Sample records for maximum accelerating gradient

  1. Optimized operation of dielectric laser accelerators: Single bunch

    NASA Astrophysics Data System (ADS)

    Hanuka, Adi; Schächter, Levi

    2018-05-01

    We introduce a general approach to determine the optimal charge, efficiency and gradient for laser driven accelerators in a self-consistent way. We propose a way to enhance the operational gradient of dielectric laser accelerators by leverage of beam-loading effect. While the latter may be detrimental from the perspective of the effective gradient experienced by the particles, it can be beneficial as the effective field experienced by the accelerating structure, is weaker. As a result, the constraint imposed by the damage threshold fluence is accordingly weakened and our self-consistent approach predicts permissible gradients of ˜10 GV /m , one order of magnitude higher than previously reported experimental results—with unbunched pulse of electrons. Our approach leads to maximum efficiency to occur for higher gradients as compared with a scenario in which the beam-loading effect on the material is ignored. In any case, maximum gradient does not occur for the same conditions that maximum efficiency does—a trade-off set of parameters is suggested.

  2. Enhancement of the Accelerating Gradient in Superconducting Microwave Resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia; Grassellino, Anna; Martinello, Martina

    2017-05-01

    The accelerating gradient of superconducting resonators can be enhanced by engineering the thickness of a dirty layer grown at the cavity's rf surface. In this paper the description of the physics behind the accelerating gradient enhancement by meaning of the dirty layer is carried out by solving numerically the the Ginzburg-Landau (GL) equations for the layered system. The calculation shows that the presence of the dirty layer stabilizes the Meissner state up to the lower critical field of the bulk, increasing the maximum accelerating gradient.

  3. Operation regimes of a dielectric laser accelerator

    NASA Astrophysics Data System (ADS)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  4. Upper limit for the acceleration gradient in the collinear wake field accelerator as a function of the transformer ratio

    DOE PAGES

    Baturin, Stanislav; Zholents, A.

    2017-06-19

    Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.

  5. Upper limit for the acceleration gradient in the collinear wake field accelerator as a function of the transformer ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baturin, Stanislav; Zholents, A.

    Here, the interrelation between the accelerating gradient and the transformer ratio in the collinear wake field accelerator has been analyzed. It has been shown that the high transformer ratio and the high efficiency of the energy transfer from the drive bunch to the witness bunch can only be achieved at the expense of the accelerating gradient. Rigorous proof is given that in best cases of meticulously shaped charge density distributions in the drive bunch, the maximum accelerating gradient falls proportionally to the gain in the transformer ratio. Conclusions are verified using several representative examples.

  6. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    NASA Astrophysics Data System (ADS)

    Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.

    2018-05-01

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.

  7. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE PAGES

    Degiovanni, A.; Bonomi, R.; Garlasche, M.; ...

    2018-02-09

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  8. High gradient RF test results of S-band and C-band cavities for medical linear accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Degiovanni, A.; Bonomi, R.; Garlasche, M.

    TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structuresmore » to direct the design of medical accelerators based on high gradient linacs. Lastly, this paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Junginger, Tobias; Abidi, S. H.; Maffett, R. D.

    Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less

  10. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    NASA Astrophysics Data System (ADS)

    Junginger, T.; Abidi, S. H.; Maffett, R. D.; Buck, T.; Dehn, M. H.; Gheidi, S.; Kiefl, R.; Kolb, P.; Storey, D.; Thoeng, E.; Wasserman, W.; Laxdal, R. E.

    2018-03-01

    The performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry Hentry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μ SR ) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing at 1400 °C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure Hentry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.

  11. Field of first magnetic flux entry and pinning strength of superconductors for rf application measured with muon spin rotation

    DOE PAGES

    Junginger, Tobias; Abidi, S. H.; Maffett, R. D.; ...

    2018-03-16

    Here, the performance of superconducting radiofrequency (SRF) cavities used for particle accelerators depends on two characteristic material parameters: field of first flux entry H entry and pinning strength. The former sets the limit for the maximum achievable accelerating gradient, while the latter determines how efficiently flux can be expelled related to the maximum achievable quality factor. In this paper, a method based on muon spin rotation (μSR) is developed to probe these parameters on samples. It combines measurements from two different spectrometers, one being specifically built for these studies and samples of different geometries. It is found that annealing atmore » 1400°C virtually eliminates all pinning. Such an annealed substrate is ideally suited to measure H entry of layered superconductors, which might enable accelerating gradients beyond bulk niobium technology.« less

  12. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    NASA Astrophysics Data System (ADS)

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.

    2016-10-01

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  13. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient.

    PubMed

    Tan, Teng; Wolak, M A; Xi, X X; Tajima, T; Civale, L

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp ). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp . In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  14. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    NASA Astrophysics Data System (ADS)

    Civale, Leonardo; Tan, Teng; Wolak, M.; Xi, Xiaoxing; Tajima, Tsuyoshi

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoids to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with 200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.

  15. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    PubMed Central

    Tan, Teng; Wolak, M. A.; Xi, X. X.; Tajima, T.; Civale, L.

    2016-01-01

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (Hvp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases Hvp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significant enhancement of Hvp was observed. At 2.8 K, Hvp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB2 thin film. This finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb. PMID:27775087

  16. Magnesium diboride coated bulk niobium: a new approach to higher acceleration gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Teng; Wolak, M. A.; Xi, X. X.

    2016-10-24

    Bulk niobium Superconducting Radio-Frequency cavities are a leading accelerator technology. Their performance is limited by the cavity loss and maximum acceleration gradient, which are negatively affected by vortex penetration into the superconductor when the peak magnetic field at the cavity wall surface exceeds the vortex penetration field (H vp). It has been proposed that coating the inner wall of an SRF cavity with superconducting thin films increases H vp. In this work, we utilized Nb ellipsoid to simulate an inverse SRF cavity and investigate the effect of coating it with magnesium diboride layer on the vortex penetration field. A significantmore » enhancement of H vp was observed. At 2.8 K, H vp increased from 2100 Oe for an uncoated Nb ellipsoid to 2700 Oe for a Nb ellipsoid coated with ~200 nm thick MgB 2 thin film. In conclusion, this finding creates a new route towards achieving higher acceleration gradient in SRF cavity accelerator beyond the theoretical limit of bulk Nb.« less

  17. Investigation of longitudinal proton acceleration in exploded targets irradiated by intense short-pulse laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gauthier, M.; CEA, DAM, DIF, 91297 Arpajon; Lévy, A.

    2014-01-15

    It was recently shown that a promising way to accelerate protons in the forward direction to high energies is to use under-dense or near-critical density targets instead of solids. Simulations have revealed that the acceleration process depends on the density gradients of the plasma target. Indeed, under certain conditions, the most energetic protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We report here the results of a recent experiment dedicated to the study of longitudinal ion acceleration in partially exploded foils using a high intensity (∼5 × 10{sup 18} W/cm{sup 2}) picosecond laser pulse. Wemore » show that protons accelerated using targets having moderate front and rear plasma gradients (up to ∼8 μm gradient length) exhibit similar maximum proton energy and number compared to proton beams that are produced, in similar laser conditions, from solid targets, in the well-known target normal sheath acceleration regime. Particle-In-Cell simulations, performed in the same conditions as the experiment and consistent with the measurements, allow laying a path for further improvement of this acceleration scheme.« less

  18. High contrast ion acceleration at intensities exceeding 10{sup 21} Wcm{sup −2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dollar, F.; Zulick, C.; Matsuoka, T.

    2013-05-15

    Ion acceleration from short pulse laser interactions at intensities of 2×10{sup 21}Wcm{sup −2} was studied experimentally under a wide variety of parameters, including laser contrast, incidence angle, and target thickness. Trends in maximum proton energy were observed, as well as evidence of improvement in the acceleration gradients by using dual plasma mirrors over traditional pulse cleaning techniques. Extremely high efficiency acceleration gradients were produced, accelerating both the contaminant layer and high charge state ions from the bulk of the target. Two dimensional particle-in-cell simulations enabled the study of the influence of scale length on submicron targets, where hydrodynamic expansion affectsmore » the rear surface as well as the front. Experimental evidence of larger electric fields for sharp density plasmas is observed in simulation results as well for such targets, where target ions are accelerated without the need for contaminant removal.« less

  19. Progress with High-Field Superconducting Magnets for High-Energy Colliders

    NASA Astrophysics Data System (ADS)

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ˜10 T at 1.9 K. Fields above 10 T became possible with the use of Nb3Sn superconductors. Nb3Sn accelerator magnets can provide operating fields up to ˜15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. This review discusses the status and main results of Nb3Sn accelerator magnet research and development and work toward 20-T magnets.

  20. Progress with high-field superconducting magnets for high-energy colliders

    DOE PAGES

    Apollinari, Giorgio; Prestemon, Soren; Zlobin, Alexander V.

    2015-10-01

    One of the possible next steps for high-energy physics research relies on a high-energy hadron or muon collider. The energy of a circular collider is limited by the strength of bending dipoles, and its maximum luminosity is determined by the strength of final focus quadrupoles. For this reason, the high-energy physics and accelerator communities have shown much interest in higher-field and higher-gradient superconducting accelerator magnets. The maximum field of NbTi magnets used in all present high-energy machines, including the LHC, is limited to ~10 T at 1.9 K. Fields above 10 T became possible with the use of Nbmore » $$_3$$Sn superconductors. Nb$$_3$$Sn accelerator magnets can provide operating fields up to ~15 T and can significantly increase the coil temperature margin. Accelerator magnets with operating fields above 15 T require high-temperature superconductors. Furthermore, this review discusses the status and main results of Nb$$_3$$Sn accelerator magnet research and development and work toward 20-T magnets.« less

  1. RF design of 324 MHz superconducting (SC) CH cavity for 0.21 beta

    NASA Astrophysics Data System (ADS)

    Taletskiy, K.; Surkov, D.; Gusarova, M.

    2017-12-01

    The results of RF optimizations for 324 MHz SC cross-bar H-mode (CH) cavity for 0.21 beta are presented. Maximum surface electric field of 36 MV/m and a corresponding effective accelerating gradient of 7 MV/m have been achieved.

  2. Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.

    PubMed

    Braun, H H; Döbert, S; Wilson, I; Wuensch, W

    2003-06-06

    A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  3. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.

    2003-06-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  4. Pros and Cons of the Acceleration Scheme (NF-IDS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex; Bogacz, Slawomir

    The overall goal of the acceleration systems: large acceptance acceleration to 25 GeV and beam shaping can be accomplished by various fixed field accelerators at different stages. They involve three superconducting linacs: a single pass linear Pre-accelerator followed by a pair of multi-pass Recirculating Linear Accelerators (RLA) and finally a nonâ scaling FFAG ring. The present baseline acceleration scenario has been optimized to take maximum advantage of appropriate acceleration scheme at a given stage. Pros and cons of various stages are discussed here in detail. The solenoid based Pre-accelerator offers very large acceptance and facilitates correction of energy gain acrossmore » the bunch and significant longitudinal compression trough induced synchrotron motion. However, far off-crest acceleration reduces the effective acceleration gradient and adds complexity through the requirement of individual RF phase control for each cavity. Close proximity of strong solenoids and superc« less

  5. High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel

    Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase variation of input signals due to application of developed power feeding scheme. Traveling wave excitation, adjustment and detection were successfully tested. Auxiliary equipment required for high power test such as the tuner, power and measure couplers, holding plates for VTS at Fermilab were developed and successfully tested. Both TW SRF cavities were fabricated by AES, Inc. without stiffening ribs before this company closed their production facility. Currently Roark EB welding company is finishing now welding process of the cavity for the high power testing at Fermilab VTS. Successful demonstration of high gradients in the 3-cell cavity along with studies of traveling wave excitation and tuning issues is leading to successful development of superconducting traveling wave technology for ILC applications and other future high energy SC accelerators.« less

  6. Observation of 690 MV m -1 Electron Accelerating Gradient with a Laser-Driven Dielectric Microstructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wootton, K. P.; Wu, Z.; Cowan, B. M.

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. In this work, experimental results are presented of relativistic electron acceleration with 690±100 MVm -1 gradient. This is a record-high accelerating gradient for a dielectric microstructure accelerator, nearly doubling the previous record gradient. To reach higher acceleration gradients the present experiment employs 90 fs duration laser pulses.

  7. Acceleration techniques and their impact on arterial input function sampling: Non-accelerated versus view-sharing and compressed sensing sequences.

    PubMed

    Benz, Matthias R; Bongartz, Georg; Froehlich, Johannes M; Winkel, David; Boll, Daniel T; Heye, Tobias

    2018-07-01

    The aim was to investigate the variation of the arterial input function (AIF) within and between various DCE MRI sequences. A dynamic flow-phantom and steady signal reference were scanned on a 3T MRI using fast low angle shot (FLASH) 2d, FLASH3d (parallel imaging factor (P) = P0, P2, P4), volumetric interpolated breath-hold examination (VIBE) (P = P0, P3, P2 × 2, P2 × 3, P3 × 2), golden-angle radial sparse parallel imaging (GRASP), and time-resolved imaging with stochastic trajectories (TWIST). Signal over time curves were normalized and quantitatively analyzed by full width half maximum (FWHM) measurements to assess variation within and between sequences. The coefficient of variation (CV) for the steady signal reference ranged from 0.07-0.8%. The non-accelerated gradient echo FLASH2d, FLASH3d, and VIBE sequences showed low within sequence variation with 2.1%, 1.0%, and 1.6%. The maximum FWHM CV was 3.2% for parallel imaging acceleration (VIBE P2 × 3), 2.7% for GRASP and 9.1% for TWIST. The FWHM CV between sequences ranged from 8.5-14.4% for most non-accelerated/accelerated gradient echo sequences except 6.2% for FLASH3d P0 and 0.3% for FLASH3d P2; GRASP FWHM CV was 9.9% versus 28% for TWIST. MRI acceleration techniques vary in reproducibility and quantification of the AIF. Incomplete coverage of the k-space with TWIST as a representative of view-sharing techniques showed the highest variation within sequences and might be less suited for reproducible quantification of the AIF. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Optimized operation of dielectric laser accelerators: Multibunch

    NASA Astrophysics Data System (ADS)

    Hanuka, Adi; Schächter, Levi

    2018-06-01

    We present a self-consistent analysis to determine the optimal charge, gradient, and efficiency for laser driven accelerators operating with a train of microbunches. Specifically, we account for the beam loading reduction on the material occurring at the dielectric-vacuum interface. In the case of a train of microbunches, such beam loading effect could be detrimental due to energy spread, however this may be compensated by a tapered laser pulse. We ultimately propose an optimization procedure with an analytical solution for group velocity which equals to half the speed of light. This optimization results in a maximum efficiency 20% lower than the single bunch case, and a total accelerated charge of 1 06 electrons in the train. The approach holds promise for improving operations of dielectric laser accelerators and may have an impact on emerging laser accelerators driven by high-power optical lasers.

  9. Sloshing dynamics modulated fluid angular momentum and moment fluctuations driven by orbital gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1995-01-01

    The dynamical behavior of spacecraft propellant affected by the asymmetric combined gravity gradient and jitter accelerations, in particular the effect of surface tension on partially-filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank has been investigated. Three different cases of orbital accelerations: (1) gravity gradient-dominated, (2) equally weighted between gravity gradient and jitter, and (3) gravity jitter-dominated accelerations are studied. The results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient-dominated accelerations provide a torsional moment with tidal motion of bubble oscillations in the rotating dewar. The results are clearly seen from the twisting shape of the bubble oscillations driven by gravity gradient-dominated acceleration. The results of slosh wave excitation along the liquid-vapor interface induced by gravity jitter-dominated acceleration indicate the results of bubble motion in a manner of down-and-up and leftward-and-rightward movement of oscillation when the bubble is rotating with respect to rotating dewar axis. Fluctuations of angular momentum, fluid moment and bubble mass center caused by slosh wave excitations driven by gravity gradient acceleration or gravity jitter acceleration are also investigated.

  10. Electron acceleration by surface plasma waves in double metal surface structure

    NASA Astrophysics Data System (ADS)

    Liu, C. S.; Kumar, Gagan; Singh, D. B.; Tripathi, V. K.

    2007-12-01

    Two parallel metal sheets, separated by a vacuum region, support a surface plasma wave whose amplitude is maximum on the two parallel interfaces and minimum in the middle. This mode can be excited by a laser using a glass prism. An electron beam launched into the middle region experiences a longitudinal ponderomotive force due to the surface plasma wave and gets accelerated to velocities of the order of phase velocity of the surface wave. The scheme is viable to achieve beams of tens of keV energy. In the case of a surface plasma wave excited on a single metal-vacuum interface, the field gradient normal to the interface pushes the electrons away from the high field region, limiting the acceleration process. The acceleration energy thus achieved is in agreement with the experimental observations.

  11. Simulations of laser-driven ion acceleration from a thin CH target

    NASA Astrophysics Data System (ADS)

    Park, Jaehong; Bulanov, Stepan; Ji, Qing; Steinke, Sven; Treffert, Franziska; Vay, Jean-Luc; Schenkel, Thomas; Esarey, Eric; Leemans, Wim; Vincenti, Henri

    2017-10-01

    2D and 3D computer simulations of laser driven ion acceleration from a thin CH foil using code WARP were performed. As the foil thickness varies from a few nm to μm, the simulations confirm that the acceleration mechanism transitions from the RPA (radiation pressure acceleration) to the TNSA (target normal sheath acceleration). In the TNSA regime, with the CH target thickness of 1 μ m and a pre-plasma ahead of the target, the simulations show the production of the collimated proton beam with the maximum energy of about 10 MeV. This agrees with the experimental results obtained at the BELLA laser facility (I 5 × 18 W / cm2 , λ = 800 nm). Furthermore, the maximum proton energy dependence on different setups of the initialization, i.e., different angles of the laser incidence from the target normal axis, different gradient scales and distributions of the pre-plasma, was explored. This work was supported by LDRD funding from LBNL, provided by the U.S. DOE under Contract No. DE-AC02-05CH11231, and used resources of the NERSC, a DOE office of Science User Facility supported by the U.S. DOE under Contract No. DE-AC02-05CH11231.

  12. 9 GeV energy gain in a beam-driven plasma wakefield accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Litos, M.; Adli, E.; Allen, J. M.

    2016-02-15

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m -1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energymore » gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less

  13. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  14. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  15. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  16. Design of Octupole Channel for Integrable Optics Test Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, Sergey; Carlson, Kermit; Castellotti, Riccardo

    We present the design of octupole channel for Integrable Optics Test Accelerator (IOTA). IOTA is a test accelerator at Fermilab, aimed to conduct research towards high-intensity machines. One of the goals of the project is to demonstrate high nonlinear betatron tune shifts while retaining large dynamic aperture in a realistic accelerator design. At the first stage the tune shift will be attained with a special channel of octupoles, which creates a variable octupole potential over a 1.8 m length. The channel consists of 18 identical air-cooled octupole magnets. The magnets feature a simple low-cost design, while meeting the requirements onmore » maximum gradient - up to 1.4 kG/cm³, and field quality - strength of harmonics below 1%. Numerical simulations show that the channel is capable of producing a nonlinear tune shift of 0.08 without restriction of dynamic aperture of the ring.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rolland

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients canmore » be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A 1.3 GHz RF test cell capable of operating both at high pressure and in vacuum with replaceable electrodes was designed, built, and power tested in preparation for testing the frequency and geometry effects of RF breakdown at Argonne National Lab. At the time of this report this cavity is still waiting for the 1.3 GHz klystron to be available at the Wakefield Test Facility. (3) Under a contract with Los Alamos National Lab, an 805 MHz RF test cavity, known as the All-Seasons Cavity (ASC), was designed and built by Muons, Inc. to operate either at high pressure or under vacuum. The LANL project to use the (ASC) was cancelled and the testing of the cavity has been continued under the grant reported on here using the Fermilab Mucool Test Area (MTA). The ASC is a true pillbox cavity that has performed under vacuum in high external magnetic field better than any other and has demonstrated that the high required accelerating gradients for many muon cooling beam line designs are possible. (4) Under ongoing support from the Muon Acceleration Program, microscopic surface analysis and computer simulations have been used to develop models of RF breakdown that apply to both pressurized and vacuum cavities. The understanding of RF breakdown will lead to better designs of RF cavities for many applications. An increase in the operating accelerating gradient, improved reliability and shorter conditioning times can generate very significant cost savings in many accelerator projects.« less

  18. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  19. Optimization of the combined proton acceleration regime with a target composition scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, W. P.; Graduate School, China Academy of Engineering Physics, Beijing 100088; Li, B. W., E-mail: li-baiwen@iapcm.ac.cn

    A target composition scheme to optimize the combined proton acceleration regime is presented and verified by two-dimensional particle-in-cell simulations by using an ultra-intense circularly polarized (CP) laser pulse irradiating an overdense hydrocarbon (CH) target, instead of a pure hydrogen (H) one. The combined acceleration regime is a two-stage proton acceleration scheme combining the radiation pressure dominated acceleration (RPDA) stage and the laser wakefield acceleration (LWFA) stage sequentially together. Protons get pre-accelerated in the first stage when an ultra-intense CP laser pulse irradiating an overdense CH target. The wakefield is driven by the laser pulse after penetrating through the overdense CHmore » target and propagating in the underdense tritium plasma gas. With the pre-accelerate stage, protons can now get trapped in the wakefield and accelerated to much higher energy by LWFA. Finally, protons with higher energies (from about 20 GeV up to about 30 GeV) and lower energy spreads (from about 18% down to about 5% in full-width at half-maximum, or FWHM) are generated, as compared to the use of a pure H target. It is because protons can be more stably pre-accelerated in the first RPDA stage when using CH targets. With the increase of the carbon-to-hydrogen density ratio, the energy spread is lower and the maximum proton energy is higher. It also shows that for the same laser intensity around 10{sup 22} W cm{sup −2}, using the CH target will lead to a higher proton energy, as compared to the use of a pure H target. Additionally, proton energy can be further increased by employing a longitudinally negative gradient of a background plasma density.« less

  20. Accelerating gradient improvement using shape-tailor laser front in radiation pressure acceleration progress

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-05-01

    The accelerating gradient of a proton beam is crucial for stable radiation pressure acceleration (RPA) because the multi-dimensional instabilities increase γ times slower in the relativistic region. In this paper, a shape-tailored laser is proposed to significantly accelerate the ions in a controllable high accelerating gradient. In this method, the fastest ions initially rest in the middle of the foil are controlled to catch the compressed electron layer at the end of the hole-boring stage, thus the light-sail stage can start as soon as possible. Then the compressed electron layer is accelerated tightly together with the fastest ions by the shaped laser intensity, which further increases the accelerating gradient in the light-sail stage. Such tailored pulse may be beneficial for the RPA driven by the 10-fs 10 petawatt laser in the future.

  1. Rocket ascent G-limited moment-balanced optimization program (RAGMOP)

    NASA Technical Reports Server (NTRS)

    Lyons, J. T.; Woltosz, W. S.; Abercrombie, G. E.; Gottlieb, R. G.

    1972-01-01

    This document describes the RAGMOP (Rocket Ascent G-limited Momentbalanced Optimization Program) computer program for parametric ascent trajectory optimization. RAGMOP computes optimum polynomial-form attitude control histories, launch azimuth, engine burn-time, and gross liftoff weight for space shuttle type vehicles using a search-accelerated, gradient projection parameter optimization technique. The trajectory model available in RAGMOP includes a rotating oblate earth model, the option of input wind tables, discrete and/or continuous throttling for the purposes of limiting the thrust acceleration and/or the maximum dynamic pressure, limitation of the structural load indicators (the product of dynamic pressure with angle-of-attack and sideslip angle), and a wide selection of intermediate and terminal equality constraints.

  2. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    DOE PAGES

    O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less

  3. Investigations into dual-grating THz-driven accelerators

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.

    2018-01-01

    Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.

  4. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators

    PubMed Central

    O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.

    2016-01-01

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348

  5. High Gradient Accelerator Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Temkin, Richard

    The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less

  6. Measurements in Flight of the Longitudinal-Stability Characteristics of a Republic YF-84A Airplane (Army Serial No. 45-59488) at High Subsonic Mach Numbers

    NASA Technical Reports Server (NTRS)

    Turner, Howard L.; Cooper, George E.

    1948-01-01

    A brief investigation was made of the longitudinal-stability characteristics of a YF-84A airplane (Army Serial No. 45-79488). The airplane developed a pitching-up tendency at approximately 0.80 Mach number which necessitated large push forces and down-elevator deflections for further increases in speed. In steady turns at 35,000 feet with the center of gravity at 28.3 percent mean aerodynamic chord for normal accelerations up to the maximum test value, the control-force gradients were excessive at Mach numbers over 0.78. Airplane buffeting did not present a serious problem in accelerated or unaccelerated flight at 15,000 and 35,000 feet up to the maximum test Mach number of 0.84. It is believed that excessive control force would be the limiting factor in attaining speeds in excess of 0.84 Mach number, especially at altitudes below 35,000 feet.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  8. Physics of Limiting Phenomena in Superconducting Microwave Resonators: Vortex Dissipation, Ultimate Quench and Quality Factor Degradation Mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radio-frequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described inmore » detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associate d to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.« less

  9. Physics of limiting phenomena in superconducting microwave resonators: Vortex dissipation, ultimate quench and quality factor degradation mechanisms

    NASA Astrophysics Data System (ADS)

    Checchin, Mattia

    Superconducting niobium accelerating cavities are devices operating in radiofrequency and able to accelerate charged particles up to energy of tera-electron-volts. Such accelerating structures are though limited in terms of quality factor and accelerating gradient, that translates--in some cases--in higher capital costs of construction and operation of superconducting rf accelerators. Looking forward for a new generation of more affordable accelerators, the physical description of limiting mechanisms in superconducting microwave resonators is discussed. In particular, the physics behind the dissipation introduced by vortices in the superconductor, the ultimate quench limitations and the quality factor degradation mechanism after a quench are described in detail. One of the limiting factor of the quality factor is the dissipation introduced by trapped magnetic flux vortices. The radio-frequency complex response of trapped vortices in superconductors is derived by solving the motion equation for a magnetic flux line, assuming a bi-dimensional and mean free path-dependent Lorentzian-shaped pinning potential. The resulting surface resistance shows the bell-shaped trend as a function of the mean free path, in agreement with the experimental data observed. Such bell-shaped trend of the surface resistance is described in terms of the interplay of the two limiting regimes identified as pinning and flux flow regimes, for low and large mean free path values respectively. The model predicts that the dissipation regime--pinning- or flux-flow-dominated--can be tuned either by acting on the frequency or on the electron mean free path value. The effect of different configurations of pinning sites and strength on the vortex surface resistance are also discussed. Accelerating cavities are also limited by the quench of the superconductive state, which limits the maximum accelerating gradient achievable. The accelerating field limiting factor is usually associated to the superheating field, which is intimately correlated to the penetration of magnetic flux vortices in the material. Experimental data for N-doped cavities suggest that uniform Ginzburg-Landau parameter cavities are statistically limited by the lower critical field, in terms of accelerating gradient. By introducing a Ginzburg-Landau parameter profile at the cavity rf surface--dirty layer--the accelerating gradient of superconducting resonators can be enhanced. The description of the physics behind the accelerating gradient enhancement as a consequence of the dirty layer is carried out by solving numerically the Ginzburg-Landau equations for the layered system. The enhancement is showed to be promoted by the higher energy barrier to vortex penetration, and by the enhanced lower critical field. Another serious threat to the quality factor during the cavity operation is the extra dissipation introduced by the quench. Such quality factor degradation mechanism due to the quench, is generated by the trapping of external magnetic flux at the quench spot. The purely extrinsic origin of such extra dissipation is proven by the impossibility of decrease the quality factor by quenching in a magnetic field-free environment. Also, a clear relation of the dissipation introduced by quenching to the orientation of the applied magnetic field is observed. The full recover of the quality factor by re-quenching in compensated field is possible when the trapped flux at the quench spot is modest. On the contrary, when the trapped magnetic flux is too large, the quality factor degradation may become irreversible by this technique, likely due to the outward flux migration beyond the normal zone opening during the quench.

  10. Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications

    NASA Astrophysics Data System (ADS)

    Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.

    2010-11-01

    A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.

  11. Numerical algorithms for scatter-to-attenuation reconstruction in PET: empirical comparison of convergence, acceleration, and the effect of subsets.

    PubMed

    Berker, Yannick; Karp, Joel S; Schulz, Volkmar

    2017-09-01

    The use of scattered coincidences for attenuation correction of positron emission tomography (PET) data has recently been proposed. For practical applications, convergence speeds require further improvement, yet there exists a trade-off between convergence speed and the risk of non-convergence. In this respect, a maximum-likelihood gradient-ascent (MLGA) algorithm and a two-branch back-projection (2BP), which was previously proposed, were evaluated. MLGA was combined with the Armijo step size rule; and accelerated using conjugate gradients, Nesterov's momentum method, and data subsets of different sizes. In 2BP, we varied the subset size, an important determinant of convergence speed and computational burden. We used three sets of simulation data to evaluate the impact of a spatial scale factor. The Armijo step size allowed 10-fold increased step sizes compared to native MLGA. Conjugate gradients and Nesterov momentum lead to slightly faster, yet non-uniform convergence; improvements were mostly confined to later iterations, possibly due to the non-linearity of the problem. MLGA with data subsets achieved faster, uniform, and predictable convergence, with a speed-up factor equivalent to the number of subsets and no increase in computational burden. By contrast, 2BP computational burden increased linearly with the number of subsets due to repeated evaluation of the objective function, and convergence was limited to the case of many (and therefore small) subsets, which resulted in high computational burden. Possibilities of improving 2BP appear limited. While general-purpose acceleration methods appear insufficient for MLGA, results suggest that data subsets are a promising way of improving MLGA performance.

  12. Method for computationally efficient design of dielectric laser accelerator structures

    DOE PAGES

    Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...

    2017-06-22

    Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less

  13. High gradient tests of metallic mm-wave accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2017-05-10

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  14. High gradient tests of metallic mm-wave accelerating structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less

  15. Accelerating gradient improvement from hole-boring to light-sail stage using shape-tailored laser front

    NASA Astrophysics Data System (ADS)

    Wang, W. P.; Shen, B. F.; Xu, Z. Z.

    2017-01-01

    The accelerating gradient of a proton beam is a crucial factor for the stable radiation pressure acceleration, because quickly accelerating protons into the relativistic region may reduce the multidimensional instability grow to a certain extent. In this letter, a shape-tailored laser is designed to accelerate the protons in a controllable high accelerating gradient in theory. Finally, a proton beam in the gigaelectronvolt range with an energy spread of ˜2.4% is obtained in one-dimensional particle-in-cell simulations. With the future development of the high-intense laser, the ability to accelerate a high energy proton beam using a shape-tailored laser will be important for realistic proton applications, such as fast ignition for inertial confinement fusion, medical therapy, and proton imaging.

  16. Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures

    NASA Astrophysics Data System (ADS)

    Cahill, Alexander David

    Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.

  17. Superfast maximum-likelihood reconstruction for quantum tomography

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Zhang, Zhengyun; Ng, Hui Khoon

    2017-06-01

    Conventional methods for computing maximum-likelihood estimators (MLE) often converge slowly in practical situations, leading to a search for simplifying methods that rely on additional assumptions for their validity. In this work, we provide a fast and reliable algorithm for maximum-likelihood reconstruction that avoids this slow convergence. Our method utilizes the state-of-the-art convex optimization scheme, an accelerated projected-gradient method, that allows one to accommodate the quantum nature of the problem in a different way than in the standard methods. We demonstrate the power of our approach by comparing its performance with other algorithms for n -qubit state tomography. In particular, an eight-qubit situation that purportedly took weeks of computation time in 2005 can now be completed in under a minute for a single set of data, with far higher accuracy than previously possible. This refutes the common claim that MLE reconstruction is slow and reduces the need for alternative methods that often come with difficult-to-verify assumptions. In fact, recent methods assuming Gaussian statistics or relying on compressed sensing ideas are demonstrably inapplicable for the situation under consideration here. Our algorithm can be applied to general optimization problems over the quantum state space; the philosophy of projected gradients can further be utilized for optimization contexts with general constraints.

  18. Prototyping high-gradient mm-wave accelerating structures

    DOE PAGES

    Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...

    2017-01-01

    We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less

  19. High power tests of an electroforming cavity operating at 11.424 GHz

    NASA Astrophysics Data System (ADS)

    Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.

    2016-03-01

    The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.

  20. Field Emission in Superconducting Accelerators: Instrumented Measurements for Its Understanding and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, Rongli; Freyberger, Arne P.; Legg, Robert A.

    Several new accelerator projects are adopting superconducting accelerator technology. When accelerating cavities maintain high RF gradients, field emission, the emission of electrons from cavity walls, can occur and may impact operational cavity gradient, radiological environment via activated components, and reliability. In this talk, we will discuss instrumented measurements of field emission from the two 1.1 GeV superconducting continuous wave (CW) linacs in CEBAF. The goal is to improve the understanding of field emission sources originating from cryomodule production, installation and operation. Such basic knowledge is needed in guiding field emission control, mitigation, and reduction toward high gradient and reliable operationmore » of superconducting accelerators.« less

  1. An Undulator-Based Laser Wakefield Accelerator Electron Beam Diagnostic

    NASA Astrophysics Data System (ADS)

    Bakeman, Michael S.

    Currently particle accelerators such as the Large Hadron Collider use RF cavities with a maximum field gradient of 50-100 MV/m to accelerate particles over long distances. A new type of plasma based accelerator called a Laser Plasma Accelerator (LPA) is being investigated at the LOASIS group at Lawrence Berkeley National Laboratory which can sustain field gradients of 10-100 GV/m. This new type of accelerator offers the potential to create compact high energy accelerators and light sources. In order to investigate the feasibility of producing a compact light source an undulator-based electron beam diagnostic for use on the LOASIS LPA has been built and calibrated. This diagnostic relies on the principal that the spectral analysis of synchrotron radiation from an undulator can reveal properties of the electron beam such as emittance, energy and energy spread. The effects of electron beam energy spread upon the harmonics of undulator produced synchrotron radiation were derived from the equations of motion of the beam and numerically simulated. The diagnostic consists of quadrupole focusing magnets to collimate the electron beam, a 1.5 m long undulator to produce the synchrotron radiation, and a high resolution high gain XUV spectrometer to analyze the radiation. The undulator was aligned and tuned in order to maximize the flux of synchrotron radiation produced. The spectrometer was calibrated at the Advanced Light Source, with the results showing the ability to measure electron beam energy spreads at resolutions as low as 0.1% rms, a major improvement over conventional magnetic spectrometers. Numerical simulations show the ability to measure energy spreads on realistic LPA produced electron beams as well as the improvements in measurements made with the quadrupole magnets. Experimentally the quadrupoles were shown to stabilize and focus the electron beams at specific energies for their insertion into the undulator, with the eventual hope of producing an all optical Free Electron Laser operating in the XUV and soft x-ray regimes.

  2. Induction linear accelerators

    NASA Astrophysics Data System (ADS)

    Birx, Daniel

    1992-03-01

    Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.

  3. High-gradient low-β accelerating structure using the first negative spatial harmonic of the fundamental mode

    NASA Astrophysics Data System (ADS)

    Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.

    2017-12-01

    The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.

  4. Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byer, Robert L.

    2013-11-07

    The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

  5. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGES

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  6. Relativistic klystron driven compact high gradient accelerator as an injector to an X-ray synchrotron radiation ring

    DOEpatents

    Yu, David U. L.

    1990-01-01

    A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.

  7. Luminosity Limitations of Linear Colliders Based on Plasma Acceleration

    DOE PAGES

    Lebedev, Valeri; Burov, Alexey; Nagaitsev, Sergei

    2016-01-01

    Particle acceleration in plasma creates a possibility of exceptionally high accelerating gradients and appears as a very attractive option for future linear electron-positron and/or photon-photon colliders. These high accelerating gradients were already demonstrated in a number of experiments. Furthermore, a linear collider requires exceptionally high beam brightness which still needs to be demonstrated. In this article we discuss major phenomena which limit the beam brightness of accelerated beam and, consequently, the collider luminosity.

  8. Demonstration of acceleration of relativistic electrons at a dielectric microstructure using femtosecond laser pulses

    DOE PAGES

    Wootton, Kent P.; Wu, Ziran; Cowan, Benjamin M.; ...

    2016-06-02

    Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m –1 accelerating gradients is possible only with laser pulse durations shorter than ~1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Furthermore, using this technique, an electron accelerating gradient of 690±100 MV m –1 was measured—a record for dielectric laser accelerators.

  9. Assessment of fluctuating pressure gradient using acceleration spectra in near wall flows

    NASA Astrophysics Data System (ADS)

    Cadel, Daniel; Lowe, K. Todd

    2015-11-01

    Separation of contributions to the fluctuating acceleration from pressure gradient fluctuations and viscous shear fluctuations in the frequency domain is examined in a turbulent boundary layer. Past work leveraging turbulent accelerations for pressure gradient measurements has neglected the viscous shear term from the momentum equation--an invalid assumption in the case of near wall flows. The present study seeks to account for the influence of the viscous shear term and spectrally reject its contribution, which is thought to be concentrated at higher frequencies. Spectra of velocity and acceleration fluctuations in a flat plate, zero pressure gradient turbulent boundary layer at a momentum thickness Reynolds number of 7500 are measured using a spatially resolving three-component laser Doppler velocimeter. This canonical case data is applied for validation of the spectral approach for future application in more complex aerodynamic flows.

  10. rf breakdown tests of mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-01-06

    In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less

  11. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE PAGES

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...

    2016-03-01

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  12. A traveling-wave forward coupler design for a new accelerating mode in a silicon woodpile accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.

    Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less

  13. Quantum efficiency temporal response and lifetime of a GaAs cathode in SRF electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, E.; Ben-Zvi, I.; Kewisch, J.

    2010-05-23

    RF electron guns with a strained super lattice GaAs cathode can generate polarized electron beam of higher brightness and lower emittance than do DC guns, due to their higher field gradient at the cathode's surface. In a normal conducting RF gun, the extremely high vaccum required by these cathodes can not be met. We report on an experiment with a superconducting SRF gun, which can maintain a vacuum of nearly 10-12 torr because of cryo-pumping at the temperature of 4.2K. With conventional activation, we obtained a QE of 3% at 532 nm, with lifetime of nearly 3 days in themore » preparation chamber. We plan to use this cathode in a 1.3 GHz 1/2 cell SRF gun to study its performance. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper. Future particle accelerators such as eRHIC and ILC require high brightness, high current polarized electrons Recently, using a superlattice crystal, the maximum polarization of 95% was reached. Activation with Cs,O lowers the electron affinity and makes it energetically possible for all the electrons excited in to the conduction band and reach the surface to escape into the vacuum. Presently the polarized electron sources are based on DC gun, such as that at the CEBAF at Jlab. In these devices, the life time of the cathode is extended due to the reduced back bombardment in their UHV conditions. However, the low accelerating gradient of the DC guns lead to poor longitudinal emittance. The higher accelerating gradient of the RF gun generates low emittance beams. Superconducting RF guns combine the excellent vacuum conditions of the DC guns with the higher accelerating gradients of the RF guns and provide potentially a long lived cathode with very low transverse and longitudinal emittance. In our work at BNL, we successfully activated the GaAs. The quantum efficient is 3% at 532 nm and is expected to improve further. In addition, we studied the multipacting at the location of cathode. A new model based on the Forkker-Planck equation which can estimate the bunch length of the electron beam is discussed in this paper.« less

  14. Amplitude-dependent orbital period in alternating gradient accelerators

    DOE PAGES

    Machida, S.; Kelliher, D. J.; Edmonds, C. S.; ...

    2016-03-16

    Orbital period in a ring accelerator and time of flight in a linear accelerator depend on the amplitude of betatron oscillations. The variation is negligible in ordinary particle accelerators with relatively small beam emittance. In an accelerator for large emittance beams like muons and unstable nuclei, however, this effect cannot be ignored. In this study, we measured orbital period in a linear non-scaling fixed-field alternating-gradient accelerator, which is a candidate for muon acceleration, and compared it with the theoretical prediction. The good agreement between them gives important ground for the design of particle accelerators for a new generation of particlemore » and nuclear physics experiments.« less

  15. Conceptional design of a heavy ion linac injector for HIRFL-CSRm

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Hu; Yuan, You-Jin; Xia, Jia-Wen; Yin, Xue-Jun; Du, Heng; Li, Zhong-Shan

    2014-10-01

    A room temperature heavy ion linac has been proposed as a new injector of the main Cooler Storage Ring (CSRm) at the Heavy Ion Research Facility in Lanzhou (HIRFL), which is expected to improve the performance of HIRFL. The linac injector can supply heavy ions with a maximum mass to charge ratio of 7 and an injection kinetic energy of 7.272 MeV/u for CSRm; the pulsed beam intensity is 3 emA with the duty factor of 3%. Compared with the present cyclotron injector, the Sector Focusing Cyclotron (SFC), the beam current from linac can be improved by 10-100 times. As the pre-accelerator of the linac, the 108.48 MHz 4-rod Radio Frequency Quadrupole (RFQ) accelerates the ion beam from 4 keV/u to 300 keV/u, which achieves the transmission efficiency of 95.3% with a 3.07 m long vane. The phase advance has been taken into account in the analysis of the error tolerance, and parametric resonances have been carefully avoided by adjusting the structure parameters. Kombinierte Null Grad Struktur Interdigital H-mode Drift Tube Linacs (KONUS IH-DTLs), which follow the RFQ, accelerate ions up to the energy of 7.272 MeV/u for CSRm. The resonance frequency is 108.48 MHz for the first two cavities and 216.96 MHz for the last 5 Drift Tube Linacs (DTLs). The maximum accelerating gradient can reach 4.95 MV/m in a DTL section with the length of 17.066 m, and the total pulsed RF power is 2.8 MW. A new strategy, for the determination of resonance frequency, RFQ vane voltage and DTL effective accelerating voltage, is described in detail. The beam dynamics design of the linac will be presented in this paper.

  16. Advanced low-beta cavity development for proton and ion accelerators

    NASA Astrophysics Data System (ADS)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.

  17. Simulations of Flame Acceleration and DDT in Mixture Composition Gradients

    NASA Astrophysics Data System (ADS)

    Zheng, Weilin; Kaplan, Carolyn; Houim, Ryan; Oran, Elaine

    2017-11-01

    Unsteady, multidimensional, fully compressible numerical simulations of methane-air in an obstructed channel with spatial gradients in equivalence ratios have been carried to determine the effects of the gradients on flame acceleration and transition to detonation. Results for gradients perpendicular to the propagation direction were considered here. A calibrated, optimized chemical-diffusive model that reproduces correct flame and detonation properties for methane-air over a range of equivalence ratios was derived from a combination of a genetic algorithm with a Nelder-Mead optimization scheme. Inhomogeneous mixtures of methane-air resulted in slower flame acceleration and longer distance to DDT. Detonations were more likely to decouple into a flame and a shock under sharper concentration gradients. Detailed analyses of temperature and equivalence ratio illustrated that vertical gradients can greatly affect the formation of hot spots that initiate detonation by changing the strength of leading shock wave and local equivalence ratio near the base of obstacles. This work is supported by the Alpha Foundation (Grant No. AFC215-20).

  18. Experimental measurements of rf breakdowns and deflecting gradients in mm-wave metallic accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-05-03

    We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.

  19. Unprecedented quality factors at accelerating gradients up to 45 MVm -1 in niobium superconducting resonators via low temperature nitrogen infusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.

    We report the finding of new surface treatments that permit to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface infusion conditions that systematically a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have larger than two times the state ofmore » the art Q at 2K for accelerating fields > 35 MV/m. Moreover, very high accelerating gradients ~ 45 MV/m are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.« less

  20. Unprecedented quality factors at accelerating gradients up to 45 MVm-1 in niobium superconducting resonators via low temperature nitrogen infusion

    NASA Astrophysics Data System (ADS)

    Grassellino, A.; Romanenko, A.; Trenikhina, Y.; Checchin, M.; Martinello, M.; Melnychuk, O. S.; Chandrasekaran, S.; Sergatskov, D. A.; Posen, S.; Crawford, A. C.; Aderhold, S.; Bice, D.

    2017-09-01

    We report the finding of new surface treatments that permits one to manipulate the niobium resonator nitrogen content in the first few nanometers in a controlled way, and the resonator fundamental Mattis-Bardeen surface resistance and residual resistance accordingly. In particular, we find surface ‘infusion’ conditions that systematically (a) increase the quality factor of these 1.3 GHz superconducting radio frequency (SRF) bulk niobium resonators, up to very high gradients; (b) increase the achievable accelerating gradient of the cavity compared to its own baseline with state-of-the-art surface processing. Cavities subject to the new surface process have more than two times the state-of-the-art Q at 2 K for accelerating fields >35 MVm-1. Moreover, very high accelerating gradients ˜45 MVm-1 are repeatedly reached, which correspond to peak magnetic surface fields of 190 mT, among the highest measured for bulk niobium cavities. These findings open the opportunity to tailor the surface impurity content distribution to maximize performance in Q and gradients, and have therefore very important implications on future performance and cost of SRF based accelerators. They also help deepen the understanding of the physics of the RF niobium cavity surface.

  1. Cosmic-ray shock acceleration in oblique MHD shocks

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Drury, L. OC.; Volk, H. J.

    1986-01-01

    A one-dimensional, steady-state hydrodynamical model of cosmic-ray acceleration at oblique MHD shocks is presented. Upstream of the shock the incoming thermal plasma is subject to the adverse pressure gradient of the accelerated particles, the J x B force, as well as the thermal gas pressure gradient. The efficiency of the acceleration of cosmic-rays at the shock as a function of the upstream magnetic field obliquity and upstream plasma beta is investigated. Astrophysical applications of the results are briefly discussed.

  2. Transport modes during crystal growth in a centrifuge

    NASA Technical Reports Server (NTRS)

    Arnold, William A.; Wilcox, William R.; Carlson, Frederick; Chait, Arnon; Regel', Liia L.

    1992-01-01

    Flow modes arising under average acceleration in centrifugal crystal growth, the gradient of acceleration, and the Coriolis force are investigated using a fully nonlinear three-dimensional numerical model for a centrifugal crystal growth experiment. The analysis focuses on an examination of the quasi-steady state flow modes. The importance of the gradient acceleration is determined by the value of a new nondimensional number, Ad.

  3. Compact and tunable focusing device for plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Chiadroni, E.; Cianchi, A.; Ferrario, M.; Lollo, V.; Notargiacomo, A.; Picardi, L.; Ronsivalle, C.; Rosenzweig, J. B.; Shpakov, V.; Vannozzi, A.

    2018-03-01

    Plasma wakefield acceleration, either driven by ultra-short laser pulses or electron bunches, represents one of the most promising techniques able to overcome the limits of conventional RF technology and allows the development of compact accelerators. In the particle beam-driven scenario, ultra-short bunches with tiny spot sizes are required to enhance the accelerating gradient and preserve the emittance and energy spread of the accelerated bunch. To achieve such tight transverse beam sizes, a focusing system with short focal length is mandatory. Here we discuss the development of a compact and tunable system consisting of three small-bore permanent-magnet quadrupoles with 520 T/m field gradient. The device has been designed in view of the plasma acceleration experiments planned at the SPARC_LAB test-facility. Being the field gradient fixed, the focusing is adjusted by tuning the relative position of the three magnets with nanometer resolution. Details about its magnetic design, beam-dynamics simulations, and preliminary results are examined in the paper.

  4. Advances in high gradient normal conducting accelerator structures

    DOE PAGES

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    2018-03-09

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  5. Advances in high gradient normal conducting accelerator structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.

    Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less

  6. Advanced low-beta cavity development for proton and ion accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.

    2015-05-01

    Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review thismore » work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for beta = 0.077 ions.« less

  7. Designing a Dielectric Laser Accelerator on a Chip

    NASA Astrophysics Data System (ADS)

    Niedermayer, Uwe; Boine-Frankenheim, Oliver; Egenolf, Thilo

    2017-07-01

    Dielectric Laser Acceleration (DLA) achieves gradients of more than 1GeV/m, which are among the highest in non-plasma accelerators. The long-term goal of the ACHIP collaboration is to provide relativistic (>1 MeV) electrons by means of a laser driven microchip accelerator. Examples of ’’slightly resonant” dielectric structures showing gradients in the range of 70% of the incident laser field (1 GV/m) for electrons with beta=0.32 and 200% for beta=0.91 are presented. We demonstrate the bunching and acceleration of low energy electrons in dedicated ballistic buncher and velocity matched grating structures. However, the design gradient of 500 MeV/m leads to rapid defocusing. Therefore we present a scheme to bunch the beam in stages, which does not only reduce the energy spread, but also the transverse defocusing. The designs are made with a dedicated homemade 6D particle tracking code.

  8. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alarcon, Ricardo; Balascuta, S.; Benson, Stephen V.

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that needmore » to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.« less

  9. Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks

    NASA Astrophysics Data System (ADS)

    Gopalswamy, N.; Schmidt, J. M.

    2008-05-01

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  10. Plasma radiation and acceleration effectiveness of CME-driven shocks

    NASA Astrophysics Data System (ADS)

    Schmidt, Joachim

    CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  12. Effects of Spatial Gradients on Electron Runaway Acceleration

    NASA Technical Reports Server (NTRS)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  13. rf breakdown measurements in electron beam driven 200 GHz copper and copper-silver accelerating structures

    DOE PAGES

    Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...

    2016-11-30

    This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less

  14. Staging optics considerations for a plasma wakefield acceleration linear collider

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.; Allen, J. M.; Delahaye, J. P.; Hogan, M. J.; Joshi, C.; Muggli, P.; Raubenheimer, T. O.; Yakimenko, V.

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  15. Method of accelerating photons by a relativistic plasma wave

    DOEpatents

    Dawson, John M.; Wilks, Scott C.

    1990-01-01

    Photons of a laser pulse have their group velocity accelerated in a plasma as they are placed on a downward density gradient of a plasma wave of which the phase velocity nearly matches the group velocity of the photons. This acceleration results in a frequency upshift. If the unperturbed plasma has a slight density gradient in the direction of propagation, the photon frequencies can be continuously upshifted to significantly greater values.

  16. 30 CFR 56.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 56.19062 Section 56.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 56.19062 Maximum acceleration and deceleration. Maximum normal operating...

  17. 30 CFR 57.19062 - Maximum acceleration and deceleration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum acceleration and deceleration. 57.19062 Section 57.19062 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Hoisting Hoisting Procedures § 57.19062 Maximum acceleration and deceleration. Maximum normal operating...

  18. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng

    2017-10-01

    The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).

  19. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    PubMed

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  20. Scaling fixed-field alternating gradient accelerators with a small orbit excursion.

    PubMed

    Machida, Shinji

    2009-10-16

    A novel scaling type of fixed-field alternating gradient (FFAG) accelerator is proposed that solves the major problems of conventional scaling and nonscaling types. This scaling FFAG accelerator can achieve a much smaller orbit excursion by taking a larger field index k. A triplet focusing structure makes it possible to set the operating point in the second stability region of Hill's equation with a reasonable sensitivity to various errors. The orbit excursion is about 5 times smaller than in a conventional scaling FFAG accelerator and the beam size growth due to typical errors is at most 10%.

  1. Wake shed by an accelerating carangiform fish

    NASA Astrophysics Data System (ADS)

    Ting, Shang-Chieh; Yang, Jing-Tang

    2008-11-01

    We reveal an important fact that momentum change observed in the wake of an accelerating carangiform fish does not necessarily elucidate orientations of propulsive forces produced. An accelerating Crucian Carp (Carassius auratus) was found to shed a wake with net forward fluid momentum, which seemed drag-producing. Based on Newton's law, however, an accelerating fish is expected to shed a thrust wake with net rearward fluid momentum, rather than a drag wake. The unusual wake pattern observed is considered to be resulted primarily from the effect of pressure gradient created by accelerating movements of the fish. Ambient fluids tend to be sucked into low pressure zones behind an accelerating fish, resulting in forward orientations of jets recognizable in the wake. Accordingly, as to an accelerating fish, identifying force orientations from the wake requires considering also the effect of pressure gradient.

  2. Cardiovascular responses of semi-arboreal snakes to chronic, intermittent hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1996-01-01

    Cardiovascular functions were studied in semi-arboreal rat snakes (Elaphe obsoleta) following long-term, intermittent exposure to +1.5 Gz (head-to-tail acceleration) on a centrifuge. Snakes were held in a nearly straight position within horizontal plastic tubes during periods of centrifugation. Centrifugal acceleration, therefore, subjected snakes to a linear force gradient with the maximal force being experienced at the tail. Compared to non-centrifuged controls, Gz-acclimated snakes showed greater increases of heart rate during head-up tilt or acceleration, greater sensitivity of arterial pressure to circulating catecholamines, higher blood levels of corticosterone, and higher blood ratios of prostaglandin F 2 alpha/prostaglandin E2. Cardiovascular tolerance to increased gravity during graded Gz acceleration was measured as the maximum (caudal) acceleration force at which carotid arterial blood flow became null. When such tolerances were adjusted for effects of body size and other continuous variables incorporated into an analysis of covariance, the difference between the adjusted mean values of control and acclimated snakes (2.37 and 2.84 Gz, respectively) corresponded closely to the 0.5 G difference between the acclimation G (1.5) and Earth gravity (1.0). As in other vertebrates, cardiovascular tolerance to Gz stress tended to be increased by acclimation, short body length, high arterial pressure, and comparatively large blood volume. Voluntary body movements were important for promoting carotid blood flow at the higher levels of Gz stress.

  3. Chirped pulse inverse free-electron laser vacuum accelerator

    DOEpatents

    Hartemann, Frederic V.; Baldis, Hector A.; Landahl, Eric C.

    2002-01-01

    A chirped pulse inverse free-electron laser (IFEL) vacuum accelerator for high gradient laser acceleration in vacuum. By the use of an ultrashort (femtosecond), ultrahigh intensity chirped laser pulse both the IFEL interaction bandwidth and accelerating gradient are increased, thus yielding large gains in a compact system. In addition, the IFEL resonance condition can be maintained throughout the interaction region by using a chirped drive laser wave. In addition, diffraction can be alleviated by taking advantage of the laser optical bandwidth with negative dispersion focusing optics to produce a chromatic line focus. The combination of these features results in a compact, efficient vacuum laser accelerator which finds many applications including high energy physics, compact table-top laser accelerator for medical imaging and therapy, material science, and basic physics.

  4. Gradient of γ rays and β particles irradiation’s energy produced by accelerator and its use in radiotherapy of cancer diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kastrati, Labinot, E-mail: labinotkastrati82@gmail.com; Nafezi, Gazmend, E-mail: gazmend-nafezi@hotmail.com; Shehi, Gëzim, E-mail: gezimshehi@yahoo.com

    2016-03-25

    The Ionising irradiations used mostly in the treatment of tumoral diseases are: X, γ, β and e irradiations. The discussion will be about radiations, produced in accelerators, with photon energy 6 MV and 15 MV and electron energy from 5 MeV to 15 MeV. Due to the differences between γ and β radiations, their absorbtion in living tissues will be different. It is important to know, the absorption performance before and after the electronic equilibrium. For these purposes, we’ve use the function of dose gradient, for irradiations γ and β. It represents the velocity of dose change as a function of depthmore » in tissue. From skin to maximum dose value, the increase of G-function is more accentuated for γ-rays than for β-particles, while after that the G-function decreasing is less sharp for γ-rays, while for β-particles, it is almost promptly. This fact allow us to use in radiotherapy, not only γ-rays but β-particles, too. The lasts, represents, a much more efficient tool, especially in terms of radiation protection, of health adjacent tissues and organs. Finally, we’ll to discus, about the advantages in terms of radiation protection of both, γ-rays and β-particles used in radiotherapy.« less

  5. X-ray driven channeling acceleration in crystals and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young-Min; Still, Dean A.; Shiltsev, Vladimir

    2013-12-01

    Acceleration of particles channeling in a crystal by means of diffracted x-rays via Bormann anomalous transmission was conceived for heavy ions and muons by Tajima and Cavenago [Phys. Rev. Lett. 59, 1440 (1987)], which potentially offers an appreciably high field gradient on the order of GV/cm. The theoretical model of the high gradient acceleration has been studied in two kinds of atomic structure, crystals and carbon nanotubes (CNTs), with analytic calculations and electromagnetic eigenmode simulations. A range of acceleration gradients and cutoffs of the x-ray power (the lowest power limit to overcome the Bremsstrahlung radiation losses) are characterized in termsmore » of the lattice constants, unit cell sizes, and photon energies. The parametric analysis indicates that the required x-ray power can be reduced to an order of megawatt by replacing crystals with CNTs. Eventually, the equivalent dielectric approximation of a multi-wall nanotube shows that 250–810 MeV muons can be synchronously coupled with x-rays of 0.65–1.32 keV in the accelerating structure.« less

  6. Spectral modification of shock accelerated ions using a hydrodynamically shaped gas target

    DOE PAGES

    Tresca, O.; Polyanskiy, M. N.; Dover, N. P.; ...

    2015-08-28

    We report on reproducible shock acceleration from irradiation of a λ=10 μm CO2 laser on optically shaped H2 and He gas targets. A low energy laser prepulse (I≲10 14 W cm –2) is used to drive a blast wave inside the gas target, creating a steepened, variable density gradient. This is followed, after 25 ns, by a high intensity laser pulse (I>10 16 W cm –2) that produces an electrostatic collisionless shock. Upstream ions are accelerated for a narrow range of prepulse energies. For long density gradients (≳40 μm), broadband beams of He + and H + were routinely produced,more » whilst for shorter gradients (≲20 μm), quasimonoenergetic acceleration of protons is observed. These measurements indicate that the properties of the accelerating shock and the resultant ion energy distribution, in particular the production of narrow energy spread beams, is highly dependent on the plasma density profile. These findings are corroborated by 2D particle-in-cell simulations.« less

  7. Performance in the vertical test of the 832 nine-cell 1.3 GHz cavities for the European X-ray Free Electron Laser

    NASA Astrophysics Data System (ADS)

    Reschke, D.; Gubarev, V.; Schaffran, J.; Steder, L.; Walker, N.; Wenskat, M.; Monaco, L.

    2017-04-01

    The successful production and associated vertical testing of over 800 superconducting 1.3 GHz accelerating cavities for the European X-ray Free Electron Laser (XFEL) represents the culmination of over 20 years of superconducting radio-frequency R&D. The cavity production took place at two industrial vendors under the shared responsibility of INFN Milano-LASA and DESY. Average vertical testing rates at DESY exceeded 10 cavities per week, peaking at up to 15 cavities per week. The cavities sent for cryomodule assembly at Commissariat à l'énergie atomique (CEA) Saclay achieved an average maximum gradient of approximately 33 MV /m , reducing to ˜30 MV /m when the operational specifications on quality factor (Q) and field emission were included (the so-called usable gradient). Only 16% of the cavities required an additional surface retreatment to recover their low performance (usable gradient less than 20 MV /m ). These cavities were predominantly limited by excessive field emission for which a simple high pressure water rinse (HPR) was sufficient. Approximately 16% of the cavities also received an additional HPR, e.g. due to vacuum problems before or during the tests or other reasons, but these were not directly related to gradient performance. The in-depth statistical analyses presented in this report have revealed several features of the series produced cavities.

  8. Large Airborne Full Tensor Gradient Data Inversion Based on a Non-Monotone Gradient Method

    NASA Astrophysics Data System (ADS)

    Sun, Yong; Meng, Zhaohai; Li, Fengting

    2018-03-01

    Following the development of gravity gradiometer instrument technology, the full tensor gravity (FTG) data can be acquired on airborne and marine platforms. Large-scale geophysical data can be obtained using these methods, making such data sets a number of the "big data" category. Therefore, a fast and effective inversion method is developed to solve the large-scale FTG data inversion problem. Many algorithms are available to accelerate the FTG data inversion, such as conjugate gradient method. However, the conventional conjugate gradient method takes a long time to complete data processing. Thus, a fast and effective iterative algorithm is necessary to improve the utilization of FTG data. Generally, inversion processing is formulated by incorporating regularizing constraints, followed by the introduction of a non-monotone gradient-descent method to accelerate the convergence rate of FTG data inversion. Compared with the conventional gradient method, the steepest descent gradient algorithm, and the conjugate gradient algorithm, there are clear advantages of the non-monotone iterative gradient-descent algorithm. Simulated and field FTG data were applied to show the application value of this new fast inversion method.

  9. BNL accelerator-based radiobiology facilities

    NASA Technical Reports Server (NTRS)

    Lowenstein, D. I.

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  10. BNL accelerator-based radiobiology facilities.

    PubMed

    Lowenstein, D I

    2001-01-01

    For the past several years, the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory (USA) has provided ions of iron, silicon and gold, at energies from 600 MeV/nucleon to 10 GeV/nucleon, for the US National Aeronautics and Space Administration (NASA) radiobiology research program. NASA has recently funded the construction of a new dedicated ion facility, the Booster Applications Facility (BAF). The Booster synchrotron will supply ion beams ranging from protons to gold, in an energy range from 40-3000 MeV/nucleon with maximum beam intensities of 10(10) to 10(11) ions per pulse. The BAF Project will be described and the future AGS and BAF operation plans will be presented.

  11. S-band 1.4 cell photoinjector design for high brightness beam generation

    NASA Astrophysics Data System (ADS)

    Pirez, E.; Musumeci, P.; Maxson, J.; Alesini, D.

    2017-09-01

    In this paper we study in detail the design of a novel S-band radiofrequency photogun structure to maximize the accelerating field experienced by the particles at injection. This is a critical quantity for electron sources as it has a direct impact on the maximum brightness achievable. The proposed design is based on a modification of the latest generation of S-band RF photoinjectors to include novel fabrication approaches. The gun is designed to operate at a 120 MV/m gradient and at an optimal injection phase of 70° providing the beam quality required to enable novel electron beam applications such as single shot time-resolved transmission electron microscopy and ultrafast electron nanodiffraction.

  12. QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.

    PubMed

    Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon

    2012-01-01

    Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.

  13. Development work for a superconducting linear collider

    NASA Technical Reports Server (NTRS)

    Matheisen, Axel

    1995-01-01

    For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.

  14. Understanding differences between DELFT3D and empirical predictions of alongshore sediment transport gradients

    USGS Publications Warehouse

    List, Jeffrey; Benedet, Lindino; Hanes, Daniel M.; Ruggiero, Peter

    2009-01-01

    Predictions of alongshore transport gradients are critical for forecasting shoreline change. At the previous ICCE conference, it was demonstrated that alongshore transport gradients predicted by the empirical CERC equation can differ substantially from predictions made by the hydrodynamics-based model Delft3D in the case of a simulated borrow pit on the shoreface. Here we use the Delft3D momentum balance to examine the reason for this difference. Alongshore advective flow accelerations in our Delft3D simulation are mainly driven by pressure gradients resulting from alongshore variations in wave height and setup, and Delft3D transport gradients are controlled by these flow accelerations. The CERC equation does not take this process into account, and for this reason a second empirical transport term is sometimes added when alongshore gradients in wave height are thought to be significant. However, our test case indicates that this second term does not properly predict alongshore transport gradients.

  15. The Bonn Electron Stretcher Accelerator ELSA: Past and future

    NASA Astrophysics Data System (ADS)

    Hillert, W.

    2006-05-01

    In 1953, it was decided to build a 500MeV electron synchrotron in Bonn. It came into operation 1958, being the first alternating gradient synchrotron in Europe. After five years of performing photoproduction experiments at this accelerator, a larger 2.5GeV electron synchrotron was built and set into operation in 1967. Both synchrotrons were running for particle physics experiments, until from 1982 to 1987 a third accelerator, the electron stretcher ring ELSA, was constructed and set up in a separate ring tunnel below the physics institute. ELSA came into operation in 1987, using the pulsed 2.5GeV synchrotron as pre-accelerator. ELSA serves either as storage ring producing synchrotron radiation, or as post-accelerator and pulse stretcher. Applying a slow extraction close to a third integer resonance, external electron beams with energies up to 3.5GeV and high duty factors are delivered to hadron physics experiments. Various photo- and electroproduction experiments, utilising the experimental set-ups PHOENICS, ELAN, SAPHIR, GDH and Crystal Barrel have been carried out. During the late 90's, a pulsed GaAs source of polarised electrons was constructed and set up at the accelerator. ELSA was upgraded in order to accelerate polarised electrons, compensating for depolarising resonances by applying the methods of fast tune jumping and harmonic closed orbit correction. With the experimental investigation of the GDH sum rule, the first experiment requiring a polarised beam and a polarised target was successfully performed at the accelerator. In the near future, the stretcher ring will be further upgraded to increase polarisation and current of the external electron beams. In addition, the aspects of an increase of the maximum energy to 5GeV using superconducting resonators will be investigated.

  16. Experimental Results from a Resonant Dielectric Laser Accelerator

    NASA Astrophysics Data System (ADS)

    Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran

    2015-04-01

    Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).

  17. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  18. Alongshore Momentum Balance Over Shoreface-Connected Ridges, Fire Island, NY

    NASA Astrophysics Data System (ADS)

    Ofsthun, C.; Wu, X.; Voulgaris, G.; Warner, J. C.

    2016-12-01

    he momentum balance of alongshore flows over straight, uniform shelfs has been analyzed extensively over the last few decades. More recently, the effect of coastline curvature and how this might alter the relative significance of the momentum terms has received additional attention. In this contribution, the alongshore momentum over shelves with straight coastline, but non-uniform bathymetry is examined. Hydrodynamic and hydrographic data collected by the US Geological Survey (Fire Island Coastal Change project) on the inner shelf of Fire Island, NY over a region of shore-face connected ridges (SFCRs) are used to describe wind-induced circulation and the terms of the alongshore momentum balance equation. Analysis of the data revealed a predominantly alongshore circulation, under westward wind forcing, with localized offshore (onshore) current veering over the ridge crests (troughs). Momentum balance analysis hinted that local acceleration, advective acceleration, and bottom stress are balanced by wind stress and regional (>100 km) pressure gradient force. In addition, a numerical model using an idealized SFCR bathymetry, forced by our observed winds, was employed to compare the momentum balance relationships identified by the data and those under steady-state conditions published earlier (Warner et al., 2014). A synthesis of the numerical and experimental data revealed that the true pressure gradient force results from the sum of local pressure gradient force, which maintains a Bernoulli-like relationship with alongshore advective acceleration, and regional pressure gradient force, which maintains a strong, negative relationship with wind stress. The differences between steady-state and realistic conditions is mainly on the contributions of regional scale pressure gradients that develop under realistic conditions, and the reduced contribution of local scale pressure gradients which develop best under steady-state conditions. Our analysis indicates that current veering over ridge crests, a consistent occurrence, is a combination of a cross-shore gradient in the inconsistent relationship between local advective acceleration and pressure gradient and frictional-torque with the latter being the dominant mechanism under realistic forcing.

  19. Rip currents and alongshore flows in single channels dredged in the surf zone

    NASA Astrophysics Data System (ADS)

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-05-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  20. Rip currents and alongshore flows in single channels dredged in the surf zone

    USGS Publications Warehouse

    Moulton, Melissa; Elgar, Steve; Raubenheimer, Britt; Warner, John C.; Kumar, Nirnimesh

    2017-01-01

    To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, circulation was simulated with the numerical modeling system COAWST, initialized with the observed incident waves and channel bathymetry, and with an extended set of wave conditions and channel geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms in modeled momentum balances are wave-breaking accelerations, pressure gradients, advection, and the vortex force. The balances vary spatially, and are sensitive to wave conditions and the channel geometry. The observed and modeled maximum offshore-directed flow speeds are correlated with a parameter based on the alongshore gradient in breaking-wave-driven-setup across the nonuniform bathymetry (a function of wave height and angle, water depths in the channel and on the sandbar, and a breaking threshold) and the breaking-wave-driven alongshore flow speed. The offshore-directed flow speed increases with dissipation on the bar and reaches a maximum (when the surf zone is saturated) set by the vertical scale of the bathymetric variability.

  1. Structure of sheared and rotating turbulence: Multiscale statistics of Lagrangian and Eulerian accelerations and passive scalar dynamics.

    PubMed

    Jacobitz, Frank G; Schneider, Kai; Bos, Wouter J T; Farge, Marie

    2016-01-01

    The acceleration statistics of sheared and rotating homogeneous turbulence are studied using direct numerical simulation results. The statistical properties of Lagrangian and Eulerian accelerations are considered together with the influence of the rotation to shear ratio, as well as the scale dependence of their statistics. The probability density functions (pdfs) of both Lagrangian and Eulerian accelerations show a strong and similar dependence on the rotation to shear ratio. The variance and flatness of both accelerations are analyzed and the extreme values of the Eulerian acceleration are observed to be above those of the Lagrangian acceleration. For strong rotation it is observed that flatness yields values close to three, corresponding to Gaussian-like behavior, and for moderate and vanishing rotation the flatness increases. Furthermore, the Lagrangian and Eulerian accelerations are shown to be strongly correlated for strong rotation due to a reduced nonlinear term in this case. A wavelet-based scale-dependent analysis shows that the flatness of both Eulerian and Lagrangian accelerations increases as scale decreases, which provides evidence for intermittent behavior. For strong rotation the Eulerian acceleration is even more intermittent than the Lagrangian acceleration, while the opposite result is obtained for moderate rotation. Moreover, the dynamics of a passive scalar with gradient production in the direction of the mean velocity gradient is analyzed and the influence of the rotation to shear ratio is studied. Concerning the concentration of a passive scalar spread by the flow, the pdf of its Eulerian time rate of change presents higher extreme values than those of its Lagrangian time rate of change. This suggests that the Eulerian time rate of change of scalar concentration is mainly due to advection, while its Lagrangian counterpart is only due to gradient production and viscous dissipation.

  2. Engineering functionality gradients by dip coating process in acceleration mode.

    PubMed

    Faustini, Marco; Ceratti, Davide R; Louis, Benjamin; Boudot, Mickael; Albouy, Pierre-Antoine; Boissière, Cédric; Grosso, David

    2014-10-08

    In this work, unique functional devices exhibiting controlled gradients of properties are fabricated by dip-coating process in acceleration mode. Through this new approach, thin films with "on-demand" thickness graded profiles at the submillimeter scale are prepared in an easy and versatile way, compatible for large-scale production. The technique is adapted to several relevant materials, including sol-gel dense and mesoporous metal oxides, block copolymers, metal-organic framework colloids, and commercial photoresists. In the first part of the Article, an investigation on the effect of the dip coating speed variation on the thickness profiles is reported together with the critical roles played by the evaporation rate and by the viscosity on the fluid draining-induced film formation. In the second part, dip-coating in acceleration mode is used to induce controlled variation of functionalities by playing on structural, chemical, or dimensional variations in nano- and microsystems. In order to demonstrate the full potentiality and versatility of the technique, original graded functional devices are made including optical interferometry mirrors with bidirectional gradients, one-dimensional photonic crystals with a stop-band gradient, graded microfluidic channels, and wetting gradient to induce droplet motion.

  3. Software Tool for Computing Maximum Von Mises Stress

    NASA Technical Reports Server (NTRS)

    Chen, Long Y.; Knutson, Kurt; Martin, Eric

    2007-01-01

    The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.

  4. Maximum Acceleration Recording Circuit

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr.

    1995-01-01

    Coarsely digitized maximum levels recorded in blown fuses. Circuit feeds power to accelerometer and makes nonvolatile record of maximum level to which output of accelerometer rises during measurement interval. In comparison with inertia-type single-preset-trip-point mechanical maximum-acceleration-recording devices, circuit weighs less, occupies less space, and records accelerations within narrower bands of uncertainty. In comparison with prior electronic data-acquisition systems designed for same purpose, circuit simpler, less bulky, consumes less power, costs and analysis of data recorded in magnetic or electronic memory devices. Circuit used, for example, to record accelerations to which commodities subjected during transportation on trucks.

  5. Multi-Mode Cavity Accelerator Structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yong; Hirshfield, Jay Leonard

    2016-11-10

    This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less

  6. Roadmap to the Future

    NASA Astrophysics Data System (ADS)

    Colby, Eric R.; Len, L. K.

    Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator concepts aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.

  7. Roadmap to the Future

    NASA Astrophysics Data System (ADS)

    Colby, Eric R.; Len, L. K.

    Most particle accelerators today are expensive devices found only in the largest laboratories, industries, and hospitals. Using techniques developed nearly a century ago, the limiting performance of these accelerators is often traceable to material limitations, power source capabilities, and the cost tolerance of the application. Advanced accelerator conceptsa aim to increase the gradient of accelerators by orders of magnitude, using new power sources (e.g. lasers and relativistic beams) and new materials (e.g. dielectrics, metamaterials, and plasmas). Worldwide, research in this area has grown steadily in intensity since the 1980s, resulting in demonstrations of accelerating gradients that are orders of magnitude higher than for conventional techniques. While research is still in the early stages, these techniques have begun to demonstrate the potential to radically change accelerators, making them much more compact, and extending the reach of these tools of science into the angstrom and attosecond realms. Maturation of these techniques into robust, engineered devices will require sustained interdisciplinary, collaborative R&D and coherent use of test infrastructure worldwide. The outcome can potentially transform how accelerators are used.

  8. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis

    NASA Astrophysics Data System (ADS)

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O.

    2017-04-01

    A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes' couple stress fluid model is employed to represent realistic working liquids. The Poisson-Boltzmann equation for electric potential distribution is implemented owing to the presence of an electrical double layer (EDL) in the micro-channel. Using long wavelength, lubrication theory and Debye-Huckel approximations, the linearized transformed dimensionless boundary value problem is solved analytically. The influence of electro-osmotic parameter (inversely proportional to Debye length), maximum electro-osmotic velocity (a function of external applied electrical field) and couple stress parameter on axial velocity, volumetric flow rate, pressure gradient, local wall shear stress and stream function distributions is evaluated in detail with the aid of graphs. The Newtonian fluid case is retrieved as a special case with vanishing couple stress effects. With increasing the couple stress parameter there is a significant increase in the axial pressure gradient whereas the core axial velocity is reduced. An increase in the electro-osmotic parameter both induces flow acceleration in the core region (around the channel centreline) and it also enhances the axial pressure gradient substantially. The study is relevant in the simulation of novel smart bio-inspired space pumps, chromatography and medical micro-scale devices.

  9. Theory of vibratory mobilization and break-up of non-wetting fluids entrapped in pore constrictions

    NASA Astrophysics Data System (ADS)

    Beresnev, I.; Li, W.; Vigil, D.

    2006-12-01

    Quantitative dynamics of a non-wetting (e. g., NAPL) ganglion entrapped in a pore constriction and subjected to vibrations can be approximated by the equation of motion of an oscillator moving under the effect of the external pressure gradient, inertial oscillatory force, and restoring capillary force. The solution of the equation provides the conditions under which the droplet experiences forced oscillations without being mobilized or is liberated upon the acceleration of the wall exceeding an "unplugging" threshold. This solution provides a quantitative tool for the estimation of the parameters of vibratory fields needed to liberate entrapped non-wetting fluids. For typical pore sizes encountered in reservoirs and aquifers, wall accelerations must exceed at least several m/sec2 and even higher levels to mobilize the droplets of NAPL; however, in the populations of ganglia entrapped in natural porous environments, many may reside very near their mobilization thresholds and may be mobilized by extremely low accelerations as well. For given acceleration, lower seismic frequencies are more efficient. The ganglia may also break up into smaller pieces when passing through pore constrictions. The snap-off is governed by the geometry only; for constrictions with sinusoidal profile (spatial wavelength of L and maximum and minimum radii of rmax and rmin, the break-up occurs if L > 2π(rmin rmax)1/2. Computational fluid dynamics shows the details of the break-up process.

  10. A high-performance gradient insert for rapid and short-T2 imaging at full duty cycle.

    PubMed

    Weiger, Markus; Overweg, Johan; Rösler, Manuela Barbara; Froidevaux, Romain; Hennel, Franciszek; Wilm, Bertram Jakob; Penn, Alexander; Sturzenegger, Urs; Schuth, Wout; Mathlener, Menno; Borgo, Martino; Börnert, Peter; Leussler, Christoph; Luechinger, Roger; Dietrich, Benjamin Emanuel; Reber, Jonas; Brunner, David Otto; Schmid, Thomas; Vionnet, Laetitia; Pruessmann, Klaas P

    2018-06-01

    The goal of this study was to devise a gradient system for MRI in humans that reconciles cutting-edge gradient strength with rapid switching and brings up the duty cycle to 100% at full continuous amplitude. Aiming to advance neuroimaging and short-T 2 techniques, the hardware design focused on the head and the extremities as target anatomies. A boundary element method with minimization of power dissipation and stored magnetic energy was used to design anatomy-targeted gradient coils with maximally relaxed geometry constraints. The design relies on hollow conductors for high-performance cooling and split coils to enable dual-mode gradient amplifier operation. With this approach, strength and slew rate specifications of either 100 mT/m with 1200 mT/m/ms or 200 mT/m with 600 mT/m/ms were reached at 100% duty cycle, assuming a standard gradient amplifier and cooling unit. After manufacturing, the specified values for maximum gradient strength, maximum switching rate, and field geometry were verified experimentally. In temperature measurements, maximum local values of 63°C were observed, confirming that the device can be operated continuously at full amplitude. Testing for peripheral nerve stimulation showed nearly unrestricted applicability in humans at full gradient performance. In measurements of acoustic noise, a maximum average sound pressure level of 132 dB(A) was determined. In vivo capability was demonstrated by head and knee imaging. Full gradient performance was employed with echo planar and zero echo time readouts. Combining extreme gradient strength and switching speed without duty cycle limitations, the described system offers unprecedented options for rapid and short-T 2 imaging. Magn Reson Med 79:3256-3266, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  11. Maximum thrust mode evaluation

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Nobbs, Steven G.

    1995-01-01

    Measured reductions in acceleration times which resulted from the application of the F-15 performance seeking control (PSC) maximum thrust mode during the dual-engine test phase is presented as a function of power setting and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and maximum afterburning power settings. The time savings for the supersonic acceleration is less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Recall that even though the engine is at maximum afterburner, PSC does not trim the afterburner for the maximum thrust mode. Subsonically at military power, time to accelerate from Mach 0.6 to 0.95 was cut by between 6 and 8 percent with a single engine application of PSC, and over 14 percent when both engines were optimized. At maximum afterburner, the level of thrust increases were similar in magnitude to the military power results, but because of higher thrust levels at maximum afterburner and higher aircraft drag at supersonic Mach numbers the percentage thrust increase and time to accelerate was less than for the supersonic accelerations. Savings in time to accelerate supersonically at maximum afterburner ranged from 4 to 7 percent. In general, the maximum thrust mode has performed well, demonstrating significant thrust increases at military and maximum afterburner power. Increases of up to 15 percent at typical combat-type flight conditions were identified. Thrust increases of this magnitude could be useful in a combat situation.

  12. Mutational Pathway Determines Whether Drug Gradients Accelerate Evolution of Drug-Resistant Cells

    NASA Astrophysics Data System (ADS)

    Greulich, Philip; Waclaw, Bartłomiej; Allen, Rosalind J.

    2012-08-01

    Drug gradients are believed to play an important role in the evolution of bacteria resistant to antibiotics and tumors resistant to anticancer drugs. We use a statistical physics model to study the evolution of a population of malignant cells exposed to drug gradients, where drug resistance emerges via a mutational pathway involving multiple mutations. We show that a nonuniform drug distribution has the potential to accelerate the emergence of resistance when the mutational pathway involves a long sequence of mutants with increasing resistance, but if the pathway is short or crosses a fitness valley, the evolution of resistance may actually be slowed down by drug gradients. These predictions can be verified experimentally, and may help to improve strategies for combating the emergence of resistance.

  13. Toward the Application of the Maximum Entropy Production Principle to a Broader Range of Far From Equilibrium Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Lineweaver, C. H.

    2005-12-01

    The principle of Maximum Entropy Production (MEP) is being usefully applied to a wide range of non-equilibrium processes including flows in planetary atmospheres and the bioenergetics of photosynthesis. Our goal of applying the principle of maximum entropy production to an even wider range of Far From Equilibrium Dissipative Systems (FFEDS) depends on the reproducibility of the evolution of the system from macro-state A to macro-state B. In an attempt to apply the principle of MEP to astronomical and cosmological structures, we investigate the problematic relationship between gravity and entropy. In the context of open and non-equilibrium systems, we use a generalization of the Gibbs free energy to include the sources of free energy extracted by non-living FFEDS such as hurricanes and convection cells. Redox potential gradients and thermal and pressure gradients provide the free energy for a broad range of FFEDS, both living and non-living. However, these gradients have to be within certain ranges. If the gradients are too weak, FFEDS do not appear. If the gradients are too strong FFEDS disappear. Living and non-living FFEDS often have different source gradients (redox potential gradients vs thermal and pressure gradients) and when they share the same gradient, they exploit different ranges of the gradient. In a preliminary attempt to distinguish living from non-living FFEDS, we investigate the parameter space of: type of gradient and steepness of gradient.

  14. Test Result of 650 MHz, Beta 0.61 Single Cell Niobium Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seth, Sudeshna; Bhattacharyya, Pranab; Dutta Gupta, Anjan

    VECC has been involved in the design, analysis and development of 650 MHz, beta 0.61 (LB650), elliptical Superconducting RF linac cavity, as part of research and development activities on SRF cavities and associated technologies under Indian Institutions Fermilab Collaboration (IIFC). A single-cell niobium cavity has been indigenously designed and developed at VECC, with the help of Electron Beam Welding (EBW) facility at IUAC, New Delhi. Various measurements, processing and testing at 2K in Vertical Test Stand (VTS) of the single-cell cavity was carried out at ANL and Fermilab, USA, with active participation of VECC engineers. It achieved a maximum acceleratingmore » gradient(Eacc) of 34.5 MV/m with Quality Factor of 2·10⁹ and 30 MV/m with Quality Factor of 1.5·10¹⁰. This is probably the highest accelerating gradient achieved so far in the world for LB650 cavities. This paper describes the design, fabrication and measurement of the single cell niobium cavity. Cavity processing and test results of Vertical Test of the single-cell niobium cavity are also presented.« less

  15. Surfzone alongshore advective accelerations: observations and modeling

    NASA Astrophysics Data System (ADS)

    Hansen, J.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The sources, magnitudes, and impacts of non-linear advective accelerations on alongshore surfzone currents are investigated with observations and a numerical model. Previous numerical modeling results have indicated that advective accelerations are an important contribution to the alongshore force balance, and are required to understand spatial variations in alongshore currents (which may result in spatially variable morphological change). However, most prior observational studies have neglected advective accelerations in the alongshore force balance. Using a numerical model (Delft3D) to predict optimal sensor locations, a dense array of 26 colocated current meters and pressure sensors was deployed between the shoreline and 3-m water depth over a 200 by 115 m region near Duck, NC in fall 2013. The array included 7 cross- and 3 alongshore transects. Here, observational and numerical estimates of the dominant forcing terms in the alongshore balance (pressure and radiation-stress gradients) and the advective acceleration terms will be compared with each other. In addition, the numerical model will be used to examine the force balance, including sources of velocity gradients, at a higher spatial resolution than possible with the instrument array. Preliminary numerical results indicate that at O(10-100 m) alongshore scales, bathymetric variations and the ensuing alongshore variations in the wave field and subsequent forcing are the dominant sources of the modeled velocity gradients and advective accelerations. Additional simulations and analysis of the observations will be presented. Funded by NSF and ASDR&E.

  16. Effect of Baffle on Gravity-Gradient-Excited Slosh Waves and Spacecraft Moment and Angular-Momentum Fluctuations in Microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Lee, C. C.

    1995-01-01

    The dynamical behavior of fluids affected by the asymmetric gravity gradient acceleration has been investigated. In particular, the effects of surface tension on partially filled rotating fluids applicable to a full-scale Gravity Probe-B Spacecraft dewar tank with and without baffles are studied. Results of slosh wave excitation along the liquid-vapor interface induced by gravity gradient acceleration indicate that the gravity gradient acceleration is equivalent to the combined effect of a twisting force and a torsional moment acting on the spacecraft. The results are clearly seen from one-up one-down and one-down one-up oscillations in the cross-section profiles of two bubbles in the vertical (r, z)-plane of the rotating dewar, and from the eccentric contour of the bubble rotating around the axis of the dewar in a horizontal (r, theta)-plane. As the viscous force, between liquid and solid interface, greatly contributes to the damping of slosh wave excitation, a rotating dewar with baffles provides more areas of liquid-solid interface than that of a rotating dewar without baffles. Results show that the damping effect provided by the baffles reduces the amplitude of slosh wave excitation and lowers the degree of asymmetry in liquid-vapor distribution. Fluctuations of angular momentum and fluid moment caused by the slosh wave excited by gravity gradient acceleration with and without baffle boards are also investigated. It is also shown that the damping effect provided by the baffles greatly reduces the amplitudes of angular momentum and fluid moment fluctuations.

  17. Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure

    DOE PAGES

    Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; ...

    2016-03-29

    In this paper, we report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power ofmore » up to 4 MW from a klystron supplied via a TM 01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV=m at a breakdown probability of 1.19 × 10 –1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV=m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV=m at a breakdown probability of 1.09 × 10 –1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.« less

  18. Trains of electron micro-bunches in plasma wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Lécz, Zsolt; Andreev, Alexander; Konoplev, Ivan; Seryi, Andrei; Smith, Jonathan

    2018-07-01

    Plasma-based charged particle accelerators have been intensively investigated in the past three decades due to their capability to open up new horizons in accelerator science and particle physics yielding electric field accelerating gradient more than three orders of magnitudes higher than in conventional devices. At the current stage the most advanced and reliable mechanism for accelerating electrons is based on the propagation of an intense laser pulse or a relativistic electron beam in a low density gaseous target. In this paper we concentrate on the electron beam-driven plasma wake-field acceleration and demonstrate using 3D PiC simulations that a train of electron micro-bunches with ∼10 fs period can be generated behind the driving beam propagating in a density down-ramp. We will discuss the conditions and properties of the micro-bunches generated aiming at understanding and study of multi-bunch mechanism of injection. It is show that the periodicity and duration of micro-bunches can be controlled by adjusting the plasma density gradient and driving beam charge.

  19. Secondary electron emission from plasma processed accelerating cavity grade niobium

    NASA Astrophysics Data System (ADS)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for higher energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.

  20. Superconducting gravity gradiometer and a test of inverse square law

    NASA Technical Reports Server (NTRS)

    Moody, M. V.; Paik, Ho Jung

    1989-01-01

    The equivalence principle prohibits the distinction of gravity from acceleration by a local measurement. However, by making a differential measurement of acceleration over a baseline, platform accelerations can be cancelled and gravity gradients detected. In an in-line superconducting gravity gradiometer, this differencing is accomplished with two spring-mass accelerometers in which the proof masses are confined to motion in a single degree of freedom and are coupled together by superconducting circuits. Platform motions appear as common mode accelerations and are cancelled by adjusting the ratio of two persistent currents in the sensing circuit. The sensing circuit is connected to a commercial SQUID amplifier to sense changes in the persistent currents generated by differential accelerations, i.e., gravity gradients. A three-axis gravity gradiometer is formed by mounting six accelerometers on the faces of a precision cube, with the accelerometers on opposite faces of the cube forming one of three in-line gradiometers. A dedicated satellite mission for mapping the earth's gravity field is an important one. Additional scientific goals are a test of the inverse square law to a part in 10(exp 10) at 100 km, and a test of the Lense-Thirring effect by detecting the relativistic gravity magnetic terms in the gravity gradient tensor for the earth.

  1. Characterization of peak capacity of microbore liquid chromatography columns using gradient kinetic plots.

    PubMed

    Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C

    2017-02-17

    The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Laser acceleration of neutrons (physical foundations)

    NASA Astrophysics Data System (ADS)

    Rivlin, Lev A.

    2010-08-01

    The concept of neutron acceleration in a gradient magnetic field of a 'drifting' standing electromagnetic wave is presented. The promising fields of application of an accelerated directional beam of ultracold neurons, in particular, remote initiation of nuclear reactions, are suggested.

  3. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and approximately inversely proportional to an effective radius of the annular space. For a given FBE geometry, one could increase the maximum rate at which gas could be removed by increasing the rate of flow to obtain more centripetal acceleration. In experiments and calculations oriented toward the original microgravitational application, centripetal accelerations between 0.001 and 0.012 g [where g normal Earth gravitation (.9.8 m/s2)] were considered. For operation in normal Earth gravitation, it would likely be necessary to choose the FBE geometry and the rate of flow to obtain centripetal acceleration comparable to or greater than g.

  4. Cornell-BNL Electron Energy Recovery Linac FFAG Test Accelerator (CBETA)

    NASA Astrophysics Data System (ADS)

    Trbojevic, Dejan; Peggs, Steve; Berg, Scott; Brooks, Stephen; Mahler, George; Meot, Francois; Tsoupas, Nicholaos; Witte, Holger; Hoffstaetter, Georg; Bazarov, Ivan; Mayes, Christopher; Patterson, Ritchie; Smolenski, Karl; Li, Yulin; Dobbins, John; BNL Team; Cornell University Team

    A novel energy recovery linac (ERL) with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack is being constructed as a result of collaboration of the Cornell University with Brookhaven National Laboratory. The existing injector and superconducting linac at Cornell University are being installed together with a single NS-FFAG arcs and straight section at the opposite side of the linac to form an ERL system. The 6 MeV electron beam from injector is transferred into the 36 MeV superconducting linac and accelerated by four successive passes: from 42 to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase and with 4 passes electron energy is recovered and brought back to the initial energy of 6 MeV. This is going to be the first 4 pass superconducting ERL and the first NS-FFAG permanent magnet structure to bring the electron beam back to the linac.

  5. Low-level nocturnal wind maximum over the Central Amazon Basin

    NASA Technical Reports Server (NTRS)

    Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel

    1992-01-01

    A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.

  6. Contribution of a Sodium Ion Gradient to Energy Conservation during Fermentation in the Cyanobacterium Arthrospira (Spirulina) maxima CS-328 ▿ †

    PubMed Central

    Carrieri, Damian; Ananyev, Gennady; Lenz, Oliver; Bryant, Donald A.; Dismukes, G. Charles

    2011-01-01

    Sodium gradients in cyanobacteria play an important role in energy storage under photoautotrophic conditions but have not been well studied during autofermentative metabolism under the dark, anoxic conditions widely used to produce precursors to fuels. Here we demonstrate significant stress-induced acceleration of autofermentation of photosynthetically generated carbohydrates (glycogen and sugars) to form excreted organic acids, alcohols, and hydrogen gas by the halophilic, alkalophilic cyanobacterium Arthrospira (Spirulina) maxima CS-328. When suspended in potassium versus sodium phosphate buffers at the start of autofermentation to remove the sodium ion gradient, photoautotrophically grown cells catabolized more intracellular carbohydrates while producing 67% higher yields of hydrogen, acetate, and ethanol (and significant amounts of lactate) as fermentative products. A comparable acceleration of fermentative carbohydrate catabolism occurred upon dissipating the sodium gradient via addition of the sodium-channel blocker quinidine or the sodium-ionophore monensin but not upon dissipating the proton gradient with the proton-ionophore dinitrophenol (DNP). The data demonstrate that intracellular energy is stored via a sodium gradient during autofermentative metabolism and that, when this gradient is blocked, the blockage is compensated by increased energy conversion via carbohydrate catabolism. PMID:21890670

  7. Accelerated Radiation-Damping for Increased Spin Equilibrium (ARISE)

    PubMed Central

    Huang, Susie Y.; Witzel, Thomas; Wald, Lawrence L.

    2008-01-01

    Control of the longitudinal magnetization in fast gradient echo sequences is an important factor enabling the high efficiency of balanced Steady State Free Precession (bSSFP) sequences. We introduce a new method for accelerating the return of the longitudinal magnetization to the +z-axis that is independent of externally applied RF pulses and shows improved off-resonance performance. The Accelerated Radiation damping for Increased Spin Equilibrium (ARISE) method uses an external feedback circuit to strengthen the Radiation Damping (RD) field. The enhanced RD field rotates the magnetization back to the +z-axis at a rate faster than T1 relaxation. The method is characterized in gradient echo phantom imaging at 3T as a function of feedback gain, phase, and duration and compared with results from numerical simulations of the Bloch equations incorporating RD. A short period of feedback (10ms) during a refocused interval of a crushed gradient echo sequence allowed greater than 99% recovery of the longitudinal magnetization when very little T2 relaxation has time to occur. Appropriate applications might include improving navigated sequences. Unlike conventional flip-back schemes, the ARISE “flip-back” is generated by the spins themselves, thereby offering a potentially useful building block for enhancing gradient echo sequences. PMID:18956463

  8. Wilson Prize Talk

    NASA Astrophysics Data System (ADS)

    Symon, Keith R.

    2005-04-01

    In the late 1950's and the 1960's the MURA (Midwestern Universities Research Association) working group developed fixed field alternating gradient (FFAG) particle accelerators. FFAG accelerators are a natural corollary of the invention of alternating gradient focusing. The fixed guide field accommodates all orbits from the injection to the final energy. For this reason, the transverse motion in the guide field is nearly decoupled from the longitudinal acceleration. This allows a wide variety of acceleration schemes, using betatron or rf accelerating fields, beam stacking, bucket lifts, phase displacement, etc. It also simplifies theoretical and experimental studies of accelerators. Theoretical studies included an extensive analysis of rf acceleration processes, nonlinear orbit dynamics, and collective instabilities. Two FFAG designs, radial sector and spiral sector, were invented. The MURA team built small electron models of each type, and used them to study orbit dynamics, acceleration processes, orbit instabilities, and space charge limits. A practical result of these studies was the invention of the spiral sector cyclotron. Another was beam stacking, which led to the first practical way of achieving colliding beams. A 50 MeV two-way radial sector model was built in which it proved possible to stack a beam of over 10 amperes of electrons.

  9. Beam manipulation with velocity bunching for PWFA applications

    NASA Astrophysics Data System (ADS)

    Pompili, R.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Croia, M.; Curcio, A.; Di Giovenale, D.; Ferrario, M.; Filippi, F.; Galletti, M.; Gallo, A.; Giribono, A.; Li, W.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Petrillo, V.; Di Pirro, G.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zhu, J.

    2016-09-01

    The activity of the SPARC_LAB test-facility (LNF-INFN, Frascati) is currently focused on the development of new plasma-based accelerators. Particle accelerators are used in many fields of science, with applications ranging from particle physics research to advanced radiation sources (e.g. FEL). The demand to accelerate particles to higher and higher energies is currently limited by the effective efficiency in the acceleration process that requires the development of km-size facilities. By increasing the accelerating gradient, the compactness can be improved and costs reduced. Recently, the new technique which attracts main efforts relies on plasma acceleration. In the following, the current status of plasma-based activities at SPARC_LAB is presented. Both laser- and beam-driven schemes will be adopted with the aim to provide an adequate accelerating gradient (1-10 GV/m) while preserving the brightness of the accelerated beams to the level of conventional photo-injectors. This aspect, in particular, requires the use of ultra-short (< 100 fs) electron beams, consisting in one or more bunches. We show, with the support of simulations and experimental results, that such beams can be produced using RF compression by velocity-bunching.

  10. Acceleration effects observed in optical data taken in Spacelab 3 FES

    NASA Technical Reports Server (NTRS)

    Trolinger, James; Lal, Ravindra; Ruff, Rudy

    1990-01-01

    Optical instrumentation in the Fluids Experiment System (FES) is briefly described. Samples of the data produced by the schlieren and holography systems during the Spacelab 3 flight are then presented with some of the holographic interferometry data being presented for the first time. Acceleration effects that can be observed in these data are discussed and the potential for using them as a basis for measurement is explored. This includes the tracking of deliberately introduced tracer particles and density gradients in the FES, the analysis of the existing concentration gradients, and a new fiber optic G-meter concept. Finally, some of the plans for acceleration measurement in the upcoming International Microgravity-1/FES are described.

  11. Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator

    DOEpatents

    Johnstone, Carol J [Warrenville, IL

    2011-02-01

    A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.

  12. Non-scaling fixed field alternating gradient permanent magnet cancer therapy accelerator

    DOEpatents

    Trbojevic, Dejan

    2017-05-23

    A non-scaling fixed field alternating gradient accelerator includes a racetrack shape including a first straight section connected to a first arc section, the first arc section connected to a second straight section, the second straight section connected to a second arc section, and the second arc section connected to the first straight section; an matching cells configured to match particle orbits between the first straight section, the first arc section, the second straight section, and the second arc section. The accelerator includes the matching cells and an associated matching procedure enabling the particle orbits at varying energies between an arc section and a straight section in the racetrack shape.

  13. Particle acceleration and turbulence in cosmic Ray shocks: possible pathways beyond the Bohm limit

    NASA Astrophysics Data System (ADS)

    Malkov, M. A.; Diamond, P. H.

    2007-08-01

    Diffusive shock acceleration is discussed in terms of its potential to accelerate cosmic rays (CR) to 1018 eV (beyond the ``knee,'' as observations suggest) and in terms of the related observational signatures (spectral features). One idea to reach this energy is to resonantly generate a turbulent magnetic field via accelerated particles much in excess of the background field. We identify difficulties with this scenario and suggest two separate mechanisms that can work in concert with one another leading to a significant acceleration enhancement. The first mechanism is based on a nonlinear modification of the flow ahead of the shock supported by particles already accelerated to some specific (knee) momentum. The particles gain energy by bouncing off converging magnetic irregularities frozen into the flow in the shock precursor and not so much by re-crossing the shock itself. The acceleration rate is determined by the gradient of the flow velocity and turns out to be formally independent of the particle mean free path. The velocity gradient is set by the knee-particles. The acceleration rate of particles above the knee does not decrease with energy, unlike in the linear acceleration regime. The knee (spectrum steepening) forms because particles above it are effectively confined to the shock only if they are within limited domains in the momentum space, while other particles fall into ``loss-islands'', similar to the ``loss-cone'' of magnetic traps. This also maintains the steep velocity gradient and high acceleration rate. The second mechanism is based on the generation of Alfven waves at the gyroradius scale at the background field level, with a subsequent transfer to longer scales via interaction with strong acoustic turbulence in the shock precursor. The acoustic turbulence in turn, may be generated by Drury instability or by parametric instability of the Alfven (A) waves.

  14. Systems and methods of varying charged particle beam spot size

    DOEpatents

    Chen, Yu-Jiuan

    2014-09-02

    Methods and devices enable shaping of a charged particle beam. A modified dielectric wall accelerator includes a high gradient lens section and a main section. The high gradient lens section can be dynamically adjusted to establish the desired electric fields to minimize undesirable transverse defocusing fields at the entrance to the dielectric wall accelerator. Once a baseline setting with desirable output beam characteristic is established, the output beam can be dynamically modified to vary the output beam characteristics. The output beam can be modified by slightly adjusting the electric fields established across different sections of the modified dielectric wall accelerator. Additional control over the shape of the output beam can be excreted by introducing intentional timing de-synchronization offsets and producing an injected beam that is not fully matched to the entrance of the modified dielectric accelerator.

  15. Statistics of vacuum breakdown in the high-gradient and low-rate regime

    NASA Astrophysics Data System (ADS)

    Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge

    2017-01-01

    In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.

  16. The effect of a longitudinal density gradient on electron plasma wake field acceleration

    NASA Astrophysics Data System (ADS)

    Tsiklauri, David

    2016-12-01

    Three-dimensional, particle-in-cell, fully electromagnetic simulations of electron plasma wake field acceleration in the blow-out regime are presented. Earlier results are extended by (i) studying the effect of a longitudinal density gradient, (ii) avoiding the use of a co-moving simulation box, (iii) inclusion of ion motion, and (iv) studying fully electromagnetic plasma wake fields. It is established that injecting driving and trailing electron bunches into a positive density gradient of 10-fold increasing density over 10 cm long lithium vapour plasma results in spatially more compact and three times larger, compared with the uniform density case, electric fields (-6.4×1010 V m-1), leading to acceleration of the trailing bunch up to 24.4 GeV (starting from an initial 20.4 GeV), with energy transfer efficiencies from the leading to trailing bunch of 75%. In the uniform density case, a -2.5×1010 V m-1 wake is created leading to acceleration of the trailing bunch up to 22.4 GeV, with energy transfer efficiencies of 65%. It is also established that injecting the electron bunches into a negative density gradient of 10-fold decreasing density over 10 cm long plasma results in spatially more spread and two and a half smaller electric fields (-1.0×1010 V m-1), leading to a weaker acceleration of the trailing bunch up to 21.4 GeV, with energy transfer efficiencies of 45%. Taking ion motions into consideration shows that in the plasma wake ion number density can increase over a few times the background value. It is also shown that transverse electromagnetic fields in a plasma wake are of the same order as the longitudinal (electrostatic) ones.

  17. Essay: Robert H. Siemann As Leader of the Advanced Accelerator Research Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colby, Eric R.; Hogan, Mark J.; /SLAC

    Robert H. Siemann originally conceived of the Advanced Accelerator Research Department (AARD) as an academic, experimental group dedicated to probing the technical limitations of accelerators while providing excellent educational opportunities for young scientists. The early years of the Accelerator Research Department B, as it was then known, were dedicated to a wealth of mostly student-led experiments to examine the promise of advanced accelerator techniques. High-gradient techniques including millimeter-wave rf acceleration, beam-driven plasma acceleration, and direct laser acceleration were pursued, including tests of materials under rf pulsed heating and short-pulse laser radiation, to establish the ultimate limitations on gradient. As themore » department and program grew, so did the motivation to found an accelerator research center that brought experimentalists together in a test facility environment to conduct a broad range of experiments. The Final Focus Test Beam and later the Next Linear Collider Test Accelerator provided unique experimental facilities for AARD staff and collaborators to carry out advanced accelerator experiments. Throughout the evolution of this dynamic program, Bob maintained a department atmosphere and culture more reminiscent of a university research group than a national laboratory department. His exceptional ability to balance multiple roles as scientist, professor, and administrator enabled the creation and preservation of an environment that fostered technical innovation and scholarship.« less

  18. Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve

    NASA Technical Reports Server (NTRS)

    Glaser, Robert J.; Chen, Long Y.

    2006-01-01

    Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.

  19. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    NASA Astrophysics Data System (ADS)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  20. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    PubMed Central

    Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.

    2017-01-01

    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m−1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams. PMID:28580954

  1. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    NASA Astrophysics Data System (ADS)

    Manahan, G. G.; Habib, A. F.; Scherkl, P.; Delinikolas, P.; Beaton, A.; Knetsch, A.; Karger, O.; Wittig, G.; Heinemann, T.; Sheng, Z. M.; Cary, J. R.; Bruhwiler, D. L.; Rosenzweig, J. B.; Hidding, B.

    2017-06-01

    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m-1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread--an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wave can be locally overloaded without compromising the witness bunch normalized emittance. This reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.

  2. Superconducting traveling wave accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farkas, Z.D.

    1984-11-01

    This note considers the applicability of superconductivity to traveling wave accelerators. Unlike CW operation of a superconducting standing wave or circulating wave accelerator section, which requires improvement factors (superconductor conductivity divided by copper conductivity) of about 10/sup 6/ in order to be of practical use, a SUperconducting TRaveling wave Accelerator, SUTRA, operating in the pulsed mode requires improvement factors as low as about 10/sup 3/, which are attainable with niobium or lead at 4.2K, the temperature of liquid helium at atmospheric pressure. Changing from a copper traveling wave accelerator to SUTRA achieves the following. (1) For a given gradient SUTRAmore » reduces the peak and average power requirements typically by a factor of 2. (2) SUTRA reduces the peak power still further because it enables us to increase the filling time and thus trade pulse width for gradient. (3) SUTRA makes possible a reasonably long section at higher frequencies. (4) SUTRA makes possible recirculation without additional rf average power. 8 references, 6 figures, 1 table.« less

  3. Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Juwen; /SLAC; Lewandowski, James

    A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Slawomir Alex

    Here, we summarize current state of concept for muon acceleration aimed at future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance through exploring interplay between complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival of the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to initially low RF frequency, e.g. 325 MHz, and then increased to 650 MHz, as the transverse size shrinks with increasing energy. High-gradient normalmore » conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Here, we considered two cost effective schemes for accelerating muon beams for a stagable Neutrino Factory: Exploration of the so-called 'dual-use' linac concept, where the same linac structure is used for acceleration of both H- and muons and alternatively, the SRF efficient design based on multi-pass (4.5) 'dogbone' RLA, extendable to multi-pass FFAG-like arcs.« less

  5. FFAGs: Front-end for neutrino factories and medical accelerators

    NASA Astrophysics Data System (ADS)

    Mori, Yoshiharu

    The idea of Fixed Field Alternating Gradient (FFAG) accelerator was originated by different people and groups in the early 1950s. It was independently introduced by Ohkawa [Ohkawa (1953)], Symon et al. [Symon et al. (1956)], and Kolomensky [Kolomensky and Lebedev (1966)] when the strong Alternate Gradient (AG) focusing and the phase stability schemes were applied to particle acceleration. The first FFAG electron model was developed in the MURA accelerator project led by Kerst and Cole in the late 1950s. Since then, they have fabricated several electron models in the early 1960s [Symon et al. (1956)]. However, the studies did not lead to a single practical FFAG accelerator for the following 50 years. Because of the difficulties of treating non-linear magnetic field and RF acceleration for non-relativistic particles, the proton FFAG, especially, was not accomplished until recently. In 2000, the FFAG concept was revived with the world's first proton FFAG (POP) which was developed at KEK [Aiba (2000); Mori (1999)]. Since then, in many places [Berg (2004); Johnstone et al. (2004); Mori (2011); Ruggiero (2004); Trbojevic (2004)], FFAGs have been developed and constructed...

  6. 14 CFR 25.115 - Takeoff flight path.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... each point by a gradient of climb equal to— (1) 0.8 percent for two-engine airplanes; (2) 0.9 percent... reduction in climb gradient may be applied as an equivalent reduction in acceleration along that part of the...

  7. Muon Acceleration Concepts for NuMAX: "Dual-use" Linac and "Dogbone" RLA

    DOE PAGES

    Bogacz, S. A.

    2018-02-01

    In this paper, we summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650 MHz asmore » the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. Finally, we consider two cost effective schemes for accelerating muon beams for a stageable Neutrino Factory: exploration of the so-called "dual-use" linac concept, where the same linac structure is used for acceleration of both H - and muons and, alternatively, an SRF-efficient design based on a multi-pass (4.5) "dogbone" RLA, extendable to multi-pass FFAG-like arcs.« less

  8. High-Voltage Breakdown Penalties for the Beam-Breakup Instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ekdahl, Carl August

    2016-11-22

    The strength of the dangerous beam breakup (BBU) instability in linear induction accelerators (LIAs) is determined by the transverse coupling impedance Z ⊥ of the induction cell cavity. For accelerating gap width w less than the beam pipe radius b, the transverse impedance is theoretically proportional to w/b, favoring narrow gaps to suppress BBU. On the other hand, cells with narrow gaps cannot support high accelerating gradients, because of electrical breakdown and shorting of the gap. Thus, there is an engineering trade-off between BBU growth and accelerating gradient, which must be considered for next generation LIAs now being designed. Inmore » this article this tradeoff is explored, using a simple pillbox cavity as an illustrative example. For this model, widening the gap to reduce the probability of breakdown increases BBU growth, unless higher magnetic focusing fields are used to further suppress the instability.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogacz, Alex

    We summarize the current state of a concept for muon acceleration aimed at a future Neutrino Factory and extendable to Higgs Factory. The main thrust of these studies was to reduce the overall cost while maintaining performance by exploring the interplay between the complexity of the cooling systems and the acceptance of the accelerator complex. To ensure adequate survival for the short-lived muons, acceleration must occur at high average gradient. The need for large transverse and longitudinal acceptances drives the design of the acceleration system to an initially low RF frequency, e.g., 325 MHz, which is then increased to 650more » MHz as the transverse size shrinks with increasing energy. High-gradient normal conducting RF cavities at these frequencies require extremely high peak-power RF sources. Hence superconducting RF (SRF) cavities are chosen. We consider an SRF-efficient design based on a multi-pass (4.5) ?dogbone? RLA, extendable to multi-pass FFAG-like arcs.« less

  10. Manufacturing in space: Fluid dynamics numerical analysis

    NASA Technical Reports Server (NTRS)

    Robertson, S. J.; Nicholson, L. A.; Spradley, L. W.

    1982-01-01

    Numerical computations were performed for natural convection in circular enclosures under various conditions of acceleration. It was found that subcritical acceleration vectors applied in the direction of the temperature gradient will lead to an eventual state of rest regardless of the initial state of motion. Supercritical acceleration vectors will lead to the same steady state condition of motion regardless of the initial state of motion. Convection velocities were computed for acceleration vectors at various angles of the initial temperature gradient. The results for Rayleigh numbers of 1000 or less were found to closely follow Weinbaum's first order theory. Higher Rayleigh number results were shown to depart significantly from the first order theory. Supercritical behavior was confirmed for Rayleigh numbers greater than the known supercritical value of 9216. Response times were determined to provide an indication of the time required to change states of motion for the various cases considered.

  11. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  12. Accelerating deep neural network training with inconsistent stochastic gradient descent.

    PubMed

    Wang, Linnan; Yang, Yi; Min, Renqiang; Chakradhar, Srimat

    2017-09-01

    Stochastic Gradient Descent (SGD) updates Convolutional Neural Network (CNN) with a noisy gradient computed from a random batch, and each batch evenly updates the network once in an epoch. This model applies the same training effort to each batch, but it overlooks the fact that the gradient variance, induced by Sampling Bias and Intrinsic Image Difference, renders different training dynamics on batches. In this paper, we develop a new training strategy for SGD, referred to as Inconsistent Stochastic Gradient Descent (ISGD) to address this problem. The core concept of ISGD is the inconsistent training, which dynamically adjusts the training effort w.r.t the loss. ISGD models the training as a stochastic process that gradually reduces down the mean of batch's loss, and it utilizes a dynamic upper control limit to identify a large loss batch on the fly. ISGD stays on the identified batch to accelerate the training with additional gradient updates, and it also has a constraint to penalize drastic parameter changes. ISGD is straightforward, computationally efficient and without requiring auxiliary memories. A series of empirical evaluations on real world datasets and networks demonstrate the promising performance of inconsistent training. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Enhancement of maximum attainable ion energy in the radiation pressure acceleration regime using a guiding structure

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2015-03-13

    Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less

  14. Secondary Electron Emission from Plasma Processed Accelerating Cavity Grade Niobium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basovic, Milos

    Advances in the particle accelerator technology have enabled numerous fundamental discoveries in 20th century physics. Extensive interdisciplinary research has always supported further development of accelerator technology in efforts of reaching each new energy frontier. Accelerating cavities, which are used to transfer energy to accelerated charged particles, have been one of the main focuses of research and development in the particle accelerator field. Over the last fifty years, in the race to break energy barriers, there has been constant improvement of the maximum stable accelerating field achieved in accelerating cavities. Every increase in the maximum attainable accelerating fields allowed for highermore » energy upgrades of existing accelerators and more compact designs of new accelerators. Each new and improved technology was faced with ever emerging limiting factors. With the standard high accelerating gradients of more than 25 MV/m, free electrons inside the cavities get accelerated by the field, gaining enough energy to produce more electrons in their interactions with the walls of the cavity. The electron production is exponential and the electron energy transfer to the walls of a cavity can trigger detrimental processes, limiting the performance of the cavity. The root cause of the free electron number gain is a phenomenon called Secondary Electron Emission (SEE). Even though the phenomenon has been known and studied over a century, there are still no effective means of controlling it. The ratio between the electrons emitted from the surface and the impacting electrons is defined as the Secondary Electron Yield (SEY). A SEY ratio larger than 1 designates an increase in the total number of electrons. In the design of accelerator cavities, the goal is to reduce the SEY to be as low as possible using any form of surface manipulation. In this dissertation, an experimental setup was developed and used to study the SEY of various sample surfaces that were treated by different techniques. Specifically, this work provides the results of SEY from the plasma cleaned cavity grade niobium (Nb) samples. Pure niobium is currently the material of choice for the fabrication of Superconducting Radio Frequency (SRF) cavities. The effect of plasma processing with two different gases will be examined in two groups of samples. The first group of samples is made from cavity grade niobium. The second group of samples is made from the same material, but include a welded joint made by electron beam welding, since in niobium SRF cavities the peak electric and magnetic field are seen in close proximity to the welded joints. Both groups of samples will be exposed to nitrogen (N2) and a mixture of argon with oxygen (Ar/O2) plasma. It is the goal of this research to determine the SEY on these two groups of samples before and after plasma processing as a function of the energy of primary electrons. The SEY as a function of the angle of incidence of the primary electrons is tested on the samples treated with Ar/O2 plasma.« less

  15. Effect of RF Gradient upon the Performance of the Wisconsin SRF Electron Gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosch, Robert; Legg, Robert A.

    2013-12-01

    The performance of the Wisconsin 200-MHz SRF electron gun is simulated for several values of the RF gradient. Bunches with charge of 200 pC are modeled for the case where emittance compensation is completed during post-acceleration to 85 MeV in a TESLA module. We first perform simulations in which the initial bunch radius is optimal for the design gradient of 41 MV/m. We then optimize the radius as a function of RF gradient to improve the performance for low gradients.

  16. Identification of integrated airframe: Propulsion effects on an F-15 aircraft for application to drag minimization

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  17. Identification of integrated airframe-propulsion effects on an F-15 aircraft for application to drag minimization

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerald S.

    1993-01-01

    The application of an adaptive real-time measurement-based performance optimization technique is being explored for a future flight research program. The key technical challenge of the approach is parameter identification, which uses a perturbation-search technique to identify changes in performance caused by forced oscillations of the controls. The controls on the NASA F-15 highly integrated digital electronic control (HIDEC) aircraft were perturbed using inlet cowl rotation steps at various subsonic and supersonic flight conditions to determine the effect on aircraft performance. The feasibility of the perturbation-search technique for identifying integrated airframe-propulsion system performance effects was successfully shown through flight experiments and postflight data analysis. Aircraft response and control data were analyzed postflight to identify gradients and to determine the minimum drag point. Changes in longitudinal acceleration as small as 0.004 g were measured, and absolute resolution was estimated to be 0.002 g or approximately 50 lbf of drag. Two techniques for identifying performance gradients were compared: a least-squares estimation algorithm and a modified maximum likelihood estimator algorithm. A complementary filter algorithm was used with the least squares estimator.

  18. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  19. Racetrack-shape fixed field induction accelerator for giant cluster ions

    NASA Astrophysics Data System (ADS)

    Takayama, Ken; Adachi, Toshikazu; Wake, Masayoshi; Okamura, Katsuya

    2015-05-01

    A novel scheme for a racetrack-shape fixed field induction accelerator (RAFFIA) capable of accelerating extremely heavy cluster ions (giant cluster ions) is described. The key feature of this scheme is rapid induction acceleration by localized induction cells. Triggering the induction voltages provided by the signals from the circulating bunch allows repeated acceleration of extremely heavy cluster ions. The given RAFFIA example is capable of realizing the integrated acceleration voltage of 50 MV per acceleration cycle. Using 90° bending magnets with a reversed field strip and field gradient is crucial for assuring orbit stability in the RAFFIA.

  20. Acceleration of neutrons in a scheme of a tautochronous mathematical pendulum (physical principles)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rivlin, Lev A

    We consider the physical principles of neutron acceleration through a multiple synchronous interaction with a gradient rf magnetic field in a scheme of a tautochronous mathematical pendulum. (laser applications and other aspects of quantum electronics)

  1. Variable high gradient permanent magnet quadrupole (QUAPEVA)

    NASA Astrophysics Data System (ADS)

    Marteau, F.; Ghaith, A.; N'Gotta, P.; Benabderrahmane, C.; Valléau, M.; Kitegi, C.; Loulergue, A.; Vétéran, J.; Sebdaoui, M.; André, T.; Le Bec, G.; Chavanne, J.; Vallerand, C.; Oumbarek, D.; Cosson, O.; Forest, F.; Jivkov, P.; Lancelot, J. L.; Couprie, M. E.

    2017-12-01

    Different applications such as laser plasma acceleration, colliders, and diffraction limited light sources require high gradient quadrupoles, with strength that can reach up to 200 T/m for a typical 10 mm bore diameter. We present here a permanent magnet based quadrupole (so-called QUAPEVA) composed of a Halbach ring and surrounded by four permanent magnet cylinders. Its design including magnetic simulation modeling enabling us to reach 201 T/m with a gradient variability of 45% and mechanical issues are reported. Magnetic measurements of seven systems of different lengths are presented and confirmed the theoretical expectations. The variation of the magnetic center while changing the gradient strength is ±10 μm. A triplet of QUAPEVA magnets is used to efficiently focus a beam with large energy spread and high divergence that is generated by a Laser Plasma Acceleration source for a free electron laser demonstration and has enabled us to perform beam based alignment and control the dispersion of the beam.

  2. Acceleration of Convergence to Equilibrium in Markov Chains by Breaking Detailed Balance

    NASA Astrophysics Data System (ADS)

    Kaiser, Marcus; Jack, Robert L.; Zimmer, Johannes

    2017-07-01

    We analyse and interpret the effects of breaking detailed balance on the convergence to equilibrium of conservative interacting particle systems and their hydrodynamic scaling limits. For finite systems of interacting particles, we review existing results showing that irreversible processes converge faster to their steady state than reversible ones. We show how this behaviour appears in the hydrodynamic limit of such processes, as described by macroscopic fluctuation theory, and we provide a quantitative expression for the acceleration of convergence in this setting. We give a geometrical interpretation of this acceleration, in terms of currents that are antisymmetric under time-reversal and orthogonal to the free energy gradient, which act to drive the system away from states where (reversible) gradient-descent dynamics result in slow convergence to equilibrium.

  3. Compact, maintainable 80-KeV neutral beam module

    DOEpatents

    Fink, Joel H.; Molvik, Arthur W.

    1980-01-01

    A compact, maintainable 80-keV arc chamber, extractor module for a neutral beam system immersed in a vacuum of <10.sup.-2 Torr, incorporating a nested 60-keV gradient shield located midway between the high voltage ion source and surrounding grounded frame. The shield reduces breakdown or arcing path length without increasing the voltage gradient, tends to keep electric fields normal to conducting surfaces rather than skewed and reduces the peak electric field around irregularities on the 80-keV electrodes. The arc chamber or ion source is mounted separately from the extractor or ion accelerator to reduce misalignment of the accelerator and to permit separate maintenance to be performed on these systems. The separate mounting of the ion source provides for maintaining same without removing the ion accelerator.

  4. Voltage and power relationships in lithium-containing solar cells.

    NASA Technical Reports Server (NTRS)

    Faith, T. J.

    1972-01-01

    Photovoltaic characteristics have been measured on a large number of crucible-grown lithium-containing solar cells irradiated by 1-MeV electrons to fluences ranging from 3 x 10 to the 13th power to 3 x 10 to the 15th power electrons per sq cm. These measurements have established empirical relationships between cell photovoltaic parameters and lithium donor density gradient. Short-circuit current and maximum power measured immediately after irradiation decrease logarithmically with lithium gradient. Open-circuit voltage increases logarithmically with lithium gradient both immediately after irradiation and after recovery, the degree of recovery being strongly gradient-dependent at high fluence. As a result, the maximum power and the power at 0.43 V after recovery from 3 x 10 to the 15th power electrons per sq cm increase with increasing lithium gradient.

  5. Cyclotrons and FFAG Accelerators as Drivers for ADS

    DOE PAGES

    Calabretta, Luciano; Méot, François

    2015-01-01

    Our review summarizes projects and studies on circular accelerators proposed for driving subcritical reactors. The early isochronous cyclotron cascades, proposed about 20 years ago, and the evolution of these layouts up to the most recent solutions or designs based on cyclotrons and fixed field alternating gradient accelerators, are reported. Additionally, the newest ideas and their prospects for development are discussed.

  6. Five-cell superconducting RF module with a PBG coupler cell: design and cold testing of the copper prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenyev, Sergey Andreyevich; Simakov, Evgenya Ivanovna; Shchegolkov, Dmitry

    2015-04-29

    We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead ofmore » on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.« less

  7. Atom interferometric gravity gradiometer: Disturbance compensation and mobile gradiometry

    NASA Astrophysics Data System (ADS)

    Mahadeswaraswamy, Chetan

    First ever mobile gravity gradient measurement based on Atom Interferometric sensors has been demonstrated. Mobile gravity gradiometers play a significant role in high accuracy inertial navigation systems in order to distinguish inertial acceleration and acceleration due to gravity. The gravity gradiometer consists of two atom interferometric accelerometers. In each of the accelerometer an ensemble of laser cooled Cesium atoms is dropped and using counter propagating Raman pulses (pi/2-pi-pi/2) the ensemble is split into two states for carrying out atom interferometry. The interferometer phase is proportional to the specific force experienced by the atoms which is a combination of inertial acceleration and acceleration due to gravity. The difference in phase between the two atom interferometric sensors is proportional to gravity gradient if the platform does not undergo any rotational motion. However, any rotational motion of the platform induces spurious gravity gradient measurements. This apparent gravity gradient due to platform rotation is considerably different for an atom interferometric sensor compared to a conventional force rebalance type sensor. The atoms are in free fall and are not influenced by the motion of the case except at the instants of Raman pulses. A model for determining apparent gravity gradient due to rotation of platform was developed and experimentally verified for different frequencies. This transfer function measurement also lead to the development of a new technique for aligning the Raman laser beams with the atom clusters to within 20 mu rad. This gravity gradiometer is situated in a truck for the purpose of undertaking mobile surveys. A disturbance compensation system was designed and built in order to compensate for the rotational disturbances experienced on the floor of a truck. An electric drive system was also designed specifically to be able to move the truck in a uniform motion at very low speeds of about 1cm/s. A 250 x10-9 s-2 gravity gradient signature due to an underground void at Hansen Experimental Physics Building at Stanford was successfully measured using this mobile gradiometer.

  8. Ultra-Compact Accelerator Technologies for Application in Nuclear Techniques

    NASA Astrophysics Data System (ADS)

    Sampayan, S.; Caporaso, G.; Chen, Y.-J.; Carazo, V.; Falabella, S.; Guethlein, G.; Guse, S.; Harris, J. R.; Hawkins, S.; Holmes, C.; Krogh, M.; Nelson, S.; Paul, A. C.; Pearson, D.; Poole, B.; Schmidt, R.; Sanders, D.; Selenes, K.; Sitaraman, S.; Sullivan, J.; Wang, L.; Watson, J.

    2009-12-01

    We report on compact accelerator technology development for potential use as a pulsed neutron source quantitative post verifier. The technology is derived from our on-going compact accelerator technology development program for radiography under the US Department of Energy and for a clinic sized compact proton therapy systems under an industry sponsored Cooperative Research and Development Agreement. The accelerator technique relies on the synchronous discharge of a prompt pulse generating stacked transmission line structure with the beam transit. The goal of this technology is to achieve ˜10 MV/m gradients for 10 s of nanoseconds pulses and ˜100 MV/m gradients for ˜1 ns systems. As a post verifier for supplementing existing x-ray equipment, this system can remain in a charged, stand-by state with little or no energy consumption. We describe the progress of our overall component development effort with the multilayer dielectric wall insulators (i.e., the accelerator wall), compact power supply technology, kHz repetition-rate surface flashover ion sources, and the prompt pulse generation system consisting of wide-bandgap switches and high performance dielectric materials.

  9. Evaluation of asymmetric quadrupoles for a non-scaling fixed field alternating gradient accelerator

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Hun; Park, Sae-Hoon; Kim, Yu-Seok

    2017-12-01

    A non-scaling fixed field alternating gradient (NS-FFAG) accelerator was constructed, which employs conventional quadrupoles. The possible demerit is the beam instability caused by the variable focusing strength when the orbit radius of the beam changes. To overcome this instability, it was suggested that the asymmetric quadrupole has different current flows in each coil. The magnetic field of the asymmetric quadrupole was found to be more similar to the magnetic field required for the FFAG accelerator than the constructed NS-FFAG accelerator. In this study, a simulation of the beam dynamics was carried out to evaluate the improvement to the beam stability for the NS-FFAG accelerator using the SIMION program. The beam dynamics simulation was conducted with the `hard edge' model; it ignored the fringe field at the end of the magnet. The magnetic field map of the suggested magnet was created using the SIMION program. The lattices for the simulation combined the suggested magnets. The magnets were evaluated for beam stability in the lattices through the SIMION program.

  10. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less

  11. Conceptual design of a high real-estate gradient cavity for a SRF ERL

    DOE PAGES

    Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...

    2017-07-19

    The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less

  12. Single-stage plasma-based correlated energy spread compensation for ultrahigh 6D brightness electron beams

    DOE PAGES

    Manahan, Grace G.; Habib, A. F.; Scherkl, P.; ...

    2017-06-05

    Plasma photocathode wakefield acceleration combines energy gains of tens of GeV m –1 with generation of ultralow emittance electron bunches, and opens a path towards 5D-brightness orders of magnitude larger than state-of-the-art. This holds great promise for compact accelerator building blocks and advanced light sources. However, an intrinsic by-product of the enormous electric field gradients inherent to plasma accelerators is substantial correlated energy spread—an obstacle for key applications such as free-electron-lasers. Here we show that by releasing an additional tailored escort electron beam at a later phase of the acceleration, when the witness bunch is relativistically stable, the plasma wavemore » can be locally overloaded without compromising the witness bunch normalized emittance. Here, this reverses the effective accelerating gradient, and counter-rotates the accumulated negative longitudinal phase space chirp of the witness bunch. Thereby, the energy spread is reduced by an order of magnitude, thus enabling the production of ultrahigh 6D-brightness beams.« less

  13. Nonlinear analysis of aortic flow in living dogs.

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Atabek, H. B.; Letzing, W. G.; Patel, D. J.

    1973-01-01

    A nonlinear theory which considered the convective accelerations of blood and the nonlinear elastic behavior and taper angle of the vascular wall was used to study the nature of blood flow in the descending thoracic aorta of living dogs under a wide range of pressures and flows. Velocity profiles, wall friction, and discharge waves were predicted from locally measured input data about the pressure-gradient wave and arterial distention. The results indicated that a major part of the mean pressure gradient was balanced by convective accelerations; the theory, which took this factor into account, predicted the correct velocity distributions and flow waves.

  14. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.

    2016-03-01

    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  15. Association of hormonal responses and performance of student pilots during acceleration training on the human centrifuge

    NASA Astrophysics Data System (ADS)

    Wirth, D.; Rohleder, N.; Welsch, H.

    2005-08-01

    Prediction of student pilots' +Gz tolerance by stress hormone levels would be a useful tool in aviation medicine. The aim of the present study was to analyze the relationship between neuroendocrine parameters with performance during acceleration training on the human centrifuge (HC).We investigated 21 student pilots during self-controlled acceleration training on the HC. Adrenocorticotropic hormone (ACTH), cortisol, epinephrine, and norepinephrine were measured after individual training sessions and at rest. Performance was defined by several characteristics including maximum tolerated acceleration. ACTH and cortisol, were significantly higher 20 minutes after acceleration training compared to the resting condition. Subjects tolerated a maximal acceleration of +6.69 Gz. HPA hormone levels and responses were associated with maximum tolerated acceleration +Gz. These findings support the expectation that acceleration- induced increases in stress hormones may enable the organism to tolerate a higher acceleration and could therefore be used as predictors for acceleration tolerance.

  16. Cooling beyond the boundary value in supercritical fluids under vibration

    NASA Astrophysics Data System (ADS)

    Sharma, D.; Erriguible, A.; Amiroudine, S.

    2017-12-01

    Supercritical fluids when subjected to simultaneous quench and vibration have been known to cause various intriguing flow phenomena and instabilities depending on the relative direction of temperature gradient and vibration. Here we describe a surprising and interesting phenomenon wherein temperature in the fluid falls below the imposed boundary value when the walls are quenched and the direction of vibration is normal to the temperature gradient. We define these regions in the fluid as sink zones, because they act like sink for heat within the fluid domain. The formation of these zones is first explained using a one-dimensional (1D) analysis with acceleration in constant direction. Subsequently, the effect of various boundary conditions and the relative direction of the temperature gradient to acceleration are analyzed, highlighting the necessary conditions for the formation of sink zones. It is found that the effect of high compressibility and the action of self-weight (due to high acceleration) causes the temperature to change in the bulk besides the usual action of piston effect. This subsequently affects the overall temperature profile thereby leading to the formation of sink zones. Though the examined 1D cases differ from the current two-dimensional (2D) cases, owing to the direction of acceleration being normal as compared to parallel in case of former, the explanations pertaining to 1D cases are judiciously utilized to elucidate the formation of sink zones in 2D supercritical fluids subjected to thermal quench and vibrational acceleration. The appearance of sink zones is found to be dependent on several factors such as proximity to the critical point and acceleration. A surface three-dimensional plot illustrating the effect of these parameters on onset time of sink zones is presented to further substantiate these arguments.

  17. Convex Accelerated Maximum Entropy Reconstruction

    PubMed Central

    Worley, Bradley

    2016-01-01

    Maximum entropy (MaxEnt) spectral reconstruction methods provide a powerful framework for spectral estimation of nonuniformly sampled datasets. Many methods exist within this framework, usually defined based on the magnitude of a Lagrange multiplier in the MaxEnt objective function. An algorithm is presented here that utilizes accelerated first-order convex optimization techniques to rapidly and reliably reconstruct nonuniformly sampled NMR datasets using the principle of maximum entropy. This algorithm – called CAMERA for Convex Accelerated Maximum Entropy Reconstruction Algorithm – is a new approach to spectral reconstruction that exhibits fast, tunable convergence in both constant-aim and constant-lambda modes. A high-performance, open source NMR data processing tool is described that implements CAMERA, and brief comparisons to existing reconstruction methods are made on several example spectra. PMID:26894476

  18. Compensating the electron beam energy spread by the natural transverse gradient of laser undulator in all-optical x-ray light sources.

    PubMed

    Zhang, Tong; Feng, Chao; Deng, Haixiao; Wang, Dong; Dai, Zhimin; Zhao, Zhentang

    2014-06-02

    All-optical ideas provide a potential to dramatically cut off the size and cost of x-ray light sources to the university-laboratory scale, with the combination of the laser-plasma accelerator and the laser undulator. However, the large longitudinal energy spread of the electron beam from laser-plasma accelerator may hinder the way to high brightness of these all-optical light sources. In this paper, the beam energy spread effect is proposed to be significantly compensated by the natural transverse gradient of a laser undulator when properly transverse-dispersing the electron beam. Theoretical analysis and numerical simulations on conventional laser-Compton scattering sources and high-gain all-optical x-ray free-electron lasers with the electron beams from laser-plasma accelerators are presented.

  19. Electron acceleration in quantum plasma with spin-up and spin-down exchange interaction

    NASA Astrophysics Data System (ADS)

    Kumar, Punit; Singh, Shiv; Ahmad, Nafees

    2018-05-01

    Electron acceleration by ponderomotive force of an intense circularly polarized laser pulse in high density magnetized quantum plasma with two different spin states embedded in external static magnetic field. The basic mechanism involves electron acceleration by axial gradient in the ponderomotive potential of laser. The effects of Bohm potential, fermi pressure and intrinsic spin of electron have been taken into account. A simple solution for ponderomotive electron acceleration has been established and effect of spin polarization is analyzed.

  20. A Phase Matching, Adiabatic Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, Francois; Flöttmann, Klaus; Kärtner, Franz

    2017-05-01

    Tabletop accelerators are a thing of the future. Reducing their size will require scaling down electromagnetic wavelengths; however, without correspondingly high field gradients, particles will be more susceptible to phase-slippage – especially at low energy. We investigate how an adiabatically-tapered dielectric-lined waveguide could maintain phase-matching between the accelerating mode and electron bunch. We benchmark our simple model with CST and implement it into ASTRA; finally we provide a first glimpse into the beam dynamics in a phase-matching accelerator.

  1. Ultimate Gradient Limitation in Niobium Superconducting Accelerating Cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Checchin, Mattia; Grassellino, Anna; Martinello, Martina

    2016-06-01

    The present study is addressed to the theoretical description of the ultimate gradient limitation in SRF cavities. Our intent is to exploit experimental data to confirm models which provide feed-backs on how to improve the current state-of-art. New theoretical insight on the cavities limiting factor can be suitable to improve the quench field of N-doped cavities, and therefore to take advantage of high Q 0 at high gradients.

  2. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beringer, Douglas

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5more » GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.« less

  3. Novel Method for Analyzing Locomotor Ability after Spinal Cord Injury in Rats: Technical Note

    PubMed Central

    Shinozaki, Munehisa; Yasuda, Akimasa; Nori, Satoshi; Saito, Nobuhito; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2013-01-01

    In the research for the treatment of spinal cord injury (SCI), the evaluation of motor function in model rats must be as objective, noninvasive, and ethical as possible. The maximum speed and acceleration of a mouse measured using a SCANET system were previously reported to vary significantly according to severity of SCI. In the present study, the motor performance of SCI model rats was examined with SCANET and assessed for Basso-Beattie-Bresnahan (BBB) score to determine the usefulness of the SCANET system in evaluating functional recovery after SCI. Maximum speed and acceleration within the measurement period correlated significantly with BBB scores. Furthermore, among several phased kinematic factors used in BBB scores, the capability of “plantar stepping” was associated with a drastic increase in maximum speed and acceleration after SCI. Therefore, evaluation of maximum speed and acceleration using a SCANET system is a useful method for rat models of SCI and can complement open field scoring scales. PMID:24097095

  4. Investigation of blood flow rheology using second-grade viscoelastic model (Phan-Thien-Tanner) within carotid artery.

    PubMed

    Ramiar, Abas; Larimi, Morsal Momenti; Ranjbar, Ali Akbar

    2017-01-01

    Hemodynamic factors, such as Wall Shear Stress (WSS), play a substantial role in arterial diseases. In the larger arteries, such as the carotid artery, interaction between the vessel wall and blood flow affects the distribution of hemodynamic factors. The fluid is considered to be non-Newtonian, whose flow is governed by the equation of a second-grade viscoelastic fluid and the effects of viscoelastic on blood flow in carotid artery is investigated. Pulsatile flow studies were carried out in a 3D model of carotid artery. The governing equations were solved using finite volume C++ based on open source code, OpenFOAM. To describe blood flow, conservation of mass and momentum, a constitutive relation of simplified Phan-Thien-Tanner (sPTT), and appropriate relations were used to explain shear thinning behavior. The first recirculation was observed at t = 0.2 s, in deceleration phase. In the acceleration phase from t = 0.3 s to t = 0.5 s, vortex and recirculation sizes in bulb regions in both ECA and ICA gradually increased. As is observed in the line graphs based on extracted data from ICA, at t = 0.2 s, τyy is the maximum amount of wall shear stress and τxy the minimum one. The maximum shear stress occurred in the inner side of the main branch (inner side of ICA and ECA) because the velocity of blood flow in the inner side of the bulb region was maximum due to the created recirculation zone in the opposite side in this area. The rheology of blood flow and shear stress in various important parts (the area that are in higher rates of WSS such as bifurcation region and the regions after bulb areas in both branches, Line1-4 in Fig. 7) were also analyzed. The investigation of velocity stream line, velocity profile and shear stress in various sections of carotid artery showed that the maximum shear stress occurred in acceleration phase and in the bifurcation region between ECA and ICA which is due to velocity gradients and changes in thinning behavior of blood and increasing strain rate in Newtonian stress part.

  5. Improving a maximum horizontal gradient algorithm to determine geological body boundaries and fault systems based on gravity data

    NASA Astrophysics Data System (ADS)

    Van Kha, Tran; Van Vuong, Hoang; Thanh, Do Duc; Hung, Duong Quoc; Anh, Le Duc

    2018-05-01

    The maximum horizontal gradient method was first proposed by Blakely and Simpson (1986) for determining the boundaries between geological bodies with different densities. The method involves the comparison of a center point with its eight nearest neighbors in four directions within each 3 × 3 calculation grid. The horizontal location and magnitude of the maximum values are found by interpolating a second-order polynomial through the trio of points provided that the magnitude of the middle point is greater than its two nearest neighbors in one direction. In theoretical models of multiple sources, however, the above condition does not allow the maximum horizontal locations to be fully located, and it could be difficult to correlate the edges of complicated sources. In this paper, the authors propose an additional condition to identify more maximum horizontal locations within the calculation grid. This additional condition will improve the method algorithm for interpreting the boundaries of magnetic and/or gravity sources. The improved algorithm was tested on gravity models and applied to gravity data for the Phu Khanh basin on the continental shelf of the East Vietnam Sea. The results show that the additional locations of the maximum horizontal gradient could be helpful for connecting the edges of complicated source bodies.

  6. Frictional Heating of Ions In The F2-region of The Ionosphere

    NASA Astrophysics Data System (ADS)

    Zhizhko, G. O.; Vlasov, V. G.

    Auroral electron beams unstable on the Cherenkov resonance are stabilized by large- scale inhomogeneity of the plasma density during all their way from the acceleration region to the E-region of the ionosphere. The generation of plasma waves by beam is possible only in the region of small plasma density gradients, that always is the area of the F2-region maximum. Thus, collective dissipation of the electron beam energy occurs in the local region with the length about several tens of kilometers. This leads to the intensive heating of the electrons(up to temperatures about 10000 K) and will give origin to the ion upflows with velocity about 1 km/s and density about 109 cm-2 s-1. These flows can result in the ion frictional heating. At the same time ion temperatures reach the values about 5000 K. A numerical simulation of the ion frictional heating in the presence of collective elec- tron heating in the high-latitude F2-region of the ionosphere was performed. The sim- ulation has shown that the most critical parameter for the occurence of the ion fric- tional heating was the the steepness of the plasma density profile above the F2-region maximum.

  7. Mass sensitivity studies for an inductively driven railgun

    NASA Astrophysics Data System (ADS)

    Scanlon, J. J., III; Young, A. F.

    1991-01-01

    Those areas which result in substantial system mass reductions for an HPG (homopolar generator) driven EML (electromagnetic launcher) are identified. Sensitivity studies are performed by varying launch mass, peak acceleration, launcher efficiency, inductance gradient, injection velocity, barrel mass per unit length, fuel tankage and pump estimates, and component energy and power densities. Two major contributors to the system mass are the allowed number of shots per barrel versus the number required for the mission, and the barrel length. The effects of component performance parameters, such as friction coefficient, injection velocity, ablation coefficient, rail resistivity, armature voltage, peak acceleration, and inductance gradient on these two areas, are addressed.

  8. Operation of a high-gradient superconducting radio-frequency cavity with a non-evaporable getter pump

    DOE PAGES

    Ciovati, G.; Geng, R.; Lushtak, Y.; ...

    2016-10-28

    The use of non-evaporable getter (NEG) pumps in particle accelerators has increased significantly over the past few years because of their large pumping speed, particularly for hydrogen, compared to the size of the pump. A concern about using such pumps in superconducting radio-frequency (SRF) accelerators is the possibility of shedding particulates which could then migrate into the SRF cavities and produce field emission, therefore degrading the cavity performance. One option to mitigate such issue is to use sintered getter materials which intrinsically offer superior mechanical and particle retention properties. In this article we present the results from cryogenic RF testsmore » of a high-gradient SRF cavity after being evacuated several times with an NEG pump equipped with sintered getter disks and placed in close proximity to the cavity. Here, the results showed that the cavity performance was not affected by the pump up to the quench gradient of 34 MV/m. As a result of this study, two such NEG pumps have been installed next to a cryomodule in the CEBAF accelerator to maintain ultra-high vacuum in the SRF cryomodule and two adjacent warm girder sections.« less

  9. Steady state micro-g environment on Space Station

    NASA Technical Reports Server (NTRS)

    Waters, L.; Heck, M.; Deryder, L.

    1988-01-01

    In circular earth orbit, the Space Station (SS) will sense acceleration from external environmental forces due to the gravitational gradient, rotational accelerations, and atmospheric drag. This paper discusses these forces and how they will affect the SS micro-g environment. The effect of SS attitude on the micro-g profile is addressed. Sources for nonsteady state acceleration levels for which disturbance models are currently being developed are briefly considered.

  10. 40 CFR 258.14 - Seismic impact zones.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... horizontal acceleration in lithified earth material for the site. The owner or operator must place the... greater probability that the maximum horizontal acceleration in lithified earth material, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10g in 250 years. (2) Maximum horizontal...

  11. 40 CFR 258.14 - Seismic impact zones.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... horizontal acceleration in lithified earth material for the site. The owner or operator must place the... greater probability that the maximum horizontal acceleration in lithified earth material, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10g in 250 years. (2) Maximum horizontal...

  12. 40 CFR 258.14 - Seismic impact zones.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... horizontal acceleration in lithified earth material for the site. The owner or operator must place the... greater probability that the maximum horizontal acceleration in lithified earth material, expressed as a percentage of the earth's gravitational pull (g), will exceed 0.10g in 250 years. (2) Maximum horizontal...

  13. Two-dimensional molecular line transfer for a cometary coma

    NASA Astrophysics Data System (ADS)

    Szutowicz, S.

    2017-09-01

    In the proposed axisymmetric model of the cometary coma the gas density profile is described by an angular density function. Three methods for treating two-dimensional radiative transfer are compared: the Large Velocity Gradient (LVG) (the Sobolev method), Accelerated Lambda Iteration (ALI) and accelerated Monte Carlo (MC).

  14. Four-body trajectory optimization

    NASA Technical Reports Server (NTRS)

    Pu, C. L.; Edelbaum, T. N.

    1974-01-01

    A comprehensive optimization program has been developed for computing fuel-optimal trajectories between the earth and a point in the sun-earth-moon system. It presents methods for generating fuel optimal two-impulse trajectories which may originate at the earth or a point in space and fuel optimal three-impulse trajectories between two points in space. The extrapolation of the state vector and the computation of the state transition matrix are accomplished by the Stumpff-Weiss method. The cost and constraint gradients are computed analytically in terms of the terminal state and the state transition matrix. The 4-body Lambert problem is solved by using the Newton-Raphson method. An accelerated gradient projection method is used to optimize a 2-impulse trajectory with terminal constraint. The Davidon's Variance Method is used both in the accelerated gradient projection method and the outer loop of a 3-impulse trajectory optimization problem.

  15. Analytic energy gradients for the coupled-cluster singles and doubles method with the density-fitting approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bozkaya, Uğur, E-mail: ugur.bozkaya@hacettepe.edu.tr; Department of Chemistry, Atatürk University, Erzurum 25240; Sherrill, C. David

    2016-05-07

    An efficient implementation is presented for analytic gradients of the coupled-cluster singles and doubles (CCSD) method with the density-fitting approximation, denoted DF-CCSD. Frozen core terms are also included. When applied to a set of alkanes, the DF-CCSD analytic gradients are significantly accelerated compared to conventional CCSD for larger molecules. The efficiency of our DF-CCSD algorithm arises from the acceleration of several different terms, which are designated as the “gradient terms”: computation of particle density matrices (PDMs), generalized Fock-matrix (GFM), solution of the Z-vector equation, formation of the relaxed PDMs and GFM, back-transformation of PDMs and GFM to the atomic orbitalmore » (AO) basis, and evaluation of gradients in the AO basis. For the largest member of the alkane set (C{sub 10}H{sub 22}), the computational times for the gradient terms (with the cc-pVTZ basis set) are 2582.6 (CCSD) and 310.7 (DF-CCSD) min, respectively, a speed up of more than 8-folds. For gradient related terms, the DF approach avoids the usage of four-index electron repulsion integrals. Based on our previous study [U. Bozkaya, J. Chem. Phys. 141, 124108 (2014)], our formalism completely avoids construction or storage of the 4-index two-particle density matrix (TPDM), using instead 2- and 3-index TPDMs. The DF approach introduces negligible errors for equilibrium bond lengths and harmonic vibrational frequencies.« less

  16. Plasma density characterization at SPARC_LAB through Stark broadening of Hydrogen spectral lines

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Bellaveglia, M.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Mostacci, A.; Palumbo, L.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-09-01

    Plasma-based acceleration techniques are of great interest for future, compact accelerators due to their high accelerating gradient. Both particle-driven and laser-driven Plasma Wakefield Acceleration experiments are foreseen at the SPARC_LAB Test Facility (INFN National Laboratories of Frascati, Italy), with the aim to accelerate high-brightness electron beams. In order to optimize the efficiency of the acceleration in the plasma and preserve the quality of the accelerated beam, the knowledge of the plasma electron density is mandatory. The Stark broadening of the Hydrogen spectral lines is one of the candidates used to characterize plasma density. The implementation of this diagnostic for plasma-based experiments at SPARC_LAB is presented.

  17. Analysis of eddy currents induced by transverse and longitudinal gradient coils in different tungsten collimators geometries for SPECT/MRI integration.

    PubMed

    Samoudi, Amine M; Van Audenhaege, Karen; Vermeeren, Günter; Poole, Michael; Tanghe, Emmeric; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-12-01

    We investigated the temporal variation of the induced magnetic field due to the transverse and the longitudinal gradient coils in tungsten collimators arranged in hexagonal and pentagonal geometries with and without gaps between the collimators. We modeled x-, y-, and z-gradient coils and different arrangements of single-photon emission computed tomography (SPECT) collimators using FEKO, a three-dimensional electromagnetic simulation tool. A time analysis approach was used to generate the pulsed magnetic field gradient. The approach was validated with measurements using a 7T MRI scanner. Simulations showed an induced magnetic field representing 4.66% and 0.87% of the applied gradient field (gradient strength = 500 mT/m) for longitudinal and transverse gradient coils, respectively. These values can be reduced by 75% by adding gaps between the collimators for the pentagonal arrangement, bringing the maximum induced magnetic field to less than 2% of the applied gradient for all of the gradient coils. Characterization of the maximum induced magnetic field shows that by adding gaps between the collimators for an integrated SPECT/MRI system, eddy currents can be corrected by the MRI system to avoid artifact. The numerical model was validated and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils. © 2014 Wiley Periodicals, Inc.

  18. Plasma wakefield acceleration experiments at FACET II

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.

    2018-03-01

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.

  19. Plasma wakefield acceleration experiments at FACET II

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joshi, C.; Adli, E.; An, W.

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  20. Plasma wakefield acceleration experiments at FACET II

    DOE PAGES

    Joshi, C.; Adli, E.; An, W.; ...

    2018-01-12

    During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less

  1. Microstructures and Mechanical Properties of Commercially Pure Ti Processed by Rotationally Accelerated Shot Peening

    PubMed Central

    Huang, Zhaowen; Cao, Yang; Nie, Jinfeng; Zhou, Hao; Li, Yusheng

    2018-01-01

    Gradient structured materials possess good combinations of strength and ductility, rendering the materials attractive in industrial applications. In this research, a surface nanocrystallization (SNC) technique, rotationally accelerated shot peening (RASP), was employed to produce a gradient nanostructured pure Ti with a deformation layer that had a thickness of 2000 μm, which is thicker than those processed by conventional SNC techniques. It is possible to fabricate a gradient structured Ti workpiece without delamination. Moreover, based on the microstructural features, the microstructure of the processed sample can be classified into three regions, from the center to the surface of the RASP-processed sample: (1) a twinning-dominated core region; (2) a “twin intersection”-dominated twin transition region; and (3) the nanostructured region, featuring nanograins. A microhardness gradient was detected from the RASP-processed Ti. The surface hardness was more than twice that of the annealed Ti sample. The RASP-processed Ti sample exhibited a good combination of yield strength and uniform elongation, which may be attributed to the high density of deformation twins and a strong back stress effect. PMID:29498631

  2. Direct and accelerated parameter mapping using the unscented Kalman filter.

    PubMed

    Zhao, Li; Feng, Xue; Meyer, Craig H

    2016-05-01

    To accelerate parameter mapping using a new paradigm that combines image reconstruction and model regression as a parameter state-tracking problem. In T2 mapping, the T2 map is first encoded in parameter space by multi-TE measurements and then encoded by Fourier transformation with readout/phase encoding gradients. Using a state transition function and a measurement function, the unscented Kalman filter can describe T2 mapping as a dynamic system and directly estimate the T2 map from the k-space data. The proposed method was validated with a numerical brain phantom and volunteer experiments with a multiple-contrast spin echo sequence. Its performance was compared with a conjugate-gradient nonlinear inversion method at undersampling factors of 2 to 8. An accelerated pulse sequence was developed based on this method to achieve prospective undersampling. Compared with the nonlinear inversion reconstruction, the proposed method had higher precision, improved structural similarity and reduced normalized root mean squared error, with acceleration factors up to 8 in numerical phantom and volunteer studies. This work describes a new perspective on parameter mapping by state tracking. The unscented Kalman filter provides a highly accelerated and efficient paradigm for T2 mapping. © 2015 Wiley Periodicals, Inc.

  3. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis.

    PubMed

    Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson

    2014-07-01

    This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed.

  4. Proc. of the workshop on pushing the limits of RF superconductivity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, K-J., Eyberger, C., editors

    2005-04-13

    For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are eithermore » imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop Presentations link on the workshop's web page at http://www.aps.anl.gov/conferences/RFSCLimits/. I would like to thank all of the participants for their lively contributions to the workshop and to these proceedings, and Helen Edwards and Hasan Padamsee for their help in developing the workshop program. I also thank Cathy Eyberger, Kelly Jaje, and Renee Lanham for working very hard to take care of the administrative details, in particular Cathy for editing this report.« less

  5. BBU design of linear induction accelerator cells for radiography application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.

    1997-05-06

    There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.

  6. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG

    DOE PAGES

    Romanenko, A.; Grassellino, A.; Crawford, A. C.; ...

    2014-12-10

    Ambient magnetic field, if trapped in the penetration depth, leads to the residual resistance and therefore sets the limit for the achievable quality factors in superconducting niobium resonators for particle accelerators. Here, we show that a complete expulsion of the magnetic flux can be performed and leads to: (1) record quality factors Q > 2 x 10¹¹ up to accelerating gradient of 22 MV/m; (2) Q ~ 3 x 10¹⁰ at 2 K and 16 MV/m in up to 190 mG magnetic fields. This is achieved by large thermal gradients at the normal/superconducting phase front during the cooldown. Our findingsmore » open up a way to ultra-high quality factors at low temperatures and show an alternative to the sophisticated magnetic shielding implemented in modern superconducting accelerators.« less

  7. Interaction of an ultrarelativistic electron bunch train with a W-band accelerating structure: High power and high gradient

    DOE PAGES

    Wang, D.; Antipov, S.; Jing, C.; ...

    2016-02-05

    Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less

  8. 14 CFR 23.77 - Balked landing.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pounds or less maximum weight must be able to maintain a steady gradient of climb at sea level of at... acrobatic category turbine engine-powered airplane must be able to maintain a steady gradient of climb of at....73(b). (c) Each commuter category airplane must be able to maintain a steady gradient of climb of at...

  9. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than... tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is safe. The gradient must be established as an operating limitation and the information necessary to...

  10. Simulated Design Strategies for SPECT Collimators to Reduce the Eddy Currents Induced by MRI Gradient Fields

    NASA Astrophysics Data System (ADS)

    Samoudi, Amine M.; Van Audenhaege, Karen; Vermeeren, Günter; Verhoyen, Gregory; Martens, Luc; Van Holen, Roel; Joseph, Wout

    2015-10-01

    Combining single photon emission computed tomography (SPECT) with magnetic resonance imaging (MRI) requires the insertion of highly conductive SPECT collimators inside the MRI scanner, resulting in an induced eddy current disturbing the combined system. We reduced the eddy currents due to the insert of a novel tungsten collimator inside transverse and longitudinal gradient coils. The collimator was produced with metal additive manufacturing, that is part of a microSPECT insert for a preclinical SPECT/MRI scanner. We characterized the induced magnetic field due to the gradient field and adapted the collimators to reduce the induced eddy currents. We modeled the x-, y-, and z-gradient coil and the different collimator designs and simulated them with FEKO, a three-dimensional method of moments / finite element methods (MoM/FEM) full-wave simulation tool. We used a time analysis approach to generate the pulsed magnetic field gradient. Simulation results show that the maximum induced field can be reduced by 50.82% in the final design bringing the maximum induced magnetic field to less than 2% of the applied gradient for all the gradient coils. The numerical model was validated with measurements and was proposed as a tool for studying the effect of a SPECT collimator within the MRI gradient coils.

  11. A Model based Examination of Conditions for Ignition of Turbidity Currents on Slopes

    NASA Astrophysics Data System (ADS)

    Mehta, A. J.; Krishna, G.

    2009-12-01

    Turbidity currents form a major mechanism for the movement of sediment in the natural environment. Self-accelerating turbidity currents over continental slopes are of considerable scientific and engineering interest due to their role as agents for submarine sediment transportation from the shelf to the seabed. Such currents are called ignitive provided they eventually reach a catastrophic state as acceleration results in high sediment loads due to erosion of the sloping bed. A numerical model, which treats the fluid and the particles as two separate phases, is applied to investigate the effects of particle size, initial flow friction velocity and mild bed slope on the ignitive condition. Laboratory experimental data have been included as part of the analysis for qualitative comparison purposes. Ignition for the smallest of the three selected sizes (0.21mm) of medium sand typical of Florida beaches was found to depend on the initial conditions at the head of the slope as determined by the pressure gradient. Bed slope seemed to be of secondary importance. For the two sands with larger grain sizes (0.28mm and 0.35mm) the slope was found to play a more important role when compared to the initial pressure gradient. For a given pressure gradient, increasing the slope increased the likelihood of self-acceleration. It is concluded that in general ignition cannot be defined merely in terms of positive values of the velocity gradient and the sediment flux gradient along the slope. Depending on particle size the initial pressure gradient can also play a role. For the selected initial conditions (grain size, pressure gradient and bed slope), out of the 54 combinations tested, all except three satisfied the Knapp-Bagnold criterion for auto-suspension irrespective of whether the turbid current was ignitive or non-ignitive. In all 54 cases the current was found to erode the bed. Further use of the model will require accommodation of wider ranges of sediment size and bed density, and a thorough verification against experimental data.

  12. Minimum maximum temperature gradient coil design.

    PubMed

    While, Peter T; Poole, Michael S; Forbes, Larry K; Crozier, Stuart

    2013-08-01

    Ohmic heating is a serious problem in gradient coil operation. A method is presented for redesigning cylindrical gradient coils to operate at minimum peak temperature, while maintaining field homogeneity and coil performance. To generate these minimaxT coil windings, an existing analytic method for simulating the spatial temperature distribution of single layer gradient coils is combined with a minimax optimization routine based on sequential quadratic programming. Simulations are provided for symmetric and asymmetric gradient coils that show considerable improvements in reducing maximum temperature over existing methods. The winding patterns of the minimaxT coils were found to be heavily dependent on the assumed thermal material properties and generally display an interesting "fish-eye" spreading of windings in the dense regions of the coil. Small prototype coils were constructed and tested for experimental validation and these demonstrate that with a reasonable estimate of material properties, thermal performance can be improved considerably with negligible change to the field error or standard figures of merit. © 2012 Wiley Periodicals, Inc.

  13. TU-H-BRA-06: Characterization of a Linear Accelerator Operating in a Compact MRIGuided Radiation Therapy System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Green, O; Mutic, S; Li, H

    2016-06-15

    Purpose: To describe the performance of a linear accelerator operating in a compact MRI-guided radiation therapy system. Methods: A commercial linear accelerator was placed in an MRI unit that is employed in a commercial MR-based image guided radiation therapy (IGRT) system. The linear accelerator components were placed within magnetic field-reducing hardware that provided magnetic fields of less than 40 G for the magnetron, gun driver, and port circulator, with 1 G for the linear accelerator. The system did not employ a flattening filter. The test linear accelerator was an industrial 4 MV model that was employed to test the abilitymore » to run an accelerator in the MR environment. An MR-compatible diode detector array was used to measure the beam profiles with the accelerator outside and inside the MR field and with the gradient coils on and off to examine if there was any effect on the delivered dose distribution. The beam profiles and time characteristics of the beam were measured. Results: The beam profiles exhibited characteristic unflattened Bremsstrahlung features with less than ±1.5% differences in the profile magnitude when the system was outside and inside the magnet and less than 1% differences with the gradient coils on and off. The central axis dose rate fluctuated by less than 1% over a 30 second period when outside and inside the MRI. Conclusion: A linaccompatible MR design has been shown to be effective in not perturbing the operation of a commercial linear accelerator. While the accelerator used in the tests was 4MV, there is nothing fundamentally different with the operation of a 6MV unit, implying that the design will enable operation of the proposed clinical unit. Research funding provided by ViewRay, Inc.« less

  14. The stratified two-sided jet of Cygnus A. Acceleration and collimation

    NASA Astrophysics Data System (ADS)

    Boccardi, B.; Krichbaum, T. P.; Bach, U.; Mertens, F.; Ros, E.; Alef, W.; Zensus, J. A.

    2016-01-01

    Aims: High-resolution Very-Long-Baseline Interferometry (VLBI) observations of relativistic jets are essential for constraining the fundamental parameters of jet formation models. At a distance of 249 Mpc, Cygnus A is a unique target for such studies, since it is the only Fanaroff-Riley Class II radio galaxy for which a detailed subparsec scale imaging of the base of both jet and counter-jet can be obtained. Observing at millimeter wavelengths unveils those regions that appear self-absorbed at longer wavelengths and enables an extremely sharp view toward the nucleus to be obtained. Methods: We performed 7 mm Global VLBI observations, achieving ultra-high resolution imaging on scales down to 90 μas. This resolution corresponds to a linear scale of only ~400 Schwarzschild radii (for MBH = 2.5 × 109M⊙). We studied the kinematic properties of the main emission features of the two-sided flow and probed its transverse structure through a pixel-based analysis. Results: We suggest that a fast and a slow layer with different acceleration gradients exist in the flow. The extension of the acceleration region is large (~ 104RS), indicating that the jet is magnetically driven. The limb brightening of both jet and counter-jet and their large opening angles (φJ ~ 10°) strongly favour a spine-sheath structure. In the acceleration zone, the flow has a parabolic shape (r ∝ z0.55 ± 0.07). The acceleration gradients and the collimation profile are consistent with the expectations for a jet in "equilibrium", achieved in the presence of a mild gradient of the external pressure (p ∝ z- k,k ≤ 2).

  15. Effects of spatial gradients in thermophysical properties on the topology of turbulence in heated channel flow of supercritical fluids

    NASA Astrophysics Data System (ADS)

    Azih, Chukwudi; Yaras, Metin I.

    2018-01-01

    The current literature suggests that large spatial gradients of thermophysical properties, which occur in the vicinity of the pseudo-critical thermodynamic state, may result in significant variations in forced-convection heat transfer rates. Specifically, these property gradients induce inertia- and buoyancy-driven phenomena that may enhance or deteriorate the turbulence-dominated heat convection process. Through direct numerical simulations, the present study investigates the role of coherent flow structures in channel geometries for non-buoyant and buoyant flows of supercritical water, with buoyant configurations involving wall-normal oriented gravitational acceleration and downstream-oriented gravitational acceleration. This sequence of simulations enables the evaluation of the relative contributions of inertial and buoyancy phenomena to heat transfer variations. In these simulations, the state of the working fluid is in the vicinity of the pseudo-critical point. The uniform wall heat flux and the channel mass flux are specified such that the heat to mass flux ratio is 3 kJ/kg, with an inflow Reynolds number of 12 000 based on the channel hydraulic diameter, the area-averaged inflow velocity, and fluid properties evaluated at the bulk temperature and pressure of the inflow plane. In the absence of buoyancy forces, notable reductions in the density and viscosity in close proximity of the heated wall are observed to promote generation of small-scale vortices, with resultant breakdown into smaller scales as they interact with preexisting larger near-wall vortices. This interaction results in a reduction in the overall thermal mixing at particular wall-normal regions of the channel. Under the influence of wall-normal gravitational acceleration, the wall-normal density gradients are noted to enhance ejection motions due to baroclinic vorticity generation on the lower wall, thus providing additional wall-normal thermal mixing. Along the upper wall, the same mechanism generates streamwise vorticity of the opposing sense of rotation in the close vicinity to the respective legs of the hairpin vortices causing a net reduction in thermal mixing. Finally, in the case of downstream-oriented gravitational acceleration, baroclinic vorticity generation as per spanwise density gradients causes additional wall-normal thermal mixing by promoting larger-scale ejection and sweep motions.

  16. Magnetic field of longitudinal gradient bend

    NASA Astrophysics Data System (ADS)

    Aiba, Masamitsu; Böge, Michael; Ehrlichman, Michael; Streun, Andreas

    2018-06-01

    The longitudinal gradient bend is an effective method for reducing the natural emittance in light sources. It is, however, not a common element. We have analyzed its magnetic field and derived a set of formulae. Based on the derivation, we discuss how to model the longitudinal gradient bend in accelerator codes that are used for designing electron storage rings. Strengths of multipole components can also be evaluated from the formulae, and we investigate the impact of higher order multipole components in a very low emittance lattice.

  17. Using contemporary liquid chromatography theory and technology to improve capillary gradient ion-exchange separations.

    PubMed

    Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan

    2014-11-28

    The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Ion acceleration in a helicon source due to the self-bias effect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiebold, Matt; Sung, Yung-Ta; Scharer, John E.

    2012-05-15

    Time-averaged plasma potential differences up to 165 V over several hundred Debye lengths are observed in low pressure (p{sub n} < 1 mTorr) expanding argon plasmas in the Madison Helicon eXperiment (MadHeX). The potential gradient leads to ion acceleration greater than that predicted by ambipolar expansion, exceeding E{sub i} Almost-Equal-To 7 kT{sub e} in some cases. RF power up to 500 W at 13.56 MHz is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field, adjustable up to 1 kG. A retarding potential analyzer (RPA) measures the ion energy distribution function (IEDF) and a sweptmore » emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in density as RF power is increased. In the capacitive (E) mode, large fluctuations of the plasma potential (V{sub p-p} Greater-Than-Or-Equivalent-To 140V, V{sub p-p}/V{sub p} Almost-Equal-To 150%) exist at the RF frequency and its harmonics. The more mobile electrons can easily respond to RF-timescale gradients in the plasma potential whereas the inertially constrained ions cannot, leading to an initial flux imbalance and formation of a self-bias voltage between the source and expansion chambers. In the capacitive mode, the ion acceleration is not well described by an ambipolar relation, while in the inductive and helicon modes the ion acceleration more closely follows an ambipolar relation. The scaling of the potential gradient with the argon flow rate and RF power are investigated, with the largest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees with that predicted for RF self-bias at a wall. Rapid fluctuations in the plasma potential result in a time-dependent axial electron flux that acts to 'neutralize' the accelerated ion population, resulting in a zero net time-averaged current through the acceleration region when an insulating upstream boundary condition is enforced. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate.« less

  19. Electro-gravity via geometric chrononfield

    NASA Astrophysics Data System (ADS)

    Suchard, Eytan H.

    2017-05-01

    In De Sitter / Anti De Sitter space-time and in other geometries, reference sub-manifolds from which proper time is measured along integral curves, are described as events. We introduce here a foliation with the help of a scalar field. The scalar field need not be unique but from the gradient of the scalar field, an intrinsic Reeb vector of the foliations perpendicular to the gradient vector is calculated. The Reeb vector describes the acceleration of a physical particle that moves along the integral curves that are formed by the gradient of the scalar field. The Reeb vector appears as a component of an anti-symmetric matrix which is a part of a rank-2, 2-Form. The 2-form is extended into a non-degenerate 4-form and into rank-4 matrix of a 2-form, which when multiplied by a velocity of a particle, becomes the acceleration of the particle. The matrix has one U(1) degree of freedom and an additional SU(2) degrees of freedom in two vectors that span the plane perpendicular to the gradient of the scalar field and to the Reeb vector. In total, there are U(1) x SU(2) degrees of freedom. SU(3) degrees of freedom arise from three dimensional foliations but require an additional symmetry to exist in order to have a valid covariant meaning. Matter in the Einstein Grossmann equation is replaced by the action of the acceleration field, i.e. by a geometric action which is not anticipated by the metric alone. This idea leads to a new formalism that replaces the conventional stress-energy-momentum-tensor. The formalism will be mainly developed for classical physics but will also be discussed for quantized physics based on events instead of particles. The result is that a positive charge manifests small attracting gravity and a stronger but small repelling acceleration field that repels even uncharged particles that have a rest mass. Negative charge manifests a repelling anti-gravity but also a stronger acceleration field that attracts even uncharged particles that have rest mass. Preliminary version: http://sciencedomain.org/abstract/9858

  20. Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.

    2012-12-21

    We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less

  1. Plasma Wake-field Acceleration in the Blow-out Regime

    NASA Astrophysics Data System (ADS)

    Barov, Nikolai; Rosenzweig, James

    1999-11-01

    Recent experiments at Argonne National Laboratory, investigating the blow-out regime of the plasma wake-field accelerator, are discussed. These experiments achieved stable underdense (beam denser than the ambient plasma density) beam transport, and measured average acceleration of 25 MV/m, corresponding to peak wave fields of over 60 MVm. A comparison of the results to simulation is given, and the physics of the system is discussed. Potential for improvements in performance and achieved acceleration gradient, as well as accelerated beam quality are examined within the context of the next generation of experiments at the Fermilab Test Facility. The status of these experiments will be given.

  2. Beam manipulation for resonant plasma wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Chiadroni, E.; Alesini, D.; Anania, M. P.; Bacci, A.; Bellaveglia, M.; Biagioni, A.; Bisesto, F. G.; Cardelli, F.; Castorina, G.; Cianchi, A.; Croia, M.; Gallo, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giribono, A.; Marocchino, A.; Mostacci, A.; Petrarca, M.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Spataro, B.; Stella, A.; Vaccarezza, C.; Villa, F.

    2017-09-01

    Plasma-based acceleration has already proved the ability to reach ultra-high accelerating gradients. However the step towards the realization of a plasma-based accelerator still requires some effort to guarantee high brightness beams, stability and reliability. A significant improvement in the efficiency of PWFA has been demonstrated so far accelerating a witness bunch in the wake of a higher charge driver bunch. The transformer ratio, therefore the energy transfer from the driver to the witness beam, can be increased by resonantly exciting the plasma with a properly pre-shaped drive electron beam. Theoretical and experimental studies of beam manipulation for resonant PWFA will be presented here.

  3. Dynamic deformation analysis of light-weight mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Yingtao; Cao, Xuedong; Kuang, Long; Yang, Wei

    2012-10-01

    In the process of optical dynamic target work, under the effort of the arm of dynamic target, the mirror needs to do circular motion, additional accelerated motion and uniform motion. The maximum acceleration is 10°/s2 and the maximum velocity is 30°/s. In this paper, we mostly analyze the dynamic deformation of a 600 mm honeycomb light-weight mirror of a certain dynamic target. Using the FEA (finite element analysis) method, first of all, we analyze the deformation of the light-weight mirror induced in gravity at different position; later, the dynamic deformation of light-weight mirror is analyzed in detailed. The analysis results indicate that, when the maximum acceleration is 10°/s2 and the maximum velocity is 30°/s, the centripetal force is 5% of the gravity at the equal mass, and the dynamic deformation of the mirror is 6.1% of the deformation induced by gravity.

  4. Minimization of Dead-Periods in MRI Pulse Sequences for Imaging Oblique Planes

    PubMed Central

    Atalar, Ergin; McVeigh, Elliot R.

    2007-01-01

    With the advent of breath-hold MR cardiac imaging techniques, the minimization of TR and TE for oblique planes has become a critical issue. The slew rates and maximum currents of gradient amplifiers limit the minimum possible TR and TE by adding dead-periods to the pulse sequences. We propose a method of designing gradient waveforms that will be applied to the amplifiers instead of the slice, readout, and phase encoding waveforms. Because this method ensures that the gradient amplifiers will always switch at their maximum slew rate, it results in the minimum possible dead-period for given imaging parameters and scan plane position. A GRASS pulse sequence has been designed and ultra-short TR and TE values have been obtained with standard gradient amplifiers and coils. For some oblique slices, we have achieved shorter TR and TE values than those for nonoblique slices. PMID:7869900

  5. Advances in Large Grain/Single Crystal SC Resonators at DESY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. Singer; A. Brinkmann; A. Ermakov

    The main aim of the DESY large grain R&D program is to check whether this option is reasonable to apply for fabrication of ca. 1'000 XFEL cavities. Two aspects are being pursued. On one hand the basic material investigation, on the other hand the material availability, fabrication and preparation procedure. Several single cell large grain cavities of TESLA shape have been fabricated and tested. The best accelerating gradients of 41 MV/m was measured on electropolished cavity. First large grain nine-cell cavities worldwide have been produced under contract of DESY with ACCEL Instruments Co. All three cavities fulfil the XFEL specificationmore » already in first RF test after only BCP (Buffered Chemical Polishing) treatment and 800 degrees C annealing. Accelerating gradient of 27 - 29 MV/m was reached. A fabrication method of single crystal cavity of ILC like shape was proposed. A single cell single crystal cavity was build at the company ACCEL. Accelerating gradient of 37.5 MV/m reached after only 112 microns BCP and in situ baking 120 degrees C for 6 hrs with the quality factor higher as 2x1010. The developed method can be extended on fabrication of multi cell single crystal cavities.« less

  6. BLIPPED (BLIpped Pure Phase EncoDing) high resolution MRI with low amplitude gradients

    NASA Astrophysics Data System (ADS)

    Xiao, Dan; Balcom, Bruce J.

    2017-12-01

    MRI image resolution is proportional to the maximum k-space value, i.e. the temporal integral of the magnetic field gradient. High resolution imaging usually requires high gradient amplitudes and/or long spatial encoding times. Special gradient hardware is often required for high amplitudes and fast switching. We propose a high resolution imaging sequence that employs low amplitude gradients. This method was inspired by the previously proposed PEPI (π Echo Planar Imaging) sequence, which replaced EPI gradient reversals with multiple RF refocusing pulses. It has been shown that when the refocusing RF pulse is of high quality, i.e. sufficiently close to 180°, the magnetization phase introduced by the spatial encoding magnetic field gradient can be preserved and transferred to the following echo signal without phase rewinding. This phase encoding scheme requires blipped gradients that are identical for each echo, with low and constant amplitude, providing opportunities for high resolution imaging. We now extend the sequence to 3D pure phase encoding with low amplitude gradients. The method is compared with the Hybrid-SESPI (Spin Echo Single Point Imaging) technique to demonstrate the advantages in terms of low gradient duty cycle, compensation of concomitant magnetic field effects and minimal echo spacing, which lead to superior image quality and high resolution. The 3D imaging method was then applied with a parallel plate resonator RF probe, achieving a nominal spatial resolution of 17 μm in one dimension in the 3D image, requiring a maximum gradient amplitude of only 5.8 Gauss/cm.

  7. An analytic linear accelerator source model for GPU-based Monte Carlo dose calculations.

    PubMed

    Tian, Zhen; Li, Yongbao; Folkerts, Michael; Shi, Feng; Jiang, Steve B; Jia, Xun

    2015-10-21

    Recently, there has been a lot of research interest in developing fast Monte Carlo (MC) dose calculation methods on graphics processing unit (GPU) platforms. A good linear accelerator (linac) source model is critical for both accuracy and efficiency considerations. In principle, an analytical source model should be more preferred for GPU-based MC dose engines than a phase-space file-based model, in that data loading and CPU-GPU data transfer can be avoided. In this paper, we presented an analytical field-independent source model specifically developed for GPU-based MC dose calculations, associated with a GPU-friendly sampling scheme. A key concept called phase-space-ring (PSR) was proposed. Each PSR contained a group of particles that were of the same type, close in energy and reside in a narrow ring on the phase-space plane located just above the upper jaws. The model parameterized the probability densities of particle location, direction and energy for each primary photon PSR, scattered photon PSR and electron PSR. Models of one 2D Gaussian distribution or multiple Gaussian components were employed to represent the particle direction distributions of these PSRs. A method was developed to analyze a reference phase-space file and derive corresponding model parameters. To efficiently use our model in MC dose calculations on GPU, we proposed a GPU-friendly sampling strategy, which ensured that the particles sampled and transported simultaneously are of the same type and close in energy to alleviate GPU thread divergences. To test the accuracy of our model, dose distributions of a set of open fields in a water phantom were calculated using our source model and compared to those calculated using the reference phase-space files. For the high dose gradient regions, the average distance-to-agreement (DTA) was within 1 mm and the maximum DTA within 2 mm. For relatively low dose gradient regions, the root-mean-square (RMS) dose difference was within 1.1% and the maximum dose difference within 1.7%. The maximum relative difference of output factors was within 0.5%. Over 98.5% passing rate was achieved in 3D gamma-index tests with 2%/2 mm criteria in both an IMRT prostate patient case and a head-and-neck case. These results demonstrated the efficacy of our model in terms of accurately representing a reference phase-space file. We have also tested the efficiency gain of our source model over our previously developed phase-space-let file source model. The overall efficiency of dose calculation was found to be improved by ~1.3-2.2 times in water and patient cases using our analytical model.

  8. On the maximum energy achievable in the first order Fermi acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Grozny, I.; Diamond, P.; Malkov, M.

    2002-11-01

    Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.

  9. Kinetics of the head-neck complex in low-speed rear impact.

    PubMed

    Stemper, Brian D; Yoganandan, Naryan; Pintar, Frank A

    2003-01-01

    A comprehensive characterization of the biomechanics of the cervical spine in rear impact will lead to an understanding of the mechanisms of whiplash injury. Cervical kinematics have been experimentally described using human volunteers, full-body cadaver specimens, and isolated and intact head-neck specimens. However, forces and moments at the cervico-thoracic junction have not been clearly delineated. An experimental investigation was performed using ten intact head-neck complexes to delineate the loading at the base of the cervical spine and angular acceleration of the head in whiplash. A pendulum-minisled apparatus was used to simulate whiplash acceleration of the thorax at four impact severities. Lower neck loads were measured using a six-axis load cell attached between the minisled and head-neck specimens, and head angular motion was measured with an angular rate sensor attached to the lateral side of the head. Shear and axial force, extension moment, and head angular acceleration increased with impact severity. Shear force was significantly larger than axial force (p < 0.0001). Shear force reached its maximum value at 46 msec. Maximum extension moment occurred between 7 and 22 msec after maximum shear force. Maximum angular acceleration of the head occurred 2 to 18 msec later. Maximum axial force occurred last (106 msec). All four kinetic components reached maximum values during cervical S-curvature, with maximum shear force and extension moment occurring before the attainment of maximum S-curvature. Results of the present investigation indicate that shear force and extension moment at the cervico-thoracic junction drive the non-physiologic cervical S-curvature responsible for whiplash injury and underscore the importance of understanding cervical kinematics and the underlying kinetics.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLachlan, J.A.

    The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.

  11. The susceptibility analysis of landslides induced by earthquake in Aso volcanic area, Japan, scoping the prediction

    NASA Astrophysics Data System (ADS)

    Kubota, Tetsuya; Takeda, Tsuyoshi

    2017-04-01

    Kumamoto earthquake on April 16th 2016 in Kumamoto prefecture, Kyushu Island, Japan with intense seismic scale of M7.3 (maximum acceleration = 1316 gal in Aso volcanic region) yielded countless instances of landslide and debris flow that induced serious damages and causalities in the area, especially in the Aso volcanic mountain range. Hence, field investigation and numerical slope stability analysis were conducted to delve into the characteristics or the prediction factors of the landslides induced by this earthquake. For the numerical analysis, Finite Element Method (FEM) and CSSDP (Critical Slip Surface analysis by Dynamic Programming theory based on limit equilibrium method) were applied to the landslide slopes with seismic acceleration observed. These numerical analysis methods can automatically detect the landslide slip surface which has minimum Fs (factor of safety). The various results and the information obtained through this investigation and analysis were integrated to predict the landslide susceptible slopes in volcanic area induced by earthquakes and rainfalls of their aftermath, considering geologic-geomorphologic features, geo-technical characteristics of the landslides and vegetation effects on the slope stability. Based on the FEM or CSSDP results, the landslides occurred in this earthquake at the mild gradient slope on the ridge have the safety factor of slope Fs=2.20 approximately (without rainfall nor earthquake, and Fs>=1.0 corresponds to stable slope without landslide) and 1.78 2.10 (with the most severe rainfall in the past) while they have approximately Fs=0.40 with the seismic forces in this earthquake (horizontal direction 818 gal, vertical direction -320 gal respectively, observed in the earthquake). It insists that only in case of earthquakes the landslide in volcanic sediment apt to occur at the mild gradient slopes as well as on the ridges with convex cross section. Consequently, the following results are obtained. 1) At volcanic hillside, mild slopes of 7-10 ° gradient with volcanic sediment such as pumice are prone to collapse to be landslide by strong earthquake. 2) The slopes at the mountain ridge with convex cross section where the seismic vibration tends to concentrate are prone to form landslides in case of earthquake. 3) Due to the most severe precipitation of the past or in the aftermath of earthquake, no landslides occurred in these mild gradient slopes or on the mountain ridges with convex cross section. This information will be a great help in the aspect of landslide prediction.

  12. Vibration isolation technology: Sensitivity of selected classes of experiments to residual accelerations

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.

    1990-01-01

    The solution was sought of a 2-D axisymmetric moving boundary problem for the sensitivity of isothermal and nonisothermal liquid columns and the sensitivity of thermo-capillary flows to buoyancy driven convection caused by residual accelerations. The sensitivity of a variety of space experiments to residual accelerations are examined. In all the cases discussed, the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion (such as thermocapillary flow), or fluid motion must be suppressed or eliminated (such as in diffusion studies, or directional solidification experiments). The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt crystal interface. As far as the response to transient disturbances is concerned the sensitivity is determined by both the magnitude and frequency the acceleration and the characteristic momentum and solute diffusion times.

  13. Quench studies of ILC cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eremeev, Grigory; Geng, Rongli; Palczewski, Ari

    2011-07-01

    Quench limits accelerating gradient in SRF cavities to a gradient lower than theoretically expected for superconducting niobium. Identification of the quenching site with thermometry and OST, optical inspection, and replica of the culprit is an ongoing effort at Jefferson Lab aimed at better understanding of this limiting phenomenon. In this contribution we present our finding with several SRF cavities that were limited by quench.

  14. Three-Axis Superconducting Gravity Gradiometer

    NASA Technical Reports Server (NTRS)

    Paik, Ho Jung

    1987-01-01

    Gravity gradients measured even on accelerating platforms. Three-axis superconducting gravity gradiometer based on flux quantization and Meissner effect in superconductors and employs superconducting quantum interference device as amplifier. Incorporates several magnetically levitated proof masses. Gradiometer design integrates accelerometers for operation in differential mode. Principal use in commercial instruments for measurement of Earth-gravity gradients in geo-physical surveying and exploration for oil.

  15. Study of the possibility of growing germanium single crystals under low temperature gradients

    NASA Astrophysics Data System (ADS)

    Moskovskih, V. A.; Kasimkin, P. V.; Shlegel, V. N.; Vasiliev, Y. V.; Gridchin, V. A.; Podkopaev, O. I.; Zhdankov, V. N.

    2014-03-01

    The possibility of growing germanium single crystals under low temperature gradients in order to produce a dislocation-free material has been studied. Germanium crystals with a dislocation density of about 100-200 cm-2 have been grown in a system with a weight control of crystal growth at maximum axial gradients of about 1.5 K/cm.

  16. Gaussian process regression to accelerate geometry optimizations relying on numerical differentiation

    NASA Astrophysics Data System (ADS)

    Schmitz, Gunnar; Christiansen, Ove

    2018-06-01

    We study how with means of Gaussian Process Regression (GPR) geometry optimizations, which rely on numerical gradients, can be accelerated. The GPR interpolates a local potential energy surface on which the structure is optimized. It is found to be efficient to combine results on a low computational level (HF or MP2) with the GPR-calculated gradient of the difference between the low level method and the target method, which is a variant of explicitly correlated Coupled Cluster Singles and Doubles with perturbative Triples correction CCSD(F12*)(T) in this study. Overall convergence is achieved if both the potential and the geometry are converged. Compared to numerical gradient-based algorithms, the number of required single point calculations is reduced. Although introducing an error due to the interpolation, the optimized structures are sufficiently close to the minimum of the target level of theory meaning that the reference and predicted minimum only vary energetically in the μEh regime.

  17. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature

    NASA Technical Reports Server (NTRS)

    Eiband, A. Martin

    1959-01-01

    The literature is surveyed to determine human tolerance to rapidly applied accelerations. Pertinent human and animal experiments applicable to space flight and to crash impact forces are analyzed and discussed. These data are compared and presented on the basis of a trapezoidal pulse. The effects of body restraint and of acceleration direction, onset rate, and plateau duration on the maximum tolerable and survivable rapidly applied accelerations are shown. Results of the survey indicate that adequate torso and extremity restraint is the primary variable in tolerance to rapidly applied accelerations. The harness, or restraint system, must be arranged to transmit the major portion of the accelerating force directly to the pelvic structure and not via the vertebral column. When the conditions of adequate restraint have been met, then the other variables, direction, magnitude, and onset rate of rapidly applied accelerations, govern maximum tolerance and injury limits. The results also indicate that adequately stressed aft-faced passenger seats offer maximum complete body support with minimum objectionable harnessing. Such a seat, whether designed for 20-, 30-, or 40-G dynamic loading, would include lap strap, chest (axillary) strap, and winged-back seat to increase headward and lateral G protection, full-height integral head rest, arm rests (load-bearing) with recessed hand-holds and provisions to prevent arms from slipping either laterally or beyond the seat back, and leg support to keep the legs from being wedged under the seat. For crew members and others whose duties require forward-facing seats, maximum complete body support requires lap, shoulder, and thigh straps, lap-belt tie-down strap, and full-height seat back with integral head support.

  18. A new type of accelerator for charged particle cancer therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edgecock, Rob

    2013-04-19

    Non-scaling Fixed Field Alternating Gradient accelerators (ns-FFAGs) show great potential for the acceleration of protons and light ions for the treatment of certain cancers. They have unique features as they combine techniques from the existing types of accelerators, cyclotrons and synchrotrons, and hence look to have advantages over both for this application. However, these unique features meant that it was necessary to build one of these accelerators to show that it works and to undertake a detailed conceptual design of a medical machine. Both of these have now been done. This paper will describe the concepts of this type ofmore » accelerator, show results from the proof-of-principle machine (EMMA) and described the medical machine (PAMELA).« less

  19. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  20. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  1. Anterior gradient 2 is induced in cutaneous wound and promotes wound healing through its adhesion domain.

    PubMed

    Zhu, Qi; Mangukiya, Hitesh Bhagavanbhai; Mashausi, Dhahiri Saidi; Guo, Hao; Negi, Hema; Merugu, Siva Bharath; Wu, Zhenghua; Li, Dawei

    2017-09-01

    Anterior gradient 2 (AGR2), a member of protein disulfide isomerase (PDI) family, is both located in cytoplasm and secreted into extracellular matrix. The orthologs of AGR2 have been linked to limb regeneration in newt and wound healing in zebrafish. In mammals, AGR2 influences multiple cell signaling pathways in tumor formation and in normal cell functions related to new tissue formation like angiogenesis. However, the function of AGR2 in mammalian wound healing remains unknown. This study aimed to investigate AGR2 expression and its function during skin wound healing and the possible application of external AGR2 in cutaneous wound to accelerate the healing process. Our results showed that AGR2 expression was induced in the migrating epidermal tongue and hyperplastic epidermis after skin excision. Topical application of recombinant AGR2 significantly accelerated wound-healing process by increasing the migration of keratinocytes (Kera.) and the recruitment of fibroblasts (Fibro.) near the wounded area. External AGR2 also promoted the migration of Kera. and Fibro. in vitro in a dose-dependent manner. The adhesion domain of AGR2 was required for the formation of focal adhesions in migrating Fibro., leading to the directional migration along AGR2 gradient. These results indicate that recombinant AGR2 accelerates skin wound healing through regulation of Kera. and Fibro. migration, thus demonstrating its potential utility as an alternative strategy of the therapeutics to accelerate the healing of acute or chronic skin wounds. © 2017 Federation of European Biochemical Societies.

  2. Maximum proton kinetic energy and patient-generated neutron fluence considerations in proton beam arc delivery radiation therapy.

    PubMed

    Sengbusch, E; Pérez-Andújar, A; DeLuca, P M; Mackie, T R

    2009-02-01

    Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.

  3. Plasma Accelerators Race to 10 GeV and Beyond

    NASA Astrophysics Data System (ADS)

    Katsouleas, Tom

    2005-10-01

    This paper reviews the concepts, recent progress and current challenges for realizing the tremendous electric fields in relativistic plasma waves for applications ranging from tabletop particle accelerators to high-energy physics. Experiments in the 90's on laser-driven plasma wakefield accelerators at several laboratories around the world demonstrated the potential for plasma wakefields to accelerate intense bunches of self-trapped particles at rates as high as 100 GeV/m in mm-scale gas jets. These early experiments offered impressive gradients but large energy spread (100%) and short interaction lengths. Major breakthroughs have recently occurred on both fronts. Three groups (LBL-US, LOA-France and RAL-UK) have now entered a new regime of laser wakefield acceleration resulting in 100 MeV mono-energetic beams with up to nanoCoulombs of charge and very small angular spread. Simulations suggest that current lasers are just entering this new regime, and the scaling to higher energies appears attractive. In parallel with the progress in laser-driven wakefields, particle-beam driven wakefield accelerators are making large strides. A series of experiments using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC) has demonstrated high-gradient acceleration of electrons and positrons in meter-scale plasmas. The UCLA/USC/SLAC collaboration has accelerated electrons beyond 1 GeV and is aiming at 10 GeV in 30 cm as the next step toward a ``plasma afterburner,'' a concept for doubling the energy of a high-energy collider in a few tens of meters of plasma. In addition to wakefield acceleration, these and other experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes plasma lenses capable of focusing particle beams to the highest density ever produced, collective radiation mechanisms capable of generating high-brightness x-ray beams, collective refraction of particles at a plasma interface, and acceleration of intense proton beams from laser-irradiated foils.

  4. Water landing characteristics of a model of a winged reentry vehicle

    NASA Technical Reports Server (NTRS)

    Stubbs, S. M.

    1972-01-01

    Proposed manned space shuttle vehicles are expected to land on airport runways. In an emergency situation, however, the vehicle may be required to land on water. A 1/10-scale dynamic model of a winged reentry vehicle was investigated to determine the water landing characteristics. Two configurations of the proposed vehicle were studied. Configuration 1 had a 30 deg negative dihedral of the stabilizer-elevon surface whereas configuration 2 had a 30 deg positive dihedral. Results indicate that the maximum normal accelerations for configurations 1 and 2 when landing in calm water were approximately 8g and 6g, respectively, and the maximum longitudinal accelerations were approximately 5g and 3g, respectively. A small hydroflap was needed to obtain satisfactory calm-water landings with configuration 2, whereas configuration 1 gave good landings without a hydroflap. All landings made in rough water resulted in unsatisfactory motions. For landings made in three different wave sizes, both configurations dived. The maximum normal accelerations for configurations 1 and 2 when landing in waves were -10.1g and -18.7g, respectively, and the maximum longitudinal accelerations for both configurations were approximately 13g.

  5. Investigation of acceleration characteristics of a single-spool turbojet engine

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L; Pack, George J

    1953-01-01

    Operation of a single-spool turbojet engine with constant exhaust-nozzle area was investigated at one flight condition. Data were obtained by subjecting the engine to approximate-step changes in fuel flow, and the information necessary to show the relations of acceleration to the sensed engine variables was obtained. These data show that maximum acceleration occurred prior to stall and surge. In the low end of the engine-speed range the margin was appreciable; in the high-speed end the margin was smaller but had not been completely defined by these data. Data involving acceleration as a function of speed, fuel flow, turbine-discharge temperature, compressor-discharge pressure, and thrust have been presented and an effort has been made to show how a basic control system could be improved by addition of an override in which the acceleration characteristic is used not only to prevent the engine from entering the surge region but also to obtain acceleration along the maximum acceleration line during throttle bursts.

  6. 14 CFR 23.65 - Climb: All engines operating.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...-powered airplane of 6,000 pounds or less maximum weight must have a steady climb gradient at sea level of... gradient of climb after takeoff of at least 4 percent with (1) Take off power on each engine; (2) The...

  7. Enhanced proton acceleration from an ultrathin target irradiated by laser pulses with plateau ASE.

    PubMed

    Wang, Dahui; Shou, Yinren; Wang, Pengjie; Liu, Jianbo; Li, Chengcai; Gong, Zheng; Hu, Ronghao; Ma, Wenjun; Yan, Xueqing

    2018-02-07

    We report a simulation study on proton acceleration driven by ultraintense laser pulses with normal contrast (10 7 -10 9 ) containing nanosecond plateau amplified spontaneous emission (ASE). It's found in hydrodynamic simulations that if the thickness of the targets lies in the range of hundreds nanometer matching the intensity and duration of ASE, the ablation pressure would push the whole target in the forward direction with speed exceeding the expansion velocity of plasma, resulting in a plasma density profile with a long extension at the target front and a sharp gradient at the target rear. When the main pulse irradiates the plasma, self-focusing happens at the target front, producing highly energetic electrons through direct laser acceleration(DLA) building the sheath field. The sharp plasma gradient at target rear ensures a strong sheath field. 2D particle-in-cell(PIC) simulations reveal that the proton energy can be enhanced by a factor of 2 compared to the case of using micrometer-thick targets.

  8. RF critical field measurement of MgB2 thin films coated on Nb

    NASA Astrophysics Data System (ADS)

    Tajima, T.; Eremeev, G.; Zou, G.; Dolgashev, V.; Martin, D.; Nantista, C.; Tantawi, S.; Yoneda, C.; Moeckly, B. H.; Campisi, I.

    2010-06-01

    Niobium (Nb) Superconducting RF (SRF) cavities have been used or will be used for a number of particle accelerators. The fundamental limit of the accelerating gradient has been thought to be around 50 MV/m due to its RF critical magnetic field of around 200 mT. This limit will prevent new projects requiring higher gradient and compact accelerators from considering SRF structures. There is a theory, however, that promises to overcome this limitation by coating thin (less than the penetration depth) superconductors on Nb. We initiated measurements of critical magnetic fields of Nb coated with various thin film superconductors, starting with MgB2 films deposited using reactive evaporation technique, with the goal to apply this coating to SRF cavities. This paper will present first test results of the RF critical magnetic field of a system consisting of a 10 nm B and a 100 nm MgB2 films deposited on a chemically polished 2-inch single grain Nb substrate.

  9. Directionality of Flare-Accelerated Particles from γ -ray Lines

    NASA Astrophysics Data System (ADS)

    Share, G. H.; Murphy, R. J.

    2000-05-01

    The energies and widths of γ -ray lines emitted by ambient nuclei excited by flare-accelerated protons and α -particles provide information on their directionality, spectra, and on the uniformity of the interaction region. For example, the γ -rays observed from a downward beam of particles impacting at 0o heliocentric angle would exhibit a clear Doppler red-shift and some broadening, dependent on the spectrum of the particles. In contrast, γ -rays observed from the same beam of particles impacting at 90o would be neither observably shifted nor broadened. We have studied the energies and widths of strong lines from de-excitations of 20Ne, 12C, and 16O in solar flares as a function of heliocentric angle. We use spectra from 21 flares observed with NASA's Solar Maximum Mission/GRS and Compton Observatory/OSSE experiments. The line energies of all three nuclei exhibit ~0.9% red-shifts from their laboratory values for flares observed at heliocentric angles <40o. In contrast, the energies are not significantly shifted for flares observed at angles >80o. The lines at all heliocentric angles are broadened between ~2.5% to 4%. These results are suggestive of a broad downward distribution of accelerated particles in flares or an isotropic distribution in a medium that has a significant density gradient. Detailed comparisons of these data with results from the gamma-ray production code (Ramaty, et al. 1979, ApJS, 40, 487; Murphy, et al. 1991, ApJ, 371, 793) are required in order to place constraints on the angular distributions of particles. This research has been supported by NASA grant W-18995.

  10. Ionosphere Threat Model Investigations by Using Turkish National Permanent GPS Network

    NASA Astrophysics Data System (ADS)

    Köroǧlu, Meltem; Arikan, Feza; Koroglu, Ozan

    2016-07-01

    Global Positioning System (GPS) signal realibity may decrease significantly due to the variable electron density structure of ionosphere. In the literature, ionospheric disturbance is modeled as a linear semi-definite wave which has width, gradient and a constant velocity. To provide precise positioning, Ground Based Augmentation Systems (GBAS) are used. GBAS collects all measurements from GPS network receivers and computes an integrity level for the measurement by comparing the network GPS receivers measurements with the threat models of ionosphere. Threat models are computed according to ionosphere gradient characteristics. Gradient is defined as the difference of slant delays between the receivers. Slant delays are estimated from the STEC (Slant Total Electron Content) values of the ionosphere that is given by the line integral of the electron density between the receiver and GPS satellite. STEC can be estimated over Global Navigation Satellite System (GNSS) signals by using IONOLAB-STEC and IONOLAB-BIAS algorithms. Since most of the ionospheric disturbance observed locally, threat models for the GBAS systems must be extracted as locally. In this study, an automated ionosphere gradient estimation algorithm was developed by using Turkish National Permanent GPS Network (TNPGN-Active) data for year 2011. The GPS receivers are grouped within 150 km radius. For each region, for each day and for each satellite all STEC values are estimated by using IONOLAB-STEC and IONOLAB-BIAS softwares (www.ionolab.org). In the gradient estimation, station-pair method is used. Statistical properties of the valid gradients are extracted as tables for each region, day and satellite. By observing the histograms of the maximum gradients and standard deviations of the gradients with respect to the elevation angle for each day, the anomalies and disturbances of the ionosphere can be detected. It is observed that, maximum gradient estimates are less than 40 mm/km and maximum standard deviation of the gradients are observed as 5 mm/km. In the stormy days, the level of gradients and the standard deviation values becomes larger than those of quiet days. These observations may also form a basis for the estimationof velocity and width of the traveling ionospheric disturbances. The study is supported by TUBITAK 115E915 and Joint TUBITAK 114E092 and AS CR14/001 projects.

  11. Observation of multipactor suppression in a dielectric-loaded accelerating structure using an applied axial magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Konecny, R.; Antipov, S.

    2013-11-18

    Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures inmore » many accelerator applications.« less

  12. Review of new shapes for higher gradients

    NASA Astrophysics Data System (ADS)

    Geng, R. L.

    2006-07-01

    High-gradient superconducting RF (SRF) cavities are needed for energy frontier superconducting accelerators. Progress has been made over the past decades and the accelerating gradient Eacc has been increased from a few MV/m to ∼42 MV/m in SRF niobium cavities. The corresponding peak RF magnetic field Hpk on the niobium cavity surface is approaching the intrinsic RF critical magnetic field Hcrit,RF, a hard physical limit at which superconductivity breaks down. Pushing the gradient envelope further by adopting new cavity shapes with a lower ratio of Hpk/ Eacc has been recently proposed. For a reduced Hpk/ Eacc, a higher ultimate Eacc is sustained when Hpk finally strikes Hcrit,RF. The new cavity geometry include the re-entrant shape conceived at Cornell University and the so-called “Low-loss” shape proposed by a DESY/JLAB/KEK collaboration. Experimental work is being pursued at Cornell, KEK and JLAB. Results of single-cell cavities are encouraging. A record gradient of 47 MV/m was first demonstrated in a 1.3 GHz re-entrant niobium cavity at Cornell University. At the time of writing, a new record of 52 MV/m has been realized with another 1.3 GHz re-entrant cavity, designed and built at Cornell and processed and tested at KEK. Single-cell low-loss cavities have reached equally high gradients in the range of 45-51 MV/m at KEK and JLAB. Owing to their higher gradient potential and the encouraging single-cell cavity results, the new cavity shapes are becoming attractive for their possible use in the international linear collider (ILC). Experimental work on multi-cell niobium cavities of new shapes is currently under active exploration.

  13. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.

    PubMed

    Devés, R; Krupka, R M

    1987-01-01

    The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.

  14. Effect of Electropulsing-Assisted Ultrasonic Nanocrystalline Surface Modification on the Surface Mechanical Properties and Microstructure of Ti-6Al-4V Alloy

    NASA Astrophysics Data System (ADS)

    Ye, Yongda; Wang, Haibo; Tang, Guoyi; Song, Guolin

    2018-05-01

    The effect of electropulsing-assisted ultrasonic nanocrystalline surface modification (EP-UNSM) on surface mechanical properties and microstructure of Ti-6Al-4V alloy is investigated. Compared to conventional ultrasonic nanocrystalline surface modification (UNSM), EP-UNSM can effectively facilitate surface roughness and morphology, leading to excellent surface roughness (reduced from Ra 0.918 to Ra 0.028 μm by UNSM and Ra 0.019 μm by EP-UNSM) and smoother morphology with less cracks and defects. Surface friction coefficients are enhanced, resulting in lower and smoother friction coefficients. In addition, the surface-strengthened layer and ultra-refined grains are significantly enhanced with more severe plastic deformation and a greater surface hardness (a maximum hardness value of 407 HV and an effective depth of 550 μm, in comparison with the maximum hardness value of 364 HV and effective depth of 300 μm obtained by conventional UNSM). Remarkable enhancement of surface mechanical properties can be attributed to the refined gradient microstructure and the enhanced severe plastic deformation layer induced by coupling the effects of UNSM and electropulsing. The accelerated dislocation mobility and atom diffusion caused by the thermal and athermal effects of electropulsing treatment may be the primary intrinsic reasons for these improvements.

  15. Assessing women's lacrosse head impacts using finite element modelling.

    PubMed

    Clark, J Michio; Hoshizaki, T Blaine; Gilchrist, Michael D

    2018-04-01

    Recently studies have assessed the ability of helmets to reduce peak linear and rotational acceleration for women's lacrosse head impacts. However, such measures have had low correlation with injury. Maximum principal strain interprets loading curves which provide better injury prediction than peak linear and rotational acceleration, especially in compliant situations which create low magnitude accelerations but long impact durations. The purpose of this study was to assess head and helmet impacts in women's lacrosse using finite element modelling. Linear and rotational acceleration loading curves from women's lacrosse impacts to a helmeted and an unhelmeted Hybrid III headform were input into the University College Dublin Brain Trauma Model. The finite element model was used to calculate maximum principal strain in the cerebrum. The results demonstrated for unhelmeted impacts, falls and ball impacts produce higher maximum principal strain values than stick and shoulder collisions. The strain values for falls and ball impacts were found to be within the range of concussion and traumatic brain injury. The results also showed that men's lacrosse helmets reduced maximum principal strain for follow-through slashing, falls and ball impacts. These findings are novel and demonstrate that for high risk events, maximum principal strain can be reduced by implementing the use of helmets if the rules of the sport do not effectively manage such situations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Stochastic Models of Polymer Systems

    DTIC Science & Technology

    2016-01-01

    SECURITY CLASSIFICATION OF: The stochastic gradient decent algorithm is the now the "algorithm of choice" for very large machine learning problems...information about the behavior of the algorithm. At the same time, we were also able to formulate various acceleration techniques in precise math terms... gradient decent, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING

  17. Giant Peak Voltage of Thermopower Waves Driven by the Chemical Potential Gradient of Single-Crystalline Bi2 Te3.

    PubMed

    Singh, Swati; Mun, Hyeona; Lee, Sanghoon; Kim, Sung Wng; Baik, Seunghyun

    2017-09-01

    The self-propagating exothermic chemical reaction with transient thermovoltage, known as the thermopower wave, has received considerable attention recently. A greater peak voltage and specific power are still demanded, and materials with greater Seebeck coefficients have been previously investigated. However, this study employs an alternative mechanism of transient chemical potential gradient providing an unprecedentedly high peak voltage (maximum: 8 V; average: 2.3 V) and volume-specific power (maximum: 0.11 W mm -3 ; average: 0.04 W mm -3 ) using n-type single-crystalline Bi 2 Te 3 substrates. A mixture of nitrocellulose and sodium azide is used as a fuel, and ultraviolet photoelectron spectroscopy reveals a significant downshift in Fermi energy (≈5.09 eV) of the substrate by p-doping of the fuel. The induced electrical potential by thermopower waves has two distinct sources: the Seebeck effect and the transient chemical potential gradient. Surprisingly, the Seebeck effect contribution is less than 2.5% (≈201 mV) of the maximum peak voltage. The right combination of substrate, fuel doping, and anisotropic substrate geometry results in an order of magnitude greater transient chemical potential gradient (≈5.09 eV) upon rapid removal of fuel by exothermic chemical reaction propagation. The role of fuel doping and chemical potential gradient can be viewed as a key mechanism for enhanced heat to electric conversion performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Gradient induced liquid motion on laser structured black Si surfaces

    NASA Astrophysics Data System (ADS)

    Paradisanos, I.; Fotakis, C.; Anastasiadis, S. H.; Stratakis, E.

    2015-09-01

    This letter reports on the femtosecond laser fabrication of gradient-wettability micro/nano-patterns on Si surfaces. The dynamics of directional droplet spreading on the surface tension gradients developed is systematically investigated and discussed. It is shown that microdroplets on the patterned surfaces spread at a maximum speed of 505 mm/s, which is the highest velocity demonstrated so far for liquid spreading on a surface tension gradient in ambient conditions. The application of the proposed laser patterning technique for the precise fabrication of surface tension gradients for open microfluidic systems, liquid management in fuel cells, and drug delivery is envisaged.

  19. Temperature logging of groundwater in bedrock wells for geothermal gradient characterization in New Hampshire, 2012

    USGS Publications Warehouse

    Degnan, James; Barker, Gregory; Olson, Neil; Wilder, Leland

    2012-01-01

    Maximum groundwater temperatures at the bottom of the logs were between 11.7 and 17.3 degrees Celsius. Geothermal gradients were generally higher than typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 5 of the 10 wells studied but only obscured the portion of the geothermal gradient signal where groundwater actually flowed through the well. Temperature gradients varied by mapped bedrock type but can also vary by differences in mineralogy or rock type within the wells.

  20. A Study of Airplane Maneuvers with Special Reference to Angular Velocities

    NASA Technical Reports Server (NTRS)

    Reid, J E

    1923-01-01

    This investigation was undertaken by the National Advisory Committee for Aeronautics for the purpose of increasing our knowledge on the behavior of the airplane during various maneuvers and to obtain values of the maximum angular velocities and accelerations in flight. The method consisted in flying a JN4H airplane through various maneuvers while records were being taken of the control position, the air speed, the angular velocity and the acceleration along the Z axis. The results showed that the maximum angular velocity about the X axis of radians per second in a barrel roll. The maximum angular acceleration about the X axis of -2.10 radians per (second) to the 2nd power occurred in a spin, while the maximum about the Y axis was 1.40 radians per (second) to the 2nd power when pulling suddenly out of a dive. These results have direct application to the design of airplane parts, such as propeller shaft and instruments.

  1. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    NASA Astrophysics Data System (ADS)

    Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  2. Baseline tests of the power-train electric delivery van

    NASA Technical Reports Server (NTRS)

    Lumannick, S.; Dustin, M. O.; Bozek, J. M.

    1977-01-01

    Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.

  3. Iridium-Knife: Another knife in radiation oncology.

    PubMed

    Milickovic, Natasa; Tselis, Nikolaos; Karagiannis, Efstratios; Ferentinos, Konstantinos; Zamboglou, Nikolaos

    Intratarget dose escalation with superior conformity is a defining feature of three-dimensional (3D) iridium-192 ( 192 Ir) high-dose-rate (HDR) brachytherapy (BRT). In this study, we analyzed the dosimetric characteristics of interstitial 192 Ir HDR BRT for intrathoracic and cerebral malignancies. We examined the dose gradient sharpness of HDR BRT compared with that of linear accelerator-based stereotactic radiosurgery and stereotactic body radiation therapy, usually called X-Knife, to demonstrate that it may as well be called a Knife. Treatment plans for 10 patients with recurrent glioblastoma multiforme or intrathoracic malignancies, five of each entity, treated with X-Knife (stereotactic radiosurgery for glioblastoma multiforme and stereotactic body radiation therapy for intrathoracic malignancies) were replanned for simulated HDR BRT. For 3D BRT planning, we used identical structure sets and dose prescription as for the X-Knife planning. The indices for qualitative treatment plan analysis encompassed planning target volume coverage, conformity, dose falloff gradient, and the maximum dose-volume limits to different organs at risk. Volume coverage in HDR plans was comparable to that calculated for X-Knife plans with no statistically significant difference in terms of conformity. The dose falloff gradient-sharpness-of the HDR plans was considerably steeper compared with the X-Knife plans. Both 3D 192 Ir HDR BRT and X-Knife are effective means for intratarget dose escalation with HDR BRT achieving at least equal conformity and a steeper dose falloff at the target volume margin. In this sense, it can reasonably be argued that 3D 192 Ir HDR BRT deserves also to be called a Knife, namely Iridium-Knife. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Plasmon-driven acceleration in a photo-excited nanotube

    DOE PAGES

    Shin, Young -Min

    2017-02-21

    A plasmon-assisted channeling acceleration can be realized with a large channel, possibly at the nanometer scale. Carbon nanotubes (CNTs) are the most typical example of nano-channels that can confine a large number of channeled particles in a photon-plasmon coupling condition. This paper presents a theoretical and numerical study on the concept of high-field charge acceleration driven by photo-excited Luttinger-liquid plasmons in a nanotube. An analytic description of the plasmon-assisted laser acceleration is detailed with practical acceleration parameters, in particular, with the specifications of a typical tabletop femtosecond laser system. Lastly, the maximally achievable acceleration gradients and energy gains within dephasingmore » lengths and CNT lengths are discussed with respect to laser-incident angles and CNT-filling ratios.« less

  5. Gradient Material Strategies for Hydrogel Optimization in Tissue Engineering Applications

    PubMed Central

    2018-01-01

    Although a number of combinatorial/high-throughput approaches have been developed for biomaterial hydrogel optimization, a gradient sample approach is particularly well suited to identify hydrogel property thresholds that alter cellular behavior in response to interacting with the hydrogel due to reduced variation in material preparation and the ability to screen biological response over a range instead of discrete samples each containing only one condition. This review highlights recent work on cell–hydrogel interactions using a gradient material sample approach. Fabrication strategies for composition, material and mechanical property, and bioactive signaling gradient hydrogels that can be used to examine cell–hydrogel interactions will be discussed. The effects of gradients in hydrogel samples on cellular adhesion, migration, proliferation, and differentiation will then be examined, providing an assessment of the current state of the field and the potential of wider use of the gradient sample approach to accelerate our understanding of matrices on cellular behavior. PMID:29485612

  6. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    NASA Astrophysics Data System (ADS)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singer, W.; Singer, X.; Jelezov, I.

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  8. Hydroforming of elliptical cavities

    DOE PAGES

    Singer, W.; Singer, X.; Jelezov, I.; ...

    2015-02-27

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with resultsmore » of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients E acc up to 35 MV/m after buffered chemical polishing (BCP) and up to 42 MV/m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients E acc of 30–35 MV/m were measured after BCP and E acc up to 40 MV/m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of E acc = 30–35 MV/m. One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV/m. The advantages and disadvantages of hydroformed cavities are discussed in this paper.« less

  9. Hydroforming of elliptical cavities

    NASA Astrophysics Data System (ADS)

    Singer, W.; Singer, X.; Jelezov, I.; Kneisel, P.

    2015-02-01

    Activities of the past several years in developing the technique of forming seamless (weldless) cavity cells by hydroforming are summarized. An overview of the technique developed at DESY for the fabrication of single cells and multicells of the TESLA cavity shape is given and the major rf results are presented. The forming is performed by expanding a seamless tube with internal water pressure while simultaneously swaging it axially. Prior to the expansion the tube is necked at the iris area and at the ends. Tube radii and axial displacements are computer controlled during the forming process in accordance with results of finite element method simulations for necking and expansion using the experimentally obtained strain-stress relationship of tube material. In cooperation with industry different methods of niobium seamless tube production have been explored. The most appropriate and successful method is a combination of spinning or deep drawing with flow forming. Several single-cell niobium cavities of the 1.3 GHz TESLA shape were produced by hydroforming. They reached accelerating gradients Eacc up to 35 MV /m after buffered chemical polishing (BCP) and up to 42 MV /m after electropolishing (EP). More recent work concentrated on fabrication and testing of multicell and nine-cell cavities. Several seamless two- and three-cell units were explored. Accelerating gradients Eacc of 30 - 35 MV /m were measured after BCP and Eacc up to 40 MV /m were reached after EP. Nine-cell niobium cavities combining three three-cell units were completed at the company E. Zanon. These cavities reached accelerating gradients of Eacc=30 - 35 MV /m . One cavity is successfully integrated in an XFEL cryomodule and is used in the operation of the FLASH linear accelerator at DESY. Additionally the fabrication of bimetallic single-cell and multicell NbCu cavities by hydroforming was successfully developed. Several NbCu clad single-cell and double-cell cavities of the TESLA shape have been fabricated. The clad seamless tubes were produced using hot bonding or explosive bonding and subsequent flow forming. The thicknesses of Nb and Cu layers in the tube wall are about 1 and 3 mm respectively. The rf performance of the best NbCu clad cavities is similar to that of bulk Nb cavities. The highest accelerating gradient achieved was 40 MV /m . The advantages and disadvantages of hydroformed cavities are discussed in this paper.

  10. The effect of radio-frequency self bias on ion acceleration in expanding argon plasmas in helicon sources

    NASA Astrophysics Data System (ADS)

    Wiebold, Matthew D.

    Time-averaged plasma potential differences up to ˜ 165 V over several hundred Debye lengths are observed in low pressure (pn < 1 mTorr) expanding argon plasmas in the Madison Helicon Experiment. The potential gradient leads to ion acceleration exceeding Ei ≈ 7 kTe in some cases. Up to 1 kW of 13.56 MHz RF power is supplied to a half-turn, double-helix antenna in the presence of a nozzle magnetic field up to 1 kG. An RPA measures the IEDF and an emissive probe measures the plasma potential. Single and double probes measure the electron density and temperature. Two distinct mode hops, the capacitive-inductive (E-H) and inductive-helicon (H-W) transitions, are identified by jumps in electron density as RF power is increased. In the capacitive mode, large fluctuations of the plasma potential (Vp--p ≳ 140 V, Vp--p/Vp ≈ 150%) exist at the RF frequency, leading to formation of a self-bias voltage. The mobile electrons can flow from the upstream region during an RF cycle whereas ions cannot, leading to an initial imbalance of flux, and the self-bias voltage builds as a result. The plasma potential in the expansion chamber is held near the floating potential for argon (Vp ≈ 5kTe/e). In the capacitive mode, the ion acceleration is not well described by an ambipolar relation. The accelerated population decay is consistent with that predicted by charge-exchange collisions. Grounding the upstream endplate increases the self-bias voltage compared to a floating endplate. In the inductive and helicon modes, the ion acceleration more closely follows an ambipolar relation, a result of decreased capacitive coupling due to the decreased RF skin depth. The scaling of the potential gradient with the argon flow rate, magnetic field and RF power are investigated, with the highest potential gradients observed for the lowest flow rates in the capacitive mode. The magnitude of the self-bias voltage agrees well with that predicted for RF sheaths. Use of the self-bias effect in a plasma thruster is explored, possibly for a low thrust, high specific impulse mode in a multi-mode helicon thruster. This work could also explain similar potential gradients in expanding helicon plasmas that are ascribed to double layer formation in the literature.

  11. An overview of NSPCG: A nonsymmetric preconditioned conjugate gradient package

    NASA Astrophysics Data System (ADS)

    Oppe, Thomas C.; Joubert, Wayne D.; Kincaid, David R.

    1989-05-01

    The most recent research-oriented software package developed as part of the ITPACK Project is called "NSPCG" since it contains many nonsymmetric preconditioned conjugate gradient procedures. It is designed to solve large sparse systems of linear algebraic equations by a variety of different iterative methods. One of the main purposes for the development of the package is to provide a common modular structure for research on iterative methods for nonsymmetric matrices. Another purpose for the development of the package is to investigate the suitability of several iterative methods for vector computers. Since the vectorizability of an iterative method depends greatly on the matrix structure, NSPCG allows great flexibility in the operator representation. The coefficient matrix can be passed in one of several different matrix data storage schemes. These sparse data formats allow matrices with a wide range of structures from highly structured ones such as those with all nonzeros along a relatively small number of diagonals to completely unstructured sparse matrices. Alternatively, the package allows the user to call the accelerators directly with user-supplied routines for performing certain matrix operations. In this case, one can use the data format from an application program and not be required to copy the matrix into one of the package formats. This is particularly advantageous when memory space is limited. Some of the basic preconditioners that are available are point methods such as Jacobi, Incomplete LU Decomposition and Symmetric Successive Overrelaxation as well as block and multicolor preconditioners. The user can select from a large collection of accelerators such as Conjugate Gradient (CG), Chebyshev (SI, for semi-iterative), Generalized Minimal Residual (GMRES), Biconjugate Gradient Squared (BCGS) and many others. The package is modular so that almost any accelerator can be used with almost any preconditioner.

  12. Distributed Memory Parallel Computing with SEAWAT

    NASA Astrophysics Data System (ADS)

    Verkaik, J.; Huizer, S.; van Engelen, J.; Oude Essink, G.; Ram, R.; Vuik, K.

    2017-12-01

    Fresh groundwater reserves in coastal aquifers are threatened by sea-level rise, extreme weather conditions, increasing urbanization and associated groundwater extraction rates. To counteract these threats, accurate high-resolution numerical models are required to optimize the management of these precious reserves. The major model drawbacks are long run times and large memory requirements, limiting the predictive power of these models. Distributed memory parallel computing is an efficient technique for reducing run times and memory requirements, where the problem is divided over multiple processor cores. A new Parallel Krylov Solver (PKS) for SEAWAT is presented. PKS has recently been applied to MODFLOW and includes Conjugate Gradient (CG) and Biconjugate Gradient Stabilized (BiCGSTAB) linear accelerators. Both accelerators are preconditioned by an overlapping additive Schwarz preconditioner in a way that: a) subdomains are partitioned using Recursive Coordinate Bisection (RCB) load balancing, b) each subdomain uses local memory only and communicates with other subdomains by Message Passing Interface (MPI) within the linear accelerator, c) it is fully integrated in SEAWAT. Within SEAWAT, the PKS-CG solver replaces the Preconditioned Conjugate Gradient (PCG) solver for solving the variable-density groundwater flow equation and the PKS-BiCGSTAB solver replaces the Generalized Conjugate Gradient (GCG) solver for solving the advection-diffusion equation. PKS supports the third-order Total Variation Diminishing (TVD) scheme for computing advection. Benchmarks were performed on the Dutch national supercomputer (https://userinfo.surfsara.nl/systems/cartesius) using up to 128 cores, for a synthetic 3D Henry model (100 million cells) and the real-life Sand Engine model ( 10 million cells). The Sand Engine model was used to investigate the potential effect of the long-term morphological evolution of a large sand replenishment and climate change on fresh groundwater resources. Speed-ups up to 40 were obtained with the new PKS solver.

  13. A novel accelerated in vitro release method to evaluate the release of thymopentin from PLGA microspheres.

    PubMed

    Xie, Xiangyang; Li, Zhiping; Zhang, Ling; Chi, Qiang; Yang, Yanfang; Zhang, Hui; Yang, Yang; Mei, Xingguo

    2015-01-01

    A novel accelerated method of good correlations with "real-time" release to evaluate in vitro thymopentin release from poly (D, L-lactide-co-glycolide) (PLGA) microsphere was developed. Thymopentin-loaded microspheres were made from three types of PLGA, and peptide release was studied in various conditions. Incomplete release of peptide (<60%) from microspheres was found in accelerated testing with two typical release media. This problem was circumvented by adding organic solvents to the release media and varying the temperature in the media heating process. Release media containing three kinds of organic solvents at 50 °C were tested, respectively, and hydro-alcoholic solution was selected for further study. After the surfactant concentration (0.06%, W/V) and ethanol concentration (20%, V/V) were fixed, a gradient heating program, consisting of three stages and each stage with a different temperature, was introduced to enhance the correlations between the short- and long-term release. After adjusting the heating time of each stage, a good correlation (R(2) = 9896, formulation 8 K; R(2) = 0.9898, formulation 13 K; R(2) = 0.9886, formulation 28 K) between accelerated and "real-time" release was obtained. By optimizing the conditions as ethanol concentration and temperature gradients, this accelerated method may be appropriate for similar peptide formulations that not well correlate with "real-time" release.

  14. Investigation of in-house superconducting radio-frequency 9-cell cavity made of large grain niobium at KEK

    NASA Astrophysics Data System (ADS)

    Dohmae, Takeshi; Umemori, Kensei; Yamanaka, Masashi; Watanabe, Yuichi; Inoue, Hitoshi

    2017-12-01

    The first in-house, 9-cell, superconducting radio-frequency cavity made of large grain Nb was fabricated at KEK. Some characteristic techniques were employed for the fabrication that were not used for fine grain (FG) Nb. Even though a penetrated hole was created during electron beam welding, it was successfully repaired and did not affect the cavity performance. The completed cavity then underwent vertical tests (VTs) via several surface treatment processes. A defect that caused quenches was found after a VT at 25 mm from the equator where the typical local grinding machine developed at KEK could not be utilized. A new local grinding machine using a 3D printer was thus developed for the first time, and it completely removed this defect. Finally, the cavity achieved a maximum Q0 value of 3.8 ×1010 and accelerating gradient of 38 MV/m. The obtained Q0 value is about 1.5 times higher than that for the KEK in-house FG cavity.

  15. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient.

    PubMed

    Sahai, Aakash A; Tsung, Frank S; Tableman, Adam R; Mori, Warren B; Katsouleas, Thomas C

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. Fluids 13, 472 (1970); Max and Perkins, Phys. Rev. Lett. 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. Fluids 14, 371 (1971); Silva et al., Phys. Rev. E 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca et al., Lect. Note Comput. Sci. 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber et al., Phys. Rev. Lett. 97, 045005 (2006); Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004); Silva et al., Phys. Rev. Lett. 92, 015002 (2004); Fiuza et al., Phys. Rev. Lett. 109, 215001 (2012)].

  16. On the maximum energy of shock-accelerated cosmic rays at ultra-relativistic shocks

    NASA Astrophysics Data System (ADS)

    Reville, B.; Bell, A. R.

    2014-04-01

    The maximum energy to which cosmic rays can be accelerated at weakly magnetised ultra-relativistic shocks is investigated. We demonstrate that for such shocks, in which the scattering of energetic particles is mediated exclusively by ion skin-depth scale structures, as might be expected for a Weibel-mediated shock, there is an intrinsic limit on the maximum energy to which particles can be accelerated. This maximum energy is determined from the requirement that particles must be isotropized in the downstream plasma frame before the mean field transports them far downstream, and falls considerably short of what is required to produce ultra-high-energy cosmic rays. To circumvent this limit, a highly disorganized field is required on larger scales. The growth of cosmic ray-induced instabilities on wavelengths much longer than the ion-plasma skin depth, both upstream and downstream of the shock, is considered. While these instabilities may play an important role in magnetic field amplification at relativistic shocks, on scales comparable to the gyroradius of the most energetic particles, the calculated growth rates have insufficient time to modify the scattering. Since strong modification is a necessary condition for particles in the downstream region to re-cross the shock, in the absence of an alternative scattering mechanism, these results imply that acceleration to higher energies is ruled out. If weakly magnetized ultra-relativistic shocks are disfavoured as high-energy particle accelerators in general, the search for potential sources of ultra-high-energy cosmic rays can be narrowed.

  17. A Study of the Response of the Human Cadaver Head to Impact

    PubMed Central

    Hardy, Warren N.; Mason, Matthew J.; Foster, Craig D.; Shah, Chirag S.; Kopacz, James M.; Yang, King H.; King, Albert I.; Bishop, Jennifer; Bey, Michael; Anderst, William; Tashman, Scott

    2008-01-01

    High-speed biplane x-ray and neutral density targets were used to examine brain displacement and deformation during impact. Relative motion, maximum principal strain, maximum shear strain, and intracranial pressure were measured in thirty-five impacts using eight human cadaver head and neck specimens. The effect of a helmet was evaluated. During impact, local brain tissue tends to keep its position and shape with respect to the inertial frame, resulting in relative motion between the brain and skull and deformation of the brain. The local brain motions tend to follow looping patterns. Similar patterns are observed for impact in different planes, with some degree of posterior-anterior and right-left symmetry. Peak coup pressure and pressure rate increase with increasing linear acceleration, but coup pressure pulse duration decreases. Peak average maximum principal strain and maximum shear are on the order of 0.09 for CFC 60 Hz data for these tests. Peak average maximum principal strain and maximum shear increase with increasing linear acceleration, coup pressure, and coup pressure rate. Linear and angular acceleration of the head are reduced with use of a helmet, but strain increases. These results can be used for the validation of finite element models of the human head. PMID:18278591

  18. The Feasibility of Railgun Horizontal-Launch Assist

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.; Cox, Robert B.

    2011-01-01

    Railguns typically operate for a few milliseconds, supplying thousands of G's of acceleration to a small projectile, resulting in exceptional speeds. This paper argues through analysis and experiment, that this "standard" technology can be modified to provide 2-3 G's acceleration to a relatively heavy launch vehicle for a time period exceeding several seconds, yielding a launch assist velocity in excess of Mach 1. The key insight here is that an efficient rail gun operates at a speed approximately given by the system resistance divided by the inductance gradient, which can be tailored because recent MOSFET and ultra-capacitor advances allow very low total power supply resistances with high capacitance and augmented railgun architectures provide a scalable inductance gradient. Consequently, it should now be possible to construct a horizontal launch assist system utilizing railgun based architecture.

  19. Electron temperature gradient scale at collisionless shocks.

    PubMed

    Schwartz, Steven J; Henley, Edmund; Mitchell, Jeremy; Krasnoselskikh, Vladimir

    2011-11-18

    Shock waves are ubiquitous in space and astrophysics. They transform directed flow energy into thermal energy and accelerate energetic particles. The energy repartition is a multiscale process related to the spatial and temporal structure of the electromagnetic fields within the shock layer. While large scale features of ion heating are known, the electron heating and smaller scale fields remain poorly understood. We determine for the first time the scale of the electron temperature gradient via electron distributions measured in situ by the Cluster spacecraft. Half of the electron heating coincides with a narrow layer several electron inertial lengths (c/ω(pe)) thick. Consequently, the nonlinear steepening is limited by wave dispersion. The dc electric field must also vary over these small scales, strongly influencing the efficiency of shocks as cosmic ray accelerators.

  20. Analysis of the accelerated crucible rotation technique applied to the gradient freeze growth of cadmium zinc telluride

    NASA Astrophysics Data System (ADS)

    Divecha, Mia S.; Derby, Jeffrey J.

    2017-06-01

    We employ finite-element modeling to assess the effects of the accelerated crucible rotation technique (ACRT) on cadmium zinc telluride (CZT) crystals grown from a gradient freeze system. Via consideration of tellurium segregation and transport, we show, for the first time, that steady growth from a tellurium-rich melt produces persistent undercooling in front of the growth interface, likely leading to morphological instability. The application of ACRT rearranges melt flows and tellurium transport but, in contrast to conventional wisdom, does not altogether eliminate undercooling of the melt. Rather, a much more complicated picture arises, where spatio-temporal realignment of undercooled melt may act to locally suppress instability. A better understanding of these mechanisms and quantification of their overall effects will allow for future growth optimization.

  1. Research for the Fluid Field of the Centrifugal Compressor Impeller in Accelerating Startup

    NASA Astrophysics Data System (ADS)

    Li, Xiaozhu; Chen, Gang; Zhu, Changyun; Qin, Guoliang

    2013-03-01

    In order to study the flow field in the impeller in the accelerating start-up process of centrifugal compressor, the 3-D and 1-D transient accelerated flow governing equations along streamline in the impeller of the centrifugal compressor are derived in detail, the assumption of pressure gradient distribution is presented, and the solving method for 1-D transient accelerating flow field is given based on the assumption. The solving method is achieved by programming and the computing result is obtained. It is obtained by comparison that the computing method is met with the test result. So the feasibility and effectiveness for solving accelerating start-up problem of centrifugal compressor by the solving method in this paper is proven.

  2. Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks

    NASA Astrophysics Data System (ADS)

    Malkov, Mikhail; Diamond, Patrick

    2008-11-01

    Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.

  3. The Effects of a Maximal Power Training Cycle on the Strength, Maximum Power, Vertical Jump Height and Acceleration of High-Level 400-Meter Hurdlers

    PubMed Central

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos Mª; del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-01-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=−2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=−1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=−1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=−1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers. PMID:23717361

  4. The effects of a maximal power training cycle on the strength, maximum power, vertical jump height and acceleration of high-level 400-meter hurdlers.

    PubMed

    Balsalobre-Fernández, Carlos; Tejero-González, Carlos M; Del Campo-Vecino, Juan; Alonso-Curiel, Dionisio

    2013-03-01

    The aim of this study was to determine the effects of a power training cycle on maximum strength, maximum power, vertical jump height and acceleration in seven high-level 400-meter hurdlers subjected to a specific training program twice a week for 10 weeks. Each training session consisted of five sets of eight jump-squats with the load at which each athlete produced his maximum power. The repetition maximum in the half squat position (RM), maximum power in the jump-squat (W), a squat jump (SJ), countermovement jump (CSJ), and a 30-meter sprint from a standing position were measured before and after the training program using an accelerometer, an infra-red platform and photo-cells. The results indicated the following statistically significant improvements: a 7.9% increase in RM (Z=-2.03, p=0.021, δc=0.39), a 2.3% improvement in SJ (Z=-1.69, p=0.045, δc=0.29), a 1.43% decrease in the 30-meter sprint (Z=-1.70, p=0.044, δc=0.12), and, where maximum power was produced, a change in the RM percentage from 56 to 62% (Z=-1.75, p=0.039, δc=0.54). As such, it can be concluded that strength training with a maximum power load is an effective means of increasing strength and acceleration in high-level hurdlers.

  5. Accurate pressure gradient calculations in hydrostatic atmospheric models

    NASA Technical Reports Server (NTRS)

    Carroll, John J.; Mendez-Nunez, Luis R.; Tanrikulu, Saffet

    1987-01-01

    A method for the accurate calculation of the horizontal pressure gradient acceleration in hydrostatic atmospheric models is presented which is especially useful in situations where the isothermal surfaces are not parallel to the vertical coordinate surfaces. The present method is shown to be exact if the potential temperature lapse rate is constant between the vertical pressure integration limits. The technique is applied to both the integration of the hydrostatic equation and the computation of the slope correction term in the horizontal pressure gradient. A fixed vertical grid and a dynamic grid defined by the significant levels in the vertical temperature distribution are employed.

  6. Validation of Modified Wine-Rack Thermal Design for Nickel-Hydrogen Batteries in Landsat-7 Spacecraft Thermal Vacuum Test and in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    1999-01-01

    A heritage wine-rack thermal/mechanical design for the nickel-hydrogen batteries was the baseline at the Landsat-7 Preliminary Design Review. An integrated thermal and power analysis of the batteries performed by the author in 1994 revealed that the maximum cell-to-cell gradient was 6.6 C. The author proposed modifying the heritage wine-rack design by enhancing heat conduction from cells to cells, and from cells to battery frame. At the 1995 Intersociety Energy Conversion Engineering Conference (IECEC), the author presented a paper on methods of modifying the wine-rack design. It showed that the modified wine-rack option, which uses a metallic filler, could reduce the maximum cell-to-cell temperature gradient to 1.30 C, and could also reduce the maximum cell temperature by as much as 80 C. That design concept was adopted by the Landsat7 Project Office, and a design change was made at the Critical Design Review. Results of the spacecraft thermal vacuum and thermal balance tests, and temperature data in flight show that the temperatures of the battery cells are very uniform. The maximum cell-to-cell gradient is 1.50 C. They validate the modified wine-rack thermal design.

  7. Does the Budyko curve reflect a maximum power state of hydrological systems? A backward analysis

    NASA Astrophysics Data System (ADS)

    Westhoff, M.; Zehe, E.; Archambeau, P.; Dewals, B.

    2015-08-01

    Almost all catchments plot within a small envelope around the Budyko curve. This apparent behaviour suggests that organizing principles may play a role in the evolution of catchments. In this paper we applied the thermodynamic principle of maximum power as the organizing principle. In a top-down approach we derived mathematical formulations of the relation between relative wetness and gradients driving runoff and evaporation for a simple one-box model. We did this in such a way that when the conductances are optimized with the maximum power principle, the steady state behaviour of the model leads exactly to a point on the Budyko curve. Subsequently we derived gradients that, under constant forcing, resulted in a Budyko curve following the asymptotes closely. With these gradients we explored the sensitivity of dry spells and dynamics in actual evaporation. Despite the simplicity of the model, catchment observations compare reasonably well with the Budyko curves derived with dynamics in rainfall and evaporation. This indicates that the maximum power principle may be used (i) to derive the Budyko curve and (ii) to move away from the empiricism in free parameters present in many Budyko functions. Future work should focus on better representing the boundary conditions of real catchments and eventually adding more complexity to the model.

  8. GRAPPA reconstructed wave-CAIPI MP-RAGE at 7 Tesla.

    PubMed

    Schwarz, Jolanda M; Pracht, Eberhard D; Brenner, Daniel; Reuter, Martin; Stöcker, Tony

    2018-04-16

    The aim of this project was to develop a GRAPPA-based reconstruction for wave-CAIPI data. Wave-CAIPI fully exploits the 3D coil sensitivity variations by combining corkscrew k-space trajectories with CAIPIRINHA sampling. It reduces artifacts and limits reconstruction induced spatially varying noise enhancement. The GRAPPA-based wave-CAIPI method is robust and does not depend on the accuracy of coil sensitivity estimations. We developed a GRAPPA-based, noniterative wave-CAIPI reconstruction algorithm utilizing multiple GRAPPA kernels. For data acquisition, we implemented a fast 3D magnetization-prepared rapid gradient-echo wave-CAIPI sequence tailored for ultra-high field application. The imaging results were evaluated by comparing the g-factor and the root mean square error to Cartesian CAIPIRINHA acquisitions. Additionally, to assess the performance of subcortical segmentations (calculated by FreeSurfer), the data were analyzed across five subjects. Sixteen-fold accelerated whole brain magnetization-prepared rapid gradient-echo data (1 mm isotropic resolution) were acquired in 40 seconds at 7T. A clear improvement in image quality compared to Cartesian CAIPIRINHA sampling was observed. For the chosen imaging protocol, the results of 16-fold accelerated wave-CAIPI acquisitions were comparable to results of 12-fold accelerated Cartesian CAIPIRINHA. In comparison to the originally proposed SENSitivity Encoding reconstruction of Wave-CAIPI data, the GRAPPA approach provided similar image quality. High-quality, wave-CAIPI magnetization-prepared rapid gradient-echo images can be reconstructed by means of a GRAPPA-based reconstruction algorithm. Even for high acceleration factors, the noniterative reconstruction is robust and does not require coil sensitivity estimations. By altering the aliasing pattern, ultra-fast whole-brain structural imaging becomes feasible. © 2018 International Society for Magnetic Resonance in Medicine.

  9. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  10. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  11. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  12. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... entrance to an estuary or river mouth that significantly restricts the movement of the salt water into and... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... estuary below that which is considered normal can affect the location and type of mixing thereby changing...

  13. Characterization of a commercial multileaf collimator used for intensity modulated radiation therapy.

    PubMed

    Low, D A; Sohn, J W; Klein, E E; Markman, J; Mutic, S; Dempsey, J F

    2001-05-01

    The characteristics of a commercial multileaf collimator (MLC) to deliver static and dynamic multileaf collimation (SMLC and DMLC, respectively) were investigated to determine their influence on intensity modulated radiation therapy (IMRT) treatment planning and quality assurance. The influence of MLC leaf positioning accuracy on sequentially abutted SMLC fields was measured by creating abutting fields with selected gaps and overlaps. These data were also used to measure static leaf positioning precision. The characteristics of high leaf-velocity DMLC delivery were measured with constant velocity leaf sequences starting with an open field and closing a single leaf bank. A range of 1-72 monitor units (MU) was used providing a range of leaf velocities. The field abutment measurements yielded dose errors (as a percentage of the open field max dose) of 16.7+/-0.7% mm(-1) and 12.8+/-0.7% mm(-1) for 6 MV and 18 MV photon beams, respectively. The MLC leaf positioning precision was 0.080+/-0.018 mm (single standard deviation) highlighting the excellent delivery hardware tolerances for the tested beam delivery geometry. The high leaf-velocity DMLC measurements showed delivery artifacts when the leaf sequence and selected monitor units caused the linear accelerator to move the leaves at their maximum velocity while modulating the accelerator dose rate to deliver the desired leaf and MU sequence (termed leaf-velocity limited delivery). According to the vendor, a unique feature to their linear accelerator and MLC is that the dose rate is reduced to provide the correct cm MU(-1) leaf velocity when the delivery is leaf-velocity limited. However, it was found that the system delivered roughly 1 MU per pulse when the delivery was leaf-velocity limited causing dose profiles to exhibit discrete steps rather than a smooth dose gradient. The root mean square difference between the steps and desired linear gradient was less than 3% when more than 4 MU were used. The average dose per MU was greater and less than desired for closing and opening leaf patterns, respectively, when the delivery was leaf-velocity limited. The results indicated that the dose delivery artifacts should be minor for most clinical cases, but limit the assumption of dose linearity when significantly reducing the delivered dose for dosimeter characterization studies or QA measurements.

  14. Geophysical logging of bedrock wells for geothermal gradient characterization in New Hampshire, 2013

    USGS Publications Warehouse

    Degnan, James R.; Barker, Gregory; Olson, Neil; Wilder, Leland

    2014-01-01

    Maximum groundwater temperatures at the bottom of the logs ranged from 11.2 to 15.4 degrees Celsius. Geothermal gradients were generally higher than those typically reported for other water wells in the United States. Some of the high gradients were associated with high natural gamma emissions. Groundwater flow was discernible in 4 of the 10 wells studied but only obscured the part of the geothermal gradient signal where groundwater actually flowed into, out of, or through the well. Temperature gradients varied by mapped bedrock type but can also vary by localized differences in mineralogy or rock type within the wells.

  15. Conjugate-gradient preconditioning methods for shift-variant PET image reconstruction.

    PubMed

    Fessler, J A; Booth, S D

    1999-01-01

    Gradient-based iterative methods often converge slowly for tomographic image reconstruction and image restoration problems, but can be accelerated by suitable preconditioners. Diagonal preconditioners offer some improvement in convergence rate, but do not incorporate the structure of the Hessian matrices in imaging problems. Circulant preconditioners can provide remarkable acceleration for inverse problems that are approximately shift-invariant, i.e., for those with approximately block-Toeplitz or block-circulant Hessians. However, in applications with nonuniform noise variance, such as arises from Poisson statistics in emission tomography and in quantum-limited optical imaging, the Hessian of the weighted least-squares objective function is quite shift-variant, and circulant preconditioners perform poorly. Additional shift-variance is caused by edge-preserving regularization methods based on nonquadratic penalty functions. This paper describes new preconditioners that approximate more accurately the Hessian matrices of shift-variant imaging problems. Compared to diagonal or circulant preconditioning, the new preconditioners lead to significantly faster convergence rates for the unconstrained conjugate-gradient (CG) iteration. We also propose a new efficient method for the line-search step required by CG methods. Applications to positron emission tomography (PET) illustrate the method.

  16. Gas cluster ion beam surface treatments for reducing field emission and breakdown of electrodes and SRF cavities

    NASA Astrophysics Data System (ADS)

    Swenson, D. R.; Wu, A. T.; Degenkolb, E.; Insepov, Z.

    2007-08-01

    Sub-micron-scale surface roughness and contamination cause field emission that can lead to high-voltage breakdown of electrodes, and these are limiting factors in the development of high gradient RF technology. We are studying various Gas Cluster Ion Beam (GCIB) treatments to smooth, clean, etch and/or chemically alter electrode surfaces to allow higher fields and accelerating gradients, and to reduce the time and cost of conditioning high-voltage electrodes. For this paper, we have processed Nb, stainless steel and Ti electrode materials using beams of Ar, O2, or NF3 + O2 clusters with accelerating potentials up to 35 kV. Using a scanning field emission microscope (SFEM), we have repeatedly seen a dramatic reduction in the number of field emission sites on Nb coupons treated with GCIB. Smoothing effects on stainless steel and Ti substrates, evaluated using SEM and AFM imaging, show that 200-nm-wide polishing scratch marks are greatly attenuated. A 150-mm diameter GCIB-treated stainless steel electrode has shown virtually no DC field emission current at gradients over 20 MV/m.

  17. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.

    PubMed

    Zhu, Xiuping; Kim, Taeyoung; Rahimi, Mohammad; Gorski, Christopher A; Logan, Bruce E

    2017-02-22

    Salinity gradient energy can be directly converted into electrical power by using reverse electrodialysis (RED) and other technologies, but reported power densities have been too low for practical applications. Herein, the RED stack performance was improved by using 2,6-dihydroxyanthraquinone and ferrocyanide as redox couples. These electrolytes were then used in a flow battery to produce an integrated RED stack and flow battery (RED-FB) system capable of capturing, storing, and discharging salinity gradient energy. Energy captured from the RED stack was discharged in the flow battery at a maximum power density of 3.0 kW m -2 -anode, which was similar to the flow batteries charged by electrical power and could be used for practical applications. Salinity gradient energy captured from the RED stack was recovered from the electrolytes as electricity with 30 % efficiency, and the maximum energy density of the system was 2.4 kWh m -3 -anolyte. The combined RED-FB system overcomes many limitations of previous approaches to capture, store, and use salinity gradient energy from natural or engineered sources. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Speed and convergence properties of gradient algorithms for optimization of IMRT.

    PubMed

    Zhang, Xiaodong; Liu, Helen; Wang, Xiaochun; Dong, Lei; Wu, Qiuwen; Mohan, Radhe

    2004-05-01

    Gradient algorithms are the most commonly employed search methods in the routine optimization of IMRT plans. It is well known that local minima can exist for dose-volume-based and biology-based objective functions. The purpose of this paper is to compare the relative speed of different gradient algorithms, to investigate the strategies for accelerating the optimization process, to assess the validity of these strategies, and to study the convergence properties of these algorithms for dose-volume and biological objective functions. With these aims in mind, we implemented Newton's, conjugate gradient (CG), and the steepest decent (SD) algorithms for dose-volume- and EUD-based objective functions. Our implementation of Newton's algorithm approximates the second derivative matrix (Hessian) by its diagonal. The standard SD algorithm and the CG algorithm with "line minimization" were also implemented. In addition, we investigated the use of a variation of the CG algorithm, called the "scaled conjugate gradient" (SCG) algorithm. To accelerate the optimization process, we investigated the validity of the use of a "hybrid optimization" strategy, in which approximations to calculated dose distributions are used during most of the iterations. Published studies have indicated that getting trapped in local minima is not a significant problem. To investigate this issue further, we first obtained, by trial and error, and starting with uniform intensity distributions, the parameters of the dose-volume- or EUD-based objective functions which produced IMRT plans that satisfied the clinical requirements. Using the resulting optimized intensity distributions as the initial guess, we investigated the possibility of getting trapped in a local minimum. For most of the results presented, we used a lung cancer case. To illustrate the generality of our methods, the results for a prostate case are also presented. For both dose-volume and EUD based objective functions, Newton's method far outperforms other algorithms in terms of speed. The SCG algorithm, which avoids expensive "line minimization," can speed up the standard CG algorithm by at least a factor of 2. For the same initial conditions, all algorithms converge essentially to the same plan. However, we demonstrate that for any of the algorithms studied, starting with previously optimized intensity distributions as the initial guess but for different objective function parameters, the solution frequently gets trapped in local minima. We found that the initial intensity distribution obtained from IMRT optimization utilizing objective function parameters, which favor a specific anatomic structure, would lead to a local minimum corresponding to that structure. Our results indicate that from among the gradient algorithms tested, Newton's method appears to be the fastest by far. Different gradient algorithms have the same convergence properties for dose-volume- and EUD-based objective functions. The hybrid dose calculation strategy is valid and can significantly accelerate the optimization process. The degree of acceleration achieved depends on the type of optimization problem being addressed (e.g., IMRT optimization, intensity modulated beam configuration optimization, or objective function parameter optimization). Under special conditions, gradient algorithms will get trapped in local minima, and reoptimization, starting with the results of previous optimization, will lead to solutions that are generally not significantly different from the local minimum.

  19. Tolerance of Snakes to Hypergravity

    NASA Technical Reports Server (NTRS)

    Lillywhite, H. B.; Ballard, R. E.; Hargens, A. R.

    1994-01-01

    Sensitivity of carotid blood flow to +Gz (head-to-tail) acceleration was studied in six species of snakes hypothesized to show varied adaptive cardiovascular responses to gravity. Blood flow in the proximal carotid artery was measured in 15 snakes before, during and following stepwise increments of +0.25Gz force produced on a 2.4 m diameter centrifuge. During centrifugation each snake was confined to a straight position within an individually- fitted acrylic tube with the head facing the center of rotation. We measured the centrifugal force at the tail of the snake in order to quantify the maximum intensity of force gradient promoting antero-posterior pooling of blood. Tolerance to increased gravity was quantified as the acceleration force at which carotid blood flow ceased. This parameter varied according to the gravitational adaptation of species defined by their ecology and behavior. At the extremes, carotid blood flow decreased in response to increasing gravity and approached zero near +1Gz in aquatic and ground-dwelling species, whereas in climbing species carotid flow was maintained at forces in excess of +2Gz. Surprisingly, tolerant (arboreal) species withstood hypergravic forces of +2 to +3 G. for periods up to 1 h without cessation of carotid blood flow or apparent loss of consciousness. Data suggest that relatively tight skin of the tolerant species provides a natural antigravity suit which is of prime importance in counteracting Gz stress on blood circulation.

  20. Towards real-time thermometry using simultaneous multislice MRI

    NASA Astrophysics Data System (ADS)

    Borman, P. T. S.; Bos, C.; de Boorder, T.; Raaymakers, B. W.; Moonen, C. T. W.; Crijns, S. P. M.

    2016-09-01

    MR-guided thermal therapies, such as high-intensity focused ultrasound (MRgHIFU) and laser-induced thermal therapy (MRgLITT) are increasingly being applied in oncology and neurology. MRI is used for guidance since it can measure temperature noninvasively based on the proton resonance frequency shift (PRFS). For therapy guidance using PRFS thermometry, high temporal resolution and large spatial coverage are desirable. We propose to use the parallel imaging technique simultaneous multislice (SMS) in combination with controlled aliasing (CAIPIRINHA) to accelerate the acquisition. We compare this with the sensitivity encoding (SENSE) acceleration technique. Two experiments were performed to validate that SMS can be used to increase the spatial coverage or the temporal resolution. The first was performed in agar gel using LITT heating and a gradient-echo sequence with echo-planar imaging (EPI), and the second was performed in bovine muscle using HIFU heating and a gradient-echo sequence without EPI. In both experiments temperature curves from an unaccelerated scan and from SMS, SENSE, and SENSE/SMS accelerated scans were compared. The precision was quantified by a standard deviation analysis of scans without heating. Both experiments showed a good agreement between the temperature curves obtained from the unaccelerated, and SMS accelerated scans, confirming that accuracy was maintained during SMS acceleration. The standard deviations of the temperature measurements obtained with SMS were significantly smaller than when SENSE was used, implying that SMS allows for higher acceleration. In the LITT and HIFU experiments SMS factors up to 4 and 3 were reached, respectively, with a loss of precision of less than a factor of 3. Based on these results we conclude that SMS acceleration of PRFS thermometry is a valuable addition to SENSE, because it allows for a higher temporal resolution or bigger spatial coverage, with a higher precision.

  1. Temporal Development of Auroral Acceleration Potentials: High-Altitude Evolutionary Sequences, Drivers and Consequences

    NASA Astrophysics Data System (ADS)

    Hull, A. J.; Wilber, M.; Chaston, C.; Bonnell, J.; Mozer, F.; McFadden, J.; Goldstein, M.; Fillingim, M.

    2007-12-01

    The region above the auroral acceleration region is an integral part of the auroral zone electrodynamic system. At these altitudes (≥ 3 Re) we find the source plasma and fields that determine acceleration processes occurring at lower altitudes, which play a key role in the transport of mass and energy into the ionosphere. Dynamic changes in these high-altitude regions can affect and/or control lower-altitude acceleration processes according to how field-aligned currents and specific plasma sources form and decay and how they are spatially distributed, and through magnetic configuration changes deeper in the magnetotail. Though much progress has been made, the time development and consequential effects of the high-altitude plasma and fields are still not fully understood. We present Cluster multi-point observations at key instances within and above the acceleration region (> 3 RE) of evolving auroral arc current systems. Results are presented from events occurring under different conditions, such as magnetospheric activity, associations with density depletions or gradients, and Alfvenic turbulence. A preliminary survey, primarily at or near the plasma sheet boundary, indicates quasi- static up-down current pair systems are at times associated with density depletions and other instances occur in association with density gradients. The data suggest that such quasi-static current systems may be evolving from structured Alfvenic current systems. We will discuss the temporal development of auroral acceleration potentials, plasma and currents, including quasi-static system formation from turbulent systems of structured Alfvenic field-aligned currents, density depletion and constituent reorganization of the source and ionospheric plasma that transpire in such systems. Of particular emphasis is how temporal changes in magnetospheric source plasma and fields affect the development of auroral acceleration potentials at lower altitudes.

  2. Coupling and decoupling of the accelerating units for pulsed synchronous linear accelerator

    NASA Astrophysics Data System (ADS)

    Shen, Yi; Liu, Yi; Ye, Mao; Zhang, Huang; Wang, Wei; Xia, Liansheng; Wang, Zhiwen; Yang, Chao; Shi, Jinshui; Zhang, Linwen; Deng, Jianjun

    2017-12-01

    A pulsed synchronous linear accelerator (PSLA), based on the solid-state pulse forming line, photoconductive semiconductor switch, and high gradient insulator technologies, is a novel linear accelerator. During the prototype PSLA commissioning, the energy gain of proton beams was found to be much lower than expected. In this paper, the degradation of the energy gain is explained by the circuit and cavity coupling effect of the accelerating units. The coupling effects of accelerating units are studied, and the circuit topologies of these two kinds of coupling effects are presented. Two methods utilizing inductance and membrane isolations, respectively, are proposed to reduce the circuit coupling effects. The effectiveness of the membrane isolation method is also supported by simulations. The decoupling efficiency of the metal drift tube is also researched. We carried out the experiments on circuit decoupling of the multiple accelerating cavity. The result shows that both circuit decoupling methods could increase the normalized voltage.

  3. Application of superconducting magnesium diboride (MGB2) in superconducting radio frequency cavities

    NASA Astrophysics Data System (ADS)

    Tan, Teng

    The superconductivity in magnesium diboride (MgB2) was discovered in 2001. As a BCS superconductor, MgB2 has a record-high Tc of 39 K, high Jc of > 107 A/cm2 and no weak link behavior across the grain boundary. All these superior properties endorsed that MgB2 would have great potential in both power applications and electronic devices. In the past 15 years, MgB2 based power cables, microwave devices, and commercial MRI machines emerged and the next frontier are superconducting radio frequency (SRF) cavities. SRF cavities are one of the leading accelerator technologies. In SRF cavities, applied microwave power generates electrical fields that accelerate particle beams. Compared with other accelerator techniques, SRF cavity accelerators feature low loss, high acceleration gradients and the ability to accelerate continuous particle beams. However, current SRF cavities are made from high-purity bulk niobium and work at 2 K in superfluid helium. The construction and operational cost of SRF cavity accelerators are very expensive. The demand for SRF cavity accelerators has been growing rapidly in the past decade. Therefore, a lot of effort has been devoted to the enhancement of the performance and the reduction of cost of SRF cavities. In 2010, an acceleration gradient of over 50 MV/m has been reported for a Nb-based SRF cavity. The magnetic field at the inner surface of such a cavity is ~ 1700 Oe, which is close to the thermodynamic critical field of Nb. Therefore, new materials and technologies are required to raise the acceleration gradient of future SRF cavity accelerators. Among all the proposed approaches, using MgB2 thin films to coat the inner surface of SRF cavities is one of the promising tactics with the potential to raise both the acceleration gradient and the operation temperature of SRF cavity accelerators. In this work, I present my study on MgB2 thin films for their application in SRF cavities. C-epitaxial MgB2 thin films grown on SiC(0001) substrates showed Tc > 41 K and Jc > 107 A/cm2, which is superior to bulk MgB2 samples. Polycrystalline MgB2 thin films grown on metal substrates showed similar Tc and Jc compared with bulk samples, indicating MgB2 is suitable for coating a metal cavity. Large c-pitaxial MgB2 thin films were grown on 2-inch diameter c-sapphire wafers, showing our technique is capable of depositing large area samples. The lower critical field (Hc1) of MgB2 thin films was measured as well as it is know that bulk MgB2 has a small Hc1 and would suffer from vortex penetration at low magnetic fields. The penetrating magnetic vortices would result in loss in an applied RF field. However, due to the geometry barrier, thin film MgB2 would have a higher Hc1 than the bulk material. In my experiments, the Hc1 of MgB2 thin films increased with decreasing film thickness. At 5 K, a 100 nm epitaxial MgB2 thin film showed enhanced Hc1 ~ 1880 Oe, which is higher than Hc1 of Nb at 2 K. This showed that MgB2 coated SRF cavities have the potential to work at higher magnetic fields and higher temperature. Because the magnetic field distribution in the thin film Hc1 measurement is different from the magnetic field in a real SRF cavity, a few Nb ellipsoids were machined and coated with MgB2. The ellipsoid only has a magnetic field outside its surface and can serve as an inverse SRF cavity in the vortex penetration measurement. In the experiments, vortices penetrate into the bulk Nb ellipsoid at a magnetic field 400 Oe lower than the vortex penetration field of MgB2 coated Nb ellipsoids. This result confirmed our prediction that MgB2 coated SRF cavities could work at higher magnetic fields, thus producing higher acceleration gradients. In the last part of this thesis, I discussed how I used the dielectric resonator technique to measure the surface resistance (Rs) and Tc of MgB2 thin films. While the sensitivity of this technique was not high enough to lead to reliable Rs values, it can still serve for the determination of Tc for large area samples that are too bulky for other measurement systems.

  4. The Role of Nonlinear Gradients in Parallel Imaging: A k-Space Based Analysis.

    PubMed

    Galiana, Gigi; Stockmann, Jason P; Tam, Leo; Peters, Dana; Tagare, Hemant; Constable, R Todd

    2012-09-01

    Sequences that encode the spatial information of an object using nonlinear gradient fields are a new frontier in MRI, with potential to provide lower peripheral nerve stimulation, windowed fields of view, tailored spatially-varying resolution, curved slices that mirror physiological geometry, and, most importantly, very fast parallel imaging with multichannel coils. The acceleration for multichannel images is generally explained by the fact that curvilinear gradient isocontours better complement the azimuthal spatial encoding provided by typical receiver arrays. However, the details of this complementarity have been more difficult to specify. We present a simple and intuitive framework for describing the mechanics of image formation with nonlinear gradients, and we use this framework to review some the main classes of nonlinear encoding schemes.

  5. The NACA Impact Basin and Water Landing Tests of a Float Model at Various Velocities and Weights

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A

    1944-01-01

    The first data obtained in the United States under the controlled testing conditions necessary for establishing relationships among the numerous parameters involved when a float having both horizontal and vertical velocity contacts a water surface are presented. The data were obtained at the NACA impact basin. The report is confined to a presentation of the relationship between resultant velocity and impact normal acceleration for various float weights when all other parameters are constant. Analysis of the experimental results indicated that the maximum impact normal acceleration was proportional to the square of the resultant velocity, that increases in float weight resulted in decreases in the maximum impact normal acceleration, and that an increase in the flight-path angle caused increased impact normal acceleration.

  6. Generating a Simulated Fluid Flow over a Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2016-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using the gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and the gradient vector.

  7. Effect of temperature gradient on liquid-liquid phase separation in a polyolefin blend.

    PubMed

    Jiang, Hua; Dou, Nannan; Fan, Guoqiang; Yang, Zhaohui; Zhang, Xiaohua

    2013-09-28

    We have investigated experimentally the structure formation processes during phase separation via spinodal decomposition above and below the spinodal line in a binary polymer blend system exposed to in-plane stationary thermal gradients using phase contrast optical microscopy and temperature gradient hot stage. Below the spinodal line there is a coupling of concentration fluctuations and thermal gradient imposed by the temperature gradient hot stage. Also under the thermal gradient annealing phase-separated domains grow faster compared with the system under homogeneous temperature annealing on a zero-gradient or a conventional hot stage. We suggest that the in-plane thermal gradient accelerates phase separation through the enhancement in concentration fluctuations in the early and intermediate stages of spinodal decomposition. In a thermal gradient field, the strength of concentration fluctuation close to the critical point (above the spinodal line) is strong enough to induce phase separation even in one-phase regime of the phase diagram. In the presence of a temperature gradient the equilibrium phase diagrams are no longer valid, and the systems with an upper critical solution temperature can be quenched into phase separation by applying the stationary temperature gradient. The in-plane temperature gradient drives enhanced concentration fluctuations in a binary polymer blend system above and below the spinodal line.

  8. Generation of low-emittance electron beams in electrostatic accelerators for FEL applications

    NASA Astrophysics Data System (ADS)

    Chen, Teng; Elias, Luis R.

    1995-02-01

    This paper reports results of transverse emittance studies and beam propagation in electrostatic accelerators for free electron laser applications. In particular, we discuss emittance growth analysis of a low current electron beam system consisting of a miniature thermoionic electron gun and a National Electrostatics Accelerator (NEC) tube. The emittance growth phenomenon is discussed in terms of thermal effects in the electron gun cathode and aberrations produced by field gradient changes occurring inside the electron gun and throughout the accelerator tube. A method of reducing aberrations using a magnetic solenoidal field is described. Analysis of electron beam emittance was done with the EGUN code. Beam propagation along the accelerator tube was studied using a cylindrically symmetric beam envelope equation that included beam self-fields and the external accelerator fields which were derived from POISSON simulations.

  9. Parametric investigations of target normal sheath acceleration experiments

    NASA Astrophysics Data System (ADS)

    Zani, Alessandro; Sgattoni, Andrea; Passoni, Matteo

    2011-10-01

    One of the most important challenges related to laser-driven ion acceleration research is to actively control some important ion beam features. This is a peculiar topic in the light of future possible technological applications. In the present work we make use of one theoretical model for target normal sheath acceleration in order to reproduce recent experimental parametric studies about maximum ion energy dependencies on laser parameters. The key role played by pulse energy and intensity is enlightened. Finally the effective dependence of maximum ion energy on intensity is evaluated using a combined theoretical approach, obtained by means of an analytical and a particle-in-cell numerical investigation.

  10. Mechanisms of the intensification of the upwelling-favorable winds during El Niño 1997-1998 in the Peruvian upwelling system

    NASA Astrophysics Data System (ADS)

    Chamorro, Adolfo; Echevin, Vincent; Colas, François; Oerder, Vera; Tam, Jorge; Quispe-Ccalluari, Carlos

    2018-01-01

    The physical processes driving the wind intensification in a coastal band of 100 km off Peru during the intense 1997-1998 El Niño (EN) event were studied using a regional atmospheric model. A simulation performed for the period 1994-2000 reproduced the coastal wind response to local sea surface temperature (SST) forcing and large scale atmospheric conditions. The model, evaluated with satellite data, represented well the intensity, seasonal and interannual variability of alongshore (i.e. NW-SE) winds. An alongshore momentum budget showed that the pressure gradient was the dominant force driving the surface wind acceleration. The pressure gradient tended to accelerate the coastal wind, while turbulent vertical mixing decelerated it. A quasi-linear relation between surface wind and pressure gradient anomalies was found. Alongshore pressure gradient anomalies were caused by a greater increase in near-surface air temperature off the northern coast than off the southern coast, associated with the inhomogeneous SST warming. Vertical profiles of wind, mixing coefficient, and momentum trends showed that the surface wind intensification was not caused by the increase of turbulence in the planetary boundary layer. Moreover, the temperature inversion in the vertical mitigated the development of pressure gradient due to air convection during part of the event. Sensitivity experiments allowed to isolate the respective impacts of the local SST forcing and large scale condition on the coastal wind intensification. It was primarily driven by the local SST forcing whereas large scale variability associated with the South Pacific Anticyclone modulated its effects. Examination of other EN events using reanalysis data confirmed that intensifications of alongshore wind off Peru were associated with SST alongshore gradient anomalies, as during the 1997-1998 event.

  11. A technique for accelerating the convergence of restarted GMRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Jessup, E R; Manteuffel, T

    2004-03-09

    We have observed that the residual vectors at the end of each restart cycle of restarted GMRES often alternate direction in a cyclic fashion, thereby slowing convergence. We present a new technique for accelerating the convergence of restarted GMRES by disrupting this alternating pattern. The new algorithm resembles a full conjugate gradient method with polynomial preconditioning, and its implementation requires minimal changes to the standard restarted GMRES algorithm.

  12. Superconducting RF, the History, Challenges and Promise

    ScienceCinema

    Padamsee, Hasan

    2018-01-01

    After a short survey of on-going accelerator applications, I will discuss future applications prospects for this enabling technology, both near term and long term. A selection of technology highlights will serve as an introduction to outstanding issues for all types of applications, from pulsed high gradient to CW medium gradient. Finally I will touch upon the limits of niobium and the prospects of new materials. The talk will be targeted at a general audience.

  13. Design study of high gradient, low impedance accelerating structures for the FERMI free electron laser linac upgrade

    NASA Astrophysics Data System (ADS)

    Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.

    2017-09-01

    The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.

  14. Infrared modified gravity with propagating torsion: Instability of torsionfull de Sitter-like solutions

    NASA Astrophysics Data System (ADS)

    Nikiforova, Vasilisa; Damour, Thibault

    2018-06-01

    We continue the exploration of the consistency of a modified-gravity theory that generalizes general relativity by including a dynamical torsion in addition to the dynamical metric. The six-parameter theory we consider was found to be consistent around arbitrary torsionless Einstein backgrounds, in spite of its containing a (notoriously delicate) massive spin-2 excitation. At zero bare cosmological constant, this theory was found to admit a self-accelerating solution whose exponential expansion is sustained by a nonzero torsion background. The scalar-type perturbations of the latter torsionfull self-accelerating solution were recently studied and were found to preserve the number of propagating scalar degrees of freedom, but to exhibit, for some values of the torsion background, some exponential instabilities (of a rather mild type). Here, we study the tensor-type and vector-type perturbations of the torsionfull self-accelerating solution, and of its deformation by a nonzero bare cosmological constant. We find strong, "gradient" instabilities in the vector sector. No tuning of the parameters of the theory can kill these instabilities without creating instabilities in the other sectors. Further work is needed to see whether generic torsionfull backgrounds are prone to containing gradient instabilities, or if the instabilities we found are mainly due to the (generalized) self-accelerating nature of the special de Sitter backgrounds we considered.

  15. Elevation-dependent temperature trends in the Rocky Mountain Front Range: changes over a 56- and 20-year record.

    PubMed

    McGuire, Chris R; Nufio, César R; Bowers, M Deane; Guralnick, Robert P

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953-2008) and a shorter 20-year (1989-2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change.

  16. Landscape disequilibrium on 1000-10,000 year scales Marsyandi River, Nepal, central Himalaya

    NASA Astrophysics Data System (ADS)

    Pratt-Sitaula, Beth; Burbank, Douglas W.; Heimsath, Arjun; Ojha, Tank

    2004-03-01

    In an actively deforming orogen, maintenance of a topographic steady state requires that hillslope erosion, river incision, and rock uplift rates are balanced over timescales of 10 5-10 7 years. Over shorter times, <10 5 years, hillslope erosion and bedrock river incision rates fluctuate with changes in climate. On 10 4-year timescales, the Marsyandi River in the central Nepal Himalaya has oscillated between bedrock incision and valley alluviation in response to changes in monsoon intensity and sediment flux. Stratigraphy and 14C ages of fill terrace deposits reveal a major alluviation, coincident with a monsoonal maximum, ca. 50-35 ky BP. Cosmogenic 10Be and 26Al exposure ages define an alluviation and reincision event ca. 9-6 ky BP, also at a time of strong South Asian monsoons. The terrace deposits that line the Lesser Himalayan channel are largely composed of debris flows which originate in the Greater Himalayan rocks up to 40 km away. The terrace sequences contain many cubic kilometers of sediment, but probably represent only 2-8% of the sediments which flushed through the Marsyandi during the accumulation period. At ˜10 4-year timescales, maximum bedrock incision rates are ˜7 mm/year in the Greater Himalaya and ˜1.5 mm/year in the Lesser Himalayan Mahabarat Range. We propose a model in which river channel erosion is temporally out-of-phase with hillslope erosion. Increased monsoonal precipitation causes an increase in hillslope-derived sediment that overwhelms the transport capacity of the river. The resulting aggradation protects the bedrock channel from erosion, allowing the river gradient to steepen as rock uplift continues. When the alluvium is later removed and the bedrock channel re-exposed, bedrock incision rates probably accelerate beyond the long-term mean as the river gradient adjusts downward toward a more "equilibrium" profile. Efforts to document dynamic equilibrium in active orogens require quantification of rates over time intervals significantly exceeding the scale of these millennial fluctuations in rate.

  17. Elevation-Dependent Temperature Trends in the Rocky Mountain Front Range: Changes over a 56- and 20-Year Record

    PubMed Central

    McGuire, Chris R.; Nufio, César R.; Bowers, M. Deane; Guralnick, Robert P.

    2012-01-01

    Determining the magnitude of climate change patterns across elevational gradients is essential for an improved understanding of broader climate change patterns and for predicting hydrologic and ecosystem changes. We present temperature trends from five long-term weather stations along a 2077-meter elevational transect in the Rocky Mountain Front Range of Colorado, USA. These trends were measured over two time periods: a full 56-year record (1953–2008) and a shorter 20-year (1989–2008) record representing a period of widely reported accelerating change. The rate of change of biological indicators, season length and accumulated growing-degree days, were also measured over the 56 and 20-year records. Finally, we compared how well interpolated Parameter-elevation Regression on Independent Slopes Model (PRISM) datasets match the quality controlled and weather data from each station. Our results show that warming signals were strongest at mid-elevations over both temporal scales. Over the 56-year record, most sites show warming occurring largely through increases in maximum temperatures, while the 20-year record documents warming associated with increases in maximum temperatures at lower elevations and increases in minimum temperatures at higher elevations. Recent decades have also shown a shift from warming during springtime to warming in July and November. Warming along the gradient has contributed to increases in growing-degree days, although to differing degrees, over both temporal scales. However, the length of the growing season has remained unchanged. Finally, the actual and the PRISM interpolated yearly rates rarely showed strong correlations and suggest different warming and cooling trends at most sites. Interpretation of climate trends and their seasonal biases in the Rocky Mountain Front Range are dependent on both elevation and the temporal scale of analysis. Given mismatches between interpolated data and the directly measured station data, we caution against an over-reliance on interpolation methods for documenting local patterns of climatic change. PMID:22970205

  18. Evaluation of extreme ionospheric total electron content gradient associated with plasma bubbles for GNSS Ground-Based Augmentation System

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yoshihara, T.

    2017-08-01

    Associated with plasma bubbles, extreme spatial gradients in ionospheric total electron content (TEC) were observed on 8 April 2008 at Ishigaki (24.3°N, 124.2°E, +19.6° magnetic latitude), Japan. The largest gradient was 3.38 TECU km-1 (total electron content unit, 1 TECU = 1016 el m-2), which is equivalent to an ionospheric delay gradient of 540 mm km-1 at the GPS L1 frequency (1.57542 GHz). This value is confirmed by using multiple estimating methods. The observed value exceeds the maximum ionospheric gradient that has ever been observed (412 mm km-1 or 2.59 TECU km-1) to be associated with a severe magnetic storm. It also exceeds the assumed maximum value (500 mm km-1 or 3.08 TECU km-1) which was used to validate the draft international standard for Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS) to support Category II/III approaches and landings. The steepest part of this extreme gradient had a scale size of 5.3 km, and the front-normal velocities were estimated to be 71 m s-1 with a wavefront-normal direction of east-northeastward. The total width of the transition region from outside to inside the plasma bubble was estimated to be 35.3 km. The gradient of relatively small spatial scale size may fall between an aircraft and a GBAS ground subsystem and may be undetectable by both aircraft and ground.

  19. Ambipolar ion acceleration in an expanding magnetic nozzle

    NASA Astrophysics Data System (ADS)

    Longmier, Benjamin W.; Bering, Edgar A., III; Carter, Mark D.; Cassady, Leonard D.; Chancery, William J.; Díaz, Franklin R. Chang; Glover, Tim W.; Hershkowitz, Noah; Ilin, Andrew V.; McCaskill, Greg E.; Olsen, Chris S.; Squire, Jared P.

    2011-02-01

    The helicon plasma stage in the Variable Specific Impulse Magnetoplasma Rocket (VASIMR®) VX-200i device was used to characterize an axial plasma potential profile within an expanding magnetic nozzle region of the laboratory based device. The ion acceleration mechanism is identified as an ambipolar electric field produced by an electron pressure gradient, resulting in a local axial ion speed of Mach 4 downstream of the magnetic nozzle. A 20 eV argon ion kinetic energy was measured in the helicon source, which had a peak magnetic field strength of 0.17 T. The helicon plasma source was operated with 25 mg s-1 argon propellant and 30 kW of RF power. The maximum measured values of plasma density and electron temperature within the exhaust plume were 1 × 1020 m-3 and 9 eV, respectively. The measured plasma density is nearly an order of magnitude larger than previously reported steady-state helicon plasma sources. The exhaust plume also exhibits a 95% to 100% ionization fraction. The size scale and spatial location of the plasma potential structure in the expanding magnetic nozzle region appear to follow the size scale and spatial location of the expanding magnetic field. The thickness of the potential structure was found to be 104 to 105 λDe depending on the local electron temperature in the magnetic nozzle, many orders of magnitude larger than typical laboratory double layer structures. The background plasma density and neutral argon pressure were 1015 m-3 and 2 × 10-5 Torr, respectively, in a 150 m3 vacuum chamber during operation of the helicon plasma source. The agreement between the measured plasma potential and plasma potential that was calculated from an ambipolar ion acceleration analysis over the bulk of the axial distance where the potential drop was located is a strong confirmation of the ambipolar acceleration process.

  20. Simulation of launch and re-entry acceleration profiles for testing of shuttle and unmanned microgravity research payloads

    NASA Astrophysics Data System (ADS)

    Cassanto, J. M.; Ziserman, H. I.; Chapman, D. K.; Korszun, Z. R.; Todd, P.

    Microgravity experiments designed for execution in Get-Away Special canisters, Hitchhiker modules, and Reusable Re-entry Satellites will be subjected to launch and re-entry accelerations. Crew-dependent provisions for preventing acceleration damage to equipment or products will not be available for these payloads during flight; therefore, the effects of launch and re-entry accelerations on all aspects of such payloads must be evaluated prior to flight. A procedure was developed for conveniently simulating the launch and re-entry acceleration profiles of the Space Shuttle (3.3 and 1.7 × g maximum, respectively) and of two versions of NASA's proposed materials research Re-usable Re-entry Satellite (8 × g maximum in one case and 4 × g in the other). By using the 7 m centrifuge of the Gravitational Plant Physiology Laboratory in Philadelphia it was found possible to simulate the time dependence of these 5 different acceleration episodes for payload masses up to 59 kg. A commercial low-cost payload device, the “Materials Dispersion Apparatus” of Instrumentation Technology Associates was tested for (1) integrity of mechanical function, (2) retention of fluid in its compartments, and (3) integrity of products under simulated re-entry g-loads. In particular, the sharp rise from 1 g to maximum g-loading that occurs during re-entry in various unmanned vehicles was successfully simulated, conditions were established for reliable functioning of the MDA, and crystals of 5 proteins suspended in compartments filled with mother liquor were subjected to this acceleration load.

  1. CENTRIFUGAL SEPARATORS

    DOEpatents

    Skarstrom, C.

    1959-03-10

    A centrifugal separator is described for separating gaseous mixtures where the temperature gradients both longitudinally and radially of the centrifuge may be controlled effectively to produce a maximum separation of the process gases flowing through. Tbe invention provides for the balancing of increases and decreases in temperature in various zones of the centrifuge chamber as the result of compression and expansions respectively, of process gases and may be employed effectively both to neutralize harmful temperature gradients and to utilize beneficial temperaturc gradients within the centrifuge.

  2. Use of simple x-ray measurement in the performance analysis of cryogenic RF accelerator cavities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Dotson; M. Drury; R. May

    X-ray emission by radiofrequency (RF) resonant cavities has long been known to accelerator health physicists as a potentially serious source of radiation exposure. The authors points out the danger of klystrons and microwave cavities by stating that the radiation source term is erratic and may be unpredictable depending on microscopic surface conditions which change with time. He also states the x-ray output is a rapidly increasing function of RF input power. At Jefferson Lab, the RF cavities used to accelerate the electron beam employ superconducting technology. X-rays are emitted at high cavity gradients, and measurements of cavity x-rays are valuablemore » for health physics purposes and provide a useful diagnostic tool for assessing cavity performance. The quality factor (Q) for superconducting RF resonant cavities used at Jefferson Lab, is typically 5 x 10{sup 9} for the nominal design gradient of 5 MVm{sup {minus}1}. This large value for Q follows from the small resistive loss in superconducting technology. The operating frequency is 1,497 MHz. In the absence of beam, the input power for a cavity is typically 750 W and the corresponding dissipated power is 2.6 W. At 5 MWm{sup {minus}1}, the input power is 3 kW fully beam loaded. At higher gradients, performance degradation tends to occur due to the onset of electron field emission from defects in the cavity.« less

  3. The numerical evaluation of maximum-likelihood estimates of the parameters for a mixture of normal distributions from partially identified samples

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1976-01-01

    Likelihood equations determined by the two types of samples which are necessary conditions for a maximum-likelihood estimate were considered. These equations suggest certain successive approximations iterative procedures for obtaining maximum likelihood estimates. The procedures, which are generalized steepest ascent (deflected gradient) procedures, contain those of Hosmer as a special case.

  4. Influence of maneuverability on helicopter combat effectiveness

    NASA Technical Reports Server (NTRS)

    Falco, M.; Smith, R.

    1982-01-01

    A computational procedure employing a stochastic learning method in conjunction with dynamic simulation of helicopter flight and weapon system operation was used to derive helicopter maneuvering strategies. The derived strategies maximize either survival or kill probability and are in the form of a feedback control based upon threat visual or warning system cues. Maneuverability parameters implicit in the strategy development include maximum longitudinal acceleration and deceleration, maximum sustained and transient load factor turn rate at forward speed, and maximum pedal turn rate and lateral acceleration at hover. Results are presented in terms of probability of skill for all combat initial conditions for two threat categories.

  5. Autocalibrating motion-corrected wave-encoding for highly accelerated free-breathing abdominal MRI.

    PubMed

    Chen, Feiyu; Zhang, Tao; Cheng, Joseph Y; Shi, Xinwei; Pauly, John M; Vasanawala, Shreyas S

    2017-11-01

    To develop a motion-robust wave-encoding technique for highly accelerated free-breathing abdominal MRI. A comprehensive 3D wave-encoding-based method was developed to enable fast free-breathing abdominal imaging: (a) auto-calibration for wave-encoding was designed to avoid extra scan for coil sensitivity measurement; (b) intrinsic butterfly navigators were used to track respiratory motion; (c) variable-density sampling was included to enable compressed sensing; (d) golden-angle radial-Cartesian hybrid view-ordering was incorporated to improve motion robustness; and (e) localized rigid motion correction was combined with parallel imaging compressed sensing reconstruction to reconstruct the highly accelerated wave-encoded datasets. The proposed method was tested on six subjects and image quality was compared with standard accelerated Cartesian acquisition both with and without respiratory triggering. Inverse gradient entropy and normalized gradient squared metrics were calculated, testing whether image quality was improved using paired t-tests. For respiratory-triggered scans, wave-encoding significantly reduced residual aliasing and blurring compared with standard Cartesian acquisition (metrics suggesting P < 0.05). For non-respiratory-triggered scans, the proposed method yielded significantly better motion correction compared with standard motion-corrected Cartesian acquisition (metrics suggesting P < 0.01). The proposed methods can reduce motion artifacts and improve overall image quality of highly accelerated free-breathing abdominal MRI. Magn Reson Med 78:1757-1766, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  6. High-quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Li, Y.; Xia, G.; Lotov, K. V.; Sosedkin, A. P.; Hanahoe, K.; Mete-Apsimon, O.

    2017-10-01

    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate the efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with a preserved normalized emittance in a single channel of 700 m. This high-quality and high-charge beam may pave the way for the development of future plasma-based energy frontier colliders.

  7. Diffusive shock acceleration - Acceleration rate, magnetic-field direction and the diffusion limit

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.

    1992-01-01

    This paper reviews the concept of diffusive shock acceleration, showing that the acceleration of charged particles at a collisionless shock is a straightforward consequence of the standard cosmic-ray transport equation, provided that one treats the discontinuity at the shock correctly. This is true for arbitrary direction of the upstream magnetic field. Within this framework, it is shown that acceleration at perpendicular or quasi-perpendicular shocks is generally much faster than for parallel shocks. Paradoxically, it follows also that, for a simple scattering law, the acceleration is faster for less scattering or larger mean free path. Obviously, the mean free path can not become too large or the diffusion limit becomes inapplicable. Gradient and curvature drifts caused by the magnetic-field change at the shock play a major role in the acceleration process in most cases. Recent observations of the charge state of the anomalous component are shown to require the faster acceleration at the quasi-perpendicular solar-wind termination shock.

  8. Simulation of sloshing dynamics induced forces and torques actuated on dewar container driven by gravity gradient and jitter accelerations in microgravity

    NASA Technical Reports Server (NTRS)

    Hung, R. J.; Pan, H. L.

    1993-01-01

    Some experimental spacecraft use superconducting sensors for gyro read-out and so must be maintained at a very low temperature. The boil-off from the cryogenic liquid used to cool the sensors can also be used, as the Gravity Probe B (GP-B) spacecraft does, as propellant to maintain attitude control and drag-free operation of the spacecraft. The cryogenic liquid for such spacecraft is, however, susceptible to both slosh-like motion and non-axisymmetric configurations under the influence of various kinds of gravity jitter and gravity gradient accelerations. Hence, it is important to quantify the magnitude of the liquid-induced perturbations on the spacecraft. We use the example of the GP-B to investigate such perturbations by numerical simulations. For this spacecraft disturbances can be imposed on the liquid by atmospheric drag, spacecraft attitude control maneuvers, and the earth's gravity gradient. More generally, onboard machinery vibrations and crew motion can also create disturbances. Recent studies suggest that high frequency disturbances are relatively unimportant in causing liquid motions in comparison to low frequency ones. The results presented here confirm this conclusion. After an initial calibration period, the GP-B spacecraft rotates in orbit at 0.1 rpm about the tank symmetry axis. For this rotation rate, the equilibrium liquid free surface shape is a 'doughnut' configuration for all residual gravity levels of 10(exp -6) g(sub 0) or less, as shown by experiments and by numerical simulations; furthermore, the superfluid behavior of the 1.8 K liquid helium used in GP-B eliminates temperature gradients and therefore such effects as Marangoni convection do not have to be considered. Classical fluid dynamics theory is used as the basis of the numerical simulations here, since Mason's experiments show that the theory is applicable for cryogenic liquid helium in large containers. To study liquid responses to various disturbances, we investigate and simulate three levels of gravity jitter (10(exp -6), 10(exp -7), and 10(exp -8) g(sub 0)) each at three predominant frequencies (0.1, 1.0, and 10 Hz), combined with a gravity gradient appropriate for the GP-B orbit. Dynamical evolution of sloshing dynamics excited fluid forces and torque fluctuations exerted on the dewar container driven by the combined gravity gradient and jitter accelerations are also investigated and simulated.

  9. Evolution of a Planar Wake in Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  10. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Edstrom, D.; Halavanau, A.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  11. Experiment to Detect Accelerating Modes in a Photonic Bandgap Fiber

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    England, R.J.; /SLAC; Colby, E.R.

    An experimental effort is currently underway at the E-163 test beamline at Stanford Linear Accelerator Center to use a hollow-core photonic bandgap (PBG) fiber as a high-gradient laser-based accelerating structure for electron bunches. For the initial stage of this experiment, a 50pC, 60 MeV electron beam will be coupled into the fiber core and the excited modes will be detected using a spectrograph to resolve their frequency signatures in the wakefield radiation generated by the beam. They will describe the experimental plan and recent simulation studies of candidate fibers.

  12. Cost-Effective Fabrication of Wettability Gradient Copper Surface by Screen Printing and its Application to Condensation Heat Transfer

    NASA Astrophysics Data System (ADS)

    Leu, Tzong-Shyng; Huang, Hung-Ming; Huang, Ding-Jun

    2016-06-01

    In this paper, wettability gradient pattern is applied to condensation heat transfer on a copper tube surface. For this application, the vital issue is how to fabricate gradient patterns on a curve tube surface to accelerate the droplet collection efficiently. For this purpose, novel fabrication processes are developed to form wettability gradient patterns on a curve copper tube surface by using roller screen printing surface modification techniques. The roller screen printing surface modification techniques can easily realize wettability gradient surfaces with superhydrophobicity and superhydrophilicity on a copper tube surface. Experimental results show the droplet nucleation sites, movement and coalescence toward the collection areas can be effectively controlled which can assist in removing the condensation water from the surface. The effectiveness of droplet collection is appropriate for being applied to condensation heat transfer in the foreseeable future.

  13. The Effect of Temperature on Moisture Transport in Concrete.

    PubMed

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  14. Improving GOCE cross-track gravity gradients

    NASA Astrophysics Data System (ADS)

    Siemes, Christian

    2018-01-01

    The GOCE gravity gradiometer measured highly accurate gravity gradients along the orbit during GOCE's mission lifetime from March 17, 2009, to November 11, 2013. These measurements contain unique information on the gravity field at a spatial resolution of 80 km half wavelength, which is not provided to the same accuracy level by any other satellite mission now and in the foreseeable future. Unfortunately, the gravity gradient in cross-track direction is heavily perturbed in the regions around the geomagnetic poles. We show in this paper that the perturbing effect can be modeled accurately as a quadratic function of the non-gravitational acceleration of the satellite in cross-track direction. Most importantly, we can remove the perturbation from the cross-track gravity gradient to a great extent, which significantly improves the accuracy of the latter and offers opportunities for better scientific exploitation of the GOCE gravity gradient data set.

  15. The Effect of Temperature on Moisture Transport in Concrete

    PubMed Central

    Wang, Yao; Xi, Yunping

    2017-01-01

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460

  16. On the physics of electron ejection from laser-irradiated overdense plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thévenet, M.; Vincenti, H.; Faure, J.

    2016-06-15

    Using 1D and 2D PIC simulations, we describe and model the backward ejection of electron bunches when a laser pulse reflects off an overdense plasma with a short density gradient on its front side. The dependence on the laser intensity and gradient scale length is studied. It is found that during each laser period, the incident laser pulse generates a large charge-separation field, or plasma capacitor, which accelerates an attosecond bunch of electrons toward vacuum. This process is maximized for short gradient scale lengths and collapses when the gradient scale length is comparable to the laser wavelength. We develop amore » model that reproduces the electron dynamics and the dependence on laser intensity and gradient scale length. This process is shown to be strongly linked with high harmonic generation via the Relativistic Oscillating Mirror mechanism.« less

  17. Nonuniform discharge currents in active plasma lenses

    DOE PAGES

    van Tilborg, J.; Barber, S. K.; Tsai, H. -E.; ...

    2017-03-24

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  18. The influence of a high pressure gradient on unsteady velocity perturbations in the case of a turbulent supersonic flow

    NASA Technical Reports Server (NTRS)

    Dussauge, J. P.; Debieve, J. F.

    1980-01-01

    The amplification or reduction of unsteady velocity perturbations under the influence of strong flow acceleration or deceleration was studied. Supersonic flows with large velocity, pressure gradients, and the conditions in which the velocity fluctuations depend on the action of the average gradients of pressure and velocity rather than turbulence, are described. Results are analyzed statistically and interpreted as a return to laminar process. It is shown that this return to laminar implies negative values in the turbulence production terms for kinetic energy. A simple geometrical representation of the Reynolds stress production is given.

  19. Nonuniform discharge currents in active plasma lenses

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Geddes, C. G. R.; Gonsalves, A. J.; Schroeder, C. B.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2017-03-01

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  20. Generation of a wakefield undulator in plasma with transverse density gradient

    DOE PAGES

    Stupakov, Gennady V.

    2017-11-30

    Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.

  1. Generation of a wakefield undulator in plasma with transverse density gradient

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stupakov, Gennady V.

    Here, we show that a short relativistic electron beam propagating in a plasma with a density gradient perpendicular to the direction of motion generates a wakefield in which a witness bunch experiences a transverse force. A density gradient oscillating along the beam path would create a periodically varying force$-$an undulator, with an estimated strength of the equivalent magnetic field more than ten Tesla. This opens an avenue for creation of a high-strength, short-period undulators, which eventually may lead to all-plasma, free electron lasers where a plasma wakefield acceleration is naturally combined with a plasma undulator in a unifying, compact setup.

  2. Ditching Investigation of a 1/12-Scale Model of the Douglas F4D-1 Airplane, TED No. NACA DE 384

    NASA Technical Reports Server (NTRS)

    Windham, John O.

    1956-01-01

    A ditching investigation was made of a l/l2-scale dynamically similar model of the Douglas F4D-1 airplane to study its behavior when ditched. The model was landed in calm water at the Langley tank no. 2 monorail. Various landing attitudes, speeds, and configurations were investigated. The behavior of the model was determined from visual observations, acceleration records, and motion-picture records of the ditchings. Data are presented in tables, sequence photographs, time-history acceleration curves, and attitude curves. From the results of the investigation, it was concluded that the airplane should be ditched at the lowest speed and highest attitude consistent with adequate control (near 22 deg) with landing gear retracted. In a calm-water ditching under these conditions the airplane will probably nose in slightly, then make a fairly smooth run. The fuselage bottom will sustain appreciable damage so that rapid flooding and short flotation time are likely. Maximum longitudinal deceleration will be about 4g and maximum normal acceleration will be about 6g in a landing run of about 420 feet, In a calm-water ditching under similar conditions with the landing gear extended, the airplane will probably dive. Maximum longitudinal decelerations will be about 5-1/2g and maximum normal accelerations will be about 3-1/2g in a landing run of about 170 feet.

  3. The impact of summer rainfall on the temperature gradient along the United States-Mexico border

    NASA Technical Reports Server (NTRS)

    Balling, Robert C., Jr.

    1989-01-01

    The international border running through the Sonoran Desert in southern Arizona and northern Sonora is marked by a sharp discontinuity in albedo and grass cover. The observed differences in surface properties are a result of long-term, severe overgrazing of the Mexican lands. Recently, investigators have shown the Mexican side of the border to have higher surface and air temperatures when compared to adjacent areas in the United State. The differences in temperatures appear to be more associated with differential evapotranspiration rates than with albedo changes along the border. In this study, the impact of summer rainfall on the observed seasonal and daily gradient in maximum temperature is examined. On a seasonal time scale, the temperature gradient increases with higher moisture levels, probably due to a vegetative response on the United States' side of the border; at the daily level, the gradient in maximum temperature decreases after a rain event as evaporation rates equalize between the countries. The results suggest that temperature differences between vegetated and overgrazed landscapes in arid areas are highly dependent upon the amount of moisture available for evapotranspiration.

  4. Implications of the pion-decay gamma emission and neutron observations with CORONAS-F/SONG

    NASA Astrophysics Data System (ADS)

    Kurt, V.; Yushkov, B.; Kudela, K.

    2013-05-01

    We analyzed the high-energy gamma and neutron emissions observed by the SONG instrument onboard the CORONAS-F satellite during August 25, 2001, October 28, 2003, November 4, 2003, and January 20, 2005 solar flares. These flares produced neutrons and/or protons recorded near Earth. The SONG response was consistent with detection of the pion-decay gamma emission and neutrons in these events. We compared time profiles of various electromagnetic emissions and showed that the maximum of the pion-decay-emission coincided in time best of all with the soft X-ray derivative, dISXR/dt, maximum. We evaluated the energy of accelerated ions and compared it with the energy deposited by accelerated electrons. The ion energy becomes comparable or even higher than the electron energy from a certain step of flare development. So the time profile of dISXR/dt is a superposition of energy deposited by both fractions of accelerated particles. This result allowed us to use a time profile of dISXR/dt as a real proxy of time behavior of the energy release at least during major flare analysis. In particular the time interval when the dISXR/dt value exceeds 0.9 of its maximum can be used as a unified reference point for the calculations of time delay between the high-energy proton acceleration and GLE onset. Analysis of the total set of pion-decay emission observations shows that such temporal closeness of pion-decay emission maximum and the soft X-ray derivative maximum is typical but not obligatory.

  5. Generating a Simulated Fluid Flow Over an Aircraft Surface Using Anisotropic Diffusion

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L. (Inventor); Sturdza, Peter (Inventor)

    2013-01-01

    A fluid-flow simulation over a computer-generated aircraft surface is generated using a diffusion technique. The surface is comprised of a surface mesh of polygons. A boundary-layer fluid property is obtained for a subset of the polygons of the surface mesh. A pressure-gradient vector is determined for a selected polygon, the selected polygon belonging to the surface mesh but not one of the subset of polygons. A maximum and minimum diffusion rate is determined along directions determined using a pressure gradient vector corresponding to the selected polygon. A diffusion-path vector is defined between a point in the selected polygon and a neighboring point in a neighboring polygon. An updated fluid property is determined for the selected polygon using a variable diffusion rate, the variable diffusion rate based on the minimum diffusion rate, maximum diffusion rate, and angular difference between the diffusion-path vector and the pressure-gradient vector.

  6. Orbit correction in a linear nonscaling fixed field alternating gradient accelerator

    DOE PAGES

    Kelliher, D. J.; Machida, S.; Edmonds, C. S.; ...

    2014-11-20

    In a linear non-scaling FFAG the large natural chromaticity of the machine results in a betatron tune that varies by several integers over the momentum range. In addition, orbit correction is complicated by the consequent variation of the phase advance between lattice elements. Here we investigate how the correction of multiple closed orbit harmonics allows correction of both the COD and the accelerated orbit distortion over the momentum range.

  7. Modeling of Particle Acceleration at Multiple Shocks via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, L. Neergaard; Zank, G. P.

    2013-01-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box. We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (E(sub max)) appropriate for quasi-parallel and quasi-perpendicular shocks and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  8. The ultimate limits of the relativistic rocket equation. The Planck photon rocket

    NASA Astrophysics Data System (ADS)

    Haug, Espen Gaarder

    2017-07-01

    In this paper we look at the ultimate limits of a photon propulsion rocket. The maximum velocity for a photon propulsion rocket is just below the speed of light and is a function of the reduced Compton wavelength of the heaviest subatomic particles in the rocket. We are basically combining the relativistic rocket equation with Haug's new insight on the maximum velocity for anything with rest mass. An interesting new finding is that in order to accelerate any subatomic "fundamental" particle to its maximum velocity, the particle rocket basically needs two Planck masses of initial load. This might sound illogical until one understands that subatomic particles with different masses have different maximum velocities. This can be generalized to large rockets and gives us the maximum theoretical velocity of a fully-efficient and ideal rocket. Further, no additional fuel is needed to accelerate a Planck mass particle to its maximum velocity; this also might sound absurd, but it has a very simple and logical solution that is explained in this paper.

  9. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  10. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  11. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  12. Nonnegative least-squares image deblurring: improved gradient projection approaches

    NASA Astrophysics Data System (ADS)

    Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M.

    2010-02-01

    The least-squares approach to image deblurring leads to an ill-posed problem. The addition of the nonnegativity constraint, when appropriate, does not provide regularization, even if, as far as we know, a thorough investigation of the ill-posedness of the resulting constrained least-squares problem has still to be done. Iterative methods, converging to nonnegative least-squares solutions, have been proposed. Some of them have the 'semi-convergence' property, i.e. early stopping of the iteration provides 'regularized' solutions. In this paper we consider two of these methods: the projected Landweber (PL) method and the iterative image space reconstruction algorithm (ISRA). Even if they work well in many instances, they are not frequently used in practice because, in general, they require a large number of iterations before providing a sensible solution. Therefore, the main purpose of this paper is to refresh these methods by increasing their efficiency. Starting from the remark that PL and ISRA require only the computation of the gradient of the functional, we propose the application to these algorithms of special acceleration techniques that have been recently developed in the area of the gradient methods. In particular, we propose the application of efficient step-length selection rules and line-search strategies. Moreover, remarking that ISRA is a scaled gradient algorithm, we evaluate its behaviour in comparison with a recent scaled gradient projection (SGP) method for image deblurring. Numerical experiments demonstrate that the accelerated methods still exhibit the semi-convergence property, with a considerable gain both in the number of iterations and in the computational time; in particular, SGP appears definitely the most efficient one.

  13. Coupled transport of p-aminohippurate by rat kidney basolateral membrane vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pritchard, J.B.

    p-Aminohippuric acid (PAH) transport by basolateral membrane (BLM) vesicles isolated from rat renal cortex was stimulated very little by a Na{sup +} gradient (out > in). However, when micromolar concentrations of glutaric acid or {alpha}-ketoglutaric acid were added in the presence of a out > in Na{sup +} gradient, PAH uptake was accelerated >20-fold and an overshoot of greater than fivefold was produced. Other anions, e.g., fumarate, stimulated PAH uptake very modestly under these conditions, and that stimulation was totally prevented by short circuiting, i.e., with K{sup +} (in = out) and valinomycin. Glutarate-stimulated uptake was inhibited by 4-acetamide-4{prime}-({sup 14}C)-isothiocyanostilbene-2,2{prime}-disulfonicmore » acid (SITS) and probenecid and was slightly stimulated by the imposition of an inside-negative membrane potential. Furthermore, even in the absence of a Na{sup +} gradient, glutarate-loaded vesicles exhibited a marked acceleration of ({sup 3}H)-PAH uptake (5-fold) and a modest overshoot (2.5-fold). These results suggest an indirect coupling of BLM PAH uptake to the Na{sup +} gradient by a cyclic accumulation (Na{sup +}-dependent) of glutarate followed by its efflux from the vesicle in exchange for PAH. This coupled system was absent in apical membranes. Thus net secretory transport of PAH may entail Na{sup +}-dependent, glutarate-driven PAH uptake at the BLM, followed by the exit of PAH into the lumen down its electrochemical gradient, probably in exchange for other anions, e.g., {sup 36}Cl{sup {minus}}, HCO{sub 3}{sup {minus}}, or OH{sup {minus}}.« less

  14. An accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems using gradient-based diffusion and tau-leaping.

    PubMed

    Koh, Wonryull; Blackwell, Kim T

    2011-04-21

    Stochastic simulation of reaction-diffusion systems enables the investigation of stochastic events arising from the small numbers and heterogeneous distribution of molecular species in biological cells. Stochastic variations in intracellular microdomains and in diffusional gradients play a significant part in the spatiotemporal activity and behavior of cells. Although an exact stochastic simulation that simulates every individual reaction and diffusion event gives a most accurate trajectory of the system's state over time, it can be too slow for many practical applications. We present an accelerated algorithm for discrete stochastic simulation of reaction-diffusion systems designed to improve the speed of simulation by reducing the number of time-steps required to complete a simulation run. This method is unique in that it employs two strategies that have not been incorporated in existing spatial stochastic simulation algorithms. First, diffusive transfers between neighboring subvolumes are based on concentration gradients. This treatment necessitates sampling of only the net or observed diffusion events from higher to lower concentration gradients rather than sampling all diffusion events regardless of local concentration gradients. Second, we extend the non-negative Poisson tau-leaping method that was originally developed for speeding up nonspatial or homogeneous stochastic simulation algorithms. This method calculates each leap time in a unified step for both reaction and diffusion processes while satisfying the leap condition that the propensities do not change appreciably during the leap and ensuring that leaping does not cause molecular populations to become negative. Numerical results are presented that illustrate the improvement in simulation speed achieved by incorporating these two new strategies.

  15. Progress of ILC High Gradient SRF Cavity R&D at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.L. Geng, J. Dai, G.V. Eremeev, A.D. Palczewski

    2011-09-01

    Latest progress of ILC high gradient SRF cavity R&D at Jefferson Lab will be presented. 9 out of 10 real 9-cell cavities reached an accelerating gradient of more than 38 MV/m at a unloaded quality factor of more than 8 {center_dot} 109. New understandings of quench limitation in 9-cell cavities are obtained through instrumented studies of cavities at cryogenic temperatures. Our data have shown that present limit reached in 9-cell cavities is predominantly due to localized defects, suggesting that the fundamental material limit of niobium is not yet reached in 9-cell cavities and further gradient improvement is still possible. Somemore » examples of quench-causing defects will be given. Possible solutions to pushing toward the fundamental limit will be described.« less

  16. Microfluidic Synthesis of Composite Cross-Gradient Materials for Investigating Cell–Biomaterial Interactions

    PubMed Central

    He, Jiankang; Du, Yanan; Guo, Yuqi; Hancock, Matthew J.; Wang, Ben; Shin, Hyeongho; Wu, Jinhui; Li, Dichen; Khademhosseini, Ali

    2010-01-01

    Combinatorial material synthesis is a powerful approach for creating composite material libraries for the high-throughput screening of cell–material interactions. Although current combinatorial screening platforms have been tremendously successful in identifying target (termed “hit”) materials from composite material libraries, new material synthesis approaches are needed to further optimize the concentrations and blending ratios of the component materials. Here we employed a microfluidic platform to rapidly synthesize composite materials containing cross-gradients of gelatin and chitosan for investigating cell–biomaterial interactions. The microfluidic synthesis of the cross-gradient was optimized experimentally and theoretically to produce quantitatively controllable variations in the concentrations and blending ratios of the two components. The anisotropic chemical compositions of the gelatin/chitosan cross-gradients were characterized by Fourier transform infrared spectrometry and X-ray photoelectron spectrometry. The three-dimensional (3D) porous gelatin/chitosan cross-gradient materials were shown to regulate the cellular morphology and proliferation of smooth muscle cells (SMCs) in a gradient-dependent manner. We envision that our microfluidic cross-gradient platform may accelerate the material development processes involved in a wide range of biomedical applications. PMID:20721897

  17. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOEpatents

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1991-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is propagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the materials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggregated at a particular location, or physically separated from each other.

  18. Methods and apparatus for moving and separating materials exhibiting different physical properties

    DOEpatents

    Peterson, Stephen C.; Brimhall, Owen D.; McLaughlin, Thomas J.; Baker, Charles D.; Sparks, Sam L.

    1988-01-01

    Methods and apparatus for controlling the movement of materials having different physical properties when one of the materials is a fluid. The invention does not rely on flocculation, sedimentation, centrifugation, the buoyancy of the materials, or any other gravity dependent characteristic, in order to achieve its desired results. The methods of the present invention provide that a first acoustic wave is progpagated through a vessel containing the materials. A second acoustic wave, at a frequency different than the first acoustic wave, is also propagated through the vessel so that the two acoustic waves are superimposed upon each other. The superimposition of the two waves creates a beat frequency wave. The beat frequency wave comprises pressure gradients dividing regions of maximum and minimum pressure. The pressure gradients and the regions of maximum and minimum pressure move through space and time at a group velocity. The moving pressure gradients and regions of maximum and minimum pressure act upon the marterials so as to move one of the materials towards a predetermined location in the vessel. The present invention provides that the materials may be controllably moved toward a location, aggreated at a particular location, or physically separated from each other.

  19. Modeling an exhumed basin: A method for estimating eroded overburden

    USGS Publications Warehouse

    Poelchau, H.S.

    2001-01-01

    The Alberta Deep Basin in western Canada has undergone a large amount of erosion following deep burial in the Eocene. Basin modeling and simulation of burial and temperature history require estimates of maximum overburden for each gridpoint in the basin model. Erosion can be estimated using shale compaction trends. For instance, the widely used Magara method attempts to establish a sonic log gradient for shales and uses the extrapolation to a theoretical uncompacted shale value as a first indication of overcompaction and estimation of the amount of erosion. Because such gradients are difficult to establish in many wells, an extension of this method was devised to help map erosion over a large area. Sonic A; values of one suitable shale formation are calibrated with maximum depth of burial estimates from sonic log extrapolation for several wells. This resulting regression equation then can be used to estimate and map maximum depth of burial or amount of erosion for all wells in which this formation has been logged. The example from the Alberta Deep Basin shows that the magnitude of erosion calculated by this method is conservative and comparable to independent estimates using vitrinite reflectance gradient methods. ?? 2001 International Association for Mathematical Geology.

  20. Biomaterials with persistent growth factor gradients in vivo accelerate vascularized tissue formation.

    PubMed

    Akar, Banu; Jiang, Bin; Somo, Sami I; Appel, Alyssa A; Larson, Jeffery C; Tichauer, Kenneth M; Brey, Eric M

    2015-12-01

    Gradients of soluble factors play an important role in many biological processes, including blood vessel assembly. Gradients can be studied in detail in vitro, but methods that enable the study of spatially distributed soluble factors and multi-cellular processes in vivo are limited. Here, we report on a method for the generation of persistent in vivo gradients of growth factors in a three-dimensional (3D) biomaterial system. Fibrin loaded porous poly (ethylene glycol) (PEG) scaffolds were generated using a particulate leaching method. Platelet derived growth factor BB (PDGF-BB) was encapsulated into poly (lactic-co-glycolic acid) (PLGA) microspheres which were placed distal to the tissue-material interface. PLGA provides sustained release of PDGF-BB and its diffusion through the porous structure results in gradient formation. Gradients within the scaffold were confirmed in vivo using near-infrared fluorescence imaging and gradients were present for more than 3 weeks. The diffusion of PDGF-BB was modeled and verified with in vivo imaging findings. The depth of tissue invasion and density of blood vessels formed in response to the biomaterial increased with magnitude of the gradient. This biomaterial system allows for generation of sustained growth factor gradients for the study of tissue response to gradients in vivo. Published by Elsevier Ltd.

  1. Influence of micromachined targets on laser accelerated proton beam profiles

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  2. Ring design of the Prague synchrotron for cancer therapy

    NASA Astrophysics Data System (ADS)

    Molodozhentsev, A.; Makoveev, V.; Minashkin, V.; Shevtsov, V.; Sidorov, G.; Prokesh, K.; Sedlak, J.; Kuzmiak, M.

    1998-04-01

    The paper presents main elements of a dedicated proton synchrotron for hadron therapy. The beam parameters for active scanning of tumours are discussed. The output energy of the beam should be variable in the range 60-220 MeV. The average current of the proton beam is equal to 10 nA. The repetition rate of the accelerator is chosen of 1 Hz to get a spill time for slow extraction of about 500 ms. The timing cycle of the accelerator including the quasi-adiabatic capture process and acceleration is described. The RF gymnastics is utilized to prepare the unbunched beam for slow extraction. The magnetic elements of the ring, compact RF and VCO systems are presented in the paper. The maximum magnet field of the dipole magnet should be 1.2 T and the maximum magnetic field on the pole of the quadrupole lenses should be less than 1 T. The resonator should work on the first harmonic with a frequency from 1.298 MHz till 4.804 MHz. The length of the resonator should be less than 1 m. The maximum voltage on the accelerator gap should be about 2 kV.

  3. Compatibility Flight Profile and Internal Environment Characterization for the RASCAL Pod. Project: Senior RASCAL

    DTIC Science & Technology

    2008-12-01

    pod at increasing angles of attack. An overall vertical acceleration maximum of 7.5 g RMS occurred while in a transonic wind-up turn at 15,000 ft and...landings, level accelerations, and specific maneuver blocks of varying sideslip, load factor, and angle of attack (AOA). The flight conditions...0g 10s maximum Angle of Attack (deg) ±1 ±1 16 Table A1: Data Bands and Tolerances for the Vibroacoustic Tests Table A2 summarizes the conditions

  4. Desirable limits of accelerative forces in a space-based materials processing facility

    NASA Technical Reports Server (NTRS)

    Naumann, Robert J.

    1990-01-01

    There are three categories of accelerations to be encountered on orbiting spacecraft: (1) quasi-steady accelerations, caused by atmospheric drag or by gravity gradients, 10(exp -6) to 10(exp -7) g sub o; (2) transient accelerations, caused by movements of the astronauts, mass translocations, landing and departure of other spacecraft, etc.; and (3) oscillary accelerations, caused by running machinery (fans, pumps, generators). Steady accelerations cause continuing displacements; transients cause time-limited displacements. The important aspect is the area under the acceleration curve, measured over a certain time interval. Note that this quantity is not equivalent to a velocity because of friction effects. Transient motions are probably less important than steady accelerations because they only produce constant displacements. If the accelerative forces were not equal and opposite, the displacement would increase with time. A steady acceleration will produce an increasing velocity of a particle, but eventually an equilibrium value will be reached where drag and acceleration forces are equal. From then on, the velocity will remain constant, and the displacement will increase linearly with time.

  5. Ultra-High Gradient Channeling Acceleration in Nanostructures: Design/Progress of Proof-of-Concept (POC) Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shin, Young Min; Green, A.; Lumpkin, A. H.

    2016-09-16

    A short bunch of relativistic particles or a short-pulse laser perturbs the density state of conduction electrons in a solid crystal and excites wakefields along atomic lattices in a crystal. Under a coupling condition the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients in principle since the density of charge carriers (conduction electrons) in solids n 0 = ~ 10 20 – 10 23 cm -3 is significantly higher than what can be obtained in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The dechanneling rate can be reduced andmore » the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and NIU. In the FAST facility, the electron beamline was successfully commissioned at 50 MeV and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration POC test. Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure – Nuclear Physics (ELI-NP).« less

  6. Ultra-high gradient channeling acceleration in nanostructures: Design/progress of proof-of-concept (POC) experiments

    NASA Astrophysics Data System (ADS)

    Shin, Y. M.; Green, A.; Lumpkin, A. H.; Thurman-Keup, R. M.; Shiltsev, V.; Zhang, X.; Farinella, D. M.-A.; Taborek, P.; Tajima, T.; Wheeler, J. A.; Mourou, G.

    2017-03-01

    A short bunch of relativistic particles, or a short-pulse laser, perturb the density state of conduction electrons in a solid crystal and excite wakefields along atomic lattices in a crystal. Under a coupling condition between a driver and plasma, the wakes, if excited, can accelerate channeling particles with TeV/m acceleration gradients [1], in principle, since the density of charge carriers (conduction electrons) in solids n0 = 1020 - 1023 cm-3 is significantly higher than what was considered above in gaseous plasma. Nanostructures have some advantages over crystals for channeling applications of high power beams. The de-channeling rate can be reduced and the beam acceptance increased by the large size of the channels. For beam-driven acceleration, a bunch length with a sufficient charge density would need to be in the range of the plasma wavelength to properly excite plasma wakefields, and channeled particle acceleration with the wakefields must occur before the ions in the lattices move beyond the restoring threshold. In the case of the excitation by short laser pulses, the dephasing length is appreciably increased with the larger channel, which enables channeled particles to gain sufficient amounts of energy. This paper describes simulation analyses on beam- and laser (X-ray)-driven accelerations in effective nanotube models obtained from the Vsim and EPOCH codes. Experimental setups to detect wakefields are also outlined with accelerator facilities at Fermilab and Northern Illinois University (NIU). In the FAST facility, the electron beamline was successfully commissioned at 50 MeV, and it is being upgraded toward higher energies for electron accelerator R&D. The 50 MeV injector beamline of the facility is used for X-ray crystal-channeling radiation with a diamond target. It has been proposed to utilize the same diamond crystal for a channeling acceleration proof-of-concept (POC). Another POC experiment is also designed for the NIU accelerator lab with time-resolved electron diffraction. Recently, a stable generation of single-cycle laser pulses with tens of Petawatt power based on the thin film compression (TFC) technique has been investigated for target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). The experimental plan with a nanometer foil is discussed with an available test facility such as Extreme Light Infrastructure - Nuclear Physics (ELI-NP).

  7. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moody, J. T.; Anderson, S. G.; Anderson, G.

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  8. Ultrashort laser pulse driven inverse free electron laser accelerator experiment

    DOE PAGES

    Moody, J. T.; Anderson, S. G.; Anderson, G.; ...

    2016-02-29

    In this paper we discuss the ultrashort pulse high gradient Inverse Free Electron laser accelerator experiment carried out at the Lawrence Livermore National Laboratory which demonstrated gra- dients exceeding 200 MV/m using a 4 TW 100 fs long 800 nm Ti:Sa laser pulse. Due to the short laser and electron pulse lengths, synchronization was determined to be one of the main challenges in this experiment. This made necessary the implementation of a single-shot, non destructive, electro-optic sampling based diagnostics to enable time-stamping of each laser accelerator shot with < 100 fs accuracy. The results of this experiment are expected tomore » pave the way towards the development of future GeV-class IFEL accelerators.« less

  9. Optimization of a Small Scale Linear Reluctance Accelerator

    NASA Astrophysics Data System (ADS)

    Barrera, Thor; Beard, Robby

    2011-11-01

    Reluctance accelerators are extremely promising future methods of transportation. Several problems still plague these devices, most prominently low efficiency. Variables to overcoming efficiency problems are many and difficult to correlate how they affect our accelerator. The study examined several differing variables that present potential challenges in optimizing the efficiency of reluctance accelerators. These include coil and projectile design, power supplies, switching, and the elusive gradient inductance problem. Extensive research in these areas has been performed from computational and theoretical to experimental. Findings show that these parameters share significant similarity to transformer design elements, thus general findings show current optimized parameters the research suggests as a baseline for further research and design. Demonstration of these current findings will be offered at the time of presentation.

  10. Observation of High Transformer Ratio of Shaped Bunch Generated by an Emittance-Exchange Beam Line.

    PubMed

    Gao, Q; Ha, G; Jing, C; Antipov, S P; Power, J G; Conde, M; Gai, W; Chen, H; Shi, J; Wisniewski, E E; Doran, D S; Liu, W; Whiteford, C E; Zholents, A; Piot, P; Baturin, S S

    2018-03-16

    Collinear wakefield acceleration has been long established as a method capable of generating ultrahigh acceleration gradients. Because of the success on this front, recently, more efforts have shifted towards developing methods to raise the transformer ratio (TR). This figure of merit is defined as the ratio of the peak acceleration field behind the drive bunch to the peak deceleration field inside the drive bunch. TR is always less than 2 for temporally symmetric drive bunch distributions and therefore recent efforts have focused on generating asymmetric distributions to overcome this limitation. In this Letter, we report on using the emittance-exchange method to generate a shaped drive bunch to experimentally demonstrate a TR≈5 in a dielectric wakefield accelerator.

  11. A simple microgravity table for the Orbiter or Space Station

    NASA Technical Reports Server (NTRS)

    Garriott, O. K.; Debra, D. B.

    1985-01-01

    Methods of limiting perturbations in microgravity experiments are proposed. An acceleration level below 10 to the -4th m/s-squared is necessary to maintain an undisturbed microgravity environment. Machinery vibrations, crew motion, and the firing of vernier thrusters produce acceleration levels greate than 10 to the -4th m/s-squared. The use of a weak spring system or simple electromagnets to isolate an experimental table from these factors is described. The manners in which crew motion and vernier firing are countered by the springs are examined. The steady acceleration caused by atmospheric drag, gravity gradient force, and steady rotation can be maintained below 10 to the -th m/s-squared; however, the springs can protect the table from these accelerations if required.

  12. The magnitude of translational and rotational head accelerations experienced by riders during downhill mountain biking.

    PubMed

    Hurst, Howard T; Atkins, Stephen; Dickinson, Ben D

    2018-03-21

    To determine the magnitude of translational and rotational head accelerations during downhill mountain biking. Observational study. Sixteen male downhill cyclists (age 26.4±8.4years; stature 179.4±7.2cm; mass 75.3±5.9kg) were monitored during two rounds of the British Downhill Series. Riders performed two runs on each course wearing a triaxial accelerometer behind the right ear. The means of the two runs for each course were used to determine differences between courses for mean and maximum peak translational (g) and rotational accelerations (rad/s 2 ) and impact duration for each course. Significant differences (p<0.05) were revealed for the mean number of impacts (>10g), FW=12.5±7.6, RYF=42.8±27.4 (t (22.96) =-4.70; p<0.001; 95% CI=17.00 to 43.64); maximum peak rotational acceleration, FW=6805.4±3073.8rad/s 2 , RYF=9799.9±3381.7rad/s 2 (t (32) =-2.636; p=0.01; 95% CI=680.31 to 5308.38); mean acceleration duration FW=4.7±1.2ms, RYF=6.5±1.4ms (t (32) =-4.05; p<0.001; 95% CI=0.91 to 2.76) and maximum acceleration duration, FW=11.6±4.5ms, RYF=21.2±9.1 (t (29.51) =-4.06; p=0.001; 95% CI=4.21 to 14.94). No other significant differences were found. Findings indicate that downhill riders may be at risk of sustaining traumatic brain injuries and course design influences the number and magnitude of accelerations. Copyright © 2018 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  13. Analysis on the time and frequency domains of the acceleration in front crawl stroke.

    PubMed

    Gil, Joaquín Madera; Moreno, Luis-Millán González; Mahiques, Juan Benavent; Muñoz, Víctor Tella

    2012-05-01

    The swimming involves accelerations and decelerations in the swimmer's body. Thus, the main objective of this study is to make a temporal and frequency analysis of the acceleration in front crawl swimming, regarding the gender and the performance. The sample was composed by 31 male swimmers (15 of high-level and 16 of low-level) and 20 female swimmers (11 of high-level and 9 of low-level). The acceleration was registered from the third complete cycle during eight seconds in a 25 meters maximum velocity test. A position transducer (200Hz) was used to collect the data, and it was synchronized to an aquatic camera (25Hz). The acceleration in the temporal (root mean square, minimum and maximum of the acceleration) and frequency (power peak, power peak frequency and spectral area) domains was calculated with Fourier analysis, as well as the velocity and the spectrums distribution in function to present one or more main peaks (type 1 and type 2). A one-way ANOVA was used to establish differences between gender and performance. Results show differences between genders in all the temporal domain variables (p<0.05) and only the Spectral Area (SA) in the frequency domain (p<0.05). Between gender and performance, only the Root Mean Square (RMS) showed differences in the performance of the male swimmers (p<0.05) and in the higher level swimmers, the Maximum (Max) and the Power Peak (PP) of the acceleration showed differences between both genders (p<0.05). These results confirms the importance of knowing the RMS to determine the efficiency of the swimmers regarding gender and performance level.

  14. Single-shot EPI with Nyquist ghost compensation: Interleaved Dual-Echo with Acceleration (IDEA) EPI

    PubMed Central

    Poser, Benedikt A; Barth, Markus; Goa, Pål-Erik; Deng, Weiran; Stenger, V Andrew

    2012-01-01

    Echo planar imaging is most commonly used for BOLD fMRI, owing to its sensitivity and acquisition speed. A major problem with EPI is Nyquist (N/2) ghosting, most notably at high field. EPI data are acquired under an oscillating readout gradient and hence vulnerable to gradient imperfections such as eddy current delays and off-resonance effects, as these cause inconsistencies between odd and even k-space lines after time reversal. We propose a straightforward and pragmatic method herein termed Interleaved Dual Echo with Acceleration (IDEA) EPI: Two k-spaces (echoes) are acquired under the positive and negative readout lobes, respectively, by performing phase blips only before alternate readout gradients. From these two k-spaces, two almost entirely ghost free images per shot can be constructed, without need for phase correction. The doubled echo train length can be compensated by parallel imaging and/or partial Fourier acquisition. The two k-spaces can either be complex-averaged during reconstruction, which results in near-perfect cancellation of residual phase errors, or reconstructed into separate images. We demonstrate the efficacy of IDEA EPI and show phantom and in vivo images at both 3 and 7 Tesla. PMID:22411762

  15. Cosmic ray acceleration in magnetic circumstellar bubbles

    NASA Astrophysics Data System (ADS)

    Zirakashvili, V. N.; Ptuskin, V. S.

    2018-03-01

    We consider the diffusive shock acceleration in interstellar bubbles created by powerful stellar winds of supernova progenitors. Under the moderate stellar wind magnetization the bubbles are filled by the strongly magnetized low density gas. It is shown that the maximum energy of particles accelerated in this environment can exceed the "knee" energy in the observable cosmic ray spectrum.

  16. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...

  17. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...

  18. 14 CFR 23.75 - Landing distance.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... to the 50 foot height and— (1) The steady approach must be at a gradient of descent not greater than 5.2 percent (3 degrees) down to the 50-foot height. (2) In addition, an applicant may demonstrate by tests that a maximum steady approach gradient steeper than 5.2 percent, down to the 50-foot height, is...

  19. The Aqua-planet Experiment (APE): Response to Changed Meridional SST Profile

    NASA Technical Reports Server (NTRS)

    Williamson, David L.; Blackburn, Michael; Nakajima, Kensuke; Ohfuchi, Wataru; Takahashi, Yoshiyuki O.; Hayashi, Yoshi-Yuki; Nakamura, Hisashi; Ishiwatari, Masaki; Mcgregor, John L.; Borth, Hartmut; hide

    2013-01-01

    This paper explores the sensitivity of Atmospheric General Circulation Model (AGCM) simulations to changes in the meridional distribution of sea surface temperature (SST). The simulations are for an aqua-planet, a water covered Earth with no land, orography or sea- ice and with specified zonally symmetric SST. Simulations from 14 AGCMs developed for Numerical Weather Prediction and climate applications are compared. Four experiments are performed to study the sensitivity to the meridional SST profile. These profiles range from one in which the SST gradient continues to the equator to one which is flat approaching the equator, all with the same maximum SST at the equator. The zonal mean circulation of all models shows strong sensitivity to latitudinal distribution of SST. The Hadley circulation weakens and shifts poleward as the SST profile flattens in the tropics. One question of interest is the formation of a double versus a single ITCZ. There is a large variation between models of the strength of the ITCZ and where in the SST experiment sequence they transition from a single to double ITCZ. The SST profiles are defined such that as the equatorial SST gradient flattens, the maximum gradient increases and moves poleward. This leads to a weakening of the mid-latitude jet accompanied by a poleward shift of the jet core. Also considered are tropical wave activity and tropical precipitation frequency distributions. The details of each vary greatly between models, both with a given SST and in the response to the change in SST. One additional experiment is included to examine the sensitivity to an off-equatorial SST maximum. The upward branch of the Hadley circulation follows the SST maximum off the equator. The models that form a single precipitation maximum when the maximum SST is on the equator shift the precipitation maximum off equator and keep it centered over the SST maximum. Those that form a double with minimum on the equatorial maximum SST shift the double structure off the equator, keeping the minimum over the maximum SST. In both situations only modest changes appear in the shifted profile of zonal average precipitation. When the upward branch of the Hadley circulation moves into the hemisphere with SST maximum, the zonal average zonal, meridional and vertical winds all indicate that the Hadley cell in the other hemisphere dominates.

  20. Electric-car simulation

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.; Slusser, R. A.

    1980-01-01

    PARAMET, interactive simulation program for parametric studies of electric vehicles, guides user through simulation by menu and series of prompts for input parameters. Program considers aerodynamic drag, rolling resistance, linear and rotational acceleration, and road gradient as forces acting on vehicle.

  1. Accelerated gradient methods for the x-ray imaging of solar flares

    NASA Astrophysics Data System (ADS)

    Bonettini, S.; Prato, M.

    2014-05-01

    In this paper we present new optimization strategies for the reconstruction of x-ray images of solar flares by means of the data collected by the Reuven Ramaty high energy solar spectroscopic imager. The imaging concept of the satellite is based on rotating modulation collimator instruments, which allow the use of both Fourier imaging approaches and reconstruction techniques based on the straightforward inversion of the modulated count profiles. Although in the last decade, greater attention has been devoted to the former strategies due to their very limited computational cost, here we consider the latter model and investigate the effectiveness of different accelerated gradient methods for the solution of the corresponding constrained minimization problem. Moreover, regularization is introduced through either an early stopping of the iterative procedure, or a Tikhonov term added to the discrepancy function by means of a discrepancy principle accounting for the Poisson nature of the noise affecting the data.

  2. Successful experiments on an external MHD Accelerator: wall confinement of the plasma, annihilation of the electrothermal instability by magnetic gradient inversion, creation of a stable spiral current pattern

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; Dore, Jean-Christophe

    2013-09-01

    MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager

  3. Gravitational modulation of thermosolutal convection during directional solidification

    NASA Astrophysics Data System (ADS)

    Murray, B. T.; Coriell, S. R.; McFadden, G. B.; Wheeler, A. A.; Saunders, B. V.

    1993-03-01

    During directional solidification of a binary alloy at constant velocity, thermosolutal convection may occur due to the temperature and solute gradients associated with the solidification process. For vertical growth in an ideal furnace (lacking horizontal gradients) a quiescent state is possible. The effect of a time-periodic vertical gravitational acceleration (or equivalently vibration) on the onset of thermosolutal convection is calculated based on linear stability using Floquet theory. Numerical calculations for the onset of instability have been carried out for a semiconductor alloy with Schmidt number of 10 and Prandtl number of 0.1 with primary emphasis on large modulation frequencies in a microgravity environment for which the background gravitational acceleration is negligible. The numerical results demonstrate that there is a significant difference in stability depending on whether a heavier or lighter solute is rejected. For large modulation frequencies, the stability behavior can be described by either the method of averaging or an asymptotic resonant mode analysis.

  4. Accelerating IMRT optimization by voxel sampling

    NASA Astrophysics Data System (ADS)

    Martin, Benjamin C.; Bortfeld, Thomas R.; Castañon, David A.

    2007-12-01

    This paper presents a new method for accelerating intensity-modulated radiation therapy (IMRT) optimization using voxel sampling. Rather than calculating the dose to the entire patient at each step in the optimization, the dose is only calculated for some randomly selected voxels. Those voxels are then used to calculate estimates of the objective and gradient which are used in a randomized version of a steepest descent algorithm. By selecting different voxels on each step, we are able to find an optimal solution to the full problem. We also present an algorithm to automatically choose the best sampling rate for each structure within the patient during the optimization. Seeking further improvements, we experimented with several other gradient-based optimization algorithms and found that the delta-bar-delta algorithm performs well despite the randomness. Overall, we were able to achieve approximately an order of magnitude speedup on our test case as compared to steepest descent.

  5. Complete multipactor suppression in an X-band dielectric-loaded accelerating structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, C.; Gold, S. H.; Fischer, Richard

    2016-05-09

    Multipactor is a major issue limiting the gradient of rf-driven Dielectric-Loaded Accelerating (DLA) structures. Theoretical models have predicted that an axial magnetic field applied to DLA structures may completely block the multipactor discharge. However, previous attempts to demonstrate this magnetic field effect in an X-band traveling-wave DLA structure were inconclusive, due to the axial variation of the applied magnetic field, and showed only partial suppression of the multipactor loading [Jing et al., Appl. Phys. Lett. 103, 213503 (2013)]. The present experiment has been performed under improved conditions with a uniform axial magnetic field extending along the length of an X-bandmore » standing-wave DLA structure. Multipactor loading began to be continuously reduced starting from 3.5 kG applied magnetic field and was completely suppressed at 8 kG. Dependence of multipactor suppression on the rf gradient inside the DLA structure was also measured.« less

  6. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  7. In-situ plasma processing to increase the accelerating gradients of SRF cavities

    DOE PAGES

    Doleans, Marc; Afanador, Ralph; Barnhart, Debra L.; ...

    2015-12-31

    A new in-situ plasma processing technique is being developed at the Spallation Neutron Source (SNS) to improve the performance of the cavities in operation. The technique utilizes a low-density reactive oxygen plasma at room temperature to remove top surface hydrocarbons. The plasma processing technique increases the work function of the cavity surface and reduces the overall amount of vacuum and electron activity during cavity operation; in particular it increases the field emission onset, which enables cavity operation at higher accelerating gradients. Experimental evidence also suggests that the SEY of the Nb surface decreases after plasma processing which helps mitigating multipactingmore » issues. This article discusses the main developments and results from the plasma processing R&D are presented and experimental results for in-situ plasma processing of dressed cavities in the SNS horizontal test apparatus.« less

  8. Strong field acceleration and steering of ultrafast electron pulses from a sharp metallic nanotip.

    PubMed

    Park, Doo Jae; Piglosiewicz, Bjoern; Schmidt, Slawa; Kollmann, Heiko; Mascheck, Manfred; Lienau, Christoph

    2012-12-14

    We report a strong, laser-field induced modification of the propagation direction of ultrashort electron pulses emitted from nanometer-sized gold tapers. Angle-resolved kinetic energy spectra of electrons emitted from such tips are recorded using ultrafast near-infrared light pulses of variable wavelength and intensity for excitation. For sufficiently long wavelengths, we observe a pronounced strong-field acceleration of electrons within the field gradient at the taper apex. We find a distinct narrowing of the emission cone angle of the fastest electrons. We ascribe this to the field-induced steering of subcycle electrons as opposed to the diverging emission of quiver electrons. Our findings are corroborated by simulations based on a modified Simpleman model incorporating the curved, vectorial field gradient in the vicinity of the tip. Our results indicate new pathways for designing highly directional nanometer-sized ultrafast electron sources.

  9. Conjugate gradient method for phase retrieval based on the Wirtinger derivative.

    PubMed

    Wei, Zhun; Chen, Wen; Qiu, Cheng-Wei; Chen, Xudong

    2017-05-01

    A conjugate gradient Wirtinger flow (CG-WF) algorithm for phase retrieval is proposed in this paper. It is shown that, compared with recently reported Wirtinger flow and its modified methods, the proposed CG-WF algorithm is able to dramatically accelerate the convergence rate while keeping the dominant computational cost of each iteration unchanged. We numerically illustrate the effectiveness of our method in recovering 1D Gaussian signals and 2D natural color images under both Gaussian and coded diffraction pattern models.

  10. Steepest descent with momentum for quadratic functions is a version of the conjugate gradient method.

    PubMed

    Bhaya, Amit; Kaszkurewicz, Eugenius

    2004-01-01

    It is pointed out that the so called momentum method, much used in the neural network literature as an acceleration of the backpropagation method, is a stationary version of the conjugate gradient method. Connections with the continuous optimization method known as heavy ball with friction are also made. In both cases, adaptive (dynamic) choices of the so called learning rate and momentum parameters are obtained using a control Liapunov function analysis of the system.

  11. ACCELERATION RESPONSIVE SWITCH

    DOEpatents

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  12. One-Dimensional Shock Wave Formation by an Accelerating Piston. Ph.D. Thesis - Ohio State Univ.

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1970-01-01

    The formation of a shock wave by a solid accelerating piston was studied. A theoretical solution using the method of characteristics for a perfect gas showed that a complex wave system exists, and that the compressed gas can have large gradients in temperature, density and entropy. Experiments were performed with a piston tube where piston speed, shock speed and pressure were measured. The comparison of theory and experiment was good.

  13. Cascaded chirped photon acceleration for efficient frequency conversion

    NASA Astrophysics Data System (ADS)

    Edwards, Matthew R.; Qu, Kenan; Jia, Qing; Mikhailova, Julia M.; Fisch, Nathaniel J.

    2018-05-01

    A cascaded sequence of photon acceleration stages using the instantaneous creation of a plasma density gradient by flash ionization allows the generation of coherent and chirped ultraviolet and x-ray pulses with independently tunable frequency and bandwidth. The efficiency of the cascaded process scales with 1/ω in energy, and multiple stages produce significant frequency up-conversion with gas-density plasmas. Chirping permits subsequent pulse compression to few-cycle durations, and output frequencies are not limited to integer harmonics.

  14. Process modelling for Space Station experiments

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan D.; Rosenberger, Franz; Nadarajah, Arunan; Ouazzani, Jalil; Amiroudine, Sakir

    1990-01-01

    Examined here is the sensitivity of a variety of space experiments to residual accelerations. In all the cases discussed the sensitivity is related to the dynamic response of a fluid. In some cases the sensitivity can be defined by the magnitude of the response of the velocity field. This response may involve motion of the fluid associated with internal density gradients, or the motion of a free liquid surface. For fluids with internal density gradients, the type of acceleration to which the experiment is sensitive will depend on whether buoyancy driven convection must be small in comparison to other types of fluid motion, or fluid motion must be suppressed or eliminated. In the latter case, the experiments are sensitive to steady and low frequency accelerations. For experiments such as the directional solidification of melts with two or more components, determination of the velocity response alone is insufficient to assess the sensitivity. The effect of the velocity on the composition and temperature field must be considered, particularly in the vicinity of the melt-crystal interface. As far as the response to transient disturbances is concerned, the sensitivity is determined by both the magnitude and frequency of the acceleration and the characteristic momentum and solute diffusion times. The microgravity environment, a numerical analysis of low gravity tolerance of the Bridgman-Stockbarger technique, and modeling crystal growth by physical vapor transport in closed ampoules are discussed.

  15. Overview of High Power Vacuum Dry RF Load Designs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krasnykh, Anatoly

    2015-08-27

    A specific feature of RF linacs based on the pulsed traveling wave (TW) mode of operation is that only a portion of the RF energy is used for the beam acceleration. The residual RF energy has to be terminated into an RF load. Higher accelerating gradients require higher RF sources and RF loads, which can stably terminate the residual RF power. RF feeders (from the RF source though the accelerating section to the load) are vacuumed to transmit multi-megawatt high power RF. This overview will outline vacuumed RF loads only. A common method to terminate multi-MW RF power is tomore » use circulated water (or other liquid) as an absorbing medium. A solid dielectric interface (a high quality ceramic) is required to separate vacuum and liquid RF absorber mediums. Using such RF load approaches in TW linacs is troubling because there is a fragile ceramic window barrier and a failure could become catastrophic for linac vacuum and RF systems. Traditional loads comprising of a ceramic disk have limited peak and average power handling capability and are therefore not suitable for high gradient TW linacs. This overview will focus on ''vacuum dry'' or ''all-metal'' loads that do not employ any dielectric interface between vacuum and absorber. The first prototype is an original design of RF loads for the Stanford Two-Mile Accelerator.« less

  16. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin.

    PubMed

    Lee, Yi Feng; Jöhnck, Matthias; Frech, Christian

    2018-02-21

    The efficiencies of mono gradient elution and dual salt-pH gradient elution for separation of six mAb charge and size variants on a preparative-scale ion exchange chromatographic resin are compared in this study. Results showed that opposite dual salt-pH gradient elution with increasing pH gradient and simultaneously decreasing salt gradient is best suited for the separation of these mAb charge and size variants on Eshmuno ® CPX. Besides giving high binding capacity, this type of opposite dual salt-pH gradient also provides better resolved mAb variant peaks and lower conductivity in the elution pools compared to single pH or salt gradients. To have a mechanistic understanding of the differences in mAb variants retention behaviors of mono pH gradient, parallel dual salt-pH gradient, and opposite dual salt-pH gradient, a linear gradient elution model was used. After determining the model parameters using the linear gradient elution model, 2D plots were used to show the pH and salt dependencies of the reciprocals of distribution coefficient, equilibrium constant, and effective ionic capacity of the mAb variants in these gradient elution systems. Comparison of the 2D plots indicated that the advantage of opposite dual salt-pH gradient system with increasing pH gradient and simultaneously decreasing salt gradient is the noncontinuous increased acceleration of protein migration. Furthermore, the fitted model parameters can be used for the prediction and optimization of mAb variants separation in dual salt-pH gradient and step elution. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018. © 2018 American Institute of Chemical Engineers.

  17. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    PubMed

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  18. Reducing the data: Analysis of the role of vascular geometry on blood flow patterns in curved vessels

    NASA Astrophysics Data System (ADS)

    Alastruey, Jordi; Siggers, Jennifer H.; Peiffer, Véronique; Doorly, Denis J.; Sherwin, Spencer J.

    2012-03-01

    Three-dimensional simulations of blood flow usually produce such large quantities of data that they are unlikely to be of clinical use unless methods are available to simplify our understanding of the flow dynamics. We present a new method to investigate the mechanisms by which vascular curvature and torsion affect blood flow, and we apply it to the steady-state flow in single bends, helices, double bends, and a rabbit thoracic aorta based on image data. By calculating forces and accelerations in an orthogonal coordinate system following the centreline of each vessel, we obtain the inertial forces (centrifugal, Coriolis, and torsional) explicitly, which directly depend on vascular curvature and torsion. We then analyse the individual roles of the inertial, pressure gradient, and viscous forces on the patterns of primary and secondary velocities, vortical structures, and wall stresses in each cross section. We also consider cross-sectional averages of the in-plane components of these forces, which can be thought of as reducing the dynamics of secondary flows onto the vessel centreline. At Reynolds numbers between 50 and 500, secondary motions in the directions of the local normals and binormals behave as two underdamped oscillators. These oscillate around the fully developed state and are coupled by torsional forces that break the symmetry of the flow. Secondary flows are driven by the centrifugal and torsional forces, and these are counterbalanced by the in-plane pressure gradients generated by the wall reaction. The viscous force primarily opposes the pressure gradient, rather than the inertial forces. In the axial direction, and depending on the secondary motion, the curvature-dependent Coriolis force can either enhance or oppose the bulk of the axial flow, and this shapes the velocity profile. For bends with little or no torsion, the Coriolis force tends to restore flow axisymmetry. The maximum circumferential and axial wall shear stresses along the centreline correlate well with the averaged in-plane pressure gradient and the radial displacement of the peak axial velocity, respectively. We conclude with a discussion of the physiological implications of these results.

  19. ANOTHER LOOK AT THE FAST ITERATIVE SHRINKAGE/THRESHOLDING ALGORITHM (FISTA)*

    PubMed Central

    Kim, Donghwan; Fessler, Jeffrey A.

    2017-01-01

    This paper provides a new way of developing the “Fast Iterative Shrinkage/Thresholding Algorithm (FISTA)” [3] that is widely used for minimizing composite convex functions with a nonsmooth term such as the ℓ1 regularizer. In particular, this paper shows that FISTA corresponds to an optimized approach to accelerating the proximal gradient method with respect to a worst-case bound of the cost function. This paper then proposes a new algorithm that is derived by instead optimizing the step coefficients of the proximal gradient method with respect to a worst-case bound of the composite gradient mapping. The proof is based on the worst-case analysis called Performance Estimation Problem in [11]. PMID:29805242

  20. Effect of hinge-moment parameters on elevator stick forces in rapid maneuvers

    NASA Technical Reports Server (NTRS)

    Jones, R. T.; Greenberg, H.

    1976-01-01

    The importance of the stick force per unit normal acceleration as a criterion of longitudinal stability and the critical dependence of this gradient on elevator hinge moment parameters are investigated with special reference to transient effects for maneuvers of short duration. The analysis shows that different combinations of elevator parameters, which give the same stick force per unit acceleration in turns, give widely different force variations during the entries into and recoveries from steady turns and during maneuvers of short duration such as abrupt pull-ups. The stick force per unit acceleration is greater for abrupt than for gradual control movements.

  1. Losses of leaf area owing to herbivory and early senescence in three tree species along a winter temperature gradient

    NASA Astrophysics Data System (ADS)

    González-Zurdo, P.; Escudero, A.; Nuñez, R.; Mediavilla, S.

    2016-11-01

    In temperate climates, evergreen leaves have to survive throughout low temperature winter periods. Freezing and chilling injuries can lead to accelerated senescence of part of the leaf surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar chemistry and morphology that affect consumption by herbivores. Therefore, the severity of foliar area losses caused by accelerated senescence and herbivory can change along winter temperature gradients. The aim of this study is to analyse such responses in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) along a climatic gradient. The leaves of all three species presented increased leaf mass per area (LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two oak species showed visible symptoms of damage caused by herbivory, this being less intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic spots that increased in size with leaf age. The foliar surface affected by chlorosis and necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area due to accelerated senescence increased, but there was a decrease in losses caused by herbivory. The final consequences for carbon assimilation strongly depend on the exact timing of the appearance of the damage resulting from low temperature and grazing by herbivores.

  2. RF cavity design and qualification for proton accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teotia, Vikas; Malhotra, Sanjay; Ukarde, Priti

    Alvarez type Drift Tube Linac (DTL) is used for acceleration of proton beam in low energy section of beta ranging from 0.04 to 0.40. DTL is cylindrical RF cavity resonating in TM010 mode at 352.21 MHz frequency. It consists of array of drift tubes arranged ensuring that DTL centre and Drift Tube centre are concentric. The Drift Tubes also houses Permanent Magnet Quadrupole for transverse focusing of proton beam. A twelve cell prototype of DTL section is designed, developed and fabricated at Bhabha Atomic Research Centre, Trombay. Complete DTL accelerator consists of eight such DTL sections. High frequency microwave simulationsmore » are carried out in SOPRANO, vector fields and COMSOL simulation software. This prototype DTL is 1640.56 mm long cavity with 520 mm ID, 600 mm OD and consists of eleven Drift Tubes, two RF end flanges, three slug tuners, six post couplers, three RF field monitors, one RF waveguide coupler, two DN100 vacuum flanges and DTL tank platform with alignment features. Girder based Drift tube mounting arrangement utilizing uncompressing energy of disc springs for optimum combo RF-vacuum seal compression is worked out and implemented. This paper discusses design of this RF vacuum cavity operating at high accelerating field gradient in ultra-high vacuum. Detailed vacuum design and results of RF and vacuum qualifications are discussed. Results on mechanical accuracy achieved on scaled pre-prototype are also presented. Paper summarizes the engineering developments carried out for this RF cavity and brings out the future activities proposed in indigenous development of high gradient RF cavities for ion accelerators. (author)« less

  3. Higher-Order Motion-Compensation for In Vivo Cardiac Diffusion Tensor Imaging in Rats

    PubMed Central

    Welsh, Christopher L.; DiBella, Edward V. R.; Hsu, Edward W.

    2015-01-01

    Motion of the heart has complicated in vivo applications of cardiac diffusion MRI and diffusion tensor imaging (DTI), especially in small animals such as rats where ultra-high-performance gradient sets are currently not available. Even with velocity compensation via, for example, bipolar encoding pulses, the variable shot-to-shot residual motion-induced spin phase can still give rise to pronounced artifacts. This study presents diffusion-encoding schemes that are designed to compensate for higher-order motion components, including acceleration and jerk, which also have the desirable practical features of minimal TEs and high achievable b-values. The effectiveness of these schemes was verified numerically on a realistic beating heart phantom, and demonstrated empirically with in vivo cardiac diffusion MRI in rats. Compensation for acceleration, and lower motion components, was found to be both necessary and sufficient for obtaining diffusion-weighted images of acceptable quality and SNR, which yielded the first in vivo cardiac DTI demonstrated in the rat. These findings suggest that compensation for higher order motion, particularly acceleration, can be an effective alternative solution to high-performance gradient hardware for improving in vivo cardiac DTI. PMID:25775486

  4. 14 CFR 25.349 - Rolling conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...

  5. 14 CFR 25.349 - Rolling conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...

  6. 14 CFR 25.349 - Rolling conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...

  7. 14 CFR 25.349 - Rolling conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...(b): (1) Conditions corresponding to steady rolling velocities must be investigated. In addition, conditions corresponding to maximum angular acceleration must be investigated for airplanes with engines or other weight concentrations outboard of the fuselage. For the angular acceleration conditions, zero...

  8. A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy.

    PubMed

    Demyanenko, Andrey V; Zhao, Lin; Kee, Yun; Nie, Shuyi; Fraser, Scott E; Tyszka, J Michael

    2009-09-01

    We present an optimized uniplanar magnetic resonance gradient design specifically tailored for MR imaging applications in developmental biology and histology. Uniplanar gradient designs sacrifice gradient uniformity for high gradient efficiency and slew rate, and are attractive for surface imaging applications where open access from one side of the sample is required. However, decreasing the size of the uniplanar gradient set presents several unique engineering challenges, particularly for heat dissipation and thermal insulation of the sample from gradient heating. We demonstrate a new three-axis, target-field optimized uniplanar gradient coil design that combines efficient cooling and insulation to significantly reduce sample heating at sample-gradient distances of less than 5mm. The instrument is designed for microscopy in horizontal bore magnets. Empirical gradient current efficiencies in the prototype coils lie between 3.75G/cm/A and 4.5G/cm/A with current and heating-limited maximum gradient strengths between 235G/cm and 450G/cm at a 2% duty cycle. The uniplanar gradient prototype is demonstrated with non-linearity corrections for both high-resolution structural imaging of tissue slices and for long time-course imaging of live, developing amphibian embryos in a horizontal bore 7T magnet.

  9. Accelerations in Flight

    NASA Technical Reports Server (NTRS)

    Doolittle, J H

    1925-01-01

    This work on accelerometry was done at McCook Field for the purpose of continuing the work done by other investigators and obtaining the accelerations which occur when a high-speed pursuit airplane is subjected to the more common maneuvers. The accelerations obtained in suddenly pulling out of a dive with well-balanced elevators are shown to be within 3 or 4 per cent of the theoretically possible accelerations. The maximum acceleration which a pilot can withstand depends upon the length of time the acceleration is continued. It is shown that he experiences no difficulty under the instantaneous accelerations as high as 7.8 G., but when under accelerations in excess of 4.5 G., continued for several seconds, he quickly loses his faculties.

  10. RARE/Turbo Spin Echo Imaging with Simultaneous MultiSlice Wave-CAIPI

    PubMed Central

    Eichner, Cornelius; Bhat, Himanshu; Grant, P. Ellen; Wald, Lawrence L.; Setsompop, Kawin

    2014-01-01

    Purpose To enable highly accelerated RARE/Turbo Spin Echo (TSE) imaging using Simultaneous MultiSlice (SMS) Wave-CAIPI acquisition with reduced g-factor penalty. Methods SMS Wave-CAIPI incurs slice shifts across simultaneously excited slices while playing sinusoidal gradient waveforms during the readout of each encoding line. This results in an efficient k-space coverage that spreads aliasing in all three dimensions to fully harness the encoding power of coil sensitivities. The novel MultiPINS radiofrequency (RF) pulses dramatically reduce the power deposition of multiband (MB) refocusing pulse, thus allowing high MB factors within the Specific Absorption Rate (SAR) limit. Results Wave-CAIPI acquisition with MultiPINS permits whole brain coverage with 1 mm isotropic resolution in 70 seconds at effective MB factor 13, with maximum and average g-factor penalties of gmax=1.34 and gavg=1.12, and without √R penalty. With blipped-CAIPI, the g-factor performance was degraded to gmax=3.24 and gavg=1.42; a 2.4-fold increase in gmax relative to Wave-CAIPI. At this MB factor, the SAR of the MultiBand and PINS pulses are 4.2 and 1.9 times that of the MultiPINS pulse, while the peak RF power are 19.4 and 3.9 times higher. Conclusion Combination of the two technologies, Wave-CAIPI and MultiPINS pulse, enables highly accelerated RARE/TSE imaging with low SNR penalty at reduced SAR. PMID:25640187

  11. Climatic effects on decomposing litter and substrate chemistry along climatological gradients.

    NASA Astrophysics Data System (ADS)

    Berg, B.

    2009-04-01

    Climatic effects on decomposing litter and substrate chemistry along climatological gradients. B. Berg, Dipartimento Biologia Strutturale e Funzionale, Complesso Universitario, Monte San Angelo, via Cintia, I-80126 Napoli, Italy and Department of Forest Ecology, P.O. Box 27, University of Helsinki, FIN-00014, Helsinki, Finland. Studies of several processes, using climatic gradients do provide new information as compared with studies at e.g. a single site. Decomposition of plant litter in such gradients give response in decomposition rates to natural climate conditions. Thus Scots pine needle litter incubated in a climate gradient with annual average temperature (AVGT) ranging from -0.5 to 6.8oC had a highly significant increase in initial mass-loss rate with R2 = 0.591 (p<0.001) and a 5o increase in temperature doubled the mass-loss rate. As a contrast - needle litter of Norway spruce incubated in the same transect had no significant response to climate and for initial litter a 5o increase increased mass-loss rate c. 6%. For more decomposed Scots pine litter we could see that the effect of temperature on mass-loss rate gradually decreased until it disappeared. Long-term decomposition studies revealed differences in litter decomposition patterns along a gradient, even for the same type of litter. This could be followed by using an asymptotic function that gave, (i) a measure a maximum level of decomposition, (ii) the initial decomposition rate. Over a gradient the calculated maximum level of decomposition decreased with increasing AVGT. Other gradient studies revealed an effect of AVGT on litter chemical composition. Pine needle litter from stands under different climate conditions had nutrient concentrations related to AVGT. Thus N, P, K, and S were positively related to AVGT and Mn negatively, all of them significantly. This information may be used to explain the changing pattern in decomposition over the gradient.

  12. Experience of micromultileaf collimator linear accelerator based single fraction stereotactic radiosurgery: Tumor dose inhomogeneity, conformity, and dose fall off

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Linda X.; Garg, Madhur; Lasala, Patrick

    2011-03-15

    Purpose: Sharp dose fall off outside a tumor is essential for high dose single fraction stereotactic radiosurgery (SRS) plans. This study explores the relationship among tumor dose inhomogeneity, conformity, and dose fall off in normal tissues for micromultileaf collimator (mMLC) linear accelerator (LINAC) based cranial SRS plans. Methods: Between January 2007 and July 2009, 65 patients with single cranial lesions were treated with LINAC-based SRS. Among them, tumors had maximum diameters {<=}20 mm: 31; between 20 and 30 mm: 21; and >30 mm: 13. All patients were treated with 6 MV photons on a Trilogy linear accelerator (Varian Medical Systems,more » Palo Alto, CA) with a tertiary m3 high-resolution mMLC (Brainlab, Feldkirchen, Germany), using either noncoplanar conformal fixed fields or dynamic conformal arcs. The authors also created retrospective study plans with identical beam arrangement as the treated plan but with different tumor dose inhomogeneity by varying the beam margins around the planning target volume (PTV). All retrospective study plans were normalized so that the minimum PTV dose was the prescription dose (PD). Isocenter dose, mean PTV dose, RTOG conformity index (CI), RTOG homogeneity index (HI), dose gradient index R{sub 50}-R{sub 100} (defined as the difference between equivalent sphere radius of 50% isodose volume and prescription isodose volume), and normal tissue volume (as a ratio to PTV volume) receiving 50% prescription dose (NTV{sub 50}) were calculated. Results: HI was inversely related to the beam margins around the PTV. CI had a ''V'' shaped relationship with HI, reaching a minimum when HI was approximately 1.3. Isocenter dose and mean PTV dose (as percentage of PD) increased linearly with HI. R{sub 50}-R{sub 100} and NTV{sub 50} initially declined with HI and then reached a plateau when HI was approximately 1.3. These trends also held when tumors were grouped according to their maximum diameters. The smallest tumor group (maximum diameters {<=}20 mm) had the most HI dependence for dose fall off. For treated plans, CI averaged 2.55{+-}0.79 with HI 1.23{+-}0.06; the average R{sub 50}-R{sub 100} was 0.41{+-}0.08, 0.55{+-}0.10, and 0.65{+-}0.09 cm, respectively, for tumors {<=}20 mm, between 20 and 30 mm, and >30 mm. Conclusions: Tumor dose inhomogeneity can be used as an important and convenient parameter to evaluate mMLC LINAC-based SRS plans. Sharp dose fall off in the normal tissue is achieved with sufficiently high tumor dose inhomogeneity. By adjusting beam margins, a homogeneity index of approximately 1.3 would provide best conformity for the authors' SRS system.« less

  13. A New Type of Plasma Wakefield Accelerator Driven By Magnetowaves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Pisin; /KIPAC, Menlo Park /Taiwan, Natl. Taiwan U.; Chang, Feng-Yin

    2011-09-12

    We present a new concept for a plasma wakefield accelerator driven by magnetowaves (MPWA). This concept was originally proposed as a viable mechanism for the 'cosmic accelerator' that would accelerate cosmic particles to ultra-high energies in the astrophysical setting. Unlike the more familiar plasma wakefield accelerator (PWFA) and the laser wakefield accelerator (LWFA) where the drivers, the charged-particle beam and the laser, are independently existing entities, MPWA invokes the high-frequency and high-speed whistler mode as the driver, which is a medium wave that cannot exist outside of the plasma. Aside from the difference in drivers, the underlying mechanism that excitesmore » the plasma wakefield via the ponderomotive potential is common. Our computer simulations show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over many plasma wavelengths. We suggest that in addition to its celestial application, the MPWA concept can also be of terrestrial utility. A proof-of-principle experiment on MPWA would benefit both terrestrial and celestial accelerator concepts.« less

  14. Acceleration Measurements During Landing in Rough Water of a 1/7-Scale Dynamic Model of Grumman XJR2F-1 Amphibian - Langley Tank Model 212, TED No. NACA 2378

    NASA Technical Reports Server (NTRS)

    Land, Norman S.; Zeck, Howard

    1947-01-01

    Tests of a 1/7 size model of the Grumman XJR2F-1 amphibian were made in Langley tank no.1 to examine the landing behavior in rough water and to measure the normal and angular accelerations experienced by the model during these landings. All landings were made normal to the direction of wave advance, a condition assumed to produce the greatest accelerations. Wave heights of 4.4 and 8.0 inches (2.5 and 4.7 ft, full size) were used in the tests and the wave lengths were varied between 10 and 50 feet (70 and 350 ft, full size). Maximum normal accelerations of about 6.5g were obtained in 4.4 inch waves and 8.5g were obtained in 8.0 inch waves. A maximum angular acceleration corresponding to 16 radians per second per second, full size, was obtained in the higher waves. The data indicate that the airplane will experience its greatest accelerations when landing in waves of about 20 feet (140 ft, full size) in length.

  15. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Technical Reports Server (NTRS)

    Parker, Linda Neergaard; Zank, Gary P.

    2013-01-01

    We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  16. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  17. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  18. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOEpatents

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  19. Migration rates and formation injectivity to determine containment time scales of sequestered carbon dioxide

    USGS Publications Warehouse

    Burke, Lauri

    2012-01-01

    Additionally, this research establishes a methodology to calculate the injectivity of a target formation. Because injectivity describes the pressure increase due to the introduction of fluids into a formation, the relevant application of injectivity is to determine the pressure increase, due to an injection volume and flow rate, that will induce fractures in the reservoir rocks. This quantity is defined mathematically as the maximum pressure differential between the hydrostatic gradient and the fracture gradient of the target formation. Injectivity is mathematically related to the maximum pressure differential of the formation, and can be used to determine the upper limit for the pressure increase that an injection target can withstand before fracturing.

  20. Thermal Design to Meet Stringent Temperature Gradient/Stability Requirements of SWIFT BAT Detectors

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    The Burst Alert Telescope (BAT) is an instrument on the National Aeronautics and Space Administration (NASA) SWIFT spacecraft. It is designed to detect gamma ray burst over a broad region of the sky and quickly align the telescopes on the spacecraft to the gamma ray source. The thermal requirements for the BAT detector arrays are very stringent. The maximum allowable temperature gradient of the 256 cadmium zinc telluride (CZT) detectors is PC. Also, the maximum allowable rate of temperature change of the ASICs of the 256 Detector Modules (DMs) is PC on any time scale. The total power dissipation of the DMs and Block Command & Data Handling (BCDH) is 180 W. This paper presents a thermal design that uses constant conductance heat pipes (CCHPs) to minimize the temperature gradient of the DMs, and loop heat pipes (LHPs) to transport the waste heat to the radiator. The LHPs vary the effective thermal conductance from the DMs to the radiator to minimize heater power to meet the heater power budget, and to improve the temperature stability. The DMs are cold biased, and active heater control is used to meet the temperature gradient and stability requirements.

  1. Field estimates of floc dynamics and settling velocities in a tidal creek with significant along-channel gradients in velocity and SPM

    NASA Astrophysics Data System (ADS)

    Schwarz, C.; Cox, T.; van Engeland, T.; van Oevelen, D.; van Belzen, J.; van de Koppel, J.; Soetaert, K.; Bouma, T. J.; Meire, P.; Temmerman, S.

    2017-10-01

    A short-term intensive measurement campaign focused on flow, turbulence, suspended particle concentration, floc dynamics and settling velocities were carried out in a brackish intertidal creek draining into the main channel of the Scheldt estuary. We compare in situ estimates of settling velocities between a laser diffraction (LISST) and an acoustic Doppler technique (ADV) at 20 and 40 cm above bottom (cmab). The temporal variation in settling velocity estimated were compared over one tidal cycle, with a maximum flood velocity of 0.46 m s-1, a maximum horizontal ebb velocity of 0.35 m s-1 and a maximum water depth at high water slack of 2.41 m. Results suggest that flocculation processes play an important role in controlling sediment transport processes in the measured intertidal creek. During high-water slack, particles flocculated to sizes up to 190 μm, whereas at maximum flood and maximum ebb tidal stage floc sizes only reached up to 55 μm and 71 μm respectively. These large differences indicate that flocculation processes are mainly governed by turbulence-induced shear rate. In this study, we specifically recognize the importance of along-channel gradients that places constraints on the application of the acoustic Doppler technique due to conflicts with the underlying assumptions. Along-channel gradients were assessed by additional measurements at a second location and scaling arguments which could be used as an indication whether the Reynolds-flux method is applicable. We further show the potential impact of along-channel advection of flocs out of equilibrium with local hydrodynamics influencing overall floc sizes.

  2. Influence of Flow Gradients on Mach Stem Initiation of PBX-9502

    NASA Astrophysics Data System (ADS)

    Hull, Lawrence; Miller, Phillip; Mas, Eric; Focused Experiments Team

    2017-06-01

    Recent experiments and theory explore the effect of flow gradients on reaction acceleration and stability in the pressure-enhanced region between colliding sub-detonative shock waves in PBX-9502. The experiments are designed to produce divergent curved incident shock waves that interact in a convergent irregular reflection, or ``Mach stem'', configuration. Although this flow is fundamentally unsteady, such a configuration does feature particle paths having a single shock wave that increases the pressure from zero to the wave-reflected enhanced pressure. Thus, the possibility of pre-shock desensitization is precluded in this interaction region. Diagnostics record arrival wave velocity, shape, and material velocity along the angled free surface face of a large wedge. The wedge is large enough to allow observation of the wave structure for distances much larger than the run-to-detonation derived from classical ``Pop plot'' data. The explosive driver system produces the incident shocks and allows some control of the flow gradients in the collision region. Further, the incident shocks are very weak and do not transition to detonation. The experiments discussed feature incident shock waves that would be expected to cause initiation in the Mach stem, based on the Pop plot. Results show that the introduction of pressure/velocity gradients in the reaction zone strongly influences the ability of the flow to build to a steady ``CJ'' detonation. As expected, the ability of the Mach stem to stabilize or accelerate is strongly influenced by the incident shock pressure.

  3. Effect of track structure and radioprotectors on the induction of oncogenic transformation in murine fibroblasts by heavy ions

    NASA Technical Reports Server (NTRS)

    Miller, R. C.; Martin, S. G.; Hanson, W. R.; Marino, S. A.; Hall, E. J.; Wachholz, B. W. (Principal Investigator)

    1998-01-01

    The oncogenic potential of high-energy 56Fe particles (1 GeV/nucleon) accelerated with the Alternating Gradient Synchrotron at the Brookhaven National Laboratory was examined utilizing the mouse C3H 10T1/2 cell model. The dose-averaged LET for high-energy 56Fe is estimated to be 143 keV/micrometer with the exposure conditions used in this study. For 56Fe ions, the maximum relative biological effectiveness (RBEmax) values for cell survival and oncogenic transformation were 7.71 and 16.5 respectively. Compared to 150 keV/micrometer 4He nuclei, high-energy 56Fe nuclei were significantly less effective in cell killing and oncogenic induction. The prostaglandin E1 analog misoprostol, an effective oncoprotector of C3H 10T1/2 cells exposed to X rays, was evaluated for its potential as a radioprotector of oncogenic transformation with high-energy 56Fe. Exposure of cells to misoprostol did not alter 56Fe cytotoxicity or the rate of 56Fe-induced oncogenic transformation.

  4. Volumetric visualization algorithm development for an FPGA-based custom computing machine

    NASA Astrophysics Data System (ADS)

    Sallinen, Sami J.; Alakuijala, Jyrki; Helminen, Hannu; Laitinen, Joakim

    1998-05-01

    Rendering volumetric medical images is a burdensome computational task for contemporary computers due to the large size of the data sets. Custom designed reconfigurable hardware could considerably speed up volume visualization if an algorithm suitable for the platform is used. We present an algorithm and speedup techniques for visualizing volumetric medical CT and MR images with a custom-computing machine based on a Field Programmable Gate Array (FPGA). We also present simulated performance results of the proposed algorithm calculated with a software implementation running on a desktop PC. Our algorithm is capable of generating perspective projection renderings of single and multiple isosurfaces with transparency, simulated X-ray images, and Maximum Intensity Projections (MIP). Although more speedup techniques exist for parallel projection than for perspective projection, we have constrained ourselves to perspective viewing, because of its importance in the field of radiotherapy. The algorithm we have developed is based on ray casting, and the rendering is sped up by three different methods: shading speedup by gradient precalculation, a new generalized version of Ray-Acceleration by Distance Coding (RADC), and background ray elimination by speculative ray selection.

  5. Study of microvascular non-Newtonian blood flow modulated by electroosmosis.

    PubMed

    Tripathi, Dharmendra; Yadav, Ashu; Anwar Bég, O; Kumar, Rakesh

    2018-05-01

    An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is imposed on the system. The Poisson-Boltzmann equation for electrical potential distribution is implemented to accommodate the electrical double layer in the microvascular regime. With long wavelength, lubrication and Debye-Hückel approximations, the boundary value problem is rendered non-dimensional. Analytical solutions are derived for the axial velocity, volumetric flow rate, pressure gradient, volumetric flow rate, averaged volumetric flow rate along one time period, pressure rise along one wavelength and stream function. A plug swidth is featured in the solutions. Via symbolic software (Mathematica), graphical plots are generated for the influence of Bingham plug flow width parameter, electrical Debye length and Helmholtz-Smoluchowski velocity (maximum electro-osmotic velocity) on the key hydrodynamic variables. This study reveals that blood flow rate accelerates with decreasing the plug width (i.e. viscoplastic nature of fluids) and also with increasing the Debye length parameter. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Numerical studies of surface tensions

    NASA Technical Reports Server (NTRS)

    Hung, R. J.

    1995-01-01

    Liquid-vapor (bubble) interface disturbances caused by various types of accelerations, including centrifugal, lateral and axial impulses, gravity gradient and g-jitter accelerations associated with spinning and slew motion in microgravity, are reviewed. Understanding of bubble deformations and fluctuations is important in the development of spacecraft orbital and attitude control techniques to secure its normal operation. This review discusses bubble deformations and oscillations driven by various forces in the microgravity environment. The corresponding bubble mass center fluctuations and slosh reaction forces and torques due to bubble deformations are also reviewed.

  7. High-Power Testing of 11.424-GHz Dielectric-Loaded Accelerating Structures

    NASA Astrophysics Data System (ADS)

    Gold, Steven; Gai, Wei

    2001-10-01

    Argonne National Laboratory has previously described the design, construction, and bench testing of an X-band traveling-wave accelerating structure loaded with a permittivity=20 dielectric (P. Zou et al., Rev. Sci. Instrum. 71, 2301, 2000.). We describe a new program to build a test accelerator using this structure. The accelerator will be powered by the high-power 11.424-GHz radiation from the magnicon facility at the Naval Research Laboratory ( O.A. Nezhevenko et al., Proc. PAC 2001, in press). The magnicon is expected to provide up to 30 MW from each of two WR-90 output waveguide arms in pulses of up to 1 microsecond duration, permitting tests up to a gradient of 40 MV/m. Still higher power pulses (100-500 MW) may be available at the output of an active pulse compressor driven by the magnicon ( A.L. Vikharev et al., Proc. 9th Workshop on Advanced Accelerator Concepts.).

  8. Method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam

    DOEpatents

    Hannon, Fay

    2016-08-02

    A method for maximizing the brightness of the bunches in a particle injector by converting a highly space-charged beam to a relativistic and emittance-dominated beam. The method includes 1) determining the bunch charge and the initial kinetic energy of the highly space-charge dominated input beam; 2) applying the bunch charge and initial kinetic energy properties of the highly space-charge dominated input beam to determine the number of accelerator cavities required to accelerate the bunches to relativistic speed; 3) providing the required number of accelerator cavities; and 4) setting the gradient of the radio frequency (RF) cavities; and 5) operating the phase of the accelerator cavities between -90 and zero degrees of the sinusoid of phase to simultaneously accelerate and bunch the charged particles to maximize brightness, and until the beam is relativistic and emittance-dominated.

  9. Collective electron driven linac for high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeman, J.T.

    1983-08-01

    A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less

  10. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Reinink, Shawn K.; Yaras, Metin I.

    2015-06-01

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal property gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.

  11. Study of coherent structures of turbulence with large wall-normal gradients in thermophysical properties using direct numerical simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinink, Shawn K.; Yaras, Metin I., E-mail: Metin.Yaras@carleton.ca

    2015-06-15

    Forced-convection heat transfer in a heated working fluid at a thermodynamic state near its pseudocritical point is poorly predicted by correlations calibrated with data at subcritical temperatures and pressures. This is suggested to be primarily due to the influence of large wall-normal thermophysical property gradients that develop in proximity of the pseudocritical point on the concentration of coherent turbulence structures near the wall. The physical mechanisms dominating this influence remain poorly understood. In the present study, direct numerical simulation is used to study the development of coherent vortical structures within a turbulent spot under the influence of large wall-normal propertymore » gradients. A turbulent spot rather than a fully turbulent boundary layer is used for the study, for the coherent structures of turbulence in a spot tend to be in a more organized state which may allow for more effective identification of cause-and-effect relationships. Large wall-normal gradients in thermophysical properties are created by heating the working fluid which is near the pseudocritical thermodynamic state. It is found that during improved heat transfer, wall-normal gradients in density accelerate the growth of the Kelvin-Helmholtz instability mechanism in the shear layer enveloping low-speed streaks, causing it to roll up into hairpin vortices at a faster rate. It is suggested that this occurs by the baroclinic vorticity generation mechanism which accelerates the streamwise grouping of vorticity during shear layer roll-up. The increased roll-up frequency leads to reduced streamwise spacing between hairpin vortices in wave packets. The density gradients also promote the sinuous instability mode in low-speed streaks. The resulting oscillations in the streaks in the streamwise-spanwise plane lead to locally reduced spanwise spacing between hairpin vortices forming over adjacent low-speed streaks. The reduction in streamwise and spanwise spacing between hairpin vortices causes them to interact more frequently by merging together and by breaking apart into smaller turbulence structures.« less

  12. Latitudinal gradients in ecosystem engineering by oysters vary across habitats.

    PubMed

    McAfee, Dominic; Cole, Victoria J; Bishop, Melanie J

    2016-04-01

    Ecological theory predicts that positive interactions among organisms will increase across gradients of increasing abiotic stress or consumer pressure. This theory has been supported by empirical studies examining the magnitude of ecosystem engineering across environmental gradients and between habitat settings at local scale. Predictions that habitat setting, by modifying both biotic and abiotic factors, will determine large-scale gradients in ecosystem engineering have not been tested, however. A combination of manipulative experiments and field surveys assessed whether along the east Australian coastline: (1) facilitation of invertebrates by the oyster Saccostrea glomerata increased across a latitudinal gradient in temperature; and (2) the magnitude of this effect varied between intertidal rocky shores and mangrove forests. It was expected that on rocky shores, where oysters are the primary ecosystem engineer, they would play a greater role in ameliorating latitudinal gradients in temperature than in mangroves, where they are a secondary ecosystem engineer living under the mangrove canopy. On rocky shores, the enhancement of invertebrate abundance in oysters as compared to bare microhabitat decreased with latitude, as the maximum temperatures experienced by intertidal organisms diminished. By contrast, in mangrove forests, where the mangrove canopy resulted in maximum temperatures that were cooler and of greater humidity than on rocky shores, we found no evidence of latitudinal gradients of oyster effects on invertebrate abundance. Contrary to predictions, the magnitude by which oysters enhanced biodiversity was in many instances similar between mangroves and rocky shores. Whether habitat-context modifies patterns of spatial variation in the effects of ecosystem engineers on community structure will depend, in part, on the extent to which the environmental amelioration provided by an ecosystem engineer replicates that of other co-occurring ecosystem engineers.

  13. Heating of metallic implants and instruments induced by gradient switching in a 1.5-Tesla whole-body unit.

    PubMed

    Graf, Hansjörg; Steidle, Günter; Schick, Fritz

    2007-11-01

    To examine gradient switching-induced heating of metallic parts. Copper and titanium frames and sheets ( approximately 50 x 50 mm(2), 1.5 mm thick, frame width = 3 mm) surrounded by air were positioned in the scanner perpendicular to the static field horizontally 20 cm off-center. During the execution of a sequence (three-dimensional [3D] true fast imaging with steady precession [True-FISP], TR = 6.4 msec) exploiting the gradient capabilities (maximum gradient = 40 mT/m, maximum slew rate = 200 T/m/second), heating was measured with an infrared camera. Radio frequency (RF) amplitude was set to zero volts. Heating of a copper frame with a narrowing to 1 mm over 20 mm at one side was examined in air and in addition surrounded by several liters of gelled saline using fiber-optic thermography. Further heating studies were performed using an artificial hip made of titanium, and an aluminum replica of the hip prosthesis with the same geometry. For the copper specimens, considerable heating (>10 degrees C) in air and in gelled saline (>1.2 degrees C) could be observed. Heating of the titanium specimens was markedly less ( approximately 1 degrees C in air). For the titanium artificial hip no heating could be detected, while the rise in temperature for the aluminum replica was approximately 2.2 degrees C. Heating of more than 10 degrees C solely due to gradient switching without any RF irradiation was demonstrated in isolated copper wire frames. Under specific conditions (high gradient duty cycle, metallic loop of sufficient inductance and low resistance, power matching) gradient switching-induced heating of conductive specimens must be considered.

  14. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  15. Analytical solution of the problem of acceleration of cargo by a bridge crane with constant acceleration at elimination of swings of a cargo rope

    NASA Astrophysics Data System (ADS)

    Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.

    2018-01-01

    Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.

  16. Radiation pressure acceleration: The factors limiting maximum attainable ion energy

    DOE PAGES

    Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...

    2016-04-15

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case,more » finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it transparent for radiation and effectively terminating the acceleration. The off-normal incidence of the laser on the target, due either to the experimental setup, or to the deformation of the target, will also lead to establishing a limit on maximum ion energy.« less

  17. Electron density and plasma dynamics of a colliding plasma experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiechula, J., E-mail: wiechula@physik.uni-frankfurt.de; Schönlein, A.; Iberler, M.

    2016-07-15

    We present experimental results of two head-on colliding plasma sheaths accelerated by pulsed-power-driven coaxial plasma accelerators. The measurements have been performed in a small vacuum chamber with a neutral-gas prefill of ArH{sub 2} at gas pressures between 17 Pa and 400 Pa and load voltages between 4 kV and 9 kV. As the plasma sheaths collide, the electron density is significantly increased. The electron density reaches maximum values of ≈8 ⋅ 10{sup 15} cm{sup −3} for a single accelerated plasma and a maximum value of ≈2.6 ⋅ 10{sup 16} cm{sup −3} for the plasma collision. Overall a raise of the plasma density by a factor ofmore » 1.3 to 3.8 has been achieved. A scaling behavior has been derived from the values of the electron density which shows a disproportionately high increase of the electron density of the collisional case for higher applied voltages in comparison to a single accelerated plasma. Sequences of the plasma collision have been taken, using a fast framing camera to study the plasma dynamics. These sequences indicate a maximum collision velocity of 34 km/s.« less

  18. Fourier ptychographic reconstruction using Poisson maximum likelihood and truncated Wirtinger gradient.

    PubMed

    Bian, Liheng; Suo, Jinli; Chung, Jaebum; Ou, Xiaoze; Yang, Changhuei; Chen, Feng; Dai, Qionghai

    2016-06-10

    Fourier ptychographic microscopy (FPM) is a novel computational coherent imaging technique for high space-bandwidth product imaging. Mathematically, Fourier ptychographic (FP) reconstruction can be implemented as a phase retrieval optimization process, in which we only obtain low resolution intensity images corresponding to the sub-bands of the sample's high resolution (HR) spatial spectrum, and aim to retrieve the complex HR spectrum. In real setups, the measurements always suffer from various degenerations such as Gaussian noise, Poisson noise, speckle noise and pupil location error, which would largely degrade the reconstruction. To efficiently address these degenerations, we propose a novel FP reconstruction method under a gradient descent optimization framework in this paper. The technique utilizes Poisson maximum likelihood for better signal modeling, and truncated Wirtinger gradient for effective error removal. Results on both simulated data and real data captured using our laser-illuminated FPM setup show that the proposed method outperforms other state-of-the-art algorithms. Also, we have released our source code for non-commercial use.

  19. Influence of Turbulent Flow and Fractal Scaling on Effective Permeability of Fracture Network

    NASA Astrophysics Data System (ADS)

    Zhu, J.

    2017-12-01

    A new approach is developed to calculate hydraulic gradient dependent effective permeability of a fractal fracture network where both laminar and turbulent flows may occur in individual fractures. A critical fracture length is used to distinguish flow characteristics in individual fractures. The developed new solutions can be used for the case of a general scaling relationship, an extension to the linear scaling. We examine the impact on the effective permeability of the network of fractal fracture network characteristics, which include the fractal scaling coefficient and exponent, fractal dimension, ratio of minimum over maximum fracture lengths. Results demonstrate that the developed solution can explain more variations of the effective permeability in relation to the fractal dimensions estimated from the field observations. At high hydraulic gradient the effective permeability decreases with the fractal scaling exponent, but increases with the fractal scaling exponent at low gradient. The effective permeability increases with the scaling coefficient, fractal dimension, fracture length ratio and maximum fracture length.

  20. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGES

    Gessner, Spencer; Adli, Erik; Allen, James M.; ...

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m -1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  1. On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators

    NASA Astrophysics Data System (ADS)

    Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao

    2018-05-01

    We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.

  2. Gyrokinetic theory of turbulent acceleration and momentum conservation in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Lu, WANG; Shuitao, PENG; P, H. DIAMOND

    2018-07-01

    Understanding the generation of intrinsic rotation in tokamak plasmas is crucial for future fusion reactors such as ITER. We proposed a new mechanism named turbulent acceleration for the origin of the intrinsic parallel rotation based on gyrokinetic theory. The turbulent acceleration acts as a local source or sink of parallel rotation, i.e., volume force, which is different from the divergence of residual stress, i.e., surface force. However, the order of magnitude of turbulent acceleration can be comparable to that of the divergence of residual stress for electrostatic ion temperature gradient (ITG) turbulence. A possible theoretical explanation for the experimental observation of electron cyclotron heating induced decrease of co-current rotation was also proposed via comparison between the turbulent acceleration driven by ITG turbulence and that driven by collisionless trapped electron mode turbulence. We also extended this theory to electromagnetic ITG turbulence and investigated the electromagnetic effects on intrinsic parallel rotation drive. Finally, we demonstrated that the presence of turbulent acceleration does not conflict with momentum conservation.

  3. Gas-filled capillaries for plasma-based accelerators

    NASA Astrophysics Data System (ADS)

    Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.

    2017-07-01

    Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.

  4. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  5. History and Technology Developments of Radio Frequency (RF) Systems for Particle Accelerators

    NASA Astrophysics Data System (ADS)

    Nassiri, A.; Chase, B.; Craievich, P.; Fabris, A.; Frischholz, H.; Jacob, J.; Jensen, E.; Jensen, M.; Kustom, R.; Pasquinelli, R.

    2016-04-01

    This article attempts to give a historical account and review of technological developments and innovations in radio frequency (RF) systems for particle accelerators. The evolution from electrostatic field to the use of RF voltage suggested by R. Wideröe made it possible to overcome the shortcomings of electrostatic accelerators, which limited the maximum achievable electric field due to voltage breakdown. After an introduction, we will provide reviews of technological developments of RF systems for particle accelerators.

  6. Response of long, flexible cantilever beams applied root motions. [spacecraft structures

    NASA Technical Reports Server (NTRS)

    Fralich, R. W.

    1976-01-01

    Results are presented for an analysis of the response of long, flexible cantilever beams to applied root rotational accelerations. Maximum values of deformation, slope, bending moment, and shear are found as a function of magnitude and duration of acceleration input. Effects of tip mass and its eccentricity and rotatory inertia on the response are also investigated. It is shown that flexible beams can withstand large root accelerations provided the period of applied acceleration can be kept small relative to the beam fundamental period.

  7. Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier

    NASA Astrophysics Data System (ADS)

    Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.

    2006-01-01

    The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.

  8. Linear induction accelerators made from pulse-line cavities with external pulse injection.

    PubMed

    Smith, I

    1979-06-01

    Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.

  9. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  10. Acceleration of runaway electrons and Joule heating in solar flares

    NASA Technical Reports Server (NTRS)

    Holman, G. D.

    1984-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  11. Plasma inverse transition acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Ming

    It can be proved fundamentally from the reciprocity theorem with which the electromagnetism is endowed that corresponding to each spontaneous process of radiation by a charged particle there is an inverse process which defines a unique acceleration mechanism, from Cherenkov radiation to inverse Cherenkov acceleration (ICA) [1], from Smith-Purcell radiation to inverse Smith-Purcell acceleration (ISPA) [2], and from undulator radiation to inverse undulator acceleration (IUA) [3]. There is no exception. Yet, for nearly 30 years after each of the aforementioned inverse processes has been clarified for laser acceleration, inverse transition acceleration (ITA), despite speculation [4], has remained the least understood,more » and above all, no practical implementation of ITA has been found, until now. Unlike all its counterparts in which phase synchronism is established one way or the other such that a particle can continuously gain energy from an acceleration wave, the ITA to be discussed here, termed plasma inverse transition acceleration (PITA), operates under fundamentally different principle. As a result, the discovery of PITA has been delayed for decades, waiting for a conceptual breakthrough in accelerator physics: the principle of alternating gradient acceleration [5, 6, 7, 8, 9, 10]. In fact, PITA was invented [7, 8] as one of several realizations of the new principle.« less

  12. An update on the study of high-gradient elliptical SRF cavities at 805 MHz for proton and other applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajima, Tsuyoshi; Haynes, Brian; Krawczyk, Frank

    2010-09-09

    An update on the study of 805 MHz elliptical SRF cavities that have been optimized for high gradient will be presented. An optimized cell shape, which is still appropriate for easy high pressure water rinsing, has been designed with the ratios of peak magnetic and electric fields to accelerating gradient being 3.75 mT/(MV/m) and 1.82, respectively. A total of 3 single-cell cavities have been fabricated. Two of the 3 cavities have been tested so far. The second cavity achieved an E{sub acc} of {approx}50 MV/m at Q{sub 0} of 1.4 x 10{sup 10}. This result demonstrates that 805 MHz cavitiesmore » can, in principle, achieve as high as, or could even be better than, 1.3 GHz high-gradient cavities.« less

  13. Gravitation is a Gradient in the Velocity of Light

    NASA Astrophysics Data System (ADS)

    Froedge, Dt

    2017-01-01

    It is well known that a photon moving in a gravitational field has a trajectory that can be defined by Fermat's principle with a variable speed of light and no other gravitational influence. If it can be shown that a particle composed of speed of light sub-particles has the same acceleration in a variable index of refraction as a particle in a gravitational field, then there is no need to ascribe any other mechanism to gravitation than a gradient in c. This makes gravitation an electromagnetic phenomenon, and if QFT can illustrate a gradient in c can be produced by the internal motion of lightspeed sub-particles then the unification of QM and gravitation becomes more straightforward. http://www.arxdtf.org/css/GravAPS.pdf.

  14. Fabrication of high gradient insulators by stack compression

    DOEpatents

    Harris, John Richardson; Sanders, Dave; Hawkins, Steven Anthony; Norona, Marcelo

    2014-04-29

    Individual layers of a high gradient insulator (HGI) are first pre-cut to their final dimensions. The pre-cut layers are then stacked to form an assembly that is subsequently pressed into an HGI unit with the desired dimension. The individual layers are stacked, and alignment is maintained, using a sacrificial alignment tube that is removed after the stack is hot pressed. The HGI's are used as high voltage vacuum insulators in energy storage and transmission structures or devices, e.g. in particle accelerators and pulsed power systems.

  15. A 1 GeV CW FFAG High Intensity Proton Driver

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnstone, C.; Sheehy, S. L.

    2012-05-01

    The drive for high beam power, high duty cycle, and reliable beams at reasonable cost has focused world attention on fixed-field accelerators, notably Fixed-Field Alternating Gradient accelerators (FFAGs). High-intensity GeV proton drivers are of particular interest, as these encounter duty cycle and space-charge limits in the synchrotron and machine size concerns in the weaker-focusing cyclotron. Recently, the concept of isochronous orbits has been explored and developed for non-scaling FFAGs using powerful new methodologies in FFAG accelerator design. These new breeds of FFAGs have been identified by international collaborations for serious study thanks to their potential applications including Accelerator Driven Subcriticalmore » Reactors (ADS) a nd Accelerator Transmutation of Waste. The extreme reliability requirements for ADS mandate CW operation capability and the FFAG s strong focusing, particularly in the vertical, will serve to mitigate the effect of space charge (as compared with the weak- focusing cyclotron). This paper reports on these new advances in FFAG accelerator technology and presents a stable, 0.25-1GeV isochronous FFAG for an accelerator driven subcritical reactor.« less

  16. Distribution uniformity of laser-accelerated proton beams

    NASA Astrophysics Data System (ADS)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  17. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    DOE PAGES

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; ...

    2016-10-18

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV/cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In additionmore » to particle acceleration, this scheme can also induce the emission of high energy photons at ~O(10–100) MeV. Here, our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.« less

  18. Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.

    PubMed

    Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji

    2015-12-01

    A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.

  19. Trunk axial rotation in baseball pitching and batting.

    PubMed

    Fleisig, Glenn S; Hsu, Wellington K; Fortenbaugh, Dave; Cordover, Andrew; Press, Joel M

    2013-11-01

    The purpose of this study was to quantify trunk axial rotation and angular acceleration in pitching and batting of elite baseball players. Healthy professional baseball pitchers (n = 40) and batters (n = 40) were studied. Reflective markers attached to each athlete were tracked at 240 Hz with an eight-camera automated digitizing system. Trunk axial rotation was computed as the angle between the pelvis and the upper trunk in the transverse plane. Trunk angular acceleration was the second derivative of axial rotation. Maximum trunk axial rotation (55 +/- 6 degrees) and angular acceleration (11,600 +/- 3,100 degrees/s2) in pitching occurred before ball release, approximately at the instant the front foot landed. Maximum trunk axial rotation (46 +/- 9 degrees) and angular acceleration (7,200 +/- 2,800 degrees/s2) in batting occurred in the follow-through after ball contact. Thus, the most demanding instant for the trunk and spine was near front foot contact for pitching and after ball contact for batting.

  20. Particle acceleration at shocks in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Parker, Linda Neergaard

    This dissertation describes a study of particle acceleration at shocks via the diffusive shock acceleration mechanism. Results for particle acceleration at both quasi-parallel and quasi-perpendicular shocks are presented to address the question of whether there are sufficient particles in the solar wind thermal core, modeled as either a Maxwellian or kappa- distribution, to account for the observed accelerated spectrum. Results of accelerating the theoretical upstream distribution are compared to energetic observations at 1 AU. It is shown that the particle distribution in the solar wind thermal core is sufficient to explain the accelerated particle spectrum downstream of the shock, although the shape of the downstream distribution in some cases does not follow completely the theory of diffusive shock acceleration, indicating possible additional processes at work in the shock for these cases. Results show good to excellent agreement between the theoretical and observed spectral index for one third to one half of both quasi-parallel and quasi-perpendicular shocks studied herein. Coronal mass ejections occurring during periods of high solar activity surrounding solar maximum can produce shocks in excess of 3-8 shocks per day. During solar minimum, diffusive shock acceleration at shocks can generally be understood on the basis of single independent shocks and no other shock necessarily influences the diffusive shock acceleration mechanism. In this sense, diffusive shock acceleration during solar minimum may be regarded as Markovian. By contrast, diffusive shock acceleration of particles at periods of high solar activity (e.g. solar maximum) see frequent, closely spaced shocks that include the effects of particle acceleration at preceding and following shocks. Therefore, diffusive shock acceleration of particles at solar maximum cannot be modeled on the basis of diffusive shock acceleration as a single, independent shock and the process is essentially non-Markovian. A multiple shock model is developed based in part on the box model of (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al. 1999) that accelerates particles at multiple shocks and decompresses the particles between shocks via two methods. The first method of decompression is based on the that used by Melrose and Pope (1993), which adiabatically decompresses particles between shocks. The second method solves the cosmic ray transport equation and adiabatically decompresses between shocks and includes the loss of particles through convection and diffusion. The transport method allows for the inclusion of a temporal variability and thus allows for a more representative frequency distribution of shocks. The transport method of decompression and loss is used to accelerate particles at seventy-three shocks in a thirty day time period. Comparisons with observations taken at 1 AU during the same time period are encouraging as the model is able to reproduce the observed amplitude of the accelerated particles and in part the variability. This work provides the basis for developing more sophisticated models that can be applied to a suite of observations

  1. A Brief Hydrodynamic Investigation of a 1/24-Scale Model of the DR-77 Seaplane

    NASA Technical Reports Server (NTRS)

    Fisher, Lloyd J.; Hoffman, Edward L.

    1953-01-01

    A limited investigation of a 1/24-scale dynamically similar model of the Navy Bureau of Aeronautics DR-77 design was conducted in Langley tank no. 2 to determine the calm-water take-off and the rough-water landing characteristics of the design with particular regard to the take-off resistance and the landing accelerations. During the take-off tests, resistance, trim, and rise were measured and photographs were taken to study spray. During the landing tests, motion-picture records and normal-acceleration records were obtained. A ratio of gross load to maximum resistance of 3.2 was obtained with a 30 deg. dead-rise hydro-ski installation. The maximum normal accelerations obtained with a 30 deg. dead-rise hydro-ski installation were of the order of 8g to log in waves 8 feet high (full scale). A yawing instability that occurred just prior to hydro-ski emergence was improved by adding an afterbody extension, but adding the extension reduced the ratio of gross load to maximum resistance to 2.9.

  2. Phenomenological Model of Current Sheet Canting in Pulsed Electromagnetic Accelerators

    NASA Technical Reports Server (NTRS)

    Markusic, Thomas; Choueiri, E. Y.

    2003-01-01

    The phenomenon of current sheet canting in pulsed electromagnetic accelerators is the departure of the plasma sheet (that carries the current) from a plane that is perpendicular to the electrodes to one that is skewed, or tipped. Review of pulsed electromagnetic accelerator literature reveals that current sheet canting is a ubiquitous phenomenon - occurring in all of the standard accelerator geometries. Developing an understanding of current sheet canting is important because it can detract from the propellant sweeping capabilities of current sheets and, hence, negatively impact the overall efficiency of pulsed electromagnetic accelerators. In the present study, it is postulated that depletion of plasma near the anode, which results from axial density gradient induced diamagnetic drift, occurs during the early stages of the discharge, creating a density gradient normal to the anode, with a characteristic length on the order of the ion skin depth. Rapid penetration of the magnetic field through this region ensues, due to the Hall effect, leading to a canted current front ahead of the initial current conduction channel. In this model, once the current sheet reaches appreciable speeds, entrainment of stationary propellant replenishes plasma in the anode region, inhibiting further Hall-convective transport of the magnetic field; however, the previously established tilted current sheet remains at a fairly constant canting angle for the remainder of the discharge cycle, exerting a transverse J x B force which drives plasma toward the cathode and accumulates it there. This proposed sequence of events has been incorporated into a phenomenological model. The model predicts that canting can be reduced by using low atomic mass propellants with high propellant loading number density; the model results are shown to give qualitative agreement with experimentally measured canting angle mass dependence trends.

  3. Heavy ion beams from an Alphatross source for use in calibration and testing of diagnostics

    NASA Astrophysics Data System (ADS)

    Ward, R. J.; Brown, G. M.; Ho, D.; Stockler, B. F. O. F.; Freeman, C. G.; Padalino, S. J.; Regan, S. P.

    2016-10-01

    Ion beams from the 1.7 MV Pelletron Accelerator at SUNY Geneseo have been used to test and calibrate many inertial confinement fusion (ICF) diagnostics and high energy density physics (HEDP) diagnostics used at the Laboratory for Laser Energetics (LLE). The ion source on this accelerator, a radio-frequency (RF) alkali-metal charge exchange source called an Alphatross, is designed to produce beams of hydrogen and helium isotopes. There is interest in accelerating beams of carbon, oxygen, argon, and other heavy ions for use in testing several diagnostics, including the Time Resolved Tandem Faraday Cup (TRTF). The feasibility of generating these heavy ion beams using the Alphatross source will be reported. Small amounts of various gases are mixed into the helium plasma in the ion source bottle. A velocity selector is used to allow the desired ions to pass into the accelerator. As the heavy ions pass through the stripper canal of the accelerator, they emerge in a variety of charge states. The energy of the ion beam at the high-energy end of the accelerator will vary as a function of the charge state, however the maximum energy deliverable to target is limited by the maximum achievable magnetic field produced by the accelerator's steering magnet. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  4. Modeling of Particle Acceleration at Multiple Shocks Via Diffusive Shock Acceleration: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Zank, G. P.

    2013-12-01

    Successful forecasting of energetic particle events in space weather models require algorithms for correctly predicting the spectrum of ions accelerated from a background population of charged particles. We present preliminary results from a model that diffusively accelerates particles at multiple shocks. Our basic approach is related to box models (Protheroe and Stanev, 1998; Moraal and Axford, 1983; Ball and Kirk, 1992; Drury et al., 1999) in which a distribution of particles is diffusively accelerated inside the box while simultaneously experiencing decompression through adiabatic expansion and losses from the convection and diffusion of particles outside the box (Melrose and Pope, 1993; Zank et al., 2000). We adiabatically decompress the accelerated particle distribution between each shock by either the method explored in Melrose and Pope (1993) and Pope and Melrose (1994) or by the approach set forth in Zank et al. (2000) where we solve the transport equation by a method analogous to operator splitting. The second method incorporates the additional loss terms of convection and diffusion and allows for the use of a variable time between shocks. We use a maximum injection energy (Emax) appropriate for quasi-parallel and quasi-perpendicular shocks (Zank et al., 2000, 2006; Dosch and Shalchi, 2010) and provide a preliminary application of the diffusive acceleration of particles by multiple shocks with frequencies appropriate for solar maximum (i.e., a non-Markovian process).

  5. Vegetative Succession in Recently Deglaciated Land in Kenai Fjords National Park

    NASA Astrophysics Data System (ADS)

    Green, C.; Klein, A. G.; Cairns, D. M.

    2017-12-01

    Poleward vegetation expansion has affected Alaska for decades and due to recently increased rates of warming, the expansion will accelerate. Glacial recession in Kenai Fjords National Park has exposed previously ice-covered land with vegetation succession occurring just a few years following glacial retreat. Land cover changes in recently deglaciated areas are affected by surface-air interactions, temperature gradients, and ecosystem development. Using satellite images from Landsat 5, 7, and 8 and the previous extents of four retreating glaciers from 1985 to 2015 within Kenai Fjords National Park, this study examines the relationship between deglaciation rates and vegetation greening. The glaciers, Exit (-15.04 m/yr), Petrof (-31.12 m/yr), Lowell (-33.14 m/yr), and Yalik (-51.32 m/yr) were selected based on their location, whether they were land or lake terminating, and their average retreat rate measured between 1985 and 2015. These glaciers have also been extensively studied. Combining historic glacier extents with 371 summer (JJA) Landsat images gathered from Google's Earth Engine platform we identified annual summer changes in NDVI of locations that were deglaciated between 1985, 1995, 2005, and 2015. Summer temperature maximums were determined to be more correlated with deglaciation, as measured using NDSI, than mean summer temperatures. Using NDVI, heightened deglaciation rates were found to be reasonably correlated with vegetation succession. The faster retreating glaciers, Lowell and Yalik, exhibited higher mean and maximum rates of increase of NDVI in their terminus areas than Exit and Petrof, the two slower retreating glaciers.

  6. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient

    NASA Astrophysics Data System (ADS)

    Sahai, Aakash A.; Tsung, Frank S.; Tableman, Adam R.; Mori, Warren B.; Katsouleas, Thomas C.

    2013-10-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency [Akhiezer and Polovin, Zh. Eksp. Teor. Fiz 30, 915 (1956); Kaw and Dawson, Phys. FluidsPFLDAS0031-917110.1063/1.1692942 13, 472 (1970); Max and Perkins, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.27.1342 27, 1342 (1971)] to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively [Lindl and Kaw, Phys. FluidsPFLDAS0031-917110.1063/1.1693437 14, 371 (1971); Silva , Phys. Rev. E1063-651X10.1103/PhysRevE.59.2273 59, 2273 (1999)] driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma frequency is resonant with the laser frequency. In the snowplow frame, trace density protons reflect off the electrostatic potential and get snowplowed, while the heavier background ions are relatively unperturbed. Quasimonoenergetic bunches of velocity equal to twice the snowplow velocity can be obtained and tuned by controlling the snowplow velocity using laser-plasma parameters. An analytical model for the proton energy as a function of laser intensity, rise time, and plasma density gradient is developed and compared to 1D and 2D PIC OSIRIS [Fonseca , Lect. Note Comput. Sci.9783-540410.1007/3-540-47789-6_36 2331, 342 (2002)] simulations. We model the acceleration of protons to GeV energies with tens-of-femtoseconds laser pulses of a few petawatts. The scaling of proton energy with laser power compares favorably to other mechanisms for ultrashort pulses [Schreiber , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.97.045005 97, 045005 (2006); Esirkepov , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.175003 92, 175003 (2004); Silva , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.92.015002 92, 015002 (2004); Fiuza , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.109.215001 109, 215001 (2012)].

  7. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Parker, C. E.; Gatu Johnson, M.; Birkel, A.; Kabadi, N. V.; Lahmann, B.; Milanese, L. M.; Simpson, R. A.; Sio, H.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Ruiz, C. L.; Sangster, T. C.

    2016-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV linear electrostatic ion accelerator, DT and DD neutron sources, and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s-1 are routinely achieved. The DT and DD neutron sources generate up to 6x108, and 1x107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  8. The MIT HEDP Accelerator Facility for Diagnostic Development for OMEGA, Z, and the NIF

    NASA Astrophysics Data System (ADS)

    Sio, H.; Gatu Johnson, M.; Birkel, A.; Doeg, E.; Frankel, R.; Kabadi, N. V.; Lahmann, B.; Manzin, M.; Simpson, R. A.; Parker, C. E.; Sutcliffe, G. D.; Wink, C.; Frenje, J. A.; Li, C. K.; Seguin, F. H.; Petrasso, R. D.; Leeper, R.; Hahn, K.; Ruiz, C. L.; Sangster, T. C.; Hilsabeck, T.

    2017-10-01

    The MIT HEDP Accelerator Facility utilizes a 135-keV, linear electrostatic ion accelerator; DT and DD neutron sources; and two x-ray sources for development and characterization of nuclear diagnostics for OMEGA, Z, and the NIF. The accelerator generates DD and D3He fusion products through the acceleration of D+ ions onto a 3He-doped Erbium-Deuteride target. Accurately characterized fusion product rates of around 106 s- 1 are routinely achieved. The DT and DD neutron sources generate up to 6×108 and 1×107 neutrons/s, respectively. One x-ray generator is a thick-target W source with a peak energy of 225 keV and a maximum dose rate of 12 Gy/min; the other uses Cu, Mo, or Ti elemental tubes to generate x-rays with a maximum energy of 40 keV. Diagnostics developed and calibrated at this facility include CR-39-based charged-particle spectrometers, neutron detectors, and the particle Time-Of-Flight (pTOF) and Magnetic PTOF CVD-diamond-based bang time detectors. The accelerator is also a valuable hands-on tool for graduate and undergraduate education at MIT. This work was supported in part by the U.S. DoE, SNL, LLE and LLNL.

  9. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI-LINAC systems.

    PubMed

    Gargett, Maegan; Oborn, Brad; Metcalfe, Peter; Rosenfeld, Anatoly

    2015-02-01

    MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named "magic plate," for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. geant4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-line and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm(3)) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm(2) area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm(2) photon field size. The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI-linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.

  10. Monte Carlo simulation of the dose response of a novel 2D silicon diode array for use in hybrid MRI–LINAC systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gargett, Maegan, E-mail: mg406@uowmail.edu.au; Rosenfeld, Anatoly; Oborn, Brad

    2015-02-15

    Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less

  11. Microstructural imaging of the human brain with a 'super-scanner': 10 key advantages of ultra-strong gradients for diffusion MRI.

    PubMed

    Jones, D K; Alexander, D C; Bowtell, R; Cercignani, M; Dell'Acqua, F; McHugh, D J; Miller, K L; Palombo, M; Parker, G J M; Rudrapatna, U S; Tax, C M W

    2018-05-22

    The key component of a microstructural diffusion MRI 'super-scanner' is a dedicated high-strength gradient system that enables stronger diffusion weightings per unit time compared to conventional gradient designs. This can, in turn, drastically shorten the time needed for diffusion encoding, increase the signal-to-noise ratio, and facilitate measurements at shorter diffusion times. This review, written from the perspective of the UK National Facility for In Vivo MR Imaging of Human Tissue Microstructure, an initiative to establish a shared 300 mT/m-gradient facility amongst the microstructural imaging community, describes ten advantages of ultra-strong gradients for microstructural imaging. Specifically, we will discuss how the increase of the accessible measurement space compared to a lower-gradient systems (in terms of Δ, b-value, and TE) can accelerate developments in the areas of 1) axon diameter distribution mapping; 2) microstructural parameter estimation; 3) mapping micro-vs macroscopic anisotropy features with gradient waveforms beyond a single pair of pulsed-gradients; 4) multi-contrast experiments, e.g. diffusion-relaxometry; 5) tractography and high-resolution imaging in vivo and 6) post mortem; 7) diffusion-weighted spectroscopy of metabolites other than water; 8) tumour characterisation; 9) functional diffusion MRI; and 10) quality enhancement of images acquired on lower-gradient systems. We finally discuss practical barriers in the use of ultra-strong gradients, and provide an outlook on the next generation of 'super-scanners'. Copyright © 2018. Published by Elsevier Inc.

  12. Evaluation of surface modification methods to mitigate rusting and pitting in weathering steel bridges : final report.

    DOT National Transportation Integrated Search

    1986-09-01

    Accelerated laboratory atmospheric exposure simulation tests with an acceleration factor of 50 and extending for a maximum of 2200 wet-dry cycles (6-year exposure equivalent) gave corrosion loss data that agreed fairly well with the field data derive...

  13. Research Institute of Complete Electric Drive (Novosibirsk, USSR)

    NASA Astrophysics Data System (ADS)

    Derbenev, Ya. S.; Kondratenko, A. M.

    1989-05-01

    The restrictions on the beam emittance and on the imperfectness of the magnetic structure, which are necessary to conserve the beam polarization in accelerators with Siberian snakes are formulated. The trends for changing these criteria with increasing maximum energies and accelerator dimensions at high energies are considered.

  14. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE PAGES

    Lemery, F.; Piot, P.

    2015-08-03

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  15. Tailored electron bunches with smooth current profiles for enhanced transformer ratios in beam-driven acceleration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lemery, F.; Piot, P.

    Collinear high-gradient O(GV/m) beam-driven wakefield methods for charged-particle acceleration could be critical to the realization of compact, cost-efficient, accelerators, e.g., in support of TeV-scale lepton colliders or multiple-user free-electron laser facilities. To make these options viable, the high accelerating fields need to be complemented with large transformer ratios >2, a parameter characterizing the efficiency of the energy transfer between a wakefield-exciting “drive” bunch to an accelerated “witness” bunch. While several potential current distributions have been discussed, their practical realization appears challenging due to their often discontinuous nature. In this paper we propose several alternative continuously differentiable (smooth) current profiles whichmore » support enhanced transformer ratios. We especially demonstrate that one of the devised shapes can be implemented in a photo-emission electron source by properly shaping the photocathode-laser pulse. We finally discuss a possible superconducting linear-accelerator concept that could produce shaped drive bunches at high-repetition rates to drive a dielectric-wakefield accelerator with accelerating fields on the order of ~60 MV/m and a transformer ratio ~5 consistent with a recently proposed multiuser free-electron laser facility.« less

  16. Aerial dispersal and multiple-scale spread of epidemics

    USDA-ARS?s Scientific Manuscript database

    Disease spread has traditionally been described as a traveling wave of constant velocity. However, aerially dispersed pathogens capable of long distance dispersal (LDD) often have dispersal gradients with extended tails that could result in acceleration of the epidemic front over time and space. W...

  17. Design of a high power TM01 mode launcher optimized for manufacturing by milling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dal Forno, Massimo

    2016-12-15

    Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less

  18. Practical strategies for stable operation of HFF-QCM in continuous air flow.

    PubMed

    Wessels, Alexander; Klöckner, Bernhard; Siering, Carsten; Waldvogel, Siegfried R

    2013-09-09

    Currently there are a few fields of application using quartz crystal microbalances (QCM). Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ) = 2 × 10-9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow.

  19. Design, fabrication, and high-gradient testing of an X -band, traveling-wave accelerating structure milled from copper halves

    NASA Astrophysics Data System (ADS)

    Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao; Dolgashev, Valery; Bowden, Gorden; Haase, Andrew; Lucas, Thomas Geoffrey; Volpi, Matteo; Esperante-Pereira, Daniel; Rajamäki, Robin

    2018-06-01

    A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV /m at a rf breakdown rate of less than 1.5 ×10-5 breakdowns /pulse /m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.

  20. Optical shaping of gas targets for laser–plasma ion sources

    DOE PAGES

    Dover, N. P.; Cook, N.; Tresca, O.; ...

    2016-02-09

    In this paper, we report on the experimental demonstration of a technique to generate steep density gradients in gas-jet targets of interest to laser–plasma ion acceleration. By using an intentional low-energy prepulse, we generated a hydrodynamic blast wave in the gas to shape the target prior to the arrival of an intense COmore » $$_{2}$$($${\\it\\lambda}\\approx 10~{\\rm\\mu}\\text{m}$$) drive pulse. This technique has been recently shown to facilitate the generation of ion beams by shockwave acceleration (Trescaet al.,Phys. Rev. Lett., vol. 115 (9), 2015, 094802). Here, we discuss and introduce a model to understand the generation of these blast waves and discuss in depth the experimental realisation of the technique, supported by hydrodynamics simulations. With appropriate prepulse energy and timing, this blast wave can generate steepened density gradients as short as$$l\\approx 20~{\\rm\\mu}\\text{m}$$($1/e$), opening up new possibilities for laser–plasma studies with near-critical gaseous targets.« less

Top