Francis; Olusanya, Micheal O.; Adewumi, Aderemi O.
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems. PMID:29554662
Enhanced intelligent water drops algorithm for multi-depot vehicle routing problem.
Ezugwu, Absalom E; Akutsah, Francis; Olusanya, Micheal O; Adewumi, Aderemi O
2018-01-01
The intelligent water drop algorithm is a swarm-based metaheuristic algorithm, inspired by the characteristics of water drops in the river and the environmental changes resulting from the action of the flowing river. Since its appearance as an alternative stochastic optimization method, the algorithm has found applications in solving a wide range of combinatorial and functional optimization problems. This paper presents an improved intelligent water drop algorithm for solving multi-depot vehicle routing problems. A simulated annealing algorithm was introduced into the proposed algorithm as a local search metaheuristic to prevent the intelligent water drop algorithm from getting trapped into local minima and also improve its solution quality. In addition, some of the potential problematic issues associated with using simulated annealing that include high computational runtime and exponential calculation of the probability of acceptance criteria, are investigated. The exponential calculation of the probability of acceptance criteria for the simulated annealing based techniques is computationally expensive. Therefore, in order to maximize the performance of the intelligent water drop algorithm using simulated annealing, a better way of calculating the probability of acceptance criteria is considered. The performance of the proposed hybrid algorithm is evaluated by using 33 standard test problems, with the results obtained compared with the solutions offered by four well-known techniques from the subject literature. Experimental results and statistical tests show that the new method possesses outstanding performance in terms of solution quality and runtime consumed. In addition, the proposed algorithm is suitable for solving large-scale problems.
Sparsity-constrained PET image reconstruction with learned dictionaries
NASA Astrophysics Data System (ADS)
Tang, Jing; Yang, Bao; Wang, Yanhua; Ying, Leslie
2016-09-01
PET imaging plays an important role in scientific and clinical measurement of biochemical and physiological processes. Model-based PET image reconstruction such as the iterative expectation maximization algorithm seeking the maximum likelihood solution leads to increased noise. The maximum a posteriori (MAP) estimate removes divergence at higher iterations. However, a conventional smoothing prior or a total-variation (TV) prior in a MAP reconstruction algorithm causes over smoothing or blocky artifacts in the reconstructed images. We propose to use dictionary learning (DL) based sparse signal representation in the formation of the prior for MAP PET image reconstruction. The dictionary to sparsify the PET images in the reconstruction process is learned from various training images including the corresponding MR structural image and a self-created hollow sphere. Using simulated and patient brain PET data with corresponding MR images, we study the performance of the DL-MAP algorithm and compare it quantitatively with a conventional MAP algorithm, a TV-MAP algorithm, and a patch-based algorithm. The DL-MAP algorithm achieves improved bias and contrast (or regional mean values) at comparable noise to what the other MAP algorithms acquire. The dictionary learned from the hollow sphere leads to similar results as the dictionary learned from the corresponding MR image. Achieving robust performance in various noise-level simulation and patient studies, the DL-MAP algorithm with a general dictionary demonstrates its potential in quantitative PET imaging.
NASA Astrophysics Data System (ADS)
Wang, L.; Wang, T. G.; Wu, J. H.; Cheng, G. P.
2016-09-01
A novel multi-objective optimization algorithm incorporating evolution strategies and vector mechanisms, referred as VD-MOEA, is proposed and applied in aerodynamic- structural integrated design of wind turbine blade. In the algorithm, a set of uniformly distributed vectors is constructed to guide population in moving forward to the Pareto front rapidly and maintain population diversity with high efficiency. For example, two- and three- objective designs of 1.5MW wind turbine blade are subsequently carried out for the optimization objectives of maximum annual energy production, minimum blade mass, and minimum extreme root thrust. The results show that the Pareto optimal solutions can be obtained in one single simulation run and uniformly distributed in the objective space, maximally maintaining the population diversity. In comparison to conventional evolution algorithms, VD-MOEA displays dramatic improvement of algorithm performance in both convergence and diversity preservation for handling complex problems of multi-variables, multi-objectives and multi-constraints. This provides a reliable high-performance optimization approach for the aerodynamic-structural integrated design of wind turbine blade.
Neuromimetic Sound Representation for Percept Detection and Manipulation
NASA Astrophysics Data System (ADS)
Zotkin, Dmitry N.; Chi, Taishih; Shamma, Shihab A.; Duraiswami, Ramani
2005-12-01
The acoustic wave received at the ears is processed by the human auditory system to separate different sounds along the intensity, pitch, and timbre dimensions. Conventional Fourier-based signal processing, while endowed with fast algorithms, is unable to easily represent a signal along these attributes. In this paper, we discuss the creation of maximally separable sounds in auditory user interfaces and use a recently proposed cortical sound representation, which performs a biomimetic decomposition of an acoustic signal, to represent and manipulate sound for this purpose. We briefly overview algorithms for obtaining, manipulating, and inverting a cortical representation of a sound and describe algorithms for manipulating signal pitch and timbre separately. The algorithms are also used to create sound of an instrument between a "guitar" and a "trumpet." Excellent sound quality can be achieved if processing time is not a concern, and intelligible signals can be reconstructed in reasonable processing time (about ten seconds of computational time for a one-second signal sampled at [InlineEquation not available: see fulltext.]). Work on bringing the algorithms into the real-time processing domain is ongoing.
Zhang, Lun; Zhang, Meng; Yang, Wenchen; Dong, Decun
2015-01-01
This paper presents the modelling and analysis of the capacity expansion of urban road traffic network (ICURTN). Thebilevel programming model is first employed to model the ICURTN, in which the utility of the entire network is maximized with the optimal utility of travelers' route choice. Then, an improved hybrid genetic algorithm integrated with golden ratio (HGAGR) is developed to enhance the local search of simple genetic algorithms, and the proposed capacity expansion model is solved by the combination of the HGAGR and the Frank-Wolfe algorithm. Taking the traditional one-way network and bidirectional network as the study case, three numerical calculations are conducted to validate the presented model and algorithm, and the primary influencing factors on extended capacity model are analyzed. The calculation results indicate that capacity expansion of road network is an effective measure to enlarge the capacity of urban road network, especially on the condition of limited construction budget; the average computation time of the HGAGR is 122 seconds, which meets the real-time demand in the evaluation of the road network capacity. PMID:25802512
NASA Astrophysics Data System (ADS)
Pekker, David; Clark, Bryan K.; Oganesyan, Vadim; Refael, Gil; Tian, Binbin
Many-body localization is a dynamical phase of matter that is characterized by the absence of thermalization. One of the key characteristics of many-body localized systems is the emergence of a large (possibly maximal) number of local integrals of motion (local quantum numbers) and corresponding conserved quantities. We formulate a robust algorithm for identifying these conserved quantities, based on Wegner's flow equations - a form of the renormalization group that works by disentangling the degrees of freedom of the system as opposed to integrating them out. We test our algorithm by explicit numerical comparison with more engineering based algorithms - Jacobi rotations and bi-partite matching. We find that the Wegner flow algorithm indeed produces the more local conserved quantities and is therefore more optimal. A preliminary analysis of the conserved quantities produced by the Wegner flow algorithm reveals the existence of at least two different localization lengthscales. Work was supported by AFOSR FA9550-10-1-0524 and FA9550-12-1-0057, the Kaufmann foundation, and SciDAC FG02-12ER46875.
Direct adaptive performance optimization of subsonic transports: A periodic perturbation technique
NASA Technical Reports Server (NTRS)
Espana, Martin D.; Gilyard, Glenn
1995-01-01
Aircraft performance can be optimized at the flight condition by using available redundancy among actuators. Effective use of this potential allows improved performance beyond limits imposed by design compromises. Optimization based on nominal models does not result in the best performance of the actual aircraft at the actual flight condition. An adaptive algorithm for optimizing performance parameters, such as speed or fuel flow, in flight based exclusively on flight data is proposed. The algorithm is inherently insensitive to model inaccuracies and measurement noise and biases and can optimize several decision variables at the same time. An adaptive constraint controller integrated into the algorithm regulates the optimization constraints, such as altitude or speed, without requiring and prior knowledge of the autopilot design. The algorithm has a modular structure which allows easy incorporation (or removal) of optimization constraints or decision variables to the optimization problem. An important part of the contribution is the development of analytical tools enabling convergence analysis of the algorithm and the establishment of simple design rules. The fuel-flow minimization and velocity maximization modes of the algorithm are demonstrated on the NASA Dryden B-720 nonlinear flight simulator for the single- and multi-effector optimization cases.
Change Detection Algorithms for Surveillance in Visual IoT: A Comparative Study
NASA Astrophysics Data System (ADS)
Akram, Beenish Ayesha; Zafar, Amna; Akbar, Ali Hammad; Wajid, Bilal; Chaudhry, Shafique Ahmad
2018-01-01
The VIoT (Visual Internet of Things) connects virtual information world with real world objects using sensors and pervasive computing. For video surveillance in VIoT, ChD (Change Detection) is a critical component. ChD algorithms identify regions of change in multiple images of the same scene recorded at different time intervals for video surveillance. This paper presents performance comparison of histogram thresholding and classification ChD algorithms using quantitative measures for video surveillance in VIoT based on salient features of datasets. The thresholding algorithms Otsu, Kapur, Rosin and classification methods k-means, EM (Expectation Maximization) were simulated in MATLAB using diverse datasets. For performance evaluation, the quantitative measures used include OSR (Overall Success Rate), YC (Yule's Coefficient) and JC (Jaccard's Coefficient), execution time and memory consumption. Experimental results showed that Kapur's algorithm performed better for both indoor and outdoor environments with illumination changes, shadowing and medium to fast moving objects. However, it reflected degraded performance for small object size with minor changes. Otsu algorithm showed better results for indoor environments with slow to medium changes and nomadic object mobility. k-means showed good results in indoor environment with small object size producing slow change, no shadowing and scarce illumination changes.
Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping
NASA Astrophysics Data System (ADS)
Yang, Wenlong; Sokolov, Alexei
2010-10-01
The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.
NASA Technical Reports Server (NTRS)
Huffman, George J.; Adler, Robert F.; Bolvin, David T.; Curtis, Scott; Einaudi, Franco (Technical Monitor)
2001-01-01
Multi-purpose remote-sensing products from various satellites have proved crucial in developing global estimates of precipitation. Examples of these products include low-earth-orbit and geosynchronous-orbit infrared (leo- and geo-IR), Outgoing Longwave Radiation (OLR), Television Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS) data, and passive microwave data such as that from the Special Sensor Microwave/ Imager (SSM/I). Each of these datasets has served as the basis for at least one useful quasi-global precipitation estimation algorithm; however, the quality of estimates varies tremendously among the algorithms for the different climatic regions around the globe.
Maximum likelihood estimation for periodic autoregressive moving average models
Vecchia, A.V.
1985-01-01
A useful class of models for seasonal time series that cannot be filtered or standardized to achieve second-order stationarity is that of periodic autoregressive moving average (PARMA) models, which are extensions of ARMA models that allow periodic (seasonal) parameters. An approximation to the exact likelihood for Gaussian PARMA processes is developed, and a straightforward algorithm for its maximization is presented. The algorithm is tested on several periodic ARMA(1, 1) models through simulation studies and is compared to moment estimation via the seasonal Yule-Walker equations. Applicability of the technique is demonstrated through an analysis of a seasonal stream-flow series from the Rio Caroni River in Venezuela.
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-01-01
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network’s performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks. PMID:27483282
Optimum oil production planning using infeasibility driven evolutionary algorithm.
Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul
2013-01-01
In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.
Lin, Haifeng; Bai, Di; Gao, Demin; Liu, Yunfei
2016-07-30
In Rechargeable Wireless Sensor Networks (R-WSNs), in order to achieve the maximum data collection rate it is critical that sensors operate in very low duty cycles because of the sporadic availability of energy. A sensor has to stay in a dormant state in most of the time in order to recharge the battery and use the energy prudently. In addition, a sensor cannot always conserve energy if a network is able to harvest excessive energy from the environment due to its limited storage capacity. Therefore, energy exploitation and energy saving have to be traded off depending on distinct application scenarios. Since higher data collection rate or maximum data collection rate is the ultimate objective for sensor deployment, surplus energy of a node can be utilized for strengthening packet delivery efficiency and improving the data generating rate in R-WSNs. In this work, we propose an algorithm based on data aggregation to compute an upper data generation rate by maximizing it as an optimization problem for a network, which is formulated as a linear programming problem. Subsequently, a dual problem by introducing Lagrange multipliers is constructed, and subgradient algorithms are used to solve it in a distributed manner. At the same time, a topology controlling scheme is adopted for improving the network's performance. Through extensive simulation and experiments, we demonstrate that our algorithm is efficient at maximizing the data collection rate in rechargeable wireless sensor networks.
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot
Taniguchi, Tadahiro; Yoshino, Ryo; Takano, Toshiaki
2018-01-01
In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback–Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes. PMID:29872389
Multimodal Hierarchical Dirichlet Process-Based Active Perception by a Robot.
Taniguchi, Tadahiro; Yoshino, Ryo; Takano, Toshiaki
2018-01-01
In this paper, we propose an active perception method for recognizing object categories based on the multimodal hierarchical Dirichlet process (MHDP). The MHDP enables a robot to form object categories using multimodal information, e.g., visual, auditory, and haptic information, which can be observed by performing actions on an object. However, performing many actions on a target object requires a long time. In a real-time scenario, i.e., when the time is limited, the robot has to determine the set of actions that is most effective for recognizing a target object. We propose an active perception for MHDP method that uses the information gain (IG) maximization criterion and lazy greedy algorithm. We show that the IG maximization criterion is optimal in the sense that the criterion is equivalent to a minimization of the expected Kullback-Leibler divergence between a final recognition state and the recognition state after the next set of actions. However, a straightforward calculation of IG is practically impossible. Therefore, we derive a Monte Carlo approximation method for IG by making use of a property of the MHDP. We also show that the IG has submodular and non-decreasing properties as a set function because of the structure of the graphical model of the MHDP. Therefore, the IG maximization problem is reduced to a submodular maximization problem. This means that greedy and lazy greedy algorithms are effective and have a theoretical justification for their performance. We conducted an experiment using an upper-torso humanoid robot and a second one using synthetic data. The experimental results show that the method enables the robot to select a set of actions that allow it to recognize target objects quickly and accurately. The numerical experiment using the synthetic data shows that the proposed method can work appropriately even when the number of actions is large and a set of target objects involves objects categorized into multiple classes. The results support our theoretical outcomes.
The airport gate assignment problem: a survey.
Bouras, Abdelghani; Ghaleb, Mageed A; Suryahatmaja, Umar S; Salem, Ahmed M
2014-01-01
The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area.
Optimal Power Control in Wireless Powered Sensor Networks: A Dynamic Game-Based Approach
Xu, Haitao; Guo, Chao; Zhang, Long
2017-01-01
In wireless powered sensor networks (WPSN), it is essential to research uplink transmit power control in order to achieve throughput performance balancing and energy scheduling. Each sensor should have an optimal transmit power level for revenue maximization. In this paper, we discuss a dynamic game-based algorithm for optimal power control in WPSN. The main idea is to use the non-cooperative differential game to control the uplink transmit power of wireless sensors in WPSN, to extend their working hours and to meet QoS (Quality of Services) requirements. Subsequently, the Nash equilibrium solutions are obtained through Bellman dynamic programming. At the same time, an uplink power control algorithm is proposed in a distributed manner. Through numerical simulations, we demonstrate that our algorithm can obtain optimal power control and reach convergence for an infinite horizon. PMID:28282945
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341
Fault Detection of Bearing Systems through EEMD and Optimization Algorithm
Lee, Dong-Han; Ahn, Jong-Hyo; Koh, Bong-Hwan
2017-01-01
This study proposes a fault detection and diagnosis method for bearing systems using ensemble empirical mode decomposition (EEMD) based feature extraction, in conjunction with particle swarm optimization (PSO), principal component analysis (PCA), and Isomap. First, a mathematical model is assumed to generate vibration signals from damaged bearing components, such as the inner-race, outer-race, and rolling elements. The process of decomposing vibration signals into intrinsic mode functions (IMFs) and extracting statistical features is introduced to develop a damage-sensitive parameter vector. Finally, PCA and Isomap algorithm are used to classify and visualize this parameter vector, to separate damage characteristics from healthy bearing components. Moreover, the PSO-based optimization algorithm improves the classification performance by selecting proper weightings for the parameter vector, to maximize the visualization effect of separating and grouping of parameter vectors in three-dimensional space. PMID:29143772
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.
The Airport Gate Assignment Problem: A Survey
Ghaleb, Mageed A.; Salem, Ahmed M.
2014-01-01
The airport gate assignment problem (AGAP) is one of the most important problems operations managers face daily. Many researches have been done to solve this problem and tackle its complexity. The objective of the task is assigning each flight (aircraft) to an available gate while maximizing both conveniences to passengers and the operational efficiency of airport. This objective requires a solution that provides the ability to change and update the gate assignment data on a real time basis. In this paper, we survey the state of the art of these problems and the various methods to obtain the solution. Our survey covers both theoretical and real AGAP with the description of mathematical formulations and resolution methods such as exact algorithms, heuristic algorithms, and metaheuristic algorithms. We also provide a research trend that can inspire researchers about new problems in this area. PMID:25506074
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms. PMID:26473166
Job Scheduling with Efficient Resource Monitoring in Cloud Datacenter.
Loganathan, Shyamala; Mukherjee, Saswati
2015-01-01
Cloud computing is an on-demand computing model, which uses virtualization technology to provide cloud resources to users in the form of virtual machines through internet. Being an adaptable technology, cloud computing is an excellent alternative for organizations for forming their own private cloud. Since the resources are limited in these private clouds maximizing the utilization of resources and giving the guaranteed service for the user are the ultimate goal. For that, efficient scheduling is needed. This research reports on an efficient data structure for resource management and resource scheduling technique in a private cloud environment and discusses a cloud model. The proposed scheduling algorithm considers the types of jobs and the resource availability in its scheduling decision. Finally, we conducted simulations using CloudSim and compared our algorithm with other existing methods, like V-MCT and priority scheduling algorithms.
Improved cache performance in Monte Carlo transport calculations using energy banding
NASA Astrophysics Data System (ADS)
Siegel, A.; Smith, K.; Felker, K.; Romano, P.; Forget, B.; Beckman, P.
2014-04-01
We present an energy banding algorithm for Monte Carlo (MC) neutral particle transport simulations which depend on large cross section lookup tables. In MC codes, read-only cross section data tables are accessed frequently, exhibit poor locality, and are typically too much large to fit in fast memory. Thus, performance is often limited by long latencies to RAM, or by off-node communication latencies when the data footprint is very large and must be decomposed on a distributed memory machine. The proposed energy banding algorithm allows maximal temporal reuse of data in band sizes that can flexibly accommodate different architectural features. The energy banding algorithm is general and has a number of benefits compared to the traditional approach. In the present analysis we explore its potential to achieve improvements in time-to-solution on modern cache-based architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marathe, Aniruddha P.; Harris, Rachel A.; Lowenthal, David K.
The use of clouds to execute high-performance computing (HPC) applications has greatly increased recently. Clouds provide several potential advantages over traditional supercomputers and in-house clusters. The most popular cloud is currently Amazon EC2, which provides fixed-cost and variable-cost, auction-based options. The auction market trades lower cost for potential interruptions that necessitate checkpointing; if the market price exceeds the bid price, a node is taken away from the user without warning. We explore techniques to maximize performance per dollar given a time constraint within which an application must complete. Specifically, we design and implement multiple techniques to reduce expected cost bymore » exploiting redundancy in the EC2 auction market. We then design an adaptive algorithm that selects a scheduling algorithm and determines the bid price. We show that our adaptive algorithm executes programs up to seven times cheaper than using the on-demand market and up to 44 percent cheaper than the best non-redundant, auction-market algorithm. We extend our adaptive algorithm to incorporate application scalability characteristics for further cost savings. In conclusion, we show that the adaptive algorithm informed with scalability characteristics of applications achieves up to 56 percent cost savings compared to the expected cost for the base adaptive algorithm run at a fixed, user-defined scale.« less
Computing Strongly Connected Components in the Streaming Model
NASA Astrophysics Data System (ADS)
Laura, Luigi; Santaroni, Federico
In this paper we present the first algorithm to compute the Strongly Connected Components of a graph in the datastream model (W-Stream), where the graph is represented by a stream of edges and we are allowed to produce intermediate output streams. The algorithm is simple, effective, and can be implemented with few lines of code: it looks at each edge in the stream, and selects the appropriate action with respect to a tree T, representing the graph connectivity seen so far. We analyze the theoretical properties of the algorithm: correctness, memory occupation (O(n logn)), per item processing time (bounded by the current height of T), and number of passes (bounded by the maximal height of T). We conclude by presenting a brief experimental evaluation of the algorithm against massive synthetic and real graphs that confirms its effectiveness: with graphs with up to 100M nodes and 4G edges, only few passes are needed, and millions of edges per second are processed.
A simple, remote, video based breathing monitor.
Regev, Nir; Wulich, Dov
2017-07-01
Breathing monitors have become the all-important cornerstone of a wide variety of commercial and personal safety applications, ranging from elderly care to baby monitoring. Many such monitors exist in the market, some, with vital signs monitoring capabilities, but none remote. This paper presents a simple, yet efficient, real time method of extracting the subject's breathing sinus rhythm. Points of interest are detected on the subject's body, and the corresponding optical flow is estimated and tracked using the well known Lucas-Kanade algorithm on a frame by frame basis. A generalized likelihood ratio test is then utilized on each of the many interest points to detect which is moving in harmonic fashion. Finally, a spectral estimation algorithm based on Pisarenko harmonic decomposition tracks the harmonic frequency in real time, and a fusion maximum likelihood algorithm optimally estimates the breathing rate using all points considered. The results show a maximal error of 1 BPM between the true breathing rate and the algorithm's calculated rate, based on experiments on two babies and three adults.
Yu, Shanen; Xu, Yiming; Jiang, Peng; Wu, Feng; Xu, Huan
2017-01-01
At present, free-to-move node self-deployment algorithms aim at event coverage and cannot improve network coverage under the premise of considering network connectivity, network reliability and network deployment energy consumption. Thus, this study proposes pigeon-based self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the network coverage in its one-hop region. The one-hop nodes subsequently divide the network into layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement distance of the node to the change in the coverage redundancy ratio as the target function and employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show that PSA improves both network connectivity and network reliability, decreases network deployment energy consumption, and increases network coverage. PMID:28338615
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
A generic motif discovery algorithm for sequential data.
Jensen, Kyle L; Styczynski, Mark P; Rigoutsos, Isidore; Stephanopoulos, Gregory N
2006-01-01
Motif discovery in sequential data is a problem of great interest and with many applications. However, previous methods have been unable to combine exhaustive search with complex motif representations and are each typically only applicable to a certain class of problems. Here we present a generic motif discovery algorithm (Gemoda) for sequential data. Gemoda can be applied to any dataset with a sequential character, including both categorical and real-valued data. As we show, Gemoda deterministically discovers motifs that are maximal in composition and length. As well, the algorithm allows any choice of similarity metric for finding motifs. Finally, Gemoda's output motifs are representation-agnostic: they can be represented using regular expressions, position weight matrices or any number of other models for any type of sequential data. We demonstrate a number of applications of the algorithm, including the discovery of motifs in amino acids sequences, a new solution to the (l,d)-motif problem in DNA sequences and the discovery of conserved protein substructures. Gemoda is freely available at http://web.mit.edu/bamel/gemoda
Correlation between automatic detection of malaria on thin film and experts' parasitaemia scores
NASA Astrophysics Data System (ADS)
Sunarko, Budi; Williams, Simon; Prescott, William R.; Byker, Scott M.; Bottema, Murk J.
2017-03-01
An algorithm was developed to diagnose the presence of malaria and to estimate the depth of infection by automatically counting individual normal and infected erythrocytes in images of thin blood smears. During the training stage, the parameters of the algorithm were optimized to maximize correlation with estimates of parasitaemia from expert human observers. The correlation was tested on a set of 1590 images from seven thin film blood smears. The correlation between the results from the algorithm and expert human readers was r = 0.836. Results indicate that reliable estimates of parasitaemia may be achieved by computational image analysis methods applied to images of thin film smears. Meanwhile, compared to biological experiments, the algorithm fitted well the three high parasitaemia slides and a mid-level parasitaemia slide, and overestimated the three low parasitaemia slides. To improve the parasitaemia estimation, the sources of the overestimation were identified. Emphasis is laid on the importance of further research in order to identify parasites independently of their erythrocyte hosts
Traffic sharing algorithms for hybrid mobile networks
NASA Technical Reports Server (NTRS)
Arcand, S.; Murthy, K. M. S.; Hafez, R.
1995-01-01
In a hybrid (terrestrial + satellite) mobile personal communications networks environment, a large size satellite footprint (supercell) overlays on a large number of smaller size, contiguous terrestrial cells. We assume that the users have either a terrestrial only single mode terminal (SMT) or a terrestrial/satellite dual mode terminal (DMT) and the ratio of DMT to the total terminals is defined gamma. It is assumed that the call assignments to and handovers between terrestrial cells and satellite supercells take place in a dynamic fashion when necessary. The objectives of this paper are twofold, (1) to propose and define a class of traffic sharing algorithms to manage terrestrial and satellite network resources efficiently by handling call handovers dynamically, and (2) to analyze and evaluate the algorithms by maximizing the traffic load handling capability (defined in erl/cell) over a wide range of terminal ratios (gamma) given an acceptable range of blocking probabilities. Two of the algorithms (G & S) in the proposed class perform extremely well for a wide range of gamma.
A combined reconstruction-classification method for diffuse optical tomography.
Hiltunen, P; Prince, S J D; Arridge, S
2009-11-07
We present a combined classification and reconstruction algorithm for diffuse optical tomography (DOT). DOT is a nonlinear ill-posed inverse problem. Therefore, some regularization is needed. We present a mixture of Gaussians prior, which regularizes the DOT reconstruction step. During each iteration, the parameters of a mixture model are estimated. These associate each reconstructed pixel with one of several classes based on the current estimate of the optical parameters. This classification is exploited to form a new prior distribution to regularize the reconstruction step and update the optical parameters. The algorithm can be described as an iteration between an optimization scheme with zeroth-order variable mean and variance Tikhonov regularization and an expectation-maximization scheme for estimation of the model parameters. We describe the algorithm in a general Bayesian framework. Results from simulated test cases and phantom measurements show that the algorithm enhances the contrast of the reconstructed images with good spatial accuracy. The probabilistic classifications of each image contain only a few misclassified pixels.
NASA Astrophysics Data System (ADS)
WANG, Qingrong; ZHU, Changfeng; LI, Ying; ZHANG, Zhengkun
2017-06-01
Considering the time dependence of emergency logistic network and complexity of the environment that the network exists in, in this paper the time dependent network optimization theory and robust discrete optimization theory are combined, and the emergency logistics dynamic network optimization model with characteristics of robustness is built to maximize the timeliness of emergency logistics. On this basis, considering the complexity of dynamic network and the time dependence of edge weight, an improved ant colony algorithm is proposed to realize the coupling of the optimization algorithm and the network time dependence and robustness. Finally, a case study has been carried out in order to testify validity of this robustness optimization model and its algorithm, and the value of different regulation factors was analyzed considering the importance of the value of the control factor in solving the optimal path. Analysis results show that this model and its algorithm above-mentioned have good timeliness and strong robustness.
Multiple sequence alignment using multi-objective based bacterial foraging optimization algorithm.
Rani, R Ranjani; Ramyachitra, D
2016-12-01
Multiple sequence alignment (MSA) is a widespread approach in computational biology and bioinformatics. MSA deals with how the sequences of nucleotides and amino acids are sequenced with possible alignment and minimum number of gaps between them, which directs to the functional, evolutionary and structural relationships among the sequences. Still the computation of MSA is a challenging task to provide an efficient accuracy and statistically significant results of alignments. In this work, the Bacterial Foraging Optimization Algorithm was employed to align the biological sequences which resulted in a non-dominated optimal solution. It employs Multi-objective, such as: Maximization of Similarity, Non-gap percentage, Conserved blocks and Minimization of gap penalty. BAliBASE 3.0 benchmark database was utilized to examine the proposed algorithm against other methods In this paper, two algorithms have been proposed: Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC) and Bacterial Foraging Optimization Algorithm. It was found that Hybrid Genetic Algorithm with Artificial Bee Colony performed better than the existing optimization algorithms. But still the conserved blocks were not obtained using GA-ABC. Then BFO was used for the alignment and the conserved blocks were obtained. The proposed Multi-Objective Bacterial Foraging Optimization Algorithm (MO-BFO) was compared with widely used MSA methods Clustal Omega, Kalign, MUSCLE, MAFFT, Genetic Algorithm (GA), Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO) and Hybrid Genetic Algorithm with Artificial Bee Colony (GA-ABC). The final results show that the proposed MO-BFO algorithm yields better alignment than most widely used methods. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
2008-03-01
Society, Washington DC, 1999. 11. Ferringer, Matthew P. and David B. Spencer . “Satellite Constellation Design Optimization Via Multiple-Objective...5 GA Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . 5 HEO Highly Elliptical Orbit...and their phasing relationship. He analyzed different combinations of GEO, Highly Elliptical Orbit (HEO)1 and Tundra2 orbits to create a global
Using Collective Intelligence to Route Internet Traffic
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Frank, Jeremy
1998-01-01
A Collective Intelligence (COIN) is a community of interacting reinforcement learning (RL) algorithms designed so that their collective behavior maximizes a global utility function. We introduce the theory of COINs, then present experiments using that theory to design COINs to control internet traffic routing. These experiments indicate that COINs outperform previous RL-based systems for such routing that have previously been investigated.
Humphrey, Clinton D; Tollefson, Travis T; Kriet, J David
2010-05-01
Facial plastic surgeons are accumulating massive digital image databases with the evolution of photodocumentation and widespread adoption of digital photography. Managing and maximizing the utility of these vast data repositories, or digital asset management (DAM), is a persistent challenge. Developing a DAM workflow that incorporates a file naming algorithm and metadata assignment will increase the utility of a surgeon's digital images. Copyright 2010 Elsevier Inc. All rights reserved.
A simple technique to increase profits in wood products marketing
George B. Harpole
1971-01-01
Mathematical models can be used to solve quickly some simple day-to-day marketing problems. This note explains how a sawmill production manager, who has an essentially fixed-capacity mill, can solve several optimization problems by using pencil and paper, a forecast of market prices, and a simple algorithm. One such problem is to maximize profits in an operating period...