Sample records for maximum activity concentrations

  1. Modelling the maximum voluntary joint torque/angular velocity relationship in human movement.

    PubMed

    Yeadon, Maurice R; King, Mark A; Wilson, Cassie

    2006-01-01

    The force exerted by a muscle is a function of the activation level and the maximum (tetanic) muscle force. In "maximum" voluntary knee extensions muscle activation is lower for eccentric muscle velocities than for concentric velocities. The aim of this study was to model this "differential activation" in order to calculate the maximum voluntary knee extensor torque as a function of knee angular velocity. Torque data were collected on two subjects during maximal eccentric-concentric knee extensions using an isovelocity dynamometer with crank angular velocities ranging from 50 to 450 degrees s(-1). The theoretical tetanic torque/angular velocity relationship was modelled using a four parameter function comprising two rectangular hyperbolas while the activation/angular velocity relationship was modelled using a three parameter function that rose from submaximal activation for eccentric velocities to full activation for high concentric velocities. The product of these two functions gave a seven parameter function which was fitted to the joint torque/angular velocity data, giving unbiased root mean square differences of 1.9% and 3.3% of the maximum torques achieved. Differential activation accounts for the non-hyperbolic behaviour of the torque/angular velocity data for low concentric velocities. The maximum voluntary knee extensor torque that can be exerted may be modelled accurately as the product of functions defining the maximum torque and the maximum voluntary activation level. Failure to include differential activation considerations when modelling maximal movements will lead to errors in the estimation of joint torque in the eccentric phase and low velocity concentric phase.

  2. A kinetic model to explain the maximum in alpha-amylase activity measurements in the presence of small carbohydrates.

    PubMed

    Baks, Tim; Janssen, Anja E M; Boom, Remko M

    2006-06-20

    The effect of the presence of several small carbohydrates on the measurement of the alpha-amylase activity was determined over a broad concentration range. At low carbohydrate concentrations, a distinct maximum in the alpha-amylase activity versus concentration curves was observed in several cases. At higher concentrations, all carbohydrates show a decreasing alpha-amylase activity at increasing carbohydrate concentrations. A general kinetic model has been developed that can be used to describe and explain these phenomena. This model is based on the formation of a carbohydrate-enzyme complex that remains active. It is assumed that this complex is formed when a carbohydrate binds to alpha-amylase without blocking the catalytic site and its surrounding subsites. Furthermore, the kinetic model incorporates substrate inhibition and substrate competition. Depending on the carbohydrate type and concentration, the measured alpha-amylase activity can be 75% lower than the actual alpha-amylase activity. The model that has been developed can be used to correct for these effects in order to obtain the actual amount of active enzyme. 2006 Wiley Periodicals, Inc.

  3. Effect of sorbitol, single, and multidose activated charcoal administration on carprofen absorption following experimental overdose in dogs.

    PubMed

    Koenigshof, Amy M; Beal, Matthew W; Poppenga, Robert H; Jutkowitz, L Ari

    2015-01-01

    To compare the effectiveness of single dose activated charcoal, single dose activated charcoal with sorbitol, and multidose activated charcoal in reducing plasma carprofen concentrations following experimental overdose in dogs. Randomized, four period cross-over study. University research setting. Eight healthy Beagles. A 120 mg/kg of carprofen was administered orally to each dog followed by either (i) a single 2 g/kg activated charcoal administration 1 hour following carprofen ingestion (AC); (ii) 2 g/kg activated charcoal with 3.84 g/kg sorbitol 1 hour following carprofen ingestion (ACS); (iii) 2 g/kg activated charcoal 1 hour after carprofen ingestion and repeated every 6 hours for a total of 4 doses (MD); (iv) no treatment (control). Plasma carprofen concentrations were obtained over a 36-hour period following carprofen ingestion for each protocol. Pharmacokinetic modeling was performed and time versus concentration, area under the curve, maximum plasma concentration, time to maximum concentration, and elimination half-life were calculated and compared among the groups using ANOVA followed by Tukey's multiple comparisons test. Activated charcoal, activated charcoal with sorbitol (ACS), and multiple-dose activated charcoal (MD) significantly reduced the area under the curve compared to the control group. AC and MD significantly reduced the maximum concentration when compared to the control group. MD significantly reduced elimination half-life when compared to ACS and the control group. There were no other significant differences among the treatment groups. Activated charcoal and ACS are as effective as MD in reducing serum carprofen concentrations following experimental overdose in dogs. Prospective studies are warranted to evaluate the effectiveness of AC, ACS, and MD in the clinical setting. © Veterinary Emergency and Critical Care Society 2015.

  4. [Serial change of perilymphatic potassium ion concentration in the scala tympani after introducing KCl-solution into the guinea pigs' tympanic cavity].

    PubMed

    Ikeno, K

    1990-09-01

    Characteristic nystagmus similar to the Meniere's attack could be observed after introducing KCl solution into the tympanic cavity of guinea pigs. To confirm the fact that this nystagmus was provoked by the high perilymphatic potassium ion concentration, the K+ activity of perilymph was recorded serially through the K+ specific microelectrode inserted into the scala tympani. The rapid increment of K+ activity reached maximum at 120 minutes after introducing KCl solution, and then it decreased gradually to a half of the maximum activity. However, such change of perilymphatic potassium ion concentration was not observed by introducing sucrose solution as control.

  5. Bacteriolytic Activity Of Human Interleukin-2, Chicken Egg Lysozyme In The Presence Of Potential Effectors

    PubMed Central

    Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2017-01-01

    The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730

  6. Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis.

    PubMed

    Vazquez, Alexei; de Menezes, Marcio A; Barabási, Albert-László; Oltvai, Zoltan N

    2008-10-01

    The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo.

  7. Impact of Limited Solvent Capacity on Metabolic Rate, Enzyme Activities, and Metabolite Concentrations of S. cerevisiae Glycolysis

    PubMed Central

    Vazquez, Alexei; de Menezes, Marcio A.; Barabási, Albert-László; Oltvai, Zoltan N.

    2008-01-01

    The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo. PMID:18846199

  8. Groundwater quality and the relation between pH values and occurrence of trace elements and radionuclides in water samples collected from private wells in part of the Kickapoo Tribe of Oklahoma Jurisdictional Area, central Oklahoma, 2011

    USGS Publications Warehouse

    Becker, Carol J.

    2013-01-01

    From 1999 to 2007, the Indian Health Service reported that gross alpha-particle activities and concentrations of uranium exceeded the Maximum Contaminant Levels for public drinking-water supplies in water samples from six private wells and two test wells in a rural residential neighborhood in the Kickapoo Tribe of Oklahoma Jurisdictional Area, in central Oklahoma. Residents in this rural area use groundwater from Quaternary-aged terrace deposits and the Permian-aged Garber-Wellington aquifer for domestic purposes. Uranium and other trace elements, specifically arsenic, chromium, and selenium, occur naturally in rocks composing the Garber-Wellington aquifer and in low concentrations in groundwater throughout its extent. Previous studies have shown that pH values above 8.0 from cation-exchange processes in the aquifer cause selected metals such as arsenic, chromium, selenium, and uranium to desorb (if present) from mineral surfaces and become mobile in water. On the basis of this information, the U.S. Geological Survey, in cooperation with the Kickapoo Tribe of Oklahoma, conducted a study in 2011 to describe the occurrence of selected trace elements and radionuclides in groundwater and to determine if pH could be used as a surrogate for laboratory analysis to quickly and inexpensively identify wells that might contain high concentrations of uranium and other trace elements. The pH and specific conductance of groundwater from 59 private wells were measured in the field in an area of about 18 square miles in Lincoln and Pottawatomie Counties. Twenty of the 59 wells also were sampled for dissolved concentrations of major ions, trace elements, gross alpha-particle and gross beta-particle activities, uranium, radium-226, radium-228, and radon-222 gas. Arsenic concentrations exceeded the Maximum Contaminant Level of 10 micrograms per liter in one sample having a concentration of 24.7 micrograms per liter. Selenium concentrations exceeded the Maximum Contaminant Level of 50 micrograms per liter in one sample having a concentration of 147 micrograms per liter. Both samples had alkaline pH values, 8.0 and 8.4, respectively. Uranium concentrations ranged from 0.02 to 383 micrograms per liter with 5 of 20 samples exceeding the Maximum Contaminant Level of 30 micrograms per liter; the five wells with uranium concentrations exceeding 30 micrograms per liter had pH values ranging from 8.0 to 8.5. Concentrations of uranium and radon-222 and gross alpha-particle activity showed a positive relation to pH, with the highest concentrations and activity in samples having pH values of 8.0 or above. The groundwater samples contained dissolved oxygen and high concentrations of bicarbonate; these characteristics are also factors in increasing uranium solubility. Concentrations of radium-226 and radium-228 (combined) ranged from 0.03 to 1.7 picocuries per liter, with a median concentration of 0.45 picocuries per liter for all samples. Radon-222 concentrations ranged from 95 to 3,600 picocuries per liter with a median concentration of 261 picocuries per liter. Eight samples having pH values ranging from 8.0 to 8.7 exceeded the proposed Maximum Contaminant Level of 300 picocuries per liter for radon-222. Eight samples exceeded the 15 picocuries per liter Maximum Contaminant Level for gross alpha-particle activity at 72 hours (after sample collection) and at 30 days (after the initial count); those samples had pH values ranging from 8.0 to 8.5. Gross beta-particle activity increased in 15 of 21 samples during the interval from 72 hours to 30 days. The increase in gross beta-particle activity over time probably was caused by the ingrowth and decay of uranium daughter products that emit beta particles. Water-quality data collected for this study indicate that pH values above 8.0 are associated with potentially high concentrations of uranium and radon-222 and high gross alpha-particle activity in the study area. High pH values also are associated with potentially high concentrations of arsenic, chromium, and selenium in groundwater when these elements occur in the aquifer matrix along groundwater-flow paths.

  9. Anatomical and neuromuscular variables strongly predict maximum knee extension torque in healthy men.

    PubMed

    Trezise, J; Collier, N; Blazevich, A J

    2016-06-01

    This study examined the relative influence of anatomical and neuromuscular variables on maximal isometric and concentric knee extensor torque and provided a comparative dataset for healthy young males. Quadriceps cross-sectional area (CSA) and fascicle length (l f) and angle (θ f) from the four quadriceps components; agonist (EMG:M) and antagonist muscle activity, and percent voluntary activation (%VA); patellar tendon moment arm distance (MA) and maximal voluntary isometric and concentric (60° s(-1)) torques, were measured in 56 men. Linear regression models predicting maximum torque were ranked using Akaike's Information Criterion (AICc), and Pearson's correlation coefficients assessed relationships between variables. The best-fit models explained up to 72 % of the variance in maximal voluntary knee extension torque. The combination of 'CSA + θ f + EMG:M + %VA' best predicted maximum isometric torque (R (2) = 72 %, AICc weight = 0.38) and 'CSA + θ f + MA' (R (2) = 65 %, AICc weight = 0.21) best predicted maximum concentric torque. Proximal quadriceps CSA was included in all models rather than the traditionally used mid-muscle CSA. Fascicle angle appeared consistently in all models despite its weak correlation with maximum torque in isolation, emphasising the importance of examining interactions among variables. While muscle activity was important for torque prediction in both contraction modes, MA only strongly influenced maximal concentric torque. These models identify the main sources of inter-individual differences strongly influencing maximal knee extension torque production in healthy men. The comparative dataset allows the identification of potential variables to target (i.e. weaknesses) in individuals.

  10. [Electricity generation using high concentration terephthalic acid solution by microbial fuel cell].

    PubMed

    Ye, Ye-Jie; Song, Tian-Shun; Xu, Yuan; Chen, Ying-Wen; Zhu, She-Min; Shen, Shu-Bao

    2009-04-15

    The high concentration terephthalic acid (TA) solution as the substrate of microbial fuel cell (MFC) was studied to generate electricity. The open circuit voltage was 0.54 V after inoculating for 210 h with anaerobic activated sludge, which proved that TA can be the substrate of microbial fuel cell to generate electricity. The influence of pH and substrate concentration on generating electricity was studied deeply. The voltage output of external resistance (R = 1,000 Omega) was the highest when pH was 8.0. It increased as the substrate concentration increasing and tended towards a maximum value. The maximum voltage output Umax was 0.5 V and Ks was 785.2 mg/L by Monod equation regression. When the substrate concentration (according to COD) was 4000 mg/L, the maximum power density was 96.3 mW/m2, coulomb efficiency was 2.66% and COD removal rate was 80.3%.

  11. Influence of alkyl sulfates on waste activated sludge fermentation at ambient temperature.

    PubMed

    Jiang, Su; Chen, Yinguang; Zhou, Qi

    2007-09-05

    Alkyl sulfates (AS), such as sodium dodecyl sulfate (SDS), are widely used in household and industrial products, and can be found in some wastewater and waste activated sludge (WAS). The effect of SDS on the fermentation of WAS at ambient temperature was investigated in this paper. Experimental results showed that the concentrations of protein and carbohydrate in aqueous phase increased with the amount of SDS. The concentrations of both NH(4)(+)-N and PO(4)(3-)-P in fermentation liquor also increased in the presence of SDS. In addition, it was observed that the fermentative short-chain fatty acids (SCFAs) concentration was affected by SDS. With the increase of SDS dosage, the maximum SCFAs concentration increased, and the fermentation time before reaching the maximum SCFAs concentration also increased. Further investigation showed that the produced SCFAs consisted of acetic, propionic, n-butyric, iso-butyric, n-valeric and iso-valeric acids, and acetic, iso-valeric and propionic acids were the three main products. The influence of SDS on methanogenesis was also investigated, and the inhibitory effect of SDS on methanogens activity was observed.

  12. Metal contamination of home garden soils and cultivated vegetables in the province of Brescia, Italy: implications for human exposure.

    PubMed

    Ferri, Roberta; Hashim, Dana; Smith, Donald R; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G

    2015-06-15

    For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), and aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity durations in Brescia province. Total soil metal concentration and extractability were measured by X-Ray Fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thorough washing of vegetables to minimize metal exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Metal contamination of home gardens soils and cultivated vegetables in the province of Brescia, Italy: Implications for human exposure

    PubMed Central

    Ferri, Roberta; Hashim, Dana; Smith, Donald R.; Guazzetti, Stefano; Donna, Filippo; Ferretti, Enrica; Curatolo, Michele; Moneta, Caterina; Beone, Gian Maria; Lucchini, Roberto G.

    2015-01-01

    Background For the past century, ferroalloy industries in Brescia province, Italy produced particulate emissions enriched in manganese (Mn), lead (Pb), zinc (Zn), copper (Cu), cadmium (Cd), chromium (Cr), iron (Fe), aluminum (Al). This study assessed metal concentrations in soil and vegetables of regions with varying ferroalloy industrial activity levels. Methods Home gardens (n=63) were selected in three regions of varying ferroalloy plant activity duration in Brescia province. Total soil metal concentration and extractability were measured by X-ray fluorescence (XRF), aqua regia extraction, and modified Community Bureau of Reference (BCR) sequential extraction. Unwashed and washed spinach and turnips cultivated in the same gardens were analyzed for metal concentrations by flame atomic absorption spectrometry. Results Median soil Al, Cd, Fe, Mn, Pb, and Zn concentrations were significantly higher in home gardens near ferroalloy plants compared to reference home gardens. The BCR method yielded the most mobile soil fraction (the sum of extractable metals in Fractions 1 and 2) and all metal concentrations were higher in ferroalloy plant areas. Unwashed spinach showed higher metal concentrations compared to washed spinach. However, some metals in washed spinach were higher in the reference area likely due to history of agricultural product use. Over 60% of spinach samples exceeded the 2- to 4-fold Commission of European Communities and Codex Alimentarius Commission maximum Pb concentrations, and 10% of the same spinach samples exceeded 2- to 3-fold maximum Cd concentrations set by both organizations. Turnip metal concentrations were below maximum standard reference values. Conclusions Prolonged industrial emissions increase median metal concentrations and most soluble fractions (BCR F1+F2) in home garden soils near ferroalloy plants. Areas near ferroalloy plant sites had spinach Cd and Pb metal concentrations several-fold above maximum standard references. We recommend thoroughly washing vegetables to minimize metal exposure. PMID:25777956

  14. Nitrifying bacterial biomass and nitrification activity evaluated by FISH and an automatic on-line instrument at full-scale Fusina (Venice, Italy) WWTP.

    PubMed

    Badoer, S; Miana, P; Della Sala, S; Marchiori, G; Tandoi, V; Di Pippo, F

    2015-12-01

    In this study, monthly variations in biomass of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were analysed over a 1-year period by fluorescence in situ hybridization (FISH) at the full-scale Fusina WWTP. The nitrification capacity of the plant was also monitored using periodic respirometric batch tests and by an automated on-line titrimetric instrument (TITrimetric Automated ANalyser). The percentage of nitrifying bacteria in the plant was the highest in summer and was in the range of 10-15 % of the active biomass. The maximum nitrosation rate varied in the range 2.0-4.0 mg NH4 g(-1) VSS h(-1) (0.048-0.096 kg TKN kg(-1) VSS day(-1)): values obtained by laboratory measurements and the on-line instrument were similar and significantly correlated. The activity measurements provided a valuable tool for estimating the maximum total Kjeldahl nitrogen (TKN) loading possible at the plant and provided an early warning of whether the TKN was approaching its limiting value. The FISH analysis permitted determination of the nitrifying biomass present. The main operational parameter affecting both the population dynamics and the maximum nitrosation activity was mixed liquor volatile suspended solids (MLVSS) concentration and was negatively correlated with ammonia-oxidizing bacteria (AOB) (p = 0.029) and (NOB) (p = 0.01) abundances and positively correlated with maximum nitrosation rates (p = 0.035). Increases in concentrations led to decreases in nitrifying bacteria abundance, but their nitrosation activity was higher. These results demonstrate the importance of MLVSS concentration as key factor in the development and activity of nitrifying communities in wastewater treatment plants (WWTPs). Operational data on VSS and sludge volume index (SVI) values are also presented on 11-year basis observations.

  15. Spatially Oscillating Activity and Microbial Succession of Mercury-Reducing Biofilms in a Technical-Scale Bioremediation System

    PubMed Central

    von Canstein, Harald; Li, Ying; Leonhäuser, Johannes; Haase, Elke; Felske, Andreas; Deckwer, Wolf-Dieter; Wagner-Döbler, Irene

    2002-01-01

    Mercury-contaminated chemical wastewater of a mercury cell chloralkali plant was cleaned on site by a technical-scale bioremediation system. Microbial mercury reduction of soluble Hg(II) to precipitating Hg(0) decreased the mercury load of the wastewater during its flow through the bioremediation system by up to 99%. The system consisted of a packed-bed bioreactor, where most of the wastewater's mercury load was retained, and an activated carbon filter, where residual mercury was removed from the bioreactor effluent by both physical adsorption and biological reduction. In response to the oscillation of the mercury concentration in the bioreactor inflow, the zone of maximum mercury reduction oscillated regularly between the lower and the upper bioreactor horizons or the carbon filter. At low mercury concentrations, maximum mercury reduction occurred near the inflow at the bottom of the bioreactor. At high concentrations, the zone of maximum activity moved to the upper horizons. The composition of the bioreactor and carbon filter biofilms was investigated by 16S-23S ribosomal DNA intergenic spacer polymorphism analysis. Analysis of spatial biofilm variation showed an increasing microbial diversity along a gradient of decreasing mercury concentrations. Temporal analysis of the bioreactor community revealed a stable abundance of two prevalent strains and a succession of several invading mercury-resistant strains which was driven by the selection pressure of high mercury concentrations. In the activated carbon filter, a lower selection pressure permitted a steady increase in diversity during 240 days of operation and the establishment of one mercury-sensitive invader. PMID:11916716

  16. Variation in airborne 134Cs, 137Cs, particulate 131I and 7Be maximum activities at high-altitude European locations after the arrival of Fukushima-labeled air masses.

    PubMed

    Masson, Olivier; Bieringer, Jacqueline; Brattich, Erika; Dalheimer, Axel; Estier, Sybille; Penev, Ilia; Ringer, Wolfgang; Schlosser, Clemens; Steinkopff, Thomas; Steinmann, Philipp; Tositti, Laura; Van Beek, Pieter; Vismes-Ott, Anne de

    2016-10-01

    The Fukushima-labeled air mass arrival, and later the cesium-134 ( 134 Cs), cesium-137 ( 137 Cs) and particulate iodine-131 (hereafter noted 131 I p ) maximum levels were registered in Europe at different dates depending on the location. Most of those data were obtained at low-altitude sampling areas. Here, we compare the airborne levels registered at different high-altitude European locations (from 850 m to about 3500 m). The integrated 137 Cs activity concentration was not uniform with regard to the altitude even after a long travel time/distance from Japan. Moreover, the relation of integrated 137 Cs vs. altitude showed a linear decrease up to an altitude of about 3000 m. A similar trend was noticed for 131 I p (particulate fraction) while it increased above 3000 m. Comparison with 7 Be activity concentration showed that, as far as the high altitude location is concerned, the 137 Cs and 134 Cs maximum concentrations corresponded to the 7 Be maximum, suggesting downdraft movements from high tropospheric or stratospheric layers to be responsible for 137,134 Cs increase and peak values. This was also confirmed by high potential vorticity and low relative humidity registered during the peak values. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Identification and optimization of tyrosine hydroxylase activity in Mucuna pruriens DC. var. utilis.

    PubMed

    Luthra, Pratibha Mehta; Singh, Satendra

    2010-05-01

    Tyrosine hydroxylase, an iron containing tetrahydrobiopterin dependent monooxygenase (tyrosine 3-monooxygenase; EC 1.14.16.2), catalyzes the rate-limiting step in which L: -dopa is formed from the substrate L-tyrosine. L-Dopa concentration and activity of L-tyrosine hydroxylase enzyme were measured in roots, stem, leaves, pods, and immature seeds of Mucuna pruriens. Immature seeds contained maximum L-dopa content and mature leaves possessed maximum catalytic activity of tyrosine hydroxylase. Tyrosine hydroxylase from leaf homogenate was characterized as a 55 kDa protein by SDS-PAGE and Western-blot analysis with monoclonal mouse IgG2a tyrosine hydroxylase antibody. The conditions for maximum tyrosine hydroxylase activity from the leaf extract were optimized with respect to temperature, pH, cofactor 6-MPH(4), and divalent metal ions. The tyrosine hydroxylase from leaf extract possessed a K (m) value of 808.63 microM for L-tyrosine at 37 degrees C and pH 6.0. The activity of the enzyme was slightly inhibited at 2,000 microM L-tyrosine. Higher concentrations of the cofactor 6-MPH(4), however, completely inhibited the synthesis of L-dopa. Tyrosine hydroxylase converted specific monophenols such as L-tyrosine (808.63 microM) and tyramine (K (m) 1.1 mM) to diphenols L-dopa and dopamine, respectively. Fe(II) activated the enzyme while higher concentration of other divalent metals reduced its activity. For the first time, tyrosine hydroxylase from M. pruriens is being reported in this study.

  18. Spacecraft maximum allowable concentrations for selected airborne contaminants, volume 1

    NASA Technical Reports Server (NTRS)

    1994-01-01

    As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMAC's) for contaminants, and to review SMAC's for various spacecraft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee on Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMAC's for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMAC's for 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the first 11 SMAC reports that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee.

  19. Donor impurity incorporation during layer growth of Zn II-VI semiconductors

    NASA Astrophysics Data System (ADS)

    Barlow, D. A.

    2017-12-01

    The maximum halogen donor concentration in Zn II-VI semiconductors during layer growth is studied using a standard model from statistical mechanics. Here the driving force for incorporation is an increase in entropy upon mixing of the donor impurity into the available anion lattice sites in the host binary. A formation energy opposes this increase and thus equilibrium is attained at some maximum concentration. Considering the halogen donor impurities within the Zn II-VI binary semiconductors ZnO, ZnS, ZnSe and ZnTe, a heat of reaction obtained from reported diatomic bond strengths is shown to be directly proportional to the log of maximum donor concentration. The formation energy can then be estimated and an expression for maximum donor concentration derived. Values for the maximum donor concentration with each of the halogen impurities, within the Zn II-VI compounds, are computed. This model predicts that the halogens will serve as electron donors in these compounds in order of increasing effectiveness as: F, Br, I, Cl. Finally, this result is taken to be equivalent to an alternative model where donor concentration depends upon impurity diffusion and the conduction band energy shift due to a depletion region at the growing crystal's surface. From this, we are able to estimate the diffusion activation energy for each of the impurities mentioned above. Comparisons are made with reported values and relevant conclusions presented.

  20. Assessment of natural sepiolite on cadmium stabilization, microbial communities, and enzyme activities in acidic soil.

    PubMed

    Sun, Yuebing; Sun, Guohong; Xu, Yingming; Wang, Lin; Liang, Xuefeng; Lin, Dasong; Hu, Fazhi

    2013-05-01

    A pot trial was conducted to assess the efficiency of sepiolite-induced cadmium (Cd) immobilization in ultisoils. Under Cd concentrations of 1.25, 2.5, and 5 mg kg(-1), the available Cd in the soil after the application of 1-10 % sepiolite decreased by a maximum of 44.4, 23.0, and 17.0 %, respectively, compared with no sepiolite treatments. The increase in the values of soil enzyme activities and microbial number proved that a certain metabolic recovery occurred after sepiolite treatment. The dry biomass of spinach (Spinacia oleracea) increased with increasing sepiolite concentration in the soil. However, the concentration (dry weight) of Cd in the spinach shoots decreased with the increase in sepiolite dose, with maximum reduction of 92.2, 90.0, and 84.9 %, respectively, compared with that of unamended soils. Under a Cd level of 1.25 mg kg(-1), the Cd concentration in the edible parts of spinach at 1 % sepiolite amendment was lower than 0.2 mg kg(-1) fresh weight, the maximum permissible concentration (MPC) of Cd in vegetable. Even at higher Cd concentrations (2.5 and 5 mg kg(-1)), safe spinach was produced when the sepiolite treatment was up to 5 %. The results showed that sepiolite-assisted remediation could potentially succeed on a field scale by decreasing Cd entry into the food chain.

  1. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    PubMed

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi. © The Author(s) 2012.

  2. Activation of pollen tube callose synthase by detergents. Evidence for different mechanisms of action.

    PubMed Central

    Li, H; Bacic, A; Read, S M

    1997-01-01

    In pollen tubes of Nicotiana alata, a membrane-bound, Ca(2+)-independent callose synthase (CalS) is responsible for the biosynthesis of the (1,3)-beta-glucan backbone of callose, the main cell wall component. Digitonin increases CalS activity 3- to 4-fold over a wide range of concentrations, increasing the maximum initial velocity without altering the Michaelis constant for UDP-glucose. The CalS activity that requires digitonin for assay (the latent CalS activity) is not inhibited by the membrane-impermeant, active site-directed reagent UDP-pyridoxal when the reaction is conducted in the absence of digitonin. This is consistent with digitonin increasing CalS activity by the permeabilization of membrane vesicles. A second group of detergents, including 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), Zwittergent 3-16, and 1-alpha-lysolecithin, activate pollen tube CalS 10- to 15-fold, but only over a narrow range of concentrations just below their respective critical micellar concentrations. This activation could not be attributed to any particular chemical feature of these detergents. CHAPS increases maximum initial velocity and decreases the Michaelis constant for UDP-glucose and activates CalS even in the presence of permeabilizing concentrations of digitonin. Inhibition studies with UDP-pyridoxal indicate that activation by CHAPS occurs by recruitment of previously inactive CalS molecules to the pool of active enzyme. The activation of pollen tube CalS by these detergents therefore resembles activation of the enzyme by trypsin. PMID:9276948

  3. Clean copy association of production diseases with motor activity-sensing devices and milk progesterone concentrations in dairy cows.

    PubMed

    Williams, J; Ntallaris, T; Routly, J E; Jones, D N; Cameron, J; Holman-Coates, A; Smith, R F; Humblot, P; Dobson, H

    2018-05-31

    We have previously established that the efficiency of identifying oestrus with activity-sensing devices can be compromised by common production diseases; the present study was undertaken to determine how these diseases may affect device readings. A total of 67 Holstein-Friesian cows, >20 days postpartum, were equipped with activity-sensing neck collars and pedometers, and simultaneous milk progesterone profiles were also monitored twice a week. The influences of common production stressors on maximum activity and progesterone values were analysed. Approximately 30% potential oestrus events (low progesterone value between two high values) remained unrecognised by both activity methods, and progesterone values in these animals were higher on the potential day of oestrus when both activity methods did not detect an event (0.043 ± 0.004 versus 0.029 ± 0.004 ng/mL; P = 0.03). Data from a subset of 45 cows (two events each) were subjected to mixed models and multiple regression modelling to investigate associations with production diseases. Cow motor activity was lower in lame cows. Maximum progesterone concentrations prior to oestrus increased as time postpartum and body condition score (BCS) increased. There were also fewer days of low progesterone prior to oestrus associated with increases in BCS and maximum progesterone concentrations prior to oestrus. In conclusion, lameness was associated with lower activity values, but this suppression was insufficient to account for lowered oestrus detection efficiency of either device. However, associations were identified between production diseases and progesterone profiles. Copyright © 2018. Published by Elsevier Inc.

  4. Encapsulation optimization of lemon balm antioxidants in calcium alginate hydrogels.

    PubMed

    Najafi-Soulari, Samira; Shekarchizadeh, Hajar; Kadivar, Mahdi

    2016-11-01

    Calcium alginate hydrogel beads were used to encapsulate lemon balm extract. Chitosan layer was used to investigate the effect of hydrogel coating. To determine the interactions of antioxidant compounds of extract with encapsulation materials and its stability, microstructure of hydrogel beads was thoroughly monitored using scanning electron microscopy and Fourier transform infrared (FTIR). Total polyphenols content and antiradical activity of lemon balm extract were also evaluated before and after encapsulation. Three significant parameters (lemon balm extract, sodium alginate, and calcium chloride concentrations) were optimized by response surface methodology to obtain maximum encapsulation efficiency. The FTIR spectra showed no interactions between extract and polymers as there were no new band in spectra of alginate hydrogel after encapsulation of active compounds of lemon balm extract. The antioxidant activity of lemon balm extract did not change after encapsulation. Therefore, it was found that alginate is a suitable material for encapsulation of natural antioxidants. Sodium alginate solution concentration, 1.84%, lemon balm extract concentration, 0.4%, and calcium chloride concentration, 0.2% was determined to be the optimum condition to reach maximum encapsulation efficiency.

  5. Polyhydroxyalkanoates (PHA) production using wastewater as carbon source and activated sludge as microorganisms.

    PubMed

    Yan, S; Tyagi, R D; Surampalli, R Y

    2006-01-01

    Activated sludge from different full-scale wastewater treatment plants (municipal, pulp and paper industry, starch manufacturing and cheese manufacturing wastewaters) was used as a source of microorganisms to produce biodegradable plastics in shake flask experiments. Acetate, glucose and different wastewaters were used as carbon sources. Pulp and paper wastewater sludge was found to accumulate maximum concentration (43% of dry weight of suspended solids) of polyhydroxy alkanoates (PHA) with acetate as carbon source. Among the different wastewaters tested as a source of carbon, pulp and paper industry and starch industry wastewaters were found to be the best source of carbon while employing pulp and paper activated sludge for maximum accumulation of PHA. High concentration of volatile fatty acids in these wastewaters was the probable reason.

  6. In vitro investigation of the effects of exogenous sugammadex on coagulation in orthopedic surgical patients.

    PubMed

    Lee, Il Ok; Kim, Young Sung; Chang, Hae Wone; Kim, Heezoo; Lim, Byung Gun; Lee, Mido

    2018-05-24

    Previous studies have shown that sugammadex resulted in the prolongation of prothrombin time and activated partial thromboplastin time. In this study, we aimed to investigate the in vitro effects of exogenous sugammadex on the coagulation variables of whole blood in healthy patients who underwent orthopedic surgery. The effects of sugammadex on coagulations were assessed using thromboelastography (TEG) in kaolin-activated citrated blood samples taken from 14 healthy patients who underwent orthopedic surgery. The in vitro effects of three different concentrations of sugammadex (42, 193, and 301 μg mL - 1 ) on the TEG profiles were compared with those of the control (0 μg mL - 1 ). Previous studies indicated that these exogenous concentrations correspond to the approximate maximum plasma concentrations achieved after the administration of 4, 16, and 32 mg kg - 1 sugammadex to healthy subjects. Increased sugammadex concentrations were significantly associated with reduced coagulation, as evidenced by increases in reaction time (r), coagulation time, and time to maximum rate of thrombus generation (TMRTG), and decreases in the angle, maximum amplitude, and maximum rate of thrombus generation. Compared with the control, the median percentage change (interquartile range) in the TEG values of the samples treated with the highest exogenous sugammadex concentration was the greatest for r, 53% (26, 67.3%), and TMRTG, 48% (26, 59%). This in vitro study suggests that supratherapeutic doses of exogenous sugammadex might be associated with moderate hypocoagulation in the whole blood of healthy subjects. identifier:  UMIN000029081 , registered 11 September 2017.

  7. The effect of active recovery on power performance during the bench press exercise.

    PubMed

    Lopes, Felipe A S; Panissa, Valéria L G; Julio, Ursula F; Menegon, Elton M; Franchini, Emerson

    2014-03-27

    The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise.

  8. The Effect of Active Recovery on Power Performance During the Bench Press Exercise

    PubMed Central

    Lopes, Felipe A. S.; Panissa, Valéria L. G.; Julio, Ursula F.; Menegon, Elton M.; Franchini, Emerson

    2014-01-01

    The objective of this study was to verify the effect of active and passive recovery on blood lactate concentration and power performance. Twelve male subjects were submitted to a maximal strength test in the the bench press, a maximal aerobic test in the bench step, and to four sets of bench press exercise performed as fast and as long as possible, using 80% of maximal strength when active or passive recovery was performed. The maximum number of repetitions, mean and peak power in eccentric and concentric phases were computed and blood lactate concentration was measured. Comparisons for the variables were made using a two-way variance analysis (recovery type and set numer) with repeated measures in the second factor. When significant differences were detected (p < 0.05), a Tukey post-hoc test was used. There was a main effect of set number on maximum number of repetitions (p < 0.05) (1 > 2, 3, and 4; 2 > 3 and 4; 3 > 4). Mean and peak power in both eccentric and concentric phases also differed across sets (1 > 2, 3, and 4; 2 > 4). There was also a main effect for the recovery type, with lower values (p < 0.05) observed for the active recovery compared to the passive one. It can be concluded that active recovery resulted in lower lactate concentration, but did not improve power performance in the bench press exercise. PMID:25031684

  9. Factors influencing production of lipase under metal supplementation by bacterial strain, Bacillus subtilis BDG-8.

    PubMed

    Dhevahi, B; Gurusamy, R

    2014-11-01

    Lipases are biocatalyst having wide applications in industries due to their versatile properties. In the present study, a lipolytic bacterial strain, Bacillus subtilis BDG-8 was isolated from an oil based industrial soil. The effect of selenium and nickel as a media supplement on enhancement of lipase production, was studied individually with the isolated strain by varying the concentration of selected metal. 60 μg l(-1) selenium enhanced lipase production to an enzyme activity measuring 7.8 U ml(-1) while 40 μgI(-1) nickel gave the maximum enzyme activity equivalent to 7.5 U ml(-1). However, nickel and selenium together at a range of concentration with an equal w/v ratio, at 60 μg l(-1) each, showed the maximum lipase activity of 8.5 U ml(-1). The effect of pH and temperature on lipase production showed maximum enzyme activity in the presence of each of the metals at pH 7 and 35°C among the other tested ranges. After optimisation of the parameters such as metal concentration, pH and temperature lipase production by Bacillus subtilis BDG-8 had increased several folds. This preliminary investigation may consequently lead as to various industrial applications such as treatment of wastewater contaminated with metal or oil with simultaneous lipase production.

  10. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil.

    PubMed

    Zheljazkov, Valtcho D; Gawde, Archana; Cantrell, Charles L; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14-0.5% concentration range), β-pinene (3.7-10.3% range), γ-cymene (5-7.3% range), γ-terpinene (1.8-7.2% range), cumin aldehyde (50-66% range), α-terpinen-7-al (3.8-16% range), and β-terpinen-7-al (12-20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5-60 min DT, and low in the oils obtained at 240-600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0-5 and at 5-7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions.

  11. Effects on transport of rapidly penetrating, competing substrates: activation and inhibition of the choline carrier in erythrocytes by imidazole.

    PubMed

    Devés, R; Krupka, R M

    1987-01-01

    The properties of the choline transport system are fundamentally altered in saline solution containing 5 mM imidazole buffer instead of 5 mM phosphate: (i) The system no longer exhibits accelerated exchange. (ii) Choline in the external compartment fails to increase the rate of inactivation of the carrier by N-ethylmaleimide. (iii) Depending on the relative concentrations of choline and imidazole, transport may be activated or inhibited. The maximum rates are increased more than fivefold by imidazole, but at moderate substrate concentrations activation is observed with low concentrations of imidazole and inhibition with high concentrations. (iv) The imidazole effect is asymmetric, there being a greater tendency to activate exit than entry. All this behavior is predicted by the carrier model if imidazole is a substrate of the choline carrier having a high maximum transport rate but a relatively low affinity, and if imidazole rapidly enters the cell by simple diffusion, so that it can add to carrier sites on both sides of the membrane. Addition at the cis side inhibits, and at the trans side activates. According to the carrier model, asymmetry is a necessary consequence of the potassium ion gradient in red cells, potassium ion being another substrate of the choline system.

  12. The surface activity of purified ocular mucin at the air-liquid interface and interactions with meibomian lipids.

    PubMed

    Millar, Thomas J; Tragoulias, Sophia T; Anderton, Philip J; Ball, Malcolm S; Miano, Fausto; Dennis, Gary R; Mudgil, Poonam

    2006-01-01

    Ocular mucins are thought to contribute to the stability of the tear film by reducing surface tension. The purpose of this study was to compare the effect of different mucins and hyaluronic acid (HA) alone and mixed with meibomian lipids on the surface pressure at an air-liquid interface. A Langmuir trough and Wilhelmy balance were used to measure and compare the surface activity of bovine submaxillary gland mucin (BSM), purified BSM, purified bovine ocular mucin and HA, and mixtures of these with meibomian lipids, phosphatidylcholine, and phosphatidylglycerol. Their appearance at the surface of an air-buffer interface was examined using epifluorescence microscopy. Purified ocular mucin had no surface activity even at concentrations that were 100 times more than normally occur in tears. By contrast, commercial BSM caused changes to surface pressure that were concentration dependent. The surface pressure-area profiles showed surface activity with maximum surface pressures of 12.3-22.5 mN/m depending on the concentration. Purified BSM showed no surface activity at low concentrations, whereas higher concentrations reached a maximum surface pressure of 25 mN/m. HA showed no surface activity, at low or high concentrations. Epifluorescence showed that the mucins were located at the air-buffer interface and changed the appearance of lipid films. Purified bovine ocular mucin and HA have no surface activity. However, despite having no surface activity in their own right, ocular mucins are likely to be present at the surface of the tear film, where they cause an increase in surface pressure by causing a compression of the lipids (a reorganization of the lipids) and alter the viscoelastic properties at the surface.

  13. Hydrogen peroxide modulates Ca2+-activation of single permeabilized fibres from fast- and slow-twitch skeletal muscles of rats.

    PubMed

    Plant, D R; Lynch, G S; Williams, D A

    2000-01-01

    We examined the effects of redox modulation on single membrane-permeabilized fibre segments from the fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles of adult rats to determine whether the contractile apparatus was the redox target responsible for the increased contractility of muscles exposed to low concentrations of H2O2. The effects of H2O2 on maximum Ca2+-activated force were dose-dependent with 30 min exposure to 5 mM H2O2 causing a progressive decrease by 22+/-3 and 13+/-2% in soleus and EDL permeabilized muscle fibres, respectively. Lower concentrations of exogenous H2O2 (100 microM and 1 mM) had no effect on maximum Ca2+-activated force. Subsequent exposure to the reductant dithiothreitol (DTT, 10 mM, 10 min) fully reversed the H2O2-induced depression of force in EDL, but not in soleus muscle fibres. Incubation with DTT alone for 10 min did not alter Ca2+-activated force in either soleus or EDL muscle fibres. The sensitivity of the contractile filaments to Ca2+ (pCa50) was not altered by exposure to any concentration of exogenous H2O2. However, all concentrations of H2O2 diminished the Hill coefficient in permeabilized fibres from the EDL muscle, indicating that the cooperativity of Ca2+ binding to troponin is altered. H2O2 (5 mM) did not affect rigor force, which indicates that the number of crossbridges participating in contraction was not reduced. In conclusion, H2O2 may reduce the maximum Ca2+ activated force production in skinned muscle fibres by decreasing the force per crossbridge.

  14. Short-term effect of ammonia concentration and salinity on activity of ammonia oxidizing bacteria.

    PubMed

    Claros, J; Jiménez, E; Borrás, L; Aguado, D; Seco, A; Ferrer, J; Serralta, J

    2010-01-01

    A continuously aerated SHARON (single reactor high activity ammonia removal over nitrite) system has been operated to achieve partial nitritation. Two sets of batch experiments were carried out to study the effect of ammonia concentration and salinity on the activity of ammonia-oxidizing bacteria (AOB). Activity of AOB raised as free ammonia concentration was increased reaching its maximum value at 4.5 mg NH3-N l(-1). The half saturation constant for free ammonia was determined (K(NH3)=0.32 mg NH3-N l(-1)). Activity decreased at TAN (total ammonium-nitrogen) concentration over 2,000 mg NH4-N l(-1). No free ammonia inhibition was detected. The effect of salinity was studied by adding different concentrations of different salts to the biomass. No significant differences were observed between the experiments carried out with a salt containing or not containing NH4. These results support that AOB are inhibited by salinity, not by free ammonia. A mathematical expression to represent this inhibition is proposed. To compare substrate affinity and salinity inhibitory effect on different AOB populations, similar experiments were carried out with biomass from a biological nutrient removal pilot plant. The AOB activity reached its maximum value at 0.008 mg NH3-N l(-1) and decreased at TAN concentration over 400 mg NH4-N l(-1). These differences can be explained by the different AOB predominating species: Nitrosomonas europaea and N. eutropha in the SHARON biomass and Nitrosomonas oligotropha in the pilot plant.

  15. Distribution and Properties of a Potassium-dependent Asparaginase Isolated from Developing Seeds of Pisum sativum and Other Plants 1

    PubMed Central

    Sodek, Ladaslav; Lea, Peter J.; Miflin, Benjamin J.

    1980-01-01

    Asparaginase (EC 3.5.1.1) was isolated from the developing seed of Pisum sativum. The enzyme is dependent upon the presence of K+ for activity, although Na+ and Rb+ may substitute to a lesser extent. Maximum activity was obtained at K+ concentrations above 20 millimolar. Potassium ions protected the enzyme against heat denaturation. The enzyme has a molecular weight of 68,300. Asparaginase activity developed initially in the testa, with maximum activity (3.6 micromoles per hour per seed) being present 13 days after flowering. Maximum activity (1.2 micromoles per hour per seed) did not develop in the cotyledon until 21 days after flowering. Glutamine synthetase and glutamate dehydrogenase were also present in the testae and cotyledons but maximum activity developed later than that of asparaginase. Potassium-dependent asparaginase activity was also detected in the developing seeds of Vicia faba, Phaseolus multiflorus, Zea mays, Hordeum vulgare, and two Lupinus varieties. No stimulation of activity was detected with the enzyme isolated from Lupinus polyphyllus, which has previously been shown to contain a K+-independent enzyme. PMID:16661136

  16. Relationship between strength qualities and short track speed skating performance in young athletes.

    PubMed

    Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S

    2016-02-01

    This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. The effect of isoenzyme-selective PDE inhibitors on methacholine-induced contraction of guinea-pig and rat ileum.

    PubMed Central

    Tomkinson, A.; Raeburn, D.

    1996-01-01

    1. We have examined the effects of the isoenzyme-selective phosphodiesterase (PDE) inhibitors, vinpocetine (type 1), siguazodan (type 3), rolipram (type 4) and zaprinast (type 5) and the non-selective PDE inhibitor enprofylline on methacholine (MCh) contractile concentration-response curves on guinea-pig and rat isolated ileum. 2. In guinea-pig ileum, vinpocetine (10-300 microM), zaprinast (1-300 microM) and enprofylline (100-1000 microM) produced a concentration-dependent depression of the maximum response (Emax) to MCh only without effect on the MCh EC50 values (rank order of potency: zaprinast > vinpocetine > enprofylline). In contrast, siguazodan (10-300 microM) and rolipram (10-300 microM) produced a rightward displacement of the MCh concentration-response curve (increase in EC50: rank order; rolipram > siguazodan), with effects on the MCh maximum seen only at higher concentrations. 3. In the rat ileum, vinpocetine (10-300 microM), zaprinast (0.1-300 microM) and enprofylline (100-1000 microM) caused depression of the MCh maximum contraction (rank order: zaprinast > vinpocetine > enprofylline). Low concentrations of rolipram and siguazodan had no significant effect on the MCh maximum. In the presence of higher concentrations (> 100 microM) of rolipram and siguazodan, a maximum response was not achieved at the highest concentration of MCh tested. As in the guinea-pig ileum, only rolipram (10-300 microM) and siguazodan (10-300 microM) produced a significant, concentration-dependent, rightward displacement of the MCh concentration-response curve (increase in EC50: rank order: rolipram > siguazodan). 4. In the guinea-pig ileum, isoprenaline (0.1 microM) produced a rightward displacement (approximately 3 fold) of the MCh concentration-response curve, accompanied by a significant depression of the maximum response. Increasing the isoprenaline concentration (1 microM) had no further effect on either parameter. Sodium nitroprusside (SNP, > or = 10 microM) produced a concentration-dependent depression of the MCh maximum without an effect on the EC50. 5. In the rat ileum, isoprenaline (1 microM) produced a concentration-dependent rightward displacement (approximately 2.8 fold) of the MCh concentration-response curve with depression of the MCh maximum at higher (> or = 100 microM) concentrations. SNP produced depression of the MCh maximum at a concentration of 10 microM and above. Effects on the MCh EC50 were seen only at 100 and 300 microM. 6. In guinea-pig ileum, isoprenaline (0.1 microM) in combination with rolipram (10 microM) further increased the MCh EC50 and reduced the MCh maximum. The combination of SNP (10 microM) with zaprinast (0.1 microM) produced no further significant effect than SNP alone. 7. In rat ileum, isoprenaline (1 microM) in combination with rolipram (10 microM) further increased the EC50 and reduced the maximum. SNP (10 microM) had no significant effect on either the MCh maximum or EC50. A combination with zaprinast (1 microM) had no further effect. 8. In conclusion, all the PDE inhibitors tested produced a concentration-dependent inhibition of the MCh concentration-response curve, indicating a modulator role for the PDE isoenzymes in gastrointestinal smooth muscle contractility. The PDE inhibitors that elevate cyclic GMP produced a depression of the MCh maximum response only, whilst those that elevate cyclic AMP produced a rightward displacement of the MCh concentration-response curve. This was confirmed by the use of isoprenaline and SNP. This difference in the type of inhibition produced by these PDE isoenzyme inhibitors may reflect a different intracellular site/mechanism by which the cyclic AMP- and cyclic GMP-activated kinases act functionally to antagonize the contractile response. PMID:8864552

  18. Study on Molasses Concentration from Sugarcanne Bagasse for Biohydrogen Production using Enriched Granular Activated Carbon (GAC) Immobilised Cells by Repeated Batch Cultivation

    NASA Astrophysics Data System (ADS)

    Idris, Norfatiha; Aminah Lutpi, Nabilah; Ruhaizul Che Ridzuan, Che Mohd; Shian, Wong Yee; Nuraiti Tengku Izhar, Tengku

    2018-03-01

    Repeated batch cultivation is known as most attractive method in improving hydrogen productivity, due to the facts that this approach could minimize the reuse of the cell and the inoculum preparation. In addition, with the combination of attach growth system during the fermentation processes to produce biohydrogen, the density of cells will be increased and the cell washout could be avoided. Therefore, this study aimed to examine the effectiveness of repeated batch cultivation for enrichment of anaerobic mixed culture onto granular activated carbon (GAC) and investigate the effect of molasses concentration during immobilization of mixed culture onto the GAC. The molasses concentration using 50 %, 40 %, 30 %, 20 % and 10 % of diluted molasses were used as feedstock in the fermentation process. The maximum hydrogen production of 60 ml was obtained at 30 % of molasses concentration with 831 ppm of hydrogen concentration. Thus, the kinetic parameter obtained from the batch profiling based on modified Gompertz equation are, Hm= 58 ml for the maximum hydrogen production and Rm= 2.02 ml/h representing the hydrogen production rate.

  19. Enzyme activity and expression pattern of intra- and extracellular chitinase and β-1,3-glucanase of Wickerhamomyces anomalus EG2 using glycol chitin and glucan-containing high polymer complex.

    PubMed

    Hong, Sin-Hyoung; Song, Yong-Su; Seo, Dong-Jun; Kim, Kil-Yong; Jung, Woo-Jin

    2017-12-01

    We investigated cell growth and activity of intra- and extracellular chitinase, β-1,3-glucanase, and chitin deacetylase with SDS-PAGE by incubating W. anomalus EG2 in PDB and YPD media for 24h in presence of different concentrations (0%, 0.1%, 0.3%, and 0.5%) of colloidal chitin. Maximum cell growth was observed in both PDB and YPD media without colloidal chitin. In the absence of colloidal chitin, maximum extracellular β-1,3-glucanase activity of 32.96 and 47.28 units/mL was reported at 18h in PDB medium and 6h in YPD medium, respectively. In addition, extracellular chitinase was unaffected by various concentrations of carboxymethyl chitin in both PDB and YPD media. In the absence of colloidal chitin, maximum intracellular chitinase activity was indicated to be 9.82 and 9.86 units/mg protein in PDB and YPD media, respectively. Maximum intracellular β-1,3-glucanase activity reported was 17.34 units/mg protein in PDB medium containing 0.5% colloidal chitin and 15.0 units/mg protein in YPD medium containing 0.3% colloidal chitin. Five major isozymes, GN1, GN2, GN3, GN4, and GN5, of intracellular β-1,3-glucanase were detected with glucan-containing high polymer complex as a substrate with or without colloidal chitin. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Impact of mixing state and hygroscopicity on CCN activity of biomass burning aerosol in Amazonia

    NASA Astrophysics Data System (ADS)

    Sánchez Gácita, Madeleine; Longo, Karla M.; Freire, Julliana L. M.; Freitas, Saulo R.; Martin, Scot T.

    2017-02-01

    Smoke aerosols prevail throughout Amazonia because of widespread biomass burning during the dry season, and external mixing, low variability in the particle size distribution and low particle hygroscopicity are typical. There can be profound effects on cloud properties. This study uses an adiabatic cloud model to simulate the activation of smoke particles as cloud condensation nuclei (CCN) for three hypothetical case studies, chosen as to resemble biomass burning aerosol observations in Amazonia. The relative importance of variability in hygroscopicity, mixing state, and activation kinetics for the activated fraction and maximum supersaturation is assessed. For a population with κp = 0.04, an overestimation of the cloud droplet number concentration Nd for the three selected case studies between 22.4 ± 1.4 and 54.3 ± 3.7 % was obtained when assuming a hygroscopicity parameter κp = 0.20. Assuming internal mixing of the aerosol population led to overestimations of up to 20 % of Nd when a group of particles with medium hygroscopicity was present in the externally mixed population cases. However, the overestimations were below 10 % for external mixtures between very low and low-hygroscopicity particles, as seems to be the case for Amazon smoke particles. Kinetic limitations were significant for medium- and high-hygroscopicity particles, and much lower for very low and low-hygroscopicity particles. When particles were assumed to be at equilibrium and to respond instantly to changes in the air parcel supersaturation, the overestimation of the droplet concentration was up to ˜ 100 % in internally mixed populations, and up to ˜ 250 % in externally mixed ones, being larger for the higher values of hygroscopicity. In addition, a perceptible delay between the times when maximum supersaturation and maximum aerosol activated fraction are reached was noticed and, for aerosol populations with effective hygroscopicity κpeff higher than a certain threshold value, the delay in particle activation was such that no particles were activated at the time of maximum supersaturation. Considering internally mixed populations, for an updraft velocity W = 0.5 m s-1 this threshold of no activation varied between κpeff = 0.35 and κpeff = 0.5 for the different case studies. However, for low hygroscopicity, kinetic limitations played a weaker role for CCN activation of particles, even when taking into account the large aerosol mass and number concentrations. For the very low range of hygroscopicities, the overestimation of the droplet concentration due to the equilibrium assumption was lowest and the delay between the times when maximum supersaturation and maximum activated fraction were reached was greatly reduced or no longer observed (depending on the case study). These findings on uncertainties and sensitivities provide guidance on appropriate simplifications that can be used for modeling of smoke aerosols within general circulation models. The use of medium values of hygroscopicity representative of smoke aerosols for other biomass burning regions on Earth can lead to significant errors compared to the use of low hygroscopicity for Amazonia (between 0.05 and 0.13, according to available observations). Also in this region, consideration of the biomass burning population as internally mixed will lead to small errors in the droplet concentration, while significantly increasing the computational burden. Regardless of the large smoke aerosol loads in the region during the dry season, kinetic limitations are expected to be low.

  1. Properties of Arctic Aerosol Particles and Residuals of Warm Clouds: Cloud Activation Efficiency and the Aerosol Indirect Effect

    NASA Astrophysics Data System (ADS)

    Zelenyuk, A.; Imre, D. G.; Leaitch, R.; Ovchinnikov, M.; Liu, P.; Macdonald, A.; Strapp, W.; Ghan, S. J.; Earle, M. E.

    2012-12-01

    Single particle mass spectrometer, SPLAT II, was used to characterize the size, composition, number concentration, density, and shape of individual Arctic spring aerosol. Background particles, particles above and below the cloud, cloud droplet residuals, and interstitial particles were characterized with goal to identify the properties that separate cloud condensation nuclei (CCN) from background aerosol particles. The analysis offers a comparison between warm clouds formed on clean and polluted days, with clean days having maximum particle concentrations (Na) lower than ~250 cm-3, as compared with polluted days, in which maximum concentration was tenfold higher. On clean days, particles were composed of organics, organics mixed with sulfates, biomass burning (BB), sea salt (SS), and few soot and dust particles. On polluted days, BB, organics associated with BB, and their mixtures with sulfate dominated particle compositions. Based on the measured compositions and size distributions of cloud droplet residuals, background aerosols, and interstitial particles, we conclude that these three particle types had virtually the same compositions, which means that cloud activation probabilities were surprisingly nearly composition independent. Moreover, these conclusions hold in cases in which less than 20% or more than 90% of background particles got activated. We concluded that for the warm clouds interrogated in this study particle size played a more important factor on aerosol CCN activity. Comparative analysis of all studied clouds reveals that aerosol activation efficiency strongly depends on the aerosol concentrations, such that at Na <200 cm-3, nearly all particles activate, and at higher concentrations the activation efficiency is lower. For example, when Na was greater than 1500 cm-3, less than ~30% of particles activated. The data suggest that as the number of nucleated droplets increases, condensation on existing droplets effectively competes with particle activation, limiting maximum droplet concentrations Nd = 525 ± 50 cm-3, which is lower than the 750 cm-3 limit found by Leaitch et al. (1986) for mid-latitude continental cloud that had generally larger updraft speeds than the clouds interrogated in Arctic. These findings are important for the aerosol indirect effect, in which increase in aerosol particle number concentrations is expected to result in increase in Nd and decrease in droplet size, leading to increased cloud albedo and potentially lifetimes. Our conclusions point to limited susceptibility to changes in ambient aerosol concentrations, providing simple explanation for the finding of weaker than expected indirect effect. In summary, the data presented here show that Nd increases as the cloud base particle number concentration increases; however, they also show a limit on Nd that is in the range of 500-600 cm-3.

  2. Changes in the biological activity of heavy metal- and oil-polluted soils in urban recreation territories

    NASA Astrophysics Data System (ADS)

    Trifonova, T. A.; Zabelina, O. N.

    2017-04-01

    Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.

  3. Ground-water quality, Cook Inlet Basin, Alaska, 1999

    USGS Publications Warehouse

    Glass, Roy L.

    2001-01-01

    As part of the U.S. Geological Survey?s National Water-Quality Assessment Program, ground-water samples were collected from 34 existing wells in the Cook Inlet Basin in south-central Alaska during 1999. All ground-water samples were from aquifers composed of glacial or alluvial sediments. The water samples were used to determine the occurrence and distribution of selected major ions, nutrients, trace elements, volatile organic compounds, pesticides, radioisotopes, and environmental isotopes. Of 34 samples, 29 were from wells chosen by using a grid-based random-selection process. Water samples from five major public-supply wells also were collected. Radon-222 and arsenic concentrations exceeded drinking-water standards proposed by the U.S. Environmental Protection Agency in 39 and 18 percent of sampled wells, respectively. The highest radon concentration measured during this study was 610 picocuries per liter; 12 of 31 samples exceeded the proposed maximum contaminant level of 300 picocuries per liter. The highest arsenic concentration was 29 micrograms per liter; 6 of 34 samples exceeded the proposed maximum contaminant level of 10 micrograms per liter. Human activities may be increasing the concen- tration of nitrate in ground water, but nitrate concentrations in all samples were less than the maximum contaminant level of 10 milligrams per liter as nitrogen. Concentrations of nitrate were highest in Anchorage and were as great as 4.8 milligrams per liter as nitrogen. Dissolved-solids concentrations ranged from 77 to 986 milligrams per liter; only 2 of 34 wells yielded water having greater than 500 milligrams per liter. Iron and manganese concentrations exceeded secondary maximum contaminant levels in 18 and 42 percent of samples, respectively. Concentrations of all pesticides and volatile organic compounds detected in ground-water samples were very low, less than 1 microgram per liter. No pesticide or volatile organic compounds were detected at concentrations exceeding drinking-water standards or guidelines. Water samples from one-half of the wells sampled had no detectable concentrations of pesticides or volatile organic carbons, at the parts-per-billion level. Concentrations of stable isotopes of hydrogen and oxygen in ground-water samples were similar to concentrations expected for modern precipitation and for water that has been affected by evaporation. Tritium activities and concentrations of chlorofluorocarbons indicated that the water samples collected from most wells were recharged less than 50 years ago.

  4. Differences in force normalising procedures during submaximal anisometric contractions.

    PubMed

    Škarabot, Jakob; Ansdell, Paul; Brownstein, Callum; Howatson, Glyn; Goodall, Stuart; Durbaba, Rade

    2018-05-26

    Eccentric contractions are thought to require a unique neural activation strategy. However, due to greater intrinsic force generating capacity of muscle fibres during eccentric contraction, the understanding of neural modulation of different contraction types during submaximal contractions may be impeded by the force normalisation procedure employed. In the present experiment, subjects performed maximal isometric dorsiflexion at shorter (80°), intermediate (90°) and longer (100°) muscle lengths, and maximal concentric and eccentric contractions. Thereafter, submaximal concentric and eccentric contractions were performed normalised to either isometric maximum at 90° (ISO), contraction type specific maximum (CTS) or muscle length specific maximum (MLS). When using ISO or MLS for normalisation, mean submaximal eccentric torque levels were significantly lower when compared to CTS normalisation (11 and 7% lower compared to CTS; p = 0.003 and p = 0.018 for ISO and MLS, respectively). These experimentally observed differences closely matched those expected from the predictive model. During submaximal concentric contraction, mean torque levels were similar between ISO and CTS normalisation with similar discrepancies noted in EMG activity. These findings suggest that normalising to ISO and MLS might not be accurate for assessment and prescription of submaximal eccentric contractions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Statistical Approach for Optimization of Simultaneous Production of β-Glucosidase and Endoglucanase by Rhizopus oryzae from Solid-State Fermentation of Water Hyacinth Using Central Composite Design

    PubMed Central

    Karmakar, Moumita; Ray, Rina Rani

    2011-01-01

    The production cost of β-glucosidase and endoglucanase could be reduced by using water hyacinth, an aquatic weed, as the sole carbon source and using cost-efficient fermentation strategies like solid-state fermentation (SSF). In the present study, the effect of different production conditions on the yield of β-glucosidase and endoglucanase by Rhizopus oryzae MTCC 9642 from water hyacinth was investigated systematically using response surface methodology. A Central composite experimental design was applied to optimize the impact of three variables, namely, substrate concentration, pH, and temperature, on enzyme production. The optimal level of each parameter for maximum enzyme production by the fungus was determined. Highest activity of endoglucanase of 495 U/mL was achieved at a substrate concentration of 1.23%, pH 7.29, and temperature 29.93°C whereas maximum β-glucosidase activity of 137.32 U/ml was achieved at a substrate concentration of 1.25%, pH 6.66, and temperature 32.09°C. There was a direct correlation between the levels of enzymatic activities and the substrate concentration of water hyacinth as carbon source. PMID:21687577

  6. High carrier activation of Mg ion-implanted GaN by conventional rapid thermal annealing

    NASA Astrophysics Data System (ADS)

    Niwa, Takaki; Fujii, Takahiro; Oka, Tohru

    2017-09-01

    A high activation ratio of Mg ion implantation by conventional rapid thermal annealing (RTA) was demonstrated. To obtain the high activation ratio of Mg ion implantation, the dependence of hole concentration on Mg dose was investigated. A maximum hole concentration and a high activation ratio of 2.3% were obtained at a Mg dose of 2.3 × 1014 cm-2 between 9.2 × 1013 and 2.3 × 1015 cm-2. The ratio is, to the best of our knowledge, the highest ever obtained by conventional RTA.

  7. Characterization of Lactobacillus salivarius alanine racemase: short-chain carboxylate-activation and the role of A131.

    PubMed

    Kobayashi, Jyumpei; Yukimoto, Jotaro; Shimizu, Yasuhiro; Ohmori, Taketo; Suzuki, Hirokazu; Doi, Katsumi; Ohshima, Toshihisa

    2015-01-01

    Many strains of lactic acid bacteria produce high concentrations of d-amino acids. Among them, Lactobacillus salivarius UCC 118 produces d-alanine at a relative concentration much greater than 50 % of the total d, l-alanine (100d/d, l-alanine). We characterized the L. salivarius alanine racemase (ALR) likely responsible for this d-alanine production and found that the enzyme was activated by carboxylates, which is an unique characteristic among ALRs. In addition, alignment of the amino acid sequences of several ALRs revealed that A131 of L. salivarius ALR is likely involved in the activation. To confirm that finding, an L. salivarius ALR variant with an A131K (ALR(A131K)) substitution was prepared, and its properties were compared with those of ALR. The activity of ALR(A131K) was about three times greater than that of ALR. In addition, whereas L. salivarius ALR was strongly activated by low concentrations (e.g., 1 mM) of short chain carboxylates, and was inhibited at higher concentrations (e.g., 10 mM), ALR(A131K) was clearly inhibited at all carboxylate concentrations tested (1-40 mM). Acetate also increased the stability of ALR such that maximum activity was observed at 35 °C and pH 8.0 without acetate, but at 50 °C in the presence of 1 mM acetate. On the other hand, maximum ALR(A131K) activity was observed at 45 °C and around pH 9.0 with or without acetate. It thus appears that A131 mediates the activation and stabilization of L. salivarius ALR by short chain carboxylates.

  8. A comparison of muscle activity in concentric and counter movement maximum bench press.

    PubMed

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position.

  9. A Comparison of Muscle Activity in Concentric and Counter Movement Maximum Bench Press

    PubMed Central

    van den Tillaar, Roland; Ettema, Gertjan

    2013-01-01

    The purpose of this study was to compare the kinematics and muscle activation patterns of regular free-weight bench press (counter movement) with pure concentric lifts in the ascending phase of a successful one repetition maximum (1-RM) attempt in the bench press. Our aim was to evaluate if diminishing potentiation could be the cause of the sticking region. Since diminishing potentiation cannot occur in pure concentric lifts, the occurrence of a sticking region in this type of muscle actions would support the hypothesis that the sticking region is due to a poor mechanical position. Eleven male participants (age 21.9 ± 1.7 yrs, body mass 80.7 ± 10.9 kg, body height 1.79 ± 0.07 m) conducted 1-RM lifts in counter movement and in pure concentric bench presses in which kinematics and EMG activity were measured. In both conditions, a sticking region occurred. However, the start of the sticking region was different between the two bench presses. In addition, in four of six muscles, the muscle activity was higher in the counter movement bench press compared to the concentric one. Considering the findings of the muscle activity of six muscles during the maximal lifts it was concluded that the diminishing effect of force potentiation, which occurs in the counter movement bench press, in combination with a delayed muscle activation unlikely explains the existence of the sticking region in a 1-RM bench press. Most likely, the sticking region is the result of a poor mechanical force position. PMID:24235985

  10. Optimization of physicochemical parameters of tannase post-purification and its versatile bioactivity.

    PubMed

    Hidayathulla, Syed; Shahat, Abdelaaty A; Alsaid, Mansour S; Al-Mishari, Abdullah A

    2018-06-01

    The present study investigates the optimization of tannase production from Aspergillus nidulans for various physicochemical parameters and harvests tannase for its chemical characterization. The maximum tannase activity was observed on the third day of incubation at 35°C and the stability was observed at pH 5.5-6.0 by holding its 100% activity. The tannase was partially purified from A. nidulans [FT10] by ammonium sulfate precipitation at different concentrations, and it was found that at 80% of ammonium sulfate concentration, the precipitate exhibited the maximum activity for tannase of 96 U/ml. LCMS showed its M/Z value as 162.3 which was reconfirmed by SDS-PAGE. The UV spectrum and FTIR confirmed the presence of two oxy- and three hydroxyl groups in the benzene ring structure. The antibacterial activity of tannase was enhanced with antibiotics such as streptomycin and ceftazidime whereas the biofilm formation was significantly inhibited by the purified tannase. The scavenging activity was greatly increased with purified component and when the concentration of the purified tannase, FT10 was increased. To the best of our knowledge, this is one of the few reports where microbial species was used as the source for producing tannase enzyme and its role in various bioactivities such as antibacterial, anti-biofilm and antioxidant activity was evaluated.

  11. Distillation Time as Tool for Improved Antimalarial Activity and Differential Oil Composition of Cumin Seed Oil

    PubMed Central

    Zheljazkov, Valtcho D.; Gawde, Archana; Cantrell, Charles L.; Astatkie, Tess; Schlegel, Vicki

    2015-01-01

    A steam distillation extraction kinetics experiment was conducted to estimate essential oil yield, composition, antimalarial, and antioxidant capacity of cumin (Cuminum cyminum L.) seed (fruits). Furthermore, regression models were developed to predict essential oil yield and composition for a given duration of the steam distillation time (DT). Ten DT durations were tested in this study: 5, 7.5, 15, 30, 60, 120, 240, 360, 480, and 600 min. Oil yields increased with an increase in the DT. Maximum oil yield (content, 2.3 g/100 seed), was achieved at 480 min; longer DT did not increase oil yields. The concentrations of the major oil constituents α-pinene (0.14–0.5% concentration range), β-pinene (3.7–10.3% range), γ-cymene (5–7.3% range), γ-terpinene (1.8–7.2% range), cumin aldehyde (50–66% range), α-terpinen-7-al (3.8–16% range), and β-terpinen-7-al (12–20% range) varied as a function of the DT. The concentrations of α-pinene, β-pinene, γ-cymene, γ-terpinene in the oil increased with the increase of the duration of the DT; α-pinene was highest in the oil obtained at 600 min DT, β-pinene and γ-terpinene reached maximum concentrations in the oil at 360 min DT; γ-cymene reached a maximum in the oil at 60 min DT, cumin aldehyde was high in the oils obtained at 5–60 min DT, and low in the oils obtained at 240–600 min DT, α-terpinen-7-al reached maximum in the oils obtained at 480 or 600 min DT, whereas β-terpinen-7-al reached a maximum concentration in the oil at 60 min DT. The yield of individual oil constituents (calculated from the oil yields and the concentration of a given compound at a particular DT) increased and reached a maximum at 480 or 600 min DT. The antimalarial activity of the cumin seed oil obtained during the 0–5 and at 5–7.5 min DT timeframes was twice higher than the antimalarial activity of the oils obtained at the other DT. This study opens the possibility for distinct marketing and utilization for these improved oils. The antioxidant capacity of the oil was highest in the oil obtained at 30 min DT and lowest in the oil from 360 min DT. The Michaelis-Menton and the Power nonlinear regression models developed in this study can be utilized to predict essential oil yield and composition of cumin seed at any given duration of DT and may also be useful to compare previous reports on cumin oil yield and composition. DT can be utilized to obtain cumin seed oil with improved antimalarial activity, improved antioxidant capacity, and with various compositions. PMID:26641276

  12. Levels of major and trace elements, including rare earth elements, and ²³⁸U in Croatian tap waters.

    PubMed

    Fiket, Željka; Rožmarić, Martina; Krmpotić, Matea; Benedik, Ljudmila

    2015-05-01

    Concentrations of 46 elements, including major, trace, and rare earth elements, and (238)U in Croatian tap waters were investigated. Selected sampling locations include tap waters from various hydrogeological regions, i.e., different types of aquifers, providing insight into the range of concentrations of studied elements and (238)U activity concentrations in Croatian tap waters. Obtained concentrations were compared with the Croatian maximum contaminant levels for trace elements in water intended for human consumption, as well as WHO and EPA drinking water standards. Concentrations in all analyzed tap waters were found in accordance with Croatian regulations, except tap water from Šibenik in which manganese in concentration above maximum permissible concentration (MPC) was measured. Furthermore, in tap water from Osijek, levels of arsenic exceeded the WHO guidelines and EPA regulations. In general, investigated tap waters were found to vary considerably in concentrations of studied elements, including (238)U activity concentrations. Causes of variability were further explored using statistical methods. Composition of studied tap waters was found to be predominately influenced by hydrogeological characteristics of the aquifer, at regional and local level, the existing redox conditions, and the household plumbing system. Rare earth element data, including abundances and fractionation patterns, complemented the characterization and facilitated the interpretation of factors affecting the composition of the analyzed tap waters.

  13. Ion measurements during Pioneer Venus reentry: Implications for solar cycle variation of ion composition and dynamics

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hartle, R. E.; Kar, J.; Cloutier, P. A.; Taylor, H. A., Jr.; Brace, L. H.

    1993-01-01

    During the final, low solar activity phase of the Pioneer Venus (PV) mission, the Orbiter Ion Mass Spectrometer (OIMS) measurements found all ion species, in the midnight-dusk sector, reduced in concentration relative to that observed at solar maximum. Molecular ion species comprised a greater part of the total ion concentration as O(+) and H(+) had the greatest depletions. The nightside ionospheric states were strikingly similar to the isolated solar maximum 'disappearing' ionospheres. Both are very dynamic states characterized by a rapidly drifting plasma and 30-100 eV superthermal O(+) ions.

  14. Activation of µ-opioid receptors and block of KIR3 potassium channels and NMDA receptor conductance by l- and d-methadone in rat locus coeruleus

    PubMed Central

    Matsui, Aya; Williams, John T

    2010-01-01

    BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (KIR3) channels. Methadone also blocks KIR3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of KIR3 and NMDA channels with l- and d-methadone was examined. KEY RESULTS The potency of l-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with d-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met]5enkephalin. The KIR3 conductance induced by activation of α2-adrenoceptors was decreased with high concentrations of l- and d-methadone (10–30 µM). In addition, methadone blocked the resting inward rectifying conductance (KIR). Both l- and d-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. KIR3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone. PMID:20659105

  15. Effects of temperature, pH and NaCl on protease activity in digestive tract of young turbot, Scophthalmus maximus

    NASA Astrophysics Data System (ADS)

    Chen, Muyan; Zhang, Xiumei; Gao, Tianxiang; Chen, Chao

    2006-09-01

    The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40°C in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.

  16. Electromyographic analysis of exercise resulting in symptoms of muscle damage.

    PubMed

    McHugh, M P; Connolly, D A; Eston, R G; Gleim, G W

    2000-03-01

    Surface electromyographic (EMG) signals were recorded from the hamstring muscles during six sets of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions. The EMG per unit torque increased during eccentric (P < 0.01) but not during concentric exercise. Similarly, the median frequency increased during eccentric (P < 0.01) but not during concentric exercise. The EMG per unit torque was lower for submaximal eccentric than maximum isometric contractions (P < 0.001), and lower for submaximal concentric than maximum isometric contractions (P < 0.01). The EMG per unit torque was lower for eccentric than concentric contractions (P < 0.05). The median frequency was higher for submaximal eccentric than maximum isometric contractions (P < 0.001); it was similar, however, between submaximal concentric and maximum isometric contractions (P = 0.07). Eccentric exercise resulted in significant isometric strength loss (P < 0.01), pain (P < 0.01) and muscle tenderness (P < 0.05). The greatest strength loss was seen 1 day after eccentric exercise, while the most severe pain and muscle tenderness occurred 2 days after eccentric exercise. A lower EMG per unit torque is consistent with the selective recruitment of a small number of motor units during eccentric exercise. A higher median frequency during eccentric contractions may be explained by selective recruitment of fast-twitch motor units. The present results are consistent with the theory that muscle damage results from excessive stress on a small number of active fibres during eccentric contractions.

  17. [Pharmacokinetics and effects of xylazine (Rompun) in dogs].

    PubMed

    Rector, E; Otto, K; Kietzmann, M; Nolte, I; Lehmacher, W

    1996-01-01

    Six beagle dogs were treated with xylazine hydrochloride (1 mg/kg i.m.). The plasma xylazine concentration was measured by HPLC. Additionally, clinical effects were registered (cardiac rate, respiratory activity, electrocardiogram, body temperature, motoric activity, attention, analgesia). Maximum plasma concentrations were measured after 15 minutes (476 ng/ml). The plasma half-life was 24 minutes. Sedation was registered over one hour (xylazine concentration of more than 150 ng/ml). Within the first 30 minutes after treatment (xylazine concentration of more than 300 ng/ml), a low-grade analgesia was observed. In contrast, cardiac and respiratoric depression and also significantly diminished body temperature were registered over 2 to 3 hours.

  18. Haze formation in model beer systems.

    PubMed

    Miedl, Michaela; Garcia, Marco A; Bamforth, Charles W

    2005-12-28

    The interaction of a haze-active protein (gliadin) and a haze-active polyphenol (tannic acid) was studied in a model beer system in order to investigate the principle mechanisms of haze formation at low temperatures. Low concentrations (g/L) of tannic acid, high concentrations of gliadin, and comparatively high temperatures lead to maximum haze values. When considered on a molar basis, the greatest haze levels are displayed at an approximate 1:1 equivalence of polyphenol and protein. The greater part of haze formation was completed within 0.5 h, irrespective of the concentration of gliadin, the concentration of tannic acid, and the temperature of the model solution.

  19. Occurrence and distribution of selected contaminants in public drinking-water supplies in the surficial aquifer in Delaware

    USGS Publications Warehouse

    Ferrari, Matthew J.

    2001-01-01

    Water samples were collected from August through November 2000 from 30 randomly selected public drinking-water supply wells screened in the unconfined aquifer in Delaware, and analyzed to assess the occurrence and distribution of selected pesticide compounds, volatile organic compounds, major inorganic ions, and nutrients. Water from a subset of 10 wells was sampled and analyzed for radium and radon. The average age of ground water entering the well screens in all the wells was determined to be generally less than 20 years. Low concentrations of pesticide compounds and volatile organic compounds were detected throughout the State of Delaware, with several compounds often detected in each water sample. Pesticide and metabolite (pesticide degradation products) concentrations were generally less than 1 microgram per liter, and were detected in sam-ples from 27 of 30 wells. Of the 45 pesticides and 13 metabolites analyzed, 19 compounds (13 pesticides and 6 metabolites) were detected in at least 1 of the 30 samples. Desethylatrazine, alachlor ethane sulfonic acid, metolachlor ethane sulfonic acid, metolachlor, and atrazine were the most frequently detected pesticide compounds, and were present in at least half the samples. None of the pesticide detections was above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. Volatile organic compounds also were present at low concentrations (generally less than 1 microgram per liter) in samples from all 30 wells. Of the 85 volatile organic com-pounds analyzed, 34 compounds were detected in at least 1 of the 30 samples. Chloroform, tetrachloroethene, and methyl tert-butyl ether were the most frequently detected volatile organic compounds, and were found in at least half the samples. None of the volatile organic compound detections was above U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Health Advisories. A few samples contained compounds with concentrations above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for inorganic compounds and radionuclides. One sample out of 30 contained a concentration of nitrite plus nitrate above the U.S. Environmental Protection Agency's Primary Maximum Contaminant Level of 10 milligrams per liter as nitrogen. Iron and manganese concentrations above the U.S. Environmental Protection Agency's Secondary Maximum Contaminant Levels were found in 7 of 30 ground-water samples, most of them from Sussex County. In the 10 wells sampled for radionuclides, only one sample had detectable levels of radium-224 and -226, and another sample contained detectable levels of radium-228; both of these samples also had detectable gross-alpha and gross-beta activities. None of these activities were above the U.S. Environ-mental Protection Agency's Primary Maximum Contaminant Levels or Secondary Maximum Contaminant Levels. Radon was detected in all 10 samples, but was above the current U.S. Environmental Protection Agency's proposed Primary Maximum Contaminant Level of 300 picocuries per liter in only one sample.

  20. Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants. Volume 2

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration (NASA) is aware of the potential toxicological hazards to humans that might be associated with prolonged spacecraft missions. Despite major engineering advances in controlling the atmosphere within spacecraft, some contamination of the air appears inevitable. NASA has measured numerous airborne contaminants during space missions. As the missions increase in duration and complexity, ensuring the health and well-being of astronauts traveling and working in this unique environment becomes increasingly difficult. As part of its efforts to promote safe conditions aboard spacecraft, NASA requested the National Research Council (NRC) to develop guidelines for establishing spacecraft maximum allowable concentrations (SMACs) for contaminants, and to review SMACs for various space-craft contaminants to determine whether NASA's recommended exposure limits are consistent with the guidelines recommended by the subcommittee. In response to NASA's request, the NRC organized the Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants within the Committee On Toxicology (COT). In the first phase of its work, the subcommittee developed the criteria and methods for preparing SMACs for spacecraft contaminants. The subcommittee's report, entitled Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants, was published in 1992. The executive summary of that report is reprinted as Appendix A of this volume. In the second phase of the study, the Subcommittee on Spacecraft Maximum Allowable Concentrations reviewed reports prepared by NASA scientists and contractors recommending SMACs for approximately 35 spacecraft contaminants. The subcommittee sought to determine whether the SMAC reports were consistent with the 1992 guidelines. Appendix B of this volume contains the SMAC reports for 12 chemical contaminants that have been reviewed for their application of the guidelines developed in the first phase of this activity and approved by the subcommittee. This report is the second volume in the series Spacecraft Maximum Allowable Concentrations for Space Station Contaminants. The first volume was published in 1994.

  1. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM.

  2. Toxic Effects of Couroupita guianensis Against Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae).

    PubMed

    Baskar, K; Ignacimuthu, S; Jayakumar, M

    2015-02-01

    Laboratory experiments were conducted to find out the efficacy of different crude extracts and fractions of Couroupita guianensis (Lecythidaceae) against Spodoptera litura (Fabricius). Results revealed that hexane, chloroform and ethyl acetate extracts of C. guianensis showed larvicidal and pupicidal activities against S. litura. Maximum larvicidal activity (68.66%) was observed in hexane extract at 5.0% concentration followed by chloroform and ethyl acetate extracts, and least LC50 value of 2.64% was observed in hexane extract. A 100% pupicidal activity was observed in hexane extract. Based on the efficacy of crude extracts, the effective crude extract (hexane extract) was further fractionated and subjected to screening for biological activities against S. litura. Among the eight fractions isolated from the hexane extract, fraction 8 showed maximum antifeedant activity (81. 8%) and larvicidal activity (76.9%) at 1000-ppm concentration; this fraction showed least LC50 value of 375.92 ppm for larvicidal activity. Cent per cent pupicidal activity was recorded. Reduced midgut and hemolymph protein contents were observed at 1000 ppm of fraction 8. Histopathological studies revealed that fraction 8 severely damaged the midgut cells of S. litura. This fraction could be used to develop botanical formulation to control agricultural pests.

  3. Natural and anthropogenic radionuclide activity concentrations in the New Zealand diet.

    PubMed

    Pearson, Andrew J; Gaw, Sally; Hermanspahn, Nikolaus; Glover, Chris N

    2016-01-01

    To support New Zealand's food safety monitoring regime, a survey was undertaken to establish radionuclide activity concentrations across the New Zealand diet. This survey was undertaken to better understand the radioactivity content of the modern diet and also to assess the suitability of the current use of milk as a sentinel for dietary radionuclide trends. Thirteen radionuclides were analysed in 40 common food commodities, including animal products, fruits, vegetables, cereal grains and seafood. Activity was detected for (137)Caesium, (90)Strontium and (131)Iodine. No other anthropogenic radionuclides were detected. Activity concentrations of the three natural radionuclides of Uranium and the daughter radionuclide (210)Polonium were detected in the majority of food sampled, with a large variation in magnitude. The maximum activity concentrations were detected in shellfish for all these radionuclides. Based on the established activity concentrations and ranges, the New Zealand diet contains activity concentrations of anthropogenic radionuclides far below the Codex Alimentarius guideline levels. Activity concentrations obtained for milk support its continued use as a sentinel for monitoring fallout radionuclides in terrestrial agriculture. The significant levels of natural and anthropogenic radionuclide activity concentrations detected in finfish and molluscs support undertaking further research to identify a suitable sentinel for New Zealand seafood monitoring. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Bovine and porcine heparins: different drugs with similar effects on human haemodialysis

    PubMed Central

    2013-01-01

    Background Heparins from porcine and bovine intestinal mucosa differ in their structure and also in their effects on coagulation, thrombosis and bleeding. However, they are used as undistinguishable drugs. Methods We compared bovine and porcine intestinal heparin administered to patients undergoing a particular protocol of haemodialysis. We compared plasma concentrations of these two drugs and also evaluated how they affect patients and the dialyzer used. Results Compared with porcine heparin, bovine heparin achieved only 76% of the maximum plasma concentration as IU mL-1. This observation is consistent with the activities observed in the respective pharmaceutical preparations. When the plasma concentrations were expressed on weight basis, bovine heparin achieved a maximum concentration 1.5 fold higher than porcine heparin. The reduced anticoagulant activity and higher concentration, on weight basis, achieved in the plasma of patients under dialysis using bovine instead of porcine heparin did not affect significantly the patients or the dialyzer used. The heparin dose is still in a range, which confers security and safety to the patients. Discussion Despite no apparent difference between bovine and porcine intestinal heparins in the haemodialysis practice, these two types of heparins should be used as distinct drugs due to their differences in structure and biological effects. Conclusions The reduced anticoagulant activity achieved in the plasma of patients under dialysis using bovine instead of porcine heparin did not affect significantly the patients or the dialyzer. PMID:23763719

  5. Assessing toxicant effects in a complex estuary: A case study of effects of silver on reproduction in the bivalve, Potamocorbula amurensis, in San Francisco Bay

    USGS Publications Warehouse

    Brown, C.L.; Parchaso, F.; Thompson, J.K.; Luoma, S.N.

    2003-01-01

    Contaminant exposures in natural systems can be highly variable. This variability is superimposed upon cyclic variability in biological processes. Together, these factors can confound determination of contaminant effects. Long term, multidisciplined studies with high frequency sampling can be effective in overcoming such obstacles. While studying trace metal contamination in the tissues of the clam, Potamocorbula amurensis, in the northern reach of San Francisco Bay, an episode of high Ag concentrations was identified (maximum of 5.5 ??g g-1) at two mid-estuary sites. High concentrations were not seen in clams up-estuary (maximum of 1.92 ??g g-1) from these sites and were reduced down-estuary (maximum of 2.67 ??g g-1). Silver is not common naturally in the environment, so its elevated presence is usually indicative of anthropogenic influences such as municipal and industrial discharge. Monthly sampling of reproductive status of clams characterized the reproductive cycle and differences in the patterns of reproductive activity that corresponded to changes in Ag tissue concentrations. The proportion of reproductive clams was less than 60% during periods when tissue concentrations were high (generally >2 ??g g-1). When tissue concentrations of Ag decreased (???1 ??g g-1), the proportion of reproductive clams was 80 to 100%. A comparison between the annual proportion of reproductive clams and annual Ag tissue concentrations showed a significant negative correlation. No other measured environmental variables were correlated with reproductive impairment. The weight-of-evidence approach strongly supports a cause and effect relationship between Ag contamination and reduced reproductive activity in P. amurensis.

  6. Assessing toxicant effects in a complex estuary--A case study of effects of silver on reproduction in the bivalve, Potamocurbula amurensis, in San Francisco Bay

    USGS Publications Warehouse

    Brown, Cynthia L.; Parchaso, Francis; Thompson, Janet K.; Luoma, Samuel N.

    2003-01-01

    Contaminant exposures in natural systems can be highly variable. This variability is superimposed upon cyclic variability in biological processes. Together, these factors can confound determination of contaminant effects. Long term, multidisciplined studies with high frequency sampling can be effective in overcoming such obstacles. While studying trace metal contamination in the tissues of the clam, Potamocorbula amurensis, in the northern reach of San Francisco Bay, an episode of high Ag concentrations was identified (maximum of 5.5 µg g−1) at two mid-estuary sites. High concentrations were not seen in clams up-estuary (maximum of 1.92 µg g−1) from these sites and were reduced down-estuary (maximum of 2.67 µg g−1). Silver is not common naturally in the environment, so its elevated presence is usually indicative of anthropogenic influences such as municipal and industrial discharge. Monthly sampling of reproductive status of clams characterized the reproductive cycle and differences in the patterns of reproductive activity that corresponded to changes in Ag tissue concentrations. The proportion of reproductive clams was less than 60% during periods when tissue concentrations were high (generally >2 µg g−1). When tissue concentrations of Ag decreased (≤1 µg g−1), the proportion of reproductive clams was 80 to 100%. A comparison between the annual proportion of reproductive clams and annual Ag tissue concentrations showed a significant negative correlation. No other measured environmental variables were correlated with reproductive impairment. The weight-of-evidence approach strongly supports a cause and effect relationship between Ag contamination and reduced reproductive activity in P. amurensis.

  7. Evaluation of agro-industrial wastes, their state, and mixing ratio for maximum polygalacturonase and biomass production in submerged fermentation.

    PubMed

    Göğüş, Nihan; Evcan, Ezgi; Tarı, Canan; Cavalitto, Sebastián F

    2015-01-01

    The potential of important agro-industrial wastes, apple pomace (AP) and orange peel (OP) as C sources, was investigated in the maximization of polygalacturonase (PG), an industrially significant enzyme, using an industrially important microorganism Aspergillus sojae. Factors such as various hydrolysis forms of the C sources (hydrolysed-AP, non-hydrolysed-AP, hydrolysed-AP + OP, non-hydrolysed-AP + OP) and N sources (ammonium sulphate and urea), and incubation time (4, 6, and 8 days) were screened. It was observed that maximum PG activity was achieved at a combination of non-hydrolysed-AP + OP and ammonium sulphate with eight days of incubation. For the pre-optimization study, ammonium sulphate concentration and the mixing ratios of AP + OP at different total C concentrations (9, 15, 21 g l(-1)) were evaluated. The optimum conditions for the maximum PG production (144.96 U ml(-1)) was found as 21 g l(-1) total carbohydrate concentration totally coming from OP at 15 g l(-1) ammonium sulphate concentration. On the other hand, 3:1 mixing ratio of OP + AP at 11.50 g l(-1) ammonium sulphate concentration also resulted in a considerable PG activity (115.73 U ml(-1)). These results demonstrated that AP can be evaluated as an additional C source to OP for PG production, which in turn both can be alternative solutions for the elimination of the waste accumulation in the food industry with economical returns.

  8. Effect of an InxGa1-xAs-GaAs blocking heterocathode metal contact on the GaAs TED operation

    NASA Astrophysics Data System (ADS)

    Arkusha, Yu. V.; Prokhorov, E. D.; Storozhenko, I. P.

    2004-09-01

    The frequency dependence of the generation efficiency of an mm- -nn:In:InxGaGa1-1-xAs- As-nn:GaAs-:GaAs-nn++:GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the :GaAs TED with the 2.5-mm long active region is calculated. The optimum values - which yield the diode maximum generation efficiency - for the nn:In:InxGaGa1-1-xAs cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.As cathode length, the cathode concentration of ionized impurities, and the height of the potential barrier on metal contact are determined.

  9. Biochemical characterisation of the esterase activities of wine lactic acid bacteria.

    PubMed

    Matthews, Angela; Grbin, Paul R; Jiranek, Vladimir

    2007-11-01

    Esters are an important group of volatile compounds that can contribute to wine flavour. Wine lactic acid bacteria (LAB) have been shown to produce esterases capable of hydrolysing ester substrates. This study aims to characterise the esterase activities of nine LAB strains under important wine conditions, namely, acidic conditions, low temperature (to 10 degrees C) and in the presence of ethanol (2-18% v/v). Esterase substrate specificity was also examined using seven different ester substrates. The bacteria were generally found to have a broad pH activity range, with the majority of strains showing maximum activity close to pH 6.0. Exceptions included an Oenococcus oeni strain that retained most activity even down to a pH of 4.0. Most strains exhibited highest activity across the range 30-40 degrees C. Increasing ethanol concentration stimulated activity in some of the strains. In particular, O. oeni showed an increase in activity up to a maximum ethanol concentration of around 16%. Generally, strains were found to have greater activity towards short-chained esters (C2-C8) compared to long-chained esters (C10-C18). Even though the optimal physicochemical conditions for enzyme activity differed from those found in wine, these findings are of potential importance to oenology because significant activities remained under wine-like conditions.

  10. Enantiomeric separation of pharmaceutically important drug intermediates using a Metagenomic lipase and optimization of its large scale production.

    PubMed

    Kumar, Rakesh; Banoth, Linga; Banerjee, Uttam Chand; Kaur, Jagdeep

    2017-02-01

    In the present study, efficient enzymatic methods were developed using a recombinant metagenomic lipase (LipR1) for the synthesis of corresponding esters by the transesterification of five different pharmaceutically important secondary alcohols. The recombinant lipase (specific activity=87m6U/mg) showed maximum conversion in presence of ionic liquid with Naphthyl-ethanol (eeP=99%), Indanol and Methyl-4 pyridine methanol (eeS of 98% and 99%) respectively in 1h. Vinyl acetate was found as suitable acyl donor in transesterification reactions. It was interesting to observe that maximum eeP of 85% was observed in just 15min with 1-indanol. As this enzyme demonstrated pharmaceutical applications, attempts were made to scale up the enzyme production on a pilot scale in a 5litre bioreactor. Different physical parameters affecting enzyme production and biomass concentration such as agitation rate, aeration rate and inoculum concentration were evaluated. Maximum lipase activity of 8463U/ml was obtained at 7h of cultivation at 1 lpm, 300rpm and 1.5% inoculum. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed.

    PubMed

    El Nemr, Ahmed; Khaled, Azza; Abdelwahab, Ola; El-Sikaily, Amany

    2008-03-21

    The use of a new activated carbon developed from date palm seed wastes, generated in the jam industry, for removing toxic chromium from aqueous solution has been investigated. The activated carbon has been achieved from date palm seed by dehydrating methods using concentrated sulfuric acid. The batch experiments were conducted to determine the adsorption capacity of the biomass. The effect of initial metal concentration (25-125mgl(-1)), pH, contact time, and concentration of date palm seed carbon have been studied at room temperature. A strong dependence of the adsorption capacity on pH was observed, the capacity increase as pH value decrease and the optimum pH value is pH 1.0. Kinetics and adsorption equilibrium were studied at different sorbent doses. The adsorption process was fast and the equilibrium was reached within 180min. The maximum removal was 100% for 75mgl(-1) of Cr(+ concentration on 4gl(-1) carbon concentration and the maximum adsorption capacity was 120.48mgg(-1). The kinetic data were analyzed using various kinetic models - pseudo-first order equation, pseudo-second order equation, Elovich equation and intraparticle diffusion equation - and the equilibrium data were tested using several isotherm models, Langmuir, Freundlich, Koble-Corrigan, Redlich-Peterson, Tempkin, Dubinin-Radushkevich and Generalized isotherm equations. The Elovich equation and pseudo-second order equation provide the greatest accuracy for the kinetic data and Koble-Corrigan and Langmuir models the closest fit for the equilibrium data. Activation energy of sorption has also been evaluated as 0.115 and 0.229kJmol(-1).

  12. Emissions of indoor air pollutants from six user scenarios in a model room

    NASA Astrophysics Data System (ADS)

    Höllbacher, Eva; Ters, Thomas; Rieder-Gradinger, Cornelia; Srebotnik, Ewald

    2017-02-01

    In this study six common user scenarios putatively influencing indoor air quality were performed in a model room constructed according to the specifications of the European Reference Room given in the new horizontal prestandard prEN 16516 to gain further information about the influence of user activities on indoor air quality. These scenarios included the use of cleaning agent, an electric air freshener, an ethanol fireplace and cosmetics as well as cigarette smoking and peeling of oranges. Four common indoor air pollutants were monitored: volatile organic compounds (VOC), particulate matter (PM), carbonyl compounds and CO2. The development of all pollutants was determined during and after the test performance. For each measured pollutant, well-defined maximum values could be assigned to one or more of the individual user scenarios. The highest VOC concentration was measured during orange-peeling reaching a maximum value of 3547 μg m-3. Carbonyl compounds and PM were strongly elevated while cigarette smoking. Here, a maximum formaldehyde concentration of 76 μg m-3 and PM concentration of 378 μg m-3 were measured. CO2 was only slightly affected by most of the tests except the use of the ethanol fireplace where a maximum concentration of 1612 ppm was reached. Generally, the user scenarios resulted in a distinct increase of several indoor pollutants that usually decreased rapidly after the removal of the source.

  13. Fermentation of molasses using a thermotolerant yeast, Kluyveromyces marxianus IMB3: simplex optimisation of media supplements.

    PubMed

    Gough, S; Flynn, O; Hack, C J; Marchant, R

    1996-09-01

    The use of molasses as a substrate for ethanol production by the thermotolerant yeast Kluyveromyces marxianus var. marxianus was investigated at 45 degrees C. A maximum ethanol concentration of 7.4% (v/v) was produced from unsupplemented molasses at a concentration of 23% (v/v). The effect on ethanol production of increasing the sucrose concentration in 23% (v/v) molasses was determined. Increased sucrose concentration had a similar detrimental effect on the final ethanol produced as the increase in molasses concentration. This indicated that the effect may be due to increased osmotic activity as opposed to other components in the molasses. The optimum concentration of the supplements nitrogen, magnesium, potassium and fatty acid for maximum ethanol production rate was determined using the Nelder and Mead (Computer J 7:308-313, 1965) simplex optimisation method. The optimum concentration of the supplements were 0.576 g1(-1) magnesium sulphate, 0.288 g1(-1) potassium dihydrogen phosphate and 0.36% (v/v) linseed oil. Added nitrogen in the form of ammonium sulphate did not affect the ethanol production rate.

  14. Pharmacological importance of sulphated polysaccharide carrageenan from red seaweed Kappaphycus alvarezii in comparison with commercial carrageenan.

    PubMed

    Suganya, Arumugampillai Manimehalai; Sanjivkumar, Muthusamy; Chandran, Manohar Navin; Palavesam, Arunachalam; Immanuel, Grasian

    2016-12-01

    Pharmacological properties of native carrageenan (κ) extracted from Kappaphycus alvarezii and commercial carrageenan (Sigma-Aldrich) were evaluated using in vitro antioxidant, anticancer and antidiabetic studies. Phytochemical analysis of native and commercial carrageenans showed the presence of alkaloids, saponins, steroids, gums & mucilages and carbohydrate. Both native and commercial carrageenans exhibited better antioxidant activities such as total antioxidant capacity (87±0.47 and 82.6±0.47μg A.A/g), hydroxyl radical scavenging activity (61.4±0.27 and 58.66±0.31μg/ml), nitric oxide radical scavenging activity (80.42±0.22 and 73.66±0.22μg/ml), DPPH radical scavenging activity (56.26±0.20 and 53.67±0.082μg/ml) and reducing power assay (46.57±0.32 and 42.54±0.27μg/ml) at the maximum concentration of 100μg/ml carrageenans. These results indicated that native carrageenan from K. alvarezii possessed better antioxidant potential in comparison with commercial carrageenan. Anticancer activities of both carrageenans showed excellent inhibition on the growth of breast, colon, liver and osteosarcoma cell lines at the maximum concentration of 150μg/ml. Native carrageenan exhibited an excellent anticancer activity on colon carcinoma cell lines (67.66±0.168%) with the IC 50 value of 73.87μg/ml and commercial carrageenan possessed a potent inhibition on the growth of breast cancer cell lines (67.33±0.077%) with the IC 50 value of 123.8μg/ml. These results clearly indicated the beneficial effect of native and commercial carrageenans as anticancer agents being a free radical scavenger. Anti-diabetic property of both carrageenans showed inhibition effect on α- glucosidase enzyme. The inhibitory effect depends on concentration of carrageenans and it was recorded that maximum (74.49±1.05 and 67.42±0.63) inhibitory effect of α- glucosidase enzyme at 500μg/ml concentration. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  15. Distillation time alters essential oil yield, composition, and antioxidant activity of male Juniperus scopulorum trees.

    PubMed

    Zheljazkov, Valtcho D; Astatkie, Tess; Jeliazkova, Ekaterina A; Schlegel, Vicki

    2012-01-01

    The objective of this study was to evaluate the effect of 15 distillation times (DT), ranging from 1.25 to 960 min, on oil yield, essential oil profiles, and antioxidant capacity of male J. scopulorum trees. Essential oil yields were 0.07% at 1.25 min DT and reached a maximum of 1.48% at 840 min DT. The concentrations of alpha-thujene (1.76-2.75%), alpha-pinene (2.9-8.7%), sabinene (45-74.7%), myrcene (2.4-3.4%), and para-cymene (0.8-3.1%) were highest at the shortest DT (1.5 to 5 min) and decreased with increasing DT. Cis-sabinene hydrate (0.5-0.97%) and linalool plus trans-sabinene (0.56-1.6%) reached maximum levels at 40 min DT. Maximum concentrations of limonene (2.3-2.8%) and pregeijerene-B (0.06-1.4%) were obtained at 360-480 min DT, and 4-terpinenol (0.7-5.7%) at 480 min DT. Alpha-terpinene (0.16-2.9%), gamma-terpinene (0.3-4.9%) and terpinolene (0.3-1.4%) reached maximum at 720 min DT. The concentrations of delta-cadinene (0.06-1.65%), elemol (0-6.0%), and 8-alpha-acetoxyelemol (0-4.4%) reached maximum at 840 min DT. The yield of the essential oil constituents increased with increasing DT. Only linalool/transsabinene hydrate reached a maximum yield at 360 min DT. Maximum yields of the following constituents were obtained at 720 min DT: alpha-thujene, alpha-pinene, camphene, sabinene, myrcene, alpha-terpinene, para-cimene, limonene, gamma-terpinene, terpinolene, and 4-terpinenol. At 840 min DT, cis-sabinene hydrate, prejeijerene-B, gamma muurolene, delta-cadinene, reached maximum. At 960 min DT, maximum yields of beta-pinene, elemol, alphaeudesmol/betaeudesmol, 8-alpha-acetoxyelemol were reached. These changes were adequately modeled by either the Michaelis-Menten or the Power (Convex) nonlinear regression models. Oils from the 480 min DT showed higher antioxidant activity compared to samples collected at 40, 160, or 960 min DT. These results show the potential for obtaining essential oils with various compositions and antioxidant capacity from male J. scopulorum by varying DT. This study can be used as a reference paper for comparing results of reports where different lengths of the DT were used.

  16. Watershed Regressions for Pesticides (WARP) for Predicting Annual Maximum and Annual Maximum Moving-Average Concentrations of Atrazine in Streams

    USGS Publications Warehouse

    Stone, Wesley W.; Gilliom, Robert J.; Crawford, Charles G.

    2008-01-01

    Regression models were developed for predicting annual maximum and selected annual maximum moving-average concentrations of atrazine in streams using the Watershed Regressions for Pesticides (WARP) methodology developed by the National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey (USGS). The current effort builds on the original WARP models, which were based on the annual mean and selected percentiles of the annual frequency distribution of atrazine concentrations. Estimates of annual maximum and annual maximum moving-average concentrations for selected durations are needed to characterize the levels of atrazine and other pesticides for comparison to specific water-quality benchmarks for evaluation of potential concerns regarding human health or aquatic life. Separate regression models were derived for the annual maximum and annual maximum 21-day, 60-day, and 90-day moving-average concentrations. Development of the regression models used the same explanatory variables, transformations, model development data, model validation data, and regression methods as those used in the original development of WARP. The models accounted for 72 to 75 percent of the variability in the concentration statistics among the 112 sampling sites used for model development. Predicted concentration statistics from the four models were within a factor of 10 of the observed concentration statistics for most of the model development and validation sites. Overall, performance of the models for the development and validation sites supports the application of the WARP models for predicting annual maximum and selected annual maximum moving-average atrazine concentration in streams and provides a framework to interpret the predictions in terms of uncertainty. For streams with inadequate direct measurements of atrazine concentrations, the WARP model predictions for the annual maximum and the annual maximum moving-average atrazine concentrations can be used to characterize the probable levels of atrazine for comparison to specific water-quality benchmarks. Sites with a high probability of exceeding a benchmark for human health or aquatic life can be prioritized for monitoring.

  17. ASSESSMENT OF RADON IN SOIL AND WATER IN DIFFERENT REGIONS OF KOLHAPUR DISTRICT, MAHARASHTRA, INDIA.

    PubMed

    Raste, P M; Sahoo, B K; Gaware, J J; Sharma, Anil; Waikar, M R; Shaikh, A A; Sonkawade, R G

    2018-03-19

    Researchers have already established that inhalation of high radon concentration is hazardous to human health. Radon concentration has been measured in water and soil, in various part of Kolhapur district has been carried out by the AQTEK Smart RnDuo which is an active device technique. The observed minimum value of the radon mass exhalation rate of the soil is 13.16 ± 0.83 mBq/kg/h and maximum is 35.11 ± 1.84 mBq/kg/h. The minimum value of the Radon concentration in water is 0.33 ± 0.052 Bq/L and maximum is 7.32 ± 0.078 Bq/L. These values of radon concentration are below the action of recommended level by the USEPA, which is set as the maximum contaminant level of 11.1-148 Bq/L of radon in drinking water. Total annual effective dose rate of water is 11 μSv/y. The purpose of present study is to assess radiological risk from consumption of water that provide in Kolhapur district and to evaluate the radon mass exhalation rate of soil in few places of Kolhapur district.

  18. INFLUENCE OF ANESTHESIA ON EXPERIMENTAL NEUROTROPIC VIRUS INFECTIONS

    PubMed Central

    Sulkin, S. Edward; Zarafonetis, Christine

    1947-01-01

    1. Experimental neurotropic virus infections previously shown to be altered by ether anesthesia are caused by viruses destroyed in vitro by anesthetic ether; this group includes the viruses of Eastern equine encephalomyelitis, Western equine encephalomyelitis, and St. Louis encephalitis. 2. Experimental neurotropic virus infections which were not altered by ether anesthesia are caused by viruses which are refractory to the in vitro virucidal activity of even large amounts of anesthetic ether; this group includes the viruses of poliomyelitis (Lansing) and rabies. 3. Quantitative studies of the in vitro virucidal activity of ether indicate that concentrations of this anesthetic within the range found in central nervous system tissues of anesthetized animals possess no virucidal activity. 4. The lowest concentration of ether possessing significant virucidal capacity is more than fifteen times the maximum concentration of the anesthetic tolerated by the experimental animal. 5. Concentrations of ether 50 to 100 times the maximum amount tolerated by the anesthetized animal are capable of destroying large amounts of susceptible viruses, the average lethal dose (LD50) being reduced more than 5 log units. 6. On the basis of the studies presented in this report, it cannot be concluded that direct virucidal activity of ether is not the underlying mechanism of the inhibition by anesthesia of certain experimental neurotropic virus infections. Indirect inhibition of the virus by the anesthetic through an alteration in the metabolism of either the host cell or the host animal as a whole appears at this point to be a more likely possibility. PMID:19871636

  19. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves

    PubMed Central

    2013-01-01

    Background Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. Methods The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. Results The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract and ethyl acetate, chloroform, pet. ether fractions and vincristine sulfate were 223.87, 281.84, 112.2, 199.53, and 12.59 μg/mL, respectively. Therefore, the ethyl acetate fraction showed maximum cytotoxicity, whereas minimum cytotoxicity was observed for the chloroform fraction. Conclusion The present study revealed that the ethyl acetate fraction of the C. bonducella leaves has significant antidiarrhoeal properties. The methanol extract and other three fractions of the C. bonducella leaves possess potent antibacterial activities along with moderate cytotoxicities that may lead to new drug development. PMID:23663985

  20. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves.

    PubMed

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali

    2013-05-12

    Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p < 0.05). Ethyl acetate fraction exerted maximum inhibition (51.11%) against defecation, whereas 57.75% inhibition was obtained for loperamide. Moderate cytotoxicity was found for the methanol extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract and ethyl acetate, chloroform, pet. ether fractions and vincristine sulfate were 223.87, 281.84, 112.2, 199.53, and 12.59 μg/mL, respectively. Therefore, the ethyl acetate fraction showed maximum cytotoxicity, whereas minimum cytotoxicity was observed for the chloroform fraction. The present study revealed that the ethyl acetate fraction of the C. bonducella leaves has significant antidiarrhoeal properties. The methanol extract and other three fractions of the C. bonducella leaves possess potent antibacterial activities along with moderate cytotoxicities that may lead to new drug development.

  1. A nonradioactive assay for poly(a)-specific ribonuclease activity by methylene blue colorimetry.

    PubMed

    Cheng, Yuan; Liu, Wei-Feng; Yan, Yong-Bin; Zhou, Hai-Meng

    2006-01-01

    A simple nonradioactive assay, which was based on the specific shift of the absorbance maximum of methylene blue induced by its intercalation into poly(A) molecules, was developed for poly(A)-specific ribonuclease (PARN). A good linear relationship was found between the absorbance at 662 nm and the poly(A) concentration. The assay conditions, including the concentration of methylene blue, the incubation temperature and time, and the poly(A) concentration were evaluated and optimized.

  2. Assessing atmospheric concentration of polychlorinated biphenyls (PCBs) by evergreen Rhododendron maximum next to a contaminated stream

    USGS Publications Warehouse

    Dang, Viet D.; Walters, David; Lee, Cindy M.

    2016-01-01

    Conifers are often used as an “air passive sampler”, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In this study, we used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The study area was located in a rural setting and approximately 2 km downstream of a former Sangamo-Weston (S-W) plant. Leaves from the same mature shrubs were collected in late fall 2010, and winter and spring 2011. PCBs were detected in the collected leaves suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990, 2850, and 931 pg m-3 in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former S-W plant. Leaves had a consistent pattern of high concentrations of tetra- and penta-CBs similar to the congener distribution in polyethylene (PE) passive samplers deployed in the water column suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves.

  3. Growth response of Douglas-fir seedlings to nitrogen fertilization: importance of Rubisco activation state and respiration rates.

    PubMed

    Manter, Daniel K; Kavanagh, Kathleen L; Rose, Cathy L

    2005-08-01

    High foliar nitrogen concentration ([N]) is associated with high rates of photosynthesis and thus high tree productivity; however, at excessive [N], tree productivity is reduced. Reports of excessive [N] in the Douglas-fir forests of the Oregon Coast Range prompted this investigation of growth and needle physiological responses to increasing foliar N concentrations in 1-year-old Douglas-fir seedlings. After 1 year of N fertilization, total seedling biomass increased with each successive increase in N fertilizer concentration, except in the highest N fertilization treatment. Of the many physiological responses that were analyzed, only photosynthetic capacity (i.e., Vcmax), respiration rates and leaf specific conductance (KL) differed significantly between N treatments. Photosynthetic capacity showed a curvilinear relationship with foliar [N], reaching an apparent maximum rate when needle N concentrations exceeded about 12 mg g(-1). In vitro measurements of ribulose-1,5-bisphosphate carboxylase (Rubisco) activity suggested that photosynthetic capacity was best related to activated, not total, Rubisco content. Rubisco activation state declined as foliar [N] increased, and based on its significant correlation (r2= 0.63) with foliar Mn:Mg ratios, it may be related to Mn inactivation of Rubisco. Respiration rates increased linearly as foliar N concentration increased (r2= 0.84). The value of K(L) also increased as foliar [N] increased, reaching a maximum when foliar [N] exceeded about 10 mg g(-1). Changes in K(L) were unrelated to changes in leaf area or sapwood area because leaf area to sapwood area ratios remained constant. Cumulative effects of the observed physiological responses to N fertilization were analyzed by modeling annual net CO2 assimilation (Anet) based on treatment specific values of Vcmax, dark respiration (Rdark) and KL. Estimates of Anet were highly correlated with measured total seedling biomass (r2= 0.992), suggesting that long-term, cumulative effects of maximum Rubisco carboxylation, Rdark and KL responses to N fertilization may limit seedling production when foliar N exceeds about 13 mg g(-1) or is reduced to less than about 11 mg g(-1).

  4. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study.

    PubMed

    Sawardekar, Swapna B; Patel, Tejal C; Uchil, Dinesh

    2016-01-01

    The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 10(5)/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5'- diphosphate (ADP) (2.5 μM/L) and collagen. All the concentrations of lycopene (4-12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation.

  5. Pharmacokinetics and brain distribution of tetrahydropalmatine and tetrahydroberberine after oral administration of DA-9701, a new botanical gastroprokinetic agent, in rats.

    PubMed

    Jung, Ji Won; Kwon, Yong Sam; Jeong, Jin Seok; Son, Miwon; Kang, Hee Eun

    2015-01-01

    DA-9701, a new botanical gastroprokinetic agent, has potential for the management of delayed gastric emptying in Parkinson's disease if it has no central anti-dopaminergic activity. Therefore, we examined the pharmacokinetics of DA-9701 components having dopamine D2 receptor antagonizing activity, tetrahydropalmatine (THP) and tetrahydroberberine (THB), following various oral doses (80-328 mg/kg) of DA-9701. The distribution of THP and THB to the brain and/or other tissues was also evaluated after single or multiple oral administrations of DA-9701. Oral administration of DA-9701 yielded dose-proportional area under the plasma concentration-time curve (AUC0-8 h) and maximum plasma concentration (Cmax) values for THP and THB, indicating linear pharmacokinetics (except for THB at the lowest dose). THP and THB's large tissue-to-plasma concentration ratios indicated considerable tissue distribution. High concentrations of THP and THB in the stomach and small intestine suggest an explanation for DA-9701's potent gastroprokinetic activity. The maximum concentrations of THP and THB in brain following multiple oral DA-9701 for 7 d (150 mg/kg/d) was observed at 30 min after the last oral DA-9701 treatment: 131±67.7 ng/g for THP and 6.97±4.03 ng/g for THB. Although both THP and THB pass through the blood-brain barrier, as indicated by brain-to-plasma concentration ratios greater than unity (approximately 2-4), oral administration of DA-9701 at the effective dose in humans is not expected to lead to sufficient brain concentrations to exert central dopamine D2 receptor antagonism.

  6. Soil, water, and streambed quality at a demolished asphalt plant, Fort Bragg, North Carolina, 1992-94

    USGS Publications Warehouse

    Campbell, T.R.

    1996-01-01

    A number of potentially hazardous chemicals were used at an asphalt plant on the Fort Bragg U.S. Army Reservation near Fayetteville, North Carolina. This plant was demolished in the late 1960's. Samples collected from soil, ground water, surface water, and streambed sediment were tested for the presence of contaminants. The sediment immediately underlying the demolished asphalt plant site consists mainly of sands, silts, and clayey sands with interbedded clay occurring at various depths. About 12 inches of rainfall per year infiltrate the unconfined surficial aquifer. The water table in this area is about 233 to 243 feet above sea level. Local ground water moves laterally, mainly towards the north- to-northwest at a rate of about 35 feet per year. where it discharges to Tank Creek, Little River, or one of their tributaries. A series of confining clays separate the surficial aquifer from the underlying upper Cape Fear aquifer. These clays help retard vertical migration of constituents dissolved in ground water. The saprolite-bedrock aquifer lies below the upper Cape Fear aquifer. In general ground water in the seven monitoring wells screened in the upper and lower part of the surficial aquifer did not contain detectable concentrations of chemicals related to past asphalt-plant activities. A small number of chemicals that were assumed to be unrelated to the asphalt plant were present in some of the study area monitoring wells. Ground water in four wells contained concentrations of organochlorine pesticides. Of these pesticides, concentrations of gamma-benzene hexachloride (lindane) (maximum of 0.76 micrograms per liter) exceeded the U.S. Environmental Protection Agency maximum contaminant level of 0.2 micrograms per liter in two wells. In addition, one well contained a trichloroethane concentration (7.7 micrograms per liter) that is assumed to be unrelated to demolished asphalt-plant operations, but exceeded the U.S. Environmental Protection Agency maximum contaminant level of 5.0 micrograms per liter. One well contained a fluoride concentration of 5.2 milligrams per liter that exceeded the U.S. Environmental Protection Agency maximum contaminant level of 4.0 milligrams per liter. Total and dissolved metals concentrations were generally typical of background levels. Some of the wells contained elevated levels of chloride (maximum of 749 milligrams per liter), specific conductance (maximum of 2,780 microsiemens per centimeter at 25 degrees Celsius), and dissolved solids (maximum of 1,520 milligrams per liter). Twelve of twenty-two soil samples that were collected at various depths at monitoring-well locations did not contain volatile organic compounds or polynuclear aromatic hydrocarbons. The remaining ten soil samples contained very low concentrations of polynuclear aromatic hydrocarbons and (or) analytical laboratory-related volatile organic compounds. The maximum concentrations were for fluoranthene and pyrene, at 780 and 750 micrograms per kilogram, respectively. In general, the polynuclear aromatic hydrocarbon concentrations were in sediment near the land surface. Streambed sediment from an unnamed, eastern tributary to Tank Creek in the eastern part of the site contained a small number of organochlorine pesticide compounds (a maximum of 1,400 milligrams per kilogram of 4,4'-DDD) and total petroleum hydrocarbons (113 milligrams per kilogram). Concentrations of metals and other inorganic constituents were generally typical of background concentrations. Surface water in this tributary did not contain elevated concentrations of anthropogenic chemicals.

  7. Influence of regional-scale anthropogenic activity in northeast Asia on seasonal variations of surface ozone and carbon monoxide observed at Oki, Japan

    NASA Astrophysics Data System (ADS)

    Pochanart, Pakpong; Hirokawa, Jun; Kajii, Yoshizumi; Akimoto, Hajime; Nakao, Makoto

    1999-02-01

    Surface O3 and CO measurements were carried out at Oki, Japan during March 1994 to February 1996 in order to elucidate the processes determining temporal variations of O3 and CO in the northeast Asian Pacific rim region. The isentropic trajectory analysis was applied to sort out the influences of the air mass exchange under the Asian monsoon system and the regional-scale photochemical buildup of O3. The trajectories were categorized into five groups which cover background and regionally polluted air masses. The seasonal cycles of O3 and CO in the background continental air mass revealed spring maximum-summer minimum with averaged concentrations ranging from 32 and 120 ppb to 45 and 208 ppb, respectively. In contrast, O3 concentrations in the regionally polluted continental air mass ranged from 44 to 57 ppb and showed a winter minimum and a spring-summer-autumn broad maximum, which was characterized by photochemical O3 production due to anthropogenic activities in northeast Asia. CO concentrations in the same air mass showed a spring maximum of 271 ppb and a summer-autumn minimum of 180 ppb. The photochemical buildup of O3 resulting from anthropogenic activities in this region was estimated to be 21 ppb in summer, while its production was insignificant, an average 3 ppb, in winter. A comparison between data in northeast Asia and in Europe shows many similarities, supporting the contention that photochemical buildup of O3 from large-scale precursor emissions in both regions is very significant.

  8. Optimizing extraction conditions of crude fiber, phenolic compounds, flavonoids and antioxidant activity of date seed powder.

    PubMed

    Afifi, Hanan S; Hashim, Isameldin B; Altubji, Sabreen I

    2017-12-01

    The objective of this study was to optimize the extraction conditions of crude fiber, phenolic compounds, flavonoids, and antioxidant activity from date seeds powder, using Response Surface Methodology. A central composite design with four independent variables; concentration of ethanol (X 1  = 25, 50 and 75% v/v), solvent: sample ratio (X 2  = 40:1, 50:1 and 60:1 v/w), temperature (X 3  = 45, 55 and 65 °C), and extraction time (X 4  = 1, 2 and 3 h) and a three level face centered cube design were used. A total of twenty nine experimental runs with five replicates at the central point were used to study the response variables using two extraction cycles. Maximum phenolic compound content (71.6 mg GAE/100 g) was extracted using 50% ethanol solution with 40:1 solvent: sample ratio for 1 h at 55 °C. While the maximum antioxidant activity (55.02 µmol Fe(II)/g) was obtained using similar ethanol concentration and solvent: sample ratio except at lower temperature (45 °C) for 2 h. On other hand, the maximum flavonoids content (455.77 mg CEQ/100 g) was reached by using 50% concentration, 50:1 solvent: sample ratio at 65 °C for 3 h. In contrast, the content of fiber was not affected by the different extraction conditions. Results indicate that using combination of extracted conditions, have a great potential for extracting all depending compounds except crude fiber.

  9. Enzymatic comparison and mortality of Beauveria bassiana against cabbage caterpillar Pieris brassicae LINN.

    PubMed

    Dhawan, Manish; Joshi, Neelam

    Beauveria bassiana, an entomopathogenic fungus, is the alternative biocontrol agent exploited against major economic crop pests. Pieris brassicae L. is an emerging pest of the Brassicaceae family. Therefore, in the present study, fungal isolates of Beauveria bassiana, viz. MTCC 2028, MTCC 4495, MTCC 6291, and NBAII-11, were evaluated for their virulence against third instar larvae of P. brassicae. Among all these fungal isolates, maximum mortality (86.66%) was recorded in B. bassiana MTCC 4495 at higher concentration of spores (10 9 conidia/ml), and the minimum mortality (30.00%) was recorded in B. bassiana MTCC 6291 at a lower concentration (10 7 conidia/ml) after ten days of treatment. The extracellular cuticle-degrading enzyme activities of fungal isolates were measured. Variability was observed both in the pattern of enzyme secretion and the level of enzyme activities among various fungal isolates. B. bassiana MTCC 4495 recorded the maximum mean chitinase (0.51U/ml), protease (1.12U/ml), and lipase activities (1.36U/ml). The minimum mean chitinase and protease activities (0.37 and 0.91U/ml, respectively) were recorded in B. bassiana MTCC 6291. The minimum mean lipase activity (1.04U/ml) was recorded in B. bassiana NBAII-11. Our studies revealed B. bassiana MTCC 4495 as the most pathogenic isolate against P. brassicae, which also recorded maximum extracellular enzyme activities, suggesting the possible roles of extracellular enzymes in the pathogenicity of B. bassiana against P. brassicae. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  10. Batch Tests To Determine Activity Distribution and Kinetic Parameters for Acetate Utilization in Expanded-Bed Anaerobic Reactors

    PubMed Central

    Fox, Peter; Suidan, Makram T.

    1990-01-01

    Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (Ks) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for Ks. However, Ks was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of Ks on the effluent 3-ethylphenol concentration. A two-parameter search determined a Ks of 8.99 mg of acetate per liter and a Ki of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made. PMID:16348175

  11. Batch tests to determine activity distribution and kinetic parameters for acetate utilization in expanded-bed anaerobic reactors.

    PubMed

    Fox, P; Suidan, M T

    1990-04-01

    Batch tests to measure maximum acetate utilization rates were used to determine the distribution of acetate utilizers in expanded-bed sand and expanded-bed granular activated carbon (GAC) reactors. The reactors were fed a mixture of acetate and 3-ethylphenol, and they contained the same predominant aceticlastic methanogen, Methanothrix sp. Batch tests were performed both on the entire reactor contents and with media removed from the reactors. Results indicated that activity was evenly distributed within the GAC reactors, whereas in the sand reactor a sludge blanket on top of the sand bed contained approximately 50% of the activity. The Monod half-velocity constant (K(s)) for the acetate-utilizing methanogens in two expanded-bed GAC reactors was searched for by combining steady-state results with batch test data. All parameters necessary to develop a model with Monod kinetics were experimentally determined except for K(s). However, K(s) was a function of the effluent 3-ethylphenol concentration, and batch test results demonstrated that maximum acetate utilization rates were not a function of the effluent 3-ethylphenol concentration. Addition of a competitive inhibition term into the Monod expression predicted the dependence of K(s) on the effluent 3-ethylphenol concentration. A two-parameter search determined a K(s) of 8.99 mg of acetate per liter and a K(i) of 2.41 mg of 3-ethylphenol per liter. Model predictions were in agreement with experimental observations for all effluent 3-ethylphenol concentrations. Batch tests measured the activity for a specific substrate and determined the distribution of activity in the reactor. The use of steady-state data in conjunction with batch test results reduced the number of unknown kinetic parameters and thereby reduced the uncertainty in the results and the assumptions made.

  12. Contaminant exposure of willets feeding in agricultural drainages of the lower Rio Grande valley of south Texas USA

    USGS Publications Warehouse

    Custer, T.W.; Mitchell, C.A.

    1991-01-01

    Willets (Catoptrophorus semipalmatus) were collected in June and August 1986 at the outlets of two agricultural drainages into the Lower Languna Madre of south Texas and at two other Texas coastal sites. Mean liver concentrations of arsenic was higher in August than June. Over 20% of the livers had arsenic concentrations elevated above a suggested background level of 5.0 ppm dry weight (DW), but concentrations (maximum 15 ppm) were below those associated with acute toxicity. Selenium concentration in livers varied from 2.3 to 8.3 ppm DW for all locations and represented background levels. Mercury concentrations in liver for all locations (mean = 2.0 to 3.4, maximum 17 ppm DW) were below those associated with avian mortality and similar to levels found in other estuarine/marine birds. DDE in carcasses was higher in adults (mean = 1.0 ppm wet weight) than juveniles (0.2 ppm), and higher in August (1.0 ppm) than June (0.5 ppm); however, DDE concentrations were generally at background levels. Based on brain cholinesterase activity, willets were not recently exposed to organophosphate pesticides.

  13. Raman spectroscopy for the evaluation of the effects of different concentrations of Copper on the chemical composition and biological activity of basil essential oil

    NASA Astrophysics Data System (ADS)

    Nawaz, Haq; Hanif, Muhammad Asif; Ayub, Muhammad Adnan; Ishtiaq, Faiqa; Kanwal, Nazish; Rashid, Nosheen; Saleem, Muhammad; Ahmad, Mushtaq

    2017-10-01

    The present study is performed to evaluate the effect of different concentrations of Cu as fertilizer on the chemical composition of basil essential oil and its biological activity including antioxidant and antifungal activities by employing Raman spectroscopy. Moreover, the effect of Cu is also determined on the vegetative growth and essential oil yield. Both, antifungal and antioxidant activities were found to be maximum with essential oils obtained at 0.04 mg/l concentration of Cu fertilizer. The results of the GC-MS and Raman spectroscopy have revealed that the linalool and estragole are found to be as a major chemical compound in basil essential oil. The Raman spectral changes associated with these biological components lead to the conclusion that estragole seems to have dominating effect in the biological activities of the basil essential oil as compared to linalool although the latter is observed in greater concentration.

  14. Predicting variability of aquatic concentrations of human pharmaceuticals

    EPA Science Inventory

    Potential exposure to active pharmaceutical ingredients (APIs) in the aquatic environment is a subject of ongoing concern. We recently estimated maximum likely potency-normalized exposure rates at the national level for several hundred commonly used human prescription pharmaceut...

  15. Concentration dependence of molal conductivity and dielectric constant of 1-alcohol electrolytes using the compensated arrhenius formalism.

    PubMed

    Fleshman, Allison M; Petrowsky, Matt; Frech, Roger

    2013-05-02

    The molal conductivity of liquid electrolytes with low static dielectric constants (ε(s) < 10) decreases to a minimum at low concentrations (region I) and increases to a maximum at higher concentrations (region II) when plotted against the square root of the concentration. This behavior is investigated by applying the compensated Arrhenius formalism (CAF) to the molal conductivity, Λ, of a family of 1-alcohol electrolytes over a broad concentration range. A scaling procedure is applied that results in an energy of activation (E(a)) and an exponential prefactor (Λ0) that are both concentration dependent. It is shown that the increasing molal conductivity in region II results from the combined effect of (1) a decrease in the energy of activation calculated from the CAF, and (2) an inherent concentration dependence in the exponential prefactor that is partly due to the dielectric constant.

  16. Plyometric training improves voluntary activation and strength during isometric, concentric and eccentric contractions.

    PubMed

    Behrens, Martin; Mau-Moeller, Anett; Mueller, Karoline; Heise, Sandra; Gube, Martin; Beuster, Nico; Herlyn, Philipp K E; Fischer, Dagmar-C; Bruhn, Sven

    2016-02-01

    This study investigated effects of plyometric training (6 weeks, 3 sessions/week) on maximum voluntary contraction (MVC) strength and neural activation of the knee extensors during isometric, concentric and eccentric contractions. Twenty-seven participants were randomly assigned to the intervention or control group. Maximum voluntary torques (MVT) during the different types of contraction were measured at 110° knee flexion (180°=full extension). The interpolated twitch technique was applied at the same knee joint angle during isometric, concentric and eccentric contractions to measure voluntary activation. In addition, normalized root mean square of the EMG signal at MVT was calculated. The twitch torque signal induced by electrical nerve stimulation at rest was used to evaluate training-related changes at the muscle level. In addition, jump height in countermovement jump was measured. After training, MVT increased by 20Nm (95% CI: 5-36Nm, P=0.012), 24Nm (95% CI: 9-40Nm, P=0.004) and 27Nm (95% CI: 7-48Nm, P=0.013) for isometric, concentric and eccentric MVCs compared to controls, respectively. The strength enhancements were associated with increases in voluntary activation during isometric, concentric and eccentric MVCs by 7.8% (95% CI: 1.8-13.9%, P=0.013), 7.0% (95% CI: 0.4-13.5%, P=0.039) and 8.6% (95% CI: 3.0-14.2%, P=0.005), respectively. Changes in the twitch torque signal of the resting muscle, induced by supramaximal electrical stimulation of the femoral nerve, were not observed, indicating no alterations at the muscle level, whereas jump height was increased. Given the fact that the training exercises consisted of eccentric muscle actions followed by concentric contractions, it is in particular relevant that the plyometric training increased MVC strength and neural activation of the quadriceps muscle regardless of the contraction mode. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  17. Effects of Detergents on Catalytic Activity of Human Endometase/Matrilysin-2, a Putative Cancer Biomarker†

    PubMed Central

    Park, Hyun I.; Lee, Seakwoo; Ullah, Asad; Cao, Qiang; Sang, Qing-Xiang Amy

    2009-01-01

    Matrix metalloproteinases (MMPs) are a family of hydrolytic enzymes that play significant roles in development, morphogenesis, inflammation, and cancer invasion. Endometase (matrilysin 2 or MMP-26) is a putative early biomarker for human carcinomas. The effects of the ionic and nonionic detergents on catalytic activity of endometase were investigated. The hydrolytic activity of endometase was detergent concentration-dependent exhibiting a bell-shaped curve with its maximum activity near the critical micelle concentration (CMC) of nonionic detergents tested. The effect of Brij-35 on human gelatinase B (MMP-9), matirilysin (MMP-7), and membrane-type 1 MMP (MT1-MMP) was further explored. Their maximum catalysis was observed near the CMC of Brij-35 (~90 μM). Their IC50 values were above the CMC. The inhibition mechanism of MMP-7, MMP-9, and MT1-MMP by Brij-35 was mixed-type as determined by Dixon’s plot, however, that of endometase was non-competitive with a Ki value of 240 μM. The catalytic activities of MMPs are influenced by detergents. Monomer of detergents may activate and stabilize MMPs to enhance catalysis, but micelle of detergents may sequester enzyme and block substrate binding site to impede catalysis. Under physiological conditions lipid or membrane microenvironment may regulate enzymatic activity. PMID:19818727

  18. The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails.

    PubMed

    Biswas, C; Mandal, C

    1999-02-01

    Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.

  19. Subduction zone seismicity and the thermo-mechanical evolution of downgoing lithosphere

    NASA Astrophysics Data System (ADS)

    Wortel, M. J. R.; Vlaar, N. J.

    1988-09-01

    In this paper we discuss characteristic features of subduction zone seismicity at depths between about 100 km and 700 km, with emphasis on the role of temperature and rheology in controlling the deformation of, and the seismic energy release in downgoing lithosphere. This is done in two steps. After a brief review of earlier developments, we first show that the depth distribution of hypocentres at depths between 100 km and 700 km in subducted lithosphere can be explained by a model in which seismic activity is confined to those parts of the slab which have temperatures below a depth-dependent critical value T cr. Second, the variation of seismic energy release (frequency of events, magnitude) with depth is addressed by inferring a rheological evolution from the slab's thermal evolution and by combining this with models for the system of forces acting on the subducting lithosphere. It is found that considerable stress concentration occurs in a reheating slab in the depth range of 400 to 650 700 km: the slab weakens, but the stress level strongly increases. On the basis of this stress concentration a model is formulated for earthquake generation within subducting slabs. The model predicts a maximum depth of seismic activity in the depth range of 635 to 760 km and, for deep earthquake zones, a relative maximum in seismic energy release near the maximum depth of earthquakes. From our modelling it follows that, whereas such a maximum is indeed likely to develop in deep earthquake zones, zones with a maximum depth around 300 km (such as the Aleutians) are expected to exhibit a smooth decay in seismic energy release with depth. This is in excellent agreement with observational data. In conclusion, the incoroporation of both depth-dependent forces and depth-dependent rheology provides new insight into the generation of intermediate and deep earthquakes and into the variation of seismic activity with depth. Our results imply that no barrier to slab penetration at a depth of 650 700 km is required to explain the maximum depth of seismic activity and the pattern of seismic energy release in deep earthquake zones.

  20. Removal of vertigo blue dyes from Batik textile wastewater by adsorption onto activated carbon and coal bottom ash

    NASA Astrophysics Data System (ADS)

    Kusmiyati, L., Puspita Adi; Deni, V.; Robi Indra, S.; Islamica, Dlia; Fuadi, M.

    2016-04-01

    Removal of vertigo blue dye from batik textile wastewater was studied by adsorptionprocess onto activated carbon (AC) and coal bottom ash (CBA).The influence of experimental conditions (pH solution, dye concentration, and contact time) were studied on the both adsorbents. At equilibrium conditions, the data were fitted to Langmuir and Freundlich adsorption models. The maximum adsorption capacity calculated from the Langmuir model for carbon active was 6.29mg/g at pH that found to be considerably higher than that obtained for coal bottom ash 3.72mg/g pH 9. From Freundlich model, the maximum adsorption capacity is less for coal bottom ash (pH 9) than that for carbon active (pH4).

  1. Non-enzymatic glycation reduces heparin cofactor II anti-thrombin activity.

    PubMed

    Ceriello, A; Marchi, E; Barbanti, M; Milani, M R; Giugliano, D; Quatraro, A; Lefebvre, P

    1990-04-01

    The effects of non-enzymatic glycation on heparin cofactor II activity, at glucose concentrations which might be expected in physiological or diabetic conditions have been evaluated in this study. Radiolabelled glucose incorporation was associated with a loss of heparin cofactor anti-thrombin activity. The heparin cofactor heparin and dermatan sulfate-dependent inhibition of thrombin was significantly reduced, showing a remarkable decrease of the maximum second order rate constant. This study shows that heparin cofactor can be glycated at glucose concentrations found in the blood, and that this phenomenon produces a loss of heparin cofactor-antithrombin activity. These data suggest, furthermore, a possible link between heparin cofactor glycation and the pathogenesis of thrombosis in diabetes mellitus.

  2. Effects of Mg2+ and adenine nucleotides on thymidylate synthetase from different mouse tumors.

    PubMed

    Rode, W; Jastreboff, M M

    1984-01-01

    Magnesium ions variably influenced activity of highly purified thymidylate synthetase preparations from different mouse tumors, activating the enzyme from Ehrlich ascites carcinoma (EAC) cells and inhibiting the enzyme from L1210 and L5178Y cells and from 5-fluorodeoxyuridine (FdUrd)-resistant EAC cells. In the presence of Mg2+ in a concentration resulting in either maximum activation or inhibition (25-30 mM) the enzymes from both the sensitive and FdUrd-resistant EAC lines and L5178Y cells were activated by ATP. Under the same conditions of Mg2+ concentration ADP and AMP inhibited the enzyme from the parental but not from the FdUrd-resistant EAC cells.

  3. Hexavalent Molybdenum Reduction to Mo-Blue by a Sodium-Dodecyl-Sulfate-Degrading Klebsiella oxytoca Strain DRY14

    PubMed Central

    Halmi, M. I. E.; Zuhainis, S. W.; Yusof, M. T.; Shaharuddin, N. A.; Helmi, W.; Shukor, Y.; Syed, M. A.; Ahmad, S. A.

    2013-01-01

    Bacteria with the ability to tolerate, remove, and/or degrade several xenobiotics simultaneously are urgently needed for remediation of polluted sites. A previously isolated bacterium with sodium dodecyl sulfate- (SDS-) degrading capacity was found to be able to reduce molybdenum to the nontoxic molybdenum blue. The optimal pH, carbon source, molybdate concentration, and temperature supporting molybdate reduction were pH 7.0, glucose at 1.5% (w/v), between 25 and 30 mM, and 25°C, respectively. The optimum phosphate concentration for molybdate reduction was 5 mM. The Mo-blue produced exhibits an absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. None of the respiratory inhibitors tested showed any inhibition to the molybdenum-reducing activity suggesting that the electron transport system of this bacterium is not the site of molybdenum reduction. Chromium, cadmium, silver, copper, mercury, and lead caused approximately 77, 65, 77, 89, 80, and 80% inhibition of the molybdenum-reducing activity, respectively. Ferrous and stannous ions markedly increased the activity of molybdenum-reducing activity in this bacterium. The maximum tolerable concentration of SDS as a cocontaminant was 3 g/L. The characteristics of this bacterium make it a suitable candidate for molybdenum bioremediation of sites cocontaminated with detergent pollutant. PMID:24383052

  4. Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga.

    PubMed

    Patiño, Reynaldo; Rashel, Rakib H; Rubio, Amede; Longing, Scott

    2018-01-01

    This study examined the ability of acidic and neutral/alkaline fractions of a methanolic extract from giant reed (Arundo donax) and of two of its constituents, gramine and skatole, to inhibit growth of the ichthyotoxic golden alga (Prymnesium parvum) in batch culture. For this study, growth suppression was defined as inhibition of maximum cell density, algicidal activity as early occurrence of negative growth, and algistatic activity as lack of net growth. The acidic fraction did not affect algal growth. The neutral/alkaline fraction showed growth-suppressing and algicidal activities but no signs of algistatic activity - namely, cells in cultures surviving a partial-algicidal exposure concentration (causing transient negative growth) were later able to initiate positive growth but at higher concentrations, algicidal activity was full and irreversible. Gramine suppressed growth more effectively than skatole and at the highest concentration tested, gramine also showed partial-algicidal and algistatic activity. While the partial-algicidal activities of the neutral/alkaline fraction and of gramine were short-lived (≤6days) and thus may share similar mechanisms, algistatic activity was unique to gramine and persisted for >3 weeks. Given gramine's reported concentration in the neutral/alkaline fraction, its corresponding level of algicidal activity is much lower than the fraction's suggesting the latter contains additional potent algicides. Inhibition of maximum cell density by all test compounds was associated with reductions in exponential growth rate, and in the case of the neutral/alkaline fraction and gramine also reductions in early (pre-exponential) growth. These results indicate that giant reed is a potential source of natural products to control golden alga blooms. Giant reed is an invasive species in North America, thus also providing incentive for research into strategies to couple management efforts for both species. Published by Elsevier B.V.

  5. Growth-suppressing and algicidal properties of an extract from Arundo donax, an invasive riparian plant, against Prymnesium parvum, an invasive harmful alga

    USGS Publications Warehouse

    Patino, Reynaldo; Rashel, Rakib H.; Rubio, Amede; Longing, Scott

    2018-01-01

    This study examined the ability of acidic and neutral/alkaline fractions of a methanolic extract from giant reed (Arundo donax) and of two of its constituents, gramine and skatole, to inhibit growth of the ichthyotoxic golden alga (Prymnesium parvum) in batch culture. For this study, growth suppression was defined as inhibition of maximum cell density, algicidal activity as early occurrence of negative growth, and algistatic activity as lack of net growth. The acidic fraction did not affect algal growth. The neutral/alkaline fraction showed growth-suppressing and algicidal activities but no signs of algistatic activity – namely, cells in cultures surviving a partial-algicidal exposure concentration (causing transient negative growth) were later able to initiate positive growth but at higher concentrations, algicidal activity was full and irreversible. Gramine suppressed growth more effectively than skatole and at the highest concentration tested, gramine also showed partial-algicidal and algistatic activity. While the partial-algicidal activities of the neutral/alkaline fraction and of gramine were short-lived (≤6 days) and thus may share similar mechanisms, algistatic activity was unique to gramine and persisted for >3 weeks. Given gramine’s reported concentration in the neutral/alkaline fraction, its corresponding level of algicidal activity is much lower than the fraction’s suggesting the latter contains additional potent algicides. Inhibition of maximum cell density by all test compounds was associated with reductions in exponential growth rate, and in the case of the neutral/alkaline fraction and gramine also reductions in early (pre-exponential) growth. These results indicate that giant reed is a potential source of natural products to control golden alga blooms. Giant reed is an invasive species in North America, thus also providing incentive for research into strategies to couple management efforts for both species.

  6. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells.

    PubMed

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). RESULTS/METHODOLOGY: We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease.

  7. Influence of acidosis on cardiotonic effects of colforsin and epinephrine: a dose-response study.

    PubMed

    Hagiya, Keiichi; Takahashi, Hiroshi; Isaka, Yumi; Inomata, Shinichi; Tanaka, Makoto

    2013-10-01

    Acidosis produces a negative inotropic effect on cardiac muscle against which catecholamines and phosphodiesterase III inhibitors have limited therapeutic effects. This study evaluated the effects of colforsin, which directly activates adenylate cyclase without β-adrenergic receptor activation, in isolated Langendorff rat hearts in a pH- and concentration-dependent manner. Experimental animal study. A university laboratory. Sprague-Dawley rats. Hearts were isolated and perfused with 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid/Tyrode solution (pH 7.4) in the Langendorff preparation. The hearts were assigned randomly to the control (pH 7.4), mild acidosis (pH 7.0), or severe acidosis (pH 6.6) group (n = 8 per group) and were perfused continuously with colforsin 10(-7), 10(-6), and 10(-5) mol/L. Maximum dP/dt was determined, and the concentration-response relation was evaluated at each pH. Colforsin at 10(-6) mol/L increased the maximum dP/dt from 2,592 ± 557 to 5,189 ± 721 mmHg/s (p < 0.001) and from 1,942 ± 325 to 3,399 ± 608 mmHg/s (p < 0.001) in the control and mild acidosis groups, respectively; whereas colforsin, 10(-5) mol/L, significantly increased the maximum dP/dt even in the severe acidosis group. No significant difference was seen in maximum dP/dt among the 3 groups after infusion with colforsin 10(-5) mol/L. In contrast to catecholamines and other inodilators, colforsin at a high concentration restores decreased cardiac contractility against severe acidosis to an extent similar to physiologic pH. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Potentiation by cholinesterase inhibitors of cholinergic activity in rat isolated stomach and colon.

    PubMed

    Jarvie, Emma M; Cellek, Selim; Sanger, Gareth J

    2008-01-01

    Acetylcholinesterase (AChE) inhibitors stimulate gastrointestinal (GI) motility and are potential treatments of conditions associated with inadequate GI motility. The ability of itopride to facilitate neuronally (predominantly cholinergic) mediated contractions of rat isolated stomach, evoked by electrical field stimulation (EFS), has been compared with other cholinesterase inhibitors and with tegaserod, a clinically effective prokinetic and non-selective 5-HT(4) receptor agonist which also facilitates GI cholinergic function. Neostigmine greatly increased EFS-evoked contractions over a narrow concentration range (0.01-1 microM; 754+/-337% facilitation at 1 microM); higher concentrations (1, 3 microM) also increased muscle tension. Donepezil increased EFS-evoked contractions gradually over the full range of concentrations (0.01-10 microM; maximum increase 516+/-20% at 10 microM). Itopride increased the contractions even more gradually, rising to 188+/-84% at 10 microM. The butyrylcholinesterase inhibitor iso-OMPA 0.01-10 microM also increased EFS-evoked contractions, to a maximum of 36+/-5.0% at 10 microM, similar to that caused by tegaserod (35+/-5.2% increase at 1 microM). The effects of tegaserod, but not itopride were inhibited by the 5-HT(4) receptor antagonist SB-204070A 0.3 microM. In rat isolated colon, neostigmine was again the most efficacious, causing a defined maximum increase in EFS-evoked contractions (343+/-82% at 10 microM), without changing muscle tension. Maximum increases caused by donepezil and itopride were, respectively, 57.6+/-20 and 43+/-15% at 10 microM. These data indicate that the abilities of different AChE inhibitors to increase GI cholinergic activity differ markedly. Understanding the reasons is essential if AChE inhibitors are to be optimally developed as GI prokinetics.

  9. Water-quality assessment of the Delmarva Peninsula, Delaware, Maryland, and Virginia; effects of agricultural activities on, and distribution of, nitrate and other inorganic constituents in the surficial aquifer

    USGS Publications Warehouse

    Hamilton, P.A.; Denver, J.M.; Phillips, P.J.; Shedlock, R.J.

    1993-01-01

    Agricultural applications of inorganic fertilizers and manure have changed the natural chemical com- position of water in the surficial aquifer through- out the Delmarva Peninsula. Nitrate, derived from nitrification of ammonia in inorganic fertilizers and manure, is the dominant anion in agricultural areas. Concentrations of nitrate in 185 water samples collected in agricultural areas ranged from 0.4 to 48 mg/L as nitrogen, with a median concen- tration of 8.2 mg/L as nitrogen. Nitrate concen- trations exceeded the U.S. Environmental Protection Agency's maximum contaminant level for drinking water of 10 mg/L as nitrogen in about 33% of the 185 water samples. Groundwater affected by agricultural activities contains significantly higher concentrations of dissolved constituents than does natural groundwater. Concentrations of calcium and magnesium are higher because of liming of soils, and concentrations of potassium and chloride are higher because of applications of potash, a supple- ment to the nitrogen-based fertilizers. Alkalinity concentrations commonly are decreased because the bicarbonate ion is consumed in buffering reactions with acid that is produced during nitrification. Effects of agricultural activities on groundwater quality are not limited to the near-surface parts of the aquifer underlying farm fields. Elevated concentrations are common in aerobic water at or near the base of the aquifer, 80 to 100 ft below land surface. The median concentration of nitrate in water beneath agricultural areas collected from 24 wells deeper than 80 ft below land surface was 8.5 mg/L as nitrogen, and concentrations in 9 of these water samples exceeded the maximum contaminant level. Regional variations in concentrations of nitrate and other agriculture related constituents in the surficial aquifer in the Delmarva Peninsula depend on a number of factors that include geomorphology, geology, soils, land use, and groundwater-flow patterns. (USGS)

  10. Destruction of humic substances by pulsed electrical discharge

    NASA Astrophysics Data System (ADS)

    Lobanova, G. L.; Yurmazova, T. A.; Shiyan, L. N.; Machekhina, K. I.; Davidenko, M. A.

    2017-01-01

    Currently, the water recourses in the territory of Tomsk region are groundwater which is limited to the high concentration of iron and manganese ions and organic substances. These impurities present in water in different forms such as soluble salts ant the colloid forms. Therefore, the present work is a part of a continuations researcher of the processes in natural waters containing humic substances at the influence of pulsed electrical discharges in a layer of iron pellets. It is shown that the main stage of water purification process of humic substances during treatment by pulsed electric discharge in the layer of iron granules is a difficult process including several stages such as formation of iron oxyhydroxide colloid particles, sorption and coagulation with humic macromolecules substances, growth of particle dispersed phase and precipitation. The reason for the formation and coagulation of the dispersed phase is a different state of charge of the colloid particles (zeta potentials of (Fe (OH)3) is +8 mV, zeta potentials of (Humic substances) is -70 mV. The most intense permanganate oxidation reduction to the maximum permissible concentration occurs at the processing time equal to 10 seconds. The contact time of active erosion products with sodium humate is established and it equals to 1 hour. The value of permanganate oxidation achieves maximum permissible concentration during this time and iron concentration in solution achieves maximum permissible concentration after filtration.

  11. 40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...

  12. 40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...

  13. 40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...

  14. 40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL... Concentration of Constituents for Groundwater Protection Constituent concentration 1 Maximum Arsenic 0.05 Barium...

  15. Adsorption performance of coconut shell activated carbon for the removal of chlorate from chlor-alkali brine stream.

    PubMed

    Lakshmanan, Shyam; Murugesan, Thanapalan

    2016-12-01

    Activated carbon from coconut shell was used to investigate the adsorption of chlorate from a chlor-alkali plant's brine stream. The effect of pH, flowrate, chlorate and chloride concentration on the breakthrough curves were studied in small-scale column trials. The results obtained show enhanced adsorption at low flowrates, higher chlorate concentrations, and at a pH of 10. These studies show that introducing an activated carbon adsorption column just before the saturator would remove sufficient quantities of chlorate to allow more of the chlor-alkali plant's brine stream to be reused. From column dynamic studies, the Thomas model showed close approximation when the chlorate in the effluent was higher than breakthrough concentrations and there was close correlation at high influent concentration. The q o (maximum adsorption capacity) values were close to those obtained experimentally, indicating close representation of the breakthrough curve by the Thomas model.

  16. Dyes removal from water using low cost absorbents

    NASA Astrophysics Data System (ADS)

    Giraldo, S.; Ramirez, A. P.; Ulloa, M.; Flórez, E.; Y Acelas, N.

    2017-12-01

    In this study, the removal capacity of low cost adsorbents during the adsorption of Methylene Blue (MB) and Congo Red (CR) at different concentrations (50 and 100mg·L-1) was evaluated. These adsorbents were produced from wood wastes (cedar and teak) by chemical activation (ZnCl2). Both studied materials, Activated Cedar (AC) and activated teak (AT) showed a good fit of their experimental data to the pseudo second order kinetic model and Langmuir isotherms. The maximum adsorption capacities for AC were 2000.0 and 444.4mg·g-1 for MB and CR, respectively, while for AT, maximum adsorption capacities of 1052.6 and 86.4mg·g-1 were found for MB and CR, respectively.

  17. Effects of synthetic detergents on in vivo activity of tissue phosphatases and succinic dehydrogenase from Mystus vittatus.

    PubMed

    Mohan, D; Verma, S R

    1981-05-01

    African catfish (Mystus vittatus) were exposed to three sub-lethal concentrations of Swascofix E45 (13.8, 9.2 and 4.6 mg/l) and Swascol 3L (69.3, 46.2 and 23.1 mg/l) for 15 and 30 days, and their effects on alkaline and acid phosphatase, and succinic dehydrogenase in liver, kidney and intestine were measured. The enzymes were found to be inhibited in all the tissues. Maximum inhibition (38.44%) was observed in liver alkaline phosphatase activity after 30 days with the highest concentration of Swascofix E45 and the lowest inhibition (0.118%) was found in kidney acid phosphatase activity with the lowest concentration of Swascol 3L after 15 days. Insignificant enzyme stimulation in some cases was also observed.

  18. Maximum voluntary joint torque as a function of joint angle and angular velocity: model development and application to the lower limb.

    PubMed

    Anderson, Dennis E; Madigan, Michael L; Nussbaum, Maury A

    2007-01-01

    Measurements of human strength can be important during analyses of physical activities. Such measurements have often taken the form of the maximum voluntary torque at a single joint angle and angular velocity. However, the available strength varies substantially with joint position and velocity. When examining dynamic activities, strength measurements should account for these variations. A model is presented of maximum voluntary joint torque as a function of joint angle and angular velocity. The model is based on well-known physiological relationships between muscle force and length and between muscle force and velocity and was tested by fitting it to maximum voluntary joint torque data from six different exertions in the lower limb. Isometric, concentric and eccentric maximum voluntary contractions were collected during hip extension, hip flexion, knee extension, knee flexion, ankle plantar flexion and dorsiflexion. Model parameters are reported for each of these exertion directions by gender and age group. This model provides an efficient method by which strength variations with joint angle and angular velocity may be incorporated into comparisons between joint torques calculated by inverse dynamics and the maximum available joint torques.

  19. Determination of concentration factors for Cs-137 and Ra-226 in the mullet species Chelon labrosus (Mugilidae) from the South Adriatic Sea.

    PubMed

    Antovic, Ivanka; Antovic, Nevenka M

    2011-07-01

    Concentration factors for Cs-137 and Ra-226 transfer from seawater, and dried sediment or mud with detritus, have been determined for whole, fresh weight, Chelon labrosus individuals and selected organs. Cesium was detected in 5 of 22 fish individuals, and its activity ranged from 1.0 to 1.6 Bq kg(-1). Radium was detected in all fish, and ranged from 0.4 to 2.1 Bq kg(-1), with an arithmetic mean of 1.0 Bq kg(-1). In regards to fish organs, cesium activity concentration was highest in muscles (maximum - 3.7 Bq kg(-1)), while radium was highest in skeletons (maximum - 25 Bq kg(-1)). Among cesium concentration factors, those for muscles were the highest (from seawater - an average of 47, from sediment - an average of 3.3, from mud with detritus - an average of 0.8). Radium concentration factors were the highest for skeleton (from seawater - an average of 130, from sediment - an average of 1.8, from mud with detritus - an average of 1.5). Additionally, annual intake of cesium and radium by human adults consuming muscles of this fish species has been estimated to provide, in aggregate, an effective dose of about 4.1 μSv y(-1). 2011 Elsevier Ltd. All rights reserved.

  20. Bioaccumulation and biodegradation of sulfamethazine in Chlorella pyrenoidosa

    NASA Astrophysics Data System (ADS)

    Sun, Ming; Lin, Hong; Guo, Wen; Zhao, Fazhen; Li, Jian

    2017-12-01

    Intensive use of sulfamethazine (SM2) in aquaculture has resulted in some detrimental effects to non-targeted organisms. In order to assess its potential ecological risk, it is crucial to have a good understanding on the bioaccumulation and biodegradation of SM2 in Chlorella pyrenoidosa. The microalgae were treated with 2, 4, and 8 mg L-1 of sulfamethazine for 13 days, respectively, showing that the inhibition effects of sulfamethazine on the growth of Chlorella pyrenoidosa increased progressively as the concentrations of sulfamethazine increasing from 2 to 8 mg L-1. The peak concentrations of sulfamethazine accumulated in C. pyrenoidosa were 0.225, 0.325, and 0.596 ng per mg FW on day 13 for three treatment groups, respectively, showing a great ability to deplete sulfamethazine from the culture media. On day 13, the percentages of biotic degradation were 48.45%, 60.21% and 69.93%, respectively. The EC50 of 10.05 mg L-1 was derived which showed no significant risk for C. pyrenoidosa with a calculated risk quotient < 1. The activities of superoxide dismutase and catalase increased progressively in response to sulfamethazine and showed a positive correlation to the treatment concentrations. The highest superoxide dismutase activity was achieved at the concentration of 8 mg L-1 after 2 d of exposure, which was 1.89 folds higher than that of the control. The activity of catalase has a similar pattern to that of superoxide dismutase with the maximum activity achieved at day 2, which was 3.11 folds higher compared to that of the control. In contrast to superoxide dismutase and catalase, the maximum glutathione S-transferase activity was observed at day 6, showing 2.2 folds higher than that of the control.

  1. Reconnaissance of ground-water quality in the Papio-Missouri River Natural Resources District, eastern Nebraska, July through September 1992

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Ellis, M.J.

    1995-01-01

    A reconnaissance of ground-water quality was conducted in the Papio-Missouri River Natural Resources District of eastern Nebraska. Sixty-one irrigation, municipal, domestic, and industrial wells completed in the principal aquifers--the unconfined Elkhorn, Missouri, and Platte River Valley alluvial aquifers, the upland area alluvial aquifers, and the Dakota aquifer--were selected for water-quality sampling during July, August, and September 1992. Analyses of water samples from the wells included determination of dissolved nitrate as nitrogen and triazine and acetanilide herbicides. Waterquality analyses of a subset of 42 water samples included dissolved solids, major ions, metals, trace elements, and radionuclides. Concentrations of dissolved nitrate as nitrogen in water samples from 2 of 13 wells completed in the upland area alluvial aquifers exceeded the U.S. Environmental Protection Agency Maximum Contaminant Level for drinking water of 10 milligrams per liter. Thirty-nine percent of the dissolved nitrate-as-nitrogen concentrations were less than the detection level of 0.05 milligram per liter. The largest median dissolved nitrate-as-nitrogen concentrations were in water from the upland area alluvial aquifers and the Dakota aquifer. Water from all principal aquifers, except the Dakota aquifer, had detectable concentrations of herbicides. Herbicides detected included alachlor (1 detection), atrazine (13 detections), cyanazine (5 detections), deisopropylatrazine (6 detections), deethylatrazine (9 detections), metolachlor (6 detections), metribuzin (1 detection), prometon (6 detections), and simazine (2 detections). Herbicide concentrations did not exceed U.S. Environmental Protection Agency Maximum Contaminant Levels for drinking water. In areas where the hydraulic gradient favors loss of surface water to ground water, the detection of herbicides in water from wells along the banks of the Platte River indicates that the river could act as a line source of herbicides. Water from the alluvial and bedrock aquifers generally was a calcium bicarbonate type and was hard. Two of nine water samples collected from the Dakota aquifer contained calcium sulfate type water. Results of analyses of 42 groundwater samples for major ions, metals, trace elements, and radionuclide constituents indicated that statistically at least one principal aquifer had significant differences in its water chemistry. In general, the water chemistry of the Dakota aquifer was similar to the water chemistry of the upland area alluvial aquifers in areas where there was a hydraulic connection. The water from the Dakota aquifer had large dissolved-solids, calcium, sulfate, chloride, iron, lithium, manganese, and strontium concentrations in areas where the aquifer is thought not to be in hydraulic connection with the Missouri River Valley and upland area alluvial aquifers. Ground-water quality in the Papio-MissouriRiver Natural Resources District is generally suitable for most uses. However, the numerous occurrences of herbicides in water of the Elkhorn and Platte River Valley alluvial aquifers, especially near the Platte River, are of concern because U.S. Environmental Protection Agency Maximum Contaminant Levels could be exceeded. Concentrations in three of nine water samples collected from wells completed in the Dakota aquifer exceeded the U.S. Environmental Protection Agency Maximum Contaminant Levels or Secondary Maximum Contaminant Levels for gross alpha activity, radon-222 activity, dissolved solids, sulfate, or iron. Also of concern are the exceedances of the U.S Environmental Protection Agency proposed Maximum Contaminant Level for radon-222 activity.

  2. Dissolved organic phosphorus utilization and alkaline phosphatase activity of the dinoflagellate Gymnodinium impudicum isolated from the South Sea of Korea

    NASA Astrophysics Data System (ADS)

    Oh, Seok Jin; Kwon, Hyeong Kyu; Noh, Il Hyeon; Yang, Han-Soeb

    2010-09-01

    This study investigated alkaline phosphatase (APase) activity and dissolved organic and inorganic phosphorus utilization by the harmful dinoflagellate Gymnodinium impudicum (Fraga et Bravo) Hansen et Moestrup isolated from the South Sea of Korea. Under conditions of limited phosphorus, observation of growth kinetics in batch culture yielded a maximum growth rate (μmax) of 0.41 /day and a half saturation constant (Ks) of 0.71 μM. In time-course experiments, APase was induced as dissolved inorganic phosphorus (DIP) concentrations fell below 0.83 μM, a threshold near the estimated Ks; APase activity increased with further DIP depletion to a maximum of 0.70 pmol/cell/h in the senescent phase. Thus, Ks may be an important index of the threshold DIP concentration for APase induction. G. impudicum utilizes a wide variety of dissolved organic phosphorus compounds in addition to DIP. These results suggest that DIP limitation in the Southern Sea of Korea may have led to the spread of G. impudicum along with the harmful dinoflagellate Cochlodinium polykrikoides in recent years.

  3. Bacteriocin production of Lactobacillus sp. from intestines of ducks (Anas domesticus L.) incubated at room temperature and antibacterial effectivity against pathogen

    NASA Astrophysics Data System (ADS)

    Arfani, Nurfitri; Nur, Fatmawati; Hafsan, Azrianingsih, Rodiyati

    2017-05-01

    Bacteriocin is a peptide that is easily degraded by proteolytic enzymes in the digestive systems of animals, including humans. It has antimicrobial activity against pathogenic bacteria. Lactobacillus sp. is one type of lactic acid bacteria (LAB) that occupies the intestines of ducks (Anas domesticus L.). The purpose of this research was to determine the optimum time of the highest protein production by Lactobacillus sp. and to determine inhibitory activity of bacteriocin against pathogenic bacteria (Escherichia coli and Staphylococcus aureus). Using the Bradford method, the results showed that the optimum time of highest bacteriocin production was after 36 hours of incubation, with a protein content of 0.93 mg/ml. The bacteriocin inhibitory activity against Escherichia coli showed that a protein concentration of 30% gave a maximum inhibition index of 1.1 mm, while for Staphylococcus aureus, a concentration of 70% gave a maximum inhibition index of 0.3 mm. Further research is required to determine the stationary state of bacteriocin production in this circumstance.

  4. Multiparameter analysis of activated sludge inhibition by nickel, cadmium, and cobalt.

    PubMed

    Hernandez-Martinez, Gabriel R; Ortiz-Alvarez, Daniela; Perez-Roa, Michael; Urbina-Suarez, Nestor Andres; Thalasso, Frederic

    2018-06-05

    Activated sludge processes are often inhibited by nickel, cadmium, and cobalt. The inhibitory effect of these heavy metals on a synthetic wastewater treatment process was tested through pulse microrespirometry; i.e., pulse of substrate injected in a microreactor system. The inhibitory effect was tested under different conditions including the heavy metals, substrate and biomass concentrations, and exposure time. The inhibitory effect was quantified by the percentage of inhibition, half saturation constant (K S ), inhibition constant (K I ), and maximum oxygen uptake rate (OUR max ). The results indicated that, in a range of concentration from 0 to 40 mg L -1 , the three heavy metals exerted an uncompetitive and incomplete inhibitory effect, with a maximum inhibition of 67, 57, and 53% for Ni, Co, and Cd, respectively. An increase of the biomass concentration by 620% resulted in a decrease of the inhibition by 47 and 69% for Co and Cd, respectively, while no effect was observed on Ni inhibition. An increase of the substrate concentration by 87% resulted in an increase of the inhibition by 24, 70, and 47% for Ni, Co and Cd, respectively. In the case of nickel and cadmium, an increase in the exposure time to the heavy metals also increased the inhibition. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Assessing atmospheric concentration of polychlorinated biphenyls by evergreen Rhododendron maximum next to a contaminated stream.

    PubMed

    Dang, Viet D; Walters, David M; Lee, Cindy M

    2016-09-01

    Conifers are often used as an air passive sampler, but few studies have focused on the implication of broadleaf evergreens to monitor atmospheric semivolatile organic compounds such as polychlorinated biphenyls (PCBs). In the present study, the authors used Rhododendron maximum (rhododendron) growing next to a contaminated stream to assess atmospheric PCB concentrations. The present study area was located in a rural setting and approximately 2 km downstream of a former capacitor plant. Leaves from the same mature shrubs were collected in late fall 2010 and winter and spring 2011. Polychlorinated biphenyls were detected in the collected leaves, suggesting that rhododendron can be used as air passive samplers in rural areas where active sampling is impractical. Estimated ΣPCB (47 congeners) concentrations in the atmosphere decreased from fall 2010 to spring 2011 with concentration means at 3990 pg m(-3) , 2850 pg m(-3) , and 931 pg m(-3) in fall 2010, winter 2011, and spring 2011, respectively. These results indicate that the atmospheric concentrations at this location continue to be high despite termination of active discharge from the former industrial source. Leaves had a consistent pattern of high concentrations of tetra-CBs and penta-CBs similar to the congener distribution in polyethylene passive samplers deployed in the water column, suggesting that volatilized PCBs from the stream were the primary source of contaminants in rhododendron leaves. Environ Toxicol Chem 2016;35:2192-2198. © 2016 SETAC. © 2016 SETAC.

  6. Entomotoxicity, protease and chitinase activity of Bacillus thuringiensis fermented wastewater sludge with a high solids content.

    PubMed

    Brar, Satinder K; Verma, M; Tyagi, R D; Valéro, J R; Surampalli, R Y

    2009-10-01

    This study investigated the production of biopesticides, protease and chitinase activity by Bacillus thuringiensis grown in raw wastewater sludge at high solids concentration (30 g/L). The rheology of wastewater sludge was modified with addition of Tween-80 (0.2% v/v). This addition resulted in 1.6 and 1.3-fold increase in cell and spore count, respectively. The maximum specific growth rate (micro(max)) augmented from 0.17 to 0.22 h(-1) and entomotoxicity (Tx) increased by 29.7%. Meanwhile, volumetric mass transfer coefficient (k(L)a) showed marked variations during fermentation, and oxygen uptake rate (OUR) increased 2-fold. The proteolytic activity increased while chitinase decreased for Tween amended wastewater sludge, but the entomotoxicity increased. The specific entomotoxicity followed power law when plotted against spore concentration and the relation between Tx and protease activity was linear. The viscosity varied and volume percent of particles increased in Tween-80 amended wastewater sludge and particle size (D(50)) decreased at the end of fermentation. Thus, there was an increase in entomotoxicity at higher suspended solids (30 g/L) as Tween addition improved rheology (viscosity, particle size, surface tension); enhanced maximum growth rate and OUR.

  7. Chemical and physical quality of selected public water supplies in Florida, August-September 1976

    USGS Publications Warehouse

    Irwin, G.A.; Healy, Henry G.

    1978-01-01

    Results of a 1976 water-quality reconnaissance made by the U.S. Geological Survey indicated that, with few exceptions, all public water supplies in Florida are of high quality and meet the standards set forth in the National Interim Primary Drinking Water Regulations. Occasionally the concentrations of fluoride, turbidity, cadmium, chromium, and lead approximated, equaled, or exceeded maximum contaminant levels with exceedences occurring very infrequently. The pesticides 2,4-D and silvex, were detected in some public supplies throughout the State mainly in surface water. Although pesticides were not detected in concentrations approaching the maximum levels established in the regulations, their presence does signal that the activities of man are beginning to affect some water resources. (Woodard-USGS)

  8. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior.

    PubMed

    Hackett, Lucien; Reed, Darren; Halaki, Mark; Ginn, Karen A

    2014-04-01

    No direct evidence exists to support the validity of using surface electrodes to record muscle activity from serratus anterior, an important and commonly investigated shoulder muscle. The aims of this study were to determine the validity of examining muscle activation patterns in serratus anterior using surface electromyography and to determine whether intramuscular electromyography is representative of serratus anterior muscle activity. Seven asymptomatic subjects performed dynamic and isometric shoulder flexion, extension, abduction, adduction and dynamic bench press plus tests. Surface electrodes were placed over serratus anterior and around intramuscular electrodes in serratus anterior. Load was ramped during isometric tests from 0% to 100% maximum load and dynamic tests were performed at 70% maximum load. EMG signals were normalised using five standard maximum voluntary contraction tests. Surface electrodes significantly underestimated serratus anterior muscle activity compared with the intramuscular electrodes during dynamic flexion, dynamic abduction, isometric flexion, isometric abduction and bench press plus tests. All other test conditions showed no significant differences including the flexion normalisation test where maximum activation was recorded from both electrode types. Low correlation between signals was recorded using surface and intramuscular electrodes during concentric phases of dynamic abduction and flexion. It is not valid to use surface electromyography to assess muscle activation levels in serratus anterior during isometric exercises where the electrodes are not placed at the angle of testing and dynamic exercises. Intramuscular electrodes are as representative of the serratus anterior muscle activity as surface electrodes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Time-course measurements of drug concentrations in hair and toenails after single administrations of pharmaceutical products.

    PubMed

    Kuwayama, Kenji; Miyaguchi, Hajime; Iwata, Yuko T; Kanamori, Tatsuyuki; Tsujikawa, Kenji; Yamamuro, Tadashi; Segawa, Hiroki; Inoue, Hiroyuki

    2017-04-01

    Hair and nails are often used to prove long-term intake of drugs in forensic drug testing. The aim of this study was to evaluate the effectiveness of drug testing using hair and nails and the feasibility of determining when drugs were ingested by measuring the time-courses of drug concentrations in hair and toenails after single administrations of various drugs. Healthy subjects ingested four pharmaceutical products containing eight active ingredients in single doses. Hair and toenails were collected at predetermined intervals, and drug concentrations in hair and nails were measured for 12 months. The administered drugs and their main metabolites were extracted using micropulverized extraction with a stainless steel bullet and were analyzed using liquid chromatography/tandem mass spectrometry. Acidic compounds such as ibuprofen and its metabolites were not detected in both specimens. Acetaminophen, a weakly acidic compound, was detected in nails more frequently than in hair. The maximum concentration of allyl isopropyl acetylurea, a neutral compound, in nails was significantly higher than in hair. Nails are an effective specimen to detect neutral and weakly acidic compounds. For fexofenadine, a zwitterionic compound, and for most basic compounds, the maximum concentrations in hair segments tended to be higher than those in nails. The hair segments showing the maximum concentrations varied between drugs, samples, and subjects. Drug concentrations in hair segments greatly depended on the selection of the hair. Careful interpretation of analytical results is required to predict the time of drug intake. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  10. Radon activity concentrations and effective doses in ancient Egyptian tombs of the Valley of the Kings.

    PubMed

    Hafez, A F; Hussein, A S

    2001-09-01

    Radon concentrations and equilibrium factors were measured in three pharaonic tombs during the year 1998. The tombs, which are open to the public are located in a limestone wadi on the West Bank of the River Nile at Luxor, 650 km south of Cairo. The radon activity concentration and equilibrium factor were measured monthly by two-integral nuclear track detectors (bare and diffusion detectors). Seasonal variation of radon concentrations, with summer maximum and winter minimum were observed in all tombs investigated. The yearly mean radon activity concentrations insidc the tombs ranged from 540 to 3115 Bq m(-3). The mean equilibrium factor over a year was found to be 0.25 and 0.32 inside and at the entrance, respectively. Estimated annual effective doses to tour guides ranged from 0.33 to 1.90 mSv, visitors receive doses from 0.65 to 3.80 microSv per visit. The effective dose to tomb workers did not exceed the 20 mSv yr(-1) limit.

  11. Combined removal of BTEX in air stream by using mixture of sugar cane bagasse, compost and GAC as biofilter media.

    PubMed

    Mathur, Anil K; Majumder, C B; Chatterjee, Shamba

    2007-09-05

    Biofiltration of air stream containing mixture of benzene, toluene, ethyl benzene and o-xylene (BTEX) has been studied in a lab-scale biofilter packed with a mixture of compost, sugar cane bagasse and granulated activated carbon (GAC) in the ratio 55:30:15 by weight. Microbial acclimation was achieved in 30 days by exposing the system to average BTEX inlet concentration of 0.4194 gm(-3) at an empty bed residence time (EBRT) of 2.3 min. Biofilter achieved maximum removal efficiency more than 99% of all four compounds for throughout its operation at an EBRT of 2.3 min for an inlet concentration of 0.681 gm(-3), which is quite significance than the values reported in the literature. The results indicate that when the influent BTEX loadings were less than 68 gm(-3)h(-1) in the biofilter, nearly 100% removal could be achieved. A maximum elimination capacity (EC) of 83.65 gm(-3)h(-1) of the biofilter was obtained at inlet BTEX load of 126.5 gm(-3)h(-1) in phase IV. Elimination capacities of BTEX increased with the increase in influent VOC loading, but an opposite trend was observed for the removal efficiency. The production of CO(2) in each phase (gm(-3)h(-1)) was also observed at steady state (i.e. at maximum removal efficiency). Moreover, the high concentrations of nitrogen in the nutrient solution may adversely affect the microbial activity possibly due to the presence of high salt concentrations. Furthermore, an attempt was also made to isolate the most profusely grown BTEX-degrading strain. A Gram-positive strain had a high BTEX-degrading activity and was identified as Bacillus sphaericus by taxonomical analysis, biochemical tests and 16S rDNA gene analysis methods.

  12. Dissolved Phosphorus Pools and Alkaline Phosphatase Activity in the Euphotic Zone of the Western North Pacific Ocean

    PubMed Central

    Suzumura, Masahiro; Hashihama, Fuminori; Yamada, Namiha; Kinouchi, Shinko

    2012-01-01

    We measured pools of dissolved phosphorus (P), including dissolved inorganic P (DIP), dissolved organic P (DOP) and alkaline phosphatase (AP)-hydrolyzable labile DOP (L-DOP), and kinetic parameters of AP activity (APA) in the euphotic zone in the western North Pacific Ocean. Samples were collected from one coastal station in Sagami Bay, Japan, and three offshore stations between the North Pacific subtropical gyre (NPSG) and the Kuroshio region. Although DIP concentrations in the euphotic zone at all stations were equally low, around the nominal method detection limit of 20 nmol L-1, chlorophyll a (Chl a) concentrations were one order of magnitude greater at the coastal station. DOP was the dominant P pool, comprising 62–92% of total dissolved P at and above the Chl a maximum layer (CML). L-DOP represented 22–39% of the total DOP at the offshore stations, whereas it accounted for a much higher proportion (about 85%) in the coastal surface layers. Significant correlations between maximum potential AP hydrolysis rates and DIP concentrations or bacterial cell abundance in the offshore euphotic zone suggest that major APA in the oligotrophic surface ocean is from bacterial activity and regulated largely by DIP availability. Although the range of maximum potential APA was comparable among the environmental conditions, the in situ hydrolysis rate of L-DOP in the coastal station was 10 times those in the offshore stations. L-DOP turnover time at the CML ranged from 4.5 days at the coastal station to 84.4 days in the NPSG. The ratio of the APA half-saturation constant to the ambient L-DOP concentration decreased markedly from the NPSG to the coastal station. There were substantial differences in the rate and efficiency of DOP remineralization and its contribution as the potential P source between the low-phosphate/high-biomass coastal ecosystem and the low-phosphate/low biomass oligotrophic ocean. PMID:22457661

  13. Antioxidant Effects of Four Heartwood Extractives on Midgut Enzyme Activity in Heterotermes indicola (Blattodea: Rhinotermitidae).

    PubMed

    Hassan, Babar; Ahmed, Sohail; Kirker, Grant; Mankowski, Mark E; Misbah-Ul-Haq, Muhammad

    2018-06-06

    Heterotermes indicola (Wasmann) (Blattodea: Rhinotermitidae) is a species of subterranean termite that is a destructive pest of wood and wood products in Pakistan. This study evaluated the antioxidant and antienzyme potential of heartwood extractives against H. indicola. Heartwood extractives of four durable wood species, Tectona grandis (L.f), Dalbergia sissoo (Roxb.), Cedrus deodara (Roxb.), and Pinus roxburghii (Sarg.) were removed from wood shavings via soxhlet extraction with an ethanol:toluene solvent system. The antioxidant potential of the extractive compounds was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging test. Results showed maximum antioxidant activity for extractives of D. sissoo. D. sissoo had the lowest IC50 (the concentration where 50% inhibition of the DPPH radical is obtained) at 28.83 µg/ml among the heartwood extractives evaluated. This antioxidant activity, however, was not concentration dependent as was observed in the other heartwood extractives tested. At the maximum test concentration, T. grandis showed the highest percent inhibition at 89.7%, but this inhibition was lower compared to the positive control antioxidant compounds butylated hydroxytoluene and quercetin. When termites were fed filter paper treated with IC50s of the extractives and control compounds, glutathione S-transferase activity in the guts of H. indicola workers was significantly reduced by T. grandis and D. sissoo extractives. Similarly, esterase activity was reduced more by P. roxburghii extractives compared to control antioxidant treatments and other tested extractives. However, none of the extractives examined significantly reduced the activity of catalase enzymes in H. indicola compared to treatments with the antioxidant control compounds.

  14. Sucrose-enhanced biosynthesis of medicinally important antioxidant secondary metabolites in cell suspension cultures of Artemisia absinthium L.

    PubMed

    Ali, Mohammad; Abbasi, Bilal Haider; Ahmad, Nisar; Ali, Syed Shujait; Ali, Shahid; Ali, Gul Shad

    2016-12-01

    Natural products are gaining tremendous importance in pharmaceutical industry and attention has been focused on the applications of in vitro technologies to enhance yield and productivity of such products. In this study, we investigated the accumulation of biomass and antioxidant secondary metabolites in response to different carbohydrate sources (sucrose, maltose, fructose and glucose) and sucrose concentrations (1, 3, 5, 7 and 9 %). Moreover, the effects of 3 % repeated sucrose feeding (day-12, -18 and -24) were also investigated. The results showed the superiority of disaccharides over monosaccharides for maximum biomass and secondary metabolites accumulation. Comparable profiles for maximum biomass were observed in response to sucrose and maltose and initial sucrose concentrations of 3 and 5 %. Maximum total phenolic and total flavonoid contents were displayed by cultures treated with sucrose and maltose; however, initial sucrose concentrations of 5 and 7 % were optimum for both classes of metabolites, respectively. Following 3 % extra sucrose feeding, cultures fed on day-24 (late-log phase) showed higher biomass, total phenolic and total flavonoid contents as compared to control cultures. Highest antioxidant activity was exhibited by maltose-treated cultures. Moreover, sucrose-treated cultures displayed positive correlation of antioxidant activity with total phenolics and total flavonoids production. This work describes the stimulatory role of disaccharides and sucrose feeding strategy for higher accumulation of phenolics and flavonoids, which could be potentially scaled up to bioreactor level for the bulk production of these metabolites in suspension cultures of A. absinthium.

  15. Comparative evaluation of antiplatelet effect of lycopene with aspirin and the effect of their combination on platelet aggregation: An in vitro study

    PubMed Central

    Sawardekar, Swapna B.; Patel, Tejal C.; Uchil, Dinesh

    2016-01-01

    Introduction: The objective was to compare antiplatelet effect of lycopene with aspirin and to study effect of combination of the two on platelet aggregation in vitro, using platelets from healthy volunteers. Materials and Methods: Platelets were harvested; platelet count of platelet-rich plasma adjusted to 2.5 Χ 105/μL. Aspirin (140 μmol/L) and lycopene (4, 6, 8, 10, and 12 μmol/L) were studied in vitro against adenosine-5’- diphosphate (ADP) (2.5 μM/L) and collagen Results: All the concentrations of lycopene (4–12 μmol/L) exhibited reduction in maximum platelet aggregation induced by aggregating agents ADP and collagen (P < 0.01 vs. vehicle) and were comparable with aspirin. Lycopene at concentration 10 μmol/L showed maximum platelet inhibition (47.05% ± 19.56%) against ADP, whereas lycopene at concentration 8 μmol/L showed maximum platelet inhibition (54.26% ± 30.71%) against collagen. Four μmol/L of lycopene combined with 140 μmol/L and 70 μmol/L aspirin showed greater inhibition of platelets as compared to aspirin 140 μmol/L alone, against both ADP and collagen. Conclusion: The study favorably compares lycopene and aspirin with respect to their antiplatelet activities against ADP and collagen. Lycopene can be considered as a potential target for modifying the thrombotic and pro-inflammatory events associated with platelet activation. PMID:26997718

  16. Preparation and antioxidant activities of oligosaccharides from Crassostrea gigas.

    PubMed

    Wu, Shengjun; Huang, Xiaolian

    2017-02-01

    Oligosaccharides were prepared from Crassostrea gigas by hydrolysis of polysaccharide in C. gigas with peroxide oxygen (H2O2). The hydrolysates were cleared of protein, filtered, ultrafiltered and precipitated with absolute ethanol to give C. gigas oligosaccharides (CGOs). Factors affecting CGO yields, i.e., reaction time, temperature, and H2O2 concentration, were optimised as follows: 2.96h reaction time, 84.71°C reaction temperature, and 2.46% H2O2 concentration. Under these conditions, the maximum yield of CGOs reached 10.61%. The CGOs were then partially characterised by Fourier transform infrared spectroscopy, UV spectroscopy, monosaccharide composition, and antioxidant activities. Results indicate that CGOs possessed strong hydroxyl radical activity, 2,2-diphenyl-β-picrylhydrazyl-radical-scavenging activity and reducing capacity at a concentration of 100μg/mL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Seasonal growth and translocation of some major and trace elements in two Mediterranean grasses (Stipa tenacissima Loefl. ex L. and Lygeum spartum Loefl. ex L.)

    NASA Astrophysics Data System (ADS)

    Nedjimi, Bouzid

    2018-05-01

    The rangelands of Stipa tenacissima and Lygeum spartum (Poaceae) constitute one of the main typical ecosystems in the Iberian Peninsula and North Africa. This study examines the seasonal changes in aboveground biomass accumulation and translocation of some major (Ca and K) and trace elements (Br, Cr, Cu, Fe, Mn, Sr and Zn) from topsoil to shoots of these perennial grasses. Species, season and their interaction significantly affected the dry biomass (DW) and chemical composition of both species and their surrounding soil. The maximum DW was found in spring due to high physiological activity and was correlated positively with rainfall. A significant relationship between seasons and chemical elements was found. For both species the maximum concentrations of Ca, Cu and Zn were found in spring season. However L. spartum had the highest concentrations of K, Cr, Br, and Sr in autumn season, indicating exceptional ability of these species to accumulate large contents of these elements during the active growth periods. By way of contrast, in the topsoil the highest concentrations of almost all chemical elements were found in summer and autumn. Principal component analyses (PCA) showed that growth of L. spartum was highly associated with K, Ca, Zn, Br and Sr, whereas topsoil was correlated with Cu, Cr, Fe and Mn concentrations. Translocation factor (TFx) of chemical elements was not identical across the two species, demonstrating inter-specific variability to uptake chemical elements. The maximum values of TFx were recorded for K, Ca and Sr especially for L. spartum. To cope with arid conditions, S. tenacissima and L. spartum sprout quickly by increasing their rate of growth and nutrient uptake as soon as soil water is available after the rain.

  18. Radioxenon monitoring in Beijing following the Fukushima Daiichi NPP accident.

    PubMed

    Shilian, Wang; Qi, Li; Qinghua, Meng; Zhanying, Chen; Yungang, Zhao; Huijuan, Li; Huaimao, Jia; Yinzhong, Chang; Shujiang, Liu; Xinjun, Zhang; Yuanqing, Fan; Ling, Wan; Yun, Lou

    2013-11-01

    This paper reports the brief process and results of radioxenon monitoring and analysis in Beijing following the Fukushima Daiichi nuclear power plant accident. The accident and release of volatile radionuclides were caused by 9.0 magnitude earthquake and tsunami on March 11, 2011. The maximum concentrations of (133)Xe and (131 m)Xe were in excess of 0.90 Bq.m(-3) and 0.047 Bq.m(-3), respectively. The activity ratio of (131 m)Xe to (133)Xe and the dynamic trend of (133)Xe activity concentration were analyzed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Quality of water from shallow wells in the rice-growing area in southwestern Louisiana, 1999 through 2001

    USGS Publications Warehouse

    Tollett, Roland W.; Fendick, Robert B.

    2004-01-01

    In 1999-2001, the U.S. Geological Survey installed and sampled 27 shallow wells in the rice-growing area in southwestern Louisiana as part of the Acadian-Pontchartrain Study Unit of the National Water-Quality Assessment Program. The purpose of this report is to describe the waulity of water from shallow wells in the rice-growing area and to relate that water quality to natural and anthropogenic activities, particularly rice agriculture. Ground-water samples were analyzed for general ground-water properties and about 150 water-quality constituents, including major inorganic ions, trace elements, nutrients, dissolved organic carbon (DOC), pesticides, radon, chloroflourocarbons, and selected stable isotopes. Dissolved solids concentrations for 17 wells exceeded the U.S. Environmental Protection Agency secondary minimum containment level of 500 milligrams per liter (mg/L) for drinking water. Concentrations for major pesticides generally were less than the maximum contaminant levels for drinking water. Two major inorganic ions, sulfate and chloride, and two trace elements, iron and manganese, had concentrations that were greater than the secondary maximum containment levels. Three nutrient concentrations were greater than 2 mg/L, a level that might indicate contamination from human activities, and one nutrient concentration (that for nitrite plus nitrite as nitrogen) was greater than the maximum contaminant level of 10 mg/L for drinking water. The median concentration for DOC was 0.5 mg/L, indicating naturally-occurring DOC conditions in the study area. Thirteen pesticides and 7 pesticide degradation products were detected in 14 of the 27 wells sampled. Bentazon, 2, 4-D, and molinate (three rice herbicides) were detected in water from four, one, and one wells, respectively, and malathion (a rice insecticide) was deteced in water fromone well. Low-level concentrations and few detections of nutrients and pesticides indicated that ground-water quality was affected slightly by anthropogenic activities. Quality-control samples, including field blanks, replicates, and spikes, indicated no bias in ground-water data from collection on analysis. Radon concentrations for 22 of the 24 wells sampled wer at or greater than the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter. Chlorofluorocarbon concentrations in selected wells indicated the apparent ages of the ground water varied with depth water level and ranged from about 17 to 49 years. The stable isotopes of hydrogen and oxygen in water molecules indicated the origin of ground water in the study area was rainwater that originated near the study area and that few geochemical or physical processes influenced the stable isotopic composition of the shallow ground water. The Spearman rank correlation was used to detemrine whther significant correlations existed between physical properties, selected chemical constituents, the number of pesticides detected, and the apparent age of water. The depth to ground water was positively correlated to the well depth and inversely correlated to dissolved solids and other constituents, such as radon, indicating the ground water was under unconfined or semiconfined conditions and more dilute with increasing depth. As the depth to ground water increased, the concentrations of dissolved solids and other constituents decreased, possibly because the deeper sands had a greater transmittal of ground water, which, over time, would flush out, or dilute, the concentrations of dissolved solids in the natural sediments. The apparent age of water was correlated inversely with nitrite plus nitrite concentration, indicating that as apparent age increased, the nitrite plus nitrite concentration decreased. No significant correlations existed between the number of pesticides detected and any of the physical or chemica

  20. A key parameter on the adsorption of diluted aniline solutions with activated carbons: The surface oxygen content.

    PubMed

    Pardo, Beatrice; Ferrer, Nabí; Sempere, Julià; Gonzalez-Olmos, Rafael

    2016-11-01

    A total of 11 different commercial activated carbons (AC) with well characterized textural properties and oxygen surface content were tested as adsorbents for the removal of aniline as a target water pollutant. The maximum adsorption capacity of aniline for the studied AC was from 138.9 to 257.9 mg g(-1) at 296.15 K and it was observed to be strongly related to the textural properties of the AC, mainly with the BET surface area and the micropore volume. It was not observed any influence of the oxygen surface content of the AC on the maximum adsorption capacity. However, it was found that at low aniline aqueous concentration, the presence of oxygen surface groups plays a dominant role during the adsorption. A high concentration of oxygen surface groups, mainly carboxylic and phenolic groups, decreases the aniline adsorption regardless of the surface area of the AC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Immunocapture and microplate-based activity and quantity measurement of pyruvate dehydrogenase in human peripheral blood mononuclear cells

    PubMed Central

    Liu, Xiaowen; Pervez, Hira; Andersen, Lars W; Uber, Amy; Montissol, Sophia; Patel, Parth; Donnino, Michael W

    2015-01-01

    Background Pyruvate dehydrogenase (PDH) activity is altered in many human disorders. Current methods require tissue samples and yield inconsistent results. We describe a modified method for measuring PDH activity from isolated human peripheral blood mononuclear cells (PBMCs). Results/Methodology We found that PDH activity and quantity can be successfully measured in human PBMCs. Freeze-thaw cycles cannot efficiently disrupt the mitochondrial membrane. Processing time of up to 20 h does not affect PDH activity with proteinase inhibitor addition and a detergent concentration of 3.3% showed maximum yield. Sample protein concentration is correlated to PDH activity and quantity in human PBMCs from healthy subjects. Conclusion Measuring PDH activity from PBMCs is a novel, easy and less invasive way to further understand the role of PDH in human disease. PMID:25826140

  2. Distribution of ingested americium in chickens and transport to eggs. Final report, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullen, A.A.; Lloyd, S.R.; Mosley, R.E.

    1976-05-01

    The soluble citrate complex of americium-241 was orally administered to 20 white Leghorn laying hens daily for two weeks. The yolks, whites, and shells from the eggs were analyzed for their americium content. Yolk was the only egg fraction in which radioactivity was observed. The americium-241 activity in yolks reached a maximum on the 14th day of dosing. Biological half-times of 2.00 plus or minus 0.18 days and greater than 33 days were indicated by the average concentration values of americium-241 in yolks laid after the maximum activity was reached. The hens were serially sacrificed at 1, 10, and 20more » days after the final administration of americium-241. Tissue samples were collected and the americium content determined in the edible portions and feathers of the hens. Americium was detected in most tissues shortly after dosing; the main concentrations were found in the liver and the skeleton. The highest concentration per organ (3.03 X 0.001 percent of the dose) occurred in the liver of the hens sacrificed 10 days after final administration of americium-241. (GRA)« less

  3. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    PubMed

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  4. Mercury distribution in ancient and modern sediment of northeastern Bering Sea

    USGS Publications Warehouse

    Nelson, C.H.; Pierce, D.E.; Leong, K.W.; Wang, F.F.H.

    1975-01-01

    Reconnaissance sampling of surface and subsurface sediment to a maximum depth of 80 m below the sea floor shows that typical values of 0.03 p.p.m. and anomalies of 0.2-1.3 p.p.m. mercury have been present in northeastern Bering Sea since Early Pliocene time. Values are highest in modern beach (maximum 1.3 and mean 0.22 p.p.m. Hg) and nearshore subsurface gravels (maximum 0.6 and mean 0.06 p.p.m. Hg) along the highly mineralized Seward Peninsula and in clayey silt rich in organic matter (maximum 0.16 and mean 0.10 p.p.m. Hg) throughout the region. Although gold mining may be partly responsible for high mercury levels in the modern beach near Nome, Alaska (maximum 0.45 p.p.m.), equally high or greater concentrations of mercury occur in buried Pleistocene sediments immediately offshore (maximum 0.6 p.p.m.) and in modern unpolluted beach sediments at Bluff (maximum 1.3 p.p.m.); this suggests that the contamination effects of mining may be no greater than natural concentration processes in the Seward Peninsula region. The mercury content of offshore surface sediment, even adjacent to mercury-rich beaches, corresponds to that of unpolluted marine and fresh-water sediment elsewhere. The normal values that prevail offshore may be attributable to entrapment of mercury-bearing heavy minerals on beaches near sources and/or dilution effects of offshore sedimentation. The few minor anomalies offshore occur in glacial drift derived from mercury source regions of Chukotka (Siberia) and Seward Peninsula; Pleistocene shoreline processes have reworked the drift to concentrate the heavy metals. The distribution pattern of mercury indicates that particulate mercury-bearing minerals have not been widely dispersed from onland deposits in quantities sufficient to increase mercury levels above normal in offshore sediments of Bering Sea; however, it shows that natural sedimentary processes can concentrate this mercury in beaches of the coastal zone where there already is concern because of potential pollution from man's activities.

  5. Purification and properties of rennin-like enzyme from Aspergillus ochraceus.

    PubMed

    Ismail, A A; Foda, M S; Khorshid, M A

    1978-01-01

    An active milk-clotting enzyme was purified some 40-fold from culture supernatant of Aspergillus ochraceus. The purification steps included ammonium sulfate precipitation, G-100 Sephadex gel filtration, and ion exchange chromatography, using DEAE Cellulose column. The enzyme exhibited milk-clotting activity and proteolytic behaviour, an optimum at pH 6.0 and in the range of 7--8.5, respectively. The purified enzyme was actively proteolytic against casein, haemoglobin, and bovine serum albumin at pH 8. The milk-clotting activity was greatly enhanced by manganous ions and by increasing concentrations of calcium chloride. Copper, zinc, and ammonium ions were potent inhibitors of the milk-curdling activity of the purified enzyme. Significant inhibition was also noted with sodium chloride at concentrations of 3% or more. Under the specified reaction condition, maximum rate of proteolysis against casein was obtained at 0.4% substrate concentration, whereas the milk-clotting time was linear proportional to dry skim milk concentration in the range of 8 to 24%. The results are discussed in comparison with other microbial milk-clotting enzymes, and limitations of applicability are also presented.

  6. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan; Lowder, Jonathan; Moseley, Michael; Alan Doolittle, W.

    2012-08-01

    Highly p-type GaN films with hole concentrations exceeding 6 × 1019 cm-3 grown by metal-modulated epitaxy are electrically characterized. Temperature-dependent Hall effect measurements at cryogenic temperatures reveal minimal carrier freeze-out in highly doped samples, while less heavily doped samples exhibited high resistivity and donor-compensated conductivity as is traditionally observed. Effective activation energies as low as 43 meV were extracted, and a maximum Mg activation efficiency of 52% was found. In addition, the effective activation energy was found to be negatively correlated to the hole concentration. These results indicate the onset of the Mott-Insulator transition leading to impurity band conduction.

  7. Copper Nanoparticles: Synthesis and Biological Activity

    NASA Astrophysics Data System (ADS)

    Satyvaldiev, A. S.; Zhasnakunov, Z. K.; Omurzak, E.; Doolotkeldieva, T. D.; Bobusheva, S. T.; Orozmatova, G. T.; Kelgenbaeva, Z.

    2018-01-01

    By means of XRD and FESEM analysis, it is established that copper nanoparticles with sizes less than 10 nm are formed during the chemical reduction, which form aggregates mainly with spherical shape. Presence of gelatin during the chemical reduction of copper induced formation of smaller size distribution nanoparticles than that of nanoparticles synthesized without gelatin and it can be related to formation of protective layer. Synthesized Cu nano-powders have sufficiently high activity against the Erwinia amylovora bacterium, and the bacterial growth inhibition depends on the Cu nanoparticles concentration. At a concentration of 5 mg / ml of Cu nanoparticles, the exciter growth inhibition zone reaches a maximum value within 72 hours and the lysis zone is 20 mm, and at a concentration of 1 mg / ml this value is 16 mm, which also indicates the significant antibacterial activity of this sample.

  8. Stripping Voltammetry

    NASA Astrophysics Data System (ADS)

    Lovrić, Milivoj

    Electrochemical stripping means the oxidative or reductive removal of atoms, ions, or compounds from an electrode surface (or from the electrode body, as in the case of liquid mercury electrodes with dissolved metals) [1-5]. In general, these atoms, ions, or compounds have been preliminarily immobilized on the surface of an inert electrode (or within it) as the result of a preconcentration step, while the products of the electrochemical stripping will dissolve in the electrolytic solution. Often the product of the electrochemical stripping is identical to the analyte before the preconcentration. However, there are exemptions to these rules. Electroanalytical stripping methods comprise two steps: first, the accumulation of a dissolved analyte onto, or in, the working electrode, and, second, the subsequent stripping of the accumulated substance by a voltammetric [3, 5], potentiometric [6, 7], or coulometric [8] technique. In stripping voltammetry, the condition is that there are two independent linear relationships: the first one between the activity of accumulated substance and the concentration of analyte in the sample, and the second between the maximum stripping current and the accumulated substance activity. Hence, a cumulative linear relationship between the maximum response and the analyte concentration exists. However, the electrode capacity for the analyte accumulation is limited and the condition of linearity is satisfied only well below the electrode saturation. For this reason, stripping voltammetry is used mainly in trace analysis. The limit of detection depends on the factor of proportionality between the activity of the accumulated substance and the bulk concentration of the analyte. This factor is a constant in the case of a chemical accumulation, but for electrochemical accumulation it depends on the electrode potential. The factor of proportionality between the maximum stripping current and the analyte concentration is rarely known exactly. In fact, it is frequently ignored. For the analysis it suffices to establish the linear relationship empirically. The slope of this relationship may vary from one sample to another because of different influences of the matrix. In this case the concentration of the analyte is determined by the method of standard additions [1]. After measuring the response of the sample, the concentration of the analyte is deliberately increased by adding a certain volume of its standard solution. The response is measured again, and this procedure is repeated three or four times. The unknown concentration is determined by extrapolation of the regression line to the concentration axis [9]. However, in many analytical methods, the final measurement is performed in a standard matrix that allows the construction of a calibration plot. Still, the slope of this plot depends on the active area of the working electrode surface. Each solid electrode needs a separate calibration plot, and that plot must be checked from time to time because of possible deterioration of the electrode surface [2].

  9. The assessment of electrophysiological activity in human-induced pluripotent stem cell-derived cardiomyocytes exposed to dimethyl sulfoxide and ethanol by manual patch clamp and multi-electrode array system.

    PubMed

    Hyun, Soo-Wang; Kim, Bo-Ram; Hyun, Sung-Ae; Seo, Joung-Wook

    2017-09-01

    Recently, electrophysiological activity has been effectively measured in human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to predict drug-induced arrhythmia. Dimethyl sulfoxide (DMSO) and ethanol have been used as diluting agents in many experiments. However, the maximum DMSO and ethanol concentrations that can be effectively used in the measurement of electrophysiological parameters in hiPSC-CMs-based patch clamp and multi-electrode array (MEA) have not been fully elucidated. We investigated the effects of varying concentrations of DMSO and ethanol used as diluting agents on several electrophysiological parameters in hiPSC-CMs using patch clamp and MEA. Both DMSO and ethanol at concentrations>1% in external solution resulted in osmolality >400mOsmol/kg, but pH was not affected by either agent. Neither DMSO nor ethanol led to cell death at the concentrations examined. However, resting membrane potential, action potential amplitude, action potential duration at 90% and 40%, and corrected field potential duration were decreased significantly at 1% ethanol concentration. DMSO at 1% also significantly decreased the sodium spike amplitude. In addition, the waveform of action potential and field potential was recorded as irregular at 3% concentrations of both DMSO and ethanol. Concentrations of up to 0.3% of either agent did not affect osmolality, pH, cell death, or electrophysiological parameters in hiPSC-CMs. Our findings suggest that 0.3% is the maximum concentration at which DMSO or ethanol should be used for dilution purposes in hiPSC-CMs-based patch clamp and MEA. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Relationship between peroxisome proliferator-activated receptor alpha activity and cellular concentration of 14 perfluoroalkyl substances in HepG2 cells.

    PubMed

    Rosenmai, Anna Kjerstine; Ahrens, Lutz; le Godec, Théo; Lundqvist, Johan; Oskarsson, Agneta

    2018-02-01

    Peroxisome proliferator-activated receptor alpha (PPARα) is a molecular target for perfluoroalkyl substances (PFASs). Little is known about the cellular uptake of PFASs and how it affects the PPARα activity. We investigated the relationship between PPARα activity and cellular concentration in HepG2 cells of 14 PFASs, including perfluoroalkyl carboxylates (PFCAs), perfluoroalkyl sulfonates and perfluorooctane sulfonamide (FOSA). Cellular concentrations were determined by high-performance liquid chromatography-tandem mass spectrometry and PPARα activity was determined in transiently transfected cells by reporter gene assay. Cellular uptake of the PFASs was low (0.04-4.1%) with absolute cellular concentrations in the range 4-2500 ng mg -1 protein. Cellular concentration of PFCAs increased with perfluorocarbon chain length up to perfluorododecanoate. PPARα activity of PFCAs increased with chain length up to perfluorooctanoate. The maximum induction of PPARα activity was similar for short-chain (perfluorobutanoate and perfluoropentanoate) and long-chain PFCAs (perfluorododecanoate and perfluorotetradecanoate) (approximately twofold). However, PPARα activities were induced at lower cellular concentrations for the short-chain homologs compared to the long-chain homologs. Perfluorohexanoate, perfluoroheptanoate, perfluorooctanoate, perfluorononanoate (PFNA) and perfluorodecanoate induced PPARα activities >2.5-fold compared to controls. The concentration-response relationships were positive for all the tested compounds, except perfluorooctane sulfonate PFOS and FOSA, and were compound-specific, as demonstrated by differences in the estimated slopes. The relationships were steeper for PFCAs with chain lengths up to and including PFNA than for the other studied PFASs. To our knowledge, this is the first report establishing relationships between PPARα activity and cellular concentration of a broad range of PFASs. Copyright © 2017 John Wiley & Sons, Ltd.

  11. Water-quality assessment of the Rio Grande Valley, Colorado, New Mexico and Texas; ground-water quality in the Rio Grande flood plain, Cochiti Lake, New Mexico, to El Paso, Texas, 1995

    USGS Publications Warehouse

    Bexfield, L.M.; Anderholm, S.K.

    1997-01-01

    From March to May of 1995, water samples were collected from 30 wells located in the flood plain of the Rio Grande between Cochiti Lake, New Mexico, and El Paso, Texas. These samples were analyzed for a broad host of constituents, including field parameters, major constituents, nutrients, dissolved organic carbon, trace elements, radiochemicals, pesticides, and volatile organic compounds. The main purpose of this study was to observe the quality of ground water in this part of the Rio Grande Valley study unit of the U.S. Geological Survey National Water-Quality Assessment program. The sampling effort was limited to the basin- fill aquifer beneath the above-defined reach of the Rio Grande flood plain because of the relative homogeneity of the hydrogeology, the large amount of ground-water use for public supply, and the potential for land-use activities to affect the quality of ground water. Most of the wells sampled for the study are used for domestic purposes, including drinking water. Depths to the tops of the sampling intervals in the 30 wells ranged from 10 to 345 feet below land surface, and the median was 161.5 feet; the sampling intervals in most of the wells spanned about 10 feet or less. Quality-control data were collected at three of the wells. A significant amount of variation was found in the chemical composition of ground water sampled throughout the study area, but the water generally was found to be of suitable chemical quality for use as drinking water, according to current enforceable standards established by the U.S. Environmental Protection Agency (EPA). Nutrients generally were measured at concentrations near or below their method reporting limits. The most dominant nutrient species was nitrite plus nitrate, at a maximum concentration of 1.9 milligrams per liter (as N). Only eight of the trace elements analyzed for had median concentrations greater than their respective minimum reporting levels. Water from one well exceeded the lifetime health advisory established by the EPA for molybdenum; water from a different well exceeded the proposed EPA maximum contaminant level for uranium. Gross alpha and gross beta particle activities generally appeared to strongly correlate with quantities of uranium and potassium, respectively, detected in ground water. However, water from one well exceeded the EPA maximum contaminant level for gross alpha particle activity and may exceed the EPA maximum contaminant level for beta particle and photon activity, although current data on gross beta particle activities are not conclusive on this point. Radon concentrations did not appear to directly correlate with uranium concentrations. The herbicide prometon was the only synthetic organic compound detected in ground water in the study area, and was detected in only one well, at a concentration of 0.038 microgram per liter. This well is shallow and is not used for drinking water. With the exception of the one detection of prometon, no strong evidence was found of effects on ground-water quality from human activities. Therefore, most of the water sampled probably recharged at the margins of the alluvial basins or recharged through the flood plain before human development began. With respect to major constituents, the concentrations of dissolved solids ranged from 209 to 3,380 milligrams per liter, and the median concentration was 409.5 milligrams per liter. There is evidence that the overall chemical composition of ground water in the study area may be affected by several processes, including cation exchange, feldspar weathering, calcite dissolution and precipitation, dissolution of volcanic glass, and microbial activity. Several chemical constituents in ground water showed relatively distinct spatial patterns that appear to be related to one or more of these processes.

  12. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764

  13. Batch and fixed-bed adsorption of tartrazine azo-dye onto activated carbon prepared from apricot stones

    NASA Astrophysics Data System (ADS)

    Albroomi, H. I.; Elsayed, M. A.; Baraka, A.; Abdelmaged, M. A.

    2017-07-01

    This work describes the potential of utilizing prepared activated carbon from apricot stones as an efficient adsorbent material for tartrazine (TZ) azo-dye removal in a batch and dynamic adsorption system. The results revealed that activated carbons with well-developed surface area (774 m2/g) and pore volume (1.26 cm3/g) can be manufactured from apricot stones by H3PO4 activation. In batch experiments, effects of the parameters such as initial dye concentration and temperature on the removal of the dye were studied. Equilibrium was achieved in 120 min. Adsorption capacity was found to be dependent on the initial concentration of dye solution, and maximum adsorption was found to be 76 mg/g at 100 mg/L of TZ. The adsorption capacity at equilibrium ( q e) increased from 22.6 to 76 mg/g with an increase in the initial dye concentrations from 25 to 100 mg/L. The thermodynamic parameters such as change in free energy (Δ G 0), enthalpy (Δ H 0) and entropy (Δ S 0) were determined and the positive value of (Δ H) 78.1 (K J mol-1) revealed that adsorption efficiency increased with an increase in the process temperature. In fixed-bed column experiments, the effect of selected operating parameters such as bed depth, flow rate and initial dye concentration on the adsorption capacity was evaluated. Increase in bed height of adsorption columns leads to an extension of breakthrough point as well as the exhaustion time of adsorbent. However, the maximum adsorption capacities decrease with increases of flow rate. The breakthrough data fitted well to bed depth service time and Thomas models with high coefficient of determination, R 2 ≥ 94.

  14. The PK/PD Interactions of Doxycycline against Mycoplasma gallisepticum

    PubMed Central

    Zhang, Nan; Gu, Xiaoyan; Ye, Xiaomei; Wu, Xun; Zhang, Bingxu; Zhang, Longfei; Shen, Xiangguang; Jiang, Hongxia; Ding, Huanzhong

    2016-01-01

    Mycoplasma gallisepticum is one of the most important pathogens that cause chronic respiratory disease in chicken. This study investigated the antibacterial activity of doxycycline against M. gallisepticum strain S6. In static time–killing studies with constant antibiotic concentrations [0–64 minimum inhibitory concentration (MIC)], M. gallisepticum colonies were quantified and kill rates were calculated to estimate the drug effect. The half-life of doxycycline in chicken was 6.51 ± 0.63 h. An in vitro dynamic model (the drug concentrations are fluctuant) was also established and two half-lives of 6.51 and 12 h were simulated. The samples were collected for drug concentration determination and viable counting of M. gallisepticum. In static time–killing studies, doxycycline produced a maximum antimycoplasmal effect of 5.62log10 (CFU/mL) reduction and the maximum kill rate was 0.11 h−1. In the in vitro dynamic model, doxycycline had a mycoplasmacidal activity in the two regimens, and the maximum antimycoplasmal effects were 4.1 and 4.75log10 (CFU/mL) reduction, respectively. Furthermore, the cumulative percentage of time over a 48-h period that the drug concentration exceeds the MIC (%T > MIC) was the pharmacokinetic–pharmacodynamic index that best correlated with antimicrobial efficacy (R2 = 0.986, compared with 0.897 for the peak level divided by the MIC and 0.953 for the area under the concentration–time curve over 48 h divided by the MIC). The estimated %T > MIC values for 0log10 (CFU/mL) reduction, 2log10 (CFU/mL) reduction and 3log10 (CFU/mL) reduction were 32.48, 45.68, and 54.36%, respectively, during 48 h treatment period of doxycycline. In conclusion, doxycycline shows excellent effectiveness and time-dependent characteristics against M. gallisepticum strain S6 in vitro. Additionally, these results will guide optimal dosing strategies of doxycycline in M. gallisepticum infection. PMID:27199972

  15. Activation and injury of Clostridium perfringens spores by alcohols.

    PubMed Central

    Craven, S E; Blankenship, L C

    1985-01-01

    The activation properties of Clostridium perfringens NCTC 8679 spores were demonstrated by increases in CFU after heating in water or aqueous alcohols. The temperature range for maximum activation, which was 70 to 80 degrees C in water, was lowered by the addition of alcohols. The response at a given temperature was dependent on the time of exposure and the alcohol concentration. The monohydric alcohols and some, but not all, of the polyhydric alcohols could activate spores at 37 degrees C. The concentration of a monohydric alcohol that produced optimal spore activation was inversely related to its lipophilic character. Spore injury, which was manifested as a dependence on lysozyme for germination and colony formation, occurred under some conditions of alcohol treatment that exceeded those for optimal spore activation. Treatment with aqueous solutions of monohydric alcohols effectively activated C. perfringens spores and suggests a hydrophobic site for spore activation. PMID:2864897

  16. Irradiation of human skin by short wavelength ultraviolet radiation (100--290 nm) (u.v.C): increased concentrations of arachidonic acid and prostaglandines E2 and F2alpha.

    PubMed Central

    Camp, R D; Greaves, M W; Hensby, C N; Plummer, N A; Warin, A P

    1978-01-01

    1. Human abdominal skin was irradiated with six times the minimal erythema dose of ultraviolet C (100--290 nm) radiation. Erythema appeared at 3 h, was of moderate degree by 6 h and was maximal at 12--24 h. It was reduced at 48 h and by 72 h had disappeared. 2. A suction bulla technique was used for the recovery of exudate from normal and inflamed skin at 6, 18, 24 and 48 h after irradiation. 3. Prostaglandin-like activity, estimated by bioassay, showed maximum increase at 18 h, when erythema was also maximum. PGF 2alpha, measured by both radioimmunoassay and by combined gas-liquid chromatography--gas spectrometry, followed a similar time course then fell to normal, or near normal, levels at 48 h. 4. Prostaglandin E2 and arachidonic acid concentrations, measured by gas chromatography--mass spectrometry, were maximally raised at 18--24 h. At 48 h, when some erythema was still present, though reduced, prostaglandin E2 concentrations were still raised above control values. 5. The results provide direct evidence in support of the view that the erythma following irradiation of human skin by u.v.C involves activation of arachidonic acid metabolism. However, the relationship between the erythema and increased prostaglandin activity is not fully understood. PMID:678391

  17. Performance Analysis and Optimization of Concentrating Solar Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Lamba, Ravita; Manikandan, S.; Kaushik, S. C.

    2018-06-01

    A thermodynamic model for a concentrating solar thermoelectric generator considering the Thomson effect combined with Fourier heat conduction, Peltier, and Joule heating has been developed and optimized in MATLAB environment. The temperatures at the hot and cold junctions of the thermoelectric generator were evaluated by solving the energy balance equations at both junctions. The effects of the solar concentration ratio, input electrical current, number of thermocouples, and electrical load resistance ratio on the power output and energy and exergy efficiencies of the system were studied. Optimization studies were carried out for the STEG system, and the optimum number of thermocouples, concentration ratio, and resistance ratio determined. The results showed that the optimum values of these parameters are different for conditions of maximum power output and maximum energy and exergy efficiency. The optimum values of the concentration ratio and load resistance ratio for maximum energy efficiency of 5.85% and maximum exergy efficiency of 6.29% were found to be 180 and 1.3, respectively, with corresponding power output of 4.213 W. Furthermore, at higher concentration ratio (C = 600), the optimum number of thermocouples was found to be 101 for maximum power output of 13.75 W, maximum energy efficiency of 5.73%, and maximum exergy efficiency of 6.16%. Moreover, the optimum number of thermocouple was the same for conditions of maximum power output and energy and exergy efficiency. The results of this study may provide insight for design of actual concentrated solar thermoelectric generator systems.

  18. Atmospheric CO2 at Waliguan station in China: Transport climatology, temporal patterns and source-sink region representativeness

    NASA Astrophysics Data System (ADS)

    Cheng, Siyang; An, Xingqin; Zhou, Lingxi; Tans, Pieter P.; Jacobson, Andy

    2017-06-01

    In order to explore where the source and sink have the greatest impact on CO2 background concentration at Waliguan (WLG) station, a statistical method is here proposed to calculate the representative source-sink region. The key to this method is to find the best footprint threshold, and the study is carried out in four parts. Firstly, transport climatology, expressed by total monthly footprint, was simulated by FLEXPART on a 7-day time scale. Surface CO2 emissions in Eurasia frequently transported to WLG station. WLG station was mainly influenced by the westerlies in winter and partly controlled by the Southeast Asian monsoon in summer. Secondly, CO2 concentrations, simulated by CT2015, were processed and analyzed through data quality control, screening, fitting and comparing. CO2 concentrations displayed obvious seasonal variation, with the maximum and minimum concentration appearing in April and August, respectively. The correlation of CO2 fitting background concentrations was R2 = 0.91 between simulation and observation. The temporal patterns were mainly correlated with CO2 exchange of biosphere-atmosphere, human activities and air transport. Thirdly, for the monthly CO2 fitting background concentrations from CT2015, a best footprint threshold was found based on correlation analysis and numerical iteration using the data of footprints and emissions. The grid cells where monthly footprints were greater than the best footprint threshold were the best threshold area corresponding to representative source-sink region. The representative source-sink region of maximum CO2 concentration in April was primarily located in Qinghai province, but the minimum CO2 concentration in August was mainly influenced by emissions in a wider region. Finally, we briefly presented the CO2 source-sink characteristics in the best threshold area. Generally, the best threshold area was a carbon sink. The major source and sink were relatively weak owing to less human activities and vegetation types in this high altitude area. CO2 concentrations were more influenced by human activities when air mass passed through many urban areas in summer. Therefore, the combination of footprints and emissions is an effective approach for assessing the source-sink region representativeness of CO2 background concentration.

  19. Investigation of air pollution of Shanghai subway stations in ventilation seasons in terms of PM2.5 and PM10.

    PubMed

    Guo, Erbao; Shen, Henggen; He, Lei; Zhang, Jiawen

    2017-07-01

    In November 2015, the PM 2.5 and PM 10 particulate matter (PM) levels in platforms, station halls, and rail areas of the Shangcheng and Jiashan Road Station were monitored to investigate air pollution in the Shanghai subway system. The results revealed that in subway stations, PM 2.5 and PM 10 concentrations were significantly higher than those in outdoor environments. In addition, particle concentrations in the platforms exceeded maximum levels that domestic safety standards allowed. Particularly on clear days, PM 2.5 and PM 10 concentrations in platforms were significantly higher than maximum standards levels. Owing to the piston effect, consistent time-varying trends were exhibited by PM 2.5 concentrations in platforms, station halls, and rail areas. Platform particle concentrations were higher than the amount in station halls, and they were higher on clear days than on rainy days. The time-varying trends of PM 10 and PM 2.5 concentrations in platforms and station halls were similar to each other. Activities within the station led to most of the inhalable particles within the station area. The mass concentration ratios of PM 2.5 and PM 10 in platforms were within 0.65-0.93, and fine particles were the dominant components.

  20. Exposure to airborne ultrafine particles from cooking in Portuguese homes.

    PubMed

    Bordado, J C; Gomes, J F; Albuquerque, P C

    2012-10-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 microm2/cm3 (increased to 72.9 microm2/cm3 due to gas burning) to a maximum of 890.3 microm2/cm3 measured during fish boiling in water and a maximum of 4500 microm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities. The approach of this study considers the determination of alveolar deposited surface area of aerosols generated from cooking activities, namely, typical Portuguese dishes. This type of measurement has not been done so far, in spite of the recognition that cooking activity is a main source of submicrometer and ultrafine aerosols. The results have shown that the levels of generated aerosols surpass the outdoor concentrations in a major European town, which calls for further determinations, contributing to a better assessment of exposure of individuals to domestic activities such as this one.

  1. Comparison of changes in the extracellular concentration of noradrenaline in rat frontal cortex induced by sibutramine or d-amphetamine: modulation by α2-adrenoceptors

    PubMed Central

    Wortley, K E; Hughes, Z A; Heal, D J; Stanford, S C

    1999-01-01

    The effects of sibutramine (0.25–10 mg kg−1, i.p.) on extracellular noradrenaline concentration in the frontal cortex of halothane-anaesthetized rats were compared with those of d-amphetamine (1–3 mg kg−1, i.p.) using in vivo microdialysis. The role of presynaptic α2-adrenoceptors in modulating the effects of these drugs on extracellular noradrenaline concentration were also investigated by pretreating rats with the selective α2-adrenoceptor antagonist, RX821002.Sibutramine induced a gradual and sustained increase in extracellular noradrenaline concentration. The dose-response relationship was described by a bell-shaped curve with a maximum effect at 0.5 mg kg−1. In contrast, d-amphetamine induced a rapid increase in extracellular noradrenaline concentration, the magnitude of which paralleled drug dose.Pretreatment with the α2-adrenoceptor antagonist, RX821002 (dose 3 mg kg−1, i.p.) increased by 5 fold the accumulation of extracellular noradrenaline caused by sibutramine (10 mg kg−1) and reduced the latency of sibutramine to reach its maximum effect from 144–56 min.RX821002-pretreatment increased by only 2.5 fold the increase in extracellular noradrenaline concentration caused by d-amphetamine alone (10 mg kg−1) and had no effect on the latency to reach maximum.These findings support evidence that sibutramine acts as a noradrenaline uptake inhibitor in vivo and that the effects of this drug are blunted by indirect activation of presynaptic α2-adreno-ceptors. In contrast, the rapid increase in extracellular noradrenaline concentration induced by d-amphetamine is consistent with this being mainly due to an increase in Ca2+-independent release of noradrenaline. PMID:10482917

  2. Pesticides in the surface waters of Lake Vistonis Basin, Greece: Occurrence and environmental risk assessment.

    PubMed

    Papadakis, Emmanouil-Nikolaos; Tsaboula, Aggeliki; Kotopoulou, Athina; Kintzikoglou, Katerina; Vryzas, Zisis; Papadopoulou-Mourkidou, Euphemia

    2015-12-01

    A study was undertaken for the evaluation of the pesticide pollution caused by the agricultural activities in the basin of Lake Vistonis, Greece during the years 2010-2012. Water samples were collected from Lake Vistonis, four major rivers and various small streams and agriculture drainage canals. The concentration of 302 compounds was determined after solid-phase extraction of the water samples and subsequent LC-MS/MS and GC-MS/MS analysis of the extracts. Overall, herbicides were the most frequently detected pesticides (57%), followed by insecticides (28%) and fungicides (14%). In Lake Vistonis 11 pesticides were detected. Specifically, fluometuron was detected in the 75% of the samples (maximum concentration 0.088 μg/L) whereas lambda-cyhalothrin was detected in all the samples of spring 2011 and alphamethrin in all the samples of spring 2012 (maximum concentration 0.041 and 0.168 μg/L, respectively). In the rivers and drainage canals 68 pesticides were detected. Specifically, fluometuron was detected in the 53% of the samples (maximum concentration 317.6 μg/L) followed by chlorpyrifos and prometryn (16 and 13% of the samples respectively). An environmental risk assessment was performed by employing the Risk Quotient (RQ) method. The risk assessment revealed that at least one pesticide concentration led to a RQ>1 in 20% of the samples. In Lake Vistonis, alphamethrin and lambda-cyhalothrin concentrations resulted in RQ>1, whereas in the other water bodies this was mainly the result of chlorpyrifos-methyl and alphamethrin exposure. In contrast, herbicide and fungicide concentrations contributed substantially less to environmental risks. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Fibrinogen concentrate as first-line therapy in aortic surgery reduces transfusion requirements in patients with platelet counts over or under 100×109/L

    PubMed Central

    Solomon, Cristina; Rahe-Meyer, Niels

    2015-01-01

    Background Administration of fibrinogen concentrate, targeting improved maximum clot firmness (MCF) of the thromboelastometric fibrin-based clot quality test (FIBTEM) is effective as first-line haemostatic therapy in aortic surgery. We performed a post-hoc analysis of data from a randomised, placebo-controlled trial of fibrinogen concentrate, to investigate whether fibrinogen concentrate reduced transfusion requirements for patients with platelet counts over or under 100×109/L. Material and methods Aortic surgery patients with coagulopathic bleeding after cardiopulmonary bypass were randomised to receive either fibrinogen concentrate (n=29) or placebo (n=32). Platelet count was measured upon removal of the aortic clamp, and coagulation and haematology parameters were measured peri-operatively. Transfusion of allogeneic blood components was recorded and compared between groups. Results After cardiopulmonary bypass, haemostatic and coagulation parameters worsened in all groups; plasma fibrinogen level (determined by the Clauss method) decreased by 43–58%, platelet count by 53–64%, FIBTEM maximum clot firmness (MCF) by 38–49%, FIBTEM maximum clot elasticity (MCE) by 43–54%, extrinsically activated test (EXTEM) MCF by 11–22%, EXTEM MCE by 25–41% and the platelet component of the clot by 23–39%. Treatment with fibrinogen concentrate (mean dose 7–9 g in the 4 groups) significantly reduced post-operative allogeneic blood component transfusion requirements when compared to placebo both for patients with a platelet count ≥100×109/L and for patients with a platelet count <100×109/L. Discussion FIBTEM-guided administration of fibrinogen concentrate reduced transfusion requirements when used as a first-line haemostatic therapy during aortic surgery in patients with platelet counts over or under 100×109/L. PMID:25369608

  4. Tannic acid degradation by Klebsiella strains isolated from goat feces

    PubMed Central

    Tahmourespour, Arezoo; Tabatabaee, Nooroldin; Khalkhali, Hossein; Amini, Imane

    2016-01-01

    Background and Objectives: Tannins are toxic polyphenols that either bind and precipitate or condense proteins. The high tannin content of some plants is the preliminary limitation of using them as a ruminant feed. So, the aim of this study was the isolation and characterization of tannic acid degrading bacterial strains from goat feces before and after feeding on Pistachio-Soft Hulls as tannin rich diet (TRD). Materials and Methods: Bacterial strains capable of utilizing tannic acid as sole carbon and energy source were isolated and characterized from goat feces before and after feeding on TRD. Tannase activity, maximum tolerable concentration and biodegradation potential were assessed. Results: Four tannase positive isolates were identified as Klebsiella pneumoniae. Isolated strains showed the maximum tolerable concentration of 64g/L of tannin. The tannic acid degradation percentage at a concentration of 15.0 g/L reached a maximum of 68% after 24 h incubation, and more than 98% after 72 h incubation. The pH of the medium also decreased along with tannic acid utilization. Conclusions: It is obvious that TRD induced adaptive responses. Thus, while the bacteria were able to degrade and detoxify the tannic acids, they had to adapt in the presence of high concentrations of tannic acid. So, these isolates have an amazing potential for application in bioremediation, waste water treatment, also reduction of tannins antinutritional effects in animal feeds. PMID:27092220

  5. Fluoride contamination in drinking water in rural habitations of Central Rajasthan, India.

    PubMed

    Hussain, Ikbal; Arif, Mohd; Hussain, Jakir

    2012-08-01

    Fluoride concentration in groundwater sources used as major drinking water source in rural area of block Nawa (Nagaur District), Rajasthan was examined and the toxic effects by intake of excess fluoride on rural habitants were studied. In block 13, habitations (30%) were found to have fluoride concentration more than 1.5 mg/l (viz. maximum desirable limit of Indian drinking water standards IS 10500, 1999). In five habitations (11%), fluoride concentration in groundwater is at toxic level (viz. above 3.0 mg/l). The maximum fluoride concentration in the block is 5.91 mg/l from Sirsi village. As per the desirable and maximum permissible limit for fluoride in drinking water, determined by World Health Organization or by Bureau of Indian Standards, the groundwater of about 13 habitations of the studied sites is unfit for drinking purposes. Due to the higher fluoride level in drinking water, several cases of dental and skeletal fluorosis have appeared at alarming rate in this region. There is an instant need to take ameliorative steps in this region to prevent the population from fluorosis. Groundwater sources of block Nawa can be used for drinking after an effective treatment in absence of other safe source. The evaluation of various defluoridation methods on the basis of social and economical structure of India reveals that the clay pot chip, activated alumina adsorption, and Nalgonda techniques are the most promising.

  6. Effects of urine alkalization and activated charcoal on the pharmacokinetics of orally administered carprofen in dogs.

    PubMed

    Raekallio, Marja R; Honkavaara, Juhana M; Säkkinen, Mia S; Peltoniemi, S Marikki

    2007-04-01

    To investigate the effects of oral administration of activated charcoal (AC) and urine alkalinization via oral administration of sodium bicarbonate on the pharmacokinetics of orally administered carprofen in dogs. 6 neutered male Beagles. Each dog underwent 3 experiments (6-week interval between experiments). The dogs received a single dose of carprofen (16 mg/kg) orally at the beginning of each experiment; after 30 minutes, sodium bicarbonate (40 mg/kg, PO), AC solution (2.5 g/kg, PO), or no other treatments were administered. Plasma concentrations of unchanged carprofen were determined via high-performance liquid chromatography at intervals until 48 hours after carprofen administration. Data were analyzed by use of a Student paired t test or Wilcoxon matched-pairs rank test. Compared with the control treatment, administration of AC decreased plasma carprofen concentrations (mean +/- SD maximum concentration was 85.9 +/- 11.9 mg/L and 58.1 +/- 17.6 mg/L, and area under the time-concentration curve was 960 +/- 233 mg/L x h and 373 +/- 133 mg/L x h after control and AC treatment, respectively). The elimination half-life remained constant. Administration of sodium bicarbonate had no effect on plasma drug concentrations. After oral administration of carprofen in dogs, administration of AC effectively decreased maximum plasma carprofen concentration, compared with the control treatment, probably by decreasing carprofen absorption. Results suggest that AC can be used to reduce systemic carprofen absorption in dogs receiving an overdose of carprofen. Oral administration of 1 dose of sodium bicarbonate had no apparent impact on carprofen kinetics in dogs.

  7. Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes

    NASA Astrophysics Data System (ADS)

    Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.

    2015-11-01

    Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.

  8. A physiological basis for variation in the contractile properties of isolated rat heart.

    PubMed Central

    Lin, L E; McClellan, G; Weisberg, A; Winegrad, S

    1991-01-01

    1. The maximum Ca(2+)-activated force, maximum velocity of unloaded shortening and both Ca(2+)- and actin-activated ATPase activities of myosin have been measured in detergent-skinned preparations of isolated bundles of rat right ventricle after exposure of the intact tissue to different conditions of superfusion, mechanical activity and temperature. 2. Maximum Ca(2+)-activated force per unit cross-sectional area decreases with increasing cross-sectional area, and, in the absence of electrical stimulation, with the duration of superfusion. Maximum velocity of unloaded shortening is not influenced by these differences. 3. Actin-activated ATPase activity of myosin decreases as cross-sectional area increases and duration of superfusion increases, but the extent of the decrease in enzymatic activity is less than that of developed force. Ca(2+)-activated ATPase activity is independent of these differences. 4. Actin-activated ATPase activity in cryostatic sections of quickly frozen tissue is not uniform across the transverse section. In thin bundles, it is highest in the centre and lowest at the edge of the section, which correspond, respectively, to the centre and the surface of the tissue bundle. Exposure of the tissue section to 1 microM-cyclic AMP increases the actin-activated ATPase activity of myosin with the largest increase in activity occurring at or near the surface of the bundle. 5. Ca(2+)-activated ATPase activity of myosin is uniform across the transverse section and is not changed by cyclic AMP. 6. Electrical stimulation, elevated Ca2+ concentration in the superfusion medium, or isoprenaline partially or completely reverse the decline in maximum Ca(2+)-activated force produced by prolonged superfusion of the bundle before its skinning. 7. These observations are similar in many ways to those made on frog skeletal muscles by Elzinga, Howarth, Rull, Wilson & Woledge (1989a). An explanation based on the existence of a physiological mechanism for regulating the properties of force generators is proposed. Regulation of the attachment of the cross-bridge to an actin filament may be the basis for the regulatory mechanism. Images Fig. 4 Fig. 7 PMID:1667804

  9. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates.

    PubMed

    Herrera Chalé, Francisco; Ruiz Ruiz, Jorge Carlos; Betancur Ancona, David; Acevedo Fernández, Juan José; Segura Campos, Maira Rubi

    2016-01-01

    Hydrolysates and peptide fractions (PF) obtained from M. pruriens protein concentrates with commercial and digestive enzymatic systems were studied for their hypolipidemic and antithrombotic activities. Hydrolysates obtained with Pepsin-Pancreatin (PP) and their peptide fractions inhibited cholesterol micellar solubility with a maximum value of 1.83% in PP. Wistar rats were used to evaluate the hypolipidemic effect of hydrolysates and PF. The higher reductions of cholesterol and triglyceride levels were exhibited by PP and both peptide fractions <1 kDa obtained from PP and Alcalase®-Flavourzyme® hydrolysate (AF) at a dose of 15 mg kg(-1) of animal weight. PF > 10 kDa from both hydrolysates showed the maximum antithrombotic activity with values of 33.33% for PF > 10 kDa from AF and 31.72% for PF > 10 kDa from PP. The results suggest that M. pruriens bioactive peptides with the hypolipidemic effect and antithrombotic activity might be utilized as nutraceuticals.

  10. 75 FR 28155 - Acephate, Cacodylic acid, Dicamba, Dicloran et al.; Proposed Tolerance Actions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-19

    ... (NAICS code 112). Food manufacturing (NAICS code 311). Pesticide manufacturing (NAICS code 32532). This..., including food service, manufacturing and processing establishments, such as restaurants, cafeterias... concentration shall be limited to a maximum of 1.0 percent active ingredient. Contamination of food or food...

  11. SETTING A GOAL FOR TPH THAT ELIMINATES FREE PRODUCT IN WELLS

    EPA Science Inventory

    The U.S. EPA expects that remedial action at UST sites will reduce free product in monitoring wells to the maximum extent practicable. How much active treatment is necessary to ensure that free product will not accumulate in a monitoring well? The concentration of TPH that will...

  12. Charged anaesthetics alter LM-fibroblast plasma-membrane enzymes by selective fluidization of inner or outer membrane leaflets.

    PubMed Central

    Sweet, W D; Schroeder, F

    1986-01-01

    The functional consequences of the differences in lipid composition and structure between the two leaflets of the plasma membrane were investigated. Fluorescence of 1,6-diphenylhexa-1,3,5-triene(DPH), quenching, and differential polarized phase fluorimetry demonstrated selective fluidization by local anaesthetics of individual leaflets in isolated LM-cell plasma membranes. As measured by decreased limiting anisotropy of DPH fluorescence, cationic (prilocaine) and anionic (phenobarbital and pentobarbital) amphipaths preferentially fluidized the cytofacial and exofacial leaflets respectively. Unlike prilocaine, procaine, also a cation, fluidized both leaflets of these membranes equally. Pentobarbital stimulated 5'-nucleotidase between 0.1 and 5 mM and inhibited at higher concentrations, whereas phenobarbital only inhibited, at higher concentrations. Cationic drugs were ineffective. Two maxima of (Na+ + K+)-ATPase activation were obtained with both anionic drugs. Only one activation maximum was obtained with both cationic drugs. The maximum in activity below 1 mM for all four drugs clustered about a single limiting anisotropy value in the cytofacial leaflet, whereas there was no correlation between activity and limiting anisotropy in the exofacial leaflets. Therefore, although phenobarbital and pentobarbital below 1 mM fluidized the exofacial leaflet more than the cytofacial leaflet, the smaller fluidization in the cytofacial leaflet was functionally significant for (Na+ + K+)-ATPase. Mg2+-ATPase was stimulated at 1 mM-phenobarbital, unaffected by pentobarbital and slightly stimulated by both cationic drugs at concentrations fluidizing both leaflets. Thus the activity of (Na+ + K+)-ATPase was highly sensitive to selective fluidization of the leaflet containing its active site, whereas the other enzymes examined were little affected by fluidization of either leaflet. PMID:3028369

  13. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes.

    PubMed

    Montoro, A; Barquinero, J F; Almonacid, M; Montoro, A; Sebastià, N; Verdú, G; Sahuquillo, V; Serrano, J; Saiz, M; Villaescusa, J I; Soriano, J M

    2011-01-01

    Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL(-1) and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL(-1) of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation.

  14. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes

    PubMed Central

    Montoro, A.; Barquinero, J. F.; Almonacid, M.; Montoro, A.; Sebastià, N.; Verdú, G.; Sahuquillo, V.; Serrano, J.; Saiz, M.; Villaescusa, J. I.; Soriano, J. M.

    2011-01-01

    Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation. PMID:20981159

  15. Effects of hypoxia on dopamine concentration and the immune response of White Shrimp ( Litopenaeus vannamei)

    NASA Astrophysics Data System (ADS)

    Hu, Fawen; Pan, Luqing; Jing, Futao

    2009-03-01

    Effects of hypoxia on the dopamine concentration and the immune response of White Shrimp Litopenaeus vannamei were studied. The results showed that hypoxia had significant effects on the concentration of dopamine (DA) in the haemolymph, haemocyte count, phenoloxidase activity, phagocytic activity of haemocytes and bacteriolytic and antibacterial activity in the haemolymph ( P<0.05). The concentration of the dopamine in haemolymph reached its maximum in the 3.0 and 1.5 mg L-1 DO groups at 12 h and 6 h, and then returned to normal after 24 h and 12 h, respectively. All immune parameters decreased with the reduction of dissolved oxygen. Total haemocyte count (THC), the hyaline cells and semi-granular cells in the 3.0 mg L-1 DO group became stable after 12 h, while granular cells did so after 24 h. The THC and different haemocyte count (DHC) in the 1.5 mg L-1 DO group became stable after 24 h. Phenoloxidase activity and bacteriolytic activity in the 3.0 and 1.5 mg L-1 DO groups reached their stable levels after 24 h and 12 h respectively, while phagocytic activity and antibacterial activity became stable after 24 and 12, and 36 and 24 h, respectively. It was also indicated that the changes of dopamine concentrations in haemolymph, haemocyte count and phenoloxidase activity were obviously related to the exposure time under hypoxic conditions.

  16. First Map of Residential Indoor Radon Measurements in Azerbaijan.

    PubMed

    Hoffmann, M; Aliyev, C S; Feyzullayev, A A; Baghirli, R J; Veliyeva, F F; Pampuri, L; Valsangiacomo, C; Tollefsen, T; Cinelli, G

    2017-06-15

    This article describes results of the first measurements of indoor radon concentrations in Azerbaijan, including description of the methodology and the mathematical and statistical processing of the results obtained. Measured radon concentrations varied considerably: from almost radon-free houses to around 1100 Bq m-3. However, only ~7% of the total number of measurements exceeded the maximum permissible concentrations. Based on these data, maps of the distribution of volumetric activity and elevated indoor radon concentrations in Azerbaijan were created. These maps reflect a mosaic character of distribution of radon and enhanced values that are confined to seismically active areas at the intersection of an active West Caspian fault with sub-latitudinal faults along the Great and Lesser Caucasus and the Talysh mountains. Spatial correlation of radon and temperature behavior is also described. The data gathered on residential indoor radon have been integrated into the European Indoor Radon Map. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Gaseous templates in ant nests.

    PubMed

    Cox, M D; Blanchard, G B

    2000-05-21

    We apply a diffusion model to the atmosphere of ant nests. With particular reference to carbon dioxide (CO2), we explore analytically and numerically the spatial and temporal patterns of brood- or worker-produced gases in nests. The maximum concentration within a typical one-chamber ant nest with approximately 200 ants can reach 12.5 times atmospheric concentration, reaching 95% of equilibrium concentrations within 15 min. Maximum concentration increases with increasing number of ants in the nest (or production rate of the gas), distance between the centre of the nest ants and the nest entrance, entrance length, wall thickness, and with decreasing entrance width, wall permeability and diffusion coefficient. The nest can be divided into three qualitatively distinct regions according to the shape of the gradient: a plateau of high concentration in the back half of the nest; an intermediate region of increasingly steep gradient towards the entrance; and a steep linear gradient in the entrance tunnel. These regions are robust to changes in gas concentrations, but vary with changes in nest architecture. The pattern of diffusing gases contains information about position and orientation relative to gas sources and sinks, and about colony state, including colony size, activity state and aspects of nest architecture. We discuss how this diffusion pattern may act as a "dynamic template", providing local cues which trigger behavioural acts appropriate to colony needs, which in turn may feed back to changes in the gas template. In particular, wall building occurs along lines of similar concentration for a variety of nest geometries; there is surprising convergence between the period of cycles of synchronously active ants and the time taken for CO2 levels to equilibrate; and the qualitatively distinct regions of the "dynamic template" correspond to regions occupied by different groups of ants.

  18. Enzymatic properties of the membrane-bound NADH oxidase system in the aerobic respiratory chain of Bacillus cereus.

    PubMed

    Kim, Man Suk; Kim, Young Jae

    2004-11-30

    Membranes prepared from Bacillus cereus KCTC 3674, grown aerobically on a complex medium, oxidized NADH exclusively, whereas deamino-NADH was little oxidized. The respiratory chain-linked NADH oxidase exhibited an apparent K(m) value of approximately 65 microM for NADH. The maximum activity of the NADH oxidase was obtained at about pH 8.5 in the presence of 0.1 M KCl (or NaCl). Respiratory chain inhibitor 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO) inhibited the activity of the NADH oxidase by about 90% at a concentration of 40 microM. Interestingly, rotenone and capsaicin inhibited the activity of the NADH oxidase by about 60% at a concentration of 40 microM and the activity was also highly sensitive to Ag(+).

  19. Anti-tumour-promoting and thermal-induced protein denaturation inhibitory activities of β-sitosterol and lupeol isolated from Diospyros lotus L.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Khan, Haroon; Raza, Muslim; Zafar, Muhammad; Tokuda, Harukuni

    2016-01-01

    In this study, the anti-tumour-promoting and thermal-induced protein denaturation inhibitory activities of β-sitosterol (1) and lupeol (2), isolated from Diospyros lotus L., were explored. Compound 1 showed a marked concentration-dependent inhibition against 12-O-tetradecanoylphorbol-13-acetate (20 ng/32 pmol)-induced Epstein-Barr virus early antigen activation in Raji cells with IC50 of 270 μg/ml, without significant toxicity (70% viability). Compound 2 showed significant anti-tumour-promoting effect with IC50 of 412 μg/ml, without significant toxicity (60% viability). In heat-induced protein denaturation assay, compound 1 exhibited a concentration-dependent attenuation with a maximum effect of 73.5% at 500 μg/ml with EC50 of 117 μg/ml, while compound 2 exhibited a maximum effect of 59.2% at 500 μg/ml with EC50 of 355 μg/ml. Moreover, in silico docking studies against the phosphoinositide 3-kinase enzyme also show the inhibitory potency of these compounds. In short, both the compounds exhibited a marked anti-tumour-promoting and potent inhibitory effect on thermal-induced protein denaturation.

  20. Vulnerability of Quebec drinking-water treatment plants to cyanotoxins in a climate change context.

    PubMed

    Carrière, Annie; Prévost, Michèle; Zamyadi, Arash; Chevalier, Pierre; Barbeau, Benoit

    2010-09-01

    Cyanobacteria are a growing concern in the province of Quebec due to recent highly publicised bloom episodes. The health risk associated with the consumption of drinking water coming from contaminated sources was unknown. A study was undertaken to evaluate treatment plants' capacity to treat cyanotoxins below the maximum recommended concentrations of 1.5 microg/L microcystin-LR (MC-LR) and the provisional concentration of 3.7 microg/L anatoxin-a, respectively. The results showed that close to 80% of the water treatment plants are presently able to treat the maximum historical concentration measured in Quebec (5.35 microg/L MC-LR equ.). An increase, due to climate change or other factors, would not represent a serious threat because chlorine, the most popular disinfectant, is effective in treating MC-LR under standard disinfection conditions. The highest concentration of anatoxin-a (2.3 microg/L) measured in natural water thus far in source water is below the current guideline for treated waters. However, higher concentrations of anatoxin-a would represent a significant challenge for the water industry as chlorine is not an efficient treatment option. The use of ozone, potassium permanganate or powder activated carbon would have to be considered.

  1. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable, ranging from below the reporting level to concentrations over the Maximum Contaminant Levels for several constituents (arsenic, barium, cadmium, chromium, lead, and selenium). Radionuclide activities also were highly variable. Gross alpha radioactivity ranged from 0.1 to 210 picocuries per liter as 230thorium. Of the wells sampled, 20 percent exceeded the proposed Maximum Contaminant Level of 15 picocuries per liter for gross alpha radioactivity. Organic constituents were detected in 39 percent of the 170 wells sampled for organic constituents; in most cases concentrations were at or near the laboratory minimum reporting levels. Ten of the wells sampled for organic constituents had one or more constituents (chlordane, dieldrin, heptachlor epoxide, trichloroethylene, 1,1-dichloroethylene, 1,1,1-trichloroethane) at concentrations equal to or greater than the Maximum Contaminant Level or acceptable concentrations as suggested in the Environmental Protection Agency's Health Advisory Summaries. Quality-assurance sampling included duplicate samples, repeated samples, blanks, spikes, and blind samples. These samples proved to be essential in evaluating the accuracy of the data, particularly in the case of volatile organic constituents.

  2. Optimization of antibacterial activity by Gold-Thread (Coptidis Rhizoma Franch) against Streptococcus mutans using evolutionary operation-factorial design technique.

    PubMed

    Choi, Ung-Kyu; Kim, Mi-Hyang; Lee, Nan-Hee

    2007-11-01

    This study was conducted to find the optimum extraction condition of Gold-Thread for antibacterial activity against Streptococcus mutans using The evolutionary operation-factorial design technique. Higher antibacterial activity was achieved in a higher extraction temperature (R2 = -0.79) and in a longer extraction time (R2 = -0.71). Antibacterial activity was not affected by differentiation of the ethanol concentration in the extraction solvent (R2 = -0.12). The maximum antibacterial activity of clove against S. mutans determined by the EVOP-factorial technique was obtained at 80 degrees C extraction temperature, 26 h extraction time, and 50% ethanol concentration. The population of S. mutans decreased from 6.110 logCFU/ml in the initial set to 4.125 logCFU/ml in the third set.

  3. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...

  4. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...

  5. 40 CFR Table 2 to Subpart Dddd of... - Operating Requirements

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... THC concentration a in the thermal oxidizer exhaust below the maximum concentration established during... average THC concentration a in the catalytic oxidizer exhaust below the maximum concentration established... the range established according to § 63.2262(m) Maintain the 24-hour block average THC concentration a...

  6. The role of electrostatic interactions in protease surface diffusion and the consequence for interfacial biocatalysis.

    PubMed

    Feller, Bob E; Kellis, James T; Cascão-Pereira, Luis G; Robertson, Channing R; Frank, Curtis W

    2010-12-21

    This study examines the influence of electrostatic interactions on enzyme surface diffusion and the contribution of diffusion to interfacial biocatalysis. Surface diffusion, adsorption, and reaction were investigated on an immobilized bovine serum albumin (BSA) multilayer substrate over a range of solution ionic strength values. Interfacial charge of the enzyme and substrate surface was maintained by performing the measurements at a fixed pH; therefore, electrostatic interactions were manipulated by changing the ionic strength. The interfacial processes were investigated using a combination of techniques: fluorescence recovery after photobleaching, surface plasmon resonance, and surface plasmon fluorescence spectroscopy. We used an enzyme charge ladder with a net charge ranging from -2 to +4 with respect to the parent to systematically probe the contribution of electrostatics in interfacial enzyme biocatalysis on a charged substrate. The correlation between reaction rate and adsorption was determined for each charge variant within the ladder, each of which displayed a maximum rate at an intermediate surface concentration. Both the maximum reaction rate and adsorption value at which this maximum rate occurs increased in magnitude for the more positive variants. In addition, the specific enzyme activity increased as the level of adsorption decreased, and for the lowest adsorption values, the specific enzyme activity was enhanced compared to the trend at higher surface concentrations. At a fixed level of adsorption, the specific enzyme activity increased with positive enzyme charge; however, this effect offers diminishing returns as the enzyme becomes more highly charged. We examined the effect of electrostatic interactions on surface diffusion. As the binding affinity was reduced by increasing the solution ionic strength, thus weakening electrostatic interaction, the rate of surface diffusion increased considerably. The enhancement in specific activity achieved at the lowest adsorption values is explained by the substantial rise in surface diffusion at high ionic strength due to decreased interactions with the surface. Overall, knowledge of the electrostatic interactions can be used to control surface parameters such as surface concentration and surface diffusion, which intimately correlate with surface biocatalysis. We propose that the maximum reaction rate results from a balance between adsorption and surface diffusion. The above finding suggests enzyme engineering and process design strategies for improving interfacial biocatalysis in industrial, pharmaceutical, and food applications.

  7. Radon in the Exhaled Air of Patients in Radon Therapy.

    PubMed

    Lettner, Herbert; Hubmer, Alexander; Hofmann, Werner; Landrichinger, Julia; Gaisberger, Martin; Winkler-Heil, Renate

    2017-11-01

    In the Gastein valley, numerous facilities use radon for the treatment of various diseases either by exposure to radon in air or in radon rich thermal water. In this study, six test persons were exposed to radon thermal water in a bathtub and the time-dependent radon activity concentration in the exhaled air was recorded. At temperatures between 38°C and 40°C, the radon activity concentration in the water was about 900 kBq/m3 in a total volume of 600 l, where the patients were exposed for 20 min, while continuously sampling the exhaled air during the bathing and 20 min thereafter. After entering the bath, the exhaled radon activity concentration rapidly increased, reaching some kind of saturation after 20 min exposure. The radon activity concentration in the exhaled air was about 8000 Bq/m3 at the maximum, with higher concentrations for male test persons. The total radon transfer from water to the exhaled air was between 480 and 1000 Bq, which is equivalent to 0.08% and 0.2% of the radon in the water. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Enhancement of force generated by individual myosin heads in skinned rabbit psoas muscle fibers at low ionic strength.

    PubMed

    Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

    2013-01-01

    Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca(2+)-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca(2+)-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca(2+)-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca(2+) activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca(2+)-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca(2+)-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction.

  9. Power consumption analysis DBD plasma ozone generator

    NASA Astrophysics Data System (ADS)

    Nur, M.; Restiwijaya, M.; Muchlisin, Z.; Susan, I. A.; Arianto, F.; Widyanto, S. A.

    2016-11-01

    Studies on the consumption of energy by an ozone generator with various constructions electrodes of dielectric barrier discharge plasma (DBDP) reactor has been carried out. This research was done to get the configuration of the reactor, that is capable to produce high ozone concentrations with low energy consumption. BDBP reactors were constructed by spiral- cylindrical configuration, plasma ozone was generated by high voltage AC voltage up to 25 kV and maximum frequency of 23 kHz. The reactor consists of an active electrode in the form of a spiral-shaped with variation diameter Dc, and it was made by using copper wire with diameter Dw. In this research, we variated number of loops coil windings N as well as Dc and Dw. Ozone concentrations greater when the wire's diameter Dw and the diameter of the coil windings applied was greater. We found that impedance greater will minimize the concentration of ozone, in contrary to the greater capacitance will increase the concentration of ozone. The ozone concentrations increase with augmenting of power. Maximum power is effective at DBD reactor spiral-cylinder is on the Dc = 20 mm, Dw = 1.2 mm, and the number of coil windings N = 10 loops with the resulting concentration is greater than 20 ppm and it consumes energy of 177.60 watts

  10. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Canakkale), Western Anatolia, Turkey.

    PubMed

    Orgün, Y; Altinsoy, N; Sahin, S Y; Güngör, Y; Gültekin, A H; Karahan, G; Karacik, Z

    2007-06-01

    This paper represents the first reports on the natural and anthropogenic radionuclides in Kestanbol granitic pluton and surrounding rocks, and coastal region of the Ezine town. To assess the radiological hazard of the natural radioactivity, the radium equivalent activity, the absorbed dose rate and the external hazard index were calculated, and in situ gamma dose rates were measured. The high-activity concentrations were measured in the pluton and sands, which was originated mainly from the pluton, due to the presence of zircon, allanite, monazite, thorite, uranothorite and apatite. The average activity concentrations of (238)U, (232)Th and (40)K are 174.78, 204.69 and 1171.95 Bq kg(-1) for pluton, and 290.36, 532.04 and 1160.75 Bq kg(-1) for sands, respectively. (137)Cs in Ezine region ranged from 0-6.57 Bq kg(-1). The average absorbed dose rate for the granitic and sand samples were calculated to be 251.6 and 527.92 nGy h(-1), respectively. The maximum contribution to the total absorbed gamma dose rate in air was due to the (232)Th (52.3% for pluton and 67.1% for sands). The Raeq activities of the pluton and sands are higher than the recommended maximum value of 370 Bq kg(-1) criterion limit of Raeq activity for building materials.

  11. Comparison of the antibacterial activity and synergistic activity towards antibiotics of different mammalian sera.

    PubMed

    Miglioli, P A; Pea, F; Mazzo, M; Berti, T

    1993-02-01

    The antibacterial activity against Escherichia coli ATCC 10798 and Staphylococcus aureus Mag 90 of normal sera from nine species of mammals was investigated by Avantage (Abbott). Human and rat sera showed the highest antibacterial activity against E. coli ATCC 10798, while all investigated sera did not exhibit, till the maximum concentration tested (20%), spontaneous antibacterial activity against S. aureus Mag 90. Heat inactivated sera (56 degrees C for 30 min) of all investigated species lost their antibacterial activity, but maintained their synergistic effect with sub-MICs of some antibacterial drugs, principally against E. coli ATCC 10798.

  12. Effect of mineral phosphates on growth and nitrogen fixation of diazotrophic cyanobacteria Anabaena variabilis and Westiellopsis prolifica.

    PubMed

    Yandigeri, Mahesh S; Yadav, Arvind K; Meena, Kamlesh Kumar; Pabbi, Sunil

    2010-03-01

    The nitrogen fixing cyanobacterial strains namely Anabaena variabilis (Nostocales, Nostocaceae) and Westiellopsis prolifica (Nostocales, Hapalosiphonaceae) were evaluated for their nitrogen fixation and growth potential in response to different concentrations (10, 20 and 30 mg P) of the alternate insoluble P-sources Mussorie Rock Phosphate and Tricalcium Phosphate. Distinct and significant intergeneric differences were observed with respect to nitrogen fixation measured as Acetylene Reduction Activity (ARA) and growth potential as soluble proteins, total carbohydrate content, dry weight and total chlorophyll content in response to different concentrations of Mussorie Rock Phosphate and Tricalcium Phosphate. Both the strains showed higher soluble protein content at 20 mg P (Mussorie Rock Phosphate) that increased with time of incubation in A. variabilis. Both cyanobacteria recorded maximum Acetylene Reduction Activity at 20 mg P (Tricalcium Phosphate) followed by activity in presence of soluble phosphate (K2HPO4). The mean activity at all concentrations of insoluble phosphate (Mussorie Rock Phosphate and Tricalcium Phosphate) was more than in the presence of soluble phosphate.

  13. Glycogen supercompensation in rat soleus muscle during recovery from nonweight bearing

    NASA Technical Reports Server (NTRS)

    Henriksen, Erik J.; Kirby, Christopher R.; Tischler, Marc E.

    1989-01-01

    Events leading to the normalization of the glycogen metabolism in the soleus muscle of rat, altered by 72-h three days of hind-limb suspension, were investigated during the 72-h recovery period when the animals were allowed to bear weight on all four limbs. Relative importance of the factors affecting glycogen metabolism in skeletal muscle during the recovery period was also examined. Glycogen concentration was found to decrease within 15 min and up to 2 h of recovery, while muscle glucose 6-phosphate, and the fractional activities of glycogen phosphorylase and glycogen synthase increased. From 2 to 4 h, when the glycogen synthase activity remained elevated and the phosphorylase activity declined, glycogen concentration increased, until it reached maximum values at about 24 h, after which it started to decrease, reaching control values by 72 h. At 12 and 24 h, the inverse relationship between glycogen concentration and the synthase activity ratio was lost, indicating that the reloading transiently uncoupled glycogen control of this enzyme.

  14. Effect of solvents on the fluorescence spectra of bacterial luciferase

    NASA Astrophysics Data System (ADS)

    Sukovataya, Irina E.; Tyulkova, Natalya A.; Kaykova, Elisaveta V.

    2006-08-01

    Bacteria luciferases catalyze the oxidation reaction of the long-chain aliphatic aldehyde and reduced flavinmononucleotide involving molecular oxygen to a respective fatty acid emitting light quanta in the visible spectrum. Fluorescence emission of luciferases from Photobacterium leiognathi dissolved in organic solvent-water mixtures was investigated. Methanol, acetone, dimethyl sulfoxide and formamide were used as organic solvents. As the methanol and acetone concentration is increased the emission maximum peak is decrease. In contrast, with dimethyl sulfoxide and formamide addition induced a increasing of the emission maximum intensity. The values of wavelength maximum (λ max) at the addition of this solvent can shows the spectra shifted to the red by about 12 nm. These increasing in the fluorescence intensity and in the λ max may be due to luciferase denaturation, resulting from the more intensive contact of chromospheres of luciferase with the solvent. At all used concentrations of methanol, acetone and formamide the shape of the fluorescence spectra was not changed. These studies demonstrate that the luciferase tryptophan fluorescence is sensitive to changes of physical-chemical property of enzyme environment. A comparison of activation/inactivation and fluorescence spectra of luciferase in methanol or acetone solutions shows that the extent of inactivation is larger than the extent of fluorescence changes at the same methanol or acetone concentration.

  15. 40 CFR 75.72 - Determination of NOX mass emissions for common stack and multiple stack configurations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the affected units as the difference between NOX mass emissions measured in the common stack and NOX... emissions using the maximum potential NOX emission rate, the maximum potential flow rate, and either the maximum potential CO2 concentration or the minimum potential O2 concentration (as applicable). The maximum...

  16. Evaluation of adsorption properties of sulphurised activated carbon for the effective and economically viable removal of Zn(II) from aqueous solutions.

    PubMed

    Anoop Krishnan, K; Sreejalekshmi, K G; Vimexen, V; Dev, Vinu V

    2016-02-01

    The prospective application of sulphurised activated carbon (SAC) as an ecofriendly and cost-effective adsorbent for Zinc(II) removal from aqueous phase is evaluated, with an emphasis on kinetic and isotherm aspects. SAC was prepared from sugarcane bagasse pith obtained from local juice shops in Sree Bhadrakali Devi Temple located at Ooruttukala, Neyyattinkara, Trivandrum, India during annual festive seasons. Activated carbon modified with sulphur containing ligands was opted as the adsorbent to leverage on the affinity of Zn(II) for sulphur. We report batch-adsorption experiments for parameter optimisations aiming at maximum removal of Zn(II) from liquid-phase using SAC. Adsorption of Zn(II) onto SAC was maximum at pH 6.5. For initial concentrations of 25 and 100mgL(-1), maximum of 12.3mgg(-1) (98.2%) and 23.7mgg(-1) (94.8%) of Zn(II) was adsorbed onto SAC at pH 6.5. Kinetic and equilibrium data were best described by pseudo-second-order and Langmuir models, respectively. A maximum adsorption capacity of 147mgg(-1) was obtained for the adsorption of Zn(II) onto SAC from aqueous solutions. The reusability of the spent adsorbent was also determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Metabolic states following accumulation of intracellular aggregates: implications for neurodegenerative diseases.

    PubMed

    Vazquez, Alexei

    2013-01-01

    The formation of intracellular aggregates is a common etiology of several neurodegenerative diseases. Mitochondrial defects and oxidative stress has been pointed as the major mechanistic links between the accumulation of intracellular aggregates and cell death. In this work we propose a "metabolic cell death by overcrowding" as an alternative hypothesis. Using a model of neuron metabolism, we predict that as the concentration of protein aggregates increases the neurons transit through three different metabolic phases. The first phase (0-6 mM) corresponds with the normal neuron state, where the neuronal activity is sustained by the oxidative phosphorylation of lactate. The second phase (6-8.6 mM) is characterized by a mixed utilization of lactate and glucose as energy substrates and a switch from ammonia uptake to ammonia release by neurons. In the third phase (8.6-9.3 mM) neurons are predicted to support their energy demands from glycolysis and an alternative pathway for energy generation, involving reactions from serine synthesis, one carbon metabolism and the glycine cleavage system. The model also predicts a decrease in the maximum neuronal capacity for energy generation with increasing the concentration of protein aggregates. Ultimately this maximum capacity becomes zero when the protein aggregates reach a concentration of about 9.3 mM, predicting the cessation of neuronal activity.

  18. Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.

    PubMed

    Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling

    2015-01-01

    The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (<2) was found to be much more favourable for the removal of Cr(VI). Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment.

  19. Effects of the new imidazopyridine CL 86-02-01 on isolated papillary muscle of guinea-pig hearts.

    PubMed

    Studenik, C; Lemmens-Gruber, R; Heistracher, P

    1998-06-01

    Inotropic activity and the effect of CL 86-02-01 (2-(3-methoxy-5-methylsulfinyl-2-thienyl)-1H-imidazo[4,5-c]pyridine hydrochloride, CAS 109 792-24-7) on membrane resting and action potentials were studied in isolated guinea-pig papillary muscles. Membrane resting potential and action potential parameters were not significantly changed, while CL 86-02-01 exerted a concentration-dependent inotropic effect by increasing the maximum rate of force development and maximum rate of force relaxation. Time to peak force, relaxation time and total contraction time were reduced. These effects are similar to those of beta-adrenergic drugs and phosphodiesterase inhibitors, but markedly differ from those described for other positive inotropic agents like cardiac glycosides, calcium agonists, alpha-adrenergic drugs or increased extracellular calcium concentration.

  20. The composition of bulk precipitation on a coastal island with agriculture compared to an urban region

    NASA Astrophysics Data System (ADS)

    Weijers, E. P.; Vugts, H. F.

    Results of chemical analyses of monthly bulk samples from Schiermonnikoog, one of the islands in the northern part of The Netherlands, are interpreted. The continuous record covers a period of more than 15 years. A comparison (10 years) is made with Ouderkerk, a village near Amsterdam. Non-sea salt contributions, relations between ion species, long-time trends, annual cycles and meteorological influence are discussed. The study reveals enhanced levels of ammonium in the Schiermonnikoog samples with respect to Ouderkerk. Also, concentrations of sulfate and nitrate were higher. The high concentrations of ammonium are ascribed to dry-deposited NH 3 caused by cattle breeding, the only economical activity on the island. A significant positive trend reflects its intensifying nature. Annual cycles and statistical computations indicate prior combination of parts of ammonium and excess sulfate as ammonium sulfate. The nitrate content appears to be strongly related to ammonium ( r = 079). In the Ouderkerk dataset this correspondence is much weaker (0.37), whereas its pH values are systematically lower. It is therefore believed that on Schiermonnikoog concentrations of nitrate are increased by nitrification of ammonium in the collector. Annual cycles of sodium, magnesium and chloride, and to a lesser extent potassium, are very similar (maximum concentrations in November, December and January, and a relative maximum in April). The other annual patterns peak in the first half of the year: maximum concentrations are found in February (ammonium, excess sulfate), June (nitrate), January (potassium) and in April (excess calcium). A combination of frequently occurring offshore winds and low precipitation amounts will account for this behavior.

  1. A comparative evaluation of dried activated sludge and mixed dried activated sludge with rice husk silica to remove hydrogen sulfide

    PubMed Central

    2013-01-01

    The aim of this study was to investigate the effectiveness of dried activated sludge (DAS) and mixed dried activated sludge with rice husk silica (DAS & RHS) for removal of hydrogen sulfide (H2S). Two laboratory-scale filter columns (packed one litter) were operated. Both systems were operated under different conditions of two parameters, namely different inlet gas concentrations and different inlet flow rates. The DAS & RHS packed filter showed more than 99.96% removal efficiency (RE) with empty bed residence time (EBRT) of 45 to 90 s and 300 mg/L inlet concentration of H2S. However, the RE decreased to 96.87% with the EBRT of 30 s. In the same condition, the DAS packed filter showed 99.37% RE. Nonetheless, the RE was shown to have dropped to 82.09% with the EBRT of 30 s. The maximum elimination capacity (EC) was obtained in the DAS & RHS packed filter up to 52.32 g/m3h, with the RE of 96.87% and H2S mass loading rate of 54 g/m3h. The maximum EC in the DAS packed filter was obtained up to 44.33 g/m3h with the RE of 82.09% and the H2S mass loading rate of 54 g/m3h. After 53 days of operating time and 54 g/m3h of loading rates, the maximum pressure drop reached to 3.0 and 8.0 (mm H2O) for the DAS & RHS packed and DAS packed filters, respectively. Based on the findings of this study, the DAS & RHS could be considered as a more suitable packing material to remove H2S. PMID:23497048

  2. Multiple night-time doses of valerian (Valeriana officinalis) had minimal effects on CYP3A4 activity and no effect on CYP2D6 activity in healthy volunteers.

    PubMed

    Donovan, Jennifer L; DeVane, C Lindsay; Chavin, Kenneth D; Wang, Jun-Sheng; Gibson, Bryan B; Gefroh, Holly A; Markowitz, John S

    2004-12-01

    Valerian (Valeriana officinalis) is a popular dietary supplement. The objective of this study was to assess the influence of a valerian extract on the activity of the drug-metabolizing enzymes cytochrome P450 2D6 (CYP2D6) and 3A4. Probe drugs dextromethorphan (30 mg; CYP2D6 activity) and alprazolam (2 mg; CYP3A4 activity) were administered orally to healthy volunteers (n = 12) at baseline and again after exposure to two 500-mg valerian tablets (1000 mg) nightly for 14 days. The valerian supplement contained a total valerenic acid content of 5.51 mg/tablet. Dextromethorphan to dextorphan metabolic ratios (DMRs) and alprazolam pharmacokinetics were determined at baseline and after valerian treatment. The DMR was 0.214 +/- 0.025 at baseline and 0.254 +/- 0.026 after valerian supplementation (p > 0.05). For alprazolam, the maximum concentration in plasma was significantly increased after treatment with valerian (25 +/- 7 ng/ml versus 31 +/- 8 ng/ml; p < 0.05). There were no significant differences in other pharmacokinetic parameters at baseline and after valerian exposure (all p values > or = 0.05; time to reach maximum concentration in plasma, 3.0 +/- 3.2 versus 3.1 +/- 2.1 h; area under the plasma concentration versus time curve, 471 +/- 183 versus 539 +/- 240 hx ng x ml(-1); half-life of elimination, 13.5 +/- 4.3 versus 12.2 +/- 5.6 h). Our results indicate that although a modest increase was observed in the alprazolam Cmax, typical doses of valerian are unlikely to produce clinically significant effects on the disposition of medications dependent on the CYP2D6 or CYP3A4 pathways of metabolism.

  3. 40 CFR 62.15330 - What must I include in the initial report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... emissions. (3) The 4-hour block or 24-hour daily arithmetic average concentration of carbon monoxide... specifications in appendix B of 40 CFR part 60 in conducting the evaluation. (e) The maximum demonstrated load of... combustion unit uses activated carbon to control dioxins/furans or mercury emissions, the average carbon feed...

  4. The Effects of Donepezil, an Acetylcholinesterase Inhibitor, on Impaired Learning and Memory in Rodents.

    PubMed

    Shin, Chang Yell; Kim, Hae-Sun; Cha, Kwang-Ho; Won, Dong Han; Lee, Ji-Yun; Jang, Sun Woo; Sohn, Uy Dong

    2018-05-01

    A previous study in humans demonstrated the sustained inhibitory effects of donepezil on acetylcholinesterase (AChE) activity; however, the effective concentration of donepezil in humans and animals is unclear. This study aimed to characterize the effective concentration of donepezil on AChE inhibition and impaired learning and memory in rodents. A pharmacokinetic study of donepezil showed a mean peak plasma concentration of donepezil after oral treatment (3 and 10 mg/kg) of approximately 1.2 ± 0.4 h and 1.4 ± 0.5 h, respectively; absolute bioavailability was calculated as 3.6%. Further, AChE activity was inhibited by increasing plasma concentrations of donepezil, and a maximum inhibition of 31.5 ± 5.7% was observed after donepezil treatment in hairless rats. Plasma AChE activity was negatively correlated with plasma donepezil concentration. The pharmacological effects of donepezil are dependent upon its concentration and AChE activity; therefore, we assessed the effects of donepezil on learning and memory using a Y-maze in mice. Donepezil treatment (3 mg/kg) significantly prevented the progression of scopolamine-induced memory impairment in mice. As the concentration of donepezil in the brain increased, the recovery of spontaneous alternations also improved; maximal improvement was observed at 46.5 ± 3.5 ng/g in the brain. In conclusion, our findings suggest that the AChE inhibitory activity and pharmacological effects of donepezil can be predicted by the concentration of donepezil. Further, 46.5 ± 3.5 ng/g donepezil is an efficacious target concentration in the brain for treating learning and memory impairment in rodents.

  5. Phenylpropanoid Metabolism in Suspension Cultures of Vanilla planifolia Andr. 1

    PubMed Central

    Funk, Christoph; Brodelius, Peter E.

    1992-01-01

    Kinetin is used as an elicitor to induce vanillic acid formation in cell suspension cultures of Vanilla planifolia. Maximal induction is observed at a kinetin concentration of 20 micrograms per gram of fresh weight of cells. Vanillic acid synthesis is observed a few hours after elicitation. The effects of kinetin on the activity of some enzymes of the phenylpropanoid pathway, i.e. phenylalanine ammonia-lyase, 4-hydroxycinnamate:coenzyme A ligase and uridine 5′-diphosphate-glucose:trans-cinnamic acid glucosyltransferase, are reported and compared to the effects of chitosan. The former two enzymes are induced by chitosan with a maximum activity of approximately 25 to 40 hours after elicitation. All three enzymes are induced by kinetin with maximum activities for phenylalanine ammonia lyase and 4-hydroxycinnamate:coenzyme A ligase at approximately 50 hours after induction, whereas maximum glucosyltransferase activity is seen already after 24 hours. Furthermore, both elicitors induced the formation of lignin-like material, whereas only kinetin induced vanillic acid biosynthesis. Finally, kinetin but not chitosan induces catechol-4-O-methyltransferase activity, catalyzing the formation of 4-methoxycinnamic acids, which were shown to be intermediates of hydroxybenzoic acid biosynthesis within cells of V. planifolia. It is suggested that this methyltransferase is directly involved in the biosynthesis of vanillic acid. PMID:16668858

  6. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China

    PubMed Central

    2010-01-01

    The spatio-temporal variations of soil gas in the seismic fault zone produced by the 12 May 2008 Wenchuan Ms 8.0 earthquake were investigated based on the field measurements of soil gas concentrations after the main shock. Concentrations of He, H2, CO2, CH4, O2, N2, Rn, and Hg in soil gas were measured in the field at eight short profiles across the seismic rupture zone in June and December 2008 and July 2009. Soil-gas concentrations of more than 800 sampling sites were obtained. The data showed that the magnitudes of the He and H2 anomalies of three surveys declined significantly with decreasing strength of the aftershocks with time. The maximum concentrations of He and H2 (40 and 279.4 ppm, respectively) were found in three replicates at the south part of the rupture zone close to the epicenter. The spatio-temporal variations of CO2, Rn, and Hg concentrations differed obviously between the north and south parts of the fault zone. The maximum He and H2 concentrations in Jun 2008 occurred near the parts of the rupture zone where vertical displacements were larger. The anomalies of He, H2, CO2, Rn, and Hg concentrations could be related to the variation in the regional stress field and the aftershock activity. PMID:21134257

  7. Nanopriming with zero valent iron (nZVI) enhances germination and growth in aromatic rice cultivar (Oryza sativa cv. Gobindabhog L.).

    PubMed

    Guha, Titir; Ravikumar, K V G; Mukherjee, Amitava; Mukherjee, Anita; Kundu, Rita

    2018-04-12

    Engineered nanoparticles are utilized in agriculture for various purposes. They can be used as fertilizer, carrier for macro/micro nutrients or priming agents. Various nanoparticles are reported to have toxicity at very high doses, but at optimum concentration, they can be beneficial for plant growth and development. In the present study, low concentrations of nZVI nanoparticles were evaluated for their growth enhancement potential as seed priming agent in an aromatic rice cultivar, Oryza sativa cv. Gobindabhog. Seeds were primed with different concentrations (10, 20, 40, 80, 160 mg L -1 ) of nZVI and allowed to grow for 14 days. Seed germination and seedling growth were studied by assessing physiological, biochemical, and structural parameters at different time points. Maximum activities of hydrolytic and antioxidant enzymes, along with root dehydrogenase enzyme were observed in 20 mg L -1 nZVI primed seeds. Priming with low doses of nZVI increased seedling vigour, as expressed by increased root and shoot length, biomass and photosynthetic pigment content. Our study also confirmed that after 14 days growth, the seedling showed absence of membrane damage, reduction in proline level and anti-oxidant enzyme activities. However, seedlings primed with 160 mg L -1 nZVI suffered oxidative stress. SEM micrographs also revealed damage in root tissue at that concentration. AAS study confirmed uptake of nZVI by the rice plants as maximum level of iron was found in the plants treated with highest concentration (i.e. 160 mg L -1 nZVI). Thus, nZVI at low concentrations can be considered as priming agent of rice seeds for increasing plant vigour. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  8. Trade-off between synergy and efficacy in combinations of HIV-1 latency-reversing agents.

    PubMed

    Gupta, Vipul; Dixit, Narendra M

    2018-02-01

    Eradicating HIV-1 infection is difficult because of the reservoir of latently infected cells that gets established soon after infection, remains hidden from antiretroviral drugs and host immune responses, and retains the capacity to reignite infection following the cessation of treatment. Drugs called latency-reversing agents (LRAs) are being developed to reactivate latently infected cells and render them susceptible to viral cytopathicity or immune killing. Whereas individual LRAs have failed to induce adequate reactivation, pairs of LRAs have been identified recently that act synergistically and hugely increase reactivation levels compared to individual LRAs. The maximum synergy achievable with LRA pairs is of clinical importance, as it would allow latency-reversal with minimal drug exposure. Here, we employed stochastic simulations of HIV-1 transcription and translation in latently infected cells to estimate this maximum synergy. We incorporated the predominant mechanisms of action of the two most promising classes of LRAs, namely, protein kinase C agonists and histone deacetylase inhibitors, and quantified the activity of individual LRAs in the two classes by mapping our simulations to corresponding in vitro experiments. Without any adjustable parameters, our simulations then quantitatively captured experimental observations of latency-reversal when the LRAs were used in pairs. Performing simulations representing a wide range of drug concentrations, we estimated the maximum synergy achievable with these LRA pairs. Importantly, we found with all the LRA pairs we considered that concentrations yielding the maximum synergy did not yield the maximum latency-reversal. Increasing concentrations to increase latency-reversal compromised synergy, unravelling a trade-off between synergy and efficacy in LRA combinations. The maximum synergy realizable with LRA pairs would thus be restricted by the desired level of latency-reversal, a constrained optimum we elucidated with our simulations. We expect this trade-off to be important in defining optimal LRA combinations that would maximize synergy while ensuring adequate latency-reversal.

  9. Energetic costs of pyrene metabolism in isolated hepatocytes of rainbow trout, Oncorhynchus mykiss.

    PubMed

    Bains, Onkar S; Kennedy, Christopher J

    2004-04-28

    The respiratory costs of pyrene exposure and biotransformation were examined in isolated hepatocytes of adult rainbow trout, Oncorhynchus mykiss. Baseline oxygen consumption rates measured at an acclimation temperature of 7.5 degrees C and during an acute temperature increase to 15 degrees C were 10.1 +/- 0.1 and 22.6 +/- 0.4 ng O(2)/min/mg cells, respectively. Hepatocytes exposed to pyrene at 1, 5 and 10 microg/ml exhibited concentration-dependent increases in oxygen consumption. Respiration rates of cells exposed to these concentrations at their acclimation temperature were 12.5 +/- 0.1, 14.7 +/- 0.1 and 17.1 +/- 0.2 ng O(2)/min/mg cells, respectively. Exposure of cells to pyrene at 15 degrees C also elevated oxygen consumption to a maximum of 34.4 +/- 0.3 ng O(2)/min/mg cells, however, the relationship with pyrene concentration was biphasic. The major metabolite identified through a series of solvent extractions, acid hydrolysis, and synchronous fluorometric spectroscopy was conjugated 1-hydroxypyrene. At 7.5 degrees C, increased pyrene metabolism correlated with increased hepatocyte respiration rates. At 15 degrees C, however, pyrene metabolism reached a maximum at 5 microg/ml, suggesting saturation of detoxification enzymes, which correlated with maximum respiration rates at this concentration. Measures of respiration by isolated mitochondria indicated that changes in hepatocyte oxygen consumption were not through direct effects of pyrene on mitochondria. This study indicates that significant respiratory costs may be accrued by teleost hepatocytes actively metabolizing and secreting xenobiotic compounds.

  10. Hypochlorhydria and hypergastrinaemia in rheumatoid arthritis.

    PubMed Central

    de Witte, T J; Geerdink, P J; Lamers, C B; Boerbooms, A M; van der Korst, J K

    1979-01-01

    In order to evaluate the incidence and aetiology of hypergastrinaemia 53 patients with seropositive rheumatoid arthritis were examined for gastric acid secretion, fasting serum gastrin concentration, circulating parietal cell antibodies, and some parameters of the activity of inflammation of rheumatoid arthritis. The basal and maximum acid output was found to be subnormal in this group (P less than 0.01), and in 11 of these patients (23%) the fasting serum gastrin levels were raised (P less than 0.05). This hypergastrinaemia correlated strongly with maximum acid output. Only in cases of achlorhydria or hypochlorhydria (maximum acid output less than 2 mmol/l) was the serum gastrin level markedly raised. Two out of 5 patients with achlorhydria were found to have circulating parietal cell antibodies, and 1 had decreased absorption of vitamin B12. No relationship was found between serum gastrin and duration or activity of rheumatoid arthritis; nor was there a relationship between basal serum gastrin and the various antirheumatic drugs administered. PMID:434940

  11. Antibacterial Activity of Mother Tinctures of Cholistan Desert Plants in Pakistan

    PubMed Central

    Ahmad, M.; Ghafoor, Nazia; Aamir, M. N.

    2012-01-01

    The mother tinctures of desert were screened for antibacterial activity against bacterial strains of Gram-positive and Gram-negative bacteria. Mother tinctures were prepared by maceration process and antibacterial activity of different plants was evaluated and compared by measuring their zones of inhibition. The results indicated that Boerrhavia diffusa mother tincture had excellent activity only against Escherichia coli. Mother tincture of Chorozophora plicata showed highly effective results against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa whereas Echinops echinatus mother tincture showed highly effectiveness only against Salmonella typhi. Heliotropium europaeum mother tincture exhibited highly effective results against Bacillus subtilis in all concentrations. Tamrix aphylla presented maximum activity only against Bacillus subtilis in all three concentrations. Among the selected species Heliotropium europaeum, Chorozophora plicata and Tamrix aphylla were more effective plants against many microorganisms. However, Boerrhavia diffusa and Echinops echinatus were less effective plants against tested pathogenic bacteria. PMID:23716878

  12. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection

    PubMed Central

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-01-01

    Objective To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. Methods The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. Results All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. Conclusions The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp. PMID:23998016

  13. Antibacterial and antioxidant activities of Musa sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection.

    PubMed

    Karuppiah, Ponmurugan; Mustaffa, Muhammed

    2013-09-01

    To investigate different Musa sp. leave extracts of hexane, ethyl acetate and methanol were evaluated for antibacterial activity against multi-drug resistant pathogens causing nosocomial infection by agar well diffusion method and also antioxidant activities. The four different Musa species leaves were extracted with hexane, ethyl acetate and methanol. Antibacterial susceptibility test, minimum inhibitory concentration and minimum inhibitory bacterial concentration were determined by agar well diffusion method. Total phenolic content and in vitro antioxidant activity was determined. All the Musa sp. extracts showed moderate antibacterial activities expect Musa paradisiaca with the inhibition zone ranging from 8.0 to 18.6 mm. Among four species ethyl acetate extracts of Musa paradisiaca showed highest activity against tested pathogens particularly E. coli, P. aeruginosa and Citrobacter sp. The minimum inhibitory concentrations were within the value of 15.63- 250 µg/mL and minimum bactericidal concentrations were ranging from 31.25- 250 µg/mL. Antioxidant activity of Musa acuminate exhibited maximum activity among other three Musa species. The present study concluded that among the different Musa species, Musa paradisiaca displayed efficient antibacterial activity followed by Musa acuminata against multi-drug resistant nosocomial infection causing pathogens. Further, an extensive study is needed to identify the bioactive compounds, mode of action and toxic effect in vivo of Musa sp.

  14. High titer oncolytic measles virus production process by integration of dielectric spectroscopy as online monitoring system.

    PubMed

    Grein, Tanja A; Loewe, Daniel; Dieken, Hauke; Salzig, Denise; Weidner, Tobias; Czermak, Peter

    2018-05-01

    Oncolytic viruses offer new hope to millions of patients with incurable cancer. One promising class of oncolytic viruses is Measles virus, but its broad administration to cancer patients is currently hampered by the inability to produce the large amounts of virus needed for treatment (10 10 -10 12 virus particles per dose). Measles virus is unstable, leading to very low virus titers during production. The time of infection and time of harvest are therefore critical parameters in a Measles virus production process, and their optimization requires an accurate online monitoring system. We integrated a probe based on dielectric spectroscopy (DS) into a stirred tank reactor to characterize the Measles virus production process in adherent growing Vero cells. We found that DS could be used to monitor cell adhesion on the microcarrier and that the optimal virus harvest time correlated with the global maximum permittivity signal. In 16 independent bioreactor runs, the maximum Measles virus titer was achieved approximately 40 hr after the permittivity maximum. Compared to an uncontrolled Measles virus production process, the integration of DS increased the maximum virus concentration by more than three orders of magnitude. This was sufficient to achieve an active Measles virus concentration of > 10 10 TCID 50 ml -1 . © 2017 Wiley Periodicals, Inc.

  15. Inner filter effect and the onset of concentration dependent red shift of synchronous fluorescence spectra.

    PubMed

    Tarai, Madhumita; Mishra, Ashok Kumar

    2016-10-12

    The phenomenon of concentration dependent red shift, often observed in synchronous fluorescence spectra (SFS) of monofluorophoric as well as multifluorophoric systems at high chromophore concentrations, is known to have good analytical advantages. This was previously understood in terms of large inner filter effect (IFE) through the introduction of a derived absorption spectral profile that closely corresponds to the SFS profile. Using representative monofluorophoric and multifluorophoric systems, it is now explained how the SF spectral maximum changes with concentration of the fluorophore. For dilute solutions of monofluorophores the maximum is unchanged as expected. It is shown here that the onset of red shift of SFS maximum of both the mono as well as the multifluorophoric systems must occur at the derived absorption spectral parameter value of 0.32 that corresponds to the absorbance value of 0.87. This value is unique irrespective of the nature of the fluorophore under study. For monofluorophoric systems, the wavelength of derived absorption spectral maximum and the wavelength of synchronous fluorescence spectral maximum closely correspond with each other in the entire concentration range. In contrast, for multifluorophoric systems like diesel and aqueous humic acid, large deviations were noted that could be explained as to be due to the presence of non-fluorescing chromophores in the system. This work bridges the entire fluorophore concentration range over which the red shift of SFS maximum sets in; and in the process it establishes the importance of the derived absorption spectral parameter in understanding the phenomenon of concentration dependent red shift of SFS maximum. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity.

    PubMed

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products.

  17. Halophilic Bacteria of Lunsu Produce an Array of Industrially Important Enzymes with Salt Tolerant Activity

    PubMed Central

    Gupta, Sonika; Sharma, Parul; Dev, Kamal; Sourirajan, Anuradha

    2016-01-01

    The halophilic bacterial isolates SS1, SS2, SS3, SS5, and SS8 were characterized for production of industrially important enzymes like amylase, protease, lipase, and glutaminase. Halophilic bacterial isolates SS1 and SS3 exhibited salt dependent extracellular amylase and protease activities. Both the halophilic isolates SS1 and SS3 exhibited maximum amylase and protease activities in the presence of 1.5 and 1.0 M NaCl, respectively, with the optimum pH 8 and temperature 40°C. SS2 showed maximum extracellular protease and lipase activities in the presence of 0.75 M NaCl, at optimum pH of 7, and temperature 37°C. The glutaminase activity of SS3 increased with increase in concentration of NaCl up to 2.5 M. The optimum pH and temperature for L-glutaminase activity of SS3 was 8 and 40°C, respectively. The combined hydrolytic activities of these halophilic bacterial isolates can be used for bioconversion of organic materials to useful products. PMID:26885394

  18. Effect of soya lecithin on the enzymatic system of the white-rot fungi Anthracophyllum discolor.

    PubMed

    Bustamante, M; González, M E; Cartes, A; Diez, M C

    2011-01-01

    The present work optimized the initial pH of the medium and the incubation temperature for ligninolytic enzymes produced by the white-rot fungus Anthracophyllum discolor. Additionally, the effect of soya lecithin on mycelial growth and the production of ligninolytic enzymes in static batch cultures were evaluated. The critical micelle concentration of soya lecithin was also studied by conductivity. The effects of the initial pH (3, 4, and 5) and incubation temperature (20, 25, and 30°C) on different enzymatic activities revealed that the optimum conditions to maximize ligninolytic activity were 26°C and pH 5.5 for laccase and manganese peroxidase (MnP) and 30°C and pH 5.5 for manganese-independent peroxidase (MiP). Under these culture conditions, the maximum enzyme production was 10.16, 484.46, and 112.50 U L(-1) for laccase, MnP, and manganese-independent peroxidase MiP, respectively. During the study of the effect of soya lecithin on A. discolor, we found that the increase in soya lecithin concentration from 0 to 10 g L(-1) caused an increase in mycelial growth. On the other hand, in the presence of soya lecithin, A. discolor produced mainly MnP, which reached a maximum concentration of 30.64 ± 4.61 U L(-1) after 25 days of incubation with 1 g L(-1) of the surfactant. The other enzymes were produced but to a lesser extent. The enzymatic activity of A. discolor was decreased when Tween 80 was used as a surfactant. The critical micelle concentration of soya lecithin calculated in our study was 0.61 g L(-1).

  19. Distribution and Rate of Methane Oxidation in Sediments of the Florida Everglades †

    PubMed Central

    King, Gary M.; Roslev, Peter; Skovgaard, Henrik

    1990-01-01

    Rates of methane emission from intact cores were measured during anoxic dark and oxic light and dark incubations. Rates of methane oxidation were calculated on the basis of oxic incubations by using the anoxic emissions as an estimate of the maximum potential flux. This technique indicated that methane oxidation consumed up to 91% of the maximum potential flux in peat sediments but that oxidation was negligible in marl sediments. Oxygen microprofiles determined for intact cores were comparable to profiles measured in situ. Thus, the laboratory incubations appeared to provide a reasonable approximation of in situ activities. This was further supported by the agreement between measured methane fluxes and fluxes predicted on the basis of methane profiles determined by in situ sampling of pore water. Methane emissions from peat sediments, oxygen concentrations and penetration depths, and methane concentration profiles were all sensitive to light-dark shifts as determined by a combination of field and laboratory analyses. Methane emissions were lower and oxygen concentrations and penetration depths were higher under illuminated than under dark conditions; the profiles of methane concentration changed in correspondence to the changes in oxygen profiles, but the estimated flux of methane into the oxic zone changed negligibly. Sediment-free, root-associated methane oxidation showed a pattern similar to that for methane oxidation in the core analyses: no oxidation was detected for roots growing in marl sediment, even for roots of Cladium jamaicense, which had the highest activity for samples from peat sediments. The magnitude of the root-associated oxidation rates indicated that belowground plant surfaces may not markedly increase the total capacity for methane consumption. However, the data collectively support the notion that the distribution and activity of methane oxidation have a major impact on the magnitude of atmospheric fluxes from the Everglades. PMID:16348299

  20. Degradation of metaldehyde in water by nanoparticle catalysts and powdered activated carbon.

    PubMed

    Li, Zhuojun; Kim, Jong Kyu; Chaudhari, Vrushali; Mayadevi, Suseeladevi; Campos, Luiza C

    2017-07-01

    Metaldehyde, an organic pesticide widely used in the UK, has been detected in drinking water in the UK with a low concentration (<1 μg L -1 ) which is still above the European and UK standard requirements. This paper investigates the efficiency of four materials: powdered activated carbon (PAC) and carbon-doped titanium dioxide nanocatalyst with different concentrations of carbon (C-1.5, C-40, and C-80) for metaldehyde removal from aqueous solutions by adsorption and oxidation via photocatalysis. PAC was found to be the most effective material which showed almost over 90% removal. Adsorption data were well fitted to the Langmuir isotherm model, giving a q m (maximum/saturation adsorption capacity) value of 32.258 mg g -1 and a K L (Langmuir constant) value of 2.013 L mg -1 . In terms of kinetic study, adsorption of metaldehyde by PAC fitted well with a pseudo-second-order equation, giving the adsorption rate constant k 2 value of 0.023 g mg -1  min -1 , implying rapid adsorption. The nanocatalysts were much less effective in oxidising metaldehyde than PAC with the same metaldehyde concentration and 0.2 g L -1 loading concentration of materials under UV light; the maximum removal achieved by carbon-doped titanium dioxide (C-1.5) nanocatalyst was around 15% for a 7.5 ppm metaldehyde solution. Graphical abstract ᅟ.

  1. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate concentrations ranged from less than 0.05 to 33 mg/L as nitrogen in shallow ground water. Water from about 17 percent of the well samples exceeded the maximum contaminant level of 10 mg/L as nitrogen for nitrite plus nitrate. Trace-element concentrations in shallow ground water generally were small (1 to 10 micrograms per liter). The proposed maximum contaminant level of 20 micrograms per liter for uranium was exceeded in about 13 percent of the samples. The secondary maximum contaminant level of 300 micrograms per liter for iron was exceeded in about 17 percent of the samples and of 50 micrograms per liter for manganese was exceeded in about 83 percent of the samples. Samples from about 23 percent of the wells exceeded the maximum contaminant level of 15 picocuries per liter for gross alpha activity. One or more pesticides were detected in water from 12 of 30 wells sampled. The pesticides or pesticide metabolites diazinon, metolachlor, napropamide, p,p'-DDE, and prometon were detected in one or more samples. Metolachlor and prometon were the most commonly detected pesticides. Health advisories for the pesticides detected in shallow ground water (no maximum contaminant levels have been established for the pesticides detected) are 10 to 300 times larger than the concentrations detected. Infiltration, evaporation, and transpiration of irrigation water are important factors affecting the concentrations of common constituents in shallow ground water in the Rincon Valley. Dissolution and precipitation of minerals and mixing of shallow ground water and inflow of ground water from adjacent areas also affect the composition of shallow ground water and water in the drains. Relatively large nitrite plus nitrate concentrations in several shallow ground-water samples indicate leaching of fertilizers in some areas of th

  2. Removal of zinc (II) ion from aqueous solution by adsorption onto activated palm midrib bio-sorbent

    NASA Astrophysics Data System (ADS)

    Mulana, F.; Mariana; Muslim, A.; Mohibah, M.; Halim, K. H. Ku

    2018-03-01

    In this paper, palm midrib that was activated with mixed citric acid and tartaric acid as biosorbent was used to remove Zn (II) ion from aqueous solution. The aim of this research is to activate palm midrib by using a mixed citric acid and tartaric acid and to determine adsorption capacity of activated palm midrib biosorbent on Zn (II) ion uptake from aqueous solution. The effect of several parameters such as contact time, initial Zn (II) ion concentration and activator concentration on the degree of Zn (II) ion removal was examined. Atomic Absorption Spectroscopy method was performed to determine adsorbed amount of Zn (II) ion into activated biosorbent. The result showed that the adsorption process was relatively not so fast and equilibrium was reached after contact time of 120 min. The adsorption capacity of biosorbent reached a maximum when the concentration of mixed citric acid and tartaric acid was 1.6 M. The optimum adsorption capacity was 5.72 mg/g. The result was obtained on initial Zn (II) ion concentration of 80 ppm for 120-min contact time. Langmuir isotherm was found as the best fit for the equilibrium data indicating homogeneous adsorption of metal ions onto the biosorbent surface.

  3. A novel dioxygenation product of arachidonic acid possesses potent chemotactic activity for human polymorphonuclear leukocytes.

    PubMed

    Shak, S; Perez, H D; Goldstein, I M

    1983-12-25

    We have found that a novel dioxygenation product of arachidonic acid, 8(S),15(S)-dihydroxy-5,11-cis-9,13-trans-eicosatetraenoic acid (8,15-diHETE), possesses chemotactic activity for human polymorphonuclear leukocytes comparable to that of leukotriene B4. Authentic 8,15-diHETE, identified by gas chromatography-mass spectrometry, was prepared by treating arachidonic acid with soybean lipoxygenase and was purified by reverse-phase high performance liquid chromatography. Using a "leading front" assay, 8,15-diHETE exhibited significant chemotactic activity at a concentration of 5.0 ng/ml. Maximum chemotactic activity was observed at a concentration of 30 ng/ml. The 8,15-diHETE generated by mixed human leukocytes after stimulation with arachidonic acid and the calcium ionophore, A23187, exhibited quantitatively similar chemotactic activity. Two synthetic all-trans conjugated isomers of 8,15-diHETE, however, were not chemotactic at concentrations up to 500 ng/ml. In contrast to its potent chemotactic activity, 8,15-diHETE (at concentrations up to 10 micrograms/ml) was relatively inactive with respect to its ability to provoke either degranulation or generation of superoxide anion radicals by cytochalasin B-treated leukocytes. Both leukotriene B4 and 8,15-diHETE may be important mediators of inflammation.

  4. Annual INTEC Groundwater Monitoring Report for Group 5 - Snake River Plain Aquifer (2001)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roddy, Michael Scott

    2002-02-01

    This report describes the monitoring activities conducted and presents the results of groundwater sampling and water-level measurements from October 2000 to September 2001. Groundwater samples were initially collected from 41 wells from the Idaho Nuclear Technology and Engineering Center and the Central Facilities Area and analyzed for iodine-129, strontium-90, tritium, gross alpha, gross beta, technetium-99, uranium isotopes, plutonium isotopes, neptunium-237, americium-241, gamma spectrometry, and mercury. Samples from 41 wells were collected in April and May 2001. Additional sampling was conducted in August 2001 and included the two CFA production wells, the CFA point of compliance for the production wells, onemore » well that was previously sampled and five additional monitoring wells. Iodine-129 and strontium-90 were the only analytes above their respective maximum contaminant levels. Iodine-129 was detected just above its maximum contaminant level of 1 pCi/L at two of the Central Facilities Area landfill wells. Iodine-129 was detected in the CFA production wells at 0.35±0.083 pCi/L in CFA-1, but was below detectable activity in CFA-2. Strontium-90 was above its maximum contaminant level of 8 pCi/L in several wells near the Idaho Nuclear Technology and Engineering Center but was below its maximum contaminant level in the downgradient wells at the Central Facilities Area landfills. Sr-90 was not detected in the CFA production wells. Gross beta results generally mirrored the results for strontium-90 and technetium-99. Plutonium isotopes and neptunium-237 were not detected. Uranium-233/234 and uranium-238 isotopes were detected in all samples. Concentrations of background and site wells were similar and are within background limits for total uranium determined by the USGS, suggesting that the concentrations are background. Uranium-235/236 was detected in 11 samples, but all the detected concentrations were similar and near the minimum detectable activity. Americium-241 was detected at three locations near the minimum detectable activity of approximately 0.07 pCi/L. The gamma spectrometry results detected cesium-137 in three samples, potassium-40 at eight locations, and radium-226 at one location. Mercury was below its maximum contaminant level of 2 µg/L in all samples. Gamma spectrometry results for the CFA production wells did not detect any analytes. Water-level measurements were taken from wells in the Idaho Nuclear Technology and Engineering Center, Central Facilities Area, and the area south of Central Facilities Area to evaluate groundwater flow directions. Water-level measurements indicated groundwater flow to the south-southwest from the Idaho Nuclear Technology and Engineering Center.« less

  5. Insecticidal compounds from Rhizophoraceae mangrove plants for the management of dengue vector Aedes aegypti.

    PubMed

    Ali, M Syed; Ravikumar, S; Beula, J Margaret; Anuradha, V; Yogananth, N

    2014-06-01

    Mosquito control is facing a threat due to the emergence of resistance to synthetic insecticides. Insecticides of botanical origin could serve as potential alternatives in future. Larvicidal efficacies of different parts of mangrove plants belonging to Rhizophoraceae family were tested against the late IV instar larvae of dengue vector, Aedes aegypti. Different plant parts (leaf, bark, root, stilt root, hypocotyl and flower) of Rhizophoraceae family mangrove plants (Bruguiera cylindrica, Ceriops decandra, Rhizophora mucronata and R. apiculata) were collected from Karangadu southeast coast of India. The larval mortality was observed after 24 h exposure. Repellency bioassays were carried out in a 10 Χ 10 Χ 3 m room at 27- 35°C and 60- 80% RH. The bark (A3 and E1) and stilt root (A3 and E4) fractions of R. mucronata with different concentrations (0.25, 0.50, 0.75, 1, 2 and 4 mg/cm) were applied on one arm. The stilt root crude extract of R. mucronata showed maximum larvicidal activity (LC50 value 0.0275 ± 0.0066 μg/ml and LC90 = 0.0695 ± 0.156 μg/ml) followed by the bark extract (LC50 value of 0.03 ± 0.0076 μg/ml and LC90 = 0.0915 ± 0.156 μg/ml). Column chromatographic fractions of R. mucronata bark extracts (E1) showed maximum larvicidal activity (LC50 = 0.0496 ± 0.0085 μg/ml and LC90 = 0.1264 ± 0.052 μg/ml) followed by the acetone extract (LC50 = 0.0564 ± 0.0069 μg/ml and LC90 = 0.1187 ± 0.05 μg/ml). Ethanolic fraction (E4) of R. mucronata stilt root extracts showed maximum larvicidal activity (LC50 = 0.0484 ± 0.0078 μg/ml and LC90 = 0.1191 ± 0.025 μg/ml) followed by acetone fraction (A3) (LC50 = 0.0419 ± 0.0059 μg/ml and LC90 = 0.0955 ± 0.069 μg/ml). Repellent activity of R. mucronata stilt root and bark extracts (A3) showed maximum percentage of protection (97.5%) with 9.1 h protection time at 4 mg concentration of the stilt root extract. Moreover, ethanolic fraction of the stilt root (E4) extract showed maximum percentage of protection (100%) with 10 h protection time at 4 mg concentration. GC-MS analysis revealed that R. mucronata possesses variety of biopesticidal compounds. The results as well as the significance of this preliminary investigation highlight the importance of R. mucronata as a novel source for natural insecticidal products.

  6. Doses of external exposure in Jordan house due to gamma-emitting natural radionuclides in building materials.

    PubMed

    Al-Jundi, J; Ulanovsky, A; Pröhl, G

    2009-10-01

    The use of building materials containing naturally occurring radionuclides as (40)K, (232)Th, and (238)U and their progeny results in external exposures of the residents of such buildings. In the present study, indoor dose rates for a typical Jordan concrete room are calculated using Monte Carlo method. Uniform chemical composition of the walls, floor and ceiling as well as uniform mass concentrations of the radionuclides in walls, floor and ceiling are assumed. Using activity concentrations of natural radionuclides typical for the Jordan houses and assuming them to be in secular equilibrium with their progeny, the maximum annual effective doses are estimated to be 0.16, 0.12 and 0.22 mSv a(-1) for (40)K, (232)Th- and (238)U-series, respectively. In a total, the maximum annual effective indoor dose due to external gamma-radiation is 0.50 mSv a(-1). Additionally, organ dose coefficients are calculated for all organs considered in ICRP Publication 74. Breast, skin and eye lenses have the maximum equivalent dose rate values due to indoor exposures caused by the natural radionuclides, while equivalent dose rates for uterus, colon (LLI) and small intestine are found to be the smallest. More specifically, organ dose rates (nSv a(-1)per Bq kg(-1)) vary from 0.044 to 0.060 for (40)K, from 0.44 to 0.60 for radionuclides from (238)U-series and from 0.60 to 0.81 for radionuclides from (232)Th-series. The obtained organ and effective dose conversion coefficients can be conveniently used in practical dose assessment tasks for the rooms of similar geometry and varying activity concentrations and local-specific occupancy factors.

  7. Assessing the guidelines for potassium replacement in pediatric oncology patients receiving amphotericin B.

    PubMed

    Lafreniere, Janet A; Hamilton, Donald P; Carr, Roxane R

    2006-10-01

    To examine the practice of potassium chloride (KCl) replacement in pediatric oncology patients receiving amphotericin B (amp-B). A retrospective observational chart review was conducted of patients who received amp-B on the oncology unit between August 2000 and May 2001. A survey was distributed to pediatric oncology pharmacists at other pediatric institutions to assess KCl infusion guidelines across North America. Twenty hypokalemic episodes were identified within 22 patient admissions. Fifty-five percent used KCl replacement (by all combined routes) at rates exceeding the institution's guidelines. Other pediatric institutions varied with respect to the maximum rates and concentration of KCl permitted on non-intensive care units. Based on the data from this review, the KCl administration guidelines for our hospital were changed. We now allow a maximum peripheral line concentration of 60 mEq/L, a maximum central line concentration of 120 mEq/L and a maximum KCl infusion rate of 0.4 mEq/kg/hr without the requirement of a heart monitor. Parenteral Nutrition is now restricted to maximum potassium concentration of 80 mEq/L and fluid-restricted patients are restricted to a maximum concentration of 150 mEq/L.

  8. Guidelines for developing spacecraft maximum allowable concentrations for Space Station contaminants

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The National Aeronautics and Space Administration (NASA) is preparing to launch a manned space station by the year 1996. Because of concerns about the health, safety, and functioning abilities of the crews, NASA has requested that the National Research Council (NRC) through the Board on Environmental Studies and Toxicology (BEST) provide advice on toxicological matters for the space-station program. The Subcommittee on Guidelines for Developing Spacecraft Maximum Allowable Concentrations for Space Station Contaminants was established by the Committee on Toxicology (COT) to address NASA's concerns. Spacecraft maximum allowable concentrations (SMAC's) are defined as the maximum concentrations of airborne substances (such as gas, vapor, or aerosol) that will not cause adverse health effects, significant discomfort, or degradation in crew performance.

  9. [Role of calcium ions in the mechanism of action of acetylcholine on energy metabolism in rat liver mitochondria].

    PubMed

    Vatamaniuk, M Z; Artym, V V; Kuka, O B; Doliba, M M; Shostakovs'ka, I V

    1996-01-01

    It is shown that administration of acetylcholine to animals (50 micrograms per 100 g of body weight) leads to the activation of respiration and oxidative phosphorylation in the rat liver mitochondria under oxidation of alpha-ketoglutarate; this effect depends on the concentration of calcium ions in the incubation medium of mitochondria. The rate of ADP-stimulated respiration of mitochondria of experimental animals reaches its maximum level under lower concentrations of Ca2+ than in the control animals. The results of investigation of dependence of acetyl choline effect on respiration of mitochondria on the concentration of alpha-ketoglutarate in calcium and calcium-free incubation medium have shown that the half-maximum effect of acetylcholine is observed in calcium medium at lower concentration of the substrate than in calcium-free medium. The latter indicates to the increase of affinity of alpha-ketoglutarate dehydrogenase to alpha-ketoglutarate under these conditions. It is found out that acetylcholine (1.10(-8) M) increases the rate of ADP- and Ca(2+)-stimulated respiration of mitochondria of isolated perfused rat liver, while mutual effect of verapamyl and niphedipin removes this effect.

  10. Adsorption of proteins at the solution/air interface influenced by added nonionic surfactants at very low concentrations for both components. 3. Dilational surface rheology.

    PubMed

    Fainerman, V B; Aksenenko, E V; Lylyk, S V; Lotfi, M; Miller, R

    2015-03-05

    The influence of the addition of the nonionic surfactants C12DMPO, C14DMPO, C10OH, and C10EO5 at concentrations between 10(-5) and 10(-1) mmol/L to solutions of β-casein (BCS) and β-lactoglobulin (BLG) at a fixed concentration of 10(-5) mmol/L on the dilational surface rheology is studied. A maximum in the viscoelasticity modulus |E| occurs at very low surfactant concentrations (10(-4) to 10(-3) mmol/L) for mixtures of BCS with C12DMPO and C14DMPO and for mixtures of BLG with C10EO5, while for mixture of BCS with C10EO5 the value of |E| only slightly increased. The |E| values calculated with a recently developed model, which assumes changes in the interfacial molar area of the protein molecules due to the interaction with the surfactants, are in satisfactory agreement with experimental data. A linear dependence exists between the ratio of the maximum modulus for the mixture to the modulus of the single protein solution and the coefficient reflecting the influence of the surfactants on the adsorption activity of the protein.

  11. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  12. A review of odour impact criteria in selected countries around the world.

    PubMed

    Brancher, Marlon; Griffiths, K David; Franco, Davide; de Melo Lisboa, Henrique

    2017-02-01

    Exposure to environmental odour can result in annoyance, health effects and depreciation of property values. Therefore, many jurisdictions classify odour as an atmospheric pollutant and regulate emissions and/or impacts from odour generating activities at a national, state or municipal level. In this work, a critical review of odour regulations in selected jurisdictions of 28 countries is presented. Individual approaches were identified as: comparing ambient air odour concentration and individual chemicals statistics against impact criteria (maximum impact standard); using fixed and variable separation distances (separation distance standard); maximum emission rate for mixtures of odorants and individual chemical species (maximum emission standard); number of complaints received or annoyance level determined via community surveys (maximum annoyance standard); and requiring use of best available technologies (BAT) to minimize odour emissions (technology standard). The comparison of model-predicted odour concentration statistics against odour impact criteria (OIC) is identified as one of the most common tools used by regulators to evaluate the risk of odour impacts in planning stage assessments and is also used to inform assessment of odour impacts of existing facilities. Special emphasis is given to summarizing OIC (concentration percentile and threshold) and the manner in which they are applied. The way short term odour peak to model time-step mean (peak-to-mean) effects is also captured. Furthermore, the fundamentals of odorant properties, dimensions of nuisance odour, odour sampling and analysis methods and dispersion modelling guidance are provided. Common elements of mature and effective odour regulation frameworks are identified and an integrated multi-tool strategy is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Detoxification of Eucheuma spinosum Hydrolysates with Activated Carbon for Ethanol Production by the Salt-Tolerant Yeast Candida tropicalis.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Young; Kang, Chang Han; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    The objective of this study was to optimize the slurry contents and salt concentrations for ethanol production from hydrolysates of the seaweed Eucheuma spinosum. A monosaccharide concentration of 44.2 g/l as 49.6% conversion of total carbohydrate of 89.1 g/l was obtained from 120 g dw/l seaweed slurry. Monosaccharides from E. spinosum slurry were obtained by thermal acid hydrolysis and enzymatic hydrolysis. Addition of activated carbon at 2.5% (w/v) and the adsorption time of 2 min were used in subsequent adsorption treatments to prevent the inhibitory effect of HMF. The adsorption surface area of the activated carbon powder was 1,400-1,600 m(2)/g and showed selectivity to 5-hydroxymethyl furfural (HMF) from monosaccharides. Candida tropicalis KCTC 7212 was cultured in yeast extract, peptone, glucose, and high-salt medium, and exposed to 80, 90, 100, and 110 practical salinity unit (psu) salt concentrations in the lysates. The 100 psu salt concentration showed maximum cell growth and ethanol production. The ethanol fermentations with activated carbon treatment and use of C. tropicalis acclimated to a high salt concentration of 100 psu produced 17.9 g/l of ethanol with a yield (YEtOH) of 0.40 from E. spinosum seaweed.

  14. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    NASA Astrophysics Data System (ADS)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  15. Studies on indoor radon activity concentration in two villages of West-Khasi Hills District of Meghalaya, India

    NASA Astrophysics Data System (ADS)

    Khardewsaw, A.; Maibam, D.; Sharma, Y.; Saxena, A.

    2018-04-01

    Studies on radon aregenerally perceived from two perspectives, one from the aspect of hazard and the other as a tracer, of which in this paper our study is focused on the former. In this paper, we estimate whether the level of measured indoor radon activity concentration of the two villages under the study area has any impact on the well-being of the populace. The measured average radon activity concentration in the two villages (Nongkasen and Markasa) is found to be 101.74 ± 2.42Bq.m-3(G.M.) and 148.26 ± 2.57 Bq.m-3(G.M.)respectively. We have also measured its seasonal variation and found that the radon concentration is maximum during winter seasonviz.181.34±1.69 Bq.m-3 and 226.22±1.63 Bq.m-3 and minimum viz.66.31±2.75 Bq.m-3 and 83.32±3.26 Bq.m-3 during the rainy season for Nongkasen and Markasa respectively.

  16. Reconstructing Historical VOC Concentrations in Drinking Water for Epidemiological Studies at a U.S. Military Base: Summary of Results

    PubMed Central

    Maslia, Morris L.; Aral, Mustafa M.; Ruckart, Perri Z.; Bove, Frank J.

    2017-01-01

    A U.S. government health agency conducted epidemiological studies to evaluate whether exposures to drinking water contaminated with volatile organic compounds (VOC) at U.S. Marine Corps Base Camp Lejeune, North Carolina, were associated with increased health risks to children and adults. These health studies required knowledge of contaminant concentrations in drinking water—at monthly intervals—delivered to family housing, barracks, and other facilities within the study area. Because concentration data were limited or unavailable during much of the period of contamination (1950s–1985), the historical reconstruction process was used to quantify estimates of monthly mean contaminant-specific concentrations. This paper integrates many efforts, reports, and papers into a synthesis of the overall approach to, and results from, a drinking-water historical reconstruction study. Results show that at the Tarawa Terrace water treatment plant (WTP) reconstructed (simulated) tetrachloroethylene (PCE) concentrations reached a maximum monthly average value of 183 micrograms per liter (μg/L) compared to a one-time maximum measured value of 215 μg/L and exceeded the U.S. Environmental Protection Agency’s current maximum contaminant level (MCL) of 5 μg/L during the period November 1957–February 1987. At the Hadnot Point WTP, reconstructed trichloroethylene (TCE) concentrations reached a maximum monthly average value of 783 μg/L compared to a one-time maximum measured value of 1400 μg/L during the period August 1953–December 1984. The Hadnot Point WTP also provided contaminated drinking water to the Holcomb Boulevard housing area continuously prior to June 1972, when the Holcomb Boulevard WTP came on line (maximum reconstructed TCE concentration of 32 μg/L) and intermittently during the period June 1972–February 1985 (maximum reconstructed TCE concentration of 66 μg/L). Applying the historical reconstruction process to quantify contaminant-specific monthly drinking-water concentrations is advantageous for epidemiological studies when compared to using the classical exposed versus unexposed approach. PMID:28868161

  17. Studies on Batch Production of Bacterial Concentrates from Mixed Species Lactic Starters

    PubMed Central

    Pettersson, H. E.

    1975-01-01

    Optimum growth conditions for mixed species starter FDs 0172 at constant pH in skim milk, whey, and tryptone medium were investigated. Growth rate and maximum population were optimal at 30 C. pH values between 5.5 and 7.0 did not influence the growth rate and maximum population obtainable. Lactic acid-producing activity declined rapidly after reaching the end of the exponential growth phase. The bacterial balance was found to be influenced by the growth parameters: media, pH, temperature, and neutralizer. Skim milk or whey medium at 25 C, pH 6.5, and neutralized with 20% (vol/vol) NH4OH kept the bacterial balance almost constant throughout the cultivation. Grown in tryptone medium at constant pH, the changes in bacterial balance and other metabolic activities were striking compared to the other two media tested. The effect of lactate as an inhibitor was found to be complex, changing with the growth conditions. Concentrates made from mixed species starters FDs 0172, FD 0570, CH 0170, CHs 0170, and T 27 were comparable to controls when cultivated at the optimum conditions found and thereafter centrifuged. Aroma production, proteolytic activity, and CO2 production did not change significantly compared to controls when cultivated at optimum conditions in skim milk or whey medium. PMID:16350009

  18. Stimulation of Erwinia sp. fumarase and aspartase synthesis by changing medium components.

    PubMed

    Bagdasaryan, Z N; Aleksanyan, G A; Mirzoyan, A M; Roseiro, J C; Bagdasaryan, S N

    2005-05-01

    The optimal concentrations of nutrient medium components, aeration conditions, and pH providing for maximum biomass yields, as well as fumarase and L-aspartase activities, during submerged cultivation of Erwinia sp. were determined. The data showed that different concentrations of carbon source (molasses) and pH of the nutrient medium were required to reach the maximum fumarase and L-aspartase activities. Calculations performed by application of the additive lattice model suggested that the combination of these optimized factors would result in 3.2-, 3.4-, and 3.8-fold increases as compared to the experimental means in Erwinia sp. biomass, and L-aspartase and fumarase activities, respectively. The conditions of the fumaric acid biotransformations into L-malic and L-aspartic acids were optimized on the basis of intact Erwinia sp. cells, a fumarase and L-aspartase producer. In the cases of fumarate transformation into L-malic acid and of fumarate transformation into L-aspartic acids, fumarase and L-aspartase activities increased 1.5- and 1.7-fold, respectively. The experimental data were consistent with these estimates to 80% accuracy. In comparison with the additive lattice model, the application of polynomial nonlinear model allowed the between-factor relations to be considered and analyzed, which resulted in 1.1-, 1.27-, and 1.1-fold increases in Erwinia sp. biomass and fumarase and L-aspartase activities for the case of cultivation. In the case of fumarate transformation into L-malic acid, this model demonstrated a 1.7-fold increase in fumarase activity, whereas during fumarate transformation into L-aspartic acid no significant change in aspartase activity was observed.

  19. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    PubMed Central

    Packiam, Soosaimanickam Maria; Baskar, Kathirvelu; Ignacimuthu, Savarimuthu

    2014-01-01

    Objective To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera). Methods Five oil formulations were prepared at different ratios to assess the feeding deterrent, growth inhibitory and egg hatchability effects on H. armigera. Results Invariably all the newly formulated phytopesticidal oil formulations showed the feeding deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments. Conclusions PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H. armigera. This newly formulated phytopesticide was patented in India. PMID:25183105

  20. Antibacterial activity of antipsychotic agents, their association with lipid nanocapsules and its impact on the properties of the nanocarriers and on antibacterial activity.

    PubMed

    Nehme, Hassan; Saulnier, Patrick; Ramadan, Alyaa A; Cassisa, Viviane; Guillet, Catherine; Eveillard, Matthieu; Umerska, Anita

    2018-01-01

    Bacterial antibiotic resistance is an emerging public health problem worldwide; therefore, new therapeutic strategies are needed. Many studies have described antipsychotic compounds that present antibacterial activity. Hence, the aims of this study were to evaluate the in vitro antibacterial activity of antipsychotics belonging to different chemical families, to assess the influence of their association with lipid nanocapsules (LNCs) on their antimicrobial activity as well as drug release and to study the uptake of LNCs by bacterial cells. Antibacterial activity was evaluated against Gram-positive Staphylococcus aureus and Gram negative Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii by minimum inhibitory concentration (MIC) assay, and the capability of killing tested microorganisms was evaluated by time kill assay. LNCs were prepared by phase inversion method, and the antipsychotic agents were incorporated using pre-loading and post-loading strategies. Only phenothiazines and thioxanthenes showed antibacterial activity, which was independent of antibiotic-resistance patterns. Loading the nanocarriers with the drugs affected the properties of the former, particularly their zeta potential. The release rate depended on the drug and its concentration-a maximum of released drug of less than 40% over 24 hours was observed for promazine. The influence of the drug associations on the antibacterial properties was concentration-dependent since, at low concentrations (high nanocarrier/drug ratio), the activity was lost, probably due to the high affinity of the drug to nanocarriers and slow release rate, whereas at higher concentrations, the activity was well maintained for the majority of the drugs. Chlorpromazine and thioridazine increased the uptake of the LNCs by bacteria compared with blank LNCs, even below the minimum inhibitory concentration.

  1. Manganese in the shell of the bivalve Mytilus edulis: Seawater Mn or physiological control?

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro S.; Clarke, Leon J.; Kennedy, Hilary; Richardson, Christopher A.

    2016-12-01

    Manganese in the shell calcite of marine bivalves has been suggested to reflect ambient seawater Mn concentrations, thus providing a high-resolution archive of past seawater Mn concentrations. However, a quantitative relationship between seawater Mn and shell Mn/Ca ratios, as well as clear understanding of which process(es) control(s) shell Mn/Ca, are still lacking. Blue mussels, Mytilus edulis, were grown in a one-year duration field experiment in the Menai Strait, U.K., to study the relationship between seawater particulate and dissolved Mn2+ concentrations and shell calcite Mn/Ca ratios. Shell Mn/Ca showed a well-defined intra-annual double-peak, with maximum values during early spring and early summer and low values during autumn and winter. Seawater particulate Mn peaked during winter and autumn, with a series of smaller peaks during spring and summer, whereas dissolved Mn2+ exhibited a marked single maximum during late-spring to early-summer, being low during the remainder of the year. Consequently, neither seawater particulate Mn nor dissolved Mn2+ concentrations explain the intra-annual variation of shell Mn/Ca ratios. A physiological control on shell Mn/Ca ratios is evident from the strong similarity and timing of the double-peaked intra-annual variations of Mn/Ca and shell growth rate (SGR), the latter corresponding to periods of increased metabolic activity (as indicated by respiration rate). It is thus likely that in M. edulis SGR influences shell Mn/Ca by altering the concentration or activity of Mn2+ within the extra-pallial fluid (EPF), by changing the flux of Mn into or the proportion of protein bound Mn within the EPF. By linking shell Mn/Ca ratios to the endogenous and environmental factors that determine growth and metabolic activity, this study helps to explain the lack of a consistent relationship between shell Mn/Ca in marine bivalve shell calcite and seawater particulate and dissolved Mn2+ concentrations. The use of Mn content from M. edulis shell calcite as a proxy for the dissolved and/or particulate Mn concentrations, and thus the biogeochemical processes that control them, remains elusive.

  2. Allicin from garlic inhibits the biofilm formation and urease activity of Proteus mirabilis in vitro.

    PubMed

    Ranjbar-Omid, Mahsa; Arzanlou, Mohsen; Amani, Mojtaba; Shokri Al-Hashem, Seyyedeh Khadijeh; Amir Mozafari, Nour; Peeri Doghaheh, Hadi

    2015-05-01

    Several virulence factors contribute to the pathogenesis of Proteus mirabilis. This study determined the inhibitory effects of allicin on urease, hemolysin and biofilm of P. mirabilis ATCC 12453 and its antimicrobial activity against 20 clinical isolates of P. mirabilis. Allicin did not inhibit hemolysin, whereas it did inhibit relative urease activity in both pre-lysed (half-maximum inhibitory concentration, IC50 = 4.15 μg) and intact cells (IC50 = 21 μg) in a concentration-dependent manner. Allicin at sub-minimum inhibitory concentrations (2-32 μg mL(-1)) showed no significant effects on the growth of the bacteria (P > 0.05), but it reduced biofilm development in a concentration-dependent manner (P < 0.001). A higher concentration of allicin was needed to inhibit the established biofilms. Using the microdilution technique, the MIC90 and MBC90 values of allicin against P. mirabilis isolates were determined to be 128 and 512 μg mL(-1), respectively. The results suggest that allicin could have clinical applications in controlling P. mirabilis infections. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia

    NASA Astrophysics Data System (ADS)

    Abdullahi, S.; Ismail, A. F.; Samat, S. B.; Yasir, M. S.

    2018-04-01

    The activity concentration and radiological risk of commonly used flooring materials (tiles) in Malaysia were studied. The natural radionuclide concentrations of 226Ra, 232Th and 40K were measured using high-purity germanium detector. The average concentration of 226Ra, 232Th and 40K in the samples were 65.75±1.1 Bq kg-1, 61.92±1.43 Bq kg-1 and 617.77±6.72 Bq kg-1 respectively. The mean concentration of radium equivalent activity, absorbed dose rate, external and internal hazard indices and annual effective dose equivalent were 195.21±2.88 Bq kg-1, 92.75±1.27 nGy h-1, 0.53±0.01, 0.7±0.01 and 0.44±0.0 mSv y-1 respectively. The aim was to assess the possible radiological risks attributed from the tile materials. Even though, the activity concentrations were higher than worldwide average values, but none of the radiological impact parameters exceeded the maximum recommended values. Hence, it was concluded that, contribution of tiles to radiation exposure is negligible and therefore, radiologically safe to use as building materials.

  4. High-efficiency impurity activation by precise control of cooling rate during atmospheric pressure thermal plasma jet annealing of 4H-SiC wafer

    NASA Astrophysics Data System (ADS)

    Maruyama, Keisuke; Hanafusa, Hiroaki; Ashihara, Ryuhei; Hayashi, Shohei; Murakami, Hideki; Higashi, Seiichiro

    2015-06-01

    We have investigated high-temperature and rapid annealing of a silicon carbide (SiC) wafer by atmospheric pressure thermal plasma jet (TPJ) irradiation for impurity activation. To reduce the temperature gradient in the SiC wafer, a DC current preheating system and the lateral back-and-forth motion of the wafer were introduced. A maximum surface temperature of 1835 °C within 2.4 s without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in SiC were demonstrated. We have investigated precise control of heating rate (Rh) and cooling rate (Rc) during rapid annealing of P+-implanted 4H-SiC and its impact on impurity activation. No dependence of resistivity on Rh was observed, while increasing Rc significantly decreased resistivity. A minimum resistivity of 0.0025 Ω·cm and a maximum carrier concentration of 2.9 × 1020 cm-3 were obtained at Rc = 568 °C/s.

  5. Production of Fungal Amylases Using Cheap, Readily Available Agriresidues, for Potential Application in Textile Industry

    PubMed Central

    Singh, Sanamdeep; Bali, Vrinda; Mangla, Jyoti

    2014-01-01

    The study aimed at isolation and screening of fungal amylase producer, optimization of solid state fermentation conditions for maximum amylase production by the best amylase producer, and characterization of the crude amylases, so produced. Aspergillus fumigatus NTCC1222 showed the highest amylase activity (164.1 U/mL) in secondary screening under SSF conditions and was selected for further studies. The test strain showed maximum amylase production (341.7 U/mL) and supernatant protein concentration (9.7 mg/mL) for incubation period (6 days), temperature (35°C), initial pH (6.0), nutrient salt solution as moistening agent, and beef extract as nitrogen source. Pomegranate peel produced maximum amylase activity, but wheat bran (only slightly lesser amylase activity as compared to that of pomegranate peel) was chosen for further studies, keeping in mind the seasonal availability of pomegranate peel. TLC confirmed the amylase produced to be α-type and 60 kDa was the molecular weight of the partially purified amylase. The enzyme showed maximum enzyme activity at pH 6.0, temperature of 55°C, and incubation time of 60 minutes. UV (616.0 U/mL) and chemical (814.2 U/mL) mutation enhanced amylase activity as compared to wild test strain. The study indicates that Aspergillus fumigatus NTCC1222 can be an important source of amylase and the crude enzyme, hence obtained, can be cost effectively applied in multiple sections of textile wet processing. PMID:24527439

  6. Impact of downward-mixing ozone on surface ozone accumulation in southern Taiwan.

    PubMed

    Lin, Ching-Ho

    2008-04-01

    The ozone that initially presents in the previous day's afternoon mixing layer can remain in the nighttime atmosphere and then be carried over to the next morning. Finally, this ozone can be brought to the ground by downward mixing as mixing depth increases during the daytime, thereby increasing surface ozone concentrations. Variation of ozone concentration during each of these periods is investigated in this work. First, ozone concentrations existing in the daily early morning atmosphere at the altitude range of the daily maximum mixing depth (residual ozone concentrations) were measured using tethered ozonesondes on 52 experimental days during 2004-2005 in southern Taiwan. Daily downward-mixing ozone concentrations were calculated by a box model coupling the measured daily residual ozone concentrations and daily mixing depth variations. The ozone concentrations upwind in the previous day's afternoon mixing layer were estimated by the combination of back air trajectory analysis and known previous day's surface ozone distributions. Additionally, the relationship between daily downward-mixing ozone concentration and daily photochemically produced ozone concentration was examined. The latter was calculated by removing the former from daily surface maximum ozone concentration. The measured daily residual ozone concentrations distributed at 12-74 parts per billion (ppb) with an average of 42 +/- 17 ppb are well correlated with the previous upwind ozone concentration (R2 = 0.54-0.65). Approximately 60% of the previous upwind ozone was estimated to be carried over to the next morning and became the observed residual ozone. The daily downward-mixing ozone contributes 48 +/- 18% of the daily surface maximum ozone concentration, indicating that the downward-mixing ozone is as important as daily photochemically produced ozone to daily surface maximum ozone accumulation. The daily downward-mixing ozone is poorly correlated with the daily photochemically produced ozone and contributes significantly to the daily variation of surface maximum ozone concentrations (R2 = 0.19). However, the contribution of downward-mixing ozone to daily ozone variation is not included in most existing statistical models developed for predicting daily ozone variation. Finally, daily surface maximum ozone concentration is positively correlated with daily afternoon mixing depth, attributable to the downward-mixing ozone.

  7. Radium-226 and radium-228 in shallow ground water, southern New Jersey

    USGS Publications Warehouse

    Szabo, Zoltan; dePaul, Vincent T.

    1998-01-01

    Concentrations of total radium (the sum of radium-226 and radium-228) and gross alpha-particle activities in drinking water that exceed the U.S. Environmental Protection Agency (USEPA) Maximum Contaminant Levels (MCLs) are known to cause cancer. Results of investigations by the U.S. Geological Survey (USGS) in cooperation with the New Jersey Department of Environmental Protection (NJDEP) indicate that concentrations of total radium in water samples from 33 percent of 170 wells in the Kirkwood-Cohansey aquifer system in southern New Jersey exceeded the MCL of 5 pCi/L (picocuries per liter) (fig. 1). Wells containing water in which concentrations of total radium were greater than the MCL typically are found where the Bridgeton Formation crops out, in or near an agricultural area, where ground water is acidic (pH less than 5), and where nitrate concentrations generally exceed 5 mg/L (milligrams per liter). Leaching of nitrogen, calcium, and magnesium from agricultural chemicals (fertilizer, lime) applied to cropland may increase the mobility of radium in ground water. Gross alphaparticle activities exceeded the USEPA MCL of 15 pCi/L in water from 14 percent of 127 wells. A statistically significant 2:1 ratio between gross alpha-particle activity and concentration of total radium indicates that gross alpha-particle activity can be used as a screening tool to predict the presence of water that may have a high total-radium concentration.

  8. Modelling and optimization of environmental conditions for kefiran production by Lactobacillus kefiranofaciens.

    PubMed

    Cheirsilp, B; Shimizu, H; Shioya, S

    2001-12-01

    A mathematical model for kefiran production by Lactobacillus kefiranofaciens was established, in which the effects of pH, substrate and product on cell growth, exopolysaccharide formation and substrate assimilation were considered. The model gave a good representation both of the formation of exopolysaccharides (which are not only attached to cells but also released into the medium) and of the time courses of the production of galactose and glucose in the medium (which are produced and consumed by the cells). Since pH and both lactose and lactic acid concentrations differently affected production and growth activity, the model included the effects of pH and the concentrations of lactose and lactic acid. Based on the mathematical model, an optimal pH profile for the maximum production of kefiran in batch culture was obtained. In this study, a simplified optimization method was developed, in which the optimal pH profile was determined at a particular final fermentation time. This was based on the principle that, at a certain time, switching from the maximum specific growth rate to the critical one (which yields the maximum specific production rate) results in maximum production. Maximum kefiran production was obtained, which was 20% higher than that obtained in the constant-pH control fermentation. A genetic algorithm (GA) was also applied to obtain the optimal pH profile; and it was found that practically the same solution was obtained using the GA.

  9. Foaming in simulated radioactive waste.

    PubMed

    Bindal, S K; Nikolov, A D; Wasan, D T; Lambert, D P; Koopman, D C

    2001-10-01

    Radioactive waste treatment process usually involves concentration of radionuclides before waste can be immobilized by storing it in stable solid form. Foaming is observed at various stages of waste processing like SRAT (sludge receipt and adjustment tank) and melter operations. This kind of foaming greatly limits the process efficiency. The foam encountered can be characterized as a three-phase foam that incorporates finely divided solids (colloidal particles). The solid particles stabilize foaminess in two ways: by adsorption of biphilic particles at the surfaces of foam lamella and by layering of particles trapped inside the foam lamella. During bubble generation and rise, solid particles organize themselves into a layered structure due to confinement inside the foam lamella, and this structure provides a barrier against the coalescence of the bubbles, thereby causing foaming. Our novel capillary force balance apparatus was used to examine the particle-particle interactions, which affect particle layer formation in the foam lamella. Moreover, foaminess shows a maximum with increasing solid particle concentration. To explain the maximum in foaminess, a study was carried out on the simulated sludge, a non-radioactive simulant of the radioactive waste sludge at SRS, to identify the parameters that affect the foaming in a system characterized by the absence of surface-active agents. This three-phase foam does not show any foam stability unlike surfactant-stabilized foam. The parameters investigated were solid particle concentration, heating flux, and electrolyte concentration. The maximum in foaminess was found to be a net result of two countereffects that arise due to particle-particle interactions: structural stabilization and depletion destabilization. It was found that higher electrolyte concentration causes a reduction in foaminess and leads to a smaller bubble size. Higher heating fluxes lead to greater foaminess due to an increased rate of foam lamella generation in the sludge system.

  10. Treatment of old landfill leachate with high ammonium content using aerobic granular sludge.

    PubMed

    Ren, Yanan; Ferraz, Fernanda; Kang, Abbass Jafari; Yuan, Qiuyan

    2017-01-01

    Aerobic granular sludge has become an attractive alternative to the conventional activated sludge due to its high settling velocity, compact structure, and higher tolerance to toxic substances and adverse conditions. Aerobic granular sludge process has been studied intensively in the treatment of municipal and industrial wastewater. However, information on leachate treatment using aerobic granular sludge is very limited. This study investigated the treatment performance of old landfill leachate with different levels of ammonium using two aerobic sequencing batch reactors (SBR): an activated sludge SBR (ASBR) and a granular sludge SBR (GSBR). Aerobic granules were successfully developed using old leachate with low ammonium concentration (136 mg L -1  NH 4 + -N). The GSBR obtained a stable chemical oxygen demand (COD) removal of 70% after 15 days of operation; while the ASBR required a start-up of at least 30 days and obtained unstable COD removal varying from 38 to 70%. Ammonium concentration was gradually increased in both reactors. Increasing influent ammonium concentration to 225 mg L -1  N, the GSBR removed 73 ± 8% of COD; while COD removal of the ASBR was 59 ± 9%. The GSBR was also more efficient than the ASBR for nitrogen removal. The granular sludge could adapt to the increasing concentrations of ammonium, achieving 95 ± 7% removal efficiency at a maximum influent concentration of 465 mg L -1  N. Ammonium removal of 96 ± 5% was obtained by the ASBR when it was fed with a maximum of 217 mg L -1  NH 4 + -N. However, the ASBR was partially inhibited by free-ammonia and nitrite accumulation rate increased up to 85%. Free-nitrous acid and the low biodegradability of organic carbon were likely the main factors affecting phosphorus removal. The results from this research suggested that aerobic granular sludge have advantage over activated sludge in leachate treatment.

  11. 210Po and 210Pb in Forest Soil and in Wild Berries in Finland

    NASA Astrophysics Data System (ADS)

    Vaaramaa, Kaisa; Solatie, Dina; Aro, Lasse; Lehto, Jukka

    2008-08-01

    The behaviour of 210Po and 210Pb was investigated in forests in the Southern Finland site and in the Northern Finland site. Sampling sites were in Scots pine (Pinus sylvestris) forests. Maximum activities of 210Po and 210Pb in soil columns were found in organic layers. According to preliminary results of wild berry samples, the lowest 210Po concentrations were found in berries. The highest concentration of 210Po was found in stems of the blueberry (Vaccinium myrtillus) and the lingonberry (Vaccinium vitis-idaea) samples.

  12. Using coral disease prevalence to assess the effects of concentrating tourism activities on offshore reefs in a tropical marine park.

    PubMed

    Lamb, Joleah B; Willis, Bette L

    2011-10-01

    Concentrating tourism activities can be an effective way to closely manage high-use parks and minimize the extent of the effects of visitors on plants and animals, although considerable investment in permanent tourism facilities may be required. On coral reefs, a variety of human-related disturbances have been associated with elevated levels of coral disease, but the effects of reef-based tourist facilities (e.g., permanent offshore visitor platforms) on coral health have not been assessed. In partnership with reef managers and the tourism industry, we tested the effectiveness of concentrating tourism activities as a strategy for managing tourism on coral reefs. We compared prevalence of brown band disease, white syndromes, black band disease, skeletal eroding band, and growth anomalies among reefs with and without permanent tourism platforms within the Great Barrier Reef Marine Park. Coral diseases were 15 times more prevalent at reefs with offshore tourism platforms than at nearby reefs without platforms. The maximum prevalence and maximum number of cases of each disease type were recorded at reefs with permanently moored tourism platforms. Diseases affected 10 coral genera from 7 families at reefs with platforms and 4 coral genera from 3 families at reefs without platforms. The greatest number of disease cases occurred within the spatially dominant acroporid corals, which exhibited 18-fold greater disease prevalence at reefs with platforms than at reefs without platforms. Neither the percent cover of acroporids nor overall coral cover differed significantly between reefs with and without platforms, which suggests that neither factor was responsible for the elevated levels of disease. Identifying how tourism activities and platforms facilitate coral disease in marine parks will help ensure ongoing conservation of coral assemblages and tourism. ©2011 Society for Conservation Biology.

  13. Passivation of phosphorus diffused silicon surfaces with Al2O3: Influence of surface doping concentration and thermal activation treatments

    NASA Astrophysics Data System (ADS)

    Richter, Armin; Benick, Jan; Kimmerle, Achim; Hermle, Martin; Glunz, Stefan W.

    2014-12-01

    Thin layers of Al2O3 are well known for the excellent passivation of p-type c-Si surfaces including highly doped p+ emitters, due to a high density of fixed negative charges. Recent results indicate that Al2O3 can also provide a good passivation of certain phosphorus-diffused n+ c-Si surfaces. In this work, we studied the recombination at Al2O3 passivated n+ surfaces theoretically with device simulations and experimentally for Al2O3 deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal due to depletion or weak inversion of the charge carriers at the c-Si/Al2O3 interface. This pronounced maximum was also observed experimentally for n+ surfaces passivated either with Al2O3 single layers or stacks of Al2O3 capped by SiNx, when activated with a low temperature anneal (425 °C). In contrast, for Al2O3/SiNx stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n+ diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al2O3/SiNx stacks can provide not only excellent passivation on p+ surfaces but also on n+ surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.

  14. Effect of zolpidem on human cytochrome P450 activity, and on transport mediated by P-glycoprotein.

    PubMed

    von Moltke, Lisa L; Weemhoff, James L; Perloff, Michael D; Hesse, Leah M; Harmatz, Jerold S; Roth-Schechter, Barbara F; Greenblatt, David J

    2002-12-01

    The influence of high concentrations of zolpidem (100 microM, corresponding to approximately 200 times maximum therapeutic concentrations) on the activity of six human Cytochrome P450 (CYP) enzymes was evaluated in a model system using human liver microsomes. Zolpidem produced negligible or weak inhibition of human CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A. Transport of rhodamine 123, presumed to be mediated mainly by the energy-dependent efflux transport protein P-glycoprotein, was studied in a cell culture system using a human intestinal cell line. High concentrations of zolpidem (100 microM), exceeding the usual therapeutic range by more than 100-fold, produced only modest impairment of rhodamine 123 transport. The findings indicate that zolpidem is very unlikely to cause clinical drug interactions attributable to impairment of CYP activity or P-gp mediated transport. Copyright 2002 John Wiley & Sons, Ltd.

  15. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds.

    PubMed

    Ghafoor, Kashif; Choi, Yong Hee; Jeon, Ju Yeong; Jo, In Hee

    2009-06-10

    Important functional components from Campbell Early grape seed were extracted by ultrasound-assisted extraction (UAE) technology. The experiments were carried out according to a five level, three variable central composite rotatable design (CCRD). The best possible combinations of ethanol concentration, extraction temperature, and extraction time with the application of ultrasound were obtained for the maximum extraction of phenolic compounds, antioxidant activities, and anthocyanins from grape seed by using response surface methodology (RSM). Process variables had significant effect on the extraction of functional components with extraction time being highly significant for the extraction of phenolics and antioxidants. The optimal conditions obtained by RSM for UAE from grape seed include 53.15% ethanol, 56.03 degrees C temperature, and 29.03 min time for the maximum total phenolic compounds (5.44 mg GAE/100 mL); 53.06% ethanol, 60.65 degrees C temperature, and 30.58 min time for the maximum antioxidant activity (12.31 mg/mL); and 52.35% ethanol, 55.13 degrees C temperature, and 29.49 min time for the maximum total anthocyanins (2.28 mg/mL). Under the above-mentioned conditions, the experimental total phenolics were 5.41 mg GAE/100 mL, antioxidant activity was 12.28 mg/mL, and total anthocyanins were 2.29 mg/mL of the grape seed extract, which is well matched with the predicted values.

  16. Mid-latitude empirical model of the height distribution of atomic oxygen in the MLT region for different solar and geophysical conditions

    NASA Astrophysics Data System (ADS)

    Semenov, A.; Shefov, N.; Fadel, Kh.

    The model of altitude distributions of atomic oxygen in the region of the mesopause and lower thermosphere (MLT) is constructed on the basis of empirical models of variations of the intensities, temperatures and altitudes of maximum of the layers of the emissions of atomic oxygen at 557.7 nm, hydroxyl and Atmospheric system of molecular oxygen. An altitude concentration distribution of neutral components is determined on the basis of systematization of the long-term data of temperature of the middle atmosphere from rocket, nightglow and ionospheric measurements at heights of 30-110 km in middle latitudes. They include dependence on a season, solar activity and a long-term trend. Examples of results of calculation for different months of year for conditions of the lower and higher solar activity are presented. With increasing of solar activity, the height of a layer of a maximum of atomic oxygen becomes lower, and the thickness of the layer increases. There is a high correlation between characteristics of a layer of atomic oxygen and a maximum of temperature at heights of the mesopause and lower thermosphere. This work is supported by grant of ISTC No. 2274.

  17. Synthesis and thermal characterization of xylan-graft-polyacrylonitrile.

    PubMed

    Ünlü, Cüneyt H; Öztekin, N Simge; Atıcı, Oya Galioğlu

    2012-10-01

    In this study emulsion polymerization of acrylonitrile using xylan from agricultural waste material (corn cob) and cerium ammonium nitrate was investigated in terms of catalyst acid. Stock ceric solutions were prepared using either nitric or perchloric acid as catalyst. Optimum conditions were determined using different parameters such as reaction time, temperature, and component concentrations. Nitric acid catalyzed reactions resulted in maximum conversion ratio (96%) at 50°C, 1 h where ceric ion, acrylonitrile, xylan, and catalyst concentrations were 21.7 mmol l(-1), 0.5 mol l(-1), 0.2% (w/v), and 0.1 mol l(-1), respectively. However, 83% conversion was obtained with perchloric acid catalysis at 27 °C, 1 h where concentrations were 5.4 mmol l(-1), 0.8 mol l(-1), 0.5% (w/v), and 0.2 mol l(-1), respectively. Copolymer synthesis using perchloric acid was realized at milder conditions than using nitric acid. Thermal analyses of obtained polymers were conducted to characterize copolymers. Results showed that calculated activation energy, maximum degradation temperature, and heat of thermal decomposition changed relying mainly on molecular weight. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Carrier concentration dependence of donor activation energy in n-type GaN epilayers grown on Si (1 1 1) by plasma-assisted MBE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Mahesh; Central Research Laboratory, Bharat Electronics, Bangalore 560 013; Bhat, Thirumaleshwara N.

    Highlights: ► The n-type GaN layers were grown by plasma-assisted molecular beam epitaxy. ► The optical characteristics of a donor level in Si-doped GaN were studied. ► Activation energy of a Si-related donor was estimated from temperature dependent PL measurements. ► PL peak positions, FWHM of PL and activation energies are found to be proportional to the cube root of carrier density. ► The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. -- Abstract: The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics ofmore » a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements.« less

  19. Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration.

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Menert, Anne; Lemmiksoo, Vallo; Saluste, Alar; Tenno, Taavo; Tomingas, Martin

    2011-01-01

    Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2(-)-N/NOx(-)-N was achieved for FA concentration of 70 mg/L at 36 degrees C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.

  20. [Determination of the healing effect of Piper aduncum (spiked pepper or matico) on human fibroblasts].

    PubMed

    Paco, Karen; Ponce-Soto, Luis Alberto; Lopez-Ilasaca, Marco; Aguilar, José L

    2016-01-01

    To evaluate the healing effect of a Piper aduncum ethanol-water extract on an adult human dermal fibroblast cell line (hDFa). After obtaining the extract via solid-liquid extraction, concentration, and lyophilization, extract proteins were purified using reverse phase high-performance liquid chromatography, identified using tandem mass spectrometry of tryptic peptides, and analyzed using MALDI-TOF-TOF on an ABSciex4800 mass spectrometer. Half maximum effective concentration values (EC50), half maximum inhibiting concentration (IC50), and percentages of cell proliferation were determined using tetrazolium salt assays. Cell migration was evaluated using a "scratch assay". Growth factor expression in cells was analyzed via quantitative real-time reverse transcription polymerase chain reaction. Against the hDFa cell line, the extract had an IC50 of 200 μg/mL and EC50 of 103.5 µg/mL. In the proliferation assay, protein K2 (obtained from the extract) exhibited increased proliferative activity relative to other treatments (1 µg/mL); this agent also exhibited increased activity (50 µg/mL) in the fibroblast migration assay.Furthermore, the relative expression of platelet-derived growth factor increased by 8.6-fold in the presence of K2 protein relative to the control. The hydroethanolic extract of Piper aduncum and its component proteins increased the proliferation and migration of hDFa and increased the expression of growth factors involved in the healing process.

  1. Planar waveguide concentrator used with a seasonal tracker.

    PubMed

    Bouchard, Sébastien; Thibault, Simon

    2012-10-01

    Solar concentrators offer good promise for reducing the cost of solar power. Planar waveguides equipped with a microlens slab have already been proposed as an excellent approach to produce medium to high concentration levels. Instead, we suggest the use of a cylindrical microlens array to get useful concentration without tracking during the day. To use only a seasonal tracking system and get the highest possible concentration, cylindrical microlenses are placed in the east-west orientation. Our new design has an acceptance angle in the north-south direction of ±9° and ±54° in the east-west axis. Simulation of our optimized system achieves a 4.6× average concentration level from 8:30 to 16:30 with a maximum of 8.1× and 80% optical efficiency. The low-cost advantage of waveguide-based solar concentrators could support their use in roof-mounted solar panels and eliminate the need for an expensive and heavy active tracker.

  2. Catalytic efficiency is a better predictor of arsenic toxicity to soil alkaline phosphatase.

    PubMed

    Wang, Ziquan; Tian, Haixia; Lu, Guannan; Zhao, Yiming; Yang, Rui; Megharaj, Mallavarapu; He, Wenxiang

    2018-02-01

    Arsenic (As) is an inhibitor of phosphatase, however, in the complex soil system, the substrate concentration effect and the mechanism of As inhibition of soil alkaline phosphatase (ALP) and its kinetics has not been adequately studied. In this work, we investigated soil ALP activity in response to As pollution at different substrate concentrations in various types of soils and explored the inhibition mechanism using the enzyme kinetics. The results showed that As inhibition of soil ALP activity was substrate concentration-dependent. Increasing substrate concentration decreased inhibition rate, suggesting reduced toxicity. This dependency was due to the competitive inhibition mechanism of As to soil ALP. The kinetic parameters, maximum reaction velocity (V max ) and Michaelis constant (K m ) in unpolluted soils were 0.012-0.267mMh -1 and 1.34-3.79mM respectively. The competitive inhibition constant (K ic ) was 0.17-0.70mM, which was lower than K m , suggesting higher enzyme affinity for As than for substrate. The ecological doses, ED 10 and ED 50 (concentration of As that results in 10% and 50% inhibition on enzyme parameter) for inhibition of catalytic efficiency (V max /K m ) were lower than those for inhibition of enzyme activity at different substrate concentrations. This suggests that the integrated kinetic parameter, catalytic efficiency is substrate concentration independent and more sensitive to As than ALP activity. Thus, catalytic efficiency was proposed as a more reliable indicator than ALP activity for risk assessment of As pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Particulate pollution in different housing types in a UK suburban location.

    PubMed

    Nasir, Zaheer Ahmad; Colbeck, Ian

    2013-02-15

    To investigate the levels of particulate pollution in residential built environments measurements of PM(10), PM(2.5), and PM(1) and concentrations were made between 2004 and 2008 in various residencies in a UK suburban location. Measurements were carried out in three different residential settings (Types I, II and III). In type I non-smoking living rooms, the highest 24-hour mean concentrations were found in summer. When smoking took place in type I residences, the concentrations of PM(10), PM(2.5) and PM(1), during the winter were almost double those in summer. In type II houses the concentrations were higher in the houses with open plan kitchens than in those with separate kitchens. In type III houses, mean concentrations were significantly higher in wood heated living rooms than those using central heating. In kitchens, cooking resulted in substantially higher concentrations of particulate matter with levels above those in smoking living rooms in winter. The hourly maximum values of number concentration were considerably higher in smoking rooms than non-smoking ones. Cooking resulted in increased number concentrations, with the average hourly maximum concentration of 179,110 #/cm(3). Particle mass and number emission rates were determined for a number of activities. In kitchens grilling had the highest average number emission rate, followed by boiling and frying. The results clearly highlight the impact of different forms of dwelling and their use and management by occupants on the levels of particulate matter in naturally ventilated residential built environments. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Radionuclides and mercury in the salt lakes of the Crimea

    NASA Astrophysics Data System (ADS)

    Mirzoyeva, Natalya; Gulina, Larisa; Gulin, Sergey; Plotitsina, Olga; Stetsuk, Alexandra; Arkhipova, Svetlana; Korkishko, Nina; Eremin, Oleg

    2015-11-01

    90Sr concentrations, resulting from the Chernobyl NPP accident, were determined in the salt lakes of the Crimea (Lakes Kiyatskoe, Kirleutskoe, Kizil-Yar, Bakalskoe and Donuzlav), together with the redistribution between the components of the ecosystems. The content of mercury in the waters of the studied reservoirs was also established. Vertical distributions of natural radionuclide activities (238U, 232Th, 226Ra, 210Pb, 40K) and anthropogenic 137Cs concentrations (as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake (located in the south-eastern Crimea) to evaluate the longterm dynamics and biogeochemical processes. Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data. The highest concentrations of 90Sr in the water of Lake Kiyatskoe (350.5 and 98.0 Bq/m3) and Lake Kirleutskoe (121.3 Bq/m3) were due to the discharge of the Dnieper water from the North-Crimean Canal. The high content of mercury in Lake Kiyatskoe (363.2 ng/L) and in seawater near Lake Kizil-Yar (364 ng/L) exceeded the maximum permissible concentration (3.5 times the maximum). Natural radionuclides provide the main contribution to the total radioactivity (artificial and natural combined) in the bottom sediments of Lake Koyashskoe. The significant concentration of 210Pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide—gaseous 222Rn from the lower layers of the bottom sediment. The average sedimentation rates in Lake Koyashskoe, determined using 210Pb and 137Cs data, were 0.117 and 0.109 cm per year, respectively.

  5. Catalytic properties of thermophilic lactate dehydrogenase and halophilic malate dehydrogenase at high temperature and low water activity.

    PubMed

    Hecht, K; Wrba, A; Jaenicke, R

    1989-07-15

    Thermophilic lactate dehydrogenases from Thermotoga maritima and Bacillus stearothermophilus are stable up to temperature limits close to the optimum growth temperature of their parent organisms. Their catalytic properties are anomalous in that Km shows a drastic increase with increasing temperature. At low temperatures, the effect levels off. Extreme halophilic malate dehydrogenase from Halobacterium marismortui exhibits a similar anomaly. Increasing salt concentration (NaCl) leads to an optimum curve for Km, oxaloacctate while Km, NADH remains constant. Previous claims that the activity of halophilic malate dehydrogenase shows a maximum at 1.25 M NaCl are caused by limiting substrate concentration; at substrate saturation, specific activity of halophilic malate dehydrogenase reaches a constant value at ionic strengths I greater than or equal to 1 M. Non-halophilic (mitochondrial) malate dehydrogenase shows Km characteristics similar to those observed for the halophilic enzyme. The drastic decrease in specific activity of the mitochondrial enzyme at elevated salt concentrations is caused by the salt-induced increase in rigidity of the enzyme, rather than gross structural changes.

  6. Presence of the β-triketone herbicide tefuryltrione in drinking water sources and its degradation product in drinking waters.

    PubMed

    Kamata, Motoyuki; Asami, Mari; Matsui, Yoshihiko

    2017-07-01

    Triketone herbicides are becoming popular because of their herbicidal activity against sulfonylurea-resistant weeds. Among these herbicides, tefuryltrione (TFT) is the first registered herbicide for rice farming, and recently its distribution has grown dramatically. In this study, we developed analytical methods for TFT and its degradation product 2-chloro-4-methylsulfonyl-3-[(tetrahydrofuran-2-yl-methoxy) methyl] benzoic acid (CMTBA). TFT was found frequently in surface waters in rice production areas at concentrations as high as 1.9 μg/L. The maximum observed concentration was lower than but close to 2 μg/L, which is the Japanese reference concentration of ambient water quality for pesticides. However, TFT was not found in any drinking waters even though the source waters were purified by conventional coagulation and filtration processes; this was due to chlorination, which transforms TFT to CMTBA. The conversion rate of TFT to CMBA on chlorination was almost 100%, and CMTBA was stable in the presence of chlorine. Moreover, CMTBA was found in drinking waters sampled from household water taps at a similar concentration to that of TFT in the source water of the water purification plant. Although the acceptable daily intake and the reference concentration of CMTBA are unknown, the highest concentration in drinking water exceeded 0.1 μg/L, which is the maximum allowable concentration for any individual pesticide and its relevant metabolites in the European Union Drinking Directive. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Production, purification and characterization of halophilic organic solvent tolerant protease from marine crustacean shell wastes and its efficacy on deproteinization.

    PubMed

    Maruthiah, Thirumalai; Somanath, Beena; Jasmin, Jebamonydhas Vijila; Immanuel, Grasian; Palavesam, Arunachalam

    2016-12-01

    The quantum of marine fish wastes produced by fish processing industries has necessitated to search new methods for its disposal. Hence, this study is focused on production and purification of halophilic organic solvent tolerant protease (HOSP) from marine Alcaligenes faecalis APCMST-MKW6 using marine shell wastes as substrate. The candidate bacterium was isolated from the marine sediment of Manakudi coast and identified as A. faecalis APCMST-MKW6. The purified protease showed 16.39-fold purity, 70.34 U/mg specific activity with 21.67 % yield. The molecular weight of the purified alkaline protease was 49 kDa. This purified protease registered maximum activity at pH 9 and it was stable between pH 8-9 after 1.30 h of incubation. The optimum temperature registered was 60 °C and it was stable between 50 and 60 °C even after 1.30 h of incubation. This enzyme also showed maximum activity at 20 % NaCl concentration. Further, manganese chloride, magnesium chloride, calcium chloride and barium chloride influenced this enzyme activity remarkably and it was also found to be enhanced by many of the tested surfactants and solvents. The candidate bacterium effectively deproteinized the shrimp shell waste compared to the other tested crustaceans shell wastes and also attained maximum antioxidant activity.

  8. Reduction of Nicardipine-Related Phlebitis in Patients with Acute Stroke by Diluting Its Concentration.

    PubMed

    Kawada, Kei; Ohta, Tsuyoshi; Tanaka, Koudai; Miyamoto, Norifumi

    2018-03-05

    Nicardipine is frequently used in the treatment of hypertension for patients with acute stroke; however, its dosing is complicated by a high risk of phlebitis. In the present study, we examined whether restricting nicardipine concentration under a specific value could reduce the incidence of nicardipine-related phlebitis in patients with acute stroke. Intravenous nicardipine-related phlebitis was retrospectively analyzed. From July 2015, a simple proposition was made to dilute maximum intravenous nicardipine concentration to lower than 130 µg/mL. The maximum intravenous nicardipine concentration and the incidence of phlebitis were compared between patients treated from July 2014 to June 2015 (preproposition group) and patients treated from July 2015 to June 2016 (postproposition group). A total of 300 patients (preproposition group, 138; postproposition group, 162) were included. The postproposition group demonstrated significantly lower maximum intravenous nicardipine concentration (in µg/mL, 76.9, 47.6-104.5 versus 130.4, 69.8-230.8; P < .001) and incidence of phlebitis (9.9%, 16/162 vs. 30%, 42/138; P < .001) than the preproposition group. Multivariable logistic regression analysis revealed that the maximum intravenous nicardipine concentration lower than 130 µg/mL (odds ratio [OR] .15; 95% confidence interval [CI] .06-.35; P < .001) and National Institutes of Health Stroke Scale on admission (OR .95; 95% CI .91-.99; P = .007) were the statistically significant independent factors for phlebitis, which indicated the usefulness of the proposition to dilute maximum intravenous nicardipine concentration to lower than 130 µg/mL. The simple and appropriate proposition about nicardipine administration lowered maximum nicardipine concentration and reduced the incidence of nicardipine-related phlebitis in patients with acute stroke. Copyright © 2018 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  9. Antimicrobial properties of black grape (Vitis vinifera L.) peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds.

    PubMed

    Yadav, Devbrat; Kumar, Arvind; Kumar, Pramod; Mishra, Diwaker

    2015-01-01

    Black grape peel possesses a substantial amount of polyphenolic antimicrobial compounds that can be used for controlling the growth of pathogenic microorganisms. The purpose of this study was to assess antibacterial and antifungal activity of black grape peel extracts against antibiotic-resistant pathogenic bacteria and toxin producing molds, respectively. Peel of grape was subjected to polyphenolic extraction using different solvents viz., water, ethanol, acetone, and methanol. Antibiotic-resistant strains of Staphylococcus aureus, Enterococcus faecalis, Enterobacter aerogenes, Salmonella typhimurium, and Escherichia coli were screened for the antibacterial activity of different grape extracts. Antibacterial activity was analyzed using agar well diffusion method. Penicillium chrysogenum, Penicillium expansum, Aspergillus niger and Aspergillus versicolor were screened for the antifungal activity. Antifungal activity was determined by counting nongerminated spores in the presence of peel extracts. As compared to other solvent extracts, methanol extracts possessed high antibacterial and antifungal activity. S. typhimurium and E. coli showed complete resistance against antibacterial action at screened concentrations of grape peel extracts. Maximum zone of inhibition was found in case of S. aureus, i.e., 22 mm followed by E. faecalis and E. aerogenes, i.e., 18 and 21 mm, respectively, at 1080 mg tannic acid equivalent (TAE)/ml. The maximum and minimum percent of growth inhibition was shown by P. expansum and A. niger as 73% and 15% at 1080 TAE/ml concentration of grape peel extract, respectively. Except S. typhimurium and E. coli, growth of all bacterial and mold species were found to be significantly (P < 0.05) inhibited by all the solvent extracts.

  10. Alterations in the activities of three dehydrogenases in the digestive system of two teleost fishes exposed to mercuric chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sastry, K.V.

    1981-02-01

    The effect of the 50% lethal concentration and of a sublethal concentration (0.3 mg/liter) of mercuric chloride on the activities of succinic, lactic, and pyruvic dehydrogenases in the digestive system of two teleost fishes, Ophiocephalus punctatus and Heteropneustes fossilis, respectively, has been studied at intervals of 96 h and 7, 15, and 30 days. The results show that dehydrogenases are not affected much by short-term exposure. However, the activities of all three enzymes are inhibited by chronic exposure to mercury and maximum inhibition is observed after 15 days of exposure. Among the different parts of the digestive system, the livermore » is the most affected organ, and of the two fishes, Heteropneustes is more sensitive to mercury treatment.« less

  11. Enhancement of Force Generated by Individual Myosin Heads in Skinned Rabbit Psoas Muscle Fibers at Low Ionic Strength

    PubMed Central

    Sugi, Haruo; Abe, Takahiro; Kobayashi, Takakazu; Chaen, Shigeru; Ohnuki, Yoshiki; Saeki, Yasutake; Sugiura, Seiryo

    2013-01-01

    Although evidence has been presented that, at low ionic strength, myosin heads in relaxed skeletal muscle fibers form linkages with actin filaments, the effect of low ionic strength on contraction characteristics of Ca2+-activated muscle fibers has not yet been studied in detail. To give information about the mechanism of muscle contraction, we have examined the effect of low ionic strength on the mechanical properties and the contraction characteristics of skinned rabbit psoas muscle fibers in both relaxed and maximally Ca2+-activated states. By progressively decreasing KCl concentration from 125 mM to 0 mM (corresponding to a decrease in ionic strength μ from 170 mM to 50 mM), relaxed fibers showed changes in mechanical response to sinusoidal length changes and ramp stretches, which are consistent with the idea of actin-myosin linkage formation at low ionic strength. In maximally Ca2+-activated fibers, on the other hand, the maximum isometric force increased about twofold by reducing KCl concentration from 125 to 0 mM. Unexpectedly, determination of the force-velocity curves indicated that, the maximum unloaded shortening velocity Vmax, remained unchanged at low ionic strength. This finding indicates that the actin-myosin linkages, which has been detected in relaxed fibers at low ionic strength, are broken quickly on Ca2+ activation, so that the linkages in relaxed fibers no longer provide any internal resistance against fiber shortening. The force-velocity curves, obtained at various levels of steady Ca2+-activated isometric force, were found to be identical if they are normalized with respect to the maximum isometric force. The MgATPase activity of muscle fibers during isometric force generation was found not to change appreciably at low ionic strength despite the two-fold increase in Ca2+-activated isometric force. These results can be explained in terms of enhancement of force generated by individual myosin heads, but not by any changes in kinetic properties of cyclic actin-myosin interaction. PMID:23691080

  12. [Effects of methomyl on acetylcholinesterase in erythrocyte membrane and various brain areas].

    PubMed

    Zhao, Fei; Li, Tao; Zhang, Changchun; Xu, Yiping; Xu, Hangong; Shi, Nian

    2015-06-01

    To study the toxicity of methomyl to acetylcholinesterase (AChE) in different regions. The optimal temperature and time for measurement of AChE activity were determined in vitro. The dose- and time-response relationships of methomyl with AChE activity in human erythrocyte membrane, rat erythrocyte membrane, cortical synapses, cerebellar synapses, hippocampal synapses, and striatal synapses were evaluated. The half maximal inhibitory concentration (IC50) and bimolecular rate constant (K) of methomyl for AChE activity in different regions were calculated, and the type of inhibition of AChE activity by methomyl was determined. AChE achieved the maximum activity at 370 °C, and the optimal time to determine initial reaction velocity was 0-17 min. There were dose- and time-response relationships between methomyl and AChE activity in the erythrocyte membrane and various brain areas. The IC50 value of methomyl for AChE activity in human erythrocyte membrane was higher than that in rat erythrocyte membrane, while the Ki value of methomyl for AChE activity in rat erythrocyte membrane was higher than that in human erythrocyte membrane. Among synapses in various brain areas, the striatum had the highest IC50 value, followed by the cerebellum, cerebral cortex, and hippocampus, while the cerebral cortex had the highest Ki value, followed by the hippocampus, striatum, and cerebellum. Lineweaver-Burk diagram demonstrated that with increasing concentration of methomyl, the maximum reaction velocity (Vmax) of AChE decreased, and the Michaelis constant (Km) remained the same. Methomyl is a reversible non-competitive inhibitor of AChE. AChE of rat erythrocyte membrane is more sensitive to methomyl than that of human erythrocyte membrane; the cerebral cortical synapses have the most sensitive AChE to methomyl among synapses in various brain areas.

  13. Occurrence of 210Po in marine macroalgae inhabiting a coastal nuclear zone, southeast coast of India.

    PubMed

    Praveen Pole, R P; Feroz Khan, M; Godwin Wesley, S

    2017-04-01

    The activity concentration of 210 Po in 26 species of marine macroalgae found along coast near to a nuclear installation in southeast coast of India was studied. Phaeophytes were found to accumulate the maximum 210 Po concentration and chlorophytes the minimum. The average 210 Po activity concentration values in the three groups were 6.2 ± 2.5 Bq kg -1 (Chlorophyta), 14.4 ± 5.2 Bq kg -1 (Phaeophyta) and 11.3 ± 3.9 Bq kg -1 (Rhodophyta). A statistically significant variation in accumulation was found between groups (p < 0.05). The un-weighted dose rate to these algae due to 210 Po was calculated to be well below the benchmark dose limit of 10 μGy h -1 . Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...

    EPA Pesticide Factsheets

    Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.

  15. Color removal from acid and reactive dye solutions by electrocoagulation and electrocoagulation/adsorption processes.

    PubMed

    Bellebia, S; Kacha, S; Bouberka, Z; Bouyakoub, A Z; Derriche, Z

    2009-04-01

    In this study, electrocoagulation of Marine Blue Erionyl MR (acid dye) and electrocoagulation followed by adsorption of Brilliant Blue Levafix E-BRA (reactive dye) from aqueous solutions were investigated, using aluminum electrodes and granular activated carbon (GAC). In the electrocoagulation and adsorption of dyestuff solutions, the effects of current density, loading charge, pH, conductivity, stirring velocity, contact time, and GAC concentration were examined. The optimum conditions for the electrocoagulation process were identified as loading charges 7.46 and 1.49 F/m3, for a maximum abatement of 200 mg/L reactive and acid dye, respectively. The residual reactive dye concentration was completely removed with 700 mg/L GAC. The results of this investigation provide important data for the development of a combined process to remove significant concentrations of recalcitrant dyes from water, using moderate activated carbon energy and aluminum consumption, and thereby lowering the cost of treatment.

  16. In vitro antimicrobial activity of extracts and isolated compound from Dalbergia stipulacea Roxb. leaves

    NASA Astrophysics Data System (ADS)

    Kumar, Arvind; Bhat, Tahir Ahmad; Singh, Rattan Deep

    2017-07-01

    The study was designed to examine the in vitro antimicrobial efficacy of extracts and isolated compound of Dalbergia stipulacea. Combined extracts (chloroform and methanol) of plant leaves fractionated with n-butanol loaded with column afforded a flavonoid glycoside compound identified as luteolin 4'-rutinoside. Different extracts and isolated compound exhibited pronounced antibacterial and antifungal varied activities against four bacteria (Clostridium acetobutylinium, Bacillus subtilis, Streptococcus mutans, and Pseudomonas sp.) and one fungus (Candida albicans) susceptibility were determined using disc diffusion method. The minimum inhibitory concentration (MIC) of extracts and isolated compounds was determined by broth dilution method. The maximum activity was shown by chloroform extract against C. albicans with a zone of inhibition of 17 mm and minimum activity was displayed by methanolic extract against Pseudomonas sp. with 5 mm. However, isolated compound has shown maximum activity against Pseudomonas sp. with 15 mm. The MIC values higher in methanol extract against Pseudomonas sp. and isolated compound shows good against Pseudomonas sp. and B. subtilis. Our findings indicate that plant could be used as a good antimicrobial agent in food, pharmaceutical and bio-pesticide industries.

  17. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP).

    PubMed

    Song, Jiaxiu; Wang, Wenbing; Li, Rongjie; Zhu, Jun; Zhang, Yongming; Liu, Rui; Rittmann, Bruce E

    2016-02-01

    A bacterial strain isolated from activated sludge and identified as Bacillus amyloliquefaciens could biodegrade phenol, but 2,4,6-trichlorophenol (TCP) inhibited phenol biodegradation and biomass growth. UV photolysis converted TCP into dichlorocatechol, monochlorophenol, and dichlorophenol, and this relieved inhibition by TCP. Phenol-removal and biomass-growth rates were significantly accelerated after UV photolysis: the monod maximum specific growth rate (μ(max)) increased by 9% after TCP photolysis, and the half-maximum-rate concentration (K(S)) decreased by 36%. Thus, the major benefit of UV photolysis in this case was to transform TCP into a set of much-less-inhibitory products.

  18. Adenylate Energy Pool and Energy Charge in Maturing Rape Seeds 1

    PubMed Central

    Ching, Te May; Crane, Jim M.; Stamp, David L.

    1974-01-01

    A study of energy state and chemical composition of pod walls and seeds of maturing rape (Brassica napus L.) was conducted on two varieties, Victor and Gorczanski. Total adenosine phosphates, ATP, and adenylate energy charge increased with increasing cell number and cellular synthesis during the early stages, remained high at maximum dry weight accumulation and maximum substrate influx time, and decreased with ripening. A temporal control of energy supply and ATP concentration is evident in developing tissues with determined functions; whereas the association of a high energy charge and active cellular biosynthesis occurs only in tissues with a stabilized cell number. PMID:16658964

  19. In Vivo potassium-39 NMR spectra by the burg maximum-entropy method

    NASA Astrophysics Data System (ADS)

    Uchiyama, Takanori; Minamitani, Haruyuki

    The Burg maximum-entropy method was applied to estimate 39K NMR spectra of mung bean root tips. The maximum-entropy spectra have as good a linearity between peak areas and potassium concentrations as those obtained by fast Fourier transform and give a better estimation of intracellular potassium concentrations. Therefore potassium uptake and loss processes of mung bean root tips are shown to be more clearly traced by the maximum-entropy method.

  20. Estimation of external dose by car-borne survey in Kerala, India.

    PubMed

    Hosoda, Masahiro; Tokonami, Shinji; Omori, Yasutaka; Sahoo, Sarata Kumar; Akiba, Suminori; Sorimachi, Atsuyuki; Ishikawa, Tetsuo; Nair, Raghu Ram; Jayalekshmi, Padmavathy Amma; Sebastian, Paul; Iwaoka, Kazuki; Akata, Naofumi; Kudo, Hiromi

    2015-01-01

    A car-borne survey was carried out in Kerala, India to estimate external dose. Measurements were made with a 3-in × 3-in NaI(Tl) scintillation spectrometer from September 23 to 27, 2013. The routes were selected from 12 Panchayats in Karunagappally Taluk which were classified into high level, mid-level and low level high background radiation (HBR) areas. A heterogeneous distribution of air kerma rates was seen in the dose rate distribution map. The maximum air kerma rate, 2.1 μGy/h, was observed on a beach sand surface. 232Th activity concentration for the beach sand was higher than that for soil and grass surfaces, and the range of activity concentration was estimated to be 0.7-2.3 kBq/kg. The contribution of 232Th to air kerma rate was over 70% at the measurement points with values larger than 0.34 μGy/h. The maximum value of the annual effective dose in Karunagappally Taluk was observed around coastal areas, and it was estimated to be 13 mSv/y. More than 30% of all the annual effective doses obtained in this survey exceeded 1 mSv/y.

  1. The influence of monovalent cations on trimeric G protein G(i)1α activity in HEK293 cells stably expressing DOR-G(i)1α (Cys(351)-Ile(351)) fusion protein.

    PubMed

    Vošahlíková, M; Svoboda, P

    2011-01-01

    The effect of monovalent cations on trimeric G protein G(i)1α was measured at equimolar concentration of chloride anion in pertussis-toxin (PTX)-treated HEK293 cells stably expressing PTX-insensitive DOR- G(i)1α (Cys(351)-Ile(351)) fusion protein by high-affinity [(35)S]GTPgammaS binding assay. The high basal level of binding was detected in absence of DOR agonist and monovalent ions and this high level was inhibited with the order of: Na(+) > K(+) > Li(+). The first significant inhibition was detected at 1 mM NaCl. The inhibition by monovalent ions was reversed by increasing concentrations of DOR agonist DADLE. The maximum DADLE response was also highest for sodium and decreased in the order of: Na(+) > K(+) ~ Li(+). Our data indicate i) an inherently high activity of trimeric G protein G(i)1α when expressed within DOR- G(i)1α fusion protein and determined in the absence of monovalent cations, ii) preferential sensitivity of DOR- G(i)1alpha to sodium as far as maximum of agonist response is involved.

  2. Synthesis, characterization, DNA-Binding, enzyme inhibition and antioxidant studies of new N-methylated derivatives of pyridinium amine

    NASA Astrophysics Data System (ADS)

    Zafar, Muhammad Naveed; Perveen, Fouzia; Nazar, Muhammad Faizan; Mughal, Ehsan Ullah; Rafique, Humera; Tahir, Muhammad Nawaz; Akbar, Muhammad Sharif; Zahra, Sabeen

    2017-06-01

    A series of novel N-methylated derivatives of pyridinium amine, [L1][Tf]-[L5][Tf], were synthesized and characterized by FTIR, NMR, MS and XRD analyses. Preliminary biological screening of these compounds including antioxidant, enzyme inhibition and DNA (salmon sperm) interaction studies were also carried out. The targeted compounds were synthesized by a melt reaction between 4-chloro-N-methyl pyridinium triflate and corresponding amines (1-naphthyl amine, o-ansidine, 2-nitroaniline, p-ansidine and cyclohexyl amine) at temperature of 230 °C. The DPPH radical antioxidant scavenging activities of these compounds at maximum concentration of 50 μg/mL were observed in the range of 60-70%. Acetylcholine esterase (AChE) and Butylcholine esterase (BChE) inhibitory activities of synthesized compounds at 2 mM concentration were also measured to be at maximum of 79 and 71% respectively. The spectral behavior of ligand-DNA obtained from photo-luminescent measurements showed that all ligands bind with DNA via non-covalent interactions. The binding constant values were determined by UV-visible and fluorescence spectroscopy and were quite close to that obtained from molecular docking studies.

  3. Polymer-surfactant complex formation and its effect on turbulent wall shear stress.

    PubMed

    Suksamranchit, Siriluck; Sirivat, Anuvat; Jamieson, Alexander M

    2006-02-01

    Turbulent drag reduction in Couette flow was investigated in terms of a decrease in wall shear stress for aqueous solutions of a nonionic polymer, poly(ethylene oxide) (PEO), a cationic surfactant, hexadecyltrimethylammonium chloride (HTAC), and their mixtures. Consistent with literature data, drag reduction was observed for PEO solutions above a critical molecular weight, 0.91 x 10(5) < Mc < 3.04 x 10(5) g/mol. Maximum drag reduction occurred at an optimum concentration, c(PEO)*, which scales inversely with molecular weight, and the % maximum drag reduction increases with molecular weight. For aqueous HTAC solutions, wall shear stress decreased with increasing HTAC concentration and leveled off at an optimum concentration, c(HTAC)*, comparable to the critical micelle concentration. For HTAC/PEO mixtures, the critical PEO molecular weight for drag reduction decreases, interpreted as due to an increase in hydrodynamic volume because of binding of HTAC micelles to PEO. Consistent with this interpretation, at fixed PEO concentration, maximum drag reduction was observed at an optimum HTAC concentration, c(HTAC/PEO)*, comparable to the maximum binding concentration, MBC. Also, with HTAC concentration fixed at the MBC, the optimum PEO concentration for drag reduction, c(PEO/HTAC)*, decreases relative to that, c(PEO)*, in the absence of HTAC.

  4. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions.

    PubMed

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-05-13

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode.

  5. Diffusion via space discretization method to study the concentration dependence of self-diffusivity under confinement

    NASA Astrophysics Data System (ADS)

    Sant, Marco; Papadopoulos, George K.; Theodorou, Doros N.

    2010-04-01

    The concentration dependence of self-diffusivity is investigated by means of a novel method, extending our previously developed second-order Markov process model to periodic media. Introducing the concept of minimum-crossing surface, we obtain a unique decomposition of the self-diffusion coefficient into two parameters with specific physical meanings. Two case studies showing a maximum in self-diffusivity as a function of concentration are investigated, along with two cases where such a maximum cannot be present. Subsequently, the method is applied to the large cavity pore network of the ITQ-1 (Mobil tWenty tWo, MWW) zeolite for methane (displaying a maximum in self-diffusivity) and carbon dioxide (no maximum), explaining the diffusivity trend on the basis of the evolution of the model parameters as a function of concentration.

  6. Interaction of immobilized avidin with an aequorin-biotin conjugate: an aequorin-linked assay for biotin.

    PubMed

    Feltus, A; Ramanathan, S; Daunert, S

    1997-12-01

    Biotinylated recombinant aequorin was used in the development of a heterogeneous bioluminescence binding assay for biotin. This assay is based on a competition between a biotinylated aequorin conjugate and biotin for the binding sites of avidin immobilized on solid particles. Dose-response curves were obtained that relate solid-phase aequorin activity to the concentration of biotin. Under certain experimental conditions these curves were biphasic; i.e., as the biotin concentration increased, the solid-phase aequorin activity first increased reaching a maximum and then decreased at higher biotin concentrations. This "hook" effect was observed with four different types of immobilization supports. The effect was more pronounced when low concentrations of aequorin-biotin conjugate were used, and diminished at a high conjugate concentration. This behavior indicates a possible positive cooperativity in the interaction between the immobilized avidin and biotin. Scatchard plot analysis was also consistent with a positive cooperativity mechanism. By using the ascending portion of the dose-response curve, the detection limit of the assay for biotin was 1 x 10(-15) M (100 zmol of biotin in the sample). Copyright 1997 Academic Press.

  7. Origin of radon concentration of Csalóka Spring in the Sopron Mountains (West Hungary).

    PubMed

    Freiler, Ágnes; Horváth, Ákos; Török, Kálmán; Földes, Tamás

    2016-01-01

    We examined the Csalóka Spring, which has the highest radon concentration in the Sopron Mountains (West Hungary) (, yearly average of 227 ± 10 Bq L(-1)). The main rock types here are gneiss and micaschist, formed from metamorphism of former granitic and clastic sedimentary rocks respectively. The aim of the study was to find a likely source of the high radon concentration in water. During two periods (2007-2008 and 2012-2013) water samples were taken from the Csalóka Spring to measure its radon concentration (from 153 ± 9 Bq L(-1) to 291 ± 15 Bq L(-1)). Soil and rock samples were taken within a 10-m radius of the spring from debrish and from a deformed gneiss outcrop 500 m away from the spring. The radium activity concentration of the samples (between 24.3 ± 2.9 Bq kg(-1) and 145 ± 6.0 Bq kg(-1)) was measured by gamma-spectroscopy, and the specific radon exhalation was determined using radon-chamber measurements (between 1.32 ± 0.5 Bq kg(-1) and 37.1 ± 2.2 Bq kg(-1)). Based on these results a model calculation was used to determine the maximum potential radon concentration, which the soil or the rock may provide into the water. We showed that the maximum potential radon concentration of these mylonitic gneissic rocks (cpot = 2020 Bq L(-1)) is about eight times higher than the measured radon concentration in the water. However the maximum potential radon concentration for soils are significantly lower (41.3 Bq L(-1)) Based on measurements of radon exhalation and porosity of rock and soil samples we concluded that the source material can be the gneiss rock around the spring rather than the soil there. We determined the average radon concentration and the time dependence of the radon concentration over these years in the spring water. We obtained a strong negative correlation (-0.94 in period of 2007-2008 and -0.91 in 2012-2013) between precipitation and radon concentration. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Sub-lethal effects of the neurotoxic pyrethroid insecticide Fastac 50EC on the general motor and locomotor activities of the non-targeted beneficial carabid beetle Platynus assimilis (Coleoptera: Carabidae).

    PubMed

    Tooming, Ene; Merivee, Enno; Must, Anne; Sibul, Ivar; Williams, Ingrid

    2014-06-01

    Sub-lethal effects of pesticides on behavioural endpoints are poorly studied in carabids (Coleoptera: Carabidae) though changes in behaviour caused by chemical stress may affect populations of these non-targeted beneficial insects. General motor activity and locomotion are inherent in many behavioural patterns, and changes in these activities that result from xenobiotic influence mirror an integrated response of the insect to pesticides. Influence of pyrethroid insecticides over a wide range of sub-lethal doses on the motor activities of carabids still remains unclear. Video tracking of Platynus assimilis showed that brief exposure to alpha-cypermethrin at sub-lethal concentrations ranged from 0.01 to 100 mg L(-1) caused initial short-term (< 2 h) locomotor hyperactivity followed by a long-term (>24 h) locomotor hypo-activity. In addition, significant short- and long-term concentration and time-dependent changes occurred in general motor activity patterns and rates. Conspicuous changes in motor activity of Platynus assimilis beetles treated at alpha-cypermethrin concentrations up to 75,000-fold lower than maximum field recommended concentration (MFRC) suggest that many, basic fitness-related behaviours might be severely injured as well. These changes may negatively affect carabid populations in agro-ecosystems. Long-term hypo-activity could directly contribute to decreased trap captures of carabids frequently observed after insecticide application in the field. © 2013 Society of Chemical Industry.

  9. Cycling of Dissolved Organic Phosphorus and Alkaline Phosphatase Activity in Euphotic Zone of the Western North Pacific

    NASA Astrophysics Data System (ADS)

    Suzumura, M.

    2010-12-01

    Phosphorus is an essential nutrient for marine organisms. In oligotrophic environments, concentrations of dissolved inorganic phosphate (SRP), the most bioavailable form of phosphorus, are low and have been hypothesized to constrain the primary productivity. Evidence has been found that dissolved organic phosphorus (DOP) supports a significant fraction of primary production through hydrolytic remineralization of DOP to SRP by alkaline phosphatase (APA). In this study, DOP biogeochemistry was investigated at three locations of the open-ocean environment in the Kuroshio region and at a semi-eutrophic coastal site of the western North Pacific. Concentrations of SRP, DOP and hydrolyzable ester-P were measured in the euphotic zone. Kinetic parameters of APA were determined using a fluorogenic substrate, including potential maximum velocity (Vmax), apparent Michaelis-Menten half-saturation constant (Km), and turnover time (TA) of APA hydrolyzable DOP. SRP concentrations were quite low (≤ 10 nM) in the surface seawater and rapidly increased below the chlorophyll a maximum layer (CML). DOP concentration ranged from 29 to 223 nM. Above the CML, DOP composed a major fraction accounting for 60-100% of dissolved total P. A significant linear relationship was found between the concentrations of SRP and hydrolyzable ester-P (R2 = 0.83, P < 0.01). This suggests active utilization of ester-P under phosphate-depleted conditions. In the Kuroshio region, Vmax of APA exhibited the highest value at the surface water (0 m) and decreased rapidly with depth, while at the coastal site the peak value was found at CML. TA of hydrolyzable DOP was quite variable among the locations and increased with depth especially below CML. The estimated values of in situ hydrolysis rate were much lower (2-34%) than the potential Vmax which was determined with the addition of an excess amount of the substrate. The results suggest that marine microbes can efficiently and rapidly utilize hydrolyzable DOP under phosphate-depleted conditions and that there is still room in the in situ APA activity. Utilization of DOP, however, is likely regulated by the ambient concentrations of hydrolyzable ester-P lower than the apparent Km.

  10. Antibacterial activity of propolins from Taiwanese green propolis.

    PubMed

    Chen, Yue-Wen; Ye, Siou-Ru; Ting, Chieh; Yu, Yu-Hsiang

    2018-04-01

    Taiwanese green propolis is a prenylated flavonoid rich honeybee product and propolins isolated from Taiwanese green propolis exert a broad spectrum of biological activities, such as anti-cancer and anti-oxidant. However, the anti-bacterial effects of Taiwanese green propolis or propolins are still poorly understood. In the current study, the antibacterial effects of Taiwanese green propolis and propolins were evaluated. Results show that the maximum dry matter yields of Taiwanese green propolis were observed in the 95% and 99.5% ethanol extracts compared to other extraction methods. Consistently, the highest concentration of propolins C, D, F and G from Taiwanese green propolis was obtained in 95% and 99.5% ethanol extracts. Propolins inhibited the growth of gram-positive bacterial strains (Staphylococcus aureus, Bacillus subtilis, Listeria monocytogenes and Paenibacillus larvae). The average minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of propolins from ethanol extracts were 20 μg/ml. Among the propolins, propolin C had the highest antibacterial activity. Furthermore, Taiwanese green propolis also showed antibacterial activity against methicillin-resistant S. aureus (MRSA). In conclusion, these results demonstrate that Taiwanese green propolis and propolins have significant antibacterial activity, particularly against gram-positive bacterial strains. Copyright © 2017. Published by Elsevier B.V.

  11. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    PubMed

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Effect of infusion of equine plasma or 6% hydroxyethyl starch (600/0.75) solution on plasma colloid osmotic pressure in healthy horses.

    PubMed

    McKenzie, Erica C; Esser, Melissa M; McNitt, Sarah E; Payton, Mark E

    2016-07-01

    OBJECTIVE To compare the effects of equivalent volumes of equine plasma and 6% hydroxyethyl starch (600/0.75) solution (hetastarch) administered IV on plasma colloid osmotic pressure (pCOP) and commonly monitored clinicopathologic variables in horses. ANIMALS 6 healthy mares. PROCEDURES In a randomized, crossover study, horses were administered hetastarch or plasma (both 10 mL/kg, IV) 18 months apart. The pCOP and variables of interest were measured before (baseline), immediately after, and at intervals up to 96 or 120 hours after infusion. Prothrombin and activated partial thromboplastin times were measured before and at 2 and 8 hours after each infusion. RESULTS Prior to hetastarch and plasma infusions, mean ± SEM pCOP was 19.4 ± 0.5 mm Hg and 19.4 ± 0.8 mm Hg, respectively. In general, hetastarch and plasma infusions comparably increased pCOP from baseline for 48 hours, with maximum increases of 2.0 and 2.3 mm Hg, respectively. Mean Hct and hemoglobin, total protein, and albumin concentrations were decreased for a period of 72, 96, or 120 hours after hetastarch infusion with maximum decrements of 8.8%, 3.2 g/dL, 1.2 g/dL, and 0.6 g/dL, respectively. Plasma infusion decreased (albeit not always significantly) hemoglobin concentration and Hct for 20 and 24 hours (maximum changes of 1.5 g/dL and 6.6%, respectively) and increased total solids concentration (maximum change of 0.6 g/dL) for 48 hours. Platelet count and coagulation times were minimally affected. CONCLUSIONS AND CLINICAL RELEVANCE Overall, the hetastarch and plasma infusions comparably increased pCOP in healthy horses for up to 48 hours. Hetastarch induced greater, more persistent perturbations in clinicopathologic variables.

  13. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum

    PubMed Central

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L. PMID:21811671

  14. Bioconversion of Agricultural Waste to Ethanol by SSF Using Recombinant Cellulase from Clostridium thermocellum.

    PubMed

    Mutreja, Ruchi; Das, Debasish; Goyal, Dinesh; Goyal, Arun

    2011-01-01

    The effect of different pretreatment methods, temperature, and enzyme concentration on ethanol production from 8 lignocellulosic agrowaste by simultaneous saccharification and fermentation (SSF) using recombinant cellulase and Saccharomyces cerevisiae were studied. Recombinant cellulase was isolated from E. coli BL21 cells transformed with CtLic26A-Cel5-CBM11 full-length gene from Clostridium thermocellum and produced in both batch and fed-batch processes. The maximum cell OD and specific activity in batch mode were 1.6 and 1.91 U/mg, respectively, whereas in the fed-batch mode, maximum cell OD and specific activity were 3.8 and 3.5 U/mg, respectively, displaying a 2-fold increase. Eight substrates, Syzygium cumini (jamun), Azadirachta indica (neem), Saracens indica (asoka), bambusa dendrocalmus (bamboo), Populas nigra (poplar), Achnatherum hymenoides (wild grass), Eucalyptus marginata (eucalyptus), and Mangifera indica (mango), were subjected to SSF. Of three pretreatments, acid, alkali, and steam explosion, acid pretreatment Syzygium cumini (Jamun) at 30°C gave maximum ethanol yield of 1.42 g/L.

  15. Development of natural cellulase inhibitor mediated intensified biological pretreatment technology using Pleurotus florida for maximum recovery of cellulose from paddy straw under solid state condition.

    PubMed

    Naresh Kumar, Manickam; Ravikumar, Rajarathinam; Thenmozhi, Senniyappan; Kirupa Sankar, Muthuvelu

    2017-11-01

    Inhibitor mediated intensified bio-pretreatment (IMBP) technology using natural cellulase inhibitor (NCI) for maximum cellulose recovery from paddy straw was studied. Pretreatment was carried out under solid state condition. Supplementation of 8% NCI in pretreatment medium improves cellulose recovery and delignification by 1.2 and 1.5-fold respectively, compared to conventional bio-pretreatment due to inhibition of 61% of cellulase activity in IMBP. Further increase in NCI concentration showed negative effect on Pleurotus florida growth and suppress the laccase productivity by 1.1-fold. Laccase activity in IMBP was found to be 2.0U/mL on 19 th day, which is higher than (1.5U/mL) conventional bio-pretreatment. Physico-chemical modifications in paddy straw before and after pretreatment were analysed by SEM, ATR-FTIR, XRD and TGA. According to these findings, the IMBP technology can be a viable eco-friendly technology for sustainable production of bioethanol with maximum cellulose recovery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The influence of screening of the polyion electrostatic potential on the counterion dynamics in polyelectrolyte solutions

    NASA Astrophysics Data System (ADS)

    Schipper, F. J. M.; Hollander, J. G.; Leyte, J. C.

    1998-10-01

    The self-diffusion coefficient of tetra-methylammonium counterion in solutions of polymethacrylic acid in 0953-8984/10/41/004/img1 has been measured over a broad polyion concentration range at a constant degree of neutralization and at different ratios of added monovalent or bivalent salt to polyions. A maximum counterion self-diffusion coefficient was observed as a function of polyion concentration. The value of the self-diffusion coefficient at the maximum did not depend on the valency of the added salt. The maximum was found at lower polymer concentrations and with a higher value, when the ratio of added salt to polyions was increased, as predicted by the Poisson-Boltzmann-Smoluchowski equation in the cylindrical cell model for polyelectrolytes. At higher polyion concentrations a maximum counterion self-diffusion coefficient against the ratio of added salt and polyions was observed, which has not been reported before. Upon increasing this ratio the electrostatic potential of the polyelectrolyte gets screened, leading to an increase of the counterion self-diffusion coefficient. Concentration effects of the added salt on the other hand ultimately lead to a decrease of the counterion self-diffusion coefficient, which explains the occurrence of a maximum.

  17. Phosphorus-zinc interactive effects on growth by Selenastrum capricornutum (chlorophyta)

    USGS Publications Warehouse

    Kuwabara, J.S.

    1985-01-01

    Culturing experiments in chemically defined growth media were conducted to observe possible Zn and P interactions on Selenastrum capricornutum Printz growth indexes. Elevated Zn concentrations (7.5 ?? 10-8 and 1.5 ?? 10-7 M [Zn2+]) were highly detrimental to algal growth, affecting lag, exponential, and stationary growth phases. P behaved as a yield-limiting nutrient with maximum cell densities increasing linearly with total P. This yield limitation was intensified at elevated Zn concentrations. Although calculated cellular phosphorus concentrations increased markedly with Zn ion activity, elevated Zn concentrations had no apparent effect on rates of phosphorus uptake estimated for Selenastrum during exponential growth. Results indicated that P-Zn interactions were significant in describing Selenastrum cell yield results and are consistent with previous Zn studies on chlorophytes. These P-Zn interactions and the observed inhibitory growth effects of submicromolar Zn concentrations suggest that in nature an apparent P yield-limiting condition may result from elevated Zn concentrations.

  18. Optimization of free ammonia concentration for nitrite accumulation in shortcut biological nitrogen removal process.

    PubMed

    Chung, Jinwook; Shim, Hojae; Park, Seong-Jun; Kim, Seung-Jin; Bae, Wookeun

    2006-03-01

    A shortcut biological nitrogen removal (SBNR) utilizes the concept of a direct conversion of ammonium to nitrite and then to nitrogen gas. A successful SBNR requires accumulation of nitrite in the system and inhibition of the activity of nitrite oxidizers. A high concentration of free ammonia (FA) inhibits nitrite oxidizers, but unfortunately decreases the ammonium removal rate as well. Therefore, the optimal range of FA concentration is necessary not only to stabilize nitrite accumulation but also to achieve maximum ammonium removal. In order to derive such optimal FA concentrations, the specific substrate utilization rates of ammonium and nitrite oxidizers were measured. The optimal FA concentration range appeared to be 5-10 mg/L for the adapted sludge. The simulated results from the modified inhibition model expressed by FA and ammonium/nitrite concentrations were shown very similar to the experimental results.

  19. A comparison of in-cloud HCl concentrations from the NASA/MSFC MDM to measurements for the space shuttle launch

    NASA Technical Reports Server (NTRS)

    Glasser, M. E.

    1981-01-01

    The Multilevel Diffusion Model (MDM) Version 5 was modified to include features of more recent versions. The MDM was used to predict in-cloud HCl concentrations for the April 12 launch of the space Shuttle (STS-1). The maximum centerline predictions were compared with measurements of maximum gaseous HCl obtained from aircraft passes through two segments of the fragmented shuttle ground cloud. The model over-predicted the maximum values for gaseous HCl in the lower cloud segment and portrayed the same rate of decay with time as the observed values. However, the decay with time of HCl maximum predicted by the MDM was more rapid than the observed decay for the higher cloud segment, causing the model to under-predict concentrations which were measured late in the life of the cloud. The causes of the tendency for the MDM to be conservative in over-estimating the HCl concentrations in the one case while tending to under-predict concentrations in the other case are discussed.

  20. The relationship between the deep-level structure in crust and brewing of strong earthquakes in Xingtai area

    NASA Astrophysics Data System (ADS)

    Xiao, Lan-Xi; Zhu, Yuan-Qing; Zhang, Shao-Quan; Liu, Xu; Guo, Yu

    1999-11-01

    In this paper, crust medium is treated as Maxwell medium, and crust model includes hard inclusion, soft inclusion, deep-level fault. The stress concentration and its evolution with time are obtained by using three-dimensional finite element method and differential method. The conclusions are draw as follows: (1) The average stress concentration and maximum shear stress concentration caused by non-heterogeneous of crust are very high in hard inclusion and around the deep fault. With the time passing by, the concentration of average stress in the model gradually trends to uniform. At the same time, the concentration of maximum shear stress in hard inclusion increases gradually. This character is favorable to transfer shear strain energy from soft inclusion to hard inclusion. (2) When the upper mantle beneath the inclusion upheave at a certain velocity of 1 cm/a, the changes of average stress concentration with time become complex, and the boundary of the hard and soft inclusion become unconspicuous, but the maximum shear stress concentration increases much more in the hard inclusion with time at a higher velocity. This feature make for transformation of energy from the soft inclusion to the hard inclusion. (3) The changes of average stress concentration and maximum shear stress concentration with time around the deep-level fault result in further accumulation of maximum shear stress concentration and finally cause the deep-level fault instable and accelerated creep along fault direction. (4) The changes of vertical displacement on the surface of the model, which is caused by the accelerated creep of the deep-level fault, is similar to that of the observation data before Xingtai strong earthquake.

  1. Host-specific variation in infection by toxigenic fungi and contamination by mycotoxins in pearl millet and corn.

    PubMed

    Wilson, J P; Jurjevic, Z; Hanna, W W; Wilson, D M; Potter, T L; Coy, A E

    2006-02-01

    Pearl millet is widely consumed in regions of Africa and Asia, and is increasingly being grown as an alternative grain in drought-prone regions of the United States. Pearl millet and corn were grown in dryland conditions at Tifton, Georgia, USA and grains were compared for pre-harvest infection by potentially toxigenic fungi and contamination by mycotoxins. Corn hybrids Agripro 9909 and Pioneer 3146, and pearl millet Tifgrain 102 were grown in 2000 and 2001; pearl millet HGM 100 was included in the test in 2001. Hybrids were sown on multiple planting dates in each year to induce variation in flowering time. Host species differed in the frequency of isolation of potentially toxigenic fungal species in both years. Across years, corn hybrids were more prone to infection by Aspergillus flavus Link (maximum isolation frequency = 8.8%) and Fusarium moniliforme Sheldon sensu lato (maximum isolation frequency = 72.8%), with corresponding greater concentrations of aflatoxins (maximum concentration = 204.9 microg kg(-1)) and fumonisins (maximum concentration = 34,039 microg kg(-1)). Pearl millet was more prone to infection by F. semitectum Berk. & Ravenel (maximum isolation = 74.2%) and F. chlamydosporum Wollenweb & Reinking (maximum isolation = 33.0%), and contamination by moniliformin (maximum contamination = 92.1 microg kg(-1)). Beauvericin (maximum concentration = 414.6 microg kg(-1)) was present in both hosts. Planting date of corn affected aflatoxin and beauvericin contamination in 2000, and fumonisin concentration in 2001. The observed differences in mycotoxin contamination of the grains, which are likely due to host-specific differences in susceptibility to pre-harvest mycoflora, may affect food safety when the crops are grown under stress conditions.

  2. Optimization of banana trunk-activated carbon production for methylene blue-contaminated water treatment

    NASA Astrophysics Data System (ADS)

    Danish, Mohammed; Ahmad, Tanweer; Nadhari, W. N. A. W.; Ahmad, Mehraj; Khanday, Waheed Ahmad; Ziyang, Lou; Pin, Zhou

    2018-03-01

    This experiment was run to characterize the banana trunk-activated carbon through methylene blue dye adsorption property. The H3PO4 chemical activating agent was used to produce activated carbons from the banana trunk. A small rotatable central composite design of response surface methodology was adopted to prepare chemically (H3PO4) activated carbon from banana trunk. Three operating variables such as activation time (50-120 min), activation temperature (450-850 °C), and activating agent concentration (1.5-7.0 mol/L) play a significant role in the adsorption capacities ( q) of activated carbons against methylene blue dye. The results implied that the maximum adsorption capacity of fixed dosage (4.0 g/L) banana trunk-activated carbon was achieved at the activation time of 51 min, the activation temperature of 774 °C, and H3PO4 concentration of 5.09 mol/L. At optimum conditions of preparation, the obtained banana trunk-activated carbon has adsorption capacity 64.66 mg/g against methylene blue. Among the prepared activated carbons run number 3 (prepared with central values of the operating variables) was characterized through Fourier transform infrared spectroscopy, field emission scanning microscopy, and powder X-ray diffraction.

  3. Impact of Solubilizing Additives on Supersaturation and Membrane Transport of Drugs.

    PubMed

    Raina, Shweta A; Zhang, Geoff G Z; Alonzo, David E; Wu, Jianwei; Zhu, Donghua; Catron, Nathaniel D; Gao, Yi; Taylor, Lynne S

    2015-10-01

    Many enabling formulations give rise to supersaturated solutions wherein the solute possesses higher thermodynamic activity gradients than the solute in a saturated solution. Since flux across a membrane is driven by solute activity rather than concentration, understanding how solute thermodynamic activity varies with solution composition, particularly in the presence of solubilizing additives, is important in the context of passive absorption. In this study, a side-by-side diffusion cell was used to evaluate solute flux for solutions of nifedipine and felodipine in the absence and presence of different solubilizing additives at various solute concentrations. At a given solute concentration above the equilibrium solubility, it was observed that the solubilizing additives could reduce the membrane flux, indicating that the extent of supersaturation can be reduced. However, the flux could be increased back to the same maximum value (which was determined by the concentration where liquid-liquid phase separation (LLPS) occurred) by increasing the total solute concentration. Qualitatively, the shape of the curves of solute flux through membrane as a function of total solute concentration is the same in the absence and presence of solubilizing additives. Quantitatively, however, LLPS occurs at higher solute concentrations in the presence of solubilizing additives. Moreover, the ratios of the LLPS onset concentration and equilibrium solubility vary significantly in the absence and presence of additives. These findings clearly point out the flaws in using solute concentration in estimating solute activity or supersaturation, and reaffirm the use of flux measurements to understand supersaturated systems. Clear differentiation between solubilization and supersaturation, as well as thorough understanding of their respective impacts on membrane transport kinetics is important for the rational design of enabling formulations for poorly soluble compounds.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dholabhai, Pratik P., E-mail: pratik.dholabhai@asu.ed; Anwar, Shahriar, E-mail: anwar@asu.ed; Adams, James B., E-mail: jim.adams@asu.ed

    Kinetic lattice Monte Carlo (KLMC) model is developed for investigating oxygen vacancy diffusion in praseodymium-doped ceria. The current approach uses a database of activation energies for oxygen vacancy migration, calculated using first-principles, for various migration pathways in praseodymium-doped ceria. Since the first-principles calculations revealed significant vacancy-vacancy repulsion, we investigate the importance of that effect by conducting simulations with and without a repulsive interaction. Initially, as dopant concentrations increase, vacancy concentration and thus conductivity increases. However, at higher concentrations, vacancies interfere and repel one another, and dopants trap vacancies, creating a 'traffic jam' that decreases conductivity, which is consistent with themore » experimental findings. The modeled effective activation energy for vacancy migration slightly increased with increasing dopant concentration in qualitative agreement with the experiment. The current methodology comprising a blend of first-principle calculations and KLMC model provides a very powerful fundamental tool for predicting the optimal dopant concentration in ceria related materials. -- graphical abstract: Ionic conductivity in praseodymium doped ceria as a function of dopant concentration calculated using the kinetic lattice Monte Carlo vacancy-repelling model, which predicts the optimal composition for achieving maximum conductivity. Display Omitted Research highlights: {yields} KLMC method calculates the accurate time-dependent diffusion of oxygen vacancies. {yields} KLMC-VR model predicts a dopant concentration of {approx}15-20% to be optimal in PDC. {yields} At higher dopant concentration, vacancies interfere and repel one another, and dopants trap vacancies. {yields} Activation energy for vacancy migration increases as a function of dopant content« less

  5. Distributions and concentrations of thallium in surface waters of a region impacted by historical metal mining (Cornwall, UK).

    PubMed

    Tatsi, Kristi; Turner, Andrew

    2014-03-01

    Thallium is a highly toxic heavy metal whose concentrations and distributions in the aquatic environment are poorly defined. In this study, concentrations of aqueous and total Tl have been measured in water samples from a variety of rivers and effluents (the latter related to historical metal mining) in the county of Cornwall, SW England. Aqueous concentrations ranged from about 13 ng L(-1) in a river whose catchment contained no metal mines to 2,640 ng L(-1) in water abstracted directly from an abandoned mine shaft. Concentrations of Tl in rivers were greatest in the vicinity of mine-related effluents, with a maximum value measured of about 770 ng L(-1). Thallium was not efficiently removed by the conventional, active treatment of mine water, and displayed little interaction with suspended particles. Its mobility in surface waters, coupled with concentrations that are close to a quality guideline of 800 ng L(-1), is cause for concern. Accordingly, we recommend that the metal is more closely monitored in this and other regions impacted by mining activities. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Indoor radon levels in workplaces of Adapazarı, north-western Turkey

    NASA Astrophysics Data System (ADS)

    Kapdan, Enis; Altinsoy, Nesrin

    2014-02-01

    The main objective of this study is to assess the health hazards due to radon gas accumulation and to compare the concentrations in different kinds of workplaces, in the city of Adapazarı, one of the most important industrial cities of Turkey. For this purpose, radon activity concentration measurements were carried out in schools, factories, offices and outdoors using CR-39 solid state nuclear track detectors (SSNTD). Results show that the mean radon activity concentrations (RAC) in schools, offices and factories were found to be 66, 76 and 27 Bq/m3, respectively, with an outdoor concentration of 14 Bq/m3. The average concentrations were found to decrease as follows for different types of industries: automotive > electronic > metal > textile. Because the maximum measured radon concentrations are 151 Bq/m3 in the schools, 173 Bq/m3 in the offices and 52 Bq/m3 in the factories, the limits of ICRP are not exceeded in any of the buildings in the region. In addition, the estimated mean annual effective doses to the people in the workplace, students, office workers and factory workers have been calculated as 0.27, 0.63 and 0.20 mSv/y, respectively for the region.

  7. Adsorption-desorption mediated separation of low concentrated D2O from water with hydrophobic activated carbon fiber.

    PubMed

    Ono, Yuji; Futamura, Ryusuke; Hattori, Yoshiyuki; Sakai, Toshio; Kaneko, Katsumi

    2017-12-15

    The adsorption and desorption of D 2 O on hydrophobic activated carbon fiber (ACF) occurs at a smaller pressure than the adsorption and desorption of H 2 O. The behavior of the critical desorption pressure difference between D 2 O and H 2 O in the pressure range of 1.25-1.80kPa is applied to separate low concentrated D 2 O from water using the hydrophobic ACF, because the desorption branches of D 2 O and H 2 O drop almost vertically. The deuterium concentration of all desorbed water in the above pressure range is lower than that of water without adsorption-treatment on ACF. The single adsorption-desorption procedure on ACF at 1.66kPa corresponding to the maximum difference of adsorption amount between D 2 O and H 2 O reduced the deuterium concentration of desorbed water to 130.6ppm from 143.0ppm. Thus, the adsorption-desorption procedure of water on ACF is a promising separation and concentration method of low concentrated D 2 O from water. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. 40 CFR 463.34 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant concentrations: Subpart C [Finishing water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) TSS 130 37 pH (1) (1) 1...

  9. A novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization.

    PubMed

    Liu, Xu Dong; Xu, Yan

    2008-07-01

    This study reports the purification and characterization of a novel raw starch digesting alpha-amylase from a newly isolated Bacillus sp. YX-1. Maximum alpha-amylase activity (53 U mL(-1)) was obtained at 45 degrees C after 44 h of incubation. The enzyme was purified using ammonium sulfate precipitation, ion exchange and gel filtration chromatography, and showed a molecular weight of 56 kDa by SDS-PAGE. This enzyme exhibited maximum activity at pH 5.0, performed stability over a broad range of pH 4.5-11.0, and was optimally active at 40-50 degrees C. The enzyme preparation had a strong digesting ability towards various raw starches and efficiently hydrolyzed raw corn starch at a concentration of 20% and pH 5.0, which were normally used in the starch industries, in a period of 12h. By analyzing its partial amino acid sequences, the enzyme was proposed to be a novel alpha-amylase.

  10. Dynamics of coarse particulate matter in the turbidity maximum zone of the Gironde Estuary

    NASA Astrophysics Data System (ADS)

    Fuentes-Cid, Ana; Etcheber, Henri; Schmidt, Sabine; Abril, Gwenaël; De-Oliveira, Eric; Lepage, Mario; Sottolichio, Aldo

    2014-01-01

    There is a lack of studies devoted to coarse particulate matter (CPM) in estuaries, although this fraction can disturb activities that filter large volumes of water, such as industrial or fishery activities. In the macrotidal and highly-turbid Gironde Estuary, a monthly sampling of CPM was performed in 2011 and 2013 at two stations in the Turbidity Maximum Zone (TMZ) to understand its seasonal, tidal and hydrological dynamics. Regardless of the season and station, low quantities of CPM (few g m-3) were observed in comparison with suspended particulate matter (several 103 g m-3). The highest concentrations were consistently recorded in bottom waters and at the upstream station. Whereas there is no clear link between the CPM present in the column water and spring or neap tides, an increase in the CPM size has been identified at the two stations after a flood event, fact potentially critical regarding filtering functioning of estuarine activities.

  11. Mycelial biomass and biochemical properties of proteases produced by Lentinus citrinus DPUA 1535 (Higher Basidiomycetes) in submerged cultivation.

    PubMed

    Kirsch, Larissa de Souza; Ebinuma, Valeria de Carvalho Santos; Teixeira, Maria Francisca Simas

    2013-01-01

    The cultivation of Lentinus citrinus for mycelial biomass and protease production under different carbon and nitrogen sources was studied in submerged cultivation. The nutritional source concentration for protease production was evaluated using a full factorial design. For mycelial biomass maltose (4.94 mg/mL) and beef extract (5.45 mg/mL), carbon and nitrogen sources presented the best results, respectively. The maximum protease activity was 73.33 U/mL with fructose (30.0 g/L) and beef extract (10.0 g/L). Proteases showed maximum activity at 40°C and pH 7.0, which exhibited high stability at experimental conditions. The final part of this work was devoted to estimating the main thermodynamic parameters of the irreversible enzyme inactivation (ΔH* = 17.86 kJ/mol, ΔG* =102.09 kJ/mol, ΔS* = -260.76 J/mol×K) through residual activity tests carried out at 25-70°C, by making use of Arrhenius and Eyring plots.

  12. First-pass metabolism of decursin, a bioactive compound of Angelica gigas, in rats.

    PubMed

    Park, Hyun Seo; Kim, Byunghyun; Oh, Ju-Hee; Kim, Young Choong; Lee, Young-Joo

    2012-06-01

    Decursin is considered the major bioactive compound of Angelica gigas roots, a popular Oriental herb and dietary supplement. In this study, the pharmacokinetics of decursin and its active metabolite, decursinol, were evaluated after the administration of decursin in rats. The plasma concentration of decursin decreased rapidly, with an initial half-life of 0.05 h. It was not detectable at 1 h after intravenous administration at an area under the plasma concentration-time curve of 1.20 µg · mL-1·h, whereas the concentration of decursinol increased rapidly reaching a maximum concentration of 2.48 µg · mL-1 at the time to maximum plasma concentration of 0.25 h and an area under the plasma concentration-time curve of 5.23 µg · mL-1·h. Interestingly, after oral administration of decursin, only decursinol was present in plasma, suggesting an extensive hepatic first-pass metabolism of decursin. The extremely low bioavailability of decursin after its administration via the hepatic portal vein (the fraction of dose escaping first-pass elimination in the liver, FH = 0.11) is indicative of extensive hepatic first-pass metabolism of decursin, which was confirmed by a tissue distribution study. These findings suggest that decursin is not directly associated with the bioactivity of A. gigas and that it may work as a type of natural prodrug of decursinol. Georg Thieme Verlag KG Stuttgart · New York.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.

    Here, iodine-doped CdTe and Cd 1-xMg xTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 10 18 cm -3 for CdTe and 3 x 10 17 cm -3 for Cd 0.65Mg 0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTemore » samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd 0.65Mg 0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 10 18 cm -3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 10 16 cm -3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.« less

  14. The acute phase response of C3, C5, ceruloplasmin, and C-reactive protein induced by turpentine pleurisy in the rabbit.

    PubMed Central

    Giclas, P. C.; Manthei, U.; Strunk, R. C.

    1985-01-01

    Concentrations of five serum proteins, C3, C5, ceruloplasmin, C-reactive protein, and albumin, have been measured during the acute phase response in rabbits with turpentine-induced pleurisy. C-reactive protein concentrations in the circulation rose abruptly between 12 and 36 hours to a level greater than 50 times the pretreatment concentration, then returned to undetectable amounts by 96 hours. C3 and ceruloplasmin both showed some increase in concentration by 12 hours and reached their maximum concentrations of two to three times the baseline levels 48-72 hours after the turpentine treatment. Concentrations were still elevated at 120 hours, after which time they gradually returned to normal. C5 and albumin concentrations in the turpentine-treated rabbits did not differ from the baseline concentrations. The same five proteins were measured in the inflammatory exudate. C-reactive protein was not detectable at any of the time points. C3, C5, ceruloplasmin, and albumin were present in normal pleural fluid at roughly half their serum concentrations. The activities of C3, C5, and ceruloplasmin were low in the early exudate, but C3 and C5 activity rose relative to their concentrations in the later samples of pleural fluid. The specific activities of C3 and C5 were higher in the pleural fluid at 72 hours than in plasma, while that of ceruloplasmin remained less in the pleural fluid than in plasma throughout the experiment. The involvement of these proteins and their relation to the inflammatory response are discussed. Images Figure 6 PMID:2409807

  15. Larvicidal, ovicidal and pupicidal activities of Gliricidia sepium (Jacq.) (Leguminosae) against the malarial vector, Anopheles stephensi Liston (Culicidae: Diptera).

    PubMed

    Krishnappa, Kaliyamoorthy; Dhanasekaran, Shanmugam; Elumalai, Kuppusamy

    2012-08-01

    To investigate the potentiality of mosquitocidal activity of Gliricidia sepium (G. sepium) (Jacq.) (Leguminosae). Twenty five early third instar larvae of Anopheles stephensi (An. stephensi) were exposed to various concentrations (50-250 ppm) and the 24 h LC(50) values of the G. sepium extract was determined by probit analysis. The ovicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm under laboratory conditions. The eggs hatchability was assessed 48 h post treatment. The pupicidal activity was determined against An. stephensi to various concentrations ranging from 25-100 ppm. Mortality of each pupa was recorded after 24 h of exposure to the extract. Results pertaining to the experiment clearly revealed that ethanol extract showed significant larvicidal, ovicidal and pupicidal activity against the An. stephensi. Larvicidal activity of ethanol extracts of G. sepium showed maximum mortality in 250 ppm concentration (96.0±2.4)%. Furthermore, the LC(50) was found to be 121.79 and the LC(90) value was recorded to be 231.98 ppm. Ovicidal activity of ethanol extract was assessed by assessing the egg hatchability. Highest concentration of both solvent extracts exhibited 100% ovicidal activity. Similarly, pupae exposed to different concentrations of ethanol extract were found dead with 58.10% adult emergence when it was treated with 25 ppm concentration. Similarly, 18.36 (n=30; 61.20%); 21.28(70.93) and 27.33(91.10) pupal mortality was recorded from the experimental pupae treated with 50, 75 and 100 ppm concentration of extracts. Three fractions have been tested for their larvicidal activity of which the Fraction 3 showed the LC(50) and LC(90) values of 23.23 and 40.39 ppm. With regard to the ovicidal effect fraction 3 showed highest ovicidal activities than the other two fractions. Furthermore, there were no hatchability was recorded above 50 ppm (100% egg mortality) in the experimental group. Statistically significant pupicidal activity was recorded from 75 ppm concentration. From the results it can be concluded the crude extract of G. sepium is an excellent potential for controlling An. stephensi mosquito. It is apparent that, fraction 3 possess a novel and active principle which could be responsible for those biological activities. Copyright © 2012 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  16. Evaluation of acetamiprid-induced genotoxic and oxidative responses in Eisenia fetida.

    PubMed

    Li, Bing; Xia, Xiaoming; Wang, Jinhua; Zhu, Lusheng; Wang, Jun; Wang, Guangchi

    2018-06-19

    As a novel neonicotinoids insecticide, acetamiprid has been widely used worldwide. In this study, a laboratory test was conducted to expose earthworms (Eisenia fetida) to artificial soil spiked with various concentrations of acetamiprid (0, 0.05, 0.10, 0.25 and 0.50 mg/kg of soil) respectively after 7, 14, 21 and 28 d. Reactive oxygen species (ROS) generation, antioxidant enzymes activity including superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferases (GST), malondialdehyde (MDA) content, and DNA damage were determined in earthworms. The ROS level increased in varying degrees at most exposure concentrations. The SOD activity was not significantly affected. The CAT activity was increased in the beginning, then gradually suppressed and resumed to the control level at the end, with the maximum change (171%) occurred at 14 d for 0.05 mg/kg. The GST activity was induced at 7 d, and then inhibited, with the maximum change (67.6%) occurred at 14 d for 0.50 mg/kg. The MDA content had a tendency that increasing at the first and decreasing at the end. The olive tail moment (OTM) in comet assay reflected a dose-dependent relationship, and DNA damage initially increased and then decreased over time. The results suggest that the sub-chronic exposure of acetamiprid can cause oxidative stress and DNA damage of earthworm and change the activity of the anti-oxidant enzyme. In addition, ROS content and DNA damage can be good indicators for assessing environmental risks of acetamiprid in earthworms. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Investigation of nepetolide as a novel lead compound: Antioxidant, antimicrobial, cytotoxic, anticancer, anti-inflammatory, analgesic activities and molecular docking evaluation.

    PubMed

    Ur Rehman, Tanzeel; Khan, Arif-Ullah; Abbas, Azar; Hussain, Javid; Khan, Farman Ullah; Stieglitz, Kimberly; Ali, Shamsher

    2018-03-01

    In the present study, we describe various pharmacological effects and computational analysis of nepetolide, a tricyclic clerodane-type diterpene, isolated from Nepeta suavis . Nepetolide concentration-dependently (1.0-1000 µg/mL) exhibited 1,1-diphenyl,2-picrylhydrazyl free radical scavenging activity with maximum effect of 87.01 ± 1.85%, indicating its antioxidant potential, as shown by standard drug, ascorbic acid. It was moderately active against bacterial strain of Staphylococcus aureus . In brine shrimp's lethality model, nepetolide potently showed cytotoxic effect, with LC 50 value of 8.7 µg/mL. When evaluated for antitumor activity in potato disc tumor assay, nepetolide exerted tumor inhibitory effect of 56.5 ± 1.5% at maximum tested concentration of 1000 µg/mL. Nepetolide at 20 mg/kg reduced carrageenan-induced inflammation (P < .001 vs. saline group) in rat paw. Nepetolide dose-dependently (100-500 mg/kg) decreased acetic acid evoked writhes, as exhibited by diclofenac sodium. In-silico investigation of nepetolide was carried out against cyclooxygenase-2, epidermal growth factor receptor and lipoxygenase-2 targets. Virtual screening through Patchdock online docking server identified primarily hydrophobic interactions between ligand nepetolide and receptors proteins. Enhanced hydrogen bonding was predicted with Autodock showing 6-8 hydrogen bonds per target. These results indicate that nepetolide exhibits antioxidant, antibacterial, cytotoxic, anticancer, anti-inflammatory and analgesic activities and should be considered as a lead compound for developing drugs for the remedy of oxidative stress-induced disorders, microbial infections, cancers, inflammations and pain.

  18. {sup 210}Po and {sup 210}Pb in Forest Soil and in Wild Berries in Finland

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaaramaa, Kaisa; Lehto, Jukka; Solatie, Dina

    2008-08-07

    The behaviour of {sup 210}Po and {sup 210}Pb was investigated in forests in the Southern Finland site and in the Northern Finland site. Sampling sites were in Scots pine (Pinus sylvestris) forests. Maximum activities of {sup 210}Po and {sup 210}Pb in soil columns were found in organic layers. According to preliminary results of wild berry samples, the lowest {sup 210}Po concentrations were found in berries. The highest concentration of {sup 210}Po was found in stems of the blueberry (Vaccinium myrtillus) and the lingonberry (Vaccinium vitis-idaea) samples.

  19. Partial purification and some properties of a latent CO2 reductase from green potato tuber chloroplasts.

    PubMed

    Arora, S; Ramaswamy, N K; Nair, P M

    1985-12-16

    We have partially purified the CO2 reductase, present in green potato tuber chloroplasts, as a latent form. Illumination of the chloroplasts in the absence of substrate, bicarbonate, activated the enzyme, which could then be obtained in soluble forms. Purification of the enzyme was achieved by (NH4)2SO4 fractionation (0-30%) and adsorption and elution from a DEAE-Sephadex A-50 column. The final preparation showed 15-fold purification and 50% recovery of the activity. The pH optimum for CO2 reductase was 8.0. Hepes and Tricine buffers showed maximum activity whereas Tris/phosphate or borate failed to show any activity. The enzyme reaction was sensitive to the presence of metal ions like Fe3+, Hg2+, Cu2+, Mo6+ and Zn2+, however, a threefold activation was observed with Fe2+. The metal requirement for CO2 reductase was evident from the observed inhibition by metal chelators like o-phenanthroline, alpha, alpha'-dipyridyl, bathocuproine, 8-hydroxyquinoline etc. Out of these o-phenanthroline was the strongest inhibitor and its concentration for 50% inhibition was 40 microM. The presence of Fe2+ ions in the reaction mixture protected the enzyme from heat denaturation upto 50 degrees C. Maximum enzyme activity was observed at 15 degrees C. The enzyme activity showed a 30-s lag period and the maximum was reached in 90 s. Supplementation of sodium dithionite in the reaction activated enzyme activity threefold, suggesting involvement of dithiol groups in the catalytic activity. There was strong inhibition by -SH inhibitors like 5,5'-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide and -SH reagents like dithiothreitol, 2-mercaptoethanol and cysteine. Various nucleotide coenzyme tried inhibited the enzyme strongly.

  20. Comparison of the Force-, Velocity- and Power-Time Curves Between the Concentric-Only and Eccentric-Concentric Bench Press Exercises.

    PubMed

    Pérez-Castilla, Alejandro; Comfort, Paul; McMahon, John J; Pestaña-Melero, Francisco Luis; García-Ramos, Amador

    2018-01-17

    The aim of this study was to compare the temporal and mechanical variables between the concentric-only and eccentric-concentric bench press (BP) variants. Twenty-one men (age: 22.0±4.2 years, body mass: 73.4±7.7 kg, height: 177.2±8.0 cm; one-repetition maximum [1RM]: 1.12±0.12 kg⋅kg) were evaluated during the concentric-only and eccentric-concentric BP variants using 80% 1RM. Temporal (concentric phase duration, propulsive phase duration, and time to reach the maximum values of force, velocity, and power) and mechanical variables (force, velocity, and power), determined using a linear velocity transducer, were compared between both BP variants. All temporal variables were significantly lower during the eccentric-concentric BP compared to the concentric-only BP (P < 0.05; effect size [ES] range: 0.80-2.52). Maximum force as well as the mean values of velocity and power were significantly higher for the eccentric-concentric BP compared to the concentric-only BP (all P < 0.001; ES range: 2.87-3.58). However, trivial to small differences between both BP variants were observed for mean force (ES: 0.00-0.36) as well as for maximum velocity (ES: 0.40) and power (ES: 0.41). The stretch-shortening cycle (i.e., eccentric-concentric BP) mainly enhanced force production at the early portion of the concentric phase, but this potentiation effect gradually reduced over the latter part of the movement. Finally, force was higher for the concentric-only BP during 49% of the concentric phase duration. These results suggest that both BP variants should be included during resistance training programs in order to optimize force output at different points of the concentric phase.

  1. Ground-water quality in the Central High Plains Aquifer, Colorado, Kansas, New Mexico, Oklahoma, and Texas, 1999

    USGS Publications Warehouse

    Becker, Mark F.; Bruce, Breton W.; Pope, Larry M.; Andrews, William J.

    2002-01-01

    A network of 74 randomly distributed domestic water-supply wells completed in the central High Plains aquifer was sampled and analyzed from April to August 1999 as part of the High Plains Regional Ground-Water Study conducted by the U. S. Geological Survey National Water-Quality Assessment Program to provide a broad-scale assessment of the ground-water-quality in this part of the High Plains aquifer. Water properties were relatively consistent across the aquifer, with water being alkaline and well oxidized. Water was mostly of the calcium and magnesium-bicarbonate type and very hard. Sulfate concentrations in water from three wells and chloride concentration in water from one well exceeded Secondary Maximum Contaminant Levels. Fluoride concentration was equal to the Maximum Contaminant Level in one sample. Nitrate concentrations was relatively small in most samples, with the median concentration of 2.3 milligrams per liter. Dissolved organic carbon concentration was relatively low, with a median concentration of 0.5 milligram per liter. The Maximum Contaminant Level set by the U.S. Environmental Protection Agency for nitrate as nitrogen of 10 milligrams per liter was exceeded by water samples from three wells. Most samples contained detectable concentrations of the trace elements aluminum, arsenic, barium, chromium, molybdenum, selenium, zinc, and uranium. Only a few samples had trace element concentrations exceeding Maximum Contaminant Levels. Fifty-five of the samples had radon concentrations exceeding the proposed Maximum Contaminant Level of 300 picocuries per liter. The greatest radon concentrations were detected where the Ogallala Formation overlies sandstones, shales and limestones of Triassic, Jurassic, or Cretaceous age. Volatile organic compounds were detected in 9 of 74 samples. Toluene was detected in eight of those nine samples. All volatile organic compound concentrations were substantially less than Maximum Contaminant Levels. Detections of toluene may have been artifacts of the sampling and analytical processes. Pesticides were detected in 18 of the 74 water samples. None of the pesticide concentrations exceeded Maximum Contaminant Levels. The most frequently detected pesticides were atrazine and its metabolite deethylatrazine, which were detected in water from 15 and 17 wells, respectively. Most of the samples with a detectable pesticide had at least two detectable pesticides. Six of the samples had more than two detectable pesticides. Tritium concentrations was greater than 0.5 tritium unit in 10 of 51 samples, indicating recent recharge to the aquifer. Twenty-one of the samples that had nitrate concentrations greater than 4.0 milligrams per liter were assumed to have components of recent recharge. Detection of volatile organic compounds was not associated with those indicators of recent recharge, with most of volatile organic compounds being detected in water from wells with small tritium and nitrate concentrations. Detection of pesticides was associated with greater tritium or nitrate concentrations, with 16 of the 18 wells producing water with pesticides also having tritium or nitrate concentrations indicating recent recharge.

  2. [The epidemiological validation of the MPEL for grain dust in the atmosphere].

    PubMed

    Pinigin, M A; Cherepov, E M; Safiulin, A A; Petrova, I V; Mukhambetova, L Kh; Osipova, E M; Veselov, A P

    1998-01-01

    The use of calculating and gravimetric methods for examining the grain dust pollution of the ambient air at the site of an elevator determined the maximum single, mean daily, and mean annual concentrations at different distances from the source of dust emission. The mean ratio of these concentrations was 12.1:4.3:1, respectively. The calculated concentration-effect and concentration-time relationships provided evidence for the maximum single, mean daily, and mean annual allowable concentrations for grain dust in the ambient air.

  3. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: combining equilibrium passive sampling of sediment and water with total concentration measurements of biota.

    PubMed

    Mäenpää, Kimmo; Leppänen, Matti T; Figueiredo, Kaisa; Mayer, Philipp; Gilbert, Dorothea; Jahnke, Annika; Gil-Allué, Carmen; Akkanen, Jarkko; Nybom, Inna; Herve, Sirpa

    2015-11-01

    Equilibrium sampling devices can be applied to study and monitor the exposure and fate of hydrophobic organic chemicals on a thermodynamic basis. They can be used to determine freely dissolved concentrations and chemical activity ratios and to predict equilibrium partitioning concentrations of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota. The authors used equilibrium sampling devices (silicone rubber and polyethylene [PE]) to determine freely dissolved concentrations and chemical activities of PCBs in the water column and sediment porewater and calculated for both phases the corresponding equilibrium concentrations and chemical activities in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels. The present study shows the application versatility of equilibrium sampling devices in the field and facilitates a thermodynamic understanding of exposure and fate of PCBs in a contaminated lake and its discharge course. © 2015 SETAC.

  4. Extract of Pelargonium sidoides (EPs 7630) improves phagocytosis, oxidative burst, and intracellular killing of human peripheral blood phagocytes in vitro.

    PubMed

    Conrad, Andreas; Hansmann, Cathrin; Engels, Inge; Daschner, Franz D; Frank, Uwe

    2007-01-01

    Clinical data show that EPs 7630, an aqueous ethanolic extract from the roots of Pelargonium sidoides, can be used for the treatment of upper respiratory tract infections (URTI). The biological effects of the preparation have not been fully investigated. The objective of this study was to examine the impact of EPs 7630 on the activity of human peripheral blood phagocytes (PBP). A whole blood-based, flow cytometric assay was used to simultaneously assess phagocytosis and oxidative burst. Calcein-AM stained Candida albicans (DSM 1386) were used as target organisms. Oxidative burst was measured by addition of dihydroethidium (DHE). Target organisms and whole blood were co-incubated and analyzed after 0, 2, 4, 6, 10, and 30 min. Intracellular killing of the target organisms was evaluated by determining the number of surviving yeast cells after co-incubation of C. albicans and human whole blood. EPs 7630 was applied in therapeutically relevant concentrations between 0 and 30 microg/ml. Compared with controls EPs 7630 increased the number of phagocytosing PBP during the observed time points between 2 and 10 min in a concentration-dependent manner, with a maximum enhancement of 56% at 2 min (p=0.002). The application of EPs 7630 also led to a significant increase in the number of burst-active PBP for all time points observed beyond 2 min (p<0.001). The maximum augmentation was 120% after application of 30 microg/ml EPs 7630 at 4 min. Using a microbiological assay, intracellular killing was also enhanced by EPs 7630. This was expressed by a significant reduction in the number of surviving target organisms (p<0.001). The maximum reduction in viable yeast cells (-31%) was observed after co-incubation for 120 min with the highest concentration of EPs 7630 (30 microg/ml). In conclusion, the positive effects of EPs 7630 on phagocytosis, oxidative burst, and intracellular killing of yeast cells as test organisms are important components of the compound's biological activity. Our findings constitute a valuable contribution to understanding the clinical effects of EPs 7630.

  5. Comparing functional metabolic effects of marginal and sufficient selenium supply in sheep.

    PubMed

    Humann-Ziehank, Esther; Renko, Kostja; Mueller, Andreas S; Roehrig, Petra; Wolfsen, Jacqueline; Ganter, Martin

    2013-10-01

    This study was performed to characterise key data of long-term ovine Se metabolism and to work out the best biomarker of Se status. An upgrade from marginal (<0.05 mg Se/kg diet, 'Se-') to sufficient (0.2mg Se/kg diet, 'Se+') nutritional Se supply using sodium selenite was monitered biweekly by analysing Se concentration, glutathione peroxidase (Gpx) activity and routine biochemistry in blood/serum over 2 years. Se, Cu, Zn, cytosolic Gpx and thioredoxin reductase (TrxR) activity were measured in the liver (biopsies/post-mortem). Se, Gpx, TrxR, glutathione-S-transferase-alpha (aGST) and iodothyronine deiodinase (Dio1) were analysed in the kidney, heart muscle and thyroid. Relative mRNA expression of hepatic aGST1 and Gpx1 was determined. Improvement of Se supply strongly increased serum and liver Se concentration within 10 and 20 days, respectively followed by a plateau. Whereas the achievement of a maximum whole blood Gpx activity was reached after 3 months, serum Gpx3 activity increased with high variations. Hepatic Gpx activity reached a maximum during days 100-200, decreasing thereafter. Distinct group differences in Se and cytosolic Gpx activity were evident in all organs (except Se in kidney). TrxR and Dio1 activity was affected only in the liver. The Se- sheep showed an ongoing decrease in serum Se concentration within 2 years, whereas liver Se remained almost unaffected. High relative Gpx1 mRNA expression in the Se+ group was consensual to high hepatic Gpx activity. Relative mRNA expression of hepatic aGST1 was higher in the Se- sheep. Clinical signs and abnormalities in routine biochemistry were absent. In summary, the best biomarker of Se deprivation and nutritional Se upgrade, respectively was Se in serum. Moreover, hepatic Se concentrations reliably reflected the upgrade of Se supply within days. Whole blood Gpx reacts slowly depending on newly formed erythrocytes restricting its diagnostic use. Vital organs are affected by Se deficiency due to a decrease of cytosolic Gpx activity attenuating the antioxidative system. Cellular up-regulation of aGST1 mRNA expression in the Se- group is assumed to partially compensate for the decreased antioxidant defence due to a loss in Gpx activity. This sheep model appears advantageous for long-term studies on sub-clinical metabolic effects in experimental modifiable nutritional Se supply. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Investigation of Natural Radioactivity in a Monazite Processing Plant in Japan.

    PubMed

    Iwaoka, Kazuki; Yajima, Kazuaki; Suzuki, Toshikazu; Yonehara, Hidenori; Hosoda, Masahiro; Tokonami, Shinji; Kanda, Reiko

    2017-09-01

    Monazite is a naturally occurring radioactive material that is processed for use in a variety of domestic applications. At present, there is little information available on potential radiation doses experienced by people working with monazite. The ambient dose rate and activity concentration of natural radionuclides in raw materials, products, and dust in work sites as well as the Rn and Rn concentrations in work sites were measured in a monazite processing plant in Japan. Dose estimations for plant workers were also conducted. The activity concentration of the U series in raw materials and products for the monazite processing plant was found to be higher than the relevant values described in the International Atomic Energy Agency Safety Standards. The ambient dose rates in the raw material yard were higher than those in other work sites. Moreover, the activity concentrations of dust in the milling site were higher than those in other work sites. The Rn concentrations in all work sites were almost the same as those in regular indoor environments in Japan. The Rn concentrations in all work sites were much higher than those in regular indoor environments in Japan. The maximum value of the effective dose for workers was 0.62 mSv y, which is lower than the reference level range (1-20 mSv y) for abnormally high levels of natural background radiation published in the International Commission of Radiological Protection Publication 103.

  7. Evidence of hypercoagulability in dogs with parvoviral enteritis.

    PubMed

    Otto, C M; Rieser, T M; Brooks, M B; Russell, M W

    2000-11-15

    To determine whether dogs with naturally occurring canine parvoviral (CPV) enteritis have laboratory evidence of hypercoagulability. Case-control study. Animals-9 dogs with naturally occurring CPV enteritis and 9 age-matched control dogs. Blood was collected from all dogs within 24 hours of admission for thromboelastography (TEG) and determination of activated partial thromboplastin time (aP-TT), prothrombin time (PT), antithrombin III (AT) activity, and fibrinogen concentration. Fibrin-fibrinogen degradation product (FDP) concentration, D-dimer concentration, and platelet count were obtained in dogs with CPV enteritis only. Records were reviewed for evidence of thrombosis or phlebitis. All 9 dogs with CPV enteritis had evidence of hypercoagulability, determined on the basis of significantly increased TEG maximum amplitude and decreased AT activity. Fibrinogen concentration was significantly higher in dogs with CPV enteritis than in control dogs. The aPTT was moderately prolonged in dogs with CPV enteritis, and FDP concentration was < 5 mg/ml in 7 of 9 dogs. No dogs had a measurable D-dimer concentration. Platelet counts were within reference range. Four of 9 dogs had clinical evidence of venous thrombosis or phlebitis associated with catheters. One dog had multifocal splenic thrombosis identified at necropsy. Dogs with CPV enteritis have a high prevalence of clinical thrombosis or phlebitis and laboratory evidence of hypercoagulability without disseminated intravascular coagulopathy. Thromboelastography may help identify hypercoagulable states in dogs.

  8. Sodium Chloride Reduces Production of Curvacin A, a Bacteriocin Produced by Lactobacillus curvatus Strain LTH 1174, Originating from Fermented Sausage

    PubMed Central

    Verluyten, Jurgen; Messens, Winy; De Vuyst, Luc

    2004-01-01

    Lactobacillus curvatus LTH 1174, a strain originating in fermented sausage, produces the antilisterial bacteriocin curvacin A. Its biokinetics of cell growth and bacteriocin production as a function of various concentrations of salt (sodium chloride) were investigated in vitro during laboratory fermentations using modified MRS medium. A model was set up to describe the effects of different NaCl concentrations on microbial behavior. Both cell growth and bacteriocin activity were affected by changes in the salt concentration. Sodium chloride clearly slowed down the growth of L. curvatus LTH 1174, but more importantly, it had a detrimental effect on specific curvacin A production (kB) and hence on overall bacteriocin activity. Even a low salt concentration (2%, wt/vol) decreased bacteriocin production, while growth was unaffected at this concentration. The inhibitory effect of NaCl was mainly due to its role as an aw-lowering agent. Further, it was clear that salt interfered with bacteriocin induction. Additionally, when 6% (wt/vol) sodium chloride was added, the minimum biomass concentration necessary to start the production of curvacin A (XB) was 0.90 g (cell dry mass) per liter. Addition of the cell-free culture supernatant or a protein solution as a source of induction factor resulted in a decrease in XB, an increase in kB, and hence an increase in the maximum attainable bacteriocin activity. PMID:15066822

  9. Neurotrophic factor - Characterization and partial purification

    NASA Technical Reports Server (NTRS)

    Popiela, H.; Ellis, S.

    1981-01-01

    Recent evidence suggests that neurotrophic activity is required for the normal proliferation and development of muscle cells. The present paper reports a study of the purification and characterization of a neurotrophic factor (NTF) from adult chicken ischiatic-peroneal nerves using two independent quantitative in vitro assay systems. The assays were performed by the measurement of the incorporation of tritiated thymidine or the sizes of single-cell clones by chick muscle cells grown in culture. The greatest amount of neutrotrophic activity is found to be extracted at a pH of 8; aqueous suspensions of the activity are stable to long-term storage at room temperature. The specific activity of the substance is doubled upon precipitation with ammonium sulfate or after gel filtration, and increase 4 to 5 fold after salt gradient elution from DEAE cellulose columns. The active fraction obtained after gel filtration and rechromatography on DEAE cellulose exhibits a 7 to 10-fold increase in specific activity. Electrophoresis of the most highly purified material yields a greatly concentrated band at around 80,000 daltons. Although NTF is purified almost 10-fold as indicated by the increase in specific activity, the maximum activity of the partially purified material is greatly reduced, possibly due to a requirement for a cofactor for the expression of maximum activity.

  10. Nodule activity and allocation of photosynthate of soybean during recovery from water stress

    NASA Technical Reports Server (NTRS)

    Fellows, R. J.; Patterson, R. P.; Raper, C. D. Jr; Harris, D.; Raper CD, J. r. (Principal Investigator)

    1987-01-01

    Nodulated soybean plants (Glycine max [L.] Merr. cv Ransom) in a growth-chamber study were subjected to a leaf water potential (psi w) of -2.0 megapascal during vegetative growth. Changes in nonstructural carbohydrate contents of leaves, stems, roots, and nodules, allocation of dry matter among plant parts, in situ specific nodule activity, and in situ canopy apparent photosynthetic rate were measured in stressed and nonstressed plants during a 7-day period following rewatering. Leaf and nodule psi w also were determined. At the time of maximum stress, concentration of nonstructural carbohydrates had declined in leaves of stressed, relative to nonstressed, plants, and the concentration of nonstructural carbohydrates had increased in stems, roots, and nodules. Sucrose concentrations in roots and nodules of stressed plants were 1.5 and 3 times greater, respectively, than those of nonstressed plants. Within 12 hours after rewatering, leaf and nodule psi w of stressed plants had returned to values of nonstressed plants. Canopy apparent photosynthesis and specific nodule activity of stressed plants recovered to levels for nonstressed plants within 2 days after rewatering. The elevated sucrose concentrations in roots and nodules of stressed plants also declined rapidly upon rehydration. The increase in sucrose concentration in nodules, as well as the increase of carbohydrates in roots and stems, during water stress and the rapid disappearance upon rewatering indicates that inhibition of carbohydrate utilization within the nodule may be associated with loss of nodule activity. Availability of carbohydrates within the nodules and from photosynthetic activity following rehydration of nodules may mediate the rate of recovery of N2-fixation activity.

  11. Uranium in sediments, mussels (Mytilus sp.) and seawater of the Krka river estuary.

    PubMed

    Cuculić, Vlado; Cukrov, Neven; Barisić, Delko; Mlakar, Marina

    2006-01-01

    The response of an aquatic environment to the decrease of phosphate discharges from a technologically improved transhipment terminal, situated at the Croatian Adriatic coast in the port of Sibenik, has been assessed based on uranium activity and concentration in sediment, seawater and mussels Mytilus sp. The highest 238U activities (485+/-16Bqkg(-1) dry weight) were found in the sediment sample collected from the sampling site closest to the terminal. The maximum concentrations in the sediment samples are above the natural ranges and clearly indicate the harbour activities' influence. The 238U/226Ra activity ratios in sediment samples demonstrate the decreasing trend of phosphate ore input. Mussel samples showed levels of 238U activities in the range from 12.1+/-2.9 to 19.4+/-7.2 Bqkg(-1) dry weight, thus being slightly higher than in normally consumed mussels. Only the seawater, taken just above the bottom sediment at the sampling site closest to the terminal, shows a slightly higher uranium concentration (3.1+/-0.2 microgL(-1)) when compared to the samples taken in upper seawater layers (2.1+/-0.2 microgL(-1)) but is in the range of the concentration level of uranium in natural seawater. Since the transhipment terminal in the port of Sibenik was modernised in 1988, discharge of phosphate ore into the seawater was drastically reduced and, consequently, uranium concentration levels in seawater have decreased. However, enhanced uranium activity levels are still found in deeper sediment layer samples and in mussel.

  12. [Gene expression and activity regulation of two calmodulin binding protein kinases in tobacco seedling].

    PubMed

    Hua, Wei; Li, Rong-Jun; Liang, Shu-Ping; Lu, Ying-Tang

    2005-06-01

    Two different calmodulin-binding protein kinase cDNAs (NtCBK1/2) have been isolated from tobacco. To understand the CBK protein activity regulation, we compared the activity regulation of NtCBK1 and NtCBK2 by pH, Mg(2+) concentration and Na(+) concentration. We found the autophosphorylation of NtCBK1/2 reached the maximum in pH 7.5 and 8 respectively; Mg(2+) and Na(+) shown different effects on the activity of NtCBKs, high and low Mg(2+) concentrations both inhibited the activity of NtCBKs, but Na+ had little effect on the kinase activity. In addition, to obtain further insight about the physiological roles of individual NtCBKs, we detected the expression profiles of CBKs. The results revealed different patterns of expression of NtCBK1 and NtCBK2. Both are largely expressed in leaf and flower; but in stem and root, NtCBK1 gene had stronger expression than NtCBK2. NtCBK2 expression was induced by GA treatment, while NtCBK1 expression remained unchanged under GA treatment. Expression of both NtCBK1 and NtCBK2 increased in response to salt stress, the former to a greater extent, and both expressions did not change under high/low temperature, drought, NAA and ABA treatments.

  13. Parametric studies of diethyl phosphoramidate photocatalytic decomposition over TiO2.

    PubMed

    Sun, Bo; Vorontsov, Alexander V; Smirniotis, Panagiotis G

    2011-02-28

    The present study is focused on influences of parameters including pH, temperature, TiO(2) catalyst concentration, and reactant concentration on the rate of photocatalytic diethyl phosphoramidate (DEPA) decomposition with Hombikat UV 100 (HK) and Degussa P25 (P25) TiO(2). Total mineralization of DEPA is observed. Two regimes of pH, namely in acid and near-neutral environments were found where maximum total carbon (TC) decomposition was observed. The electrostatic effects on adsorption over the TiO(2) surface explain the above phenomena. The maximum rate is observed for P25 at DEPA concentration 1.3 mM whereas the rate grows continuously with DEPA concentration rise for HK. The temperature dependence of TC decomposition rate in the range of 15-63°C with both HK and P25 follows the Arrhenius equation. The activation energy for total carbon decomposition with HK and P25 are 29.5±1.0 and 24.3±3.1 kJ/mol, respectively. The decomposition rate of DEPA is larger over P25 than over HK. The rate over P25 increases faster than that with HK for each unit of the titania added when the TiO(2) concentration is less than 375 mg/l. The higher light absorption and particles aggregation of P25 are responsible for the decrease of reaction rate we observed at catalyst concentration above a certain level. In contrast, the rate over HK increases monotonically with the concentration of the photocatalyst used. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Production and Optimization of Physicochemical Parameters of Cellulase Using Untreated Orange Waste by Newly Isolated Emericella variecolor NS3.

    PubMed

    Srivastava, Neha; Srivastava, Manish; Manikanta, Ambepu; Singh, Pardeep; Ramteke, P W; Mishra, P K; Malhotra, Bansi D

    2017-10-01

    Cellulase enzymes have versatile industrial applications. This study was directed towards the isolation, production, and characterization of cellulase enzyme system. Among the five isolated fungal cultures, Emericella variecolor NS3 showed maximum cellulase production using untreated orange peel waste as substrate using solid-state fermentation (SSF). Maximum enzyme production of 31 IU/gds (per gram of dry substrate) was noticed at 6.0 g concentration of orange peel. Further, 50 °C was recorded as the optimum temperature for cellulase activity and the thermal stability for 240 min was observed at this temperature. In addition, the crude enzyme was stable at pH 5.0 and held its complete relative activity in presence of Mn 2+ and Fe 3+ . This study explored the production of crude enzyme system using biological waste with future potential for research and industrial applications.

  15. Nickel-cobalt bimetallic anode catalysts for direct urea fuel cell

    PubMed Central

    Xu, Wei; Zhang, Huimin; Li, Gang; Wu, Zucheng

    2014-01-01

    Nickel is an ideal non-noble metal anode catalyst for direct urea fuel cell (DUFC) due to its high activity. However, there exists a large overpotential toward urea electrooxidation. Herein, NiCo/C bimetallic nanoparticles were prepared with various Co contents (0, 10, 20, 30 and 40 wt%) to improve the activity. The best Co ratio was 10% in the aspect of cell performance, with a maximum power density of 1.57 mW cm−2 when 0.33 M urea was used as fuel, O2 as oxidant at 60°C. The effects of temperature and urea concentration on DUFC performance were investigated. Besides, direct urine fuel cell reaches a maximum power density of 0.19 mW cm−2 with an open circuit voltage of 0.38 V at 60°C. PMID:25168632

  16. Effect of gamma-ray irradiation on the dewaterability of waste activated sludge

    NASA Astrophysics Data System (ADS)

    Wu, Yuqi; Jiang, Yinghe; Ke, Guojun; Liu, Yingjiu

    2017-01-01

    The effect of gamma-ray irradiation on waste activated sludge (WAS) dewaterability was investigated with irradiation doses of 0-15 kGy. Time to filter (TTF50), specific resistance of filtration (SRF) and water content of sludge cake were measured to evaluate sludge dewaterability. Soluble chemical oxygen demand (SCOD), soluble extracellular polymeric substances (EPS) concentration and sludge particle size were determined to explain changes in sludge dewaterability. The optimal irradiation dose to obtain the maximum dewaterability characteristics was 1-4 kGy, which generated sludge with optimal disintegration (1.5-4.0%), soluble EPS concentration (590-750 mg/L) and particle size distribution (100-115 μm diameter). The combination of irradiation and cationic polyacrylamide (CPAM) addition exhibited minimal synergistic effect on increasing sludge dewatering rate compared with CPAM conditioning alone.

  17. Deposition efficiency optimization in cold spraying of metal-ceramic powder mixtures

    NASA Astrophysics Data System (ADS)

    Klinkov, S. V.; Kosarev, V. F.

    2017-10-01

    In the present paper, results of optimization of the cold spray deposition process of a metal-ceramic powder mixture involving impacts of ceramic particles onto coating surface are reported. In the optimization study, a two-probability model was used to take into account the surface activation induced by the ceramic component of the mixture. The dependence of mixture deposition efficiency on the concentration and size of ceramic particles was analysed to identify the ranges of both parameters in which the effect due to ceramic particles on the mixture deposition efficiency was positive. The dependences of the optimum size and concentration of ceramic particles, and also the maximum gain in deposition efficiency, on the probability of adhesion of metal particles to non-activated coating surface were obtained.

  18. Production of an extracellular thermohalophilic lipase from a moderately halophilic bacterium, Salinivibrio sp. strain SA-2.

    PubMed

    Amoozegar, Mohammad Ali; Salehghamari, Ensieh; Khajeh, Khosro; Kabiri, Mahbube; Naddaf, Saied

    2008-06-01

    Fifty strains of moderately halophilic bacteria were isolated from various salty environments in Iran. A strain designated as SA-2 was shown to be the best producer of extracellular lipase and was selected for further studies. Biochemical and physiological characterization along with 16S rDNA sequence analysis placed SA-2 in the genus Salinivibrio. The optimum salt, pH, temperature and aeration for enzyme production were 0.1 M KCl, pH 8, 35 degrees C and 150 rpm, respectively. The enzyme production was synchronized bacterial growth and reached a maximum level during the early-stationary phase in the basal medium containing 1 M NaCl. Triacylglycerols enhanced lipase production, while carbohydrates had inhibitory effects on it. The maximum lipase activity was obtained at pH 7.5, 50 degrees C and CaCl(2) concentration of 0.01 M. The enzyme was stable at pH range of 7.5-8 and retained 90% of its activity at 80 degrees C for 30 min. Different concentrations of NaNO(3), Na(2)SO(4), KCl and NaCl had no affect on lipase stability for 3 h. These results suggest that the lipase secreted by Salinivibrio sp. strain SA-2 is industrially important from the perspective of its tolerance to a broad temperature range, its moderate thermoactivity and its high tolerance to a wide range of salt concentrations (0-3 M NaCl).

  19. Materials Science Research Rack-1 Fire Suppressant Distribution Test Report

    NASA Technical Reports Server (NTRS)

    Wieland, P. O.

    2002-01-01

    Fire suppressant distribution testing was performed on the Materials Science Research Rack-1 (MSRR-1), a furnace facility payload that will be installed in the U.S. Lab module of the International Space Station. Unlike racks that were tested previously, the MSRR-1 uses the Active Rack Isolation System (ARIS) to reduce vibration on experiments, so the effects of ARIS on fire suppressant distribution were unknown. Two tests were performed to map the distribution of CO2 fire suppressant throughout a mockup of the MSRR-1 designed to have the same component volumes and flowpath restrictions as the flight rack. For the first test, the average maximum CO2 concentration for the rack was 60 percent, achieved within 45 s of discharge initiation, meeting the requirement to reach 50 percent throughout the rack within 1 min. For the second test, one of the experiment mockups was removed to provide a worst-case configuration, and the average maximum CO2 concentration for the rack was 58 percent. Comparing the results of this testing with results from previous testing leads to several general conclusions that can be used to evaluate future racks. The MSRR-1 will meet the requirements for fire suppressant distribution. Primary factors that affect the ability to meet the CO2 distribution requirements are the free air volume in the rack and the total area and distribution of openings in the rack shell. The length of the suppressant flowpath and degree of tortuousness has little correlation with CO2 concentration. The total area of holes in the rack shell could be significantly increased. The free air volume could be significantly increased. To ensure the highest maximum CO2 concentration, the PFE nozzle should be inserted to the stop on the nozzle.

  20. Role of glycolysis in maintenance of the action potential duration and contractile activity in isolated perfused rat heart.

    PubMed

    Opie, L H; Tuschmidt, R; Bricknell, O; Girardier, L

    1980-01-01

    1. Changing substrates from glucose to pyruvate in paced isolated rat hearts, perfused by the Langendorff technique at 65 cm H2O with a Krebs-Henseleit bicarbonate buffer, produced effects which are opposite to those of ouabain treatment: negative inotropy, decreased work efficiency, hyperpolarization, increased maximum rate of rise and amplitude of the action potential, increased conduction velocity. 2. All the effects resulting from perfusion with pyruvate can be reversed by adding ouabain at a concentration of 100 microM. 3. The correlation between various tissue metabolises and change in contractile force (delta F), rate of tension development [maximum + (dF/dt)] and rate of relaxation [maximum -(dF/dt)] was studied by multiple linear regression. No significant correlation was found with either glycogen content and tissue lactate or with cAMP and cGMP. A weak negative correlation was found with ATP and phosphocreatine. The strongest correlation was found 76 to 807 nM/g in passing from glucose- to pyruvate-containing perfusion solution. 4. In vitro tests performed with a solution containing high energy phosphates and magnesium at concentrations equal to their calculated values in the cytosol (pH 7.0) showed that a significant negative correlation exists between citrate concentration (range: 1 and 1500 M) and free calcium concentration in the micromole range. 5. It is concluded that the effects of pyruvate (non glucose substrate) perfusion could be mediated by a decrease in cytosolic-free calcium resulting from an increase in intracellular citrate. The observation that all these effects can be reversed by ouabain is taken as a circumstantial evidence of a common mechanism.

  1. Systemic inflammatory responses to maximal versus submaximal lengthening contractions of the elbow flexors.

    PubMed

    Peake, Jonathan M; Nosaka, Kazunori; Muthalib, Makii; Suzuki, Katsuhiko

    2006-01-01

    We compared changes in markers of muscle damage and systemic inflammation after submaximal and maximal lengthening muscle contractions of the elbow flexors. Using a cross-over design, 10 healthy young men not involved in resistance training completed a submaximal trial (10 sets of 60 lengthening contractions at 10% maximum isometric strength, 1 min rest between sets), followed by a maximal trial (10 sets of three lengthening contractions at 100% maximum isometric strength, 3 min rest between sets). Lengthening contractions were performed on an isokinetic dynamometer. Opposite arms were used for the submaximal and maximal trials, and the trials were separated by a minimum of two weeks. Blood was sampled before, immediately after, 1 h, 3 h, and 1-4 d after each trial. Total leukocyte and neutrophil numbers, and the serum concentration of soluble tumor necrosis factor-alpha receptor 1 were elevated after both trials (P < 0.01), but there were no differences between the trials. Serum IL-6 concentration was elevated 3 h after the submaximal contractions (P < 0.01). The concentrations of serum tumor necrosis factor-alpha, IL-1 receptor antagonist, IL-10, granulocyte-colony stimulating factor and plasma C-reactive protein remained unchanged following both trials. Maximum isometric strength and range of motion decreased significantly (P < 0.001) after both trials, and were lower from 1-4 days after the maximal contractions compared to the submaximal contractions. Plasma myoglobin concentration and creatine kinase activity, muscle soreness and upper arm circumference all increased after both trials (P < 0.01), but were not significantly different between the trials. Therefore, there were no differences in markers of systemic inflammation, despite evidence of greater muscle damage following maximal versus submaximal lengthening contractions of the elbow flexors.

  2. Regional assessment of concentrations and sources of pharmaceutically active compounds, pesticides, nitrate, and E. coli in post-glacial aquifer environments (Canada).

    PubMed

    Saby, Marion; Larocque, Marie; Pinti, Daniele L; Barbecot, Florent; Gagné, Sylvain; Barnetche, Diogo; Cabana, Hubert

    2017-02-01

    There is growing concern worldwide about the exposure of groundwater resources to pharmaceutically active compounds (PhACs) and agricultural contaminants, such as pesticides, nitrate, and Escherichia coli. For regions with a low population density and an abundance of water, regional contamination assessments are not carried out systematically due to the typically low concentrations and high costs of analyses. The objectives of this study were to evaluate regional-scale contaminant distributions in untreated groundwater in a rural region of Quebec (Canada). The geological and hydrogeological settings of this region are typical of post-glacial regions around the world, where groundwater flow can be complex due to heterogeneous geological conditions. A new spatially distributed Anthropogenic Footprint Index (AFI), based on land use data, was developed to assess surface pollution risks. The Hydrogeochemical Vulnerability Index (HVI) was computed to estimate aquifer vulnerability. Nine wells had detectable concentrations of one to four of the 13 tested PhACs, with a maximum concentration of 116ng·L -1 for benzafibrate. A total of 34 of the 47 tested pesticides were detected in concentrations equal to or greater than the detection limit, with a maximum total pesticide concentration of 692ng·L -1 . Nitrate concentrations exceeded 1mg·L -1 N-NO 3 in 15.3% of the wells, and the Canadian drinking water standard was exceeded in one well. Overall, 13.5% of the samples had detectable E. coli. Including regional-scale sources of pollutants to the assessment of aquifer vulnerability with the AFI did not lead to the identification of contaminated wells, due to the short groundwater flow paths between recharge and the sampled wells. Given the occurrence of contaminants, the public health concerns stemming from these new data on regional-scale PhAC and pesticide concentrations, and the local flow conditions observed in post-glacial terrains, there is a clear need to investigate the sources and behaviours of local-scale pollutants. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations (control stations that are located on reaches of streams relatively unaffected by human activity) during water years 1998-2009. Results of tests on concentrations of total dissolved solids, dissolved chloride, dissolved nitrite plus nitrate, total phosphorus, and total nitrogen indicate a significant difference in water quality at Statewide Status stations but not at Background stations during the study period. Excluding water year 2009, all significant changes that were observed in the median concentrations were ultimately increases, except for total phosphorus, which varied significantly but in an inconsistent pattern during water years 1998-2009. Streamflow data aided in the interpretation of the results for this study. Extreme values of water-quality constituents generally followed inverse patterns of streamflow. Low streamflow conditions helped explain elevated concentrations of several constituents during water years 2001-02. During extreme drought conditions in 2002, maximum concentrations occurred for four of the six water-quality constituents examined in this study at Statewide Status stations (maximum concentration of 4,190 milligrams per liter of total dissolved solids) and three of six constituents at Background stations (maximum concentration of 179 milligrams per liter of total dissolved solids). The changes in water quality observed in this study parallel many of the findings from previous studies of trends in New Jersey.

  4. Characterization of biotechnologically relevant extracellular lipase produced by Aspergillus terreus NCFT 4269.10

    PubMed Central

    Sethi, Bijay Kumar; Nanda, Prativa Kumari; Sahoo, Santilata

    2016-01-01

    Enzyme production by Aspergillus terreus NCFT 4269.10 was studied under liquid static surface and solid-state fermentation using mustard oil cake as a substrate. The maximum lipase biosynthesis was observed after incubation at 30 °C for 96 h. Among the domestic oils tested, the maximum lipase biosynthesis was achieved using palm oil. The crude lipase was purified 2.56-fold to electrophoretic homogeneity, with a yield of 8.44%, and the protein had a molecular weight of 46.3 kDa as determined by SDS-PAGE. Enzyme characterization confirmed that the purified lipase was most active at pH 6.0, temperature of 50 °C, and substrate concentration of 1.5%. The enzyme was thermostable at 60 °C for 1 h, and the optimum enzyme–substrate reaction time was 30 min. Sodium dodecyl sulfate and commercial detergents did not significantly affect lipase activity during 30-min incubation at 30 °C. Among the metal ions tested, the maximum lipase activity was attained in the presence of Zn2+, followed by Mg2+ and Fe2+. Lipase activity was not significantly affected in the presence of ethylenediaminetetraacetic acid, sodium lauryl sulfate and Triton X-100. Phenylmethylsulfonyl fluoride (1 mM) and the reducing, β-mercaptoethanol significantly inhibited lipase activity. The remarkable stability in the presence of detergents, additives, inhibitors and metal ions makes this lipase unique and a potential candidate for significant biotechnological exploitation. PMID:26887237

  5. Model-Simulated Northern Winter Cyclone and Anticyclone Activity under a Greenhouse Warming Scenario.

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Wang, Wei-Chyung

    1997-07-01

    Two 100-yr equilibrium simulations from the NCAR Community Climate Model coupled to a nondynamic slab ocean are used to investigate the activity of northern winter extratropical cyclones and anticyclones under a greenhouse warming scenario. The first simulation uses the 1990 observed CO2, CH4, N2O, CFC-11, and CFC-12 concentrations, and the second adopts the year 2050 concentrations according to the Intergovernmental Panel on Climate Change business-as-usual scenario. Variables that describe the characteristic properties of the cyclone-scale eddies, such as surface cyclone and anticyclone frequency and the bandpassed root-mean-square of 500-hPa geopotential height, along with the Eady growth rate maximum, form a framework for the analysis of the cyclone and anticyclone activity.Objective criteria are developed for identifying cyclone and anticyclone occurrences based on the 1000-hPa geopotential height and vorticity fields and tested using ECMWF analyses. The potential changes of the eddy activity under the greenhouse warming climate are then examined. Results indicate that the activity of cyclone-scale eddies decreases under the greenhouse warming scenario. This is not only reflected in the surface cyclone and anticyclone frequency and in the bandpassed rms of 500-hPa geopotential height, but is also discerned from the Eady growth rate maximum. Based on the analysis, three different physical mechanisms responsible for the decreased eddy activity are discussed: 1) a decrease of the extratropical meridional temperature gradient from the surface to the midtroposphere, 2) a reduction in the land-sea thermal contrast in the east coastal regions of the Asian and North American continents, and 3) an increase in the eddy meridional latent heat fluxes. Uncertainties in the results related to the limitations of the model and the model equilibrium simulations are discussed.

  6. A climatology of ⁷Be in surface air in European Union.

    PubMed

    Hernández-Ceballos, M A; Cinelli, G; Ferrer, M Marín; Tollefsen, T; De Felice, L; Nweke, E; Tognoli, P V; Vanzo, S; De Cort, M

    2015-03-01

    This study presents a European-wide analysis of the spatial and temporal distribution of the cosmogenic isotope (7)Be in surface air. This is the first time that a long term database of 34 sampling sites that regularly provide data to the Radioactivity Environmental Monitoring (REM) network, managed by the Joint Research Centre (JRC) in Ispra, is used. While temporal coverage varies between stations, some of them have delivered data more or less continuously from 1984 to 2011. The station locations were considerably heterogeneous, both in terms of latitude and altitude, a range which should ensure a high degree of representativeness of the results. The mean values of (7)Be activity concentration presented a spatial distribution value ranging from 2.0 to 5.4 mBq/m(3) over the European Union. The results of the ANOVA analysis of all (7)Be data available indicated that its temporal and spatial distributions were mainly explained by the location and characteristic of the sampling sites rather than its temporal distribution (yearly, seasonal and monthly). Higher (7)Be concentrations were registered at the middle, compared to high-latitude, regions. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. In addition, the total and yearly analyses of the data indicated a dynamic range of (7)Be activity for each solar cycle and phase (maximum or minimum), different impact on stations having been observed according to their location. Finally, the results indicated a significant seasonal and monthly variation for (7)Be activity concentration across the European Union, with maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached. The knowledge of the horizontal and vertical distribution of this natural radionuclide in the atmosphere is a key parameter for modelling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Numerical modelling of heat and mass transfer in adsorption solar reactor of ammonia on active carbon

    NASA Astrophysics Data System (ADS)

    Aroudam, El. H.

    In this paper, we present a modelling of the performance of a reactor of a solar cooling machine based carbon-ammonia activated bed. Hence, for a solar radiation, measured in the Energetic Laboratory of the Faculty of Sciences in Tetouan (northern Morocco), the proposed model computes the temperature distribution, the pressure and the ammonia concentration within the activated carbon bed. The Dubinin-Radushkevich formula is used to compute the ammonia concentration distribution and the daily cycled mass necessary to produce a cooling effect for an ideal machine. The reactor is heated at a maximum temperature during the day and cool at the night. A numerical simulation is carried out employing the recorded solar radiation data measured locally and the daily ambient temperature for the typical clear days. Initially the reactor is at ambient temperature, evaporating pressure; Pev=Pst(Tev=0 ∘C) and maintained at uniform concentration. It is heated successively until the threshold temperature corresponding to the condensing pressure; Pcond=Pst(Tam) (saturation pressure at ambient temperature; in the condenser) and until a maximum temperature at a constant pressure; Pcond. The cooling of the reactor is characterised by a fall of temperature to the minimal values at night corresponding to the end of a daily cycle. We use the mass balance equations as well as energy equation to describe heat and mass transfer inside the medium of three phases. A numerical solution of the obtained non linear equations system based on the implicit finite difference method allows to know all parameters characteristic of the thermodynamic cycle and consider principally the daily evolution of temperature, ammonia concentration for divers positions inside the reactor. The tube diameter of the reactor shows the dependence of the optimum value on meteorological parameters for 1 m2 of collector surface.

  8. Ultraviolet/ultrasound-activated persulfate for degradation of drug by zinc selenide quantum dots: Catalysis and microbiology study.

    PubMed

    Fakhri, Ali; Naji, Mahsa; Tahami, Shiva

    2017-05-01

    In this study, wet chemical method used for ZnSe quantum dots (QDs) and characterized by, UV-vis, photoluminescence spectroscopy, X-ray diffraction and transmission electron microscopy. The crystallites size of ZnSe QDs was 4.0nm. The average diameters of ZnSe QDs were 3.0-5.3nm. Ritalin was degraded using the UV/ZnSe QDs/persulfate process. The several parameters investigated for the influence of Rtialin degradation were the temperature, the persulfate concentration, and the initial Ritalin concentration. The values of optimum parameters ware room temperature, concentration persulfate 5mmol/L and initial Ritalin concentration 0.09mmol/L. Comparative analyses showed the maximum degradation of Ritalin was found for ZnSe/persulfate under ultra-visible and ultra-sonic irradiation process. Comparative analysis showed the maximum degradation of Ritalin was found for ZnSe/persulfate under ultra-visible and ultra-sonic irradiation process. The values of first-order rate constants from degradation of Ritalin at 25°C were 0.96×10 -2 , 1.09×10 -2 , 1.59×10 -2 and 2.19×10 -2 for US/PS, UV/PS, ZnSe/US/PS and ZnSe/UV/PS system, respectively. The antibacterial activity evaluation against two bacterials, including Gram-positive bacteria Staphylococcus aureus (ATCC 43300), Bacillus megaterium (ATCC 14581) and Gram-negative bacteria Pseudomonas aeruginosa (ATCC 27853), Micrococcus luteus (ATCC 4698) was considered. It was found that the MIC values for the antibacterial assay in the presence of ZnSe QDs were around 0.30mM with 64.0, 66.0, 79.2, and 83.5% inhibition for the S. aureus, B. megaterium, P. aeruginosa and M. luteus bacterial strains, respectively. Then, results show that the ZnSe QDs have antibacterial activity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. pH effects on the hyaluronan hydrolysis catalysed by hyaluronidase in the presence of proteins: Part I. Dual aspect of the pH-dependence.

    PubMed

    Lenormand, Hélène; Deschrevel, Brigitte; Vincent, Jean-Claude

    2010-05-01

    Hyaluronan (HA) hydrolysis catalysed by hyaluronidase (HAase) is strongly inhibited when performed at a low ratio of HAase to HA concentrations and at low ionic strength. This is because long HA chains can form non-active complexes with HAase. Bovine serum albumin (BSA) is able to compete with HAase to form electrostatic complexes with HA so freeing HAase which then recovers its catalytic activity. This BSA-dependence is characterised by two main domains separated by the optimal BSA concentration: below this concentration the HAase activity increases when the BSA concentration is increased, above this concentration the HAase activity decreases. This occurs provided that HA is negatively charged and BSA is positively charged, i.e. in a pH range from 3 to 5.25. The higher the pH value the higher the optimal BSA concentration. Other proteins can also modulate HAase activity. Lysozyme, which has a pI higher than that of BSA, is also able to compete with HAase to form electrostatic complexes with HA and liberate HAase. This occurs over a wider pH range that extends from 3 to 9. These results mean that HAase can form complexes with HA and recover its enzymatic activity at pH as high as 9, consistent with HAase having either a high pI value or positively charged patches on its surface at high pH. Finally, the pH-dependence of HAase activity, which results from the influence of pH on both the intrinsic HAase activity and the formation of complexes between HAase and HA, shows a maximum at pH 4 and a significant activity up to pH 9. Copyright 2009 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  10. Biodegradation kinetics of 1,4-benzoquinone in batch and continuous systems.

    PubMed

    Kumar, Pardeep; Nemati, Mehdi; Hill, Gordon A

    2011-11-01

    Combining chemical and biological treatments is a potentially economic approach to remove high concentration of recalcitrant compounds from wastewaters. In the present study, the biodegradation of 1,4-benzoquinone, an intermediate compound formed during phenol oxidation by chlorine dioxide, was investigated using Pseudomonas putida (ATCC 17484) in batch and continuous bioreactors. Batch experiments were conducted to determine the effects of 1,4-benzoquinone concentration and temperature on the microbial activity and biodegradation kinetics. Using the generated data, the maximum specific growth rate and biodegradation rate were determined as 0.94 h(-1) and 6.71 mg of 1,4-benzoquinone l(-1) h(-1). Biodegradation in a continuous bioreactor indicated a linear relationship between substrate loading and biodegradation rates prior to wash out of the cells, with a maximum biodegradation rate of 246 mg l(-1) h(-1) observed at a loading rate of 275 mg l(-1) h(-1) (residence time: 1.82 h). Biokinetic parameters were also determined using the steady state substrate and biomass concentrations at various dilution rates and compared to those obtained in batch cultures.

  11. Natural radioactivity and radon exhalation rates in man-made tiles used as building materials in Japan.

    PubMed

    Iwaoka, K; Hosoda, M; Suwankot, N; Omori, Y; Ishikawa, T; Yonehara, H; Tokonami, S

    2015-11-01

    Man-made tiles frequently used in Japan were collected, and activity concentrations and radon ((222)Rn) exhalation rates in these tiles were measured. Dose estimations for inhabitants living in houses built using these tiles were also carried out. The activity concentrations of (226)Ra, (228)Ra and (40)K in the man-made tiles were 31-170, 35-110 and 260-980 Bq kg(-1), respectively. The (222)Rn exhalation rates in the tiles were 8.8-21 μBq m(-2) s(-1). The ranges of experimental activity concentrations and (222)Rn exhalation rates were almost identical to those of natural rocks used as typical building materials in Japan. The maximum value of effective dose to inhabitants living in houses built with the man-made tiles was 0.14 mSv y(-1), which is lower than the reference level range (1-20 mSv y(-1)) for abnormally high levels of natural background radiation published in the ICRP Publication 103. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. CuO Nanoparticles Inhibited Root Growth from Brassica nigra Seedlings but Induced Root from Stem and Leaf Explants.

    PubMed

    Zafar, Hira; Ali, Attarad; Zia, Muhammad

    2017-01-01

    Interests associated with nanoparticles (NPs) are budding due to their toxicity to living species. The lethal effect of NPs depends on their nature, size, shape, and concentration. Present investigation reports that CuO NPs badly affected Brassica nigra seed germination and seedling growth parameters. However, variation in antioxidative activities and nonenzymatic oxidants is observed in plantlets. Culturing the leaf and stem explants on MS medium in presence of low concentration of CuO NPs (1-20 mg l -1 ) produces white thin roots with thick root hairs. These roots also show an increase in DPPH radical scavenging activity (up to 80 % at 10 mg l -1 ), total antioxidant, and reducing power potential (maximum in presence of 10 mg l -1 CuO NPs in the media). Nonenzymatic antioxidative molecules, phenolics and flavonoids, are observed elevated but NPs concentration dependent. We can conclude that CuO NPs can induce rooting from plant explants cultured on appropriate medium. These roots can be explored for the production of active chemical constituents.

  13. Baseline Air Quality Assessment of Goods Movement Activities before the Port of Charleston Expansion: A Community–University Collaborative

    PubMed Central

    Wilson, Sacoby M.; Tarver, Siobhan L.; Svendsen, Erik; Jiang, Chengsheng; Ogunsakin, Olalekan A.; Zhang, Hongmei; Campbell, Dayna; Fraser-Rahim, Herbert

    2017-01-01

    Abstract As the demand for goods continues to increase, a collective network of transportation systems is required to facilitate goods movement activities. This study examines air quality near the Port of Charleston before its expansion and briefly describes the establishment and structure of a community–university partnership used to monitor existing pollution. Particulate matter (PM) concentrations (PM2.5 and PM10) were measured using the Thermo Fisher Scientific Partisol 2000i-D Dichotomous Air Sampler, Thermo Scientific Dichotomous Sequential Air Sampler Partisol-Plus 2025-D, and Rupprecht & Patashnick TEOM Series 1400 Sampler at neighborhood (Union Heights, Rosemont, and Accabee) and reference (FAA2.5 and Jenkins Street) sites. Descriptive statistics were performed and an ANOVA (analysis of variance) was calculated to find the difference in overall mean 24-hour PM average concentrations in communities impacted by environmental injustice. PM2.5 (15.2 μg/m3) and PM10 (27.2 μg/m3) maximum concentrations were highest in neighborhoods such as Union Heights neighborhoods due to more goods movement activities. Nevertheless, there was no statistically significant difference in mean concentrations of PM2.5 and PM10 across neighborhood sites. In contrast, mean PM10 neighborhood concentrations were significantly lower than mean PM10 reference concentrations for Union Heights (p = 0.00), Accabee (p ≤ 0.0001), and Rosemont (p = 0.01). Although PM concentrations were lower than current National Ambient Air Quality Standards, this study demonstrated how community–university partners can work collectively to document baseline PM concentrations that will be used to examine changes in air quality after the port expansion brings additional goods movement activities to the area. PMID:29576842

  14. 40 CFR 421.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .174 .081 Zinc... monthly average mg/Kg (pounds per million pounds) of concentrate digested Lead 2.592 1.203 Zinc 9.442 3... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .069 .032 Zinc...

  15. 40 CFR 421.113 - Effluent limitations guidelines representing the degree of effluent reduction attainable by the...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .174 .081 Zinc... monthly average mg/Kg (pounds per million pounds) of concentrate digested Lead 2.592 1.203 Zinc 9.442 3... Maximum for monthly average mg/kg (pounds per million pounds) of concentrate digested Lead .069 .032 Zinc...

  16. PAH toxicity at aqueous solubility in the fish embryo test with Danio rerio using passive dosing.

    PubMed

    Seiler, Thomas-Benjamin; Best, Nina; Fernqvist, Margit Møller; Hercht, Hendrik; Smith, Kilian E C; Braunbeck, Thomas; Mayer, Philipp; Hollert, Henner

    2014-10-01

    As part of the risk assessment process within REACh, prior to manufacturing and distribution of chemical substances their (eco)toxicological impacts have to be investigated. The fish embryo toxicity test (FET) with the zebrafish Danio rerio has gained a high significance as an in vitro alternative to animal testing in (eco)toxicology. However, for hydrophobic organic chemicals it remains a technical challenge to ensure constant freely dissolved concentration at the maximum exposure level during such biotests. Passive dosing with PDMS silicone was thus applied to control the freely dissolved concentration of ten PAHs at their saturation level in the FET. The experiments gave repeatable results, with the toxicity of the PAHs generally increasing with the maximum chemical activities of the PAHs. HPLC analysis confirmed constant exposure at the saturation level. In additional experiments, fish embryos without direct contact to the silicone surface showed similar mortalities as those exposed with direct contact to the silicone. Silicone oil overlaying the water phase as a novel passive dosing phase had no observable effects on the development of the fish embryos until hatching. This study provides further data to support the close relationship between the chemical activity and the toxicity of hydrophobic organic compounds. Passive dosing from PDMS silicone enabled reliable toxicity testing of (highly) hydrophobic substances at aqueous solubility, providing a practical way to control toxicity exactly at the maximum exposure level. This approach is therefore expected to be useful as a cost-effective initial screening of hydrophobic chemicals for potential adverse effects to freshwater vertebrates. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Correlation of in vitro time-kill curves and kinetics of bacterial killing in cerebrospinal fluid during ceftriaxone therapy of experimental Escherichia coli meningitis.

    PubMed Central

    Decazes, J M; Ernst, J D; Sande, M A

    1983-01-01

    Ceftriaxone was highly active in eliminating Escherichia coli from the cerebrospinal fluid of rabbits infected with experimental meningitis. However, concentrations equal to or greater than 10 times the minimal bactericidal concentration had to be achieved to ensure optimal efficacy (rate of kill, 1.5 log10 CFU/ml per h). In contrast to other beta-lactams studied in this model, ceftriaxone concentrations in cerebrospinal fluid progressively increased, whereas serum steady state was obtained by constant infusion. The percent penetration was 2.1% after 1 h of therapy, in contrast to 8.9% after 7 h (P less than 0.001). In vitro time-kill curves done in cerebrospinal fluid or broth more closely predicted the drug concentrations required for a maximum cidal effect in vivo than that predicted by determinations of minimal inhibitory or bactericidal concentrations. PMID:6316841

  18. Examination of body burden and taint for Iceland scallop (Chlamys islandica) and American plaice (Hippoglossoides platessoides) near the Terra Nova offshore oil development over ten years of drilling on the Grand Banks of Newfoundland, Canada

    NASA Astrophysics Data System (ADS)

    DeBlois, Elisabeth M.; Kiceniuk, Joe W.; Paine, Michael D.; Kilgour, Bruce W.; Tracy, Ellen; Crowley, Roger D.; Williams, Urban P.; Gregory Janes, G.

    2014-12-01

    This paper presents results of analyses of body burdens of metals and hydrocarbons, and taste tests for taint, in Iceland scallop and American plaice performed as part of the Environmental Effects Monitoring (EEM) program for the Terra Nova offshore oil development (Grand Banks of Newfoundland, Canada). Scallop and plaice were collected in a Study Area located within approximately 1 km of drill centres at Terra Nova and in a Reference Area located approximately 20 km from the development. Samples were collected in 1997 to establish a baseline, and from 2000 to 2010, during drilling periods. Scallop adductor muscle tissue was contaminated with >C10-C21 aliphatic hydrocarbons resembling the drilling fluid in the synthetic drilling mud (SBM) used at Terra Nova in 2000, 2002 and 2004, but contamination of adductor muscle was not noted in 2006, 2008 and 2010. The maximum concentration in muscle was 28 mg/kg wet weight, noted in 2002. Scallop viscera was contaminated with hydrocarbons resembling drilling fluid in SBMs near drill centres in all EEM years except 2010. Viscera contamination with >C10-C21 hydrocarbons gradually decreased from a maximum of 150 mg/kg in 2000, to a maximum of 27 mg/kg in 2008; all values were below the laboratory reporting detection limit of 15 mg/kg in 2010. Therefore, evidence from both muscle and viscera indicates a decrease in tissue hydrocarbon contamination in recent years. Barium, another major constituent in drilling muds, has not been noted in scallop adductor muscles at concentrations above the reporting detection limit, but barium was detected in viscera in baseline and EEM years. The maximum concentration of barium in viscera during baseline sampling was 8 mg/kg. The maximum concentration in EEM years (29 mg/kg) was noted in 2000. The maximum concentration in 2010 was 25 mg/kg. The concentration of metals other than barium in scallop tissues was similar between the Terra Nova Study Area and the Reference Area. Hydrocarbons resembling the fluid in SBMs were noted in one American plaice liver sample collected near drill centres in 2000. Otherwise, there has been no evidence of project-related metals or hydrocarbon contamination in plaice liver or fillet samples. There has been no evidence of taint (off-taste) for scallop adductor muscle and plaice fillet tissue in baseline or EEM years. Combined with a parallel study on fish bioindicators at Terra Nova that showed that fish health at Terra Nova was similar to that at the Reference Area (Mathieu et al., 2011), these results indicate little to no detectable biological effects on Iceland scallop and American plaice as a result of Terra Nova activities.

  19. Rapid development of xylanase assay conditions using Taguchi methodology.

    PubMed

    Prasad Uday, Uma Shankar; Bandyopadhyay, Tarun Kanti; Bhunia, Biswanath

    2016-11-01

    The present investigation is mainly concerned with the rapid development of extracellular xylanase assay conditions by using Taguchi methodology. The extracellular xylanase was produced from Aspergillus niger (KP874102.1), a new strain isolated from a soil sample of the Baramura forest, Tripura West, India. Four physical parameters including temperature, pH, buffer concentration and incubation time were considered as key factors for xylanase activity and were optimized using Taguchi robust design methodology for enhanced xylanase activity. The main effect, interaction effects and optimal levels of the process factors were determined using signal-to-noise (S/N) ratio. The Taguchi method recommends the use of S/N ratio to measure quality characteristics. Based on analysis of the S/N ratio, optimal levels of the process factors were determined. Analysis of variance (ANOVA) was performed to evaluate statistically significant process factors. ANOVA results showed that temperature contributed the maximum impact (62.58%) on xylanase activity, followed by pH (22.69%), buffer concentration (9.55%) and incubation time (5.16%). Predicted results showed that enhanced xylanase activity (81.47%) can be achieved with pH 2, temperature 50°C, buffer concentration 50 Mm and incubation time 10 min.

  20. Sensing of p53 and EGFR Biomarkers Using High Efficiency SERS Substrates

    PubMed Central

    Owens, Peter; Phillipson, Nigel; Perumal, Jayakumar; O’Connor, Gerard M.; Olivo, Malini

    2015-01-01

    In this paper we describe a method for the determination of protein concentration using Surface Enhanced Raman Resonance Scattering (SERRS) immunoassays. We use two different Raman active linkers, 4-aminothiophenol and 6-mercaptopurine, to bind to a high sensitivity SERS substrate and investigate the influence of varying concentrations of p53 and EGFR on the Raman spectra. Perturbations in the spectra are due to the influence of protein–antibody binding on Raman linker molecules and are attributed to small changes in localised mechanical stress, which are enhanced by SERRS. These influences are greatest for peaks due to the C-S functional group and the Full Width Half Maximum (FWHM) was found to be inversely proportional to protein concentration. PMID:26516922

  1. Ecotoxicity of diethylene glycol and risk assessment for marine environment.

    PubMed

    Manfra, L; Tornambè, A; Savorelli, F; Rotini, A; Canepa, S; Mannozzi, M; Cicero, A M

    2015-03-02

    Diethylene glycol (DEG) is a chemical compound used during offshore oil activities to prevent hydrate formation, and it may be released into the sea. A full ecotoxicological characterization is required according to European and Italian regulations for chemical substances. We have evaluated long-term toxic effects of DEG on indicator species of the marine environment as algae (Phaeodactylum tricornutum), crustaceans (Artemia franciscana), molluscs (Tapes philippinarum) and fish (Dicentrarchus labrax). A range of no observed effect concentrations (365-25,000 mg/L) has been identified. Based on the toxicity results and the ratio between predicted environmental concentration and predicted no-effect concentration, we have estimated the maximum allowable value of DEG in the marine environment. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Effects of Al(III) and Nano-Al13 Species on Malate Dehydrogenase Activity

    PubMed Central

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al13 can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al13 concentration increase. Our study also found that the effects of Al(III) and Al13 on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules. PMID:22163924

  3. Effects of Al(III) and nano-Al13 species on malate dehydrogenase activity.

    PubMed

    Yang, Xiaodi; Cai, Ling; Peng, Yu; Li, Huihui; Chen, Rong Fu; Shen, Ren Fang

    2011-01-01

    The effects of different aluminum species on malate dehydrogenase (MDH) activity were investigated by monitoring amperometric i-t curves for the oxidation of NADH at low overpotential using a functionalized multi-wall nanotube (MWNT) modified glass carbon electrode (GCE). The results showed that Al(III) and Al(13) can activate the enzymatic activity of MDH, and the activation reaches maximum levels as the Al(III) and Al(13) concentration increase. Our study also found that the effects of Al(III) and Al(13) on the activity of MDH depended on the pH value and aluminum speciation. Electrochemical and circular dichroism spectra methods were applied to study the effects of nano-sized aluminum compounds on biomolecules.

  4. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively.

  5. Caffeine-induced increase in voluntary activation and strength of the quadriceps muscle during isometric, concentric and eccentric contractions

    PubMed Central

    Behrens, Martin; Mau-Moeller, Anett; Weippert, Matthias; Fuhrmann, Josefin; Wegner, Katharina; Skripitz, Ralf; Bader, Rainer; Bruhn, Sven

    2015-01-01

    This study investigated effects of caffeine ingestion (8 mg/kg) on maximum voluntary torque (MVT) and voluntary activation of the quadriceps during isometric, concentric and eccentric contractions. Fourteen subjects ingested caffeine and placebo in a randomized, controlled, counterbalanced, double-blind crossover design. Neuromuscular tests were performed before and 1 h after oral caffeine and placebo intake. MVTs were measured and the interpolated twitch technique was applied during isometric, concentric and eccentric contractions to assess voluntary activation. Furthermore, normalized root mean square of the EMG signal was calculated and evoked spinal reflex responses (H-reflex evoked at rest and during weak isometric voluntary contraction) as well as twitch torques were analyzed. Caffeine increased MVT by 26.4 N m (95%CI: 9.3-43.5 N m, P = 0.004), 22.5 N m (95%CI: 3.1-42.0 N m, P = 0.025) and 22.5 N m (95%CI: 2.2-42.7 N m, P = 0.032) for isometric, concentric and eccentric contractions. Strength enhancements were associated with increases in voluntary activation. Explosive voluntary strength and voluntary activation at the onset of contraction were significantly increased following caffeine ingestion. Changes in spinal reflex responses and at the muscle level were not observed. Data suggest that caffeine ingestion induced an acute increase in voluntary activation that was responsible for the increased strength regardless of the contraction mode. PMID:25969895

  6. A novel method to quantify the activity of alcohol acetyltransferase Using a SnO2-based sensor of electronic nose.

    PubMed

    Hu, Zhongqiu; Li, Xiaojing; Wang, Huxuan; Niu, Chen; Yuan, Yahong; Yue, Tianli

    2016-07-15

    Alcohol acetyltransferase (AATFase) extensively catalyzes the reactions of alcohols to acetic esters in microorganisms and plants. In this work, a novel method has been proposed to quantify the activity of AATFase using a SnO2-based sensor of electronic nose, which was determined on the basis of its higher sensitivity to the reducing alcohol than the oxidizing ester. The maximum value of the first-derivative of the signals from the SnO2-based sensor was therein found to be an eigenvalue of isoamyl alcohol concentration. Quadratic polynomial regression perfectly fitted the correlation between the eigenvalue and the isoamyl alcohol concentration. The method was used to determine the AATFase activity in this type of reaction by calculating the conversion rate of isoamyl alcohol. The proposed method has been successfully applied to determine the AATFase activity of a cider yeast strain. Compared with GC-MS, the method shows promises with ideal recovery and low cost. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Assessment of radionuclide concentration and exhalation studies in soil of lesser Himalayas of Jammu and Kashmir, India

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Vij, Raman; Sharma, Sumit; Sarin, Amit; Narang, Saurabh

    2018-02-01

    Because to extensive utilization of soil as a building/construction stuff, the activities of 238U, 40K, 232Th, and exhalation studies in solid samples have been measured using thallium activated sodium iodide (NaI(Tl)) gamma detector and scintillation-based smart RnDuo monitor. The measured activity concentration of radionuclides lies in the range of 2.76-38.96, 12.47-65.70, and 199-450 Bq/kg for uranium (C U), thorium (C Th), and potassium (C K), respectively. The annual effective dose rate due to radionuclides is within the secure limit suggested by ICRP. The radium equivalent activity of all the samples is under 100 Bq/kg. The maximum outward and inside risk indices of all these samples are below the values of 0.37 and 0.43. No direct correlation has been seen between 238U and its mass exhalation rate as well as 232Th and its surface exhalation rate in soil samples.

  8. Optimization of antimicrobial activity of flavonoid extracts from pomelo (Citrus grandis) peel as food wrap

    NASA Astrophysics Data System (ADS)

    Sugumaran, Kamaraj; Zakaria, Nur Zatul-'Iffah; Abdullah, Rozaini; Jalani, Nur Syazana; Zati-Hanani, Sharifah; Ibrahim, Roshita; Zakaria, Zarina

    2017-09-01

    This study has been carried out to optimize an antimicrobial activity of flavonoid extract from pomelo peels against Staphyloccus aureus (S. aureus). A comparative analysis of total phenolic content (TPC), total flavonoid content (TFC) and antioxidant activity were done on two parts of peel which are albedo (inner peel) and flavedo (outer peel). Based on the result obtained, flavedo showed higher TPC, TFC and antioxidant activity (304.20 mg /g, 74.30 mg /g and 46.86 % respectively) when compared to albedo (150.98 mg /g, 52.97 mg /g and 24.70 % respectively). The effects of different extract concentration and pH on inhibition zone of S. aureus were optimized using Research Surface Methodology (RSM). The optimal condition of parameters was obtained based on the maximum zone of S. aureus inhibition at extract concentration of 200 mg/mL and pH of 4.8. The antimicrobial film has been developed by using optimal conditions by incorporating the flavonoid extract into chitosan polymer.

  9. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  10. Risk Assessment of Florists Exposed to Pesticide Residues through Handling of Flowers and Preparing Bouquets.

    PubMed

    Toumi, Khaoula; Joly, Laure; Vleminckx, Christiane; Schiffers, Bruno

    2017-05-13

    Flowers are frequently treated with pesticides and, as a result, florists handling daily a large number of flowers can be exposed to pesticide residues. A study was conducted among twenty volunteer florists located in Namur Province and in the Brussels Capital Region of Belgium in order to assess their potential dermal exposure to dislodgeable pesticide residues transferred from flowers to hands. Two pairs of cotton gloves were worn during two consecutive half days while handling flowers and preparing bouquets (from min 2 h to max 3 h/day). The residual pesticide deposits on the glove samples were extracted with a multi-residue Quick Easy Cheap Effective Rugged Safe (QuEChERS) method and analyzed by a combination of gas and liquid chromatography tandem mass spectrometry (GC-MS/MS and LC-MS/MS) by an accredited laboratory. A total of 111 active substances (mainly insecticides and fungicides) were detected, with an average of 37 active substances per sample and a total concentration per glove sample of 22.22 mg/kg. Several predictive levels of contamination were considered to assess the risk. The potential dermal exposures (PDE) of florists were estimated at the average, for different percentiles, and at the maximum concentration of residues in samples. At the PDE P90 and at the PDE MAX (or worst case) values, three and five active substances respectively exceed the Acceptable Operator Exposure Level (AOEL), indicating risk situations. For the systemic exposure (SE), one active substance (clofentezine) exceeds the AOEL at the P90 predictive level. In the worst case, SE MAX (at the maximum concentrations), four active substances (clofentezine, famoxadone, methiocarb, and pyridaben) exceed their respective AOEL values. Among the 14 most frequently detected active substances, two have SE MAX values exceeding the AOEL. Exposure could be particularly critical for clofentezine with an SE MAX value four times higher than the AOEL (393%). The exposure of florists appeared to be an example of a unique professional situation in which workers are exposed regularly to both a very high number of toxic chemicals and rather high concentration levels. Therefore the priority should be to raise the level of awareness among the florists who must change their habits and practices if they want to minimize their exposure.

  11. Risk Assessment of Florists Exposed to Pesticide Residues through Handling of Flowers and Preparing Bouquets

    PubMed Central

    Toumi, Khaoula; Joly, Laure; Vleminckx, Christiane; Schiffers, Bruno

    2017-01-01

    Flowers are frequently treated with pesticides and, as a result, florists handling daily a large number of flowers can be exposed to pesticide residues. A study was conducted among twenty volunteer florists located in Namur Province and in the Brussels Capital Region of Belgium in order to assess their potential dermal exposure to dislodgeable pesticide residues transferred from flowers to hands. Two pairs of cotton gloves were worn during two consecutive half days while handling flowers and preparing bouquets (from min 2 h to max 3 h/day). The residual pesticide deposits on the glove samples were extracted with a multi-residue Quick Easy Cheap Effective Rugged Safe (QuEChERS) method and analyzed by a combination of gas and liquid chromatography tandem mass spectrometry (GC-MS/MS and LC-MS/MS) by an accredited laboratory. A total of 111 active substances (mainly insecticides and fungicides) were detected, with an average of 37 active substances per sample and a total concentration per glove sample of 22.22 mg/kg. Several predictive levels of contamination were considered to assess the risk. The potential dermal exposures (PDE) of florists were estimated at the average, for different percentiles, and at the maximum concentration of residues in samples. At the PDE P90 and at the PDEMAX (or worst case) values, three and five active substances respectively exceed the Acceptable Operator Exposure Level (AOEL), indicating risk situations. For the systemic exposure (SE), one active substance (clofentezine) exceeds the AOEL at the P90 predictive level. In the worst case, SEMAX (at the maximum concentrations), four active substances (clofentezine, famoxadone, methiocarb, and pyridaben) exceed their respective AOEL values. Among the 14 most frequently detected active substances, two have SEMAX values exceeding the AOEL. Exposure could be particularly critical for clofentezine with an SEMAX value four times higher than the AOEL (393%). The exposure of florists appeared to be an example of a unique professional situation in which workers are exposed regularly to both a very high number of toxic chemicals and rather high concentration levels. Therefore the priority should be to raise the level of awareness among the florists who must change their habits and practices if they want to minimize their exposure. PMID:28505067

  12. Estimates of the pharmacokinetics of famciclovir and its active metabolite penciclovir in young Asian elephants (Elephas maximus).

    PubMed

    Brock, A Paige; Isaza, Ramiro; Hunter, Robert P; Richman, Laura K; Montali, Richard J; Schmitt, Dennis L; Koch, David E; Lindsay, William A

    2012-12-01

    To determine plasma pharmacokinetics of penciclovir following oral and rectal administration of famciclovir to young Asian elephants (Elephas maximus). 6 healthy Asian elephants (5 females and 1 male), 4.5 to 9 years old and weighing 1,646 to 2,438 kg. Famciclovir was administered orally or rectally in accordance with an incomplete crossover design. Three treatment groups, each comprising 4 elephants, received single doses of famciclovir (5 mg/kg, PO, or 5 or 15 mg/kg, rectally); there was a minimum 12-week washout period between subsequent famciclovir administrations. Serial blood samples were collected after each administration. Samples were analyzed for famciclovir and penciclovir with a validated liquid chromatography-mass spectroscopy assay. Famciclovir was tolerated well for both routes of administration and underwent complete biotransformation to the active metabolite, penciclovir. Mean maximum plasma concentration of penciclovir was 1.3 μg/mL at 1.1 hours after oral administration of 5 mg/kg. Similar results were detected after rectal administration of 5 mg/kg. Mean maximum plasma concentration was 3.6 μg/mL at 0.66 hours after rectal administration of 15 mg/kg; this concentration was similar to results reported for humans receiving 7 mg/kg orally. Juvenile Asian elephants are susceptible to elephant endotheliotropic herpesvirus. Although most infections are fatal, case reports indicate administration of famciclovir has been associated with survival of 3 elephants. In Asian elephants, a dose of 8 to 15 mg of famciclovir/kg given orally or rectally at least every 8 hours may result in penciclovir concentrations that are considered therapeutic in humans.

  13. Impact of antiseptics on Chlamydia trachomatis growth.

    PubMed

    Párducz, L; Eszik, I; Wagner, G; Burián, K; Endrész, V; Virok, D P

    2016-10-01

    Bacterial vaginosis is a frequent dysbiosis, where the normal lactobacillus-dominated flora is replaced by an anaerob/aerob polymicrobial flora. Bacterial vaginosis increases the risk of acquiring sexually transmitted infections (STI) including the most frequent Chlamydia trachomatis infections. Intravaginal antiseptics are part of the bacterial vaginosis treatment, and ideally they should also inhibit the bacterial vaginosis-related STI. Therefore, we tested the antichlamydial activity of four antiseptics: iodine aqueous solution, povidone-iodine, chlorhexidine and borax. First, we measured the impact of antiseptics on the viability of the HeLa cervical epithelial cells, and calculated the maximum nontoxic concentrations. Next, we infected the cells with C. trachomatis preincubated for 1 h with the particular antiseptic. The chlamydial growth was measured by direct quantitative PCR (qPCR) of the infected cells. The minimal inhibitory concentrations (MIC) of chlorhexidine and povidone-iodine were 3·91 and 97 μg ml(-1) respectively; however, the MIC of chlorhexidine was close to its maximum nontoxic concentration. The iodine aqueous solution and the borax showed no antichlamydial activity. Our in vitro studies showed that chlorhexidine and particularly povidone-iodine are potentially able to limit the bacterial vaginosis-related C. trachomatis infection. We measured the antichlamydial effects of various antiseptics. These antiseptics are being used for the treatment of bacterial vaginosis, but their effect on the bacterial vaginosis-related sexually transmitted infections, particularly the most frequent Chlamydia trachomatis (C. trachomatis) infections has not been investigated. We showed that povidone-iodine (Betadine) inhibited the chlamydial growth in concentrations that was not toxic to the epithelial cells. We concluded that due to its additional antichlamydial effect, povidone-iodine could be a preferable antiseptic in bacterial vaginosis treatment. © 2016 The Society for Applied Microbiology.

  14. Seasonal variations in production and consumption rates of dissolved organic carbon in an organic-rich coastal sediment

    NASA Astrophysics Data System (ADS)

    Alperin, M. J.; Albert, D. B.; Martens, C. S.

    1994-11-01

    Dissolved organic carbon (DOC) concentrations in anoxic marine sediments are controlled by at least three processes: (1) production of nonvolatile dissolved compounds, such as peptides and amino acids, soluble saccharides and fatty acids, via hydrolysis of particulate organic carbon (POC). (2) conversion of these compounds to volatile fatty acids and alcohols by fermentative bacteria. (3) consumption of volatile fatty acids and alcohols by terminal bacteria, such as sulfate reducers and methanogens. We monitored seasonal changes in concentration profiles of total DOC, nonacid-volatile (NAV) DOC and acid-volatile (AV) DOC in anoxic sediment from Cape Lookout Bight, North Carolina, USA, in order to investigate the factors that control seasonal variations in rates of hydrolysis, fermentation, and terminal metabolism. During the winter months, DOC concentrations increased continuously from 0.2 mM in the bottomwater to ~4 mM at a depth of 36 cm in the sediment column. During the summer, a large DOC maximum developed between 5 and 20 cm, with peak concentrations approaching 10 mM. The mid-depth summertime maximum was driven by increases in both NAV- and AV-DOC concentrations. Net NAV-DOC reaction rates were estimated by a diagenetic model applied to NAV-DOC concentration profiles. Depth-integrated production rates of NAV-DOC increased from February through July, suggesting that net rates of POC hydrolysis during this period are controlled by temperature. Net consumption of NAV-DOC during the late summer and early fall suggests reduced gross NAV-DOC production rates, presumably due to a decline in the availability of labile POC. A distinct subsurface peak in AV-DOC concentration developed during the late spring, when the sulfate depletion depth shoaled from 25 to 10 cm. We hypothesize that the AV-DOC maximum results from a decline in consumption by sulfate-reducing bacteria (due to sulfate limitation) and a lag in the development of an active population of methanogenic bacteria. A diagenetic model that incorporates a lag period in the sulfate reducer-methanogen transition successfully simulates the timing, magnitude, depth and shape of the AV-DOC peak.

  15. Influence of salinity and organic carbon on the chronic toxicity of silver to mysids (Americamysis bahia) and silversides (Menidia beryllina).

    PubMed

    Ward, Timothy J; Boeri, Robert L; Hogstrand, Christer; Kramer, James R; Lussier, Suzanne M; Stubblefield, William A; Wyskiel, Derek C; Gorsuch, Joseph W

    2006-07-01

    Tests were conducted with mysids (Americamysis bahia) and silversides (Menidia beryllina) to evaluate the influence of salinity and organic carbon on the chronic toxicity of silver. During 7- and 28-d tests conducted at 10, 20, and 30% per hundred salinity, higher concentrations of dissolved silver generally were required to cause a chronic effect as the salinity of the seawater was increased. The 28-d mysid and silverside 20%-effective concentration values (expressed as dissolved silver) ranged from 3.9 to 60 and from 38 to 170 microg/L, respectively, over the salinity range. This pattern was not observed when the same test results were evaluated against the concentrations of free ionic silver (measured directly during toxicity tests), as predicted by the free-ion activity model. Increasing the concentration of dissolved organic carbon from 1 mg/L to the apparent maximum achievable concentration of 6 mg/L in seawater caused a slight decrease in chronic toxicity to silversides but had no effect on the chronic toxicity to mysids. The possible additive toxicity of silver in both food and water also was investigated. Even at the maximum achievable foodborne concentration, the chronic toxicity of silver added to the water was not affected when silver was also added to the food, based on the most sensitive endpoint (growth). However, although fecundity was unaffected at all five tested concentrations during the test with silver in water only, it was significantly reduced at the two highest waterborne silver concentrations (12 and 24 microg/L) during the test with silver dosed into food and water.

  16. Concentration-response of short-term ozone exposure and hospital admissions for asthma in Texas.

    PubMed

    Zu, Ke; Liu, Xiaobin; Shi, Liuhua; Tao, Ge; Loftus, Christine T; Lange, Sabine; Goodman, Julie E

    2017-07-01

    Short-term exposure to ozone has been associated with asthma hospital admissions (HA) and emergency department (ED) visits, but the shape of the concentration-response (C-R) curve is unclear. We conducted a time series analysis of asthma HAs and ambient ozone concentrations in six metropolitan areas in Texas from 2001 to 2013. Using generalized linear regression models, we estimated the effect of daily 8-hour maximum ozone concentrations on asthma HAs for all ages combined, and for those aged 5-14, 15-64, and 65+years. We fit penalized regression splines to evaluate the shape of the C-R curves. Using a log-linear model, estimated risk per 10ppb increase in average daily 8-hour maximum ozone concentrations was highest for children (relative risk [RR]=1.047, 95% confidence interval [CI]: 1.025-1.069), lower for younger adults (RR=1.018, 95% CI: 1.005-1.032), and null for older adults (RR=1.002, 95% CI: 0.981-1.023). However, penalized spline models demonstrated significant nonlinear C-R relationships for all ages combined, children, and younger adults, indicating the existence of thresholds. We did not observe an increased risk of asthma HAs until average daily 8-hour maximum ozone concentrations exceeded approximately 40ppb. Ozone and asthma HAs are significantly associated with each other; susceptibility to ozone is age-dependent, with children at highest risk. C-R relationships between average daily 8-hour maximum ozone concentrations and asthma HAs are significantly curvilinear for all ages combined, children, and younger adults. These nonlinear relationships, as well as the lack of relationship between average daily 8-hour maximum and peak ozone concentrations, have important implications for assessing risks to human health in regulatory settings. Copyright © 2017. Published by Elsevier Ltd.

  17. The action of stress hormones on the structure and function of erythrocyte membrane.

    PubMed

    Mokrushnikov, Pavel V; Panin, Lev E; Zaitsev, Boris N

    2015-07-01

    The action of a mixture of hormones (cortisol and adrenaline) on erythrocyte membrane during their binding was investigated. Changes in the membrane structure were elucidated by atomic force microscopy; microviscosity of the lipid bilayer and changes in the activity of Na(+),K(+)-ATPase at different concentrations of the hormones in erythrocyte suspension were estimated by the fluorescence method. Cortisol and adrenaline were shown to compete for the binding sites. A hormone that managed to bind nonspecifically to the membrane hindered the binding of another hormone. In a mixture of these hormones, cortisol won a competition for the binding sites; therewith, microviscosity of the membranes increased by 25%, which corresponds to a change in microviscosity produced by the action of cortisol alone. The competitive relationships affected also the Na(+),K(+)-ATPase activity, which was indicated by appearance of the second maximum of enzyme activity. It is assumed that an increase in microviscosity of erythrocyte membrane first raises the Na(+),K(+)-ATPase activity due to a growth of the maximum energy of membrane phonons, and then decreases the activity due to hindering of conformational transitions in the enzyme molecule.

  18. Factors controlling spatial and temporal patterns of multiple pesticide compounds in groundwater (Hesbaye chalk aquifer, Belgium).

    PubMed

    Hakoun, Vivien; Orban, Philippe; Dassargues, Alain; Brouyère, Serge

    2017-04-01

    Factors governing spatial and temporal patterns of pesticide compounds (pesticides and metabolites) concentrations in chalk aquifers remain unclear due to complex flow processes and multiple sources. To uncover which factors govern pesticide compound concentrations in a chalk aquifer, we develop a methodology based on time series analyses, uni- and multivariate statistics accounting for concentrations below detection limits. The methodology is applied to long records (1996-2013) of a restricted compound (bentazone), three banned compounds (atrazine, diuron and simazine) and two metabolites (deethylatrazine (DEA) and 2,6-dichlorobenzamide (BAM)) sampled in the Hesbaye chalk aquifer in Belgium. In the confined area, all compounds had non-detects fractions >80%. By contrast, maximum concentrations exceeded EU's drinking-water standard (100 ng L -1 ) in the unconfined area. This contrast confirms that recent recharge and polluted water did not reach the confined area, yet. Multivariate analyses based on variables representative of the hydrogeological setting revealed higher diuron and simazine concentrations in the southeast of the unconfined area, where urban activities dominate land use and where the aquifer lacks protection from a less permeable layer of hardened chalk. At individual sites, positive correlations (up to τ=0.48 for bentazone) between pesticide compound concentrations and multi-annual groundwater level fluctuations confirm occurrences of remobilization. A downward temporal trend of atrazine concentrations likely reflects decreasing use of this compound over the last 28 years. However, the lack of a break in concentrations time series and maximum concentrations of atrazine, simazine, DEA and BAM exceeding EU's standard post-ban years provide evidence of persistence. Contrasting upward trends in bentazone concentrations show that a time lag is required for restriction measures to be efficient. These results shed light on factors governing pesticide compound concentrations in chalk aquifers. The developed methodology is not restricted to chalk aquifers, it could be transposed to study other pollutants with concentrations below detection limits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Co-concentration effect of silane with natural extract on biodegradable polymeric films for food packaging.

    PubMed

    Bashir, Anbreen; Jabeen, Sehrish; Gull, Nafisa; Islam, Atif; Sultan, Misbah; Ghaffar, Abdul; Khan, Shahzad Maqsood; Iqbal, Sadia Sagar; Jamil, Tahir

    2018-01-01

    Novel biodegradable films were prepared by blending guar gum, chitosan and poly (vinyl alcohol) having mint (ME) and grapefruit peel (GE) extracts and crosslinked with nontoxic tetraethoxysilane (TEOS). The co-concentration effect of TEOS with natural extracts on the films was studied. FTIR analysis confirmed the presence of incorporated components and the developed interactions among the polymer chains. The surface morphology of the films by SEM showed the hydrophilic character due to porous network structure. The films having both ME and GE with maximum amount of crosslinker (100μL), showed maximum swelling (58g/g) and stability while the optical properties showed increased protection against UV light. This film sample showed compact network structure which enhanced the ultimate tensile strength (40.03MPa) and elongation at break (104.8%). ME/GE conferred the antioxidant properties determined by radical scavenging activity and total phenolic contents (TPC) as ME films have greater TPC compared to GE films. The soil burial test exhibited the degradation of films rapidly (6days) confirming their strong microbial activity in soil. The lower water vapour transmission rate and water vapour permeability showed better shelf life; hence, these biodegradable films are environmental friendly and have potential for food and other packaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Sodium tripolyphosphate cross-linked chitosan based sensor for enhacing sensing properties towards acetone

    NASA Astrophysics Data System (ADS)

    Nasution, T. I.; Asrosa, R.; Nainggolan, I.; Balyan, M.; Indah, R.; Wahyudi, A.

    2018-02-01

    In this report, sensing properties of sodium tripolyphosphate (TPP) cross-linked chitosan based sensor has been successfully enhanced towards acetone. Chitosan solutions were cross-linked with sodium TPP in variation of 0.1%, 0.5%, 1% and 1.5% w/v, respectively. The sensors were fabricated in film form using an electrochemical deposition method. The sensing properties of the sensors were observed by exposing the pure chitosan and sodium TPP cross-linked chitosan sensors towards acetone concentrations of 5, 10, 50, 100 and 200 ppm. The measurement results revealed that the maximum response in output voltage value of pure chitosan sensor was 0.35 V while sodium TPP crosslinked chitosan sensors were above 0.35 V towards 5 ppm acetone concentration. When the sensors were exposed towards acetone concentration of 200 ppm, the maximum response of pure chitosan was 0.45 V while sodium TPP crosslinked chitosan sensors were above 0.45 V. Amongst the variation of sodium TPP, the maximum response of 1% sodium TPP was the highest since the maximum response was 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration, respectively. While the maximum responses of other sodium TPP concentrations were under 0.4 V and 0.6 V towards 5 ppm and 200 ppm acetone concentration. Moreover, 1% sodium TPP cross-linked chitosan based sensor showed good reproducibility and outstanding lifetime. Therefore, 1% sodium TPP cross-linked chitosan based sensor has exhibited remarkable sensing properties as a novel acetone sensor.

  1. Atmospheric CO2 Records from Sites in the Umweltbundesamt (UBA) Air Sampling Network (1972 - 1997)

    DOE Data Explorer

    Fricke, W. [Umweltbundesamt, Offenbach/Main, Germany; Wallasch, M. [Umweltbundesamt, Offenbach/Main, Germany; Uhse, Karin [Umweltbundesamt, Offenbach/Main, Germany; Schmidt, Martina [University of Heidelberg, Heidelberg, Germany; Levin, Ingeborg [University of Heidelberg, Heidelberg, Germany

    1998-01-01

    Air samples for the purpose of monitoring atmospheric CO2 were collected from five sites in the UBA air sampling network. Annual atmospheric CO2 concentrations at Brotjacklriegel rose from 331.63 parts per million by volume (ppmv) in 1972 to 353.12 ppmv in 1988. Because of the site's forest location, the monthly atmospheric CO2 record from Brotjacklriegel exhibits very large seasonal amplitude. This amplitude reached almost 40 ppmv in 1985. Minimum mixing ratios are recorded at Brotjacklriegel during July-September; maximum values, during November-March. CO2 concentrations at Deuselbach rose from 340.82 parts per million by volume (ppmv) in 1972 to 363.76 ppmv in 1989. The monthly atmospheric CO2 record from Deuselbach is influenced by local agricultural activities and photosynthetic depletion but does not exhibit the large seasonal amplitude observed at other UBA monitoring sites. Minimum monthly atmospheric CO2 mixing ratios at Deuselbach are typically observed in August but may appear as early as June. Maximum values are seen in the record for November-March. Atmospheric CO2 concentrations at Schauinsland rose from ~328 parts per million by volume (ppmv) in 1972 to ~365 ppmv in 1997. This represents a growth rate of approximately 1.5 ppmv per year. The Schauinsland site is considered the least contaminated of the UBA sites. CO2 concentrations at Waldhof rose from 346.82 parts per million by volume (ppmv) in 1972 to 372.09 ppmv in 1993. The Waldhof site is subject to pollution sources; consequently, the monthly atmospheric CO2 record exhibits a large seasonal amplitude. Atmospheric CO2 concentrations at Westerland rose from ~329 parts per million by volume (ppmv) in 1973 to ~364 ppmv in 1997. The atmospheric CO2 record from Westerland shows a seasonal pattern similar to other UBA sites; minimum values are recorded during July-September; maximum mixing ratios during November-March.

  2. Efficacy of pharmacokinetic interactions between piperonyl butoxide and albendazole against gastrointestinal nematodiasis in goats.

    PubMed

    Kumbhakar, N K; Sanyal, P K; Rawte, D; Kumar, D; Kerketta, A E; Pal, S

    2016-09-01

    To test the hypothesis that modulation of hepatic microsomal sulphoxidation and sulphonation by the cytochrome P450 inhibitor piperonyl butoxide could increase bioavailability of albendazole, the present study was undertaken to understand the pharmacokinetics of albendazole in goats at a dose of 7.5 mg kg- 1 body weight with and without co-administration with piperonyl butoxide at 63.0 mg kg- 1 body weight. Plasma albendazole sulphoxide metabolite, the anthelmintically active moiety, reached its maximum concentration of 0.322 ± 0.045 μg ml- 1 and 0.384 ± 0.013 μg ml- 1 at 18 h and 24 h after administration of albendazole alone and co-administration of albendazole with piperonyl butoxide, respectively. Analysis of the data revealed statistically increased albendazole sulphoxide levels at 24 (P 0.05) in values of maximum concentration (normal and calculated) could be observed between groups of goats. However, values of time to reach the concentration maximum (normal and calculated), area under the concentration-time curve (0-∞ and calculated), minimum residence time, distribution half-life, elimination half-life and total area under the first movement of plasma drug concentration-time curve were significantly higher (P <  0.05) in plasma levels of albendazole sulphoxide in goats following single oral co-administration of albendazole with piperonyl butoxide. The faecal egg count reduction and lower 95% confidence limit for the group treated with albendazole alone were 97 and 68%, while for co-administration of albendazole and piperonyl butoxide the values were 99 and 97%, respectively. The ED50 for egg hatch was 0.196, indicating suspected resistance to benzimidazole anthelmintics. The drug combination proved efficacious against an albendazole-resistant nematode parasite population in goats.

  3. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    PubMed Central

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  4. The Maximum Free Magnetic Energy Allowed in a Solar Active Region

    NASA Technical Reports Server (NTRS)

    Moore, Ronald L.; Falconer, David A.

    2009-01-01

    Two whole-active-region magnetic quantities that can be measured from a line-of-sight magnetogram are (sup L) WL(sub SG), a gauge of the total free energy in an active region's magnetic field, and sup L(sub theta), a measure of the active region's total magnetic flux. From these two quantities measured from 1865 SOHO/MDI magnetograms that tracked 44 sunspot active regions across the 0.5 R(sub Sun) central disk, together with each active region's observed production of CMEs, X flares, and M flares, Falconer et al (2009, ApJ, submitted) found that (1) active regions have a maximum attainable free magnetic energy that increases with the magnetic size (sup L) (sub theta) of the active region, (2) in (Log (sup L)WL(sub SG), Log(sup L) theta) space, CME/flare-productive active regions are concentrated in a straight-line main sequence along which the free magnetic energy is near its upper limit, and (3) X and M flares are restricted to large active regions. Here, from (a) these results, (b) the observation that even the greatest X flares produce at most only subtle changes in active region magnetograms, and (c) measurements from MSFC vector magnetograms and from MDI line-of-sight magnetograms showing that practically all sunspot active regions have nearly the same area-averaged magnetic field strength: =- theta/A approximately equal to 300 G, where theta is the active region's total photospheric flux of field stronger than 100 G and A is the area of that flux, we infer that (1) the maximum allowed ratio of an active region's free magnetic energy to its potential-field energy is 1, and (2) any one CME/flare eruption releases no more than a small fraction (less than 10%) of the active region's free magnetic energy. This work was funded by NASA's Heliophysics Division and NSF's Division of Atmospheric Sciences.

  5. Continuous measurement of galactolipid hydrolysis by pancreatic lipolytic enzymes using the pH-stat technique and a medium chain monogalactosyl diglyceride as substrate.

    PubMed

    Amara, Sawsan; Lafont, Dominique; Fiorentino, Brice; Boullanger, Paul; Carrière, Frédéric; De Caro, Alain

    2009-10-01

    Galactolipids are the main lipids from plants and galactolipases play a major role in their metabolism. These enzymes were however poorly studied so far and only few assays have been developed. A specific and continuous galactolipase assay using synthetic medium chain monogalactosyl diacylglycerol (MGDG) as substrate was developed using the pH-stat technique and recombinant human (rHPLRP2) and guinea pig (rGPLRP2) pancreatic lipase-related protein 2 as model enzymes. PLRP2s are the main enzymes involved in the digestion of galactolipids in the gastrointestinal tract. Monogalactosyl di-octanoylglycerol was mixed with bile salt solutions by sonication to form a micellar substrate before launching the assay. The nature of the bile salt and the bile salt to MGDG ratio were found to significantly affect the rate of MGDG hydrolysis by rHPLRP2 and rGPLRP2. The maximum galactolipase activity of both enzymes was recorded with sodium deoxycholate (NaDC) and at a NaDC to MGDG ratio of 1.33 and at basic pH values (8.0-9.0). The maximum rates of hydrolysis were obtained using a MGDG concentration of 10(-2) M and calcium chloride was found to be not necessary to obtain the maximum of activity. Under these conditions, the maximum turnovers of rGPLRP2 and rHPLRP2 on mixed NaDC/MGDG micelles were found to be 8000+/-500 and 2800+/-60 micromol/min/mg (U/mg), respectively. These activities are in the same order of magnitude as the activities on triglycerides of lipases and they are the highest specific activities ever reported for galactolipases. For the sake of comparison, the hydrolysis of mixed bile salt/MGDG micelles was also tested using other pancreatic lipolytic enzymes and only native and recombinant human carboxyl ester hydrolase were found to display significant but lower activities (240+/-17 and 432+/-62 U/mg, respectively) on MGDG.

  6. Reactive oxygen species metabolism during the cadmium hyperaccumulation of a new hyperaccumulator Sedum alfredii (Crassulaceae).

    PubMed

    Zhang, Zhong-chun; Qiu, Bao-Sheng

    2007-01-01

    Sedum alfredii Hance, a newly discovered hyperaccumulator, could serve as a good material for phytoremediation of Cd polluted sites. Malondialdehyde (MDA), reactive oxygen species (ROS) and antioxidases (catalase (CAT); superoxide dismutase (SOD); peroxidase (POD)) in the leaf were determined when S. alfredii was treated for 15 d with various CdCl2 concentrations ranging from 0 to 800 micromol/L. The results showed that the production rate of 2',7'-dichlorofluorescein (DCF), which is an indicator of ROS level, reached up to the maximum at 400 micromol/L CdCl2 and then declined with the increase of CdCl2 concentration, while MDA accumulation tended to increase. CAT activity was significantly inhibited at all tested CdCl2 concentrations and SOD activity was sharply suppressed at 800 micromol/L CdCl2. However, the enhancement of POD activity was observed when CdCl2 concentration was higher than 400 micromol/L. In addition, its activity increased when treated with 600 micromol/L CdCl2 for more than 5 d. When sodium benzoate, a free radical scavenger, was added, S. alfredii was a little more sensitive to Cd toxicity than that exposed to Cd alone, and the Cd accumulation tended to decline with the increase of sodium benzoate concentration. It came to the conclusions that POD played an important role during Cd hyperaccumulation, and the accumulation of ROS induced by Cd treatment might be involved in Cd hyperaccumulation.

  7. Molecular design of anti-MRSA agents based on the anacardic acid scaffold.

    PubMed

    Green, Ivan R; Tocoli, Felismino E; Lee, Sang Hwa; Nihei, Ken-Ichi; Kubo, Isao

    2007-09-15

    A series of anacardic acid analogues possessing different side chains viz. phenolic, branched, and alicyclic were synthesized and their antibacterial activity tested against methicillin-resistant Staphylococcus aureus (MRSA). The maximum activity against this bacterium occurred with the branched side-chain analogue, 6-(4',8'-dimethylnonyl)salicylic acid, and the alicyclic side-chain analogue, 6-cyclododecylmethyl salicylic acid, with the minimum inhibitory concentration (MIC) of 0.39 microg/mL, respectively. This activity was superior to that of the most potent antibacterial anacardic acid isolated from the cashew Anacardium occidentale (Anacardiaceae), apple and nut, that is, the 6-[8'(Z),11'(Z),14'-pentadecatrienyl]salicylic acid.

  8. Saliva affects the antifungal activity of exogenously added histatin 3 towards Candida albicans.

    PubMed

    Yamagishi, Hisako; Fitzgerald, Deirdre H; Sein, Tin; Walsh, Thomas J; O'Connell, Brian C

    2005-03-01

    Antifungal activity of histatin 3 against two Candida albicans clinical isolates was determined in assays containing rabbit submandibular gland saliva. Histatin 3 inhibited the cell growth and germination of both isolates dose-dependently (10-100 microg ml(-1)) with maximum inhibition occurring after 60 min incubation. Adding fresh histatin 3 after 60 min caused further reduction in the viable cell count. Higher histatin 3 concentrations (50-100 microg ml(-1)) and prolonged exposure to peptide were required to inhibit germination. Histatin 3 was rapidly degraded in rabbit submandibular gland saliva and this may explain why fresh addition of histatin 3 increases candidacidal activity.

  9. Effects of lead contamination on soil enzymatic activities, microbial biomass, and rice physiological indices in soil-lead-rice (Oryza sativa L.) system.

    PubMed

    Zeng, Lu S; Liao, Min; Chen, Cheng L; Huang, Chang Y

    2007-05-01

    The effect of lead (Pb) treatment on the soil enzymatic activities, soil microbial biomass, rice physiological indices and rice biomass were studied in a greenhouse pot experiment. Six levels of Pb viz. 0(CK), 100, 300, 500, 700, 900 mg/kg soil were applied in two types of paddy soils. The results showed that Pb treatment had a stimulating effect on soil enzymatic activities and microbial biomass carbon (Cmic) at low concentration and an inhibitory influence at higher concentration. The degree of influence on enzymatic activities and Cmic by Pb was related to the clay and organic matter contents of the soils. When the Pb treatment was raised to the level of 500 mg/kg, ecological risk appeared both to soil microorganisms and plants. The results also revealed a consistent trend of increased chlorophyll contents and rice biomass initially, maximum at a certain Pb treatment, and then decreased gradually with the increase in Pb concentration. Pb was effective in inducing proline accumulation and its toxicity causes oxidative stress in rice plants. Therefore, it was concluded that soil enzymatic activities, Cmic and rice physiological indices, could be sensitive indicators to reflect environmental stress in soil-lead-rice system.

  10. The Effect of the Wastewater of Penicillin and Amoxicillin on the Antioxidant Indexes of Limnodrilus Hoffmeisteri

    NASA Astrophysics Data System (ADS)

    Dong, Yuxin; Shen, Hongyan

    2018-01-01

    In order to obtain some basic data for ecological risk assessment, an exposure experiment was carried out to study the effect of different volume of mixed penicillin and amoxicillin wastewater on Superoxide Dismutase (SOD) and Malondialdehyde (MDA) in Limnodrilus hoffmeisteri. Limnodrilus hoffmeisteri was exposed to different volume (10%, 20%, 30%, 40%, and 50%) of mixed wastewater for 15 days. According to the experimental data, the MDA contents and SOD activities in Limnodrilus hoffmeisteri muscle tissue had seen significant change significantly during the period of exposure. The results showed that the trend of SOD activities in low concentration groups (10% and 20%) increased at first, then decreased and increased at last. As exposure concentration increased (40% and 50%), SOD activities were inhibited in the early days (3 d), and was gradually induced in the later phase. The change of MDA content in muscle tissue of Limnodrilus hoffmeisteri was further investigated. It was found to be negatively correlated with the activity of SOD, and the high concentration group (50%) was in a remarkable induction state and reached the maximum at 6 d. According to the experimental data, the MDA contents and SOD activities in Limnodrilus hoffmeisteri muscle tissue had changed significantly and caused the oxidative damage.

  11. Water quality of surficial aquifers in the Georgia-Florida Coastal Plain

    USGS Publications Warehouse

    Crandall, C.A.; Berndt, M.P.

    1996-01-01

    The National Water Quality Assessment Program of the U.S. Geological Survey established the Georgia-Florida Coastal Plain study unit in 1991. The ground-water study-unit survey was conducted in 1993 to provide a broad over-view of water quality in surficial aquifers. Three land resource provinces were included in the Georgia-Florida Coastal Plain study-unit survey: the Central Florida Ridge, the Coastal Flatwoods, and the Southern Coastal Plain. The U.S. Geological Survey sampled 37 wells in surficial aquifers, 18 in the Coastal Flatwoods and 19 in the Southern Coastal Plain. The Florida Department of Environmental Protection sampled 27 wells tapping surficial aquifers in the Central Florida Ridge as part of the background ground-water quality monitoring network from 1985 through 1989. The data were used to characterize water quality in surficial aquifers of the Central Florida Ridge. Results of the study-unit survey indicated that dissolved solids concentrations in ground water were mostly less than 100 mg/L (milligrams per liter). Higher medians of pH, specific conductance, and concentrations of calcium, bicarbonate, and dissolved solids were measured in samples from the Central Florida Ridge compared to the Southern Coastal Plain and Coastal Flatwoods, probably because of a greater percentage of carbonate minerals in aquifer materials. The U.S. Environmental Protection Agency secondary maximum contaminant level for iron of 300 ug/L (micrograms per liter) in drinking water was exceeded in 15 of 45 samples. Concentrations of nitrate as nitrogen were less than 3.0 mg/L in most samples (74 percent), indicating little or no influence from human activity. Only five samples (9 percent) had concentrations above 10 mg/L, the U.S. Environmental Protection Agency maximum contaminant level for nitrate concentration in drinking water. Significantly lower median concentrations of nitrate were measured in samples from polyvinyl chloride monitoring wells with diameters less than 6 inches than in large diameter, uncased, or iron-cased wells. The median nitrate concentration was 0.05 mg/L in water from monitoring wells, 1.0 mg/L in samples from iron cased wells, and 2.0 mg/L in samples from uncased wells. Concentrations of volatile organic compounds were mostly less than the detection levels and exceeded 1 ug/L in only four samples. Compounds detected at concentrations greater than 1 ug/L were: tetrachloroethane (8.77 ug/L), toluene (23 ug/L) and chloromethane (21 ug/L). Atrazine, desethyl-atrazine, and metolachlor were the only pesticides detected; concentrations were less than 0.02 ug/L, except for metolachlor (2.5 ug/L). Detection of organic compounds in surficial aquifer may be associated with specific activities or sources near the well. Concentrations of radon exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level of 300 picocuries per liter (pCi/L) in 33 samples from wells on the Coastal Flatwoods and the Southern Coastal Plain. Concentrations as high as 13,000 pCi/L were detected in northern Florida. Although uranium concentrations were less than 1 ug/L in all but one sample (1.3 ug/L) from the Southern Coastal Plain, elevated radon concentrations indicate that uranium is present in aquifer material. Uranium is most likely sorbed to iron oxides and clays in subsurface materials. Tritium concentrations indicated that ground water was recharged by precipitation during the past 40 years. Higher concentrations of tritium in ground water were found in the northern part of the study area and may be related to Savannah River Nuclear Facility.

  12. [Kinetics of uptake of phosphates and nitrates by marine multicellular algae Gelidium latifolium (Grev.) Born. et Thur].

    PubMed

    Silkin, V A; Chubchikova, I N

    2007-01-01

    We studied nonstationary kinetics of the uptake of phosphates and nitrates by the red marine algae Gelidium latifolium (Grev.) Born et Thur. and calculated constants of the Michaelis-Menten equation for these elements. In the area of 0-3 microM, the kinetics of phosphate consumption had the following coefficients: maximum rate of uptake 0.8 micromol/(g x h), constant of half-saturation 1.745 microM. For nitrate nitrogen at 0-30 microM, an adaptive strategy of uptake kinetics was noted with change of the equation parameters with time: after 1 h, the maximum rate of uptake was 5.1 micromol/(g x h) and constant of half-saturation 19 gM, while within 2 h, the maximum rate of uptake significantly increased. This could be related to the synthesis of nitrate reductase. Coupled with the uptake of nitrates, nonstationary kinetics of the release of nitrates in the surrounding medium had a one-peak pattern: the maximum concentration of nitrites in the medium and the time of its achievement increased with the initial concentration of nitrates. The maximum concentration of nitrites was 6 to 14% of the initial concentration in the medium.

  13. Batch sorption dynamics and equilibrium for the removal of lead ions from aqueous phase using activated carbon developed from coffee residue activated with zinc chloride.

    PubMed

    Boudrahem, F; Aissani-Benissad, F; Aït-Amar, H

    2009-07-01

    Lignocellulosic materials are good precursors for the production of activated carbon. In this work, coffee residue has been used as raw material in the preparation of powder activated carbon by the method of chemical activation with zinc chloride for the sorption of Pb(II) from dilute aqueous solutions. The influence of impregnation ratio (ZnCl2/coffee residue) on the physical and chemical properties of the prepared carbons was studied in order to optimize this parameter. The optimum experimental condition for preparing predominantly microporous activated carbons with high pore surface area (890 m2/g) and micropore volume (0.772 cm3/g) is an impregnation ratio of 100%. The developed activated carbon shows substantial capability to sorb lead(II) ions from aqueous solutions and for relative impregnation ratios of 75 and 100%, the maximum uptake is practically the same. Thus, 75% represents the optimal impregnation ratio. Batch experiments were conducted to study the effects of the main parameters such as contact time, initial concentration of Pb(II), solution pH, ionic strength and temperature. The maximum uptake of lead(II) at 25 degrees C was about 63 mg/g of adsorbent at pH 5.8, initial Pb(II) concentration of 10 mg/L, agitation speed of 200 rpm and ionic strength of 0.005 M. The kinetic data were fitted to the models of pseudo-first order and pseudo-second order, and follow closely the pseudo-second order model. Equilibrium sorption isotherms of Pb(II) were analyzed by the Langmuir, Freundlich and Temkin isotherm models. The Freundlich model gives a better fit than the others. Results from this study suggest that activated carbon produced from coffee residue is an effective adsorbent for the removal of lead from aqueous solutions and that ZnCl2 is a suitable activating agent for the preparation of high-porosity carbons.

  14. Water quality in alluvial aquifers of the southern Rocky Mountains Physiographic Province, upper Colorado River basin, Colorado, 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    2000-01-01

    Water-quality samples were collected in the summer of 1997 from 45 sites (43 wells and 2 springs) in selected alluvial aquifers throughout the Southern Rocky Mountains physiographic province of the Upper Colorado River Basin study unit as part of the U.S. Geological Survey National Water-Quality Assessment Program. The objective of this study was to assess the water-quality conditions in selected alluvial aquifers in the Southern Rocky Mountains physiographic province. Alluvial aquifers are productive aquifers in the Southern Rocky Mountains physiographic province and provide for easily developed wells. Water-quality samples were collected from areas where ground water is used predominantly for domestic or public water supply. Twenty-three of the 45 sites sampled were located in or near mining districts. No statistical differences were observed between the mining sites and sites not associated with mining activities for the majority of the constituents analyzed. Water samples were analyzed for major ions, nutrients, dissolved organic carbon, trace elements, radon-222, pesticides, volatile organic compounds, bacteria, and methylene blue active substances. In addition, field parameters consisting of water temperature, specific conductance, dissolved oxygen, pH, turbidity, and alkalinity were measured at all sites.Specific conductance for the ground-water sites ranged from 57 to 6,650 microsiemens per centimeter and had higher concentrations measured in areas such as the northwestern part of the study unit. Dissolved oxygen ranged from 0.1 to 6.0 mg/L (milligrams per liter) and had a median concentration of 2.9 mg/L. The pH field values ranged from 6.1 to 8.1; about 4 percent of the sites (2 of 45) had pH values outside the range of 6.5 to 8.5 and so did not meet the U.S. Environmental Protection Agency secondary maximum contaminant level standard for drinking water. About 5 percent (2 of 43) of the samples exceeded the U.S. Environmental Protection Agency recommended turbidity value of 5 nephelometric turbidity units; one of these samples was from a monitoring well. The U.S. Environmental Protection Agency secondary maximum contaminant levels for dissolved solids, sulfate, iron, and manganese were exceeded at some of the sites. Higher dissolved-solids concentrations were detected where sedimentary rocks are exposed, such as in the northwestern part of the Southern Rocky Mountains physiographic province. The dominant water compositions for the sites sampled are calcium, magnesium, and bicarbonate. However, sites in areas where sedimentary rocks are exposed and sites located in or near mining areas show more sulfate-dominated waters. Nutrient concentrations were less than the U.S. Environmental Protection Agency drinking-water standards. Only one site had a nitrate concentration greater than 3.0 mg/L, a level indicating possible influence from human activities. No significant differences among land-use/land-cover classifications (forest, rangeland, and urban) for drinking-water wells (42 sites) were identified for dissolved-solids, sulfate, nitrate, iron or manganese concentrations. Radon concentrations were higher in parts of the study unit where Precambrian rocks are exposed. All radon concentrations in ground water exceeded the previous U.S. Environmental Protection Agency proposed maximum contaminant level for drinking water, which has been withdrawn pending further review.Pesticide detections were at concentrations below the reporting limits and were too few to allow for comparison of the data. Eight volatile organic compounds were detected at six sites; all concentrations complied with U.S. Environmental Protection Agency drinking-water standards. Total coliform bacteria were detected at six sites, but no Escherichia coli (E. coli) was detected. Methylene blue active substances were detected at three sites at concentrations just above the reporting limit. Overall, the water quality in the Southern Rocky Mountains physiograph

  15. Pollution Assessment of Toxic and Potentially Toxic Elements in Agricultural Soils of the City Addis Ababa, Ethiopia.

    PubMed

    Aschale, Minbale; Sileshi, Yilma; Kelly-Quinn, Mary; Hailu, Dereje

    2017-02-01

    Due to the significantly fast urban expansion and increased industrial activities, the soils in the farms in Addis Ababa are contaminated by some toxic and potentially toxic elements (As, V, Cr, Fe, Co, Ni, Cu, B, Ba, Sr, Zn, Mn, Pb and Cd) in varying degrees. The mean concentrations of Cr, Ni, As and B in most of the soil farms were found to be higher than the maximum recommended limits. The mean concentrations of Cd, Cu, Pb, Co, Ni and Mn were found to be higher than the background soil concentrations given for uncontaminated soils. Multivariate analyses coupled with correlation analysis were used to identify possible sources. The geo-accumulation index values for Cr, Mn and Pb indicated that the farm soils were unpolluted to moderately polluted as a result of anthropogenic activities. A comprehensive environmental management strategy should be formulated by the government to measure further pollution of the farmland soil.

  16. Changes in mitogen-activated protein kinase in cerebellar granule neurons by polybrominated diphenyl ethers and polychlorinated biphenyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan Chunyang; Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Besas, Jonathan

    2010-05-15

    Polybrominated diphenyl ethers (PBDEs) are used as additive flame retardants and have been detected in human blood, adipose tissue, and breast milk. Both in vitro and in vivo studies have shown that the effects of PBDEs are similar to the known human developmental neurotoxicants such as polychlorinated biphenyls (PCBs) on a molar basis. Previously, we reported that PBDE mixtures and congeners, perturbed calcium homeostasis which is critical for the development and function of the nervous system. In the present study, we tested whether environmentally relevant PBDE/PCB mixtures and congeners affected mitogen-activated protein kinase (MAPK) pathways, which are down-stream events ofmore » calcium signaling in cerebellar granule neuronal cultures. In this study, phosphorylated extracellular signal-regulated kinase (pERK)1/2, a widely studied MAPK cascade and known to be involved in learning and memory, levels were quantitated using western blot technique with phospho-specific antibodies. Glutamate (a positive control) increased pERK1/2 in a time- and concentration-dependent manner reaching maximum activation at 5-30 min of exposure and at doses >= 10 muM. Both Aroclor 1254 (a commercial penta PCB mixture) and DE-71 (a commercial penta PBDE mixture) elevated phospho-ERK1/2, producing maximum stimulation at 30 min and at concentrations >= 3 mug/ml; Aroclor 1254 was more efficacious than DE-71. DE-79 (an octabrominated diphenyl ether mixture) also elevated phospho-ERK1/2, but to a lesser extent than that of DE-71. PBDE congeners 47, 77, 99, and 153 also increased phospo-ERK1/2 in a concentration-dependent manner. The data indicated that PBDE congeners are more potent than the commercial mixtures. PCB 47 also increased phospho-ERK1/2 like its structural analog PBDE 47, but to a lesser extent, suggesting that these chemicals affect similar pathways. Cytotoxicity, measured as %LDH release, data showed that higher concentrations (> 30 muM) and longer exposures (> 30 min) are required to see cell death. These results show that PBDE mixtures and congeners activate MAPK pathway at concentrations where no significant cytotoxicity was observed, suggesting that perturbed intracellular signaling including MAPK pathway might be involved in the initiation of adverse effects, including learning and memory, related to these persistent chemicals.« less

  17. Excess copper induced oxidative stress and response of antioxidants in rice.

    PubMed

    Thounaojam, Thorny Chanu; Panda, Piyalee; Panda, P; Mazumdar, Purabi; Mazumdar, P; Kumar, Devanand; Sharma, Gauri Dutta; Sharma, G D; Sahoo, Lingaraj; Sahoo, L; Panda, Sanjib Kumar; Panda, S K

    2012-04-01

    To investigate the effects of copper (Cu), rice plant (Oryza sativa. L. var. MSE-9) was treated with different Cu concentrations (0, 10, 50 and 100 μM) for 5 days in hydroponic condition. Gradual decrease in shoot and root growth was observed with the increase of Cu concentration and duration of treatment where maximum inhibition was recorded in root growth. Cu was readily absorbed by the plant though the maximum accumulation was found in root than shoot. Hydrogen peroxide (H(2)O(2)) production and lipid peroxidation were found increased with the elevated Cu concentration indicating excess Cu induced oxidative stress. Antioxidant enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) and glutathione reductase (GR) were effectively generated at the elevated concentrations of Cu though catalase (CAT) did not show significant variation with respect to control. Ascorbate (ASH), glutathione (GSH) and proline contents were also increased in all the Cu treated plants compared with the control. SOD isoenzyme was greatly affected by higher concentration of Cu and it was consistent with the changes of the activity assayed in solution. The present study confirmed that excess Cu inhibits growth, induced oxidative stress by inducing ROS formation while the stimulated antioxidative system appears adaptive response of rice plant against Cu induced oxidative stress. Moreover proline accumulation in Cu stress plant seems to provide additional defense against the oxidative stress. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  18. Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys Bien ex Aitch.

    PubMed

    Alamgeer; Uttra, Ambreen Malik; Hasan, Umme Habiba

    2017-07-18

    The roots and stem bark of Berberis orthobotrys (Berberidaceae) have long been used traditionally to treat joint pain. Though, it has not been pharmacologically assessed for rheumatoid arthritis. The current study explores anti-arthritic activity and phytochemical analysis of aqueous-methanolic extract (30:70) and fractions (ethyl acetate, n-butanol, and aqueous) of Berberis orthobotrys roots. Anti-arthritic potential was evaluated in vitro using protein denaturation (bovine serum albumin and egg albumin) and membrane stabilization methods at 12.5-800 μg/ml concentration and in vivo via turpentine oil, formaldehyde and Complete Freund Adjuvant (CFA) models at 50, 100 and 150 mg/kg doses. Also, in vitro antioxidant ability was appraised by reducing power assay. Moreover, total flavonoid content, Fourier transform infrared spectroscopy and High performance liquid chromatography of n-butanol fraction were performed. The results revealed concentration dependent inhibition of albumin denaturation and notable RBC membrane stabilization, with maximum results obtained at 800 μg/ml. Similarly, plant exhibited dose dependent anti-arthritic effect in turpentine oil and formaldehyde models, with maximum activity observed at 150 mg/kg. The results of CFA model depicted better protection against arthritic lesions and body weight alterations. Also, B.orthobotrys remarkably ameliorated altered hematological parameters, rheumatoid factor and positively modified radiographic and histopathological changes. Additionally, plant exhibited remarkable anti-oxidant activity. Moreover, phytochemical analysis revealed polyphenols and flavonoids. Taken together, these results support traditional use of B.orthobotrys as potent anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.

  19. Growth and recombinant protein expression with Escherichia coli in different batch cultivation media.

    PubMed

    Hortsch, Ralf; Weuster-Botz, Dirk

    2011-04-01

    Parallel operated milliliter-scale stirred tank bioreactors were applied for recombinant protein expression studies in simple batch experiments without pH titration. An enzymatic glucose release system (EnBase), a complex medium, and the frequently used LB and TB media were compared with regard to growth of Escherichia coli and recombinant protein expression (alcohol dehydrogenase (ADH) from Lactobacillus brevis and formate dehydrogenase (FDH) from Candida boidinii). Dissolved oxygen and pH were recorded online, optical densities were measured at-line, and the activities of ADH and FDH were analyzed offline. Best growth was observed in a complex medium with maximum dry cell weight concentrations of 14 g L(-1). EnBase cultivations enabled final dry cell weight concentrations between 6 and 8 g L(-1). The pH remained nearly constant in EnBase cultivations due to the continuous glucose release, showing the usefulness of this glucose release system especially for pH-sensitive bioprocesses. Cell-specific enzyme activities varied considerably depending on the different media used. Maximum specific ADH activities were measured with the complex medium, 6 h after induction with IPTG, whereas the highest specific FDH activities were achieved with the EnBase medium at low glucose release profiles 24 h after induction. Hence, depending on the recombinant protein, different medium compositions, times for induction, and times for cell harvest have to be evaluated to achieve efficient expression of recombinant proteins in E. coli. A rapid experimental evaluation can easily be performed with parallel batch operated small-scale stirred tank bioreactors.

  20. Muscle Activity in Single- vs. Double-Leg Squats.

    PubMed

    DeFOREST, Bradley A; Cantrell, Gregory S; Schilling, Brian K

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

  1. Muscle Activity in Single- vs. Double-Leg Squats

    PubMed Central

    DeFOREST, BRADLEY A.; CANTRELL, GREGORY S.; SCHILLING, BRIAN K.

    2014-01-01

    Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired. PMID:27182408

  2. Profiles of lead in urban dust and the effect of the distance to multi-industry in an old heavy industry city in China.

    PubMed

    Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K

    2017-03-01

    Lead (Pb) concentration in urban dust is often higher than background concentrations and can result in a wide range of health risks to local communities. To understand Pb distribution in urban dust and how multi-industrial activity affects Pb concentration, 21 sampling sites within the heavy industry city of Jilin, China, were analyzed for Pb concentration. Pb concentrations of all 21 urban dust samples from the Jilin City Center were higher than the background concentration for soil in Jilin Province. The analyses show that distance to industry is an important parameter determining health risks associated with Pb in urban dust. The Pb concentration showed an exponential decrease, with increasing distance from industry. Both maximum likelihood estimation and Bayesian analysis were used to estimate the exponential relationship between Pb concentration and distance to multi-industry areas. We found that Bayesian analysis was a better method with less uncertainty for estimating Pb dust concentrations based on their distance to multi-industry, and this approach is recommended for further study. Copyright © 2016. Published by Elsevier Inc.

  3. Removal of pesticides from aqueous solution: Quantitative relationship between activated carbon characteristics and adsorption properties.

    PubMed

    Cougnaud, A; Faur, C; Le Cloirec, P

    2005-08-01

    The adsorption of pesticides (atrazin, atrazin-desethyl and triflusulfuron-methyl) from aqueous solution is performed by activated carbon fibers (ACF) and granular activated carbons (GAC) in static and dynamic reactors, in order to study the co-influence of adsorbent and adsorbate characteristics on the adsorption mechanisms. First, mono-component adsorption equilibrium is carried out in a batch reactor for a wide range of concentrations (from 5 microg 1(-1) to 21.4 mg 1(-1)). Classic models, like Freundlich and Langmuir equations, are applied: the maximum adsorption capacities are high, ranging between 63 and 509 mg g(-1). The comparison of single-solute isotherms tends to confirm the decisive role of the adsorbent properties in the adsorption capacity of pesticides by the activated carbons: the performance of ACF is significantly higher than that of GAC due to a narrower pore size distribution of fibers in the area of micropores. Furthermore, their small diameter (10 microm compared with 1 mm for grains) enables faster adsorption kinetics because of the larger surface area exposed to the fluid. The influence of adsorbate size is also demonstrated. A multiple linear regression enables the co-influence of adsorbent and adsorbate properties to be quantified, a relationship being assessed between Langmuir maximum adsorption capacity and pesticide molecular weight and adsorbent diameter (R2 = 0.90). Secondly, the adsorption of the three pesticides is studied in a dynamic reactor: in this case, the influence of operating conditions (inlet concentration C0, flow velocity U0) is also taken into account. As the initial concentration or flow velocity decreases, the column performance significantly improves. Both operating factors are included in a multiple linear regression (R2 = 0.91) used to predict saturation adsorption capacity, with molecular weight and particle diameter being again designed as influent explicative variables.

  4. Passivation of phosphorus diffused silicon surfaces with Al{sub 2}O{sub 3}: Influence of surface doping concentration and thermal activation treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richter, Armin, E-mail: armin.richter@ise.fraunhofer.de; Benick, Jan; Kimmerle, Achim

    2014-12-28

    Thin layers of Al{sub 2}O{sub 3} are well known for the excellent passivation of p-type c-Si surfaces including highly doped p{sup +} emitters, due to a high density of fixed negative charges. Recent results indicate that Al{sub 2}O{sub 3} can also provide a good passivation of certain phosphorus-diffused n{sup +} c-Si surfaces. In this work, we studied the recombination at Al{sub 2}O{sub 3} passivated n{sup +} surfaces theoretically with device simulations and experimentally for Al{sub 2}O{sub 3} deposited with atomic layer deposition. The simulation results indicate that there is a certain surface doping concentration, where the recombination is maximal duemore » to depletion or weak inversion of the charge carriers at the c-Si/Al{sub 2}O{sub 3} interface. This pronounced maximum was also observed experimentally for n{sup +} surfaces passivated either with Al{sub 2}O{sub 3} single layers or stacks of Al{sub 2}O{sub 3} capped by SiN{sub x}, when activated with a low temperature anneal (425 °C). In contrast, for Al{sub 2}O{sub 3}/SiN{sub x} stacks activated with a short high-temperature firing process (800 °C) a significant lower surface recombination was observed for most n{sup +} diffusion profiles without such a pronounced maximum. Based on experimentally determined interface properties and simulation results, we attribute this superior passivation quality after firing to a better chemical surface passivation, quantified by a lower interface defect density, in combination with a lower density of negative fixed charges. These experimental results reveal that Al{sub 2}O{sub 3}/SiN{sub x} stacks can provide not only excellent passivation on p{sup +} surfaces but also on n{sup +} surfaces for a wide range of surface doping concentrations when activated with short high-temperature treatments.« less

  5. [Hydroxylamine conversion by anammox enrichment].

    PubMed

    Hu, Anhui; Zheng, Ping; Lu, Huifeng; Ding, Shuang; Wang, Caihua

    2010-04-01

    Hydroxylamine is an important intermediate product of anammox. This study was focused on the characteristics of hydroxylamine and nitrite conversions by anammox enrichment. The changes of nitrogenous substrates and related products with time were measured using batch tests with anammox enrichment as inoculum. Since hydroxylamine didn't react with nitrite in uninoculated control culture, these two compounds were chemically stable. Both of them decreased with time in anammox enrichment inoculated cultures, in which ammonia as intermediate product would be produced and converted with the maximum concentration being 0.338 mg/L. The total nitrogen concentration decreased from 4.694 mmol/L to 0.812 mmol/L with conversion rate 82.7% in the end. When hydroxylamine and nitrite concentrations were about 2.5 mmol/L respectively, the maximum specific sludge conversion rates of hydroxylamine was 0.535 mmol/(gVSS.h), which was 1.81 times bigger than that of ammonia in ammonia reaction system; the maximum specific sludge rate of total nitrogen was slightly higher than that in ammonia reaction system. When hydroxylamine concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 26.7% and 120.7% respectively; and the maximum ammonia accumulated was 1.810 mmol/L. When nitrite concentration increased to 5.0 mmol/L, the hydroxylamine and nitrite conversion rates promoted by 6.9% and 9.0% respectively; and the maximum ammonia accumulated was 0.795 mmol/L. Anammox enrichment was capable of converting hydroxylamine and nitrite simultaneously and had the higher conversion rate of hydroxylamine than ammonia conversion rate. Hydroxylamine and nitrite conversion rates were less affected by increase in nitrite concentration, but more significantly influenced by increase in hydroxylamine. The maximum ammonia concentration accumulated would rise as the result of increasing both hydroxylamine and nitrite. The result of experiment was consistent with pathway model presented by van de Graaf AA.

  6. Pharmacodynamic Evaluation of the Intracellular Activities of Antibiotics against Staphylococcus aureus in a Model of THP-1 Macrophages

    PubMed Central

    Barcia-Macay, Maritza; Seral, Cristina; Mingeot-Leclercq, Marie-Paule; Tulkens, Paul M.; Van Bambeke, Françoise

    2006-01-01

    The pharmacodynamic properties governing the activities of antibiotics against intracellular Staphylococcus aureus are still largely undetermined. Sixteen antibiotics of seven different pharmacological classes (azithromycin and telithromycin [macrolides]; gentamicin [an aminoglycoside]; linezolid [an oxazolidinone]; penicillin V, nafcillin, ampicillin, and oxacillin [β-lactams]; teicoplanin, vancomycin, and oritavancin [glycopeptides]; rifampin [an ansamycin]; and ciprofloxacin, levofloxacin, garenoxacin, and moxifloxacin [quinolones]) have been examined for their activities against S. aureus (ATCC 25923) in human THP-1 macrophages (intracellular) versus that in culture medium (extracellular) by using a 0- to 24-h exposure time and a wide range of extracellular concentrations (including the range of the MIC to the maximum concentration in serum [Cmax; total drug] of humans). All molecules except the macrolides caused a net reduction in bacterial counts that was time and concentration/MIC ratio dependent (four molecules tested in detail [gentamicin, oxacillin, moxifloxacin, and oritavancin] showed typical sigmoidal dose-response curves at 24 h). Maximal intracellular activities remained consistently lower than extracellular activities, irrespective of the level of drug accumulation and of the pharmacological class. Relative potencies (50% effective concentration or at a fixed extracellular concentration/MIC ratio) were also decreased, but to different extents. At an extracellular concentration corresponding to their Cmaxs (total drug) in humans, only oxacillin, levofloxacin, garenoxacin, moxifloxacin, and oritavancin had truly intracellular bactericidal effects (2-log decrease or more, as defined by the Clinical and Laboratory Standards Institute guidelines). The intracellular activities of antibiotics against S. aureus (i) are critically dependent upon their extracellular concentrations and the duration of cell exposure (within the 0- to 24-h time frame) to antibiotics and (ii) are always lower than those that can be observed extracellularly. This model may help in rationalizing the choice of antibiotic for the treatment of S. aureus intracellular infections. PMID:16495241

  7. Ground-water quality in the Appalachian Plateaus, Kanawha River basin, West Virginia

    USGS Publications Warehouse

    Sheets, Charlynn J.; Kozar, Mark D.

    2000-01-01

    Water samples collected from 30 privately-owned and small public-supply wells in the Appalachian Plateaus of the Kanawha River Basin were analyzed for a wide range of constituents, including bacteria, major ions, nutrients, trace elements, radon, pesticides, and volatile organic compounds. Concentrations of most constituents from samples analyzed did not exceed U.S. Environmental Protection Agency (USEPA) standards. Constituents that exceeded drinking-water standards in at least one sample were total coliform bacteria, Escherichia coli (E. coli), iron, manganese, and sulfate. Total coliform bacteria were present in samples from five sites, and E. coli were present at only one site. USEPA secondary maximum contaminant levels (SMCLs) were exceeded for three constituents -- sulfate exceeded the SMCL of 250 mg/L (milligrams per liter) in samples from 2 of 30 wells; iron exceeded the SMCL of 300 ?g/L (micrograms per liter) in samples from 12 of the wells, and manganese exceeded the SMCL of 50 ?g/L in samples from 17 of the wells sampled. None of the samples contained concentrations of nutrients that exceeded the USEPA maximum contaminant levels (MCLs) for these constituents. The maximum concentration of nitrate detected was only 4.1 mg/L, which is below the MCL of 10 mg/L. Concentrations of nitrate in precipitation and shallow ground water are similar, potentially indicating that precipitation may be a source of nitrate in shallow ground water in the study area. Radon concentrations exceeded the recently proposed maximum contaminant level of 300 pCi/L at 50 percent of the sites sampled. The median concentration of radon was only 290 pCi/L. Radon-222 is a naturally occurring, carcinogenic, radioactive decay product of uranium. Concentrations, however, did not exceed the alternate maximum contaminant level (AMCL) for radon of 4,000 pCi/L in any of the 30 samples. Arsenic concentrations exceeded the proposed MCL of 5?g/L at 4 of the 30 sites. No samples exceeded the current MCL of 50 ?g/L. Neither pesticides nor volatile organic compounds (VOCs) were prevalent in the study area, and the concentrations of the compounds that were detected did not exceed any USEPA MCLs. Pesticides were detected in only two of the 30 wells sampled, but four pesticides -- atrazine, carbofuran, DCPA, and deethylatrazine -- were detected in one well; molinate was detected in the other well. All of the pesticides detected were at estimated concentrations of only 0.002 ?g/L. Of the VOCs detected, trihalomethane compounds (THMs), which can result from chlorination of a well, were the most common. THMs were detected in 13 of the 30 wells sampled. Gasoline by-products, such as benzene, toluene, ethylbenzene and xylene (BTEX compounds) were detected in 10 of the 30 wells sampled. The maximum concentration of any of the VOCs detected in this study, however, was only 1.040 ?g/L, for the THM dichlorofluoromethane. Water samples from 25 of the wells were analyzed for chlorofluorocarbons (CFCs) to estimate the apparent age of ground water. The analyses indicated that age of water ranged from 10 to greater than 57 years, and that the age of ground water could be correlated with the topographic setting of the wells sampled. Thus the apparent age of water in wells on hilltops was youngest (median of 13 years) and that of water in wells in valleys was oldest (median of 42 years). Water from wells on hillsides was intermediate in age (median of 29 years). These data can be used to define contributing areas to wells, corroborate or revise conceptual ground-water flow models, estimate contaminant travel times from spills to other sources such as nearby domestic or public supply wells, and to manage point and nonpoint source activities that may affect critical aquifers.

  8. Molecular mechanism of acetylcholine receptor-controlled ion translocation across cell membranes

    PubMed Central

    Cash, Derek J.; Hess, George P.

    1980-01-01

    Two molecular processes, the binding of acetylcholine to the membrane-bound acetylcholine receptor protein and the receptor-controlled flux rates of specific inorganic ions, are essential in determining the electrical membrane potential of nerve and muscle cells. The measurements reported establish the relationship between the two processes: the acetylcholine receptor-controlled transmembrane ion flux of 86Rb+ and the concentration of carbamoylcholine, a stable analog of acetylcholine. A 200-fold concentration range of carbamoylcholine was used. The flux was measured in the millisecond-to-minute time region by using a quench flow technique with membrane vesicles prepared from the electric organ of Electrophorus electricus in eel Ringer's solution at pH 7.0 and 1°C. The technique makes possible the study of the transmembrane transport of specific ions, with variable known internal and external ion concentrations, in a system in which a determinable number of receptors is exposed to a known concentration of ligand. The response curve of ion flux to ligand was sigmoidal with an average maximum rate of 84 sec-1. Carbamoylcholine induced inactivation of the receptor with a maximum rate of 2.7 sec-1 and a different ligand dependence so that it was fast relative to ion flux at low ligand concentration but slow relative to ion flux at high ligand concentration. The simplest model that fits the data consists of receptor in the active and inactive states in ligand-controlled equilibria. Receptor inactivation occurs with one or two ligand molecules bound. For channel opening, two ligand molecules bound to the active state are required, and cooperativity results from the channel opening process itself. With carbamoylcholine, apparently, the equilibrium position for the channel opening step is only one-fourth open. The integrated rate equation, based on the model, predicts the time dependence of receptor-controlled ion flux over the concentration range of carbamoylcholine investigated. The values of the constants in the rate equation form the basis for predicting receptor-controlled changes in the transmembrane potential of cells and the conditions leading to transmission of signals between cells. PMID:6928684

  9. Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP).

    PubMed

    Dutta, Susmita; Bhattacharyya, Aparupa; De, Parameswar; Ray, Parthasarathi; Basu, Srabanti

    2009-12-30

    In the present work mercury has been eradicated from its aqueous solution using papain, immobilized on activated charcoal by physical adsorption method. Operating parameters for adsorption of papain on activated charcoal like pH, amount of activated charcoal, initial concentration of papain in solution have been varied in a suitable manner for standardization of operating conditions for obtaining the best immobilized papain sample based on their specific enzymatic activity. The immobilized papain sample obtained at initial papain concentration 40.0 g/L, activated charcoal amount 0.5 g and pH 7 shows the best specific enzymatic activity. This sample has been designated as charcoal-immobilized papain (CIP) and used for further studies of mercury removal. Adsorption equilibrium data fit most satisfactorily with the Langmuir isotherm model for adsorption of papain on activated charcoal. Physicochemical characterization of CIP has been done. The removal of mercury from its simulated solution of mercuric chloride using CIP has been studied in a lab-scale batch contactor. The operating parameters viz., the initial concentration of mercury in solution, amount of CIP and pH have been varied in a prescribed manner. Maximum removal achieved in the batch study was about 99.4% at pH 7, when initial metal concentration and weight of CIP were 20.0mg/L and 0.03 g respectively. Finally, the study of desorption of mercury has been performed at different pH values for assessment of recovery process of mercury. The results thus obtained have been found to be satisfactory.

  10. [Up-conversion luminescent materials of Y2O3: RE(RE=Er or Er/Yb) prepared by sol-gel combustion synthesis].

    PubMed

    Han, Peng-de; Zhang, Le; Huang, Xiao-gu; Wang, Li-xi; Zhang, Qi-tu

    2010-11-01

    Y2O3 powders doped with rare-earth ions were synthesized by sol-gel combustion synthesis. Effects of different calcinating temperatures, Er+ doping concentration and Yb3+ doping concentration were investigated. It was shown that the single well crystallized Y2O3 powders could be obtained at 800 degrees C; as the calcinating temperature increased, the crystallinity and upconversion luminescence intensity were higher; the particle size was uniform around 1 microm at 900 degrees C; when Er3+ doping concentration was 1 mol%, the green upconversion luminescence intensity reached the maximum, but for red upconversion luminescence, when Er3+ doping concentration was 4 mol%, its luminescence intensity reached the maximum; as the ratio of Yb3+ to Er3+ was 4:1, the green emission intensity reached the maximum, while the red emission intensity was always increasing as Yb3+ doping concentration increased.

  11. An investigation of FT-Raman spectroscopy for quantification of additives to milk

    USDA-ARS?s Scientific Manuscript database

    In this research, four chemicals, urea, ammonium sulfate, dicyandiamide, and melamine, were mixed into liquid nonfat milk at concentrations starting from 0.1% to a maximum concentration determined for each chemical according to its maximum solubility, and two Raman spectrometers—a commercial Nicolet...

  12. 21 CFR 173.370 - Peroxyacids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... conditions: (a) The additive is a mixture of peroxyacetic acid, octanoic acid, acetic acid, hydrogen peroxide... the maximum concentration of hydrogen peroxide is 75 ppm. (2) The additive is used as an antimicrobial... million (ppm) as peroxyacetic acid, the maximum concentration of hydrogen peroxide is 110 ppm, and the...

  13. 21 CFR 173.370 - Peroxyacids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... conditions: (a) The additive is a mixture of peroxyacetic acid, octanoic acid, acetic acid, hydrogen peroxide... the maximum concentration of hydrogen peroxide is 75 ppm. (2) The additive is used as an antimicrobial... million (ppm) as peroxyacetic acid, the maximum concentration of hydrogen peroxide is 110 ppm, and the...

  14. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2012-07-01 2012-07-01 false New source performance standards. 464...

  15. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 30 2014-07-01 2014-07-01 false New source performance standards. 464...

  16. 40 CFR 464.34 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-continuous dischargers, annual average mass standards and maximum day and maximum for monthly average concentration (mg/l) standards shall apply. Concentration standards and annual average mass standards shall only... 40 Protection of Environment 31 2013-07-01 2013-07-01 false New source performance standards. 464...

  17. Removal of BrO₃⁻ from drinking water samples using newly developed agricultural waste-based activated carbon and its determination by ultra-performance liquid chromatography-mass spectrometry.

    PubMed

    Naushad, Mu; Khan, Mohammad R; ALOthman, Zeid A; AlSohaimi, Ibrahim; Rodriguez-Reinoso, Francisco; Turki, Turki M; Ali, Rahmat

    2015-10-01

    Activated carbon was prepared from date pits via chemical activation with H3PO4. The effects of activating agent concentration and activation temperature on the yield and surface area were studied. The optimal activated carbon was prepared at 450 °C using 55 % H3PO4. The prepared activated carbon was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermogravimetric-differential thermal analysis, and Brunauer, Emmett, and Teller (BET) surface area. The prepared date pit-based activated carbon (DAC) was used for the removal of bromate (BrO3 (-)). The concentration of BrO3 (-) was determined by ultra-performance liquid chromatography-mass tandem spectrometry (UPLC-MS/MS). The experimental equilibrium data for BrO3 (-) adsorption onto DAC was well fitted to the Langmuir isotherm model and showed maximum monolayer adsorption capacity of 25.64 mg g(-1). The adsorption kinetics of BrO3 (-) adsorption was very well represented by the pseudo-first-order equation. The analytical application of DAC for the analysis of real water samples was studied with very promising results.

  18. Size-dependent ROS production by palladium and nickel nanoparticles in cellular and acellular environments - An indication for the catalytic nature of their interactions.

    PubMed

    Neubauer, Nicole; Palomaeki, Jaana; Karisola, Piia; Alenius, Harri; Kasper, Gerhard

    2015-01-01

    Palladium and nickel nanoparticles with variable but narrowly defined primary particle sizes in the range of 4-27 nm were investigated toward their catalytic activity and their ability to produce reactive oxygen species (ROS). The agglomerate size in the gas phase was between 50 and 150 nm, after transfer into solution probably larger. The catalytic activity was measured on the basis of CO oxidation to CO2. The formation of ROS was determined after transferring the particles into phosphate buffered saline (PBS), via the 2',7'-dichlorofluorescein method in a cell-free environment and with THP-1 cells. Activities were normalized with regard to catalyst surface area to enable a meaningful comparison of size effects. The solubility was measured for both materials and found to be 2 µg/ml for Ni and below the detection limit of 0.8 µg/ml for Pd. In the concentration range of about 4-250 µg/ml both materials induced a significant production of ROS in both acellular and cellular environments, with palladium being more active than nickel by several orders of magnitude. On an equal surface area concentration basis, both acellular and cellular ROS production showed a pronounced dependence on the primary particle size, with a maximum in the vicinity of 12 nm. The surface-specific catalytic activity also had a maximum at that size range. The correlation of these size effects is both surprising and - in combination with the poor solubility of palladium and nickel in PBS solution - a strong argument in favor of a particulate, catalytic mechanism for ROS production.

  19. Evaluation of radiological impacts of tenorm in the Tunisian petroleum industry.

    PubMed

    Hrichi, Hajer; Baccouche, Souad; Belgaied, Jamel-Eddine

    2013-01-01

    The health impacts associated with uncontrolled release of TENORM in products and wastes released in the petroleum industry are of great concern. In this study, evaluation of TENORM in the Tunisian petroleum products and wastes is presented. Fourteen products samples, twelve waste samples and three samples from the surrounding environment were collected from the Tunisian Refinery STIR site and from two onshore production oilfields. The activity concentrations of (232)Th, (226)Ra and (40)K for all samples were determined using gamma-ray spectrometry with High Purity Germanium (HPGe) detector. The activity concentrations of (224)Ra were calculated only for scale samples. The radium equivalent activity, external and internal hazard indices, absorbed doses rates in air and annual effective dose were also estimated. It was noticed that maximum value of Ra(eq) activity was found to be 398 Bq/kg in scale (w8) collected from an onshore production oilfield which exceeds the maximum Ra(eq) value of 370 Bq/kg recommended for safe use. All hazard indices indicated that scale samples (w6, w7, w8 and w11) could be a significant waste problem especially sample (w8). In this study, the radium isotopic data were used to provide an estimate of scale samples ages by the use of the (224)Ra/(228)Ra activity ratio dating method. Ages of collected scales were found to be in the range 0.91-2.4 years. In this work, radioactivity (NORM contamination) in samples collected from the refinery STIR are showed to be insignificant if compared to those from onshore oilfield production sites. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Ovarian follicular activity during late gestation and postpartum in guanaco (Lama guanicoe).

    PubMed

    Riveros, J L; Schuler, G; Urquieta, B; Hoffmann, B; Bonacic, C

    2015-02-01

    This study evaluated ovarian activity in late gestation and post-partum in guanacos in captivity. Follicular dynamics was monitored every second day from 40 days before and other 40 after delivery by transrectal sonography and by plasma steroids concentrations. Seven out of eight (87.5%) of gestating females presented ovarian follicular activity under progesterone levels >3 nmol/l with maximum follicular size of 8.42 ± 0.83 mm from days 23 to 1 before delivery. After delivery, all females have follicular wave development from day 0 to 38, with larger follicular size and longer follicular wave phases and interwave interval when compared with pre-partum data. During post-partum period, there was a close relationship between follicle size and estradiol-17β concentration, with r = 0.69 at the beginning of growth phase and r = 0.86 in association with the largest dominant follicle. Plasma estradiol-17β concentration varied from 11.92 to 198.55 pmol/l. Plasma estrone sulfate, free estrone and progesterone returned to baseline concentrations during peripartal period and remained basal thereafter. The results described follicular activity during late gestation and early post-partum period. These findings provide relevant information to understand physiological changes occurring during this reproductive key period in seasonal breeders with long gestation duration as New and Old World camelids. © 2014 Blackwell Verlag GmbH.

  1. Production, purification, and characterization of an extracellular acid protease from the marine Antarctic yeast Rhodotorula mucilaginosa L7.

    PubMed

    Lario, Luciana Daniela; Chaud, Luciana; Almeida, María das Graças; Converti, Attilio; Durães Sette, Lara; Pessoa, Adalberto

    2015-11-01

    The production, purification, and characterization of an extracellular protease released by Rhodotorula mucilaginosa L7 were evaluated in this study. This strain was isolated from an Antarctic marine alga and previously selected among others based on the capacity to produce the highest extracellular proteolytic activity in preliminary tests. R. mucilaginosa L7 was grown in Saboraud-dextrose medium at 25 °C, and the cell growth, pH of the medium, extracellular protease production and the glucose and protein consumption were determined as a function of time. The protease was then purified, and the effects of pH, temperature, and salt concentration on the catalytic activity and enzyme stability were determined. Enzyme production started at the beginning of the exponential phase of growth and reached a maximum after 48 h, which was accompanied by a decrease in the pH as well as reductions of the protein and glucose concentrations in the medium. The purified protease presented optimal catalytic activity at pH 5.0 and 50 °C. Finally, the enzyme was stable in the presence of high concentrations of NaCl. These characteristics are of interest for future studies and may lead to potential biotechnological applications that require enzyme activity and stability under acidic conditions and/or high salt concentrations. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  2. Radiocesium contamination of the moss Hypnum plumaeforme caused by the Fukushima Dai-ichi Nuclear Power Plant accident.

    PubMed

    Oguri, Emiko; Deguchi, Hironori

    2018-03-07

    We investigated 134 Cs and 137 Cs activity concentrations in the common Japanese moss species Hypnum plumaeforme collected from 32 sites within ca. 100 km radius of the Fukushima Dai-ichi Nuclear Power Plant. A total of 32 samples of H. plumaeforme were collected during the field surveys from November 2013 to September 2014. The maximum radiocesium activity concentrations in H. plumaeforme were 60.9 ± 1.8 kBq kg -1 for 134 Cs and 123 ± 2.3 kBq kg -1 for 137 Cs. The mean value for the 134 Cs/ 137 Cs was 1.17 ± 0.05, and the mean T ag value was 0.09 ± 0.13. Positive correlations were obtained between total 134 Cs + 137 Cs activity concentrations in H. plumaeforme and the air dose rate with a correlation coefficient (r) of 0.55 (P = 0.001), and between 137 Cs activity concentration in H. plumaeforme and 137 Cs deposition density on soil with r of 0.55 (P = 0.001). These results suggest that the perennial moss species H. plumaeforme could be more suitable and useful as a qualitative indicator for the radiocesium pollution compared to vascular plants spreading over the lowlands including human habitation in Fukushima Prefecture. Copyright © 2018. Published by Elsevier Ltd.

  3. Method for charging a hydrogen getter

    DOEpatents

    Tracy, C. Edwin; Keyser, Matthew A.; Benson, David K.

    1998-01-01

    A method for charging a sample of either a permanent or reversible getter material with a high concentration of hydrogen while maintaining a base pressure below 10.sup.-4 torr at room temperature involves placing the sample of hydrogen getter material in a chamber, activating the sample of hydrogen getter material, overcharging the sample of getter material through conventional charging techniques to a high concentration of hydrogen, and then subjecting the sample of getter material to a low temperature vacuum bake-out process. Application of the method results in a reversible hydrogen getter which is highly charged to maximum capacities of hydrogen and which concurrently exhibits minimum hydrogen vapor pressures at room temperatures.

  4. [Electricity generation from sweet potato fuel ethanol wastewater using microbial fuel cell technology].

    PubMed

    Cai, Xiao-Bo; Yang, Yi; Sun, Yan-Ping; Zhang, Liang; Xiao, Yao; Zhao, Hai

    2010-10-01

    Air cathode microbial fuel cell (MFC) were investigated for electricity production from sweet potato fuel ethanol wastewater containing 5000 mg/L of chemical oxygen demand (COD). Maximum power density of 334.1 mW/m2, coulombic efficiency (CE) of 10.1% and COD removal efficiency of 92.2% were approached. The effect of phosphate buffer solution (PBS) and COD concentration on the performance of MFC was further examined. The addition of PBS from 50 mmol/L to 200 mmol/L increased the maximum power density and CE by 33.4% and 26.0%, respectively. However, the COD removal efficiency was not relative to PBS concentration in the wastewater. When the COD increased from 625 mg/L to 10 000 mg/L, the maximum value of COD removal efficiency and the maximum power density were gained at the wastewater strength of 5 000 mg/L. But the CE ranged from 28.9% to 10.3% with a decreasing trend. These results demonstrate that sweet potato fuel ethanol wastewater can be used for electricity generation in MFC while at the same time achieving wastewater treatment. The increasing of PBS concentration can improve the power generation of MFC. The maximum power density of MFC increases with the rise of COD concentration, but the electricity generation will decrease for the acidification of high wastewater concentration.

  5. Comparative Study of the Effects of Citral on the Growth and Injury of Listeria innocua and Listeria monocytogenes Cells

    PubMed Central

    Silva-Angulo, Angela B.; Zanini, Surama F.; Rosenthal, Amauri; Rodrigo, Dolores; Klein, Günter; Martínez, Antonio

    2015-01-01

    This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 102 and 106 cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral. PMID:25643164

  6. Comparative study of the effects of citral on the growth and injury of Listeria innocua and Listeria monocytogenes cells.

    PubMed

    Silva-Angulo, Angela B; Zanini, Surama F; Rosenthal, Amauri; Rodrigo, Dolores; Klein, Günter; Martínez, Antonio

    2015-01-01

    This study investigates the effect of citral on growth and on the occurrence of sublethal damage in Listeria innocua Serovar 6a (CECT 910) and Listeria monocytogenes Serovar 4b (CECT 4032) cells that were exposed to citral as a natural antimicrobial agent. Two initial inoculum concentrations were considered in this investigation: 10(2) and 10(6) cfu/mL. Citral exhibited antilisterial activity against L. innocua and L. monocytogenes, and the observed effects were dependent on the concentration of citral present in the culture medium (0, 0.150 and 0.250 μL/mL) (p ≤ 0.05). L. innocua had a shorter lag phase than L. monocytogenes, and the two species had nearly identical maximum specific growth rates. These results indicate that L. innocua could be used as surrogate for L. monocytogenes when testing the effects of this antimicrobial. Significant differences in the lag phase and growth rate were observed between the small and large inoculum concentration (p ≤ 0.05). Citral-treated L. innocua and L. monocytogenes that were recovered on selective medium (i.e., TSA-YE-SC) had a shorter lag phase and a higher maximum specific growth rate than cells that were recovered on non-selective medium (i.e., TSA-YE) (p ≤ 0.05). This result suggests that damage occurs at sublethal concentrations of citral.

  7. Identification of nitrogen sources to four small lakes in the agricultural region of Khorezm, Uzbekistan

    USGS Publications Warehouse

    Shanafield, M.; Rosen, M.; Saito, L.; Chandra, S.; Lamers, J.; Nishonov, Bakhriddin

    2010-01-01

    Pollution of inland waters by agricultural land use is a concern in many areas of the world, and especially in arid regions, where water resources are inherently scarce. This study used physical and chemical water quality and stable nitrogen isotope (δ15N) measurements from zooplankton to examine nitrogen (N) sources and concentrations in four small lakes of Khorezm, Uzbekistan, an arid, highly agricultural region, which is part of the environmentally-impacted Aral Sea Basin. During the 2-year study period, ammonium concentrations were the highest dissolved inorganic N species in all lakes, with a maximum of 3.00 mg N l−1 and an average concentration of 0.62 mg N l−1. Nitrate levels were low, with a maximum concentration of 0.46 mg N l−1 and an average of 0.05 mg N l−1 for all four lakes. The limited zooplankton δ15N values did not correlate with the high loads of synthetic fertilizer applied to local croplands during summer months. These results suggest that the N cycles in these lakes may be more influenced by regional dynamics than agricultural activity in the immediate surroundings. The Amu-Darya River, which provides the main source of irrigation water to the region, was identified as a possible source of the primary N input to the lakes.

  8. Soil Solution Phosphorus Status and Mycorrhizal Dependency in Leucaena leucocephala.

    PubMed

    Habte, M; Manjunath, A

    1987-04-01

    A phosphorus sorption isotherm was used to establish concentrations of P in a soil solution ranging from 0.002 to 0.807 mug/ml. The influence of P concentration on the symbiotic interaction between the tropical tree legume Leucaena leucocephala and the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum was evaluated in pot experiments. The level of mycorrhizal infection in Leucaena roots increased as the concentration of P was raised from 0.002 to 0.153 mug/ml. Higher levels of P depressed mycorrhizal infection, but the level of infection never declined below 50%. Periodic monitoring of P contents of Leucaena subleaflets indicated that significant mycorrhizal activity was detected as early as 17 days after planting, with the activity peaking 12 to 16 days thereafter. The highest level of mycorrhizal activity was associated with a soil solution P level of 0.021 mug/ml. Even though the mycorrhizal inoculation effect diminished as the concentration of P in the soil solution was increased, mycorrhizal inoculation significantly increased P uptake and dry-matter yield of Leucaena at all levels of soil solution P examined. The concentration of P required by nonmycorrhizal L. leucocephala for maximum yield was 27 to 38 times higher than that required by mycorrhizal L. leucocephala. The results illustrate the very high dependence of L. leucocephala on VAM fungi and the significance of optimizing soil solution phosphorus for enhancing the benefits of the VAM symbiosis.

  9. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: adsorption isotherm and kinetic studies.

    PubMed

    Khaled, Azza; El Nemr, Ahmed; El-Sikaily, Amany; Abdelwahab, Ola

    2009-06-15

    The purpose of this study is to suggest an efficient process, which does not require a huge investment for the removal of direct dye from wastewater. Activated carbon developed from agricultural waste material was characterized and utilized for the removal of Direct Navy Blue 106 (DNB-106) from wastewater. Systematic studies on DNB-106 adsorption equilibrium and kinetics by low-cost activated carbons were carried out. Adsorption studies were carried out at different initial concentrations of DNB-106 (50, 75, 100, 125 and 150 mg l(-1)), contact time (5-180 min), pH (2.0, 3.0, 4.7, 6.3, 7.2, 8.0, 10.3 and 12.7) and sorbent doses (2.0, 4.0 and 6.0 g l(-1)). Both Langmuir and Freundlich models fitted the adsorption data quite reasonably (R(2)>97). The maximum adsorption capacity was 107.53 mg g(-1) for 150 mg l(-1) of DNB-106 concentration and 2 g l(-1) carbon concentration. Various mechanisms were established for DNB-106 adsorption on developed adsorbents. The kinetic studies were conducted to delineate the effect of initial dye concentration, contact time and solid to liquid concentration. The developed carbon might be successfully used for the removal of DNB-106 from liquid industrial wastes.

  10. Iodine Doping of CdTe and CdMgTe for Photovoltaic Applications

    DOE PAGES

    Ogedengbe, O. S.; Swartz, C. H.; Jayathilaka, P. A. R. D.; ...

    2017-06-06

    Here, iodine-doped CdTe and Cd 1-xMg xTe layers were grown by molecular beam epitaxy. Secondary ion mass spectrometry characterization was used to measure dopant concentration, while Hall measurement was used for determining carrier concentration. Photoluminescence intensity and time-resolved photoluminescence techniques were used for optical characterization. Maximum n-type carrier concentrations of 7.4 x 10 18 cm -3 for CdTe and 3 x 10 17 cm -3 for Cd 0.65Mg 0.35Te were achieved. Studies suggest that electrically active doping with iodine is limited with dopant concentration much above these values. Dopant activation of about 80% was observed in most of the CdTemore » samples. The estimated activation energy is about 6 meV for CdTe and the value for Cd 0.65Mg 0.35Te is about 58 meV. Iodine-doped samples exhibit long lifetimes with no evidence of photoluminescence degradation with doping as high as 2 x 10 18 cm -3, while indium shows substantial non-radiative recombination at carrier concentrations above 5 x 10 16 cm -3. Iodine was shown to be thermally stable in CdTe at temperatures up to 600 °C. Results suggest iodine may be a preferred n-type dopant compared to indium in achieving heavily doped n-type CdTe.« less

  11. Summary of airborne chlorine and hydrogen chloride gas measurements for August 20 and September 5, 1977 Voyager launches at Air Force Eastern Test Range, Florida

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Emerson, B. R., Jr.; Hudgins, C. H.

    1978-01-01

    Airborne chlorine and hydrogen chloride measurements were made in the tropospheric ground cloud following the Voyager launches of August 20 and September 5, 1977. The maximum observed hydrogen chloride concentration for both launches was about 25 to 30 parts per million (ppm) occurring typically 2 to 6 minutes after launch. By completion of the sampling mission (1-1/2 hours for August, 4-1/2 hours for September), the maximum in-cloud concentration decayed to about 1 to 2 ppm. Maximum observed chlorine concentrations were about 40 to 55 parts per billion (ppb) about 2 to 8 minutes after launch; by about 15 minutes after launch, chlorine concentrations were less than 10 ppb (detection limit). In-cloud chlorine concentrations were well below 1 percent of hydrogen chloride concentrations. The appendix of the report discusses the chlorine instrument and the laboratory evaluation of the detector.

  12. Effects of sludge retention time, carbon and initial biomass concentrations on selection process: From activated sludge to polyhydroxyalkanoate accumulating cultures.

    PubMed

    Chen, Zhiqiang; Huang, Long; Wen, Qinxue; Zhang, Huichao; Guo, Zirui

    2017-02-01

    Four sequence batch reactors (SBRs) fed by fermented sugar cane wastewater were continuously operated under the aerobic dynamic feeding (ADF) mode with different configurations of sludge retention time (SRT), carbon and initial biomass concentrations to enrich polyhydroxyalkanoate (PHA) accumulating mixed microbial cultures (MMCs) from municipal activated sludge. The stability of SBRs was investigated besides the enrichment performance. The microbial community structures of the enriched MMCs were analyzed using terminal restriction fragment length polymorphism (T-RFLP). The optimum operating conditions for the enrichment process were: SRT of 5days, carbon concentration of 2.52g COD/L and initial biomass concentration of 3.65g/L. The best enrichment performance in terms of both operating stability and PHA storage ability of enriched cultures (with the maximum PHA content and PHA storage yield (Y PHA/S ) of 61.26% and 0.68mg COD/mg COD, respectively) was achieved under this condition. Effects of the SRT, carbon concentration and initial biomass concentration on the PHA accumulating MMCs selection process were discussed respectively. A new model including the segmentation of the enrichment process and the effects of SRT on each phase was proposed. Copyright © 2016. Published by Elsevier B.V.

  13. [Effects of Citric Acid on Activation and Methylation of Mercury in the Soils of Water-Level-Fluctuating Zone of the Three Gorges.Reservoir].

    PubMed

    Qin, Cai-qing; Liang, Li; You, Rui; Deng, Han; Wang, Ding-yong

    2015-12-01

    To investigate effects of the main component of vegetation root exudates-citric acid on activation and methylation of mercury in the soil of water-level-fluctuating zone (WLFZ) of the Three Gorges Reservoir area, simulation experiments were conducted by extracting and cultivating soil with different concentrations of citric acid. The results showed that after adding citric acid, the total mercury content in leaching solution before reaching peak were higher than that of the control, and increased with the increase of citric acid concentrations. The maximum amount of mercury complexes increased initially and then reached plateaus with the percentage against the total mercury in soil of 1.03%, 1.67%, 1.99%, 2.47%, 2.68%, 2.73% and 2.73% for different citric acid concentrations (0, 1, 2, 4, 5, 6 and 8 mmol · L⁻¹). In addition, concentrations of methylmercury ( MeHg) in soil remained stable in the first 3 hours, and then increased accompanying with the increasing rate rising with the concentration of citric acid ( besides the control group) . This result indicated that citric acid probably could promote the transformation process from inorganic mercury to MeHg in soil. which increased with the concentration of citric acid.

  14. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  15. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  16. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  17. 40 CFR Table C-1 to Subpart C of... - Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 5 2011-07-01 2011-07-01 false Test Concentration Ranges, Number of Measurements Required, and Maximum Discrepancy Specifications C Table C-1 to Subpart C of Part 53 Protection of... Reference Methods Pt. 53, Subpt. C, Table C-1 Table C-1 to Subpart C of Part 53—Test Concentration Ranges...

  18. Inhibition of Protease-Activated Receptor (PAR1) Reduces Activation of the Endothelium, Coagulation, Fibrinolysis and Inflammation during Human Endotoxemia.

    PubMed

    Schoergenhofer, Christian; Schwameis, Michael; Gelbenegger, Georg; Buchtele, Nina; Thaler, Barbara; Mussbacher, Marion; Schabbauer, Gernot; Wojta, Johann; Jilma-Stohlawetz, Petra; Jilma, Bernd

    2018-06-04

    The protease-activated receptor-1 (PAR-1) is critically involved in the co-activation of coagulation and inflammatory responses. Vorapaxar is a reversible, orally active, low molecular weight, competitive antagonist of PAR-1.We investigated the effects of PAR-1 inhibition by vorapaxar on the inflammatory response, the activation of coagulation, fibrinolysis and endothelium during experimental endotoxemia. In this randomized, double blind, crossover trial, 16 healthy volunteers received a bolus infusion of 2 ng/kg lipopolysaccharide (LPS) ± placebo/vorapaxar with a washout period of 8 weeks. Vorapaxar dosing was guided by thrombin receptor-activating peptide-6-induced whole blood aggregometry. Participants received 10 mg vorapaxar or placebo as an initial dose and, depending on the aggregometry, potentially an additional 10 mg. Goal was > 80% inhibition of aggregation compared with baseline. Vorapaxar significantly reduced the LPS-induced increase in pro-thrombin fragments F1 + 2 by a median of 27% (quartiles: 11-49%), thrombin-anti-thrombin concentrations by 22% (-3 to 46%) and plasmin-anti-plasmin levels by 38% (23-53%). PAR-1 inhibition dampened peak concentrations of tumour necrosis factor -α, interleukin-6 and consequently C-reactive protein by 66% (-11-71%), 50% (15-79%) and 23% (16-38%), respectively. Vorapaxar decreased maximum von Willebrand factor levels by 29% (26-51%) and soluble E-selectin concentrations by 30% (25-38%) after LPS infusion. PAR-1 inhibition did not affect thrombomodulin, soluble P-selectin and platelet factor-4 concentrations.PAR-1 inhibition significantly reduced the activation of coagulation, fibrinolysis, the inflammatory response and endothelial activation during experimental human endotoxemia. Schattauer GmbH Stuttgart.

  19. Effect of Two Cancer Chemotherapeutic Agents on the Antibacterial Activity of Three Antimicrobial Agents

    PubMed Central

    Moody, Marcia R.; Morris, Maureen J.; Young, Viola Mae; Moyé, Lemuel A.; Schimpff, Stephen C.; Wiernik, Peter H.

    1978-01-01

    Cancer chemotherapeutic agents and antibacterial antibiotics are often given concomitantly. Daunorubicin, cytosine arabinoside, and three antibiotics (gentamicin, amikacin, and ticarcillin) were tested individually and in combinations to determine their antimicrobial activity against Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli. These cytotoxic agents are commonly employed in the therapy of acute nonlymphocytic leukemia for remission induction therapy, and these antimicrobial agents are used in infection therapy. The maximum concentrations of the two cytotoxic drugs were chosen to be twice the known peak plasma levels of commonly employed dosage schedules. Neither of the cancer chemotherapeutic agents, alone or in combination, demonstrated bactericidal activity at the levels tested. However, in the presence of these agents, the antimicrobial activity of gentamicin and amikacin, although not that of ticarcillin, was depressed for 11 of 15 K. pneumoniae strains and 8 of 15 P. aeruginosa strains, but for none of the strains of E. coli. This level of decreased activity occasionally resulted in a minimal inhibitory concentration of the tested aminoglycoside well above the standard serum levels. Daunorubicin was more likely to antagonize gentamicin than was cytosine arabinoside. PMID:103494

  20. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.

    PubMed

    Ho, Y C; Norli, I; Alkarkhi, Abbas F M; Morad, N

    2009-01-01

    The performance of pectin in turbidity reduction and the optimum condition were determined using Response Surface Methodology (RSM). The effect of pH, cation's concentration, and pectin's dosage on flocculating activity and turbidity reduction was investigated at three levels and optimized by using Box-Behnken Design (BBD). Coagulation and flocculation process were assessed with a standard jar test procedure with rapid and slow mixing of a kaolin suspension (aluminium silicate), at 150 rpm and 30 rpm, respectively, in which a cation e.g. Al(3+), acts as coagulant, and pectin acts as the flocculant. In this research, all factors exhibited significant effect on flocculating activity and turbidity reduction. The experimental data and model predictions well agreed. From the 3D response surface graph, maximum flocculating activity and turbidity reduction are in the region of pH greater than 3, cation concentration greater than 0.5 mM, and pectin dosage greater than 20 mg/L, using synthetic turbid wastewater within the range. The flocculating activity for pectin and turbidity reduction in wastewater is at 99%.

  1. High pressure effects on myrosinase activity and glucosinolate preservation in seedlings of Brussels sprouts.

    PubMed

    Wang, Jia; Barba, Francisco J; Sørensen, Jens C; Frandsen, Heidi B; Sørensen, Susanne; Olsen, Karsten; Orlien, Vibeke

    2018-04-15

    Combinations of pressure, temperature and time (100-600 MPa, 30-60 °C, 3-10 min) influence enzyme activity of the myrosinase-glucosinolate system. Seedlings of Brussels sprouts were used as a model, which constitutes a well-defined and homogenous sample matrix with simple cell structures. A response surface methodology approach was used to determine the combined effect of pressure level, temperature and time on glucosinolate concentration and myrosinase activity in Brussels sprouts seedlings. The effects on residual myrosinase activity and intact glucosinolate concentration differed according to combinations of pressure, time and temperature. The results showed that maximum inactivation of myrosinase and preservation of glucosinolate (85% of the untreated level) was obtained after HP treatment at 600 MPa, 60 °C, 10 min. The highest preservation of myrosinase activity compared to untreated seedlings was after HP at 100 MPa, 30 °C, 3 min and 10 min with low degree of cell permeabilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Antioxidant and ACE-inhibitory activities of hemp (Cannabis sativa L.) protein hydrolysates produced by the proteases AFP, HT, Pro-G, actinidin and zingibain.

    PubMed

    Teh, Sue-Siang; Bekhit, Alaa El-Din A; Carne, Alan; Birch, John

    2016-07-15

    Hemp protein isolates (HPIs) were hydrolysed by proteases (AFP, HT, ProG, actinidin and zingibain). The enzymatic hydrolysis of HPIs was evaluated through the degree of hydrolysis and SDS-PAGE profiles. The bioactive properties of the resultant hydrolysates (HPHs) were accessed through ORAC, DPPḢ scavenging and ACE-inhibitory activities. The physical properties of the resultant HPHs were evaluated for their particle sizes, zeta potential and surface hydrophobicity. HT had the highest rate of caseinolytic activity at the lowest concentration (0.1 mg mL(-1)) compared to other proteases that required concentration of 100 mg mL(-1) to achieve their maximum rate of caseinolytic activity. This led to the highest degree of hydrolysis of HPIs by HT in the SDS-PAGE profiles. Among all proteases and substrates, HT resulted in the highest bioactivities (ORAC, DPPḢ scavenging and ACE-inhibitory activities) generated from alkali extracted HPI in the shortest time (2 h) compared to the other protease preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Optimization of extraction conditions for osthol, a melanogenesis inhibitor from Cnidium monnieri fruits.

    PubMed

    Beom Kim, Seon; Kim, CheongTaek; Liu, Qing; Hee Jo, Yang; Joo Choi, Hak; Hwang, Bang Yeon; Kyum Kim, Sang; Kyeong Lee, Mi

    2016-08-01

    Coumarin derivatives have been reported to inhibit melanin biosynthesis. The melanogenesis inhibitory activity of osthol, a major coumarin of the fruits of Cnidium monnieri Cusson (Umbelliferae), and optimized extraction conditions for the maximum yield from the isolation of osthol from C. monnieri fruits were investigated. B16F10 melanomas were treated with osthol at concentration of 1, 3, and 10 μM for 72 h. The expression of melanogenesis genes, such as tyrosinase, TRP-1, and TRP-2 was also assessed. For optimization, extraction factors such as extraction solvent, extraction time, and sample/solvent ratio were tested and optimized for maximum yield of osthol using response surface methodology with the Box-Behnken design (BBD). Osthol inhibits melanin content in B16F10 melanoma cells with an IC50 value of 4.9 μM. The melanogenesis inhibitory activity of osthol was achieved not by direct inhibition of tyrosinase activity but by inhibiting melanogenic enzyme expressions, such as tyrosinase, TRP-1, and TRP-2. The optimal condition was obtained as a sample/solvent ratio, 1500 mg/10 ml; an extraction time 30.3 min; and a methanol concentration of 97.7%. The osthol yield under optimal conditions was found to be 15.0 mg/g dried samples, which were well matched with the predicted value of 14.9 mg/g dried samples. These results will provide useful information about optimized extraction conditions for the development of osthol as cosmetic therapeutics to reduce skin hyperpigmentation.

  4. Gordonia (nocardia) amarae foaming due to biosurfactant production.

    PubMed

    Pagilla, K R; Sood, A; Kim, H

    2002-01-01

    Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and paringly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 x CMC with hexadecane as the sole carbon source, and it was 5 x CMC with the mixture of hexadecane and acetate. Longer term growth studies (approximately 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.

  5. Adsorption of CO2 on KOH activated, N-enriched carbon derived from urea formaldehyde resin: kinetics, isotherm and thermodynamic studies

    NASA Astrophysics Data System (ADS)

    Tiwari, Deepak; Bhunia, Haripada; Bajpai, Pramod K.

    2018-05-01

    High surface area nitrogen enriched carbon adsorbents were prepared from a low cost and widely available urea-formaldehyde resin using a standard chemical activation with KOH and characterized using different characterization techniques for their porous structure and surface functional groups. Maximum surface area and total pore volume of 4547 m2 g-1 and 4.50 cm3 g-1 were found by controlling the activation conditions. Nitrogen content of this sample was found to be 5.62%. Adsorption of CO2 uptake for the prepared carbon adsorbents was studied using a dynamic fixed bed adsorption system at different adsorption temperatures (30-100 °C) and at different CO2 concentrations (5-12.5%), relevant from the flue gas point application. Maximum CO2 uptake of 1.40 mmol g-1 for UFA-3-700 at 30 °C under 12.5% CO2 flow was obtained. Complete regenerability of the adsorbents over multiple adsorption-desorption cycles was obtained. Fractional order kinetic model provided best description over all adsorption temperatures and CO2 concentrations. Heterogeneity of the adsorbent surface was confirmed from Temkin adsorption isotherm model fit and isosteric heat of adsorption values. Negative value of ΔG° and ΔH° confirms spontaneous, feasible nature and exothermic nature of adsorption process. Overall, very high surface area of carbon adsorbent makes this adsorbent a new promising carbon material for CO2 capture from power plant flue gas and for other relevant applications.

  6. Modeling and verification of process parameters for the production of tannase by Aspergillus oryzae under submerged fermentation using agro-wastes.

    PubMed

    Varadharajan, Venkatramanan; Vadivel, Sudhan Shanmuga; Ramaswamy, Arulvel; Sundharamurthy, Venkatesaprabhu; Chandrasekar, Priyadharshini

    2017-01-01

    Tannase production by Aspergillus oryzae using various agro-wastes as substrates by submerged fermentation was studied in this research. The microbe was isolated from degrading corn kernel obtained from the corn fields at Tiruchengode, India. The microbial identification was done using 18S rRNA gene analysis. The agro-wastes chosen for the study were pomegranate rind, Cassia auriculata flower, black gram husk, and tea dust. The process parameters chosen for optimization study were substrate concentration, pH, temperature, and incubation period. During one variable at a time optimization, the pomegranate rind extract produced maximum tannase activity of 138.12 IU/mL and it was chosen as the best substrate for further experiments. The quadratic model was found to be the effective model for prediction of tannase production by A. oryzae. The optimized conditions predicted by response surface methodology (RSM) with genetic algorithm (GA) were 1.996% substrate concentration, pH of 4.89, temperature of 34.91 °C, and an incubation time of 70.65 H with maximum tannase activity of 138.363 IU/mL. The confirmatory experiment under optimized conditions showed tannase activity of 139.22 IU/mL. Hence, RSM-GA pair was successfully used in this study to optimize the process parameters required for the production of tannase using pomegranate rind. © 2015 International Union of Biochemistry and Molecular Biology, Inc.

  7. 137Cs in soil and fallout around Zagreb (Croatia) at the time of the Fukushima accident.

    PubMed

    Šoštarić, Marko; Petrinec, Branko; Babić, Dinko

    2013-12-01

    This paper addresses the noticeable increase of 137Cs activity concentrations in soil and fallout in the area surrounding Zagreb (Croatia) that occurred at the time of the 2011 Fukushima accident. This topic is important for public health as 137Cs is highly toxic due to its long half-life of radioactive decay and chemical similarity to potassium. 137Cs concentrations in fallout were much greater than in soil, but remained present longer in the latter. While being detectable in our measurements, 137Cs did not spread through the food chain in amounts exceeding the maximum allowed level of radioactive food contamination. However, more thorough and consistent measurements need to be done in order to establish the precise activity trends of 137Cs in Zagreb soil and fallout.

  8. Natural radioactivity investigation in Dam sediments of northeast Algeria using gamma spectroscopy

    NASA Astrophysics Data System (ADS)

    Benrachi, Fatima; Bouhila, Ghania; Saadi, Asma; Ramdhane, Mourad

    2017-09-01

    Current research paper intends to estimate the natural radioactivity levels in sediments samples collected from Beni Haroun Dam in the northeast Algeria, using high resolution HPGe detector. The mean activity concentrations values measured for the radionuclides 232Th, 226Ra and 40K are 18.9 ± 1.9, 37.3 ± 2.7 and 149.9 ± 5.5 Bq/kg, respectively. The 137Cs anthropogenic radionuclide has been observed with maximum activity concentration value of 0.8 ± 0.4 Bq/kg, which is considered an insignificant amount. In order to assess the radiological threat of gamma radiations emitted by these radionuclides on the health of the population, absorbed dose rate, annual effective dose equivalent and radiation hazard indices were had been calculated. The obtained values are compared with the world wide average ones.

  9. Whole-remnant and maximum-voxel SPECT/CT dosimetry in {sup 131}I-NaI treatments of differentiated thyroid cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mínguez, Pablo, E-mail: pablo.minguezgabina@osakid

    Purpose: To investigate the possible differences between SPECT/CT based whole-remnant and maximum-voxel dosimetry in patients receiving radio-iodine ablation treatment of differentiated thyroid cancer (DTC). Methods: Eighteen DTC patients were administered 1.11 GBq of {sup 131}I-NaI after near-total thyroidectomy and rhTSH stimulation. Two patients had two remnants, so in total dosimetry was performed for 20 sites. Three SPECT/CT scans were performed for each patient at 1, 2, and 3–7 days after administration. The activity, the remnant mass, and the maximum-voxel activity were determined from these images and from a recovery-coefficient curve derived from experimental phantom measurements. The cumulated activity was estimatedmore » using trapezoidal-exponential integration. Finally, the absorbed dose was calculated using S-values for unit-density spheres in whole-remnant dosimetry and S-values for voxels in maximum-voxel dosimetry. Results: The mean absorbed dose obtained from whole-remnant dosimetry was 40 Gy (range 2–176 Gy) and from maximum-voxel dosimetry 34 Gy (range 2–145 Gy). For any given patient, the activity concentrations for each of the three time-points were approximately the same for the two methods. The effective half-lives varied (R = 0.865), mainly due to discrepancies in estimation of the longer effective half-lives. On average, absorbed doses obtained from whole-remnant dosimetry were 1.2 ± 0.2 (1 SD) higher than for maximum-voxel dosimetry, mainly due to differences in the S-values. The method-related differences were however small in comparison to the wide range of absorbed doses obtained in patients. Conclusions: Simple and consistent procedures for SPECT/CT based whole-volume and maximum-voxel dosimetry have been described, both based on experimentally determined recovery coefficients. Generally the results from the two approaches are consistent, although there is a small, systematic difference in the absorbed dose due to differences in the S-values, and some variability due to differences in the estimated effective half-lives, especially when the effective half-life is long. Irrespective of the method used, the patient absorbed doses obtained span over two orders of magnitude.« less

  10. Skeletal Muscle Remodeling in Response to Eccentric vs. Concentric Loading: Morphological, Molecular, and Metabolic Adaptations

    PubMed Central

    Franchi, Martino V.; Reeves, Neil D.; Narici, Marco V.

    2017-01-01

    Skeletal muscle contracts either by shortening or lengthening (concentrically or eccentrically, respectively); however, the two contractions substantially differ from one another in terms of mechanisms of force generation, maximum force production and energy cost. It is generally known that eccentric actions generate greater force than isometric and concentric contractions and at a lower metabolic cost. Hence, by virtue of the greater mechanical loading involved in active lengthening, eccentric resistance training (ECC RT) is assumed to produce greater hypertrophy than concentric resistance training (CON RT). Nonetheless, prevalence of either ECC RT or CON RT in inducing gains in muscle mass is still an open issue, with some studies reporting greater hypertrophy with eccentric, some with concentric and some with similar hypertrophy within both training modes. Recent observations suggest that such hypertrophic responses to lengthening vs. shortening contractions are achieved by different adaptations in muscle architecture. Whilst the changes in muscle protein synthesis in response to acute and chronic concentric and eccentric exercise bouts seem very similar, the molecular mechanisms regulating the myogenic adaptations to the two distinct loading stimuli are still incompletely understood. Thus, the present review aims to, (a) critically discuss the literature on the contribution of eccentric vs. concentric loading to muscular hypertrophy and structural remodeling, and, (b) clarify the molecular mechanisms that may regulate such adaptations. We conclude that, when matched for either maximum load or work, similar increase in muscle size is found between ECC and CON RT. However, such hypertrophic changes appear to be achieved through distinct structural adaptations, which may be regulated by different myogenic and molecular responses observed between lengthening and shortening contractions. PMID:28725197

  11. Biological and chemical analysis of the toxic potency of pesticides in rainwater.

    PubMed

    Hamers, T; Smit, M G; Murk, A J; Koeman, J H

    2001-11-01

    A newly developed method for measuring the integrated esterase inhibiting potency of rainwater samples was applied in practice, and the results are compared to the toxic potency calculated from concentrations of 31 organophosphate (OP) and carbamate pesticides, out of a total of 66 chemically analyzed pesticides. In addition, the general toxic potency of the rainwater samples was evaluated in a microtiter luminescence assay with Vibrio fischeri bacteria. Rainwater samples were collected over four consecutive 14-day periods in both open and wet-only samplers. The esterase inhibiting potency of the open rainwater samples (expressed as ng dichlorvos-equivalents/l) corresponded well with the chemical analyses of the rainwater samples collected by both types of samplers (r = 0.83-0.86). By far, the highest esterase inhibiting potency was found in a sample collected in an area with intense horticultural activities in June, and was attributed to high concentrations of dichlorvos, mevinphos, pirimiphos-methyl and methiocarb. The esterase inhibiting potency of this sample was equivalent to a dichlorvos concentration of 1380 ng/l in the rainwater, which is almost 2000 times higher than the maximum permissible concentration (MPC) of dichlorvos set for surface water in Netherlands. Maximum individual concentrations of dichlorvos and pirimiphos-methyl even exceeded the EC50 for Daphnia, suggesting that pesticides in rainwater pose a risk for aquatic organisms. Not all responses of the luminescence-assay for general toxicity could be explained by the analyzed pesticide concentrations. The bio-assays enable a direct assessment the toxic potency of all individual compounds present in the complex mixture of rainwater pollutants, even if they are unknown or present at concentrations below the detection limit. Therefore, they are valuable tools for prescreening and hazard characterization purposes.

  12. In vitro callus culture of Heliotropium indicum Linn. for assessment of total phenolic and flavonoid content and antioxidant activity.

    PubMed

    Kumar, Muthusamy Senthil; Chaudhury, Shibani; Balachandran, Srinivasan

    2014-12-01

    The total phenolic and flavonoid content and percentage of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of callus and in vivo plant parts of Heliotropium indicum Linn. were estimated. Murashige and Skoog (MS) basal medium supplemented with α-naphthaleneacetic acid (NAA) 2.0 mg/l with benzyladenine (BA) 0.5 mg/l showed the highest amount of callus biomass (1.87 g/tube). The morphology of callus was significantly different according to the plant growth regulators and their concentrations used in the medium. The highest amount of total phenolic (21.70 mg gallic acid equivalent per gram (GAE/g)) and flavonoid (4.90 mg quercetin equivalent per gram (QE/g)) content and the maximum percentage (77.78 %) of radical scavenging activity were estimated in the extract of inflorescence. The synergistic effect of NAA (2.0 mg/l) and BA (0.5 mg/l) enhances the synthesis of total phenolic (9.20 mg GAE/g) and flavonoid (1.25 mg QE/g) content in the callus tissue. The callus produced by the same concentration shows 45.24 % of free radical scavenging activity. While comparing the various concentrations of NAA with 2,4-dichlorophenoxyacetic acid (2,4-D) for the production of callus biomass, total phenolic and flavonoid content and free radical scavenging activity, all the concentrations of NAA were found to be superior than those of 2,4-D.

  13. Thermal history effects on electrical relaxation and conductivity for potassium silicate glass with low alkali concentrations

    NASA Technical Reports Server (NTRS)

    Angel, Paul W.; Hann, Raiford E.; Cooper, Alfred R.

    1993-01-01

    Electrical response measurements from 10 Hz to 100 kHz between 120 and 540 C were made on potassium-silicate glasses with alkali oxide contents of 2, 3, 5 and 10 mol percent. Low alkali content glasses were chosen in order to try to reduce the Coulombic interactions between alkali ions to the point that frozen structural effects from the glass could be observed. Conductivity and electrical relaxation responses for both annealed and quenched glasses of the same composition were compared. Lower DC conductivity (sigma(sub DC)) activation energies were measured for the quenched compared to the annealed glasses. The two glasses with the lowest alkali contents exhibited a non-Arrhenius concave up curvature in the log(sigma(sub DC)) against 1/T plots, which decreased upon quenching. A sharp decrease in sigma(sub DC) was observed for glasses containing K2O concentrations of 5 mol percent or less. The log modulus loss peak (M'') maximum frequency plots against 1/T all showed Arrhenius behavior for both annealed and quenched samples. The activation energies for these plots closely agreed with the sigma(sub DC) activation energies. A sharp increase in activation energy was observed for both series as the potassium oxide concentration decreased. Changes in the electrical response are attributed to structural effects due to different alkali concentrations. Differences between the annealed and quenched response are linked to a change in the distribution of activation energies (DAE).

  14. Characterization and antimicrobial activity of sweetpotato starch-based edible film containing origanum (Thymus capitatus) oil.

    PubMed

    Ehivet, Fabienne E; Min, Byungjin; Park, Mi-Kyung; Oh, Jun-Hyun

    2011-01-01

    The objectives of this research were to characterize the mechanical and barrier properties of sweetpotato starch (SPS)-based film (SPSF) and to investigate the antimicrobial activity of SPSF containing origanum oil (OG) against foodborne pathogenic bacteria. The SPSF was fabricated with the SPS extracted from commercial sweetpotato roots. Tensile strength (TS), percent elongation at break (E), and water vapor permeability (WVP) were determined to characterize the SPSF fabricated with selected SPS concentrations, plasticizers, and the concentrations of plasticizers. The agar diffusion assay was used to determine the antimicrobial activity of SPSF containing selective concentrations of OG against Salmonella Enteritidis, Escherichia coli O157:H7, and Listeria monocytogenes. The SPSF fabricated with 2.5% SPS exhibited the greatest TS (4.58 MPa). The TS, E, and WVP of SPSF plasticized with 40% sorbitol exhibited 7.96 MPa, 77.92%, 0.212 ng m/m(2) S Pa, respectively. Therefore, the SPSF fabricated with 2.5% SPS and 40% sorbitol was determined as the optimum film. The antimicrobial activity of the SPSF containing OG increased as the concentration of OG increased. And the SPSF containing OG exhibited greater inhibitory effects against the gram-negative bacteria such as S. Enteritidis and E. coli O157:H7 than the gram-positive L. monocytogenes. The greatest antimicrobial activity was observed against S. Enteritidis when the SPSF containing 2% OG was applied, and the maximum square of zone width was 18.43 mm(2).

  15. Ozone uptake, water loss and carbon exchange dynamics in annually drought-stressed Pinus ponderosa forests: measured trends and parameters for uptake modeling.

    PubMed

    Panek, Jeanne A

    2004-03-01

    This paper describes 3 years of physiological measurements on ponderosa pine (Pinus ponderosa Dougl. ex Laws.) growing along an ozone concentration gradient in the Sierra Nevada, California, including variables necessary to parameterize, validate and modify photosynthesis and stomatal conductance algorithms used to estimate ozone uptake. At all sites, gas exchange was under tight stomatal control during the growing season. Stomatal conductance was strongly correlated with leaf water potential (R2=0.82), which decreased over the growing season with decreasing soil water content (R2=0.60). Ozone uptake, carbon uptake, and transpirational water loss closely followed the dynamics of stomatal conductance. Peak ozone and CO2 uptake occurred in early summer and declined progressively thereafter. As a result, periods of maximum ozone uptake did not correspond to periods of peak ozone concentration, underscoring the inappropriateness of using current metrics based on concentration (e.g., SUM0, W126 and AOT40) for assessing ozone exposure risk to plants in this climate region. Both Jmax (maximum CO2-saturated photosynthetic rate, limited by electron transport) and Vcmax (maximum rate of Rubisco-limited carboxylation) increased toward the middle of the growing season, then decreased in September. Intrinsic water-use efficiency rose with increasing drought stress, as expected. The ratio of Jmax to Vcmax was similar to literature values of 2.0. Nighttime respiration followed a Q10 of 2.0, but was significantly higher at the high-ozone site. Respiration rates decreased by the end of the summer as a result of decreased metabolic activity and carbon stores.

  16. 30 CFR 57.5039 - Maximum permissible concentration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  17. 30 CFR 57.5039 - Maximum permissible concentration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  18. 30 CFR 57.5039 - Maximum permissible concentration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  19. 30 CFR 57.5039 - Maximum permissible concentration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  20. 30 CFR 57.5039 - Maximum permissible concentration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Maximum permissible concentration. 57.5039 Section 57.5039 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation, Physical Agents, and Diesel...

  1. 40 CFR Table 1 to Subpart A of... - Maximum Concentration of Constituents for Groundwater Protection

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Maximum Concentration of Constituents for Groundwater Protection 1 Table 1 to Subpart A of Part 192 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) RADIATION PROTECTION PROGRAMS HEALTH AND ENVIRONMENTAL PROTECTION STANDARDS FOR...

  2. Reproductive patterns in demersal crustaceans from the upper boundary of the OMZ off north-central Chile

    NASA Astrophysics Data System (ADS)

    Gallardo, María de los Ángeles; González López, Andrés E.; Ramos, Marcel; Mujica, Armando; Muñoz, Praxedes; Sellanes, Javier; Yannicelli, Beatriz

    2017-06-01

    Pleuroncodes monodon (Crustacea: Munididae) supports one of the main trawling fisheries over the continental shelf off Chile between 25°S and 37°S within the upper boundary of the oxygen minimum zone (OMZ). Although the reproductive cycle of P. monodon has been described, the relationship between this key biological process and the variability of the OMZ has not been comprehensibly addressed neither for P. monodon nor for other OMZ resident species. In this study a set of 14 quasi-monthly oceanographic cruises carried out between June 2010 and November 2011 were conducted over the continental shelf off Coquimbo (30°S) to investigate the temporal variability of: i) dissolved oxygen concentration, temperature and chlorophyll-a at relevant depths ii) the presence and proportion of occurrence of P. monodon ovigerous females and juveniles from benthic trawls; iii) the presence of different stage larvae in the plankton, and iv) similar biological data for other species from the OMZ and shallower depths crustaceans. During summer months oxygen levels and bottom temperature were lower than in winter, while chlorophyll-a concentration was maximum in summer coinciding with an active (but not maximum) upwelling season. P. monodon maximum egg carrying occurred in winter during periods of increased oxygenation. Egg carrying females were never found at depths where oxygen concentration was below 0.5 ml L-1, while over 50% of the autumn and spring cohorts of juveniles occurred at oxygen concentrations below that level. The depth range occupied by ovigerous females was more restricted than the rest of the population and their depth of occurrence followed the variability of the upper OMZ. The larval release period of OMZ resident species extends over late winter and spring, and its main peak precedes that of coastal species (spring) and the spring-summer chlorophyll-a maximum. We propose that for OMZ resident species, brood carrying during warmer and more oxygenated conditions in the adult benthic environment, might favor embryonic development, so OMZ seasonal variability could be acting as a selective pressure to synchronize reproductive periods.

  3. IL-1β-induced and p38MAPK-dependent activation of the mitogen-activated protein kinase-activated protein kinase 2 (MK2) in hepatocytes: Signal transduction with robust and concentration-independent signal amplification

    PubMed Central

    Kulawik, Andreas; Engesser, Raphael; Ehlting, Christian; Raue, Andreas; Albrecht, Ute; Hahn, Bettina; Lehmann, Wolf-Dieter; Gaestel, Matthias; Klingmüller, Ursula; Häussinger, Dieter; Timmer, Jens; Bode, Johannes G.

    2017-01-01

    The IL-1β induced activation of the p38MAPK/MAPK-activated protein kinase 2 (MK2) pathway in hepatocytes is important for control of the acute phase response and regulation of liver regeneration. Many aspects of the regulatory relevance of this pathway have been investigated in immune cells in the context of inflammation. However, very little is known about concentration-dependent activation kinetics and signal propagation in hepatocytes and the role of MK2. We established a mathematical model for IL-1β-induced activation of the p38MAPK/MK2 pathway in hepatocytes that was calibrated to quantitative data on time- and IL-1β concentration-dependent phosphorylation of p38MAPK and MK2 in primary mouse hepatocytes. This analysis showed that, in hepatocytes, signal transduction from IL-1β via p38MAPK to MK2 is characterized by strong signal amplification. Quantification of p38MAPK and MK2 revealed that, in hepatocytes, at maximum, 11.3% of p38MAPK molecules and 36.5% of MK2 molecules are activated in response to IL-1β. The mathematical model was experimentally validated by employing phosphatase inhibitors and the p38MAPK inhibitor SB203580. Model simulations predicted an IC50 of 1–1.2 μm for SB203580 in hepatocytes. In silico analyses and experimental validation demonstrated that the kinase activity of p38MAPK determines signal amplitude, whereas phosphatase activity affects both signal amplitude and duration. p38MAPK and MK2 concentrations and responsiveness toward IL-1β were quantitatively compared between hepatocytes and macrophages. In macrophages, the absolute p38MAPK and MK2 concentration was significantly higher. Finally, in line with experimental observations, the mathematical model predicted a significantly higher half-maximal effective concentration for IL-1β-induced pathway activation in macrophages compared with hepatocytes, underscoring the importance of cell type-specific differences in pathway regulation. PMID:28223354

  4. Assessment of Potential Health Hazards During Emission of Hydrogen Sulphide from the Mine Exploiting Copper Ore Deposit - Case Study.

    PubMed

    Kupczewska-Dobecka, Małgorzata; Czerczak, Sławomir; Gromiec, Jan P; Konieczko, Katarzyna

    2015-06-01

    The aim of this study was to determine hydrogen sulphide concentration emitted from the mine extracting copper ore, to evaluate potential adverse health effects to the population living in four selected villages surrounding the exhaust shaft. Maximum measured concentration of hydrogen sulphide in the emitter is 286 µg/m³. Maximum emission calculated from the results of determinations of concentrations in the emitter is 0.44 kg/h. In selected villages hydrogen sulphide at concentrations exceeding 4 µg/m³ was not detected in any of the 5-hour air samples. In all locations, the estimated maximum 1-hour concentrations of hydrogen sulphide were below 1 µg/m³, and the estimated mean annual concentrations were below 0.53 µg/m³. Any risk to the health of people in the selected area is not expected. As indicated by the available data on the threshold odour, the estimated concentrations of hydrogen sulphide may be sensed by humans. Copyright© by the National Institute of Public Health, Prague 2015.

  5. Cytotoxic potential of few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide assay on HepG2 cells.

    PubMed

    Garg, Munish; Lata, Kusum; Satija, Saurabh

    2016-01-01

    To investigate in vitro anticancer activity of a few Indian fruit peels through 3-(4,5-dimethylthiazol-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HepG2 cells. Hydroalcoholic extracts were prepared of five fruit peels, i.e., banana, lemon, guava, orange, and papaya by maceration and thereafter subjected for MTT assay to evaluate anticancer potential on HepG2 cells. Plant extract showed best activity was further fractionated with petroleum ether, chloroform, and ethyl acetate successively and screened again. Phytochemical analysis was then carried out to find out responsible components for the observed activity. Out of the 40 samples from five fruit peel extracts with rich folklore usage, papaya extract showed maximum activity with least inhibitory concentration50 (IC50) value of 18.5 μg/ml. Further analysis after fractionation of the papaya peel extract, aqueous fraction showed the maximum inhibitory activity with least IC50 value of 17.3 μg/ml. Phytochemical analysis of the aqueous fraction of papaya peel extract revealed the presence of flavonoids and glycosides. Total flavonoid content found to be 72.25 mg/g. Papaya fruit extract demonstrated the best activity against MTT assay which may be due to the presence of flavonoids.

  6. Radiation-induced polymerization of glass-forming systems. IV. Effect of the homogeneity of polymerization phase and polymer concentration on temperature dependence of initial polymerization rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaetsu, I.; Ito, A.; Hayashi, K.

    1973-06-01

    The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less

  7. Novel hybrid III:V concentrator photovoltaic-thermoelectric receiver designs

    NASA Astrophysics Data System (ADS)

    Sweet, Tracy K. N.; Rolley, Matthew H.; Prest, Martin J.; Min, Gao

    2017-09-01

    This paper presents the design, manufacture and electrical characterization of novel hybrid III:V Concentrator Photovoltaic-Thermoelectric receivers. Addition of an encapsulating and spectral homogenizing single active surface secondary optic lens increased the solar cell electrical power output from 7.66mW (ALPHA no cooling) to 18.20mW (KAPPA with TE cooling). The effective optical concentration of the optics, based on short circuit current, was x2.4. A linear irradiance vs maximum power receiver output relationship was observed (R2=0.9978), confirming good optical alignment during manufacture and likewise internal current matching of the series-connected triple-junction cell. An in-depth COMSOL model for simulated evaluation of the synergistic thermally-dependent parameters inherent to hybrid devices was built and experimentally validated.

  8. 20th-century industrial black carbon emissions altered Arctic climate forcing.

    PubMed

    McConnell, Joseph R; Edwards, Ross; Kok, Gregory L; Flanner, Mark G; Zender, Charles S; Saltzman, Eric S; Banta, J Ryan; Pasteris, Daniel R; Carter, Megan M; Kahl, Jonathan D W

    2007-09-07

    Black carbon (BC) from biomass and fossil fuel combustion alters chemical and physical properties of the atmosphere and snow albedo, yet little is known about its emission or deposition histories. Measurements of BC, vanillic acid, and non-sea-salt sulfur in ice cores indicate that sources and concentrations of BC in Greenland precipitation varied greatly since 1788 as a result of boreal forest fires and industrial activities. Beginning about 1850, industrial emissions resulted in a sevenfold increase in ice-core BC concentrations, with most change occurring in winter. BC concentrations after about 1951 were lower but increasing. At its maximum from 1906 to 1910, estimated surface climate forcing in early summer from BC in Arctic snow was about 3 watts per square meter, which is eight times the typical preindustrial forcing value.

  9. Short communication: concentrations of nonesterified fatty acids and β-hydroxybutyrate in dairy cows are not well correlated during the transition period.

    PubMed

    McCarthy, M M; Mann, S; Nydam, D V; Overton, T R; McArt, J A A

    2015-09-01

    The objective was to use longitudinal data of blood nonesterified fatty acids (NEFA) and β-hydroxybutyrate (BHBA) concentrations to describe the relationship between NEFA and BHBA in dairy cows during the periparturient period. Blood NEFA and BHBA concentration data collected from d 21 prepartum to 21 postpartum for 269 multiparous Holstein cows were selected from 4 different studies carried out within our research groups. Overall, NEFA concentrations were increased beginning near parturition with a relatively steady elevation of NEFA through d 9, after which concentrations gradually decreased. Prepartum BHBA concentrations began to increase beginning several days before parturition, continued to increase during the first week after parturition, and remained elevated through d 21 postpartum. Of the 269 cows included in the data set, 117 cows (43.5%) had at least one postpartum hyperketonemic event (BHBA ≥1.2mmol/L), and 202 cows (75.1%) had at least one event of elevated postpartum NEFA concentrations (≥0.70mmol/L) between 3 and 21 d in milk. Area under the curve (AUC) was used to investigate relationships between metabolites over time. Overall, the correlations between transition period NEFA and BHBA AUC were weak. We detected a negative correlation between prepartum BHBA AUC and postpartum NEFA AUC (r=-0.26). A positive correlation existed between postpartum NEFA AUC and postpartum BHBA AUC; however, the correlation coefficient was low (r=0.26). Large variation was found between the day of maximum NEFA concentration within the first 21 d in milk and day of maximum BHBA concentration for the same period. The mean and median times of maximum NEFA concentration were 6.8 and 6 d, respectively, whereas the mean and median times of maximum BHBA were 9.6 and 8 d, respectively; however, the range in days for both the mean and median day of maximum concentrations was very large. Overall, our data set indicates a weak relationship between blood concentrations of NEFA and BHBA during the periparturient period of dairy cows, suggesting that elevated concentrations of one should not be extrapolated to suggest elevated concentrations of the other metabolite. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  10. Cytochrome P4501A induction, benzo[a]pyrene metabolism, and nucleotide adduct formation in fish hepatoma cells: Effect of preexposure to 3,3',4,4',5-pentachlorobiphenyl

    USGS Publications Warehouse

    Smeets, J.M.W.; Voormolen, A.; Tillitt, D.E.; Everaarts, J.M.; Seinen, W.; Vanden Berg, M.D.

    1999-01-01

    In PLHC-1 hepatoma cells, benzo[a]pyrene (B[a]P) caused a maximum induction of cytochrome P4501A (CYP1A) activity, measured as ethoxyresorufin O-deethylation (EROD), after 4 to 8 h of exposure, depending on the B[a]P concentration. The decline of EROD activity at longer exposure times was probably caused by the rapid metabolism of B[a]P in this system (57% metabolism within 4 h incubation). In subsequent experiments, PLHC-1 cells were preinduced with PCB 126 for 24 h and then received a dose of 10, 100, or 1,000 nM 3H-B[a]P. A 1-nM concentration of PCB 126 caused an 80-fold induction of CYP1A activity, resulting in an increase in B[a]P metabolism of less than 10%, except at the highest concentration of B[a]P (1,000 nM), where a 50% increase was observed. In another experiment, an 80-fold induction of CYP1A activity caused a 20% increase in the metabolism of B[a]P (100 nM), and RNA adduct formation was increased approximately twofold. These results indicate that, at exposure concentrations up to 100 nM B[a]P, CYP1A activity is not rate limiting for B[a]P metabolism. Furthermore, CYP1A seems to also he specifically involved in B[a]P activation in PLHC-1 cells. However, CYP1A induction causes only a relatively small increase in activation, probably because of the action of other enzymes involved in B[a]P activation and deactivation.

  11. Changes in the haemostatic system after thermoneutral and hyperthermic water immersion.

    PubMed

    Boldt, Leif-Hendrik; Fraszl, Waltraud; Röcker, Lothar; Schefold, Jörg Christian; Steinach, Mathias; Noack, Thilo; Gunga, Hanns-Christian

    2008-03-01

    Warm water bathing is a popular recreational activity and is frequently used in rehabilitation medicine. Although well tolerated in most cases, there are reports indicating an increased risk of thrombotic events after hot tub bathing. The effects of a 45 min thermoneutral bath followed by a 50 min bath with increasing water temperature (maximum 41 degrees C) until reaching a body core temperature of 39 degrees C on factors of blood coagulation and fibrinolysis were studied in eight healthy male volunteers. Blood was obtained after a 45-min resting period as control and after the thermoneutral and hyperthermic bath as well as after another 45 min recovery period at the end of the study. Hyperthermic immersion (HI) lead to a shortening of activated partial thromboplastin time (aPTT) (P < 0.05). Fibrinogen concentration decreased immediately after HI (P < 0.05) but increased during recovery (P < 0.05). Plasminogen activator inhibitor (PAI) activity decreased during HI (P < 0.05), D-dimer concentration was not found to change. Thrombocyte count increased (P < 0.05) during HI. The increases in tissue-type plasminogen activator concentration as well as leucocyte count during HI were due to haemoconcentration. Prothrombin time, PAI-activity and granulocyte count decreased during thermoneutral immersion (P < 0.05). Warm water bathing leads to haemoconcentration and minimal activation of coagulation. The PAI-1 activity is decreased. A marked risk for thrombotic or bleeding complications during warm water bathing in healthy males could not be ascertained.

  12. Protein Adsorption and Deposition onto Microfiltration Membranes: The Role of Solute-Solid Interactions.

    PubMed

    Martínez; Martín; Prádanos; Calvo; Palacio; Hernández

    2000-01-15

    The mass of gamma-globulin fouling an Anodisc alumina membrane with a nominal pore diameter of 0.1 µm has been measured at several concentrations and pHs. This fouling resulted from filtering through the membrane in a continuous recirculation device. The low-concentration fouling can be attributed mainly to adsorption. The complete concentration dependence of fouling mass has been obtained and fitted to a Freundlich heterogeneous isotherm, from which the pH dependence of active fouling sites and energies has been also obtained. Adsorption is studied as a function of the electrostatic forces between the solute and the membrane. A sharp maximum in the adsorbed mass for zero electrostatic force is observed. At high concentrations, accumulation plays a relevant role at alkaline pH, as confirmed by flux decay experiments, retention measurements, and AFM (atomic force microscopy) pictures. Copyright 2000 Academic Press.

  13. Updated model assessment of pollution at major U. S. airports

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamartino, R.J.; Rote, D.M.

    1979-02-01

    The air quality impact of aircraft at and around Los Angeles International Airport (LAX) was simulated for hours of peak aircraft operation and 'worst case' pollutant dispersion conditions by using an updated version of the Argonne Airport Vicinity Air Pollution model; field programs at LAX, O'Hara, and John F. Kennedy International Airports determined the 'worst case' conditions. Maximum carbon monoxide concentrations at LAX were low relative to National Ambient Air Quality Standards; relatively high and widespread hydrocarbon concentrations indicated that aircraft emissions may aggravate oxidant problems near the airport; nitrogen oxide concentrations were close to the levels set in proposedmore » standards. Data on typical time-in-mode for departing and arriving aircraft, the 8/4/77 diurnal variation in airport activity, and carbon monoxide concentration isopleths are given, and the update factors in the model are discussed.« less

  14. Boron removal in radioactive liquid waste by forward osmosis membrane

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doo Seong Hwang; Hei Min Choi; Kune Woo Lee

    2013-07-01

    This study investigated the treatment of boric acid contained in liquid radioactive waste using a forward osmosis membrane. The boron permeation through the membrane depends on the type of membrane, membrane orientation, pH of the feed solution, salt and boron concentration in the feed solution, and osmotic pressure of the draw solution. The boron flux begins to decline from pH 7 and increases with an increase of the osmotic driving force. The boron flux decreases slightly with the salt concentration, but is not heavily influenced by a low salt concentration. The boron flux increases linearly with the concentration of boron.more » No element except for boron was permeated through the FO membrane in the multi-component system. The maximum boron flux is obtained in an active layer facing a draw solution orientation of the CTA-ES membrane under conditions of less than pH 7 and high osmotic pressure. (authors)« less

  15. Subjective and physiological effects, and expired carbon monoxide concentrations in frequent and occasional cannabis smokers following smoked, vaporized, and oral cannabis administration.

    PubMed

    Newmeyer, Matthew N; Swortwood, Madeleine J; Abulseoud, Osama A; Huestis, Marilyn A

    2017-06-01

    Although smoking is the most common cannabis administration route, vaporization and consumption of cannabis edibles are common. Few studies directly compare cannabis' subjective and physiological effects following multiple administration routes. Subjective and physiological effects, and expired carbon monoxide (CO) were evaluated in frequent and occasional cannabis users following placebo (0.001% Δ 9 -tetrahydrocannabinol [THC]), smoked, vaporized, and oral cannabis (6.9% THC, ∼54mg). Participants' subjective ratings were significantly elevated compared to placebo after smoking and vaporization, while only occasional smokers' ratings were significantly elevated compared to placebo after oral dosing. Frequent smokers' maximum ratings were significantly different between inhaled and oral routes, while no differences in occasional smokers' maximum ratings between active routes were observed. Additionally, heart rate increases above baseline 0.5h after smoking (mean 12.2bpm) and vaporization (10.7bpm), and at 1.5h (13.0bpm) and 3h (10.2bpm) after oral dosing were significantly greater than changes after placebo, with no differences between frequent and occasional smokers. Finally, smoking produced significantly increased expired CO concentrations 0.25-6h post-dose compared to vaporization. All participants had significant elevations in subjective effects after smoking and vaporization, but only occasional smokers after oral cannabis, indicating partial tolerance to subjective effects with frequent exposure. There were no differences in occasional smokers' maximum subjective ratings across the three active administration routes. Vaporized cannabis is an attractive alternative for medicinal administrations over smoking or oral routes; effects occur quickly and doses can be titrated with minimal CO exposure. These results have strong implications for safety and abuse liability assessments. Published by Elsevier B.V.

  16. 40 CFR 463.24 - New source performance standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...

  17. 40 CFR 463.24 - New source performance standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... usage flow rate for cleaning processes at a new source times the following pollutant concentrations: Subpart B [Cleaning water] Concentration used to calculate NSPS Pollutant or pollutant property Maximum for any 1 day (mg/l) Maximum for monthly average (mg/l) BOD5 49 22 Oil and Grease 71 17 TSS 117 36 pH...

  18. Environmental fate of Ra in cation-exchange regeneration brine waste disposed to septic tanks, New Jersey Coastal Plain, USA: migration to the water table.

    PubMed

    Szabo, Zoltan; Jacobsen, Eric; Kraemer, Thomas F; Parsa, Bahman

    2010-01-01

    Fate of radium (Ra) in liquid regeneration brine wastes from water softeners disposed to septic tanks in the New Jersey Coastal Plain was studied. Before treatment, combined Ra ((226)Ra plus (228)Ra) concentrations (maximum, 1.54 Bq L(-1)) exceeded the 0.185 Bq L(-1) Maximum Contaminant Level in 4 of 10 studied domestic-well waters (median pH, 4.90). At the water table downgradient from leachfields, combined Ra concentrations were low (commonly < or =0.019 Bq L(-1)) when pH was >5.3, indicating sequestration; when pH was < or =5.3 (acidic), concentrations were elevated (maximum, 0.985 Bq L(-1) - greater than concentrations in corresponding discharged septic-tank effluents (maximum, 0.243 Bq L(-1))), indicating Ra mobilization from leachfield sediments. Confidence in quantification of Ra mass balance was reduced by study design limitations, including synoptic sampling of effluents and ground waters, and large uncertainties associated with analytical methods. The trend of Ra mobilization in acidic environments does match observations from regional water-quality assessments.

  19. Rheology of Dead Sea shampoo containing the antidandruff climbazole.

    PubMed

    Abu-Jdayil, B; Mohameed, H A

    2004-12-01

    In this study, the effect of the antidandruff climbazole on the rheology of hair shampoo containing Dead Sea (DS) salt was investigated. The presence of either DS salt or the climbazole led to increase in the shampoo viscosity. An optimum concentration was found where the viscosity of shampoo was maximum. In the absence of DS salt, the viscosity of hair shampoo increased with increasing the climbazole concentration to reach a maximum value at 1.0 wt%. Further addition of climbazole decreased the viscosity of shampoo. Adjusting the pH of the shampoo at 5.5 and 5.0 shifted the optimum climbazole concentration (corresponds to maximum viscosity) to 0.8 wt% and led to increase in the viscosity of shampoo. On the other hand, the addition of climbazole to the shampoo containing DS salt resulted in a decrease in shampoo viscosity. This decrease of shampoo viscosity became more pronounced with increasing the climbazole and/or DS salt concentrations. By controlling the pH of shampoo, an optimum formula of shampoo comprising both climbazole and DS salt and having maximum viscosity was obtained.

  20. Optimizing the Dopant and Carrier Concentration of Ca5Al2Sb6 for High Thermoelectric Efficiency

    PubMed Central

    Yan, Yuli; Zhang, Guangbiao; Wang, Chao; Peng, Chengxiao; Zhang, Peihong; Wang, Yuanxu; Ren, Wei

    2016-01-01

    The effects of doping on the transport properties of Ca5Al2Sb6 are investigated using first-principles electronic structure methods and Boltzmann transport theory. The calculated results show that a maximum ZT value of 1.45 is achieved with an optimum carrier concentration at 1000 K. However, experimental studies have shown that the maximum ZT value is no more than 1 at 1000 K. By comparing the calculated Seebeck coefficient with experimental values, we find that the low dopant solubility in this material is not conductive to achieve the optimum carrier concentration, leading a smaller experimental value of the maximum ZT. Interestingly, the calculated dopant formation energies suggest that optimum carrier concentrations can be achieved when the dopants and Sb atoms have similar electronic configurations. Therefore, it might be possible to achieve a maximum ZT value of 1.45 at 1000 K with suitable dopants. These results provide a valuable theoretical guidance for the synthesis of high-performance bulk thermoelectric materials through dopants optimization. PMID:27406178

  1. Feature Selection in Classification of Eye Movements Using Electrooculography for Activity Recognition

    PubMed Central

    Mala, S.; Latha, K.

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition. PMID:25574185

  2. Feature selection in classification of eye movements using electrooculography for activity recognition.

    PubMed

    Mala, S; Latha, K

    2014-01-01

    Activity recognition is needed in different requisition, for example, reconnaissance system, patient monitoring, and human-computer interfaces. Feature selection plays an important role in activity recognition, data mining, and machine learning. In selecting subset of features, an efficient evolutionary algorithm Differential Evolution (DE), a very efficient optimizer, is used for finding informative features from eye movements using electrooculography (EOG). Many researchers use EOG signals in human-computer interactions with various computational intelligence methods to analyze eye movements. The proposed system involves analysis of EOG signals using clearness based features, minimum redundancy maximum relevance features, and Differential Evolution based features. This work concentrates more on the feature selection algorithm based on DE in order to improve the classification for faultless activity recognition.

  3. Variation of radiation level and radionuclide enrichment in high background area.

    PubMed

    Shetty, P K; Narayana, Y

    2010-12-01

    Significantly high radiation level and radionuclide concentration along Quilon beach area of coastal Kerala have been reported by several investigators. Detailed gamma radiation level survey was carried out using a portable scintillometer. Detailed studies on radionuclides concentration in different environmental matrices of high background areas were undertaken in the coastal areas of Karunagapalli, Kayankulam, Chavara, Neendakara and Kollam to study the distribution and enrichment of the radionuclides in the region. The absorbed gamma dose rates in air in high background area are in the range 43-17,400nGyh⁻¹. Gamma radiation level is found to be maximum at a distance of 20m from the sea waterline in all beaches. The soil samples collected from different locations were analysed for primordial radionuclides by gamma spectrometry. The activity of primordial radionuclides was determined for the different size fractions of soil to study the enrichment pattern. The highest activity of (232)Th and (226)Ra was found to be enriched in 125-63μ size fraction. The preferential accumulation of (40)K was found in <63μ fraction. The minimum (232)Th activity was 30.2Bqkg⁻¹, found in 1000-500μ particle size fraction at Kollam and maximum activity of 3250.4Bqkg⁻¹ was observed in grains of size 125-63μ at Neendakara. The lowest (226)Ra activity observed was 33.9Bqkg⁻¹ at Neendakara in grains of size 1000-500μ and the highest activity observed was 482.6Bqkg⁻¹ in grains of size 125-63μ in Neendakara. The highest (40)K activity found was 1923Bqkg⁻¹ in grains of size <63μ for a sample collected from Neendakara. A good correlation was observed between computed dose and measured dose in air. The correlation between (232)Th and (226)Ra was also moderately high. The results of these investigations are presented and discussed in this paper. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Alkylphenols, polycyclic aromatic hydrocarbons, and organochlorines in sediment from Lake Shihwa, Korea: Instrumental and bioanalytical characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khim, J.S.; Villeneuve, D.L.; Kannan, K.

    1999-11-01

    Lake Shihwa is an artificial lake, located on the west coast of Korea, that has experienced environmental deterioration since 1994, when it was formed by construction of a sea dike. This study used instrumental analysis and in vitro bioassays to characterize organic contaminants in sediment collected from 11 stations on Lake Shihwa. Alkylphenol (AP) concentrations in Lake Shihwa sediment ranged from 20.2 to 1,820 ng/g nonylphenol and from 4.69 to 50.5 ng/g octylphenol, on a dry weight basis. Maximum concentrations of polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides, and polychlorinated biphenyls (PCBs) were 30.8, 2.26, and 12.3 ng/g (dry weight), respectively.more » Significant estrogenic activity was associated with fractions containing APs. Mass-balance analysis suggested that reported concentrations of APs account for less than 20% of the estrogenic activity observed. No significant dioxin like activity was associated with fractions containing classic aryl hydrocarbon receptor agonists, such as PCBs, but the mid-polarity fractions containing PAHs and most polar fractions yielded significant dioxin like activity. Overall, most of the in vitro bioassay responses appear to have been caused by unidentified and/or undetectable compounds associated with Lake Shihwa sediment.« less

  5. Saponins extracted from by-product of Asparagus officinalis L. suppress tumour cell migration and invasion through targeting Rho GTPase signalling pathway.

    PubMed

    Wang, Jieqiong; Liu, Yali; Zhao, Jingjing; Zhang, Wen; Pang, Xiufeng

    2013-04-01

    The inedible bottom part (~30-40%) of asparagus (Asparagus officinalis L.) spears is usually discarded as waste. However, since this by-product has been reported to be rich in many bioactive phytochemicals, it might be utilisable as a supplement in foods or natural drugs for its therapeutic effects. In this study it was identifed that saponins from old stems of asparagus (SSA) exerted potential inhibitory activity on tumour growth and metastasis. SSA suppressed cell viability of breast, colon and pancreatic cancers in a concentration-dependent manner, with half-maximum inhibitory concentrations ranging from 809.42 to 1829.96 µg mL(-1). However, SSA was more functional in blocking cell migration and invasion as compared with its cytotoxic effect, with an effective inhibitory concentration of 400 µg mL(-1). A mechanistic study showed that SSA markedly increased the activities of Cdc42 and Rac1 and decreased the activity of RhoA in cancer cells. SSA inhibits tumour cell motility through modulating the Rho GTPase signalling pathway, suggesting a promising use of SSA as a supplement in healthcare foods and natural drugs for cancer prevention and treatment. © 2012 Society of Chemical Industry.

  6. Dependence of Na+ pump current on external monovalent cations and membrane potential in rabbit cardiac Purkinje cells.

    PubMed Central

    Bielen, F V; Glitsch, H G; Verdonck, F

    1991-01-01

    1. The effect of membrane potential and various extracellular monovalent cations on the Na+ pump current (Ip) was studied on isolated, single Purkinje cells of the rabbit heart by means of whole-cell recording. 2. Ip was identified as current activated by external K+ or its congeners NH4+ and Tl+. The current was blocked by dihydroouabain (1-5 x 10(-4) M) over the whole range of membrane potentials tested. 3. In Na(+)-containing solution half-maximum Ip activation (K0.5) occurred at 0.4 mM-Tl+, 1.9 mM-K+ and 5.7 mM-NH4+ (holding potential, -20 mV). 4. The pump current (Ip)-voltage (V) relationship of the cells in Na(+)-containing media with K+ or its congeners at the tested concentrations greater than K0.5 displayed a steep positive slope at negative membrane potentials between -120 and -20 mV. Little voltage dependence of Ip was observed at more positive potentials up to +40 mV. At even more positive potentials Ip measured at 2 and 5.4 mM-K+ decreased. 5. Lowering the concentration of K+ or its congeners below the K0.5 value in Na(+)-containing solution induced a region of negative slope of the Ip-V curve at membrane potentials positive to -20 mV. 6. The shape of the Ip-V relationship remained unchanged when the K+ concentration (5.4 mM) of the Na(+)-containing medium was replaced by NH4+ or Tl+ concentrations of similar potency to activate Ip (20 mM-NH4+ or 2 mM-Tl+). 7. In Na(+)-free, choline-containing solution half-maximum Ip activation occurred at 0.13 mM-K+ (holding potential, -20 mV). 8. At negative membrane potentials the positive slope of the Ip-V curve was flatter in Na(+)-free than in Na(+)-containing media. A reduced voltage dependence of Ip persisted, regardless of whether choline ions or Li+ were used as a Na+ substitute. 9. Lowering the K+ concentration of the Na(+)-free, choline-containing solution to 0.05 mM evoked an extended region of negative slope in the Ip-V relationship at membrane potentials between -40 and +60 mV. 10. It is concluded that the apparent affinity of the Na(+)-K+ pump towards K+ in cardiac Purkinje cells depends on both the membrane potential and the extracellular Na+ concentration. 11. The region of negative slope of the Ip-V curve observed in cells which were superfused with media containing low concentrations of K+ or its congeners strongly suggests the existence of at least two voltage-sensitive steps in the cardiac Na(+)-K+ pump cycle.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1665855

  7. Distribution of enrofloxacin and its active metabolite, using an in vivo ultrafiltration sampling technique after the injection of enrofloxacin to pigs.

    PubMed

    Messenger, K M; Papich, M G; Blikslager, A T

    2012-10-01

    The objective of this study was to determine the pharmacokinetics (PK) of enrofloxacin in pigs and compare to the tissue interstitial fluid (ISF). Six healthy, young pigs were administered 7.5 mg/kg enrofloxacin subcutaneously (SC). Blood and ISF samples were collected from preplaced intravenous catheters and ultrafiltration sampling probes placed in three different tissue sites (intramuscular, subcutaneous, and intrapleural). Enrofloxacin concentrations were measured using high-pressure liquid chromatography with fluorescence detection, PK parameters were analyzed using a one-compartment model, and protein binding was determined using a microcentrifugation system. Concentrations of the active metabolite ciprofloxacin were negligible. The mean ± SD enrofloxacin plasma half-life, volume of distribution, clearance, and peak concentration were 26.6 ± 6.2 h (harmonic mean), 6.4 ± 1.2 L/kg, 0.18 ± 0.08 L/kg/h, and 1.1 ± 0.3 μg/mL, respectively. The half-life of enrofloxacin from the tissues was 23.6 h, and the maximum concentration was 1.26 μg/mL. Tissue penetration, as measured by a ratio of area-under-the-curve (AUC), was 139% (± 69%). Plasma protein binding was 31.1% and 37.13% for high and low concentrations, respectively. This study demonstrated that the concentration of biologically active enrofloxacin in tissues exceeds the concentration predicted by the unbound fraction of enrofloxacin in pig plasma. At a dose of 7.5 mg/kg SC, the high tissue concentrations and long half-life produce an AUC/MIC ratio sufficient for the pathogens that cause respiratory infections in pigs. © 2011 Blackwell Publishing Ltd.

  8. Sustained availability of trimethoprim in drinking water to achieve higher plasma sulphonamide-trimethoprim antibacterial activity in broilers.

    PubMed

    Sumano, H; Hernandez, L; Gutierrez, L; Bernad-Bernad, M J

    2005-02-01

    (1) In order to make trimethoprim (TMP) available to broilers throughout the day, a sustained release formulation (SRF) of the drug in the form of granules was added to the water tank that supplies drinking water. (2) Broilers were initially dosed with sulphachloropiridazine-TMP (SCP-TMP 5:1) and then further medicated throughout the day, achieving in the end a dose of 30 mg/kg each of SCP and TMP (group A). Group B received a preparation with the same dose of SCP and TMP (1:1) as group A, but administered as a single dose without the SRF of TMP. Group C received the customary SCP-TMP 5:1 preparation (30 and 6 mg/kg, respectively). Water tanks were completely consumed in 3 to 4 h. (3) Broilers were bled at different times and concentration of antibacterial activity in serum determined by correlating the composite antibacterial activity of SCP and TMP with actual concentrations of these drugs by means of a microbiological agar diffusion assay. (4) Time vs serum concentrations of activity were higher in group B; the increments in the maximum serum concentration for group B over groups A and C being 39 and 67%, respectively. (5) However, the sustained concentration of activity over time, measured as the area under the cu)rve, was highest in group A. Group B had higher values for area under the curve than group C. (6) An additional dose of TMP to achieve 30 mg/kg of both SCP and TMP improves the serum concentration of this combination over the customary 5:1 proportion. The best values for sustaining antibacterial activity were obtained using a 1:1 ratio as in group A. The use of a SRF as in group A may translate into better clinical results.

  9. An artificial intelligence approach to Bacillus amyloliquefaciens CCMI 1051 cultures: application to the production of anti-fungal compounds.

    PubMed

    Caldeira, A Teresa; Arteiro, José M; Roseiro, José C; Neves, José; Vicente, H

    2011-01-01

    The combined effect of incubation time (IT) and aspartic acid concentration (AA) on the predicted biomass concentration (BC), Bacillus sporulation (BS) and anti-fungal activity of compounds (AFA) produced by Bacillus amyloliquefaciens CCMI 1051, was studied using Artificial Neural Networks (ANNs). The values predicted by ANN were in good agreement with experimental results, and were better than those obtained when using Response Surface Methodology. The database used to train and validate ANNs contains experimental data of B. amyloliquefaciens cultures (AFA, BS and BC) with different incubation times (1-9 days) using aspartic acid (3-42 mM) as nitrogen source. After the training and validation stages, the 2-7-6-3 neural network results showed that maximum AFA can be achieved with 19.5 mM AA on day 9; however, maximum AFA can also be obtained with an incubation time as short as 6 days with 36.6 mM AA. Furthermore, the model results showed two distinct behaviors for AFA, depending on IT. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Parametric Investigation of the Kinetics of Growth of Carbon-Nanotube Arrays on Iron Nanoparticles in the Process of Chemical Vapor Deposition of Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Futko, S. I.; Shulitski, B. G.; Labunov, V. A.; Ermolaevaa, E. M.

    2015-03-01

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700oC is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the signifi cant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons.

  11. Pharmacokinetics of isotretinoin and its major blood metabolite following a single oral dose to man.

    PubMed

    Colburn, W A; Vane, F M; Shorter, H J

    1983-01-01

    A pharmacokinetic profile of isotretinoin and its major dermatologically active blood metabolite, 4-oxo-isotretinoin, was developed following a single 80 mg oral suspension dose of isotretinoin to 15 normal male subjects. Blood samples were assayed for isotretinoin and 4-oxo-isotretinoin using a newly developed reverse-phase HPLC method. Following rapid absorption from the suspension formulation, isotretinoin is distributed and eliminated with harmonic mean half-lives of 1.3 and 17.4 h, respectively. Maximum concentrations of isotretinoin in blood were observed at 1 to 4 h after dosing. Maximum concentrations of the major blood metabolite of isotretinoin, 4-oxo-isotretinoin, are approximately one-half those of isotretinoin and occur at 6 to 16 h after isotretinoin dosing. The ratio of areas under the curve for metabolite and parent drug following the single dose suggests that average steady-state ratios of metabolite to parent drug during a dosing interval will be approximately 2.5. Both isotretinoin and its metabolite can be adequately described using a single linear pharmacokinetic model.

  12. Pharmaceutical manufacturing facility discharges can substantially increase the pharmaceutical load to U.S. wastewaters

    USGS Publications Warehouse

    Scott, Tia-Marie; Phillips, Patrick J.; Kolpin, Dana W.; Colella, Kaitlyn M.; Furlong, Edward T.; Foreman, William T.; Gray, James L.

    2018-01-01

    Discharges from pharmaceutical manufacturing facilities (PMFs) previously have been identified as important sources of pharmaceuticals to the environment. Yet few studies are available to establish the influence of PMFs on the pharmaceutical source contribution to wastewater treatment plants (WWTPs) and waterways at the national scale. Consequently, a national network of 13 WWTPs receiving PMF discharges, six WWTPs with no PMF input, and one WWTP that transitioned through a PMF closure were selected from across the United States to assess the influence of PMF inputs on pharmaceutical loading to WWTPs. Effluent samples were analyzed for 120 pharmaceuticals and pharmaceutical degradates. Of these, 33 pharmaceuticals had concentrations substantially higher in PMF-influenced effluent (maximum 555,000 ng/L) compared to effluent from control sites (maximum 175 ng/L). Concentrations in WWTP receiving PMF input are variable, as discharges from PMFs are episodic, indicating that production activities can vary substantially over relatively short (several months) periods and have the potential to rapidly transition to other pharmaceutical products. Results show that PMFs are an important, national-scale source of pharmaceuticals to the environment.

  13. Long-term development of the radionuclide exposure of murine rodent populations in Belarus after the Chernobyl accident.

    PubMed

    Ryabokon, N I; Smolich, I I; Kudryashov, V P; Goncharova, R I

    2005-12-01

    As a determinant of the associated health risks, the behavior of radionuclides in natural ecosystems needs to be better understood. Therefore, the activity concentration of various long-lived radionuclides released due to the Chernobyl accident, and the corresponding contributions to the whole-body dose rate, was studied as a function of time in mammalian indicator species inhabiting the natural forest ecosystems of Belarus, the bank vole (Clethrionomys glareolus) and the yellow-necked mouse (Apodemus flavicollus). The activity concentrations of 137Cs, 134Cs, 90Sr, 238Pu, 239,240Pu, 241Pu and 241Am in soil and in animals were measured at five monitoring sites with different ground deposition of radionuclides at different distances from the destroyed reactor. The observed temporal pattern of the radionuclide activity concentration in the studied animal populations reflects the changes in biological availability of these isotopes for biota, mostly due to fuel particle destruction and appearance of dissolved and exchangeable forms of radionuclides. The time course of 134+137Cs activity concentrations in animal populations appeared as a sequence of increase, peak and decrease. Maximal levels of radiocesium occurred 1-2 years after deposition, followed by an exponential decrease. Concentrations of incorporated 90Sr increased up to the tenth year after deposition. The activity concentrations of transuranic elements (238Pu, 239,240Pu, 241Pu and 241Am) were much lower than those of the other radionuclides, in the studied animals. A considerable activity of 241Am in animals from areas with high levels of contamination was firstly detected 5 years after deposition, it increased up to the tenth year and is expected to increase further in the future. Maximal values of the whole-body absorbed dose rates occurred during the year of deposition, followed by a decrease in the subsequent period. Generally, this decrease was monotonic, mainly determined by the decrease of the external gamma-ray dose rate, but there were exceptions due to the delayed maximum of internal exposure. The inter-individual distributions of radionuclide concentrations and lifetime whole-body absorbed doses were asymmetric and close to log-normal, including concentrations and doses considerably higher than the population mean values.

  14. Assessment of gamma-emitting radionuclides in sediment cores from the Gulf of Aqaba, Red Sea.

    PubMed

    Ababneh, Zaid Q; Al-Omari, Husam; Rasheed, Mohamad; Al-Najjar, Tariq; Ababneh, Anas M

    2010-10-01

    The Gulf of Aqaba is the only seaport in Jordan which currently has intense activities such as industrial development, phosphate ore exportation, oil importation, shipping, commercial and sport fishing. Most of these activities, especially the phosphate ore exportation, could cause serious radiological effects to the marine environment. Thus, it is essential to investigate the level of the radioactivity concentrations to establish a baseline database, which is not available yet in the Gulf of Aqaba. Radioactivity concentrations of gamma-emitting radionuclides in core and beach sediments of the Gulf of Aqaba were investigated. Core sediments were collected from five representative locations for three different water column depths (5, 15 and 35 m). The results showed that the activity concentrations of 238U, 235U and 226Ra for both seafloor and beach sediments from the phosphate loading berth (PLB) location to be higher than those from other investigated locations and more than twice as high as the worldwide average; the 238U activity concentration was found to vary from 57 to 677 Bq kg(-1). The results also showed that there is little variation of radioactivity concentrations within the core length of 15 cm. The calculated mean values of the radium equivalent activity Ra(eq), the external hazard index, H(ex), the absorbed dose rate and the annual effective dose for the beach sediment in PLB location were 626 Bq kg(-1), 1.69, 263 nGy h(-1) and 614 µSv y(-1), respectively. These values are much higher than the recommended limits that impose potential health risks to the workers in this location. As for other studied locations, the corresponding values were far below the maximum recommended limit and lies within the worldwide range.

  15. Formation and transport of deethylatrazine and deisopropylatrazine in surface water

    USGS Publications Warehouse

    Thurman, E.M.; Meyer, M.T.; Mills, M.S.; Zimmerman, L.R.; Perry, C.A.; Goolsby, D.A.

    1994-01-01

    Field disappearance studies and a regional study of nine rivers in the Midwest Corn Belt show that deethylatrazine (DEA; 2-amino-4-chloro-6-isopropylamino-s-triazine) and deisopropylatrazine (DIA; 2-amino-4-chloro-6-ethylaminos-triazine) occur frequently in surface water that has received runoff from two parent triazine herbicides, atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine) and cyanazine (2-chloro-4-ethylamino-6-methylpropionitrileamino-s-triazine). The concentration of DEA and DIA in surface water varies with the hydrologic conditions of the basin and the timing of runoff, with maximum concentrations reaching 5 ??g/L (DEA + DIA). Early rainfall followed by a dry summer will result in an early peak concentration of metabolites in surface water. A wet summer will delay the maximum concentrations of metabolites and increase their runoff into surface water, occasionally resulting in a slight separation of the parent atrazine maximum concentrations from the metabolite maximum concentrations, giving a "second flush?? of triazine metabolites to surface water. Replicated field dissipation studies of atrazine and cyanazine indicate that DIA/DEA ratios will vary from 0.4 ?? 0.1 when atrazine is the major triazine present to 0.6 ?? 0.1 when significant amounts of cyanazine are present. A comparison of transport time of DEA and DIA from field plots to their appearance in surface water indicates that storage and dilution are occurring in the alluvial aquifers of the basin.

  16. Effect of CO2 Concentration on Growth and Biochemical Composition of Newly Isolated Indigenous Microalga Scenedesmus bajacalifornicus BBKLP-07.

    PubMed

    Patil, Lakkanagouda; Kaliwal, Basappa

    2017-05-01

    Photosynthetic mitigation of CO 2 through microalgae is gaining great importance due to its higher photosynthetic ability compared to plants, and the biomass can be commercially exploited for various applications. CO 2 fixation capability of the newly isolated freshwater microalgae Scenedesmus bajacalifornicus BBKLP-07 was investigated using a 1-l photobioreactor. The cultivation was carried at varying concentration of CO 2 ranging from 5 to 25%, and the temperature and light intensities were kept constant. A maximum CO 2 fixation rate was observed at 15% CO 2 concentration. Characteristic growth parameters such as biomass productivity, specific growth rate, and maximum biomass yield, and biochemical parameters such as carbohydrate, protein, lipid, chlorophyll, and carotenoid were determined and discussed. It was observed that the effect of CO 2 concentration on growth and biochemical composition was quite significant. The maximum biomass productivity was 0.061 ± 0.0007 g/l/day, and the rate of CO 2 fixation was 0.12 ± 0.002 g/l/day at 15% CO 2 concentration. The carbohydrate and lipid content were maximum at 25% CO 2 with 26.19 and 25.81% dry cell weight whereas protein, chlorophyll, and carotenoid contents were 32.89% dry cell weight, 25.07 μg/ml and 6.15 μg/ml respectively at 15% CO 2 concentration.

  17. Assessment of urinary inhibitor or promoter activity in uric acid nephrolithiasis

    PubMed Central

    Doizi, Steeve; Rodgers, Kathy; Poindexter, John; Sakhaee, Khashayar; Maalouf, Naim M.

    2017-01-01

    Purpose To assess the presence of a reduced inhibitor activity or an increased promoter activity in urine of idiopathic uric acid stone formers (IUASF) compared to non-stone formers (NSF) independent of urinary pH. Methods 30 IUASF, 9 obese NSF and 12 lean NSF collected 24-hour urine under metabolic diet. Three urine aliquots per subject were used to assess spontaneous nucleation (SN, de novo crystal formation), crystal growth (CG) using a 0.1 mg/mL seed of anhydrous uric acid (UA) and steady state (SS) of UA solubility using a 5 mg/mL seed of UA (assessing maximum amount of UA dissolvable in urine). All experiments were conducted for 6 hours at a constant pH of 5.0. UA concentration was measured in filtered aliquots at 0, 3 and 6 hours. Results At baseline, 24-hour urinary pH was significantly lower and UA saturation significantly higher in IUASF. No significant SN occurred and a similar SS UA concentration was reached in the three groups. IUASF and lean NSF displayed a similar decrease in UA concentration during CG, while obese NSF started with higher UA concentration and consequently displayed higher magnitude of decrease in UA concentration for CG. Conclusions This study suggests that there is no significant difference between IUASF and NSF in terms of promoter or inhibitor activity in whole urine against UA stone formation when urine pH is maintained constant. The findings suggest that UA stone formation is dictated by a high urinary saturation with respect to UA, driven primarily by a low urine pH. PMID:26723865

  18. Concentrations of gatifloxacin in plasma and urine and penetration into prostatic and seminal fluid, ejaculate, and sperm cells after single oral administrations of 400 milligrams to volunteers.

    PubMed

    Naber, C K; Steghafner, M; Kinzig-Schippers, M; Sauber, C; Sörgel, F; Stahlberg, H J; Naber, K G

    2001-01-01

    Gatifloxacin (GTX), a new fluoroquinolone with extended antibacterial activity, is an interesting candidate for the treatment of chronic bacterial prostatitis (CBP). Besides the antibacterial spectrum, the concentrations in the target tissues and fluids are crucial for the treatment of CBP. Thus, it was of interest to investigate its penetration into prostatic and seminal fluid. GTX concentrations in plasma, urine, ejaculate, prostatic and seminal fluid, and sperm cells were determined by a high-performance liquid chromatography method after oral intake of a single 400-mg dose in 10 male Caucasian volunteers in the fasting state. Simultaneous application of the renal contrast agent iohexol was used to estimate the maximal possible contamination of ejaculate and prostatic and seminal fluid by urine. GTX was well tolerated. The means (standard deviations) for the following parameters were as indicated: time to maximum concentration of drug in serum, 1.66 (0. 91) h; maximum concentration of drug in serum, 2.90 (0.39) microg/ml; area under the concentration-time curve from 0 to 24 h, 25.65 microg. h/ml; and half life, 7.2 (0.90) h. Within 12 h about 50% of the drug was excreted unchanged into the urine. The mean renal clearance was 169 ml/min. The gatifloxacin concentrations in ejaculate, seminal fluid, and prostatic fluid were in the range of the corresponding plasma concentrations which were 1.92 (0.27) microg/ml at approximately the same time point (4 h after drug intake). The concentrations in sperm cells (0.195, 0.076, and 0.011 microg/ml) could be determined in three subjects. The good penetration into prostatic and seminal fluid, the good tolerance, and the previously reported broad antibacterial spectrum suggest that GTX may be a good alternative for the treatment of chronic bacterial prostatitis. Clinical studies should be performed to confirm this assumption.

  19. Concentrations of Gatifloxacin in Plasma and Urine and Penetration into Prostatic and Seminal Fluid, Ejaculate, and Sperm Cells after Single Oral Administrations of 400 Milligrams to Volunteers

    PubMed Central

    Naber, Christoph K.; Steghafner, Michaela; Kinzig-Schippers, Martina; Sauber, Christian; Sörgel, Fritz; Stahlberg, Hans-Jürgen; Naber, Kurt G.

    2001-01-01

    Gatifloxacin (GTX), a new fluoroquinolone with extended antibacterial activity, is an interesting candidate for the treatment of chronic bacterial prostatitis (CBP). Besides the antibacterial spectrum, the concentrations in the target tissues and fluids are crucial for the treatment of CBP. Thus, it was of interest to investigate its penetration into prostatic and seminal fluid. GTX concentrations in plasma, urine, ejaculate, prostatic and seminal fluid, and sperm cells were determined by a high-performance liquid chromatography method after oral intake of a single 400-mg dose in 10 male Caucasian volunteers in the fasting state. Simultaneous application of the renal contrast agent iohexol was used to estimate the maximal possible contamination of ejaculate and prostatic and seminal fluid by urine. GTX was well tolerated. The means (standard deviations) for the following parameters were as indicated: time to maximum concentration of drug in serum, 1.66 (0.91) h; maximum concentration of drug in serum, 2.90 (0.39) μg/ml; area under the concentration-time curve from 0 to 24 h, 25.65 μg · h/ml; and half life, 7.2 (0.90) h. Within 12 h about 50% of the drug was excreted unchanged into the urine. The mean renal clearance was 169 ml/min. The gatifloxacin concentrations in ejaculate, seminal fluid, and prostatic fluid were in the range of the corresponding plasma concentrations which were 1.92 (0.27) μg/ml at approximately the same time point (4 h after drug intake). The concentrations in sperm cells (0.195, 0.076, and 0.011 μg/ml) could be determined in three subjects. The good penetration into prostatic and seminal fluid, the good tolerance, and the previously reported broad antibacterial spectrum suggest that GTX may be a good alternative for the treatment of chronic bacterial prostatitis. Clinical studies should be performed to confirm this assumption. PMID:11120980

  20. Enzymatic production of α-ketoglutaric acid from l-glutamic acid via l-glutamate oxidase.

    PubMed

    Niu, Panqing; Dong, Xiaoxiang; Wang, Yuancai; Liu, Liming

    2014-06-10

    In this study, a novel strategy for α-ketoglutaric acid (α-KG) production from l-glutamic acid using recombinant l-glutamate oxidase (LGOX) was developed. First, by analyzing the molecular structure characteristics of l-glutamic acid and α-KG, LGOX was found to be the best catalyst for oxidizing the amino group of l-glutamic acid to a ketonic group without the need for exogenous cofactor. Then the LGOX gene was expressed in Escherichia coli BL21 (DE3) in a soluble and active form, and the recombinant LGOX activity reached to a maximum value of 0.59U/mL at pH 6.5, 30°C. Finally, the maximum α-KG concentration reached 104.7g/L from 110g/L l-glutamic acid in 24h, under the following optimum conditions: 1.5U/mL LGOX, 250U/mL catalase, 3mM MnCl2, 30°C, and pH 6.5. Copyright © 2014. Published by Elsevier B.V.

Top