Sample records for maximum allowable speed

  1. 49 CFR Appendix A to Part 213 - Maximum Allowable Curving Speeds

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum Allowable Curving Speeds A Appendix A to...—Maximum Allowable Curving Speeds Table 1—Three Inches Unbalance [Elevation of outer rail (inches)] Degree of curvature 0 1/2 1 11/2 2 21/2 3 31/2 4 41/2 5 51/2 6 (12) Maximum allowable operating speed (mph...

  2. 49 CFR Appendix A to Part 213 - Maximum Allowable Curving Speeds

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum Allowable Curving Speeds A Appendix A to...—Maximum Allowable Curving Speeds Table 1—Three Inches Unbalance [Elevation of outer rail (inches)] Degree of curvature 0 1/2 1 11/2 2 21/2 3 31/2 4 41/2 5 51/2 6 (12) Maximum allowable operating speed (mph...

  3. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...

  4. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Maximum allowable operating speed. 174.86 Section... operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in § 173.247 of this subchapter, the maximum allowable operating speed may not exceed 24 km/hour (15 mph...

  5. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...

  6. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...

  7. 49 CFR 174.86 - Maximum allowable operating speed.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Handling of Placarded Rail Cars, Transport Vehicles and Freight Containers § 174.86 Maximum allowable operating speed. (a) For molten metals and molten glass shipped in packagings other than those prescribed in...

  8. 49 CFR 213.57 - Curves; elevation and speed limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined by...

  9. 49 CFR 213.329 - Curves, elevation and speed limitations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is determined...

  10. 49 CFR 213.57 - Curves; elevation and speed limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Curves; elevation and speed limitations. 213.57... speed limitations. (a) The maximum crosslevel on the outside rail of a curve may not be more than 8... applicable September 21, 1999.) (b)(1) The maximum allowable operating speed for each curve is determined by...

  11. 49 CFR 213.329 - Curves, elevation and speed limitations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Curves, elevation and speed limitations. 213.329... Higher § 213.329 Curves, elevation and speed limitations. (a) The maximum crosslevel on the outside rail... lower than the inside rail. (b) (1) The maximum allowable operating speed for each curve is determined...

  12. 46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system... the vessel at every service speed without being damaged at maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12,411 kPa (1,800 psi), dedicated to...

  13. 46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system... the vessel at every service speed without being damaged at maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12,411 kPa (1,800 psi), dedicated to...

  14. 46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system... the vessel at every service speed without being damaged at maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12,411 kPa (1,800 psi), dedicated to...

  15. 40 CFR 1065.510 - Engine mapping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature... torque of zero on the engine's primary output shaft, and allow the engine to govern the speed. Measure... values. (ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero...

  16. 40 CFR 1065.510 - Engine mapping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature... torque of zero on the engine's primary output shaft, and allow the engine to govern the speed. Measure... values. (ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero...

  17. 40 CFR 1065.510 - Engine mapping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... expected maximum power. Continue the warm-up until the engine coolant, block, or head absolute temperature... torque of zero on the engine's primary output shaft, and allow the engine to govern the speed. Measure... values. (ii) For engines without a low-speed governor, operate the engine at warm idle speed and zero...

  18. 49 CFR 213.9 - Classes of track: operating speed limits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Classes of track: operating speed limits. 213.9... speed limits. (a) Except as provided in paragraph (b) of this section and §§ 213.57(b), 213.59(a), 213.113(a), and 213.137(b) and (c), the following maximum allowable operating speeds apply— [In miles per...

  19. 49 CFR 213.9 - Classes of track: operating speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Classes of track: operating speed limits. 213.9... speed limits. (a) Except as provided in paragraph (b) of this section and §§ 213.57(b), 213.59(a), 213.113(a), and 213.137(b) and (c), the following maximum allowable operating speeds apply— [In miles per...

  20. 14 CFR 23.145 - Longitudinal control.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Maneuverability § 23.145 Longitudinal control. (a) With the airplane as nearly as possible in trim at 1.3 VS1, it must be possible, at speeds below the trim speed, to pitch the nose downward so that the rate of increase in airspeed allows prompt acceleration to the trim speed with— (1) Maximum continuous power on...

  1. Understanding the Benefits and Limitations of Increasing Maximum Rotor Tip Speed for Utility-Scale Wind Turbines

    NASA Astrophysics Data System (ADS)

    Ning, A.; Dykes, K.

    2014-06-01

    For utility-scale wind turbines, the maximum rotor rotation speed is generally constrained by noise considerations. Innovations in acoustics and/or siting in remote locations may enable future wind turbine designs to operate with higher tip speeds. Wind turbines designed to take advantage of higher tip speeds are expected to be able to capture more energy and utilize lighter drivetrains because of their decreased maximum torque loads. However, the magnitude of the potential cost savings is unclear, and the potential trade-offs with rotor and tower sizing are not well understood. A multidisciplinary, system-level framework was developed to facilitate wind turbine and wind plant analysis and optimization. The rotors, nacelles, and towers of wind turbines are optimized for minimum cost of energy subject to a large number of structural, manufacturing, and transportation constraints. These optimization studies suggest that allowing for higher maximum tip speeds could result in a decrease in the cost of energy of up to 5% for land-based sites and 2% for offshore sites when using current technology. Almost all of the cost savings are attributed to the decrease in gearbox mass as a consequence of the reduced maximum rotor torque. Although there is some increased energy capture, it is very minimal (less than 0.5%). Extreme increases in tip speed are unnecessary; benefits for maximum tip speeds greater than 100-110 m/s are small to nonexistent.

  2. Investigation of a high speed data handling system for use with multispectral aircraft scanners

    NASA Technical Reports Server (NTRS)

    Kelly, W. L.; Meredith, B. D.

    1978-01-01

    A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques.

  3. A Lyapunov based approach to energy maximization in renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Iyasere, Erhun

    This dissertation describes the design and implementation of Lyapunov-based control strategies for the maximization of the power captured by renewable energy harnessing technologies such as (i) a variable speed, variable pitch wind turbine, (ii) a variable speed wind turbine coupled to a doubly fed induction generator, and (iii) a solar power generating system charging a constant voltage battery. First, a torque control strategy is presented to maximize wind energy captured in variable speed, variable pitch wind turbines at low to medium wind speeds. The proposed strategy applies control torque to the wind turbine pitch and rotor subsystems to simultaneously control the blade pitch and tip speed ratio, via the rotor angular speed, to an optimum point at which the capture efficiency is maximum. The control method allows for aerodynamic rotor power maximization without exact knowledge of the wind turbine model. A series of numerical results show that the wind turbine can be controlled to achieve maximum energy capture. Next, a control strategy is proposed to maximize the wind energy captured in a variable speed wind turbine, with an internal induction generator, at low to medium wind speeds. The proposed strategy controls the tip speed ratio, via the rotor angular speed, to an optimum point at which the efficiency constant (or power coefficient) is maximal for a particular blade pitch angle and wind speed by using the generator rotor voltage as a control input. This control method allows for aerodynamic rotor power maximization without exact wind turbine model knowledge. Representative numerical results demonstrate that the wind turbine can be controlled to achieve near maximum energy capture. Finally, a power system consisting of a photovoltaic (PV) array panel, dc-to-dc switching converter, charging a battery is considered wherein the environmental conditions are time-varying. A backstepping PWM controller is developed to maximize the power of the solar generating system. The controller tracks a desired array voltage, designed online using an incremental conductance extremum-seeking algorithm, by varying the duty cycle of the switching converter. The stability of the control algorithm is demonstrated by means of Lyapunov analysis. Representative numerical results demonstrate that the grid power system can be controlled to track the maximum power point of the photovoltaic array panel in varying atmospheric conditions. Additionally, the performance of the proposed strategy is compared to the typical maximum power point tracking (MPPT) method of perturb and observe (P&O), where the converter dynamics are ignored, and is shown to yield better results.

  4. Maximum safe speed estimation using planar quintic Bezier curve with C2 continuity

    NASA Astrophysics Data System (ADS)

    Ibrahim, Mohamad Fakharuddin; Misro, Md Yushalify; Ramli, Ahmad; Ali, Jamaludin Md

    2017-08-01

    This paper describes an alternative way in estimating design speed or the maximum speed allowed for a vehicle to drive safely on a road using curvature information from Bezier curve fitting on a map. We had tested on some route in Tun Sardon Road, Balik Pulau, Penang, Malaysia. We had proposed to use piecewise planar quintic Bezier curve while satisfying the curvature continuity between joined curves in the process of mapping the road. By finding the derivatives of quintic Bezier curve, the value of curvature was calculated and design speed was derived. In this paper, a higher order of Bezier Curve had been used. A higher degree of curve will give more freedom for users to control the shape of the curve compared to curve in lower degree.

  5. WIND SPEED Monitoring in Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Bulygina, O.; Korshunova, N. N.; Razuvaev, V. N.; Groisman, P. Y.

    2016-12-01

    The wind regime of Russia varies a great deal due to the large size of the country's territory and variety of climate and terrain conditions. Changes in the regime of surface wind are of great practical importance. They can affect heat and water balance. Strong wind is one of the most hazardous meteorological event for various sectors of economy and for infrastructure. The main objective of this research is to monitoring wind speed change in Northern Eurasia At meteorological stations wind speed and wind direction are measured at the height of 10-12 meters over the land surface with the help of wind meters or wind wanes. Calculations were made on the basis of data for the period of 1980-2015. It allowed the massive scale disruption of homogeneity to be eliminated and sufficient period needed to obtain sustainable statistic characteristics to be retained. Data on average and maximum wind speed measured at 1457 stations of Russia were used. The analysis of changes in wind characteristics was made on the basis of point data and series of average characteristics obtained for 18 quasi-homogeneous climatic regions. Statistical characteristics (average and maximum values of wind speed, prevailing wind direction, values of the boundary of the 90%, 95% and 99%-confidence interval in the distribution of maximum wind speed) were obtained for all seasons and for the year as a whole. Values of boundaries of the 95% and 99%-confidence interval in the distribution of maximum wind speed were considered as indicators of extremeness of the wind regime. The trend of changes in average and maximum wind speed was assessed with a linear trend coefficient. A special attention was paid to wind changes in the Arctic where dramatic changes in surface air temperature and sea ice extent and density have been observed during the past decade. The analysis of the results allowed seasonal and regional features of changes in the wind regime on the territory of the northern part of Eurasia to be determined. The outcomes could help to provide specific recommendations to users of hydrometeorological information for making reasonable decisions to minimize losses caused by adverse wind-related weather conditions. The work was supported by the Ministry of Education and Science of the Russian Federation (grant 14.B25.31.0026).

  6. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... swept volume from the design specifications for the cylinders using enough significant figures to allow...

  7. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... swept volume from the design specifications for the cylinders using enough significant figures to allow...

  8. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE... procedures of 40 CFR part 1065, based on the manufacturer's design and production specifications for the... swept volume from the design specifications for the cylinders using enough significant figures to allow...

  9. Modeling the effect of varying swim speeds on fish passage through velocity barriers

    USGS Publications Warehouse

    Castro-Santos, T.

    2006-01-01

    The distance fish can swim through zones of high-velocity flow is an important factor limiting the distribution and conservation of riverine and diadromous fishes. Often, these barriers are characterized by nonuniform flow conditions, and it is likely that fish will swim at varying speeds to traverse them. Existing models used to predict passage success, however, typically include the unrealistic assumption that fish swim at a constant speed regardless of the speed of flow. This paper demonstrates how the maximum distance of ascent through velocity barriers can be estimated from the swim speed-fatigue time relationship, allowing for variation in both swim speed and water velocity.

  10. 46 CFR 130.140 - Steering on OSVs of 100 or more gross tons.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maximum astern speed. (2) A hydraulic system with a maximum allowable working pressure of not more than 12... of this chapter; or (2) Requirements for a hydraulic-helm steering-system in paragraph (b) of this section. (b) Each hydraulic-helm steering-system must have the following: (1) A main steering gear of...

  11. The most important physiological constants among the Volga region long-livers

    NASA Astrophysics Data System (ADS)

    Malinova, L. I.; Shuvalov, S. S.; Denisova, T. P.

    2012-03-01

    In our research we brought out the age difference in the group of long-livers and the continuous character of the biochemical basal metabolism indexes changing. The results allowed us to carry out the polynominal high-powered approximation to study the dynamics of laboratory indexes. We revealed the progressive reduction of the cholesterol, triglycerides, glucose and creatinine levels starting from 90 years of age, and this reduction showed the non-linear character with interchange of local minimums and maximums. During the speed characteristics analysis we revealed the cooccurrence of the speed maximums of all the examined biochemical indexes, except the speed of changing the concentration of cholesterol, which maximum took the lead over the other indexes by four years. The phase-plane portrait analysis of the regulatory systems on the plane "time - speed" showed the unfulfilled attempt of system stabilization by all the searched parameters nearby the special spot - "stable focus". The standard deviation values analysis of the researched parameters showed their progressive reduction in the long-livers. That fact can be considered as the regulatory systems physiological "backlash" reduction among the centenarians.

  12. Design study of steel V-Belt CVT for electric vehicles

    NASA Technical Reports Server (NTRS)

    Swain, J. C.; Klausing, T. A.; Wilcox, J. P.

    1980-01-01

    A continuously variable transmission (CVT) design layout was completed. The intended application was for coupling the flywheel to the driveline of a flywheel battery hybrid electric vehicle. The requirements were that the CVT accommodate flywheel speeds from 14,000 to 28,000 rpm and driveline speeds of 850 to 5000 rpm without slipping. Below 850 rpm a slipping clutch was used between the CVT and the driveline. The CVT was required to accommodate 330 ft-lb maximum torque and 100 hp maximum transient. The weighted average power was 22 hp, the maximum allowable full range shift time was 2 seconds and the required lift was 2600 hours. The resulting design utilized two steel V-belts in series to accommodate the required wide speed ratio. The size of the CVT, including the slipping clutch, was 20.6 inches long, 9.8 inches high and 13.8 inches wide. The estimated weight was 155 lb. An overall potential efficiency of 95 percent was projected for the average power condition.

  13. Rating of Dynamic Coefficient for Simple Beam Bridge Design on High-Speed Railways

    NASA Astrophysics Data System (ADS)

    Diachenko, Leonid; Benin, Andrey; Smirnov, Vladimir; Diachenko, Anastasia

    2018-06-01

    The aim of the work is to improve the methodology for the dynamic computation of simple beam spans during the impact of high-speed trains. Mathematical simulation utilizing numerical and analytical methods of structural mechanics is used in the research. The article analyses parameters of the effect of high-speed trains on simple beam spanning bridge structures and suggests a technique of determining of the dynamic index to the live load. Reliability of the proposed methodology is confirmed by results of numerical simulation of high-speed train passage over spans with different speeds. The proposed algorithm of dynamic computation is based on a connection between maximum acceleration of the span in the resonance mode of vibrations and the main factors of stress-strain state. The methodology allows determining maximum and also minimum values of the main efforts in the construction that makes possible to perform endurance tests. It is noted that dynamic additions for the components of the stress-strain state (bending moments, transverse force and vertical deflections) are different. This condition determines the necessity for differentiated approach to evaluation of dynamic coefficients performing design verification of I and II groups of limiting state. The practical importance: the methodology of determining the dynamic coefficients allows making dynamic calculation and determining the main efforts in split beam spans without numerical simulation and direct dynamic analysis that significantly reduces the labour costs for design.

  14. Tool life and cutting speed for the maximum productivity at the drilling of the stainless steel X22CrMoV12-1

    NASA Astrophysics Data System (ADS)

    Vlase, A.; Blăjină, O.; Iacob, M.; Darie, V.

    2015-11-01

    Two addressed issues in the research regarding the cutting machinability, establishing of the optimum cutting processing conditions and the optimum cutting regime, do not yet have sufficient data for solving. For this reason, in the paper it is proposed the optimization of the tool life and the cutting speed at the drilling of a certain stainless steel in terms of the maximum productivity. For this purpose, a nonlinear programming mathematical model to maximize the productivity at the drilling of the steel is developed in the paper. The optimum cutting tool life and the associated cutting tool speed are obtained by solving the numerical mathematical model. Using this proposed model allows increasing the accuracy in the prediction of the productivity for the drilling of a certain stainless steel and getting the optimum tool life and the optimum cutting speed for the maximum productivity. The results presented in this paper can be used in the production activity, in order to increase the productivity of the stainless steels machining. Also new research directions for the specialists in this interested field may come off from this paper.

  15. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology.

    PubMed

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G; Kim, Ho-Young

    2016-12-07

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  16. Water striders adjust leg movement speed to optimize takeoff velocity for their morphology

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jae Hak; Lee, Sang-Im; Jablonski, Piotr G.; Kim, Ho-Young

    2016-12-01

    Water striders are water-walking insects that can jump upwards from the water surface. Quick jumps allow striders to avoid sudden dangers such as predators' attacks, and therefore their jumping is expected to be shaped by natural selection for optimal performance. Related species with different morphological constraints could require different jumping mechanics to successfully avoid predation. Here we show that jumping striders tune their leg rotation speed to reach the maximum jumping speed that water surface allows. We find that the leg stroke speeds of water strider species with different leg morphologies correspond to mathematically calculated morphology-specific optima that maximize vertical takeoff velocity by fully exploiting the capillary force of water. These results improve the understanding of correlated evolution between morphology and leg movements in small jumping insects, and provide a theoretical basis to develop biomimetic technology in semi-aquatic environments.

  17. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  18. Analysis of wind-resistant and stability for cable tower in cable-stayed bridge with four towers

    NASA Astrophysics Data System (ADS)

    Meng, Yangjun; Li, Can

    2017-06-01

    Wind speed time history simulation methods have been introduced first, especially the harmonic synthesis method introduced in detail. Second, taking Chishi bridge for example, choosing the particular sections, and combined with the design wind speed, three-component coefficient simulate analysis between -4°and 4°has been carry out with the Fluent software. The results show that drag coefficient reaches maximum when the attack Angle is 1°. According to measured wind speed samples,time history curves of wind speed at bridge deck and tower roof have been obtained,and wind-resistant time history analysis for No.5 tower has been carry out. Their results show that the dynamic coefficients are different with different calculation standard, especially transverse bending moment, pulsating crosswind load does not show a dynamic amplification effect.Under pulsating wind loads at bridge deck or tower roof, the maximum displacement at the top of the tower and the maximum stress at the bottom of the tower are within the allowable range. The transverse stiffness of tower is greater than that of the longitudinal stiffness, therefore wind-resistant analysis should give priority to the longitudinal direction. Dynamic coefficients are different with different standard, the maximum dynamic coefficient should be used for the pseudo-static analysis.Finally, the static stability of tower is analyzed with different load combinations, and the galloping stabilities of cable tower is proved.

  19. 40 CFR 94.107 - Determination of maximum test speed.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum test speed is used in §§ 94.105, 94.106, and § 94.109 (including the...

  20. 40 CFR 94.107 - Determination of maximum test speed.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Determination of maximum test speed... Determination of maximum test speed. (a) Overview. This section specifies how to determine maximum test speed from a lug curve. This maximum test speed is used in §§ 94.105, 94.106, and § 94.109 (including the...

  1. Architecture and robustness tradeoffs in speed-scaled queues with application to energy management

    NASA Astrophysics Data System (ADS)

    Dinh, Tuan V.; Andrew, Lachlan L. H.; Nazarathy, Yoni

    2014-08-01

    We consider single-pass, lossless, queueing systems at steady-state subject to Poisson job arrivals at an unknown rate. Service rates are allowed to depend on the number of jobs in the system, up to a fixed maximum, and power consumption is an increasing function of speed. The goal is to control the state dependent service rates such that both energy consumption and delay are kept low. We consider a linear combination of the mean job delay and energy consumption as the performance measure. We examine both the 'architecture' of the system, which we define as a specification of the number of speeds that the system can choose from, and the 'design' of the system, which we define as the actual speeds available. Previous work has illustrated that when the arrival rate is precisely known, there is little benefit in introducing complex (multi-speed) architectures, yet in view of parameter uncertainty, allowing a variable number of speeds improves robustness. We quantify the tradeoffs of architecture specification with respect to robustness, analysing both global robustness and a newly defined measure which we call local robustness.

  2. High latitude field aligned light ion flows in the topside ionosphere deduced from ion composition and plasma temperatures

    NASA Technical Reports Server (NTRS)

    Grebowsky, J. M.; Hoegy, W. R.; Chen, T. C.

    1993-01-01

    Using a comprehensive ionospheric data set comprised of all available ion composition and plasma temperature measurements from satellites, the vertical distributions of ion composition and plasma temperatures are defined from middle latitudes up into the polar cap for summer conditions for altitudes below about 1200 km. These data are sufficient to allow a numerical estimation of the latitudinal variation of the light ion outflows from within the plasmasphere to the polar wind regions. The altitude at which significant light ion outflow begins is found to be lower during solar minimum conditions than during solar maximum. The H(+) outward speeds are of the order of 1 km/s near 1100 km during solar maximum but attain several km/s speeds for solar minimum. He(+) shows a similar altitude development of flow but attains polar cap speeds much less than 1 km/s at altitudes below 1100 km, particularly under solar maximum conditions. Outward flows are also found in the topside F-region for noontime magnetic flux tubes within the plasmasphere.

  3. 14 CFR 25.1505 - Maximum operating limit speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...

  4. 14 CFR 25.1505 - Maximum operating limit speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Maximum operating limit speed. 25.1505... Operating Limitations § 25.1505 Maximum operating limit speed. The maximum operating limit speed (V MO/M MO airspeed or Mach Number, whichever is critical at a particular altitude) is a speed that may not be...

  5. High speed superconducting flywheel system for energy storage

    NASA Astrophysics Data System (ADS)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  6. Building an open-source robotic stereotaxic instrument.

    PubMed

    Coffey, Kevin R; Barker, David J; Ma, Sisi; West, Mark O

    2013-10-29

    This protocol includes the designs and software necessary to upgrade an existing stereotaxic instrument to a robotic (CNC) stereotaxic instrument for around $1,000 (excluding a drill), using industry standard stepper motors and CNC controlling software. Each axis has variable speed control and may be operated simultaneously or independently. The robot's flexibility and open coding system (g-code) make it capable of performing custom tasks that are not supported by commercial systems. Its applications include, but are not limited to, drilling holes, sharp edge craniotomies, skull thinning, and lowering electrodes or cannula. In order to expedite the writing of g-coding for simple surgeries, we have developed custom scripts that allow individuals to design a surgery with no knowledge of programming. However, for users to get the most out of the motorized stereotax, it would be beneficial to be knowledgeable in mathematical programming and G-Coding (simple programming for CNC machining). The recommended drill speed is greater than 40,000 rpm. The stepper motor resolution is 1.8°/Step, geared to 0.346°/Step. A standard stereotax has a resolution of 2.88 μm/step. The maximum recommended cutting speed is 500 μm/sec. The maximum recommended jogging speed is 3,500 μm/sec. The maximum recommended drill bit size is HP 2.

  7. Velocity and pressure characteristics of a model SSME high pressure fuel turbopump

    NASA Technical Reports Server (NTRS)

    Tse, D. G-N.; Sabnis, J. S.; Mcdonald, H.

    1991-01-01

    Under the present effort an experiment rig has been constructed, an instrumentation package developed and a series of mean and rms velocity and pressure measurements made in a turbopump which modelled the first stage of the Space Shuttle Main Engine (SSME) High Pressure Fuel Turbopump. The rig was designed so as to allow initial experiments with a single configuration consisting of a bell-mouth inlet, a flight impeller, a vaneless diffuser and a volute. Allowance was made for components such as inlet guide vanes, exit guide vanes, downstream pumps, etc. to be added in future experiments. This flexibility will provide a clear baseline set of experiments and allow evaluation in later experiments of the effect of adding specific components upon the pump performance properties. The rotational speed of the impeller was varied between 4260 and 7680 rpm which covered the range of scaled SSME rotation speeds when due allowance is made for the differing stagnation temperature, model to full scale. The results at the inlet obtained with rotational speeds of 4260, 6084 and 7680 rpm showed that the axial velocity at the bell-mouth inlet remained roughly constant at 2.2 of the bulk velocity at the exit of the turbopump near the center of the inlet, but it decreased rapidly with increasing radius at all three speeds. Reverse flow occurred at a radius greater than 0.9 R for all three speeds and the maximum negative velocity reduced from 1.3 of the bulk velocity at the exit of the turbopump at 4260 rpm to 0.35 at 7680 rpm, suggesting that operating at a speed closer to the design condition of 8700 rpm improved the inlet characteristics. The reverse flow caused positive prerotation at the impeller inlet which was negligibly small near the center but reached 0.7 of the impeller speed at the outer annulus. The results in the diffuser and the volute obtained at 7680 rpm show that the hub and shroud walls of the diffuser were characterized by regions of transient reverse flow with negative revolution-averaged velocity of 8 percent of the maximum forward revolution-averaged velocity at the center of the diffuser passage near the shroud wall.

  8. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... flexibility between exhaust conduits and the turbine. (b) There must be provisions for lubricating the turbine and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger control system malfunctions, the turbine speed may not exceed its maximum allowable value. Except for the...

  9. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... flexibility between exhaust conduits and the turbine. (b) There must be provisions for lubricating the turbine and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger control system malfunctions, the turbine speed may not exceed its maximum allowable value. Except for the...

  10. 14 CFR 25.1127 - Exhaust driven turbo-superchargers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... flexibility between exhaust conduits and the turbine. (b) There must be provisions for lubricating the turbine and for cooling turbine parts where temperatures are critical. (c) If the normal turbo-supercharger control system malfunctions, the turbine speed may not exceed its maximum allowable value. Except for the...

  11. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  12. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  13. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  14. 40 CFR Appendix I to Part 94 - Emission-Related Engine Parameters and Specifications

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Temperature control system calibration. 4. Maximum allowable inlet air restriction. III. Fuel System. 1. General. a. Engine idle speed. 2. Fuel injection—compression ignition engines. a. Control parameters and calibrations. b. Transient enrichment system calibration. c. Air-fuel flow calibration. d. Altitude...

  15. The turbulence structure of katabatic flows below and above wind-speed maximum

    NASA Astrophysics Data System (ADS)

    Grachev, Andrey; Leo, Laura; Di Sabatino, Silvana; Fernando, Harindra; Pardyjak, Eric; Fairall, Christopher

    2015-04-01

    Measurements of atmospheric small-scale turbulence made over the complex-terrain at the US Army Dugway Proving Grounds in Utah during the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) Program are used to describe the turbulence structure of katabatic flows. Turbulent and mean meteorological data were continuously measured at multiple levels (up to seven) on four towers deployed along East lower slope (2-4 degrees) of Granite Mountain. The multi-level, multi-tower observations obtained during a 30-day long MATERHORN-Fall field campaign in September-October 2102 allow studying temporal and spatial structure of nocturnal slope flows in detail. In this study, we focus on the various statistics (fluxes, variances, spectra, cospectra, etc.) of the small-scale turbulence of katabatic winds. Observed vertical profiles of velocity, turbulent fluxes, and other quantities show steep gradients near the surface but in the layer above the slope jet these variables vary with height more slowly than near the surface. It is found that vertical momentum flux and horizontal heat (buoyancy) flux in a slope-following coordinate system change their sign below and above the wind maximum of a katabatic flow. The vertical momentum flux is directed downward (upward) whereas the horizontal heat flux is downslope (upslope) below (above) the wind maximum. Our study, therefore, suggests that a position of the jet speed maximum can be derived from linear interpolation between positive and negative values of the momentum flux (or the horizontal heat flux) and determination of a height where a flux becomes zero. It is shown that the standard deviations of all wind speed components (and therefore the turbulent kinetic energy) and the dissipation rate of turbulent kinetic energy have a local minimum, whereas the standard deviation of air temperature has an absolute maximum at the height of wind speed maximum. We report several cases when the destructive effect of vertical heat (buoyancy) flux is completely cancelled by the generation of turbulence due to the horizontal heat (buoyancy) flux. Turbulence in the layer above the wind-speed maximum is decoupled from the surface and it is consistent with the classical local z-less predictions for stably stratified boundary layer.

  16. An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds

    NASA Astrophysics Data System (ADS)

    Sun, Fengxin; Wang, Jufeng; Cheng, Rongjun; Ge, Hongxia

    2018-02-01

    The optimal driving speeds of the different vehicles may be different for the same headway. In the optimal velocity function of the optimal velocity (OV) model, the maximum speed vmax is an important parameter determining the optimal driving speed. A vehicle with higher maximum speed is more willing to drive faster than that with lower maximum speed in similar situation. By incorporating the anticipation driving behavior of relative velocity and mixed maximum speeds of different percentages into optimal velocity function, an extended heterogeneous car-following model is presented in this paper. The analytical linear stable condition for this extended heterogeneous traffic model is obtained by using linear stability theory. Numerical simulations are carried out to explore the complex phenomenon resulted from the cooperation between anticipation driving behavior and heterogeneous maximum speeds in the optimal velocity function. The analytical and numerical results all demonstrate that strengthening driver's anticipation effect can improve the stability of heterogeneous traffic flow, and increasing the lowest value in the mixed maximum speeds will result in more instability, but increasing the value or proportion of the part already having higher maximum speed will cause different stabilities at high or low traffic densities.

  17. Comparison of three-dimensional parameters of Halo CMEs using three cone models

    NASA Astrophysics Data System (ADS)

    Na, H.; Moon, Y.; Jang, S.; Lee, K.

    2012-12-01

    Halo coronal mass ejections (HCMEs) are a major cause of geomagnetic storms and their three dimensional structures are important for space weather. In this study, we compare three cone models: an elliptical cone model, an ice-cream cone model, and an asymmetric cone model. These models allow us to determine the three dimensional parameters of HCMEs such as radial speed, angular width, and the angle (γ) between sky plane and cone axis. We compare these parameters obtained from three models using 62 well-observed HCMEs observed by SOHO/LASCO from 2001 to 2002. Then we obtain the root mean square error (RMS error) between maximum measured projection speeds and their calculated projection speeds from the cone models. As a result, we find that the radial speeds obtained from the models are well correlated with one another (R > 0.84). The correlation coefficients between angular widths are ranges from 0.04 to 0.53 and those between γ values are from -0.15 to 0.47, which are much smaller than expected. The reason may be due to different assumptions and methods. The RMS errors between the maximum measured projection speeds and the maximum estimated projection speeds of the elliptical cone model, the ice-cream cone model, and the asymmetric cone model are 213 km/s, 254 km/s, and 267 km/s, respectively. And we obtain the correlation coefficients between the location from the models and the flare location (R > 0.75). Finally, we discuss strengths and weaknesses of these models in terms of space weather application.

  18. 30 CFR 56.19061 - Maximum hoisting speeds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum hoisting speeds. 56.19061 Section 56... Hoisting Procedures § 56.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons should not be hoisted at a speed...

  19. 30 CFR 56.19061 - Maximum hoisting speeds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum hoisting speeds. 56.19061 Section 56... Hoisting Procedures § 56.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons should not be hoisted at a speed...

  20. Increasing Reliability of a Small 2-Stroke Internal Combustion Engine for Dynamically Changing Altitudes

    DTIC Science & Technology

    2012-03-01

    63 Figure 20: New 3 inch stainless pipe used as an intake manifold...speed range of 1,000 RPM to 4,000 RPM. Six electric heaters with a total capacity of 900 W were used to heat the inlet air allowing a maximum...of the engine volume and had a gummy diaphragm attached to reduce pressure and flow pulsations to allow for more accurate air flow measurements

  1. 78 FR 76191 - Operational Tests and Inspections for Compliance With Maximum Authorized Train Speeds and Other...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Tests and Inspections for Compliance With Maximum Authorized Train Speeds and Other Speed Restrictions... safety advisory; Operational tests and inspections for compliance with maximum authorized train speeds and other speed restrictions. SUMMARY: FRA is issuing Safety Advisory 2013-08 to stress to railroads...

  2. 30 CFR 57.19061 - Maximum hoisting speeds.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum hoisting speeds. 57.19061 Section 57... Hoisting Hoisting Procedures § 57.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons shall not be hoisted at a...

  3. 30 CFR 57.19061 - Maximum hoisting speeds.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum hoisting speeds. 57.19061 Section 57... Hoisting Hoisting Procedures § 57.19061 Maximum hoisting speeds. The safe speed for hoisting persons shall be determined for each shaft, and this speed shall not be exceeded. Persons shall not be hoisted at a...

  4. Effects of size, sex, and voluntary running speeds on costs of locomotion in lines of laboratory mice selectively bred for high wheel-running activity.

    PubMed

    Rezende, Enrico L; Kelly, Scott A; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2006-01-01

    Selective breeding for over 35 generations has led to four replicate (S) lines of laboratory house mice (Mus domesticus) that run voluntarily on wheels about 170% more than four random-bred control (C) lines. We tested whether S lines have evolved higher running performance by increasing running economy (i.e., decreasing energy spent per unit of distance) as a correlated response to selection, using a recently developed method that allows for nearly continuous measurements of oxygen consumption (VO2) and running speed in freely behaving animals. We estimated slope (incremental cost of transport [COT]) and intercept for regressions of power (the dependent variable, VO2/min) on speed for 49 males and 47 females, as well as their maximum VO2 and speeds during wheel running, under conditions mimicking those that these lines face during the selection protocol. For comparison, we also measured COT and maximum aerobic capacity (VO2max) during forced exercise on a motorized treadmill. As in previous studies, the increased wheel running of S lines was mainly attributable to increased average speed, with males also showing a tendency for increased time spent running. On a whole-animal basis, combined analysis of males and females indicated that COT during voluntary wheel running was significantly lower in the S lines (one-tailed P=0.015). However, mice from S lines are significantly smaller and attain higher maximum speeds on the wheels; with either body mass or maximum speed (or both) entered as a covariate, the statistical significance of the difference in COT is lost (one-tailed P> or =0.2). Thus, both body size and behavior are key components of the reduction in COT. Several statistically significant sex differences were observed, including lower COT and higher resting metabolic rate in females. In addition, maximum voluntary running speeds were negatively correlated with COT in females but not in males. Moreover, males (but not females) from the S lines exhibited significantly higher treadmill VO2max as compared to those from C lines. The sex-specific responses to selection may in part be consequences of sex differences in body mass and running style. Our results highlight how differences in size and running speed can account for lower COT in S lines and suggest that lower COT may have coadapted in response to selection for higher running distances in these lines.

  5. Development Of A Dynamic Radiographic Capability Using High-Speed Video

    NASA Astrophysics Data System (ADS)

    Bryant, Lawrence E.

    1985-02-01

    High-speed video equipment can be used to optically image up to 2,000 full frames per second or 12,000 partial frames per second. X-ray image intensifiers have historically been used to image radiographic images at 30 frames per second. By combining these two types of equipment, it is possible to perform dynamic x-ray imaging of up to 2,000 full frames per second. The technique has been demonstrated using conventional, industrial x-ray sources such as 150 Kv and 300 Kv constant potential x-ray generators, 2.5 MeV Van de Graaffs, and linear accelerators. A crude form of this high-speed radiographic imaging has been shown to be possible with a cobalt 60 source. Use of a maximum aperture lens makes best use of the available light output from the image intensifier. The x-ray image intensifier input and output fluors decay rapidly enough to allow the high frame rate imaging. Data are presented on the maximum possible video frame rates versus x-ray penetration of various thicknesses of aluminum and steel. Photographs illustrate typical radiographic setups using the high speed imaging method. Video recordings show several demonstrations of this technique with the played-back x-ray images slowed down up to 100 times as compared to the actual event speed. Typical applications include boiling type action of liquids in metal containers, compressor operation with visualization of crankshaft, connecting rod and piston movement and thermal battery operation. An interesting aspect of this technique combines both the optical and x-ray capabilities to observe an object or event with both external and internal details with one camera in a visual mode and the other camera in an x-ray mode. This allows both kinds of video images to appear side by side in a synchronized presentation.

  6. Determination of the needed power of an electric motor on the basis of acceleration time of the electric car

    NASA Astrophysics Data System (ADS)

    Sapundzhiev, M.; Evtimov, I.; Ivanov, R.

    2017-10-01

    The paper presents an upgraded methodology for determination of the electric motor power considering the time for acceleration. The influence of the speed factor of electric motor on the value of needed power at same acceleration time is studied. Some calculations on the basis of real vehicle were made. The numeric and graphical results are given. They show a decrease of needed power with the increase of the speed factor of motor, because the high speed factor allows the use of a larger range of the characteristic with the maximum power of the motor. An experimental verification of methodology was done.

  7. The effect of waist twisting on walking speed of an amphibious salamander like robot

    NASA Astrophysics Data System (ADS)

    Yin, Xin-Yan; Jia, Li-Chao; Wang, Chen; Xie, Guang-Ming

    2016-06-01

    Amphibious salamanders often swing their waist to coordinate quadruped walking in order to improve their crawling speed. A robot with a swing waist joint, like an amphibious salamander, is used to mimic this locomotion. A control method is designed to allow the robot to maintain the rotational speed of its legs continuous and avoid impact between its legs and the ground. An analytical expression is established between the amplitude of the waist joint and the step length. Further, an optimization amplitude is obtained corresponding to the maximum stride. The simulation results based on automatic dynamic analysis of mechanical systems (ADAMS) and physical experiments verify the rationality and validity of this expression.

  8. Motion-blur-compensated structural health monitoring system for tunnels at a speed of 100 km/h

    NASA Astrophysics Data System (ADS)

    Hayakawa, Tomohiko; Ishikawa, Masatoshi

    2017-04-01

    High quality images of tunnel surfaces are necessary for visual judgment of abnormal parts. Hence, we propose a monitoring system from a vehicle, which is motion-blur-compensated by the back and forth motion of a galvanometer mirror to offset the vehicle speed, prolong exposure time, and take sharp images including detailed textures. As experimental result of the vehicle-mounted system, we confirmed significant improvements in image quality for a few millimeter-sized ordered black-and-white stripes and cracks, by means of motion blur compensation and prolonged exposure time, under the maximum speed allowed in Japan in a standard tunnel of a highway.

  9. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense

    PubMed Central

    Sholtis, Katherine M.; Shelton, Ryan M.; Hedrick, Tyson L.

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder. PMID:26039101

  10. Field Flight Dynamics of Hummingbirds during Territory Encroachment and Defense.

    PubMed

    Sholtis, Katherine M; Shelton, Ryan M; Hedrick, Tyson L

    2015-01-01

    Hummingbirds are known to defend food resources such as nectar sources from encroachment by competitors (including conspecifics). These competitive intraspecific interactions provide an opportunity to quantify the biomechanics of hummingbird flight performance during ecologically relevant natural behavior. We recorded the three-dimensional flight trajectories of Ruby-throated Hummingbirds defending, being chased from and freely departing from a feeder. These trajectories allowed us to compare natural flight performance to earlier laboratory measurements of maximum flight speed, aerodynamic force generation and power estimates. During field observation, hummingbirds rarely approached the maximal flight speeds previously reported from wind tunnel tests and never did so during level flight. However, the accelerations and rates of change in kinetic and potential energy we recorded indicate that these hummingbirds likely operated near the maximum of their flight force and metabolic power capabilities during these competitive interactions. Furthermore, although birds departing from the feeder while chased did so faster than freely-departing birds, these speed gains were accomplished by modulating kinetic and potential energy gains (or losses) rather than increasing overall power output, essentially trading altitude for speed during their evasive maneuver. Finally, the trajectories of defending birds were directed toward the position of the encroaching bird rather than the feeder.

  11. Software and hardware complex for research and management of the separation process

    NASA Astrophysics Data System (ADS)

    Borisov, A. P.

    2018-01-01

    The article is devoted to the development of a program for studying the operation of an asynchronous electric drive using vector-algorithmic switching of windings, as well as the development of a hardware-software complex for controlling parameters and controlling the speed of rotation of an asynchronous electric drive for investigating the operation of a cyclone. To study the operation of an asynchronous electric drive, a method was used in which the average value of flux linkage is found and a method for vector-algorithmic calculation of the power and electromagnetic moment of an asynchronous electric drive feeding from a single-phase network is developed, with vector-algorithmic commutation, and software for calculating parameters. The software part of the complex allows to regulate the speed of rotation of the motor by vector-algorithmic switching of transistors or, using pulse-width modulation (PWM), set any engine speed. Also sensors are connected to the hardware-software complex at the inlet and outlet of the cyclone. The developed cyclone with an inserted complex allows to receive high efficiency of product separation at various entrance speeds. At an inlet air speed of 18 m / s, the cyclone’s maximum efficiency is achieved. For this, it is necessary to provide the rotational speed of an asynchronous electric drive with a frequency of 45 Hz.

  12. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  13. 30 CFR 57.19076 - Maximum speeds for hoisting persons in buckets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum speeds for hoisting persons in buckets... NONMETAL MINES Personnel Hoisting Hoisting Procedures § 57.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not...

  14. 30 CFR 56.19076 - Maximum speeds for hoisting persons in buckets.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Maximum speeds for hoisting persons in buckets... MINES Personnel Hoisting Hoisting Procedures § 56.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not exceed...

  15. 30 CFR 56.19076 - Maximum speeds for hoisting persons in buckets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum speeds for hoisting persons in buckets... MINES Personnel Hoisting Hoisting Procedures § 56.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not exceed...

  16. 30 CFR 57.19076 - Maximum speeds for hoisting persons in buckets.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Maximum speeds for hoisting persons in buckets... NONMETAL MINES Personnel Hoisting Hoisting Procedures § 57.19076 Maximum speeds for hoisting persons in buckets. When persons are hoisted in buckets, speeds shall not exceed 500 feet per minute and shall not...

  17. Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field

    NASA Astrophysics Data System (ADS)

    Razavi, Alireza; Sarkar, Partha P.

    2018-03-01

    To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.

  18. Analysis and Evaluation of Parameters Determining Maximum Efficiency of Fish Protection

    NASA Astrophysics Data System (ADS)

    Khetsuriani, E. D.; Kostyukov, V. P.; Khetsuriani, T. E.

    2017-11-01

    The article is concerned with experimental research findings. The efficiency of fish fry protection from entering water inlets is the main criterion of any fish protection facility or device. The research was aimed to determine an adequate mathematical model E = f(PCT, Vp, α), where PCT, Vp and α are controlled factors influencing the process of fish fry protection. The result of the processing of experimental data was an adequate regression model. We determined the maximum of fish protection Emax=94,21 and the minimum of optimization function Emin=44,41. As a result of the statistical processing of experimental data we obtained adequate dependences for determining an optimal rotational speed of tip and fish protection efficiency. The analysis of fish protection efficiency dependence E% = f(PCT, Vp, α) allowed the authors to recommend the following optimized operating modes for it: the maximum fish protection efficiency is achieved at the process pressure PCT=3 atm, stream velocity Vp=0,42 m/s and nozzle inclination angle α=47°49’. The stream velocity Vp has the most critical influence on fish protection efficiency. The maximum efficiency of fish protection is obtained at the tip rotational speed of 70.92 rpm.

  19. Twin disk composite flywheel

    NASA Astrophysics Data System (ADS)

    Ginsburg, B. R.

    The design criteria, materials, and initial test results of composite flywheels produced under DOE/Sandia contract are reported. The flywheels were required to store from 1-5 kWh with a total energy density of 80 W-h/kg at the maximum operational speed. The maximum diameter was set at 0.6 m, coupled to a maximum thickness of 0.2 m. A maximum running time at full speed of 1000 hr, in addition to a 10,000 cycle lifetime was mandated, together with a radial overlap in the material. The unit selected was a circumferentially wound composite rim made of graphite/epoxy mounted on an aluminum mandrel ring connected to an aluminum hub consisting of two constant stress disks. A tangentially wound graphite/epoxy overlap covered the rings. All conditions, i.e., rotation at 22,000 rpm and a measured storage of 1.94 kWh were verified in the first test series, although a second flywheel failed in subsequent tests when the temperature was inadvertantly allowed to rise from 15 F to over 200 F. Retest of the first flywheel again satisfied design goals. The units are considered as ideal for coupling with solar energy and wind turbine systems.

  20. Maximum speed limits. Volume 2, The development of speed limits : a review of the literature

    DOT National Transportation Integrated Search

    1970-10-01

    This report contains the literature review conducted as a part of the project "A Study for the Selection of Maximum Speed Limits." Five aspects of speed and speed control are discussed. These topics include: the history of speed limits; the relations...

  1. Effect of phase advance on the brushless dc motor torque speed respond

    NASA Astrophysics Data System (ADS)

    Mohd, M. S.; Karsiti, M. N.; Mohd, M. S.

    2015-12-01

    Brushless direct current (BLDC) motor is widely used in small and medium sized electric vehicles as it exhibit highest specific power and thermal efficiency as compared to the induction motor. Permanent magnets BLDC rotor create a constant magnetic flux, which limit the motor top speed. As the back electromotive force (EMF) voltage increases proportionally with motor rotational speed and it approaches the amplitude of the input voltage, the phase current amplitude will reach zero. By advancing the phase current, it is possible to extend the maximum speed of the BLDC motor beyond the rated top speed. This will allow smaller BLDC motor to be used in small electric vehicles (EV) and in larger applications will allow the use of BLDC motor without the use of multispeed transmission unit for high speed operation. However, increasing the speed of BLDC will affect the torque speed response. The torque output will decrease as speed increases. Adjusting the phase angle will affect the speed of the motor as each coil is energized earlier than the corresponding rise in the back emf of the coil. This paper discusses the phase advance strategy of Brushless DC motor by phase angle manipulation approaches using external hall sensors. Tests have been performed at different phase advance angles in advance and retard positions for different voltage levels applied. The objective is to create the external hall sensor system to commutate the BLDC motor, to establish the phase advance of the BLDC by varying the phase angle through external hall sensor manipulation, observe the respond of the motor while applying the phase advance by hall sensor adjustment.

  2. The relationship between movement speed and duration during soccer matches.

    PubMed

    Roecker, Kai; Mahler, Hubert; Heyde, Christian; Röll, Mareike; Gollhofer, Albert

    2017-01-01

    The relationship between the time duration of movement (t(dur)) and related maximum possible power output has been studied and modeled under many conditions. Inspired by the so-called power profiles known for discontinuous endurance sports like cycling, and the critical power concept of Monod and Scherrer, the aim of this study was to evaluate the numerical characteristics of the function between maximum horizontal movement velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38 healthy soccer players and 82 game participations (≥30 min active playtime) were used to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s) based on moving medians with an incremental t(dur) window-size. As a result, the relationship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay function, and could be fitted to a five-parameter equation with upper and lower asymptotes, and an inflection point, power and decrease rate. Thus, the first three parameters described individual characteristics if evaluated using mixed-model analysis. This study shows for the first time the general numerical relationship between t(dur) and HSpeed in soccer games. In contrast to former descriptions that have evaluated speed against power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymptote. The evaluated curve fit potentially describes the maximum moving speed of individual players during the game, and allows for concise interpretations of the functional state of team sports athletes.

  3. The relationship between movement speed and duration during soccer matches

    PubMed Central

    Mahler, Hubert; Heyde, Christian; Röll, Mareike; Gollhofer, Albert

    2017-01-01

    The relationship between the time duration of movement (t(dur)) and related maximum possible power output has been studied and modeled under many conditions. Inspired by the so-called power profiles known for discontinuous endurance sports like cycling, and the critical power concept of Monod and Scherrer, the aim of this study was to evaluate the numerical characteristics of the function between maximum horizontal movement velocity (HSpeed) and t(dur) in soccer. To evaluate this relationship, GPS data from 38 healthy soccer players and 82 game participations (≥30 min active playtime) were used to select maximum HSpeed for 21 distinct t(dur) values (between 0.3 s and 2,700 s) based on moving medians with an incremental t(dur) window-size. As a result, the relationship between HSpeed and Log(t(dur)) appeared reproducibly as a sigmoidal decay function, and could be fitted to a five-parameter equation with upper and lower asymptotes, and an inflection point, power and decrease rate. Thus, the first three parameters described individual characteristics if evaluated using mixed-model analysis. This study shows for the first time the general numerical relationship between t(dur) and HSpeed in soccer games. In contrast to former descriptions that have evaluated speed against power, HSpeed against t(dur) always yields a sigmoidal shape with a new upper asymptote. The evaluated curve fit potentially describes the maximum moving speed of individual players during the game, and allows for concise interpretations of the functional state of team sports athletes. PMID:28742832

  4. Parametric studies of North East Corridor rail passenger service between New York City and Washington, D. C.. [propulsive efficiency studies

    NASA Technical Reports Server (NTRS)

    Stallkamp, J. A.

    1977-01-01

    Speed profiles of rail passenger service between New York City and Washington, D.C. were developed and showed progressively fewer speed restrictions and increasing maximum speeds. The significant equipment characteristics include the portion of the total weight on driven axles, i.e., multiple unit (MU) cars versus locomotive hauled trains, and the short term tractive effort rating of the motors. The ratio of acceleration plus braking time to total time is provided for validation of the use of the short term propulsion equipment ratings. Absolute trip times are shown to be determined primarily by the allowed speed profile. Locomotive hauled train weights and lengths and the locomotive capabilities and characteristics that are required to make the performance of this type of train comparable to that of MU trains are given.

  5. Temporal and spatial variation of maximum wind speed days during the past 20 years in major cities of Xinjiang

    NASA Astrophysics Data System (ADS)

    Baidourela, Aliya; Jing, Zhen; Zhayimu, Kahaer; Abulaiti, Adili; Ubuli, Hakezi

    2018-04-01

    Wind erosion and sandstorms occur in the neighborhood of exposed dust sources. Wind erosion and desertification increase the frequency of dust storms, deteriorate air quality, and damage the ecological environment and agricultural production. The Xinjiang region has a relatively fragile ecological environment. Therefore, the study of the characteristics of maximum wind speed and wind direction in this region is of great significance to disaster prevention and mitigation, the management of activated dunes, and the sustainable development of the region. Based on the latest data of 71 sites in Xinjiang, this study explores the temporal evolution and spatial distribution of maximum wind speed in Xinjiang from 1993 to 2013, and highlights the distribution of annual and monthly maximum wind speed and the characteristics of wind direction in Xinjiang. Between 1993 and 2013, Ulugchat County exhibited the highest number of days with the maximum wind speed (> 17 m/s), while Wutian exhibited the lowest number. In Xinjiang, 1999 showed the highest number of maximum wind speed days (257 days), while 2013 showed the lowest number (69 days). Spring and summer wind speeds were greater than those in autumn and winter. There were obvious differences in the direction of maximum wind speed in major cities and counties of Xinjiang. East of the Tianshan Mountains, maximum wind speeds are mainly directed southeast and northeast. North and south of the Tianshan Mountains, they are mainly directed northwest and northeast, while west of the Tianshan Mountains, they are mainly directed southeast and northwest.

  6. Simple predictions of maximum transport rate in unsaturated soil and rock

    USGS Publications Warehouse

    Nimmo, John R.

    2007-01-01

    In contrast with the extreme variability expected for water and contaminant fluxes in the unsaturated zone, evidence from 64 field tests of preferential flow indicates that the maximum transport speed Vmax, adjusted for episodicity of infiltration, deviates little from a geometric mean of 13 m/d. A model based on constant‐speed travel during infiltration pulses of actual or estimated duration can predict Vmax with approximate order‐of‐magnitude accuracy, irrespective of medium or travel distance, thereby facilitating such problems as the prediction of worst‐case contaminant traveltimes. The lesser variability suggests that preferential flow is subject to rate‐limiting mechanisms analogous to those that impose a terminal velocity on objects in free fall and to rate‐compensating mechanisms analogous to Le Chatlier's principle. A critical feature allowing such mechanisms to dominate may be the presence of interfacial boundaries confined by neither solid material nor capillary forces.

  7. Transfer of piano practice in fast performance of skilled finger movements.

    PubMed

    Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko

    2013-11-01

    Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.

  8. Running speed increases plantar load more than per cent body weight on an AlterG® treadmill.

    PubMed

    Thomson, Athol; Einarsson, Einar; Witvrouw, Erik; Whiteley, Rod

    2017-02-01

    AlterG® treadmills allow for running at different speeds as well as at reduced bodyweight (BW), and are used during rehabilitation to reduce the impact load. The aim of this study was to quantify plantar loads borne by the athlete during rehabilitation. Twenty trained male participants ran on the AlterG® treadmill in 36 conditions: all combinations of indicated BW (50-100%) paired with different walking and running speeds (range 6-16 km · hr -1 ) in a random order. In-shoe maximum plantar force (Fmax) was recorded using the Pedar-X system. Fmax was lowest at the 6 km · hr -1 at 50% indicated BW condition at 1.02 ± 0.21BW and peaked at 2.31 ± 0.22BW for the 16 km · hr -1 at 100% BW condition. Greater increases in Fmax were seen when increasing running speed while holding per cent BW constant than the reverse (0.74BW-0.91BW increase compared to 0.19-0.31BW). A table is presented with each of the 36 combinations of BW and running speed to allow a more objective progression of plantar loading during rehabilitation. Increasing running speed rather than increasing indicated per cent BW was shown to have the strongest effect on the magnitude of Fmax across the ranges of speeds and indicated per cent BWs examined.

  9. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...

  10. 40 CFR 1042.140 - Maximum engine power, displacement, power density, and maximum in-use engine speed.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Maximum engine power, displacement... Maximum engine power, displacement, power density, and maximum in-use engine speed. This section describes how to determine the maximum engine power, displacement, and power density of an engine for the...

  11. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  12. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  13. 14 CFR 29.1509 - Rotor speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Rotor speed. 29.1509 Section 29.1509....1509 Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  14. 14 CFR 27.1509 - Rotor speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Rotor speed. 27.1509 Section 27.1509... Rotor speed. (a) Maximum power-off (autorotation). The maximum power-off rotor speed must be established... minimum power-off rotor speed must be established so that it is not less than 105 percent of the greater...

  15. Transfer of piano practice in fast performance of skilled finger movements

    PubMed Central

    2013-01-01

    Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946

  16. Maximum speed limits. Volume 4, An implementation method for setting a speed limit based on the 85th percentile speed

    DOT National Transportation Integrated Search

    1970-10-01

    This volume contains an explanation of a method for setting a speed limit which was developed as a part of the project conducted by the Institute for Research in Public Safety under Contract No. FH-11-7275, "A Study for the Selection of Maximum Speed...

  17. Microcontroller-based binary integrator for millimeter-wave radar experiments.

    PubMed

    Eskelinen, Pekka; Ruoskanen, Jukka; Peltonen, Jouni

    2010-05-01

    An easily on-site reconfigurable multiple binary integrator for millimeter radar experiments has been constructed of static random access memories, an eight bit microcontroller, and high speed video operational amplifiers. The design uses a raw comparator path and two adjustable m-out-of-n chains in a wired-OR configuration. Standard high speed memories allow the use of pulse widths below 100 ns. For eight pulse repetition intervals it gives a maximum improvement of 6.6 dB for stationary low-level target echoes. The doubled configuration enhances the capability against fluctuating targets. Because of the raw comparator path, also single return pulses of relatively high amplitude are processed.

  18. Maximum walking speeds obtained using treadmill and overground robot system in persons with post-stroke hemiplegia

    PubMed Central

    2012-01-01

    Background Previous studies demonstrated that stroke survivors have a limited capacity to increase their walking speeds beyond their self-selected maximum walking speed (SMWS). The purpose of this study was to determine the capacity of stroke survivors to reach faster speeds than their SMWS while walking on a treadmill belt or while being pushed by a robotic system (i.e. “push mode”). Methods Eighteen chronic stroke survivors with hemiplegia were involved in the study. We calculated their self-selected comfortable walking speed (SCWS) and SMWS overground using a 5-meter walk test (5-MWT). Then, they were exposed to walking at increased speeds, on a treadmill and while in “push mode” in an overground robotic device, the KineAssist, until they were tested at a speed that they could not sustain without losing balance. We recorded the time and number of steps during each trial and calculated gait speed, average cadence and average step length. Results Maximum walking speed in the “push mode” was 13% higher than the maximum walking speed on the treadmill and both were higher (“push mode”: 61%; treadmill: 40%) than the maximum walking speed overground. Subjects achieved these faster speeds by initially increasing both step length and cadence and, once individuals stopped increasing their step length, by only increasing cadence. Conclusions With post-stroke hemiplegia, individuals are able to walk at faster speeds than their SMWS overground, when provided with a safe environment that provides external forces that requires them to attempt dynamic stability maintenance at higher gait speeds. Therefore, this study suggests the possibility that, given the appropriate conditions, people post-stroke can be trained at higher speeds than previously attempted. PMID:23057500

  19. Human locomotion on ice: the evolution of ice-skating energetics through history.

    PubMed

    Formenti, Federico; Minetti, Alberto E

    2007-05-01

    More than 3000 years ago, peoples living in the cold North European regions started developing tools such as ice skates that allowed them to travel on frozen lakes. We show here which technical and technological changes determined the main steps in the evolution of ice-skating performance over its long history. An in-depth historical research helped identify the skates displaying significantly different features from previous models and that could consequently determine a better performance in terms of speed and energy demand. Five pairs of ice skates were tested, from the bone-skates, dated about 1800 BC, to modern ones. This paper provides evidence for the fact that the metabolic cost of locomotion on ice decreased dramatically through history, the metabolic cost of modern ice-skating being only 25% of that associated with the use of bone-skates. Moreover, for the same metabolic power, nowadays skaters can achieve speeds four times higher than their ancestors could. In the range of speeds considered, the cost of travelling on ice was speed independent for each skate model, as for running. This latter finding, combined with the accepted relationship between time of exhaustion and the sustainable fraction of metabolic power, gives the opportunity to estimate the maximum skating speed according to the distance travelled. Ice skates were probably the first human powered locomotion tools to take the maximum advantage from the biomechanical properties of the muscular system: even when travelling at relatively high speeds, the skating movement pattern required muscles to shorten slowly so that they could also develop a considerable amount of force.

  20. High-speed microstrip multi-anode multichannel plate detector system

    NASA Astrophysics Data System (ADS)

    Riedo, Andreas; Tulej, Marek; Rohner, Urs; Wurz, Peter

    2017-04-01

    High-speed detector systems with high dynamic range and pulse width characteristics in the sub-nanosecond regime are mandatory for high resolution and highly sensitive time-of-flight mass spectrometers. Typically, for a reasonable detector area, an impedance-matched anode design is necessary to transmit the registered signal fast and distortion-free from the anode to the signal acquisition system. In this report, a high-speed microstrip multi-anode multichannel plate detector is presented and discussed. The anode consists of four separate active concentric anode segments allowing a simultaneous readout of signal with a dynamic range of about eight orders of magnitude. The impedance matched anode segments show pulse width of about 250 ps, measured at full width at half maximum, and rise time of ˜170 ps, measured with an oscilloscope with a sampling rate of 20 GS/s and 4 GHz analogue bandwidth. The usage of multichannel plates as signal amplifier allowed the design of a lightweight, low power consuming, and compact detector system, suitable, e.g., for the integration into space instrumentation or portable systems where size, weight, and power consumption are limited parameters.

  1. Faster Movement Speed Results in Greater Tendon Strain during the Loaded Squat Exercise

    PubMed Central

    Earp, Jacob E.; Newton, Robert U.; Cormie, Prue; Blazevich, Anthony J.

    2016-01-01

    Introduction: Tendon dynamics influence movement performance and provide the stimulus for long-term tendon adaptation. As tendon strain increases with load magnitude and decreases with loading rate, changes in movement speed during exercise should influence tendon strain. Methods: Ten resistance-trained men [squat one repetition maximum (1RM) to body mass ratio: 1.65 ± 0.12] performed parallel-depth back squat lifts with 60% of 1RM load at three different speeds: slow fixed-tempo (TS: 2-s eccentric, 1-s pause, 2-s concentric), volitional-speed without a pause (VS) and maximum-speed jump (JS). In each condition joint kinetics, quadriceps tendon length (LT), patellar tendon force (FT), and rate of force development (RFDT) were estimated using integrated ultrasonography, motion-capture, and force platform recordings. Results: Peak LT, FT, and RFDT were greater in JS than TS (p < 0.05), however no differences were observed between VS and TS. Thus, moving at faster speeds resulted in both greater tendon stress and strain despite an increased RFDT, as would be predicted of an elastic, but not a viscous, structure. Temporal comparisons showed that LT was greater in TS than JS during the early eccentric phase (10–14% movement duration) where peak RFDT occurred, demonstrating that the tendon's viscous properties predominated during initial eccentric loading. However, during the concentric phase (61–70 and 76–83% movement duration) differing FT and similar RFDT between conditions allowed for the tendon's elastic properties to predominate such that peak tendon strain was greater in JS than TS. Conclusions: Based on our current understanding, there may be an additional mechanical stimulus for tendon adaptation when performing large range-of-motion isoinertial exercises at faster movement speeds. PMID:27630574

  2. Unleashing elastic energy: dynamics of energy release in rubber bands and impulsive biological systems

    NASA Astrophysics Data System (ADS)

    Ilton, Mark; Cox, Suzanne; Egelmeers, Thijs; Patek, S. N.; Crosby, Alfred J.

    Impulsive biological systems - which include mantis shrimp, trap-jaw ants, and venus fly traps - can reach high speeds by using elastic elements to store and rapidly release energy. The material behavior and shape changes critical to achieving rapid energy release in these systems are largely unknown due to limitations of materials testing instruments operating at high speed and large displacement. In this work, we perform fundamental, proof-of-concept measurements on the tensile retraction of elastomers. Using high speed imaging, the kinematics of retraction are measured for elastomers with varying mechanical properties and geometry. Based on the kinematics, the rate of energy dissipation in the material is determined as a function of strain and strain-rate, along with a scaling relation which describes the dependence of maximum velocity on material properties. Understanding this scaling relation along with the material failure limits of the elastomer allows the prediction of material properties required for optimal performance. We demonstrate this concept experimentally by optimizing for maximum velocity in our synthetic model system, and achieve retraction velocities that exceed those in biological impulsive systems. This model system provides a foundation for future work connecting continuum performance to molecular architecture in impulsive systems.

  3. Antarctic meteor observations using the Davis MST and meteor radars

    NASA Astrophysics Data System (ADS)

    Holdsworth, David A.; Murphy, Damian J.; Reid, Iain M.; Morris, Ray J.

    2008-07-01

    This paper presents the meteor observations obtained using two radars installed at Davis (68.6°S, 78.0°E), Antarctica. The Davis MST radar was installed primarily for observation of polar mesosphere summer echoes, with additional transmit and receive antennas installed to allow all-sky interferometric meteor radar observations. The Davis meteor radar performs dedicated all-sky interferometric meteor radar observations. The annual count rate variation for both radars peaks in mid-summer and minimizes in early Spring. The height distribution shows significant annual variation, with minimum (maximum) peak heights and maximum (minimum) height widths in early Spring (mid-summer). Although the meteor radar count rate and height distribution variations are consistent with a similar frequency meteor radar operating at Andenes (69.3°N), the peak heights show a much larger variation than at Andenes, while the count rate maximum-to-minimum ratios show a much smaller variation. Investigation of the effects of the temporal sampling parameters suggests that these differences are consistent with the different temporal sampling strategies used by the Davis and Andenes meteor radars. The new radiant mapping procedure of [Jones, J., Jones, W., Meteor radiant activity mapping using single-station radar observations, Mon. Not. R. Astron. Soc., 367(3), 1050-1056, doi: 10.1111/j.1365-2966.2006.10025.x, 2006] is investigated. The technique is used to detect the Southern delta-Aquarid meteor shower, and a previously unknown weak shower. Meteoroid speeds obtained using the Fresnel transform are presented. The diurnal, annual, and height variation of meteoroid speeds are presented, with the results found to be consistent with those obtained using specular meteor radars. Meteoroid speed estimates for echoes identified as Southern delta-Aquarid and Sextantid meteor candidates show good agreement with the theoretical pre-atmospheric speeds of these showers (41 km s -1 and 32 km s -1, respectively). The meteoroid speeds estimated for these showers show decreasing speed with decreasing height, consistent with the effects of meteoroid deceleration. Finally, we illustrate how the new radiant mapping and meteoroid speed techniques can be combined for unambiguous meteor shower detection, and use these techniques to detect a previously unknown weak shower.

  4. Maximum speed limits. Volume 3, A programmed implementation manual for setting a speed limit based on the 85th percentile

    DOT National Transportation Integrated Search

    1970-10-01

    This report contains the implementation manual developed as a part of the project "Maximum Speed Limits." The manual consists of a programed educational unit and a field workguide concerning the setting of speed limits based on the 85th percentile sp...

  5. 33 CFR Schedule II to Subpart A of... - Table of Speeds 1

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Table of Speeds 1 II Schedule II... Schedule II to Subpart A of Part 401—Table of Speeds 1 From— To— Maximum speed over the bottom, knots Col.... All other canals 6 6. 1 Maximum speeds at which a vessel may travel in identified areas in both normal...

  6. 33 CFR Schedule II to Subpart A of... - Table of Speeds 1

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Table of Speeds 1 II Schedule II... Schedule II to Subpart A of Part 401—Table of Speeds 1 From— To— Maximum speed over the bottom, knots Col.... All other canals 6 6. 1 Maximum speeds at which a vessel may travel in identified areas in both normal...

  7. Use of Mass- and Area-Dimensional Power Laws for Determining Precipitation Particle Terminal Velocities.

    NASA Astrophysics Data System (ADS)

    Mitchell, David L.

    1996-06-01

    Based on boundary layer theory and a comparison of empirical power laws relating the Reynolds and Best numbers, it was apparent that the primary variables governing a hydrometeor's terminal velocity were its mass, its area projected to the flow, and its maximum dimension. The dependence of terminal velocities on surface roughness appeared secondary, with surface roughness apparently changing significantly only during phase changes (i.e., ice to liquid). In the theoretical analysis, a new, comprehensive expression for the drag force, which is valid for both inertial and viscous-dominated flow, was derived.A hydrometeor's mass and projected area were simply and accurately represented in terms of its maximum dimension by using dimensional power laws. Hydrometeor terminal velocities were calculated by using mass- and area-dimensional power laws to parameterize the Best number, X. Using a theoretical relationship general for all particle types, the Reynolds number, Re, was then calculated from the Best number. Terminal velocities were calculated from Re.Alternatively, four Re-X power-law expressions were extracted from the theoretical Re-X relationship. These expressions collectively describe the terminal velocities of all ice particle types. These were parameterized using mass- and area-dimensional power laws, yielding four theoretically based power-law expressions predicting fall speeds in terms of ice particle maximum dimension. When parameterized for a given ice particle type, the theoretical fall speed power law can be compared directly with empirical fall speed-dimensional power laws in the literature for the appropriate Re range. This provides a means of comparing theory with observations.Terminal velocities predicted by this method were compared with fall speeds given by empirical fall speed expressions for the same ice particle type, which were curve fits to measured fall speeds. Such comparisons were done for nine types of ice particles. Fall speeds predicted by this method differed from those based on measurements by no more than 20%.The features that distinguish this method of determining fall speeds from others are that it does not represent particles as spheroids, it is general for any ice particle shape and size, it is conceptually and mathematically simple, it appears accurate, and it provides for physical insight. This method also allows fall speeds to be determined from aircraft measurements of ice particle mass and projected area, rather than directly measuring fall speeds. This approach may be useful for ice crystals characterizing cirrus clouds, for which direct fall speed measurements are difficult.

  8. European shags optimize their flight behavior according to wind conditions.

    PubMed

    Kogure, Yukihisa; Sato, Katsufumi; Watanuki, Yutaka; Wanless, Sarah; Daunt, Francis

    2016-02-01

    Aerodynamics results in two characteristic speeds of flying birds: the minimum power speed and the maximum range speed. The minimum power speed requires the lowest rate of energy expenditure per unit time to stay airborne and the maximum range speed maximizes air distance traveled per unit of energy consumed. Therefore, if birds aim to minimize the cost of transport under a range of wind conditions, they are predicted to fly at the maximum range speed. Furthermore, take-off is predicted to be strongly affected by wind speed and direction. To investigate the effect of wind conditions on take-off and cruising flight behavior, we equipped 14 European shags Phalacrocorax aristotelis with a back-mounted GPS logger to measure position and hence ground speed, and a neck-mounted accelerometer to record wing beat frequency and strength. Local wind conditions were recorded during the deployment period. Shags always took off into the wind regardless of their intended destination and take-off duration was correlated negatively with wind speed. We combined ground speed and direction during the cruising phase with wind speed and direction to estimate air speed and direction. Whilst ground speed was highly variable, air speed was comparatively stable, although it increased significantly during strong head winds, because of stronger wing beats. The increased air speeds in head winds suggest that birds fly at the maximum range speed, not at the minimum power speed. Our study demonstrates that European shags actively adjust their flight behavior to utilize wind power to minimize the costs of take-off and cruising flight. © 2016. Published by The Company of Biologists Ltd.

  9. Normalized velocity profiles of field-measured turbidity currents

    USGS Publications Warehouse

    Xu, Jingping

    2010-01-01

    Multiple turbidity currents were recorded in two submarine canyons with maximum speed as high as 280 cm/s. For each individual turbidity current measured at a fixed station, its depth-averaged velocity typically decreased over time while its thickness increased. Some turbidity currents gained in speed as they traveled downcanyon, suggesting a possible self-accelerating process. The measured velocity profiles, first in this high resolution, allowed normalizations with various schemes. Empirical functions, obtained from laboratory experiments whose spatial and time scales are two to three orders of magnitude smaller, were found to represent the field data fairly well. The best similarity collapse of the velocity profiles was achieved when the streamwise velocity and the elevation were normalized respectively by the depth-averaged velocity and the turbidity current thickness. This normalization scheme can be generalized to an empirical function Y = exp(–αXβ) for the jet region above the velocity maximum. Confirming theoretical arguments and laboratory results of other studies, the field turbidity currents are Froude-supercritical.

  10. Phlegethon flow: A proposed origin for spicules and coronal heating

    NASA Technical Reports Server (NTRS)

    Schatten, Kenneth H.; Mayr, Hans G.

    1986-01-01

    A model was develped for the mass, energy, and magnetic field transport into the corona. The focus is on the flow below the photosphere which allows the energy to pass into, and be dissipated within, the solar atmosphere. The high flow velocities observed in spicules are explained. A treatment following the work of Bailyn et al. (1985) is examined. It was concluded that within the framework of the model, energy may dissipate at a temperature comparable to the temperature where the waves originated, allowing for an equipartition solution of atmospheric flow, departing the sun at velocities approaching the maximum Alfven speed.

  11. Optimal Shapes of Surface Slip Driven Self-Propelled Microswimmers

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej

    2012-09-01

    We study the efficiency of self-propelled swimmers at low Reynolds numbers, assuming that the local energetic cost of maintaining a propulsive surface slip velocity is proportional to the square of that velocity. We determine numerically the optimal shape of a swimmer such that the total power is minimal while maintaining the volume and the swimming speed. The resulting shape depends strongly on the allowed maximum curvature. When sufficient curvature is allowed the optimal swimmer exhibits two protrusions along the symmetry axis. The results show that prolate swimmers such as Paramecium have an efficiency that is ˜20% higher than that of a spherical body, whereas some microorganisms have shapes that allow even higher efficiency.

  12. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Propeller speed and pitch limits. 23.33...

  13. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Propeller speed and pitch limits. 23.33...

  14. 14 CFR 23.33 - Propeller speed and pitch limits.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the all engine(s) operating climb speed specified in § 23.65, the propeller must limit the engine r.p... approved overspeed, a means to limit the maximum engine and propeller speed to not more than the maximum... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Propeller speed and pitch limits. 23.33...

  15. Prediction of the interior noise levels of high-speed propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Rennison, D. C.; Wilby, J. F.; Wilby, E. G.

    1980-01-01

    The theoretical basis for an analytical model developed to predict the interior noise levels of high-speed propeller-driven airplanes is presented. Particular emphasis is given to modeling the transmission of discrete tones through a fuselage element into a cavity, estimates for the mean and standard deviation of the acoustic power flow, the coupling between a non-homogeneous excitation and the fuselage vibration response, and the prediction of maximum interior noise levels. The model allows for convenient examination of the various roles of the excitation and fuselage structural characteristics on the fuselage vibration response and the interior noise levels, as is required for the design of model or prototype noise control validation tests.

  16. The influence of maximum running speed on eye size: a test of Leuckart's Law in mammals.

    PubMed

    Heard-Booth, Amber N; Kirk, E Christopher

    2012-06-01

    Vertebrate eye size is influenced by many factors, including body or head size, diet, and activity pattern. Locomotor speed has also been suggested to influence eye size in a relationship known as Leuckart's Law. Leuckart's Law proposes that animals capable of achieving fast locomotor speeds require large eyes to enhance visual acuity and avoid collisions with environmental obstacles. The selective influence of rapid flight has been invoked to explain the relatively large eyes of birds, but Leuckart's Law remains untested in nonavian vertebrates. This study investigates the relationship between eye size and maximum running speed in a diverse sample of mammals. Measures of axial eye diameter, maximum running speed, and body mass were collected from the published literature for 50 species from 10 mammalian orders. This analysis reveals that absolute eye size is significantly positively correlated with maximum running speed in mammals. Moreover, the relationship between eye size and running speed remains significant when the potentially confounding effects of body mass and phylogeny are statistically controlled. The results of this analysis are therefore consistent with the expectations of Leuckart's Law and demonstrate that faster-moving mammals have larger eyes than their slower-moving close relatives. Accordingly, we conclude that maximum running speed is one of several key selective factors that have influenced the evolution of eye size in mammals. Copyright © 2012 Wiley Periodicals, Inc.

  17. Manganese contamination affects the motor performance of wild northern quolls (Dasyurus hallucatus).

    PubMed

    Amir Abdul Nasir, Ami Fadhillah; Cameron, Skye F; Niehaus, Amanda C; Clemente, Christofer J; von Hippel, Frank A; Wilson, Robbie S

    2018-05-21

    Neuromotor deficits are an important sign of manganese (Mn) toxicity in humans and laboratory animals. However, the impacts of Mn exposure on the motor function of wild animals remains largely unknown. Here, we assessed the impact of chronic exposure to Mn from active mining operations on Groote Eylandt, Australia on the motor function of the semi-arboreal northern quoll (Dasyurus hallucatus), an endangered species. The three motor tests conducted-maximum sprint speed on a straight run, manoeuvrability around a corner, and motor control on a balance beam-showed that elevated Mn body burden did not diminish performance of these traits. However, quolls with higher Mn body burden approached a corner at a significantly narrower range of speeds, due to a significantly lower maximum approach speed. Slower speeds approaching a turn may reduce success at catching prey and avoiding predators. Given that maximum sprint speed on a straight run was not affected by Mn body burden, but maximum speed entering a corner was, slower speeds approaching a turn may reflect compensation for otherwise impaired performance in the turn. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Influence of electrostatic forces on particle propulsion in the evanescent field of silver ion-exchanged waveguides.

    PubMed

    Gebennikov, Dmytro; Mittler, Silvia

    2013-02-26

    The effect of electrostatic interaction between carboxylate- and amino-functionalized polystyrene particles and a charged waveguide surface on the propulsion speed in optical tweezers is considered to be a function of the pH and ionic strength. It was shown that with the variation of the pH of the aqueous solution in which the particles were immersed, a systematic change in propulsion speed with a maximum speed could be achieved. The appearance of a maximum speed was ascribed to changes in the particle-waveguide separation as a result of the combination of two forces: Coulomb repulsion/attraction and induced dipole forces. The highest maximum speed at low ionic strength was around 12 μm/s. Changes in the ionic strength of the solution influenced the gradient of the dielectric constant near the involved surfaces and also led to a slightly reduced hydrodynamic radius of the particles. The combination of these effects subsequently increased the maximum speed to about 23 μm/s.

  19. Four quadrant control of induction motors

    NASA Technical Reports Server (NTRS)

    Hansen, Irving G.

    1991-01-01

    Induction motors are the nation's workhorse, being the motor of choice in most applications due to their simple rugged construction. It has been estimated that 14 to 27 percent of the country's total electricity use could be saved with adjustable speed drives. Until now, induction motors have not been suited well for variable speed or servo-drives, due to the inherent complexity, size, and inefficiency of their variable speed controls. Work at NASA Lewis Research Center on field oriented control of induction motors using pulse population modulation method holds the promise for the desired drive electronics. The system allows for a variable voltage to frequency ratio which enables the user to operate the motor at maximum efficiency, while having independent control of both the speed and torque of an induction motor in all four quadrants of the speed torque map. Multiple horsepower machine drives were demonstrated, and work is on-going to develop a 20 hp average, 40 hp peak class of machine. The pulse population technique, results to date, and projections for implementation of this existing new motor control technology are discussed.

  20. 14 CFR 25.335 - Design airspeeds.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must be conservative. (a) Design cruising speed, V C. For V C, the following apply: (1) The minimum value of V C must be sufficiently greater than V B to provide for inadvertent speed increases likely to... exceed the maximum speed in level flight at maximum continuous power for the corresponding altitude. (3...

  1. Improvement of cutting performance for thick stainless steel plates by step-like cutting speed increase in high-power fiber laser cutting

    NASA Astrophysics Data System (ADS)

    Seon, Sangwoo; Shin, Jae Sung; Oh, Seong Yong; Park, Hyunmin; Chung, Chin-Man; Kim, Taek-Soo; Lee, Lim; Lee, Jonghwan

    2018-07-01

    A study was conducted to improve the cutting performance of a 60-mm thick stainless steel plate using a 6-kW fiber laser. Two techniques for improving the initial cutting performance were evaluated by preheating the work piece with a waiting time and step-like cutting speed increase. Both techniques showed improved cutting results compared to constant speed cutting. Among them, the method with a step-like cutting speed increase showed the better result in terms of cutting performance. As a result, a 60-mm thick stainless steel plate was cut at a maximum cutting speed of 72 mm/min with a preheating cutting speed of 24 mm/min. In order to confirm the effect of preheating, an additional experiment was performed to measure the temperature variation during the cutting process. Through this experiment, preheating temperature conditions were found to allow the specimen to be cut. It is expected that the results of this work will contribute to improving the cutting performance of thick metal structures in various industrial fields, as well as the dismantling of nuclear facilities using lasers in the future.

  2. Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates, and enhanced features

    NASA Astrophysics Data System (ADS)

    Gelderblom, Erik C.; Vos, Hendrik J.; Mastik, Frits; Faez, Telli; Luan, Ying; Kokhuis, Tom J. A.; van der Steen, Antonius F. W.; Lohse, Detlef; de Jong, Nico; Versluis, Michel

    2012-10-01

    The Brandaris 128 ultra-high-speed imaging facility has been updated over the last 10 years through modifications made to the camera's hardware and software. At its introduction the camera was able to record 6 sequences of 128 images (500 × 292 pixels) at a maximum frame rate of 25 Mfps. The segmented mode of the camera was revised to allow for subdivision of the 128 image sensors into arbitrary segments (1-128) with an inter-segment time of 17 μs. Furthermore, a region of interest can be selected to increase the number of recordings within a single run of the camera from 6 up to 125. By extending the imaging system with a laser-induced fluorescence setup, time-resolved ultra-high-speed fluorescence imaging of microscopic objects has been enabled. Minor updates to the system are also reported here.

  3. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  4. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 2; Complete Set of Plotted Data

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  5. Design and optimization of a modal- independent linear ultrasonic motor.

    PubMed

    Zhou, Shengli; Yao, Zhiyuan

    2014-03-01

    To simplify the design of the linear ultrasonic motor (LUSM) and improve its output performance, a method of modal decoupling for LUSMs is proposed in this paper. The specific embodiment of this method is decoupling of the traditional LUSM stator's complex vibration into two simple vibrations, with each vibration implemented by one vibrator. Because the two vibrators are designed independently, their frequencies can be tuned independently and frequency consistency is easy to achieve. Thus, the method can simplify the design of the LUSM. Based on this method, a prototype modal- independent LUSM is designed and fabricated. The motor reaches its maximum thrust force of 47 N, maximum unloaded speed of 0.43 m/s, and maximum power of 7.85 W at applied voltage of 200 Vpp. The motor's structure is then optimized by controlling the difference between the two vibrators' resonance frequencies to reach larger output speed, thrust, and power. The optimized results show that when the frequency difference is 73 Hz, the output force, speed, and power reach their maximum values. At the input voltage of 200 Vpp, the motor reaches its maximum thrust force of 64.2 N, maximum unloaded speed of 0.76 m/s, maximum power of 17.4 W, maximum thrust-weight ratio of 23.7, and maximum efficiency of 39.6%.

  6. Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

    PubMed Central

    Svendsen, Morten B. S.; Domenici, Paolo; Marras, Stefano; Krause, Jens; Boswell, Kevin M.; Rodriguez-Pinto, Ivan; Wilson, Alexander D. M.; Kurvers, Ralf H. J. M.; Viblanc, Paul E.; Finger, Jean S.; Steffensen, John F.

    2016-01-01

    ABSTRACT Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s−1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s−1), followed by barracuda (6.2±1.0 m s−1), little tunny (5.6±0.2 m s−1) and dorado (4.0±0.9 m s−1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s−1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues. PMID:27543056

  7. Finite Gyroradius Effects Observed in Pickup Oxygen Ions at Venus

    NASA Technical Reports Server (NTRS)

    Hartle, Richard E.; Intriligator, Devrie; Grebowsky, Joseph M.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    On the dayside of Venus, the hot oxygen corona extending above the ionopause is the principal source of pickup oxygen ions. The ions are born here and picked up by the ionosheath plasma as it is deflected around the planet. These pickup ions have been observed by the Orbiter Plasma Analyzer (OPA) throughout the Pioneer Venus Orbiter (PVO) mission. They were observed over a region extending from their dayside source to great distances downstream (about 10 Venus radii), in the solar wind wake, as PVO passed through apoapsis. Finite gyroradius effects in the velocity distribution of the oxygen pickup ions are expected in the source region because the gyroradius is several times larger than the scale height of the hot oxygen source. Such effects are also expected in those regions of the ionosheath where the scale lengths of the magnetic field and the ambient plasma velocity field are less than the pickup ion gyroradius. While explicitly accounting for the spatial distribution of the hot oxygen source, an analytic expression for the pickup oxygen ion velocity distribution is developed to study how it is affected by finite gyroradii. The analysis demonstrates that as the gyroradius increases by factors of three to six above the hot oxygen scale height, the peak of the pickup oxygen ion flux distribution decreases 25 to 50% below the maximum allowed speed, which is twice the speed of the ambient plasma times the sine of the angle between the magnetic field and the flow velocity. The pickup oxygen ion flux distribution observed by OPA is shown to follow this behavior in the source region. It is also shown that this result is consistent with the pickup ion distributions observed in the wake, downstream of the source, where the flux peaks are usually well below the maximum allowed speed.

  8. 78 FR 9035 - Renewal and Revision of a Previously Approved Information Collection; Comment Request; State...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-07

    ... maximum advertised speed, technology type and spectrum (if applicable) for each broadband provider... funding to collect the maximum advertised speed and technology type to which various classes of Community... businesses use the data to identify where broadband is available, the advertised speeds and other information...

  9. GPS Enabled Semi-Autonomous Robot

    DTIC Science & Technology

    2017-09-01

    equal and the goal has not yet been reached (i.e., any time the robot has reached a local minimum), and direct the robot to travel in a specific...whether the robot was turning or not. The challenge is overcome by ensuring the robot travels at its maximum speed at all times . Further research into...robot’s fixed reference frame was recalculated each time through the control loop. If the encoder data allows for the robot to appear to have travelled

  10. Impact dynamics of particle-coated droplets

    NASA Astrophysics Data System (ADS)

    Supakar, T.; Kumar, A.; Marston, J. O.

    2017-01-01

    We present findings from an experimental study of the impact of liquid marbles onto solid surfaces. Using dual-view high-speed imaging, we reveal details of the impact dynamics previously not reported. During the spreading stage it is observed that particles at the surface flow rapidly to the periphery of the drop, i.e., the lamella. We characterize the spreading with the maximum spread diameter, comparing to impacts of pure liquid droplets. The principal result is a power-law scaling for the normalized maximum spread in terms of the impact Weber number, Dmax/D0˜Weα , with α ≈1 /3 . However, the best description of the spreading is obtained by considering a total energy balance, in a similar fashion to Pasandideh-Fard et al. [Phys. Fluids 8, 650 (1996)], 10.1063/1.868850. By using hydrophilic target surfaces, the marble integrity is lost even for moderate impact speeds as the particles at the surface separate and allow liquid-solid contact to occur. Remarkably, however, we observe no significant difference in the maximum spread between hydrophobic and hydrophilic targets, which is rationalized by the presence of the particles. Finally, for the finest particles used, we observe the formation of nonspherical arrested shapes after retraction and rebound from hydrophobic surfaces, which is quantified by a circularity measurement of the side profiles.

  11. Impact dynamics of liquid marbles

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Supakar, Tinku

    2016-11-01

    The impact of particle coated droplets (a.k.a. liquid marbles or armored droplets) onto solid substrates is assessed experimentally with high-speed video. The impact is characterized by the maximum spread diameter, which conforms to scaling laws in terms of the impact Weber number, meaning that the marbles behave similar to water droplets during this stage. However, the motion of the particles across the surface allows us to observe both clustering and divergence of the particle shell and, in particular, we observe the formation of arrested shapes (i.e. jammed interfaces) after impact onto hydrophobic surfaces, from an initially spherical shape. In this case, we postulate that the speed of retraction and rate of change of surface coverage is a key ingredient leading to arrested shapes.

  12. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  13. Analysis of energy dissipation and deposition in elastic bodies impacting at hypervelocities

    NASA Technical Reports Server (NTRS)

    Medina, David F.; Allahdadi, Firooz A.

    1992-01-01

    A series of impact problems were analyzed using the Eulerian hydrocode CTH. The objective was to quantify the amount of energy dissipated locally by a projectile-infinite plate impact. A series of six impact problems were formulated such that the mass and speed of each projectile were varied in order to allow for increasing speed with constant kinetic energy. The properties and dimensions of the plate were the same for each projectile impact. The resulting response of the plate was analyzed for global Kinetic Energy, global momentum, and local maximum shear stress. The percentage of energy dissipated by the various hypervelocity impact phenomena appears as a relative change of shear stress at a point away from the impact in the plate.

  14. Coding for Communication Channels with Dead-Time Constraints

    NASA Technical Reports Server (NTRS)

    Moision, Bruce; Hamkins, Jon

    2004-01-01

    Coding schemes have been designed and investigated specifically for optical and electronic data-communication channels in which information is conveyed via pulse-position modulation (PPM) subject to dead-time constraints. These schemes involve the use of error-correcting codes concatenated with codes denoted constrained codes. These codes are decoded using an interactive method. In pulse-position modulation, time is partitioned into frames of Mslots of equal duration. Each frame contains one pulsed slot (all others are non-pulsed). For a given channel, the dead-time constraints are defined as a maximum and a minimum on the allowable time between pulses. For example, if a Q-switched laser is used to transmit the pulses, then the minimum allowable dead time is the time needed to recharge the laser for the next pulse. In the case of bits recorded on a magnetic medium, the minimum allowable time between pulses depends on the recording/playback speed and the minimum distance between pulses needed to prevent interference between adjacent bits during readout. The maximum allowable dead time for a given channel is the maximum time for which it is possible to satisfy the requirement to synchronize slots. In mathematical shorthand, the dead-time constraints for a given channel are represented by the pair of integers (d,k), where d is the minimum allowable number of zeroes between ones and k is the maximum allowable number of zeroes between ones. A system of the type to which the present schemes apply is represented by a binary- input, real-valued-output channel model illustrated in the figure. At the transmitting end, information bits are first encoded by use of an error-correcting code, then further encoded by use of a constrained code. Several constrained codes for channels subject to constraints of (d,infinity) have been investigated theoretically and computationally. The baseline codes chosen for purposes of comparison were simple PPM codes characterized by M-slot PPM frames separated by d-slot dead times.

  15. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture.

    PubMed

    Fanourakis, Dimitrios; Briese, Christoph; Max, Johannes Fj; Kleinen, Silke; Putz, Alexander; Fiorani, Fabio; Ulbrich, Andreas; Schurr, Ulrich

    2014-04-11

    Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s-1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows.

  16. How Enzymes Work: A Look through the Perspective of Molecular Viscoelastic Properties

    NASA Astrophysics Data System (ADS)

    Qu, Hao; Zocchi, Giovanni

    2013-01-01

    We present nanorheology measurements on the folded state of an enzyme that show directly that the (ensemble-averaged) stress-strain relations are nonlinear and frequency dependent beyond 1-Å deformation. We argue that this frequency dependence allows for opening a nonequilibrium cycle in the force-deformation plane if the forward and backward conformational changes of the enzyme during catalysis happen at different speeds. Using a heuristic model for the experimentally established viscoelastic properties of the enzyme, we examine a number of general features of enzymatic action. We find that the proposed viscoelastic cycle is consistent with the linear decrease of the speed of motor proteins with load. We find a relation between the stall force and the maximum rate for enzymes (in general) and motors (in particular). We estimate the stall force of the motor protein kinesin from thermodynamic quantities and estimate the maximum rate of enzymes from purely mechanical quantities. We propose that the viscoelastic cycle provides a framework for considering mechanochemical coupling in enzymes on the basis of possibly universal materials properties of the folded state of proteins.

  17. Gender-related differences in maximum gait speed and daily physical activity in elderly hospitalized cardiac inpatients: a preliminary study.

    PubMed

    Izawa, Kazuhiro P; Watanabe, Satoshi; Hirano, Yasuyuki; Matsushima, Shinya; Suzuki, Tomohiro; Oka, Koichiro; Kida, Keisuke; Suzuki, Kengo; Osada, Naohiko; Omiya, Kazuto; Brubaker, Peter H; Shimizu, Hiroyuki; Akashi, Yoshihiro J

    2015-03-01

    Maximum gait speed and physical activity (PA) relate to mortality and morbidity, but little is known about gender-related differences in these factors in elderly hospitalized cardiac inpatients. This study aimed to determine differences in maximum gait speed and daily measured PA based on sex and the relationship between these measures in elderly cardiac inpatients.A consecutive 268 elderly Japanese cardiac inpatients (mean age, 73.3 years) were enrolled and divided by sex into female (n = 75, 28%) and male (n = 193, 72%) groups. Patient characteristics and maximum gait speed, average step count, and PA energy expenditure (PAEE) in kilocalorie per day for 2 days assessed by accelerometer were compared between groups.Gait speed correlated positively with in-hospital PA measured by average daily step count (r = 0.46, P < 0.001) and average daily PAEE (r = 0.47, P < 0.001) in all patients. After adjustment for left ventricular ejection fraction, step counts and PAEE were significantly lower in females than males (2651.35 ± 1889.92 vs 4037.33 ± 1866.81 steps, P < 0.001; 52.74 ± 51.98 vs 99.33 ± 51.40 kcal, P < 0.001), respectively.Maximum gait speed was slower and PA lower in elderly female versus male inpatients. Minimum gait speed and step count values in this study might be minimum target values for elderly male and female Japanese cardiac inpatients.

  18. Differences in hamstring activation characteristics between the acceleration and maximum-speed phases of sprinting.

    PubMed

    Higashihara, Ayako; Nagano, Yasuharu; Ono, Takashi; Fukubayashi, Toru

    2018-06-01

    This study aimed to investigate activation characteristics of the biceps femoris long head (BFlh) and semitendinosus (ST) muscles during the acceleration and maximum-speed phases of sprinting. Lower-extremity kinematics and electromyographic (EMG) activities of the BFlh and ST muscles were examined during the acceleration sprint and maximum-speed sprint in 13 male sprinters during an overground sprinting. Differences in hamstring activation during each divided phases and in the hip and knee joint angles and torques at each time point of the sprinting gait cycle were determined between two sprints. During the early stance of the acceleration sprint, the hip extension torque was significantly greater than during the maximum-speed sprint, and the relative EMG activation of the BFlh muscle was significantly higher than that of the ST muscle. During the late stance and terminal mid-swing of maximum-speed sprint, the knee was more extended and a higher knee flexion moment was observed compared to the acceleration sprint, and the ST muscle showed higher activation than that of the BFlh. These results indicate that the functional demands of the medial and lateral hamstring muscles differ between two different sprint performances.

  19. Experimental and analytical investigation of the thermal necrosis in high-speed drilling of bone.

    PubMed

    Shakouri, Ehsan; Sadeghi, Mohammad H; Maerefat, Mehdi; Shajari, Shaghayegh

    2014-04-01

    Bone loss due to thermo necrosis may weaken the purchase of surgically placed screws and pins, causing them to loosen postoperatively. The heat generated during the bone drilling is proportional to cutting speed and force and may be partially dissipated by the blood and tissue fluids, and somehow carried away by the chips formed. Increasing cutting speed will reduce cutting force and machining time. Therefore, it is of interest to study the effects of the increasing cutting speed on bone drilling characteristics. In this article, the effects of the increasing cutting speed ranging from 500 up to 18,000 r/min on the thrust force and the temperature rise are studied for bovine femur bone. The results of this study reveal that the high-speed drilling of 6000-7000 r/min may effectively reduce the two parameters of maximum cortical temperature and duration of exposure at temperatures above the allowable levels, which in turn reduce the probability of thermal necrosis in the drill site. This is due to the reduction of the cutting force and the increase in the chip disposal speed. However, more increases in the drill bit rotational speed result in an increase in the amount of temperature elevation, not because of sensible change in drilling force but a considerable increase in friction among the chips, drill bit and the hole walls.

  20. Continuing Experiments on the Receptivity of Transient Disturbances to Surface Roughness and Freestream Turbulence

    DTIC Science & Technology

    2008-09-28

    rotating the spindle of the angle controller with a precision of 0.2°. The multiple-hotwire holder is designed to carry four hotwires. One hotwire is a...section and a maximum operating speed of 25 m/s. The tunnel’s design follows the recommendations of Reshotko et al. (1997) for flow quality. Operating at...This sting assembly includes a shaft that rotates in a streamlined casing and allows angular calibration of slanted hotwires. Outside the test

  1. On the development of HSCT tail sizing criteria using linear matrix inequalities

    NASA Technical Reports Server (NTRS)

    Kaminer, Isaac

    1995-01-01

    This report presents the results of a study to extend existing high speed civil transport (HSCT) tail sizing criteria using linear matrix inequalities (LMI). In particular, the effects of feedback specifications, such as MIL STD 1797 Level 1 and 2 flying qualities requirements, and actuator amplitude and rate constraints on the maximum allowable cg travel for a given set of tail sizes are considered. Results comparing previously developed industry criteria and the LMI methodology on an HSCT concept airplane are presented.

  2. SU-F-T-459: ArcCHECK Machine QA : Highly Efficient Quality Assurance Tool for VMAT, SRS & SBRT Linear Accelerator Delivery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhatre, V; Patwe, P; Dandekar, P

    Purpose: Quality assurance (QA) of complex linear accelerators is critical and highly time consuming. ArcCHECK Machine QA tool is used to test geometric and delivery aspects of linear accelerator. In this study we evaluated the performance of this tool. Methods: Machine QA feature allows user to perform quality assurance tests using ArcCHECK phantom. Following tests were performed 1) Gantry Speed 2) Gantry Rotation 3) Gantry Angle 4)MLC/Collimator QA 5)Beam Profile Flatness & Symmetry. Data was collected on trueBEAM stX machine for 6 MV for a period of one year. The Gantry QA test allows to view errors in gantry angle,more » rotation & assess how accurately the gantry moves around the isocentre. The MLC/Collimator QA tool is used to analyze & locate the differences between leaf bank & jaw position of linac. The flatness & Symmetry test quantifies beam flatness & symmetry in IEC-y & x direction. The Gantry & Flatness/Symmetry test can be performed for static & dynamic delivery. Results: The Gantry speed was 3.9 deg/sec with speed maximum deviation around 0.3 deg/sec. The Gantry Isocentre for arc delivery was 0.9mm & static delivery was 0.4mm. The maximum percent positive & negative difference was found to be 1.9 % & – 0.25 % & maximum distance positive & negative diff was 0.4mm & – 0.3 mm for MLC/Collimator QA. The Flatness for Arc delivery was 1.8 % & Symmetry for Y was 0.8 % & X was 1.8 %. The Flatness for gantry 0°,270°,90° & 180° was 1.75,1.9,1.8 & 1.6% respectively & Symmetry for X & Y was 0.8,0.6% for 0°, 0.6,0.7% for 270°, 0.6,1% for 90° & 0.6,0.7% for 180°. Conclusion: ArcCHECK Machine QA is an useful tool for QA of Modern linear accelerators as it tests both geometric & delivery aspects. This is very important for VMAT, SRS & SBRT treatments.« less

  3. Optimization of fixed-range trajectories for supersonic transport aircraft

    NASA Astrophysics Data System (ADS)

    Windhorst, Robert Dennis

    1999-11-01

    This thesis develops near-optimal guidance laws that generate minimum fuel, time, or direct operating cost fixed-range trajectories for supersonic transport aircraft. The approach uses singular perturbation techniques to time-scale de-couple the equations of motion into three sets of dynamics, two of which are analyzed in the main body of this thesis and one of which is analyzed in the Appendix. The two-point-boundary-value-problems obtained by application of the maximum principle to the dynamic systems are solved using the method of matched asymptotic expansions. Finally, the two solutions are combined using the matching principle and an additive composition rule to form a uniformly valid approximation of the full fixed-range trajectory. The approach is used on two different time-scale formulations. The first holds weight constant, and the second allows weight and range dynamics to propagate on the same time-scale. Solutions for the first formulation are only carried out to zero order in the small parameter, while solutions for the second formulation are carried out to first order. Calculations for a HSCT design were made to illustrate the method. Results show that the minimum fuel trajectory consists of three segments: a minimum fuel energy-climb, a cruise-climb, and a minimum drag glide. The minimum time trajectory also has three segments: a maximum dynamic pressure ascent, a constant altitude cruise, and a maximum dynamic pressure glide. The minimum direct operating cost trajectory is an optimal combination of the two. For realistic costs of fuel and flight time, the minimum direct operating cost trajectory is very similar to the minimum fuel trajectory. Moreover, the HSCT has three local optimum cruise speeds, with the globally optimum cruise point at the highest allowable speed, if range is sufficiently long. The final range of the trajectory determines which locally optimal speed is best. Ranges of 500 to 6,000 nautical miles, subsonic and supersonic mixed flight, and varying fuel efficiency cases are analyzed. Finally, the payload-range curve of the HSCT design is determined.

  4. Novel Aerodynamic Design for Formula SAE Vehicles

    NASA Astrophysics Data System (ADS)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan

    2017-11-01

    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  5. High-speed clock recovery unit based on a phase aligner

    NASA Astrophysics Data System (ADS)

    Tejera, Efrain; Esper-Chain, Roberto; Tobajas, Felix; De Armas, Valentin; Sarmiento, Roberto

    2003-04-01

    Nowadays clock recovery units are key elements in high speed digital communication systems. For an efficient operation, this units should generate a low jitter clock based on the NRZ received data, and be tolerant to long absence of transitions. Architectures based on Hogge phase detectors have been widely used, nevertheless, they are very sensitive to jitter of the received data and they have a limited tolerance to the absence of transitions. This paper shows a novel high speed clock recovery unit based on a phase aligner. The system allows a very fast clock recovery with a low jitter, moreover, it is very resistant to absence of transitions. The design is based on eight phases obtained from a reference clock running at the nominal frequency of the received signal. This high speed reference clock is generated using a crystal and a clock multiplier unit. The phase alignment system chooses, as starting point, the two phases closest to the data phase. This allows a maximum error of 45 degrees between the clock and data signal phases. Furthermore, the system includes a feed-back loop that interpolates the chosen phases to reduce the phase error to zero. Due to the high stability and reduced tolerance of the local reference clock, the jitter obtained is highly reduced and the system becomes able to operate under long absence of transitions. This performances make this design suitable for systems such as high speed serial link technologies. This system has been designed for CMOS 0.25μm at 1.25GHz and has been verified through HSpice simulations.

  6. Experimental study to the influences of rotational speed and blade shape on water vortex turbine performance

    NASA Astrophysics Data System (ADS)

    Kueh, T. C.; Beh, S. L.; Ooi, Y. S.; Rilling, D. G.

    2017-04-01

    Water vortex turbine utilizes the natural behaviour of water to form free surface vortex for energy extraction. This allows simple construction and ease of management on the whole water vortex power plant system. To our findings, the literature study specifically on water vortex turbine is inadequate and low efficiency was reported. Influences of operating speed and blade shape on turbine performance are the two parameters investigated in this study. Euler Turbomachinery Equation and velocity triangle are used in the improvement analysis. Two turbines with flat blades and curved blades are tested and compared. Both turbines show similar rotational speed at no load condition. This suggested that the circulation force of the water vortex has more dominant effect on the turbine rotational speed, compared to the turbine’s geometry. Flat-blades turbine showed maximum efficiency of 21.63% at 3.27 rad/s whereas curved-blades turbine showed 22.24% at 3.56 rad/s. When operating load is applied, the backward-leaning curve helps the turbine blades to reduce the disturbance on the water vortex, and hence provide a better performance.

  7. Using fuzzy models in machining control system and assessment of sustainability

    NASA Astrophysics Data System (ADS)

    Grinek, A. V.; Boychuk, I. P.; Dantsevich, I. M.

    2018-03-01

    Description of the complex relationship of the optimum velocity with the temperature-strength state in the cutting zone for machining a fuzzy model is proposed. The fuzzy-logical conclusion allows determining the processing speed, which ensures effective, from the point of view of ensuring the quality of the surface layer, the temperature in the cutting zone and the maximum allowable cutting force. A scheme for stabilizing the temperature-strength state in the cutting zone using a nonlinear fuzzy PD–controller is proposed. The stability of the nonlinear system is estimated with the help of grapho–analytical realization of the method of harmonic balance and by modeling in MatLab.

  8. How fast do living organisms move: Maximum speeds from bacteria to elephants and whales

    NASA Astrophysics Data System (ADS)

    Meyer-Vernet, Nicole; Rospars, Jean-Pierre

    2015-08-01

    Despite their variety and complexity, living organisms obey simple scaling laws due to the universality of the laws of physics. In the present paper, we study the scaling between maximum speed and size, from bacteria to the largest mammals. While the preferred speed has been widely studied in the framework of Newtonian mechanics, the maximum speed has rarely attracted the interest of physicists, despite its remarkable scaling property; it is roughly proportional to length throughout nearly the whole range of running and swimming organisms. We propose a simple order-of-magnitude interpretation of this ubiquitous relationship, based on physical properties shared by life forms of very different body structure and varying by more than 20 orders of magnitude in body mass.

  9. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  10. Gender-related Differences in Maximum Gait Speed and Daily Physical Activity in Elderly Hospitalized Cardiac Inpatients

    PubMed Central

    Izawa, Kazuhiro P.; Watanabe, Satoshi; Hirano, Yasuyuki; Matsushima, Shinya; Suzuki, Tomohiro; Oka, Koichiro; Kida, Keisuke; Suzuki, Kengo; Osada, Naohiko; Omiya, Kazuto; Brubaker, Peter H.; Shimizu, Hiroyuki; Akashi, Yoshihiro J.

    2015-01-01

    Abstract Maximum gait speed and physical activity (PA) relate to mortality and morbidity, but little is known about gender-related differences in these factors in elderly hospitalized cardiac inpatients. This study aimed to determine differences in maximum gait speed and daily measured PA based on sex and the relationship between these measures in elderly cardiac inpatients. A consecutive 268 elderly Japanese cardiac inpatients (mean age, 73.3 years) were enrolled and divided by sex into female (n = 75, 28%) and male (n = 193, 72%) groups. Patient characteristics and maximum gait speed, average step count, and PA energy expenditure (PAEE) in kilocalorie per day for 2 days assessed by accelerometer were compared between groups. Gait speed correlated positively with in-hospital PA measured by average daily step count (r = 0.46, P < 0.001) and average daily PAEE (r = 0.47, P < 0.001) in all patients. After adjustment for left ventricular ejection fraction, step counts and PAEE were significantly lower in females than males (2651.35 ± 1889.92 vs 4037.33 ± 1866.81 steps, P < 0.001; 52.74 ± 51.98 vs 99.33 ± 51.40 kcal, P < 0.001), respectively. Maximum gait speed was slower and PA lower in elderly female versus male inpatients. Minimum gait speed and step count values in this study might be minimum target values for elderly male and female Japanese cardiac inpatients. PMID:25789953

  11. Monitoring Temperature and Fan Speed Using Ganglia and Winbond Chips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Cattie; /SLAC

    2006-09-27

    Effective monitoring is essential to keep a large group of machines, like the ones at Stanford Linear Accelerator Center (SLAC), up and running. SLAC currently uses Ganglia Monitoring System to observe about 2000 machines, analyzing metrics like CPU usage and I/O rate. However, metrics essential to machine hardware health, such as temperature and fan speed, are not being monitored. Many machines have a Winbond w83782d chip which monitors three temperatures, two of which come from dual CPUs, and returns the information when the sensor command is invoked. Ganglia also provides a feature, gmetric, that allows the users to monitor theirmore » own metrics and incorporate them into the monitoring system. The programming language Perl is chosen to implement a script that invokes the sensors command, extracts the temperature and fan speed information, and calls gmetric with the appropriate arguments. Two machines were used to test the script; the two CPUs on each machine run at about 65 Celsius, which is well within the operating temperature range (The maximum safe temperature range is 77-82 Celsius for the Pentium III processors being used). Installing the script on all machines with a Winbond w83782d chip allows the SLAC Scientific Computing and Computing Services group (SCCS) to better evaluate current cooling methods.« less

  12. The Waukesha Turbocharger Control Module: A tool for improved engine efficiency and response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zurlo, J.R.; Reinbold, E.O.; Mueller, J.

    1996-12-31

    The Waukesha Turbocharger Control Module allows optimum control of turbochargers on lean burn gaseous fueled engines. The Turbocharger Control Module is user programmed to provide either maximum engine efficiency or best engine response to load changes. In addition, the Turbocharger Control Module prevents undesirable turbocharger surge. The Turbocharger Control Module consists of an electronic control box, engine speed, intake manifold pressure, ambient temperature sensors, and electric actuators driving compressor bypass and wastegate valves. The Turbocharger Control Module expands the steady state operational environment of the Waukesha AT27GL natural gas engine from sea level to 1,525 m altitude with one turbochargermore » match and improves the engine speed turn down by 80 RPM. Finally, the Turbocharger Control Module improves engine response to load changes.« less

  13. Beyond maximum speed—a novel two-stimulus paradigm for brain-computer interfaces based on event-related potentials (P300-BCI)

    NASA Astrophysics Data System (ADS)

    Kaufmann, Tobias; Kübler, Andrea

    2014-10-01

    Objective. The speed of brain-computer interfaces (BCI), based on event-related potentials (ERP), is inherently limited by the commonly used one-stimulus paradigm. In this paper, we introduce a novel paradigm that can increase the spelling speed by a factor of 2, thereby extending the one-stimulus paradigm to a two-stimulus paradigm. Two different stimuli (a face and a symbol) are presented at the same time, superimposed on different characters and ERPs are classified using a multi-class classifier. Here, we present the proof-of-principle that is achieved with healthy participants. Approach. Eight participants were confronted with the novel two-stimulus paradigm and, for comparison, with two one-stimulus paradigms that used either one of the stimuli. Classification accuracies (percentage of correctly predicted letters) and elicited ERPs from the three paradigms were compared in a comprehensive offline analysis. Main results. The accuracies slightly decreased with the novel system compared to the established one-stimulus face paradigm. However, the use of two stimuli allowed for spelling at twice the maximum speed of the one-stimulus paradigms, and participants still achieved an average accuracy of 81.25%. This study introduced an alternative way of increasing the spelling speed in ERP-BCIs and illustrated that ERP-BCIs may not yet have reached their speed limit. Future research is needed in order to improve the reliability of the novel approach, as some participants displayed reduced accuracies. Furthermore, a comparison to the most recent BCI systems with individually adjusted, rapid stimulus timing is needed to draw conclusions about the practical relevance of the proposed paradigm. Significance. We introduced a novel two-stimulus paradigm that might be of high value for users who have reached the speed limit with the current one-stimulus ERP-BCI systems.

  14. Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion

    ERIC Educational Resources Information Center

    Poljak, Nikola

    2016-01-01

    The problem of determining the angle ? at which a point mass launched from ground level with a given speed v[subscript 0] will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of ? = p/4, producing a maximum range of D[subscript max] = v[superscript…

  15. Wind-energy recovery by a static Scherbius induction generator

    NASA Astrophysics Data System (ADS)

    Smith, G. A.; Nigim, K. A.

    1981-11-01

    The paper describes a technique for controlling a doubly fed induction generator driven by a windmill, or other form of variable-speed prime mover, to provide power generation into the national grid system. The secondary circuit of the generator is supplied at a variable frequency from a current source inverter which for test purposes is rated to allow energy recovery, from a simulated windmill, from maximum speed to standstill. To overcome the stability problems normally associated with doubly fed machines a novel signal generator, which is locked in phase with the rotor EMF, controls the secondary power to provide operation over a wide range of subsynchronous and supersynchronous speeds. Consideration of power flow enables the VA rating of the secondary power source to be determined as a function of the gear ratio and online operating range of the system. A simple current source model is used to predict performance which is compared with experimental results. The results indicate a viable system, and suggestions for further work are proposed.

  16. SU-E-T-444: Gravity Effect On Maximum Leaf Speed in Dynamic IMRT Treatments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olasolo, J; Pellejero, S; Gracia, M

    Purpose: A leaf sequencing algorithm has been recently developed in our department. Our purpose is to utilize this algorithm to reduce treatment time by studying the feasibility of using several maximum leaf speeds depending on gantry angle and leaf thickness (0.5 or 1 cm at isocenter). To do so, the gravity effect on MLC performance has been examined by means of analysing the dynalog files. Methods: Leaf position errors has been ascertained according to gantry angle and leaf speed in MLC Millenium120 (Varian). In order to do this, the following test has been designed: all leaves move in synchrony, withmore » same speed and 1 cm gap between opposite leaves. This test is implemented for 18 different speeds: 0.25-0.5-0.75-1-1.25-1.5-1.75-2-2.1-2.2-2.3-2.4-2.5-2.6-2.7-2.8-2.9-3.0 cm/s and 8 gantry angles: 0-45-90-135-180-225-270-315. Collimator angle is 2 degrees in all cases since it is the most usual one in IMRT treatments in our department. Dynamic tolerance is 2 mm. Dynalogs files of 10 repetitions of the test are analysed with a Mathlab in-house developed software and RMS error and 95th percentiles are calculated. Varian recommends 2.5 cm/s as the maximum leaf speed for its segmentation algorithm. In our case, we accept this speed in the most restrictive situation: gantry angle 270 and 1 cm leaf thickness. Maximum speeds for the rest of the cases are calculated by keeping the difference between 95th percentile and dynamic tolerance. In this way, beam hold-off probability does not increase. Results: Maximum speeds every 45 degrees of gantry rotation have been calculated for both leaf thickness. These results are 2.9-2.9-2.9-2.9-2.7-2.6-2.6-2.7 cm/s for 0.5 cm leaf thickness and 2.7-2.7-2.7-2.7-2.6-2.5-2.5-2.6 cm/s for 1 cm leaf thickness. Conclusion: Gravity effect on MLC positioning has been studied. Maximum leaf speed according to leaf thickness and gantry angle have been calculated which reduces treatment time.« less

  17. Maximum step length: relationships to age and knee and hip extensor capacities.

    PubMed

    Schulz, Brian W; Ashton-Miller, James A; Alexander, Neil B

    2007-07-01

    Maximum Step Length may be used to identify older adults at increased risk for falls. Since leg muscle weakness is a risk factor for falls, we tested the hypotheses that maximum knee and hip extension speed, strength, and power capacities would significantly correlate with Maximum Step Length and also that the "step out and back" Maximum Step Length [Medell, J.L., Alexander, N.B., 2000. A clinical measure of maximal and rapid stepping in older women. J. Gerontol. A Biol. Sci. Med. Sci. 55, M429-M433.] would also correlate with the Maximum Step Length of its two sub-tasks: stepping "out only" and stepping "back only". These sub-tasks will be referred to as versions of Maximum Step Length. Unimpaired younger (N=11, age=24[3]years) and older (N=10, age=73[5]years) women performed the above three versions of Maximum Step Length. Knee and hip extension speed, strength, and power capacities were determined on a separate day and regressed on Maximum Step Length and age group. Version and practice effects were quantified and subjective impressions of test difficulty recorded. Hypotheses were tested using linear regressions, analysis of variance, and Fisher's exact test. Maximum Step Length explained 6-22% additional variance in knee and hip extension speed, strength, and power capacities after controlling for age group. Within- and between-block and test-retest correlation values were high (>0.9) for all test versions. Shorter Maximum Step Lengths are associated with reduced knee and hip extension speed, strength, and power capacities after controlling for age. A single out-and-back step of maximal length is a feasible, rapid screening measure that may provide insight into underlying functional impairment, regardless of age.

  18. Multiroller Traction Drive Speed Reducer. Evaluation for Automotive Gas Turbine Engine

    DTIC Science & Technology

    1982-06-01

    Speed is deLermined by a magnetic pickup on a toothed wheel . Gas turbine engine instrumunelLtiouu i -designed 1f0r measurement of specific fuel...buffer seal and the fluid--film bearing measured a maximum total runout of 0.038 mm (0.0015 in.) at low speed. At higher speeds, above 8000 rpm, the...maximum was 0.025 mm (0.001 in.) except near 10 000 rpm, where the oscilloscope indicated an excursion of 0.045 mm (0.0018 in.). This runout was within

  19. Maximum Range of a Projectile Thrown from Constant-Speed Circular Motion

    NASA Astrophysics Data System (ADS)

    Poljak, Nikola

    2016-11-01

    The problem of determining the angle θ at which a point mass launched from ground level with a given speed v0 will reach a maximum distance is a standard exercise in mechanics. There are many possible ways of solving this problem, leading to the well-known answer of θ = π/4, producing a maximum range of D max = v0 2 / g , with g being the free-fall acceleration. Conceptually and calculationally more difficult problems have been suggested to improve student proficiency in projectile motion, with the most famous example being the Tarzan swing problem. The problem of determining the maximum distance of a point mass thrown from constant-speed circular motion is presented and analyzed in detail in this text. The calculational results confirm several conceptually derived conclusions regarding the initial throw position and provide some details on the angles and the way of throwing (underhand or overhand) that produce the maximum throw distance.

  20. Speed Profiles for Deceleration Guidance During Rollout and Turnoff (ROTO)

    NASA Technical Reports Server (NTRS)

    Barker, L. Keith; Hankins, Walter W., III; Hueschen, Richard M.

    1999-01-01

    Two NASA goals are to enhance airport safety and to improve capacity in all weather conditions. This paper contributes to these goals by examining speed guidance profiles to aid a pilot in decelerating along the runway to an exit. A speed profile essentially tells the pilot what the airplane's speed should be as a function of where the airplane is on the runway. While it is important to get off the runway as soon as possible (when striving to minimize runway occupancy time), the deceleration along a speed profile should be constrained by passenger comfort. Several speed profiles are examined with respect to their maximum decelerations and times to reach exit speed. One profile varies speed linearly with distance; another has constant deceleration; and two related nonlinear profiles delay maximum deceleration (braking) to reduce time spent on the runway.

  1. Novel Method for Analyzing Locomotor Ability after Spinal Cord Injury in Rats: Technical Note

    PubMed Central

    Shinozaki, Munehisa; Yasuda, Akimasa; Nori, Satoshi; Saito, Nobuhito; Toyama, Yoshiaki; Okano, Hideyuki; Nakamura, Masaya

    2013-01-01

    In the research for the treatment of spinal cord injury (SCI), the evaluation of motor function in model rats must be as objective, noninvasive, and ethical as possible. The maximum speed and acceleration of a mouse measured using a SCANET system were previously reported to vary significantly according to severity of SCI. In the present study, the motor performance of SCI model rats was examined with SCANET and assessed for Basso-Beattie-Bresnahan (BBB) score to determine the usefulness of the SCANET system in evaluating functional recovery after SCI. Maximum speed and acceleration within the measurement period correlated significantly with BBB scores. Furthermore, among several phased kinematic factors used in BBB scores, the capability of “plantar stepping” was associated with a drastic increase in maximum speed and acceleration after SCI. Therefore, evaluation of maximum speed and acceleration using a SCANET system is a useful method for rat models of SCI and can complement open field scoring scales. PMID:24097095

  2. Families of FPGA-Based Accelerators for Approximate String Matching1

    PubMed Central

    Van Court, Tom; Herbordt, Martin C.

    2011-01-01

    Dynamic programming for approximate string matching is a large family of different algorithms, which vary significantly in purpose, complexity, and hardware utilization. Many implementations have reported impressive speed-ups, but have typically been point solutions – highly specialized and addressing only one or a few of the many possible options. The problem to be solved is creating a hardware description that implements a broad range of behavioral options without losing efficiency due to feature bloat. We report a set of three component types that address different parts of the approximate string matching problem. This allows each application to choose the feature set required, then make maximum use of the FPGA fabric according to that application’s specific resource requirements. Multiple, interchangeable implementations are available for each component type. We show that these methods allow the efficient generation of a large, if not complete, family of accelerators for this application. This flexibility was obtained while retaining high performance: We have evaluated a sample against serial reference codes and found speed-ups of from 150× to 400× over a high-end PC. PMID:21603598

  3. Gliding flight in a jackdaw: a wind tunnel study.

    PubMed

    Rosén, M; Hedenström, A

    2001-03-01

    We examined the gliding flight performance of a jackdaw Corvus monedula in a wind tunnel. The jackdaw was able to glide steadily at speeds between 6 and 11 m s(-1). The bird changed its wingspan and wing area over this speed range, and we measured the so-called glide super-polar, which is the envelope of fixed-wing glide polars over a range of forward speeds and sinking speeds. The glide super-polar was an inverted U-shape with a minimum sinking speed (V(ms)) at 7.4 m s(-1) and a speed for best glide (V(bg)) at 8.3 m s(-)). At the minimum sinking speed, the associated vertical sinking speed was 0.62 m s(-1). The relationship between the ratio of lift to drag (L:D) and airspeed showed an inverted U-shape with a maximum of 12.6 at 8.5 m s(-1). Wingspan decreased linearly with speed over the whole speed range investigated. The tail was spread extensively at low and moderate speeds; at speeds between 6 and 9 m s(-1), the tail area decreased linearly with speed, and at speeds above 9 m s(-1) the tail was fully furled. Reynolds number calculated with the mean chord as the reference length ranged from 38 000 to 76 000 over the speed range 6-11 m s(-1). Comparisons of the jackdaw flight performance were made with existing theory of gliding flight. We also re-analysed data on span ratios with respect to speed in two other bird species previously studied in wind tunnels. These data indicate that an equation for calculating the span ratio, which minimises the sum of induced and profile drag, does not predict the actual span ratios observed in these birds. We derive an alternative equation on the basis of the observed span ratios for calculating wingspan and wing area with respect to forward speed in gliding birds from information about body mass, maximum wingspan, maximum wing area and maximum coefficient of lift. These alternative equations can be used in combination with any model of gliding flight where wing area and wingspan are considered to calculate sinking rate with respect to forward speed.

  4. Criteria for setting speed limits in urban and suburban areas in Florida

    DOT National Transportation Integrated Search

    2003-03-01

    Current methods of setting speed limits include maximum statutory limits by road class and geometric characteristics and speed zoning practice for the roads where the legislated limit does not reflect local differences. Speed limits in speed zones ar...

  5. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149... control and the airspeed indicator has features such as low speed awareness that provide ample warning...

  6. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149... control and the airspeed indicator has features such as low speed awareness that provide ample warning...

  7. Decentralized control algorithms of a group of vehicles in 2D space

    NASA Astrophysics Data System (ADS)

    Pshikhopov, V. K.; Medvedev, M. Y.; Fedorenko, R. V.; Gurenko, B. V.

    2017-02-01

    The problem of decentralized control of group of robots, described by kinematic and dynamic equations of motion in the plane, is considered. Group performs predetermined rectangular area passing at a fixed speed, keeping the line and a uniform distribution. The environment may contain a priori unknown moving or stationary obstacles. Decentralized control algorithms, based on the formation of repellers in the state space of robots, are proposed. These repellers form repulsive forces generated by dynamic subsystems that extend the state space of robots. These repulsive forces are dynamic functions of distances and velocities of robots in the area of operation of the group. The process of formation of repellers allows to take into account the dynamic properties of robots, such as the maximum speed and acceleration. The robots local control law formulas are derived based on positionally-trajectory control method, which allows to operate with non-linear models. Lyapunov function in the form of a quadratic function of the state variables is constructed to obtain a nonlinear closed-loop control system. Due to the fact that a closed system is decomposed into two independent subsystems Lyapunov function is also constructed as two independent functions. Numerical simulation of the motion of a group of five robots is presented. In this simulation obstacles are presented by the boundaries of working area and a movable object of a given radius, moving rectilinear and uniform. Obstacle speed is comparable to the speeds of the robots in a group. The advantage of the proposed method is ensuring the stability of the trajectories and consideration of the limitations on the speed and acceleration at the trajectory planning stage. Proposed approach can be used for more general robots' models, including robots in the three-dimensional environment.

  8. High-speed optical three-axis vector magnetometry based on nonlinear Hanle effect in rubidium vapor

    NASA Astrophysics Data System (ADS)

    Azizbekyan, Hrayr; Shmavonyan, Svetlana; Khanbekyan, Aleksandr; Movsisyan, Marina; Papoyan, Aram

    2017-07-01

    The magnetic-field-compensation optical vector magnetometer based on the nonlinear Hanle effect in alkali metal vapor allowing two-axis measurement operation has been further elaborated for three-axis performance, along with significant reduction of measurement time. The upgrade was achieved by implementing a two-beam resonant excitation configuration and a fast maximum searching algorithm. Results of the proof-of-concept experiments, demonstrating 1 μT B-field resolution, are presented. The applied interest and capability of the proposed technique is analyzed.

  9. SU-F-BRE-16: VMAT Commissioning and Quality Assurance (QA) of An Elekta Synergy-STM Linac Using ICOM Test HarnessTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, A; Ironwood CRC, Phoenix, AZ; Rajaguru, P

    2014-06-15

    Purpose: To establish a set of tests based on the iCOM software that can be used to commission and perform periodic QA of VMAT delivery on the Elekta Synergy-S, commonly known as the Beam Modulator (BM). Methods: iCOM is used to create and deliver customized treatment fields to characterize the system in terms of 1) MLC positioning accuracy under static and dynamic delivery with full gantry rotation, 2) MLC positioning with known errors, 3) Maximum dose rate, 4) Maximum MLC speed, 5) Maximum gantry speed, 6) Synchronization: gantry speed versus dose rate, and 7) Synchronization: MLC speed versus dose rate.more » The resulting images were captured on the iView GT and exported in DICOM format to Dosimetry Check™ system for visual and quantitative analysis. For the initial commissioning phase, the system tests described should be supplemented with extensive patient QAs covering all clinically relevant treatment sites. Results: The system performance test suite showed that on our Synergy-S, MLC positioning was accurate under both static and dynamic deliveries. Intentional errors of 1 mm were also easily identified on both static and dynamic picket fence tests. Maximum dose rate was verified with stop watch to be consistently between 475-480 MU/min. Maximum gantry speed and MLC speed were 5.5 degree/s and 2.5 cm/s respectively. After accounting for beam flatness, both synchronization tests, gantry versus dose rate and MLC speed versus dose rate, were successful as the fields were uniform across the strips and there were no obvious cold/hot spots. Conclusion: VMAT commissioning and quality assurance should include machine characterization tests in addition to patient QAs. Elekta iCOM is a valuable tool for the design of customized VMAT field with specific MU, MLC leaf positions, dose rate, and indirect control of MLC and gantry speed at each of its control points.« less

  10. Using Game Theoretic Models to Predict Pilot Behavior in NextGen Merging and Landing Scenario

    NASA Technical Reports Server (NTRS)

    Yildiz, Yildiray; Lee, Ritchie; Brat, Guillaume

    2012-01-01

    In this paper, we present an implementation of the Semi Network-Form Game framework to predict pilot behavior in a merging and landing scenario. In this scenario, two aircraft are approaching to a freeze horizon with approximately equal distance when they become aware of each other via an ADS-B communication link that will be available in NextGen airspace. Both pilots want to gain advantage over the other by entering the freeze horizon earlier and obtain the first place in landing. They re-adjust their speed accordingly. However, they cannot simply increase their speed to the maximum allowable values since they are concerned with safety, separation distance, effort, possibility of being vectored-off from landing and possibility of violating speed constraints. We present how to model these concerns and the rest of the system using semi network-from game framework. Using this framework, based on certain assumptions on pilot utility functions and on system configuration, we provide estimates of pilot behavior and overall system evolution in time. We also discuss the possible employment of this modeling tool for airspace design optimization. To support this discussion, we provide a case where we investigate the effect of increasing the merging point speed limit on the commanded speed distribution and on the percentage of vectored aircraft.

  11. Flow Field of a Human Cough

    NASA Astrophysics Data System (ADS)

    Hertzberg, Jean

    2005-11-01

    Cough generated infectious aerosols are of interest while developing strategies for the mitigation of disease risks ranging from the common cold to SARS. In this work, the velocity field of human cough was measured using particle image velocimetry (PIV). The project subjects (total 29) coughed into an enclosure seeded with stage fog for most measurements. Cough flow speed profiles, average widths of the cough jet, waveform, and maximum cough speeds were measured. Maximum cough speeds ranged from 1.5 m/s to 28.8 m/s. No correlation was found for maximum cough flow speeds to height or gender. The slow growth of the width of the cough flow suggests that a cough may penetrate farther into a room than a steady jet of similar volume. The velocity profile was found to scale with the square root of downstream distance.

  12. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149(b). [Amdt. 23-7, 34 FR 13097... lighted area such as the landing gear control and the airspeed indicator has features such as low speed...

  13. Wind effects on coastal zone color scanner chlorophyll patterns in the U.S. Mid-Atlantic Bight during spring 1979

    NASA Technical Reports Server (NTRS)

    Eslinger, David L.; Iverson, Richard L.

    1986-01-01

    Coastal zone color scanner (CZCS) chlorophyll concentration increases in the Mid-Atlantic Bight were associated with high wind speeds in continental shelf waters during March and May 1979. Maximum spring CZCS chlorophyll concentrations occurred during April when the water column was not thermally stratified and were spatially and temporally associated with reductions in wind speed both in onshelf and in offshelf regions. Increased chlorophyll concentrations in offshelf waters were associated with high wind speeds during May when a deep chlorophyll maximum was present. Chlorophyll patchiness was observed on length scales typical of those controlled by biological processes during the April low-wind period but not during March or May when wind speeds were greater. The spring CZCS chlorophyll maximum in the southern portion of the Mid-Atlantic Bight occurred in response to a reduction in mixed layer depth caused by decreased wind speeds and not by increased water column stratification.

  14. Rapid determination of leaf area and plant height by using light curtain arrays in four species with contrasting shoot architecture

    PubMed Central

    2014-01-01

    Background Light curtain arrays (LC), a recently introduced phenotyping method, yield a binary data matrix from which a shoot silhouette is reconstructed. We addressed the accuracy and applicability of LC in assessing leaf area and maximum height (base to the highest leaf tip) in a phenotyping platform. LC were integrated to an automated routine for positioning, allowing in situ measurements. Two dicotyledonous (rapeseed, tomato) and two monocotyledonous (maize, barley) species with contrasting shoot architecture were investigated. To evaluate if averaging multiple view angles helps in resolving self-overlaps, we acquired a data set by rotating plants every 10° for 170°. To test how rapid these measurements can be without loss of information, we evaluated nine scanning speeds. Leaf area of overlapping plants was also estimated to assess the possibility to scale this method for plant stands. Results The relation between measured and calculated maximum height was linear and nearly the same for all species. Linear relations were also found between plant leaf area and calculated pixel area. However, the regression slope was different between monocotyledonous and dicotyledonous species. Increasing the scanning speed stepwise from 0.9 to 23.4 m s−1 did not affect the estimation of maximum height. Instead, the calculated pixel area was inversely proportional to scanning speed. The estimation of plant leaf area by means of calculated pixel area became more accurate by averaging consecutive silhouettes and/or increasing the angle between them. Simulations showed that decreasing plant distance gradually from 20 to 0 cm, led to underestimation of plant leaf area owing to overlaps. This underestimation was more important for large plants of dicotyledonous species and for small plants of monocotyledonous ones. Conclusions LC offer an accurate estimation of plant leaf area and maximum height, while the number of consecutive silhouettes that needs to be averaged is species-dependent. A constant scanning speed is important for leaf area estimations by using LC. Simulations of the effect of varying plant spacing gave promising results for method application in sets of partly overlapping plants, which applies also to field conditions during and after canopy closure for crops sown in rows. PMID:24721154

  15. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    NASA Astrophysics Data System (ADS)

    Scopel, Stefano; Yoon, Kook-Hyun

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive to the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.

  16. Inelastic dark matter with spin-dependent couplings to protons and large modulation fractions in DAMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scopel, Stefano; Yoon, Kook-Hyun, E-mail: scopel@sogang.ac.kr, E-mail: koreasds@naver.com

    2016-02-01

    We discuss a scenario where the DAMA modulation effect is explained by a Weakly Interacting Massive Particle (WIMP) which upscatters inelastically to a heavier state and predominantly couples to the spin of protons. In this scenario constraints from xenon and germanium targets are evaded dynamically, due to the suppression of the WIMP coupling to neutrons, while those from fluorine targets are evaded kinematically, because the minimal WIMP incoming speed required to trigger upscatters off fluorine exceeds the maximal WIMP velocity in the Galaxy, or is very close to it. In this scenario WIMP scatterings off sodium are usually sensitive tomore » the large-speed tail of the WIMP velocity distribution and modulated fractions of the signal close to unity arise in a natural way. On the other hand, a halo-independent analysis with more conservative assumptions about the WIMP velocity distribution allows to extend the viable parameter space to configurations where large modulated fractions are not strictly necessary. We discuss large modulated fractions in the Maxwellian case showing that they imply a departure from the usual cosine time dependence of the expected signal in DAMA. However we explicitly show that the DAMA data is not sensitive to this distortion, both in time and frequency space, even in the extreme case of a 100 % modulated fraction. Moreover the same scenario provides an explanation of the maximum in the energy spectrum of the modulation amplitude detected by DAMA in terms of WIMPs whose minimal incoming speed matches the kinematic threshold for inelastic upscatters. For the elastic case the detection of such maximum suggests an inversion of the modulation phase below the present DAMA energy threshold, while this is not expected for inelastic scattering. This may allow to discriminate between the two scenarios in a future low-threshold analysis of the DAMA data.« less

  17. Statistical inference of seabed sound-speed structure in the Gulf of Oman Basin.

    PubMed

    Sagers, Jason D; Knobles, David P

    2014-06-01

    Addressed is the statistical inference of the sound-speed depth profile of a thick soft seabed from broadband sound propagation data recorded in the Gulf of Oman Basin in 1977. The acoustic data are in the form of time series signals recorded on a sparse vertical line array and generated by explosive sources deployed along a 280 km track. The acoustic data offer a unique opportunity to study a deep-water bottom-limited thickly sedimented environment because of the large number of time series measurements, very low seabed attenuation, and auxiliary measurements. A maximum entropy method is employed to obtain a conditional posterior probability distribution (PPD) for the sound-speed ratio and the near-surface sound-speed gradient. The multiple data samples allow for a determination of the average error constraint value required to uniquely specify the PPD for each data sample. Two complicating features of the statistical inference study are addressed: (1) the need to develop an error function that can both utilize the measured multipath arrival structure and mitigate the effects of data errors and (2) the effect of small bathymetric slopes on the structure of the bottom interacting arrivals.

  18. Thermite combustion enhancement resulting from biomodal luminum distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies that incorporated nano-scale or ultrafine aluminum (Al) as part of an energetic formulation and demonstrated significant performance enhancement. Decreasing the fuel particle size from the micron to nanometer range alters the material's chemical and thermal-physical properties. The result is increased particle reactivity that translates to an increase in the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the energetic composite. Ignition sensitivity and combustion wave speed experiments were performed using a thermite composite of Al and MoO{sub 3} pressedmore » to a theoretical maximum density of 50% (2 g/cm{sup 3}). A bimodal Al particle size distribution was prepared using 4 or 20 {mu}m Al fuel particles that were replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bimodal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50W CO{sub 2} laser. High speed imaging diagnostics were used to measure the ignition delay time and combustion wave speed.« less

  19. Functional and Structural Correlates of Motor Speed in the Cerebellar Anterior Lobe

    PubMed Central

    Wenzel, Uwe; Taubert, Marco; Ragert, Patrick; Krug, Jürgen; Villringer, Arno

    2014-01-01

    In athletics, motor performance is determined by different abilities such as technique, endurance, strength and speed. Based on animal studies, motor speed is thought to be encoded in the basal ganglia, sensorimotor cortex and the cerebellum. The question arises whether there is a unique structural feature in the human brain, which allows “power athletes” to perform a simple foot movement significantly faster than “endurance athletes”. We acquired structural and functional brain imaging data from 32 track-and-field athletes. The study comprised of 16 “power athletes” requiring high speed foot movements (sprinters, jumpers, throwers) and 16 endurance athletes (distance runners) which in contrast do not require as high speed foot movements. Functional magnetic resonance imaging (fMRI) was used to identify speed specific regions of interest in the brain during fast and slow foot movements. Anatomical MRI scans were performed to assess structural grey matter volume differences between athletes groups (voxel based morphometry). We tested maximum movement velocity of plantarflexion (PF-Vmax) and acquired electromyographical activity of the lateral and medial gastrocnemius muscle. Behaviourally, a significant difference between the two groups of athletes was noted in PF-Vmax and fMRI indicates that fast plantarflexions are accompanied by increased activity in the cerebellar anterior lobe. The same region indicates increased grey matter volume for the power athletes compared to the endurance counterparts. Our results suggest that speed-specific neuro-functional and -structural differences exist between power and endurance athletes in the peripheral and central nervous system. PMID:24800742

  20. Measurement of Vehicle Air Conditioning Pull-Down Period

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, John F.; Huff, Shean P.; Moore, Larry G.

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner systemmore » would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.« less

  1. 40 CFR 1066.235 - Speed verification procedure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... before testing, and after major maintenance. (c) Procedure. Use one of the following procedures to verify... dynamometer control circuits. Determine the speed error as follows: (i) Set the dynamometer to speed-control mode. Set the dynamometer speed to a value between 4.2 m/s and the maximum speed expected during...

  2. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  3. 14 CFR 91.117 - Aircraft speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...

  4. 14 CFR 23.253 - High speed characteristics.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false High speed characteristics. 23.253 Section... Requirements § 23.253 High speed characteristics. If a maximum operating speed VMO/MMO is established under § 23.1505(c), the following speed increase and recovery characteristics must be met: (a) Operating...

  5. 14 CFR 23.1507 - Operating maneuvering speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Operating maneuvering speed. 23.1507... Limitations and Information § 23.1507 Operating maneuvering speed. The maximum operating maneuvering speed, VO, must be established as an operating limitation. VO is a selected speed that is not greater than VS√n...

  6. 14 CFR 23.1507 - Operating maneuvering speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Operating maneuvering speed. 23.1507... Limitations and Information § 23.1507 Operating maneuvering speed. The maximum operating maneuvering speed, VO, must be established as an operating limitation. VO is a selected speed that is not greater than VS√n...

  7. 14 CFR 91.117 - Aircraft speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aircraft speed. 91.117 Section 91.117... speed. (a) Unless otherwise authorized by the Administrator, no person may operate an aircraft below 10... than the maximum speed prescribed in this section, the aircraft may be operated at that minimum speed...

  8. Results of the Imager for Mars Pathfinder windsock experiment

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Kraft, M.; Wilson, G.; Golombek, M.; Herkenhoff, K.; Murphy, J.; Smith, P.

    2000-01-01

    The Imager for Mars Pathfinder (IMP) windsock experiment measured wind speeds at three heights within 1.2 m of the Martian surface during Pathfinder landed operations. These wind data allowed direct measurement of near-surface wind profiles on Mars for the first time, including determination of aerodynamic roughness length and wind friction speeds. Winds were light during periods of windsock imaging, but data from the strongest breezes indicate aerodynamic roughness length of 3 cm at the landing site, with wind friction speeds reaching 1 m/s. Maximum wind friction speeds were about half of the threshold-of-motion friction speeds predicted for loose, fine-grained materials on smooth Martian terrain and about one third of the threshold-of-motion friction speeds predicted for the same size particles over terrain with aerodynamic roughness of 3 cm. Consistent with this, and suggesting that low wind speeds prevailed when the windsock array was not imaged and/or no particles were available for aeolian transport, no wind-related changes to the surface during mission operations have been recognized. The aerodynamic roughness length reported here implies that proposed deflation of fine particles around the landing site, or activation of duneforms seen by IMP and Sojourner, would require wind speeds >28 m/s at the Pathfinder top windsock height (or >31 m/s at the equivalent Viking wind sensor height of 1.6 m) and wind speeds >45 m/s above 10 m. These wind speeds would cause rock abrasion if a supply of durable particles were available for saltation. Previous analyses indicate that the Pathfinder landing site probably is rockier and rougher than many other plains units on Mars, so aerodynamic roughness length elsewhere probably is less than the 3-cm value reported for the Pathfinder site. Copyright 2000 by the American Geophysical Union.

  9. Cross-linkers both drive and brake cytoskeletal remodeling and furrowing in cytokinesis.

    PubMed

    Descovich, Carlos Patino; Cortes, Daniel B; Ryan, Sean; Nash, Jazmine; Zhang, Li; Maddox, Paul S; Nedelec, Francois; Maddox, Amy Shaub

    2018-03-01

    Cell shape changes such as cytokinesis are driven by the actomyosin contractile cytoskeleton. The molecular rearrangements that bring about contractility in nonmuscle cells are currently debated. Specifically, both filament sliding by myosin motors, as well as cytoskeletal cross-linking by myosins and nonmotor cross-linkers, are thought to promote contractility. Here we examined how the abundance of motor and nonmotor cross-linkers affects the speed of cytokinetic furrowing. We built a minimal model to simulate contractile dynamics in the Caenorhabditis elegans zygote cytokinetic ring. This model predicted that intermediate levels of nonmotor cross-linkers are ideal for contractility; in vivo, intermediate levels of the scaffold protein anillin allowed maximal contraction speed. Our model also demonstrated a nonlinear relationship between the abundance of motor ensembles and contraction speed. In vivo, thorough depletion of nonmuscle myosin II delayed furrow initiation, slowed F-actin alignment, and reduced maximum contraction speed, but partial depletion allowed faster-than-expected kinetics. Thus, cytokinetic ring closure is promoted by moderate levels of both motor and nonmotor cross-linkers but attenuated by an over-abundance of motor and nonmotor cross-linkers. Together, our findings extend the growing appreciation for the roles of cross-linkers in cytokinesis and reveal that they not only drive but also brake cytoskeletal remodeling. © 2018 Descovich, Cortes, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. High-speed holographic system for full-field transient vibrometry of the human tympanic membrane

    NASA Astrophysics Data System (ADS)

    Dobrev, I.; Harrington, E. J.; Cheng, T.; Furlong, C.; Rosowski, J. J.

    2014-07-01

    Understanding of the human hearing process requires the quantification of the transient response of the human ear and the human tympanic membrane (TM or eardrum) in particular. Current state-of-the-art medical methods to quantify the transient acousto-mechanical response of the TM provide only averaged acoustic or local information at a few points. This may be insufficient to fully describe the complex patterns unfolding across the full surface of the TM. Existing engineering systems for full-field nanometer measurements of transient events, typically based on holographic methods, constrain the maximum sampling speed and/or require complex experimental setups. We have developed and implemented of a new high-speed (i.e., > 40 Kfps) holographic system (HHS) with a hybrid spatio-temporal local correlation phase sampling method that allows quantification of the full-field nanometer transient (i.e., > 10 kHz) displacement of the human TM. The HHS temporal accuracy and resolution is validated versus a LDV on both artificial membranes and human TMs. The high temporal (i.e., < 24 μs) and spatial (i.e., >100k data points) resolution of our HHS enables simultaneous measurement of the time waveform of the full surface of the TM. These capabilities allow for quantification of spatially-dependent motion parameters such as energy propagation delays surface wave speeds, which can be used to infer local material properties across the surface of the TM. The HHS could provide a new tool for the investigation of the auditory system with applications in medical research, in-vivo clinical diagnosis as well as hearing aids design.

  11. Wind energy potential assessment of Cameroon's coastal regions for the installation of an onshore wind farm.

    PubMed

    Arreyndip, Nkongho Ayuketang; Joseph, Ebobenow; David, Afungchui

    2016-11-01

    For the future installation of a wind farm in Cameroon, the wind energy potentials of three of Cameroon's coastal cities (Kribi, Douala and Limbe) are assessed using NASA average monthly wind data for 31 years (1983-2013) and compared through Weibull statistics. The Weibull parameters are estimated by the method of maximum likelihood, the mean power densities, the maximum energy carrying wind speeds and the most probable wind speeds are also calculated and compared over these three cities. Finally, the cumulative wind speed distributions over the wet and dry seasons are also analyzed. The results show that the shape and scale parameters for Kribi, Douala and Limbe are 2.9 and 2.8, 3.9 and 1.8 and 3.08 and 2.58, respectively. The mean power densities through Weibull analysis for Kribi, Douala and Limbe are 33.7 W/m2, 8.0 W/m2 and 25.42 W/m2, respectively. Kribi's most probable wind speed and maximum energy carrying wind speed was found to be 2.42 m/s and 3.35 m/s, 2.27 m/s and 3.03 m/s for Limbe and 1.67 m/s and 2.0 m/s for Douala, respectively. Analysis of the wind speed and hence power distribution over the wet and dry seasons shows that in the wet season, August is the windiest month for Douala and Limbe while September is the windiest month for Kribi while in the dry season, March is the windiest month for Douala and Limbe while February is the windiest month for Kribi. In terms of mean power density, most probable wind speed and wind speed carrying maximum energy, Kribi shows to be the best site for the installation of a wind farm. Generally, the wind speeds at all three locations seem quite low, average wind speeds of all the three studied locations fall below 4.0m/s which is far below the cut-in wind speed of many modern wind turbines. However we recommend the use of low cut-in speed wind turbines like the Savonius for stand alone low energy needs.

  12. Calculation of wind speeds required to damage or destroy buildings

    NASA Astrophysics Data System (ADS)

    Liu, Henry

    Determination of wind speeds required to damage or destroy a building is important not only for the improvement of building design and construction but also for the estimation of wind speeds in tornadoes and other damaging storms. For instance, since 1973 the U.S. National Weather Service has been using the well-known Fujita scale (F scale) to estimate the maximum wind speeds of tornadoes [Fujita, 1981]. The F scale classifies tornadoes into 13 numbers, F-0 through F-12. The wind speed (maximum gust speed) associated with each F number is given in Table 1. Note that F-6 through F-12 are for wind speeds between 319 mi/hr (mph) and the sonic velocity (approximately 760 mph; 1 mph = 1.6 km/kr). However, since no tornadoes have been classified to exceed F-5, the F-6 through F-12 categories have no practical meaning [Fujita, 1981].

  13. Examining Impulse-Variability in Kicking.

    PubMed

    Chappell, Andrew; Molina, Sergio L; McKibben, Jonathon; Stodden, David F

    2016-07-01

    This study examined variability in kicking speed and spatial accuracy to test the impulse-variability theory prediction of an inverted-U function and the speed-accuracy trade-off. Twenty-eight 18- to 25-year-old adults kicked a playground ball at various percentages (50-100%) of their maximum speed at a wall target. Speed variability and spatial error were analyzed using repeated-measures ANOVA with built-in polynomial contrasts. Results indicated a significant inverse linear trajectory for speed variability (p < .001, η2= .345) where 50% and 60% maximum speed had significantly higher variability than the 100% condition. A significant quadratic fit was found for spatial error scores of mean radial error (p < .0001, η2 = .474) and subject-centroid radial error (p < .0001, η2 = .453). Findings suggest variability and accuracy of multijoint, ballistic skill performance may not follow the general principles of impulse-variability theory or the speed-accuracy trade-off.

  14. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  15. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles

    PubMed Central

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-01-01

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity. PMID:25031685

  16. Swimming Stroke Mechanical Efficiency and Physiological Responses of 100-m Backstroke with and without the use of paddles.

    PubMed

    Messinis, Spilios; Beidaris, Nikos; Messinis, Spyros; Soultanakis, Helen; Botonis, Petros; Platanou, Theodoros

    2014-03-27

    The use of swimming aids during training contributes to greater swimming efficiency by the improvement of the swimming specific power of the athlete. The purpose of this study was to compare the swimming stroke technical characteristics and the physiological responses of swimming 100-m backstroke, with and without the use of paddles at maximum and sub-maximum intensities at the same swimming speed. Eight swimmers competing at the national level participated in this study. The measurements took place at 4 different sessions. At every session, each participant swam individually one 100-m backstroke swimming trial with or without paddles at the same speed and two levels of intensity (100% and 85% of maximum speed). The results revealed lower stroke length, greater stroke number and gliding length without the use of swimming paddles at both intensities. Blood lactate concentration (10.03±2.96 vs. 5.85±2.23 mmol/l) and Rating of Perceived Exertion (17.43±2.07 vs. 12±2.82) were greater without the use of swimming paddles only at 100% of maximum speed. Thus, swimming backstroke with paddles compared to unaided swimming, at a similar speed, showed a greater efficiency at maximal but not at sub-maximal intensity.

  17. A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery

    PubMed Central

    Ferhanoglu, Onur; Yildirim, Murat; Subramanian, Kaushik; Ben-Yakar, Adela

    2014-01-01

    Towards developing precise microsurgery tools for the clinic, we previously developed image-guided miniaturized devices using low repetition rate amplified ultrafast lasers for surgery. To improve the speed of tissue removal while reducing device diameter, here we present a new 5-mm diameter device that delivers high-repetition rate laser pulses for high speed ultrafast laser microsurgery. The device consists of an air-core photonic bandgap fiber (PBF) for the delivery of high energy pulses, a piezoelectric tube actuator for fiber scanning, and two aspheric lenses for focusing the light. Its inline optical architecture provides easy alignment and substantial size reduction to 5 mm diameter as compared to our previous MEMS-scanning devices while realizing improved intensity squared (two-photon) lateral and axial resolutions of 1.16 μm and 11.46 μm, respectively. Our study also sheds light on the maximum pulse energies that can be delivered through the air-core PBF and identifies cladding damage at the input facet of the fiber as the limiting factor. We have achieved a maximum energy delivery larger than 700 nJ at 92% coupling efficiency. An in depth analysis reveals how this value is greatly affected by possible slight misalignments of the beam during coupling and the measured small beam pointing fluctuations. In the absence of these imperfections, self-phase modulation becomes the limiting factor for the maximum energy delivery, setting the theoretical upper bound to near 2 μJ for a 1-m long, 7-μm, air-core PBF. Finally, the use of a 300 kHz repetition rate fiber laser enabled rapid ablation of 150 µm x 150 µm area within only 50 ms. Such ablation speeds can now allow the surgeons to translate the surgery device as fast as ~4 mm/s to continuously remove a thin layer of a 150 µm wide tissue. Thanks to a high optical transmission efficiency of the in-line optical architecture of the device and improved resolution, we could successfully perform ablation of scarred cheek pouch tissue, drilling through a thin slice. With further development, this device can serve as a precise and high speed ultrafast laser scalpel in the clinic. PMID:25071946

  18. Cost-benefit evaluation of large truck-automobile speed limit differentials on rural interstate highways.

    DOT National Transportation Integrated Search

    2005-11-01

    Speed differentials between large trucks and automobiles on rural interstate highways are due to : both state regulated speed limits and commercial trucking company policies that restrict maximum truck : speeds. The initial portion of this effort inv...

  19. Evaluating the impacts of proposed speed limit increases in Michigan : research spotlight.

    DOT National Transportation Integrated Search

    2014-07-01

    Recent proposed speed limit legislation led MDOT to evaluate the : states current speed limit policies and potential alternatives. Currently, : Michigan freeways have a maximum speed limit of 70 mph for passenger : vehicles and 60 mph for trucks a...

  20. Grip and limb force limits to turning performance in competition horses

    PubMed Central

    Tan, Huiling; Wilson, Alan M.

    2011-01-01

    Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator–prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof–surface interaction setting the limit to centripetal force to avoid slipping. PMID:21147799

  1. Grip and limb force limits to turning performance in competition horses.

    PubMed

    Tan, Huiling; Wilson, Alan M

    2011-07-22

    Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator-prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof-surface interaction setting the limit to centripetal force to avoid slipping.

  2. Rockwell-Rocketdyne flywheel test results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steele, R.S. Jr.; Babelay, E.F. Jr.; Sutton, B.J.

    1981-01-01

    Results are presented of the spin test evaluation of the Rockwell-Rocketdyne RPE-10 design flywheel at the Oak Ridge Flywheel Evaluation Laboratory. Details of the static evaluation, including measures of weight, inertia, natural frequencies, and radiography, are also presented. The flywheel was subjected to seven spin cycles with a maximum of 383 rps, 105% of design speed. At that speed, the energy stored was 1.94 kWhr at 36.1 Whr/kg. The maximum speed was limited by the inability of the test facility to accommodate the increasing eccentric shift of both hub disks with increasing speed. No material degradation was observed during themore » testing.« less

  3. Rockwell-Rocketdyne flywheel test results

    NASA Astrophysics Data System (ADS)

    Steele, R. S., Jr.; Babelay, E. F., Jr.; Sutton, B. J.

    1981-01-01

    Results are presented of the spin test evaluation of the Rockwell-Rocketdyne RPE-10 design flywheel at the Oak Ridge Flywheel Evaluation Laboratory. Details of the static evaluation, including measures of weight, inertia, natural frequencies, and radiography, are also presented. The flywheel was subjected to seven spin cycles with a maximum of 383 rps, 105% of design speed. At that speed, the energy stored was 1.94 kWhr at 36.1 Whr/kg. The maximum speed was limited by the inability of the test facility to accommodate the increasing eccentric shift of both hub disks with increasing speed. No material degradation was observed during the testing.

  4. Effect of speed and press fit on fatigue life of roller-bearing inner-race contact

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Zaretsky, E. V.

    1985-01-01

    An analysis was performed to determine the effects of inner ring speed and press fit on the rolling element fatigue life of a roller bearing inner race contact. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner ring speed, load, and geometry and were applied to a conventional ring life analysis. The race contact fatigue life was reduced by more than 90 percent for some conditions when speed and press fit were considered. The depth of the maximum shear stress remained virtually unchanged.

  5. Performance of J33 turbojet engine with shaft-power extraction III : turbine performance

    NASA Technical Reports Server (NTRS)

    Huppert, M C; Nettles, J C

    1949-01-01

    The performance of the turbine component of a J33 turbojet engine was determined over a range of turbine speeds from 8000 to 11,500 rpm.Turbine-inlet temperature was varied from the minimum required to drive the compressor to a maximum of approximately 2000 degrees R at each of several intermediate turbine speeds. Data are presented that show the horsepower developed by the turbine per pound of gas flow. The relation between turbine-inlet stagnation pressure, turbine-outlet stagnation pressure, and turbine-outlet static pressure was established. The turbine-weight-flow parameter varied from 39.2 to 43.6. The maximum turbine efficiency measured was 0.86 at a pressure ratio of 3.5 and a ratio of blade speed to theoretical nozzle velocity of 0.39. A generalized performance map of the turbine-horsepower parameter plotted against the turbine-speed parameter indicated that the best turbine efficiency is obtained when the turbine power is 10 percent greater than the compressor horsepower. The variation of efficiency with the ratio of blade speed to nozzle velocity indicated that the turbine operates at a speed above that for maximum efficiency when the engine is operated normally with the 19-inch-diameter jet nozzle.

  6. Influence of Different Solar Drivers on the Winds in the Middle Atmosphere and on Geomagnetic Disturbances

    DTIC Science & Technology

    2007-05-18

    number and intensity are highest in sunspot maximum. CME’s are considered the sources of the most intense geomagnetic storms (Gonzalez et al., 2002... storm . High speed solar wind The geomagnetic activity during the declining phase of the solar cycle can be even higher that at sunspot maximum. In...characteristic “calm before the storm ” – the decrease a couple of days before the maximum disturbance – in the case of high speed streams (Borovsky and

  7. High speed galloping in the cheetah (Acinonyx jubatus) and the racing greyhound (Canis familiaris): spatio-temporal and kinetic characteristics.

    PubMed

    Hudson, Penny E; Corr, Sandra A; Wilson, Alan M

    2012-07-15

    The cheetah and racing greyhound are of a similar size and gross morphology and yet the cheetah is able to achieve a far higher top speed. We compared the kinematics and kinetics of galloping in the cheetah and greyhound to investigate how the cheetah can attain such remarkable maximum speeds. This also presented an opportunity to investigate some of the potential limits to maximum running speed in quadrupeds, which remain poorly understood. By combining force plate and high speed video data of galloping cheetahs and greyhounds, we show how the cheetah uses a lower stride frequency/longer stride length than the greyhound at any given speed. In some trials, the cheetahs used swing times as low as those of the greyhounds (0.2 s) so the cheetah has scope to use higher stride frequencies (up to 4.0 Hz), which may contribute to it having a higher top speed that the greyhound. Weight distribution between the animal's limbs varied with increasing speed. At high speed, the hindlimbs support the majority of the animal's body weight, with the cheetah supporting 70% of its body weight on its hindlimbs at 18 m s(-1); however, the greyhound hindlimbs support just 62% of its body weight. Supporting a greater proportion of body weight on a particular limb is likely to reduce the risk of slipping during propulsive efforts. Our results demonstrate several features of galloping and highlight differences between the cheetah and greyhound that may account for the cheetah's faster maximum speeds.

  8. Finite element analysis of high aspect ratio wind tunnel wing model: A parametric study

    NASA Astrophysics Data System (ADS)

    Rosly, N. A.; Harmin, M. Y.

    2017-12-01

    Procedure for designing the wind tunnel model of a high aspect ratio (HAR) wing containing geometric nonlinearities is described in this paper. The design process begins with identification of basic features of the HAR wing as well as its design constraints. This enables the design space to be narrowed down and consequently, brings ease of convergence towards the design solution. Parametric studies in terms of the spar thickness, the span length and the store diameter are performed using finite element analysis for both undeformed and deformed cases, which respectively demonstrate the linear and nonlinear conditions. Two main criteria are accounted for in the selection of the wing design: the static deflections due to gravitational loading should be within the allowable margin of the size of the wind tunnel test section and the flutter speed of the wing should be much below the maximum speed of the wind tunnel. The findings show that the wing experiences a stiffness hardening effect under the nonlinear static solution and the presence of the store enables significant reduction in linear flutter speed.

  9. Keeping warm with fur in cold water: entrainment of air in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette

    2015-11-01

    Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.

  10. Acceleration of high-pressure-ratio single-spool turbojet engine as determined from component performance characteristics I : effect of air bleed at compressor outlet

    NASA Technical Reports Server (NTRS)

    Rebeske, John J , Jr; Rohlik, Harold E

    1953-01-01

    An analytical investigation was made to determine from component performance characteristics the effect of air bleed at the compressor outlet on the acceleration characteristics of a typical high-pressure-ratio single-spool turbojet engine. Consideration of several operating lines on the compressor performance map with two turbine-inlet temperatures showed that for a minimum acceleration time the turbine-inlet temperature should be the maximum allowable, and the operating line on the compressor map should be as close to the surge region as possible throughout the speed range. Operation along such a line would require a continuously varying bleed area. A relatively simple two-step area bleed gives only a small increase in acceleration time over a corresponding variable-area bleed. For the modes of operation considered, over 84 percent of the total acceleration time was required to accelerate through the low-speed range ; therefore, better low-speed compressor performance (higher pressure ratios and efficiencies) would give a significant reduction in acceleration time.

  11. Cardiorespiratory performance during prolonged swimming tests with salmonids: a perspective on temperature effects and potential analytical pitfalls.

    PubMed

    Farrell, A P

    2007-11-29

    A prolonged swimming trial is the most common approach in studying steady-state changes in oxygen uptake, cardiac output and tissue oxygen extraction as a function of swimming speed in salmonids. The data generated by these sorts of studies are used here to support the idea that a maximum oxygen uptake is reached during a critical swimming speed test. Maximum oxygen uptake has a temperature optimum. Potential explanations are advanced to explain why maximum aerobic performance falls off at high temperature. The valuable information provided by critical swimming tests can be confounded by non-steady-state swimming behaviours, which typically occur with increasing frequency as salmonids approach fatigue. Two major concerns are noted. Foremost, measurements of oxygen uptake during swimming can considerably underestimate the true cost of transport near critical swimming speed, apparently in a temperature-dependent manner. Second, based on a comparison with voluntary swimming ascents in a raceway, forced swimming trials in a swim tunnel respirometer may underestimate critical swimming speed, possibly because fish in a swim tunnel respirometer are unable to sustain a ground speed.

  12. Aquatic burst locomotion by hydroplaning and paddling in common eiders (Somateria mollissima).

    PubMed

    Gough, William T; Farina, Stacy C; Fish, Frank E

    2015-06-01

    Common eiders (Somateria mollissima) are heavy sea-ducks that spend a large portion of their time swimming at the water surface. Surface swimming generates a bow and hull wave that can constructively interfere and produce wave drag. The speed at which the wavelengths of these waves equal the waterline length of the swimming animal is the hull speed. To increase surface swimming speed beyond the hull speed, an animal must overtake the bow wave. This study found two distinct behaviors that eider ducks used to exceed the hull speed: (1) 'steaming', which involved rapid oaring with the wings to propel the duck along the surface of the water, and (2) 'paddle-assisted flying', during which the ducks lifted their bodies out of the water and used their feet to paddle against the surface while flapping their wings in the air. An average hull speed (0.732±0.046 m s(-1)) was calculated for S. mollissima by measuring maximum waterline length from museum specimens. On average, steaming ducks swam 5.5 times faster and paddle-assisted flying ducks moved 6.8 times faster than the hull speed. During steaming, ducks exceeded the hull speed by increasing their body angle and generating dynamic lift to overcome wave drag and hydroplane along the water surface. During paddle-assisted flying, ducks kept their bodies out of the water, thereby avoiding the limitations of wave drag altogether. Both behaviors provided alternatives to flight for these ducks by allowing them to exceed the hull speed while staying at or near the water surface. © 2015. Published by The Company of Biologists Ltd.

  13. Parallel implementation of all-digital timing recovery for high-speed and real-time optical coherent receivers.

    PubMed

    Zhou, Xian; Chen, Xue

    2011-05-09

    The digital coherent receivers combine coherent detection with digital signal processing (DSP) to compensate for transmission impairments, and therefore are a promising candidate for future high-speed optical transmission system. However, the maximum symbol rate supported by such real-time receivers is limited by the processing rate of hardware. In order to cope with this difficulty, the parallel processing algorithms is imperative. In this paper, we propose a novel parallel digital timing recovery loop (PDTRL) based on our previous work. Furthermore, for increasing the dynamic dispersion tolerance range of receivers, we embed a parallel adaptive equalizer in the PDTRL. This parallel joint scheme (PJS) can be used to complete synchronization, equalization and polarization de-multiplexing simultaneously. Finally, we demonstrate that PDTRL and PJS allow the hardware to process 112 Gbit/s POLMUX-DQPSK signal at the hundreds MHz range. © 2011 Optical Society of America

  14. Real-time monitoring of railway infrastructures using fibre Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Roveri, N.; Carcaterra, A.; Sestieri, A.

    2015-08-01

    In this work we present the results of a field trial with a FBG sensor array system for the real time monitoring of railway traffic and for the structural health monitoring of both the railway track and train wheels. The test campaign is performed on the 2nd line of Milan metropolitan underground, employing more than 50 FBG sensors along 1.5 km of the rail track, where the trains are tested during daily passenger rail transport, with a roughly maximum speeds of 90 km/h. The measurements were continuatively performed for over 6 months, with a sampling frequency of about 400 Hz. The large amount of data/sensors allows a rather accurate statistical treatment of the measurement data and permits, with dedicated algorithms, the estimation of rail and wheel wear, key traffic parameters such as the number of axles, the train speed and load, and, in the next future, the detection of localized imperfections.

  15. Traction contact performance evaluation at high speeds

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1981-01-01

    The results of traction tests performed on two fluids are presented. These tests covered a pressure range of 1.0 to 2.5 GPa, an inlet temperature range of 30 'C to 70 'C, a speed range of 10 to 80 m/sec, aspect ratios of .5 to 5 and spin from 0 to 2.1 percent. The test results are presented in the form of two dimensionless parameters, the initial traction slope and the maximum traction peak. With the use of a suitable rheological fluid model the actual traction curves measured can now be reconstituted from the two fluid parameters. More importantly, the knowledge of these parameters together with the fluid rheological model, allow the prediction of traction under conditions of spin, slip and any combination thereof. Comparison between theoretically predicted traction under these conditions and those measured in actual traction tests shows that this method gives good results.

  16. The effect of preignition on cylinder temperatures, pressures, power output, and piston failures

    NASA Technical Reports Server (NTRS)

    Corrington, Lester C; Fisher, William F

    1947-01-01

    An investigation was conducted using a cylinder of a V-type liquid-cooled engine to observe the behavior of the cylinder when operated under preignition conditions. Data were recorded that showed cylinder-head temperatures, time of ignition, engine speed, power output, and change in maximum cylinder pressure as a function of time as the engine entered preignition and was allowed to operate under preignition conditions for a short time. The effects of the following variables on the engine behavior during preignition were investigated: fuel-air ratio, power level, aromatic content of fuel, engine speed, mixture temperature, and preignition source. The power levels at which preignition would cause complete piston failure for the selected engine operating conditions and the types of failure encountered when using various values of clearance between the piston and cylinder barrel were determined. The fuels used had performance numbers high enough to preclude any possibility of knock throughout the test program.

  17. Limbless undulatory propulsion on land.

    PubMed

    Guo, Z V; Mahadevan, L

    2008-03-04

    We analyze the lateral undulatory motion of a natural or artificial snake or other slender organism that "swims" on land by propagating retrograde flexural waves. The governing equations for the planar lateral undulation of a thin filament that interacts frictionally with its environment lead to an incomplete system. Closures accounting for the forces generated by the internal muscles and the interaction of the filament with its environment lead to a nonlinear boundary value problem, which we solve using a combination of analytical and numerical methods. We find that the primary determinant of the shape of the organism is its interaction with the external environment, whereas the speed of the organism is determined primarily by the internal muscular forces, consistent with prior qualitative observations. Our model also allows us to pose and solve a variety of optimization problems such as those associated with maximum speed and mechanical efficiency, thus defining the performance envelope of this mode of locomotion.

  18. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  19. Semi-Empirical Prediction of Aircraft Low-Speed Aerodynamic Characteristics

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.

    2015-01-01

    This paper lays out a comprehensive methodology for computing a low-speed, high-lift polar, without requiring additional details about the aircraft design beyond what is typically available at the conceptual design stage. Introducing low-order, physics-based aerodynamic analyses allows the methodology to be more applicable to unconventional aircraft concepts than traditional, fully-empirical methods. The methodology uses empirical relationships for flap lift effectiveness, chord extension, drag-coefficient increment and maximum lift coefficient of various types of flap systems as a function of flap deflection, and combines these increments with the characteristics of the unflapped airfoils. Once the aerodynamic characteristics of the flapped sections are known, a vortex-lattice analysis calculates the three-dimensional lift, drag and moment coefficients of the whole aircraft configuration. This paper details the results of two validation cases: a supercritical airfoil model with several types of flaps; and a 12-foot, full-span aircraft model with slats and double-slotted flaps.

  20. Safety and operational impacts of differential speed limits on two-lane rural highways in Montana.

    DOT National Transportation Integrated Search

    2016-07-01

    Speed limit policies can be broadly classified into two categories. Uniform speed limit policies establish the same maximum limit for all vehicles, while differential speed limit policies set a lower limit for heavy trucks in comparison to cars and l...

  1. Computational Models Predict Larger Muscle Tissue Strains at Faster Sprinting Speeds

    PubMed Central

    Fiorentino, Niccolo M; Rehorn, Michael R; Chumanov, Elizabeth S; Thelen, Darryl G; Blemker, Silvia S

    2014-01-01

    Introduction: Proximal biceps femoris musculotendon strain injury has been well established as a common injury among athletes participating in sports that require sprinting near or at maximum speed; however, little is known about the mechanisms that make this muscle tissue more susceptible to injury at faster speeds. Purpose: Quantify localized tissue strain during sprinting at a range of speeds. Methods: Biceps femoris long head (BFlh) musculotendon dimensions of 14 athletes were measured on magnetic resonance (MR) images and used to generate a finite element computational model. The model was first validated through comparison with previous dynamic MR experiments. After validation, muscle activation and muscle-tendon unit length change were derived from forward dynamic simulations of sprinting at 70%, 85% and 100% maximum speed and used as input to the computational model simulations. Simulations ran from mid-swing to foot contact. Results: The model predictions of local muscle tissue strain magnitude compared favorably with in vivo tissue strain measurements determined from dynamic MR experiments of the BFlh. For simulations of sprinting, local fiber strain was non-uniform at all speeds, with the highest muscle tissue strain where injury is often observed (proximal myotendinous junction). At faster sprinting speeds, increases were observed in fiber strain non-uniformity and peak local fiber strain (0.56, 0.67 and 0.72, for sprinting at 70%, 85% and 100% maximum speed). A histogram of local fiber strains showed that more of the BFlh reached larger local fiber strains at faster speeds. Conclusions: At faster sprinting speeds, peak local fiber strain, fiber strain non-uniformity and the amount of muscle undergoing larger strains are predicted to increase, likely contributing to the BFlh muscle’s higher injury susceptibility at faster speeds. PMID:24145724

  2. Hardening characteristics of CO2 laser welds in advanced high strength steel

    NASA Astrophysics Data System (ADS)

    Han, Tae-Kyo; Park, Bong-Gyu; Kang, Chung-Yun

    2012-06-01

    When the CO2 laser welder with 6 kW output was used to weld 4 TRIP steels, 2 DP steels and a precipitation-hardened steel, which have the tensile strength in the range of 600-1000 MPa, the effect of welding speed on hardening characteristics was investigated. In the weld of TRIP steels and DP steels, the maximum hardness was shown in the fusion zone and the HAZ near the bond line, and the hardness was decreased from the HAZ to the base metal. Only in the PH600 steel, the maximum hardness was shown in the fusion zone and the hardness was decreased from bond line to the base metal. The maximum hardness value was not changed due to the variation of the welding speed within a given range of the welding speed. When the correlation with maximum hardness value using 6 known carbon equivalents was examined, those of CEL (=C+Si/50+Mn/25+P/2+Cr/25) and PL (=C+Mn/22+14B) were 0.96 and 0.95 respectively, and CEL was better because it could reflect the contribution of Si and Cr added to AHSS. The maximum hardness value could be calculated by the equation "Hmax=701CEL+281". The phase transformation analysis indicated that only martensitic transformation was expected in the given range of the welding conditions. Therefore, the maximum hardness of the weld was the same as that of water cooled steel and not changed with the variation of the welding speed

  3. 14 CFR 27.1505 - Never-exceed speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Never-exceed speed. 27.1505 Section 27.1505... Never-exceed speed. (a) The never-exceed speed, VNE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...

  4. 14 CFR 27.1505 - Never-exceed speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Never-exceed speed. 27.1505 Section 27.1505... Never-exceed speed. (a) The never-exceed speed, VNE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...

  5. Beating the limits with initial correlations

    NASA Astrophysics Data System (ADS)

    Basilewitsch, Daniel; Schmidt, Rebecca; Sugny, Dominique; Maniscalco, Sabrina; Koch, Christiane P.

    2017-11-01

    Fast and reliable reset of a qubit is a key prerequisite for any quantum technology. For real world open quantum systems undergoing non-Markovian dynamics, reset implies not only purification, but in particular erasure of initial correlations between qubit and environment. Here, we derive optimal reset protocols using a combination of geometric and numerical control theory. For factorizing initial states, we find a lower limit for the entropy reduction of the qubit as well as a speed limit. The time-optimal solution is determined by the maximum coupling strength. Initial correlations, remarkably, allow for faster reset and smaller errors. Entanglement is not necessary.

  6. On Global Optimal Sailplane Flight Strategy

    NASA Technical Reports Server (NTRS)

    Sander, G. J.; Litt, F. X.

    1979-01-01

    The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.

  7. Application of the joined wing to tiltrotor aircraft

    NASA Technical Reports Server (NTRS)

    Wolkovitch, Julian; Wainfan, Barnaby; Ben-Harush, Yitzhak; Johnson, Wayne

    1989-01-01

    A study was made to determine the potential speed improvements and other benefits resulting from the application of the joined wing concept to tiltrotor aircraft. Using the XV-15 as a baseline, the effect of replacing the cantilever wing by a joined-wing pair was studied. The baseline XV-15 cantilever wing has a thickness/chord ratio of 23 percent. It was found that this wing could be replaced by a joined-wing pair of the same span and total area employing airfoils of 12 percent thickness/chord ratio. The joined wing meets the same static strength requirements as the cantilever wing, but increases the limiting Mach Number of the aircraft from M=0.575 to M=0.75, equivalent to an increase of over 100 knots in maximum speed. The joined wing configuration studied is lighter than the cantilever and has approximately 11 percent less wing drag in cruise. Its flutter speed of 245 knots EAS is not high enough to allow the potential Mach number improvement to be attained at low altitude. The flutter speed can be raised either by employing rotors which can be stopped and folded in flight at speeds below 245 knots EAS, or by modifying the airframe to reduce adverse coupling with the rotor dynamics. Several modifications of wing geometry and nacelle mass distribution were investigated, but none produced a flutter speed above 260 knots EAS. It was concluded that additional research is required to achieve a more complete understanding of the mechanism of rotor/wing coupling.

  8. Analytical expressions for maximum wind turbine average power in a Rayleigh wind regime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, P.W.

    Average or expectation values for annual power of a wind turbine in a Rayleigh wind regime are calculated and plotted as a function of cut-out wind speed. This wind speed is expressed in multiples of the annual average wind speed at the turbine installation site. To provide a common basis for comparison of all real and imagined turbines, the Rayleigh-Betz wind machine is postulated. This machine is an ideal wind machine operating with the ideal Betz power coefficient of 0.593 in a Rayleigh probability wind regime. All other average annual powers are expressed in fractions of that power. Cases consideredmore » include: (1) an ideal machine with finite power and finite cutout speed, (2) real machines operating in variable speed mode at their maximum power coefficient, and (3) real machines operating at constant speed.« less

  9. Safety and operational impacts of differential speed limits on two-lane rural highways in Montana : project summary.

    DOT National Transportation Integrated Search

    2016-07-01

    Speed limit policies can be broadly classified into two categories. Uniform speed limit policies establish the same maximum limit for all vehicles, while differential speed limit policies set a lower limit for heavy trucks in comparison to cars and l...

  10. 14 CFR 23.73 - Reference landing approach speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Reference landing approach speed. 23.73... Reference landing approach speed. (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, VREF, must...

  11. 14 CFR 23.73 - Reference landing approach speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Reference landing approach speed. 23.73... Reference landing approach speed. (a) For normal, utility, and acrobatic category reciprocating engine-powered airplanes of 6,000 pounds or less maximum weight, the reference landing approach speed, VREF, must...

  12. 33 CFR 169.5 - How are terms used in this part defined?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...

  13. 33 CFR 169.5 - How are terms used in this part defined?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...

  14. 33 CFR 169.5 - How are terms used in this part defined?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...

  15. 33 CFR 169.5 - How are terms used in this part defined?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... § 169.15). Gross tons means vessel tonnage measured in accordance with the method utilized by the flag... water and is capable of a maximum speed equal to or exceeding V=3.7×displ .1667, where “V” is the maximum speed and “displ” is the vessel displacement corresponding to the design waterline in cubic meters...

  16. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... The percent torque is relative to the maximum torque at the commanded test speed. 3 Upon Administrator... ±50 rpm and the specified torque must be held to within plus or minus two percent of the maximum torque at the test speed. (d) One filter shall be used for sampling PM over the 13-mode test procedure...

  17. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... The percent torque is relative to the maximum torque at the commanded test speed. 3 Upon Administrator... ±50 rpm and the specified torque must be held to within plus or minus two percent of the maximum torque at the test speed. (d) One filter shall be used for sampling PM over the 13-mode test procedure...

  18. 40 CFR 86.1363-2007 - Steady-state testing with a discrete-mode cycle.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... The percent torque is relative to the maximum torque at the commanded test speed. 3 Upon Administrator... ±50 rpm and the specified torque must be held to within plus or minus two percent of the maximum torque at the test speed. (d) One filter shall be used for sampling PM over the 13-mode test procedure...

  19. Influence of temperature on muscle recruitment and muscle function in vivo.

    PubMed

    Rome, L C

    1990-08-01

    Temperature has a large influence on the maximum velocity of shortening (Vmax) and maximum power output of muscle (Q10 = 1.5-3). In some animals, maximum performance and maximum sustainable performance show large temperature sensitivities, because these parameters are dependent solely on mechanical power output of the muscles. The mechanics of locomotion (sarcomere length excursions and muscle-shortening velocities, V) at a given speed, however, are precisely the same at all temperatures. Animals compensate for the diminished power output of their muscles at low temperatures by compressing their recruitment order into a narrower range of locomotor speeds, that is, recruiting more muscle fibers and faster fiber types at a given speed. By examining V/Vmax, I calculate that fish at 10 degrees C must recruit 1.53-fold greater fiber cross section than at 20 degrees C. V/Vmax also appears to be an important design constraint in muscle. It sets the lowest V and the highest V over which a muscle can be used effectively. Because the Vmax of carp slow red muscle has a Q10 of 1.6 between 10 and 20 degrees C, the slow aerobic fibers can be used over a 1.6-fold greater range of swim speeds at the warmer temperature. In some species of fish, Vmax can be increased during thermal acclimation, enabling animals to swim at higher speeds.

  20. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  1. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  2. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  3. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  4. 49 CFR 230.24 - Maximum allowable stress.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Maximum allowable stress. 230.24 Section 230.24... Allowable Stress § 230.24 Maximum allowable stress. (a) Maximum allowable stress value. The maximum allowable stress value on any component of a steam locomotive boiler shall not exceed 1/4 of the ultimate...

  5. Quality evaluation of millet-soy blended extrudates formulated through linear programming.

    PubMed

    Balasubramanian, S; Singh, K K; Patil, R T; Onkar, Kolhe K

    2012-08-01

    Whole pearl millet, finger millet and decorticated soy bean blended (millet soy) extrudates formulations were designed using a linear programming (LP) model to minimize the total cost of the finished product. LP formulated composite flour was extruded through twin screw food extruder at different feed rate (6.5-13.5 kg/h), screw speed (200-350 rpm, constant feed moisture (14% wb), barrel temperature (120 °C) and cutter speed (15 rpm). The physical, functional, textural and pasting characteristics of extrudates were examined and their responses were studied. Expansion index (2.31) and sectional expansion index (5.39) was found to be was found maximum for feed rate and screw speed combination 9.5 kg/h and 250 rpm. However, density (0.25 × 10(-3) g/mm(3)) was maximum for 9.5 kg/h and 300 rpm combination. Maximum color change (10.32) was found for 9.5 kg/h feed rate and 200 rpm screw speed. The lower hardness was obtained for the samples extruded at lowest feed rate (6.5 kg/h) for all screw speed and feed rate at 9.5 kg/h for 300-350 rpm screw speed. Peak viscosity decreases with all screw speed of 9.5 kg/h feed rate.

  6. Physical understanding of the tropical cyclone wind-pressure relationship.

    PubMed

    Chavas, Daniel R; Reed, Kevin A; Knaff, John A

    2017-11-08

    The relationship between the two common measures of tropical cyclone intensity, the central pressure deficit and the peak near-surface wind speed, is a long-standing problem in tropical meteorology that has been approximated empirically yet lacks physical understanding. Here we provide theoretical grounding for this relationship. We first demonstrate that the central pressure deficit is highly predictable from the low-level wind field via gradient wind balance. We then show that this relationship reduces to a dependence on two velocity scales: the maximum azimuthal-mean azimuthal wind speed and half the product of the Coriolis parameter and outer storm size. This simple theory is found to hold across a hierarchy of models spanning reduced-complexity and Earth-like global simulations and observations. Thus, the central pressure deficit is an intensity measure that combines maximum wind speed, storm size, and background rotation rate. This work has significant implications for both fundamental understanding and risk analysis, including why the central pressure better explains historical economic damages than does maximum wind speed.

  7. Burst Speed of Wild Fishes under High-Velocity Flow Conditions Using Stamina Tunnel with Natural Guidance System in River

    NASA Astrophysics Data System (ADS)

    Izumi, Mattashi; Yamamoto, Yasuyuki; Yataya, Kenichi; Kamiyama, Kohhei

    Swimming experiments were conducted on wild fishes in a natural guidance system stamina tunnel (cylindrical pipe) installed in a fishway of a local river under high-velocity flow conditions (tunnel flow velocity : 211 to 279 cm·s-1). In this study, the swimming characteristics of fishes were observed. The results show that (1) the swimming speeds of Tribolodon hakonensis (Japanese dace), Phoxinus lagowshi steindachneri (Japanese fat-minnow), Plecoglossus altivelis (Ayu), and Zacco platypus (Pale chub) were in proportion to their body length under identical water flow velocity conditions; (2) the maximum burst speed of Japanese dace and Japanese fat-minnow (measuring 4 to 6 cm in length) was 262 to 319 cm·s-1 under high flow velocity conditions (225 to 230 cm·s-1), while the maximum burst speed of Ayu and Pale chub (measuring 5 cm to 12 cm in length) was 308 to 355 cm·s-1 under high flow velocity conditions (264 to 273 cm·s-1) ; (3) the 50cm-maximum swimming speed of swimming fishes was 1.07 times faster than the pipe-swimming speed; (4) the faster the flow velocity, the shorter the swimming distance became.

  8. Relationship between strength qualities and short track speed skating performance in young athletes.

    PubMed

    Felser, S; Behrens, M; Fischer, S; Heise, S; Bäumler, M; Salomon, R; Bruhn, S

    2016-02-01

    This study analyzed the relationships between isometric as well as concentric maximum voluntary contraction (MVC) strength of the leg muscles and the times as well as speeds over different distances in 17 young short track speed skaters. Isometric as well as concentric single-joint MVC strength and multi-joint MVC strength in a stable (without skates) and unstable (with skates) condition were tested. Furthermore, time during maximum skating performances on ice was measured. Results indicate that maximum torques during eversion and dorsal flexion have a significant influence on skating speed. Concentric MVC strength of the knee extensors was higher correlated with times as well as speeds over the different distances than isometric MVC strength. Multi-joint MVC testing revealed that the force loss between measurements without and with skates amounts to 25%, while biceps femoris and soleus showed decreased muscle activity and peroneus longus, tibialis anterior, as well as rectus femoris exhibited increased muscle activity. The results of this study depict evidence that the skating times and speeds are primarily influenced by concentric MVC strength of the leg extensors. To be able to transfer the strength onto ice in an optimal way, it is necessary to stabilize the knee and ankle joints. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Measurements and performance prediction of an adaptive wing micro air vehicle

    NASA Astrophysics Data System (ADS)

    Shkarayev, Sergey V.; Jouse, Wayne C.; Null, William R.; Wagner, Matthew G.

    2003-08-01

    The mission space requirements imposed on the design of micro air vehicles (MAVs) typically consist of several distinct flight segments that generally conflict: the transit phases of flight require high speeds, while the loiter/surveillance phase requires lower flight velocities. Maximum efficiency must be sought in order to prolong battery life and aircraft endurance. The adaptive wing MAV developed at the University of Arizona features a thin, deformable flying wing with an efficient rudder-elevator control system. The wing camber is varied to accommodate different flight speeds while maintaining a constant total lift at a relatively low angle of attack. A new airfoil was developed from the Selig 5010 that features a small negative pitching moment for pitch stability. Wind tunnel tests were performed and stall angles and best lift-to-drag ratios were analyzed from the data. The wind tunnel data was used in a performance analysis in order to determine the flight speeds and throttle settings for maximum endurance at each camber, as well as the MAV's theoretical minimum and maximum flight speeds. The effectiveness of camber change on flight speed and endurance was examined with promising results; flight speed could be reduced by 25% by increasing the camber from 3 to 9% without any increase in power consumption.

  10. A Review of Vehicles Speed on School Safety Zone Areas in Pekanbaru City

    NASA Astrophysics Data System (ADS)

    Dwi Putri, Lusi; Soehardi, Fitridawati; Saleh, Alfian

    2017-12-01

    School Safety Zone is a location or region on particular roads that are time-based speed zone to set the speed of the vehicle in the school environment. The maximum speed limit permits entering a School Safety Zone, especially in Pekanbaru City is 25 km / h and an outline of the speed limit permit vehicles that pass through the School Safety Zone in Indonesia is generally 20-30 km / h. However, the vehicles speeds that pass School Safety Zone are higher than permit speeds.To ensure the level of vehicle offense across the territory of the School Safety Zone so it is necessary a primary data which is taken randomly based on field survey for 3 days at schools that has that facility ie SDN 3 Jalan Kesehatan Pekanbaru City, SDN 68 Jalan Balam Ujung Kota Pekanbaru and SDN 143 Jalan Taskurun Kota Pekanbaru. Furthermore, the data were taken in good condition that is at 6:30 to 7:30 am and at 12:00 to 13:00 pm. In addition, the data obtained is mileage and travel time of the vehicle. Both of these data can generate good speed value that passes through the area of School Safety Zone. Based on the research findings, the vehicle speed passing through the area of School Safety Zone is incompatible with speed permit at 35 km / h with a maximum average percentage of the rate of offense in the area of the school zone is 91.7%. This indicates that the vehicle passes School Safety Zone not following the rules of the maximum limit area and can be potentially harmful to elementary school students.

  11. The comparison of transfemoral amputees using mechanical and microprocessor- controlled prosthetic knee under different walking speeds: A randomized cross-over trial.

    PubMed

    Cao, Wujing; Yu, Hongliu; Zhao, Weiliang; Meng, Qiaoling; Chen, Wenming

    2018-04-20

    The microprocessor-controlled prosthetic knees have been introduced to transfemoral amputees due to advances in biomedical engineering. A body of scientific literature has shown that the microprocessor-controlled prosthetic knees improve the gait and functional abilities of persons with transfemoral amputation. The aim of this study was to propose a new microprocessor-controlled prosthetic knee (MPK) and compare it with non-microprocessor-controlled prosthetic knees (NMPKs) under different walking speeds. The microprocessor-controlled prosthetic knee (i-KNEE) with hydraulic damper was developed. The comfortable self-selected walking speeds of 12 subjects with i-KNEE and NMPK were obtained. The maximum swing flexion knee angle and gait symmetry were compared in i-KNEE and NMPK condition. The comfortable self-selected walking speeds of some subjects were higher with i-KNEE while some were not. There was no significant difference in comfortable self-selected walking speed between the i-KNEE and the NMPK condition (P= 0.138). The peak prosthetic knee flexion during swing in the i-KNEE condition was between sixty and seventy degree under any walking speed. In the NMPK condition, the maximum swing flexion knee angle changed significantly. And it increased with walking speed. There is no significant difference in knee kinematic symmetry when the subjects wear the i-KNEE or NMPK. The results of this study indicated that the new microprocessor-controlled prosthetic knee was suitable for transfemoral amputees. The maximum swing flexion knee angle under different walking speeds showed different properties in the NMPK and i-KNEE condition. The i-KNEE was more adaptive to speed changes. There was little difference of comfortable self-selected walking speed between i-KNEE and NMPK condition.

  12. 14 CFR 29.1505 - Never-exceed speed.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Never-exceed speed. 29.1505 Section 29.1505....1505 Never-exceed speed. (a) The never-exceed speed, V NE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...

  13. 14 CFR 29.1505 - Never-exceed speed.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Never-exceed speed. 29.1505 Section 29.1505....1505 Never-exceed speed. (a) The never-exceed speed, V NE, must be established so that it is— (1) Not less than 40 knots (CAS); and (2) Not more than the lesser of— (i) 0.9 times the maximum forward speeds...

  14. An accelerometry-based comparison of 2 robotic assistive devices for treadmill training of gait.

    PubMed

    Regnaux, Jean-Philippe; Saremi, Kaveh; Marehbian, Jon; Bussel, Bernard; Dobkin, Bruce H

    2008-01-01

    Two commercial robotic devices, the Gait Trainer (GT) and the Lokomat (LOKO), assist task-oriented practice of walking. The gait patterns induced by these motor-driven devices have not been characterized and compared. A healthy participant chose the most comfortable gait pattern on each device and for treadmill (TM) walking at 1, 2 (maximum for the GT), and 3 km/h and over ground at similar speeds. A system of accelerometers on the thighs and feet allowed the calculation of spatiotemporal features and accelerations during the gait cycle. At the 1 and 2 km/h speed settings, single-limb stance times were prolonged on the devices compared with overground walking. Differences on the LOKO were decreased by adjusting the hip and knee angles and step length. At the 3 km/h setting, the LOKO approximated the participant's overground parameters. Irregular accelerations and decelerations from toe-off to heel contact were induced by the devices, especially at slower speeds. The LOKO and GT impose mechanical constraints that may alter leg accelerations-decelerations during stance and swing phases, as well as stance duration, especially at their slower speed settings, that are not found during TM and overground walking. The potential impact of these perturbations on training to improve gait needs further study.

  15. Effects of Fuel Composition on EGR Dilution Tolerance in Spark Ignited Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szybist, James P

    2016-01-01

    Fuel-specific differences in exhaust gas recirculation (EGR) dilution tolerance are studied in a modern, direct-injection single-cylinder research engine. A total of 6 model fuel blends are examined at a constant research octane number (RON) of 95 using n-heptane, iso-octane, toluene, and ethanol. Laminar flame speeds for these mixtures, which were calculated two different methods (an energy fraction mixing rule and a detailed kinetic simulation), spanned a range of about 6 cm/s. A constant fueling nominal load of 350 kPa IMEPg at 2000 rpm was operated with varying CA50 from 8-20 CAD aTDCf, and with EGR increasing until a COV ofmore » IMEP of 5% is reached. The results illustrate that flame speed affects EGR dilution tolerance; fuels with increased flame speeds increase EGR tolerance. Specifically, flame speed correlates most closely to the initial flame kernel growth, measured as the time of ignition to 5% mass fraction burned. The effect of the latent heat of vaporization on the flame speed is taken into account for the ethanol-containing fuels. At a 30 vol% blend level, the increased enthalpy of vaporization of ethanol compared to conventional hydrocarbons can decrease the temperature at the time of ignition by a maximum of 15 C, which can account for up to a 3.5 cm/s decrease in flame speed. The ethanol-containing fuels, however, still exhibit a flame speed advantage, and a dilution tolerance advantage over the slower flame-speed fuels. The fuel-specific differences in dilution tolerance are significant at the condition examined, allowing for a 50% relative increase in EGR (4% absolute difference in EGR) at a constant COV of IMEP of 3%.« less

  16. 33 CFR 401.28 - Speed limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Speed limits. 401.28 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.28 Speed limits. (a) The maximum speed over the bottom for a vessel of more than 12 m in overall length shall be regulated so as not to...

  17. 33 CFR 401.28 - Speed limits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Speed limits. 401.28 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.28 Speed limits. (a) The maximum speed over the bottom for a vessel of more than 12 m in overall length shall be regulated so as not to...

  18. Decision making in noisy bistable systems with time-dependent asymmetry

    NASA Astrophysics Data System (ADS)

    Nené, Nuno R.; Zaikin, Alexey

    2013-01-01

    Our work draws special attention to the importance of the effects of time-dependent parameters on decision making in bistable systems. Here, we extend previous studies of the mechanism known as speed-dependent cellular decision making in genetic circuits by performing an analytical treatment of the canonical supercritical pitchfork bifurcation problem with an additional time-dependent asymmetry and control parameter. This model has an analogous behavior to the genetic switch. In the presence of transient asymmetries and fluctuations, slow passage through the critical region in both systems increases substantially the probability of specific decision outcomes. We also study the relevance for attractor selection of reaching maximum values for the external asymmetry before and after the critical region. Overall, maximum asymmetries should be reached at an instant where the position of the critical point allows for compensation of the detrimental effects of noise in retaining memory of the transient asymmetries.

  19. Optimization of fuel-cell tram operation based on two dimension dynamic programming

    NASA Astrophysics Data System (ADS)

    Zhang, Wenbin; Lu, Xuecheng; Zhao, Jingsong; Li, Jianqiu

    2018-02-01

    This paper proposes an optimal control strategy based on the two-dimension dynamic programming (2DDP) algorithm targeting at minimizing operation energy consumption for a fuel-cell tram. The energy consumption model with the tram dynamics is firstly deduced. Optimal control problem are analyzed and the 2DDP strategy is applied to solve the problem. The optimal tram speed profiles are obtained for each interstation which consist of three stages: accelerate to the set speed with the maximum traction power, dynamically adjust to maintain a uniform speed and decelerate to zero speed with the maximum braking power at a suitable timing. The optimal control curves of all the interstations are connected with the parking time to form the optimal control method of the whole line. The optimized speed profiles are also simplified for drivers to follow.

  20. Investigation of the Durability of a Diaphragm for a Total Artificial Heart.

    PubMed

    Gräf, Felix; Rossbroich, Ralf; Finocchiaro, Thomas; Steinseifer, Ulrich

    2016-10-01

    One of the most critical components regarding the durability of the ReinHeart total artificial heart (TAH) is its biocompatible diaphragm, which separates the drive unit from the ventricles. Hence, a durability tester was designed to investigate its required 5-year lifetime. The aim of this study was to prove the validity of accelerated testing of the polyurethane diaphragm. The durability tester allows simultaneous testing of 12 diaphragms and mimics physiological conditions. To accelerate the time of testing, it operates with an increased speed at a frequency of 8 Hz. To prove the correctness of this acceleration, a servo-hydraulic testing machine was used to study the effect of different frequencies and their corresponding loads. Thereby the viscoelastic behavior of the polyurethane was investigated. Additionally, high-speed video measurements were performed. The force against frequency and the high-speed video measurements showed constant behavior. In the range of 1-10 Hz, the maximum resulting forces varied by 3%, and the diaphragm movement was identical. Frequencies below 10 Hz allow a valid statement of the diaphragm's mechanical durability. Viscoelasticity of the polyurethane in the considered frequency-range is negligible. The accelerated durability test is applicable to polyurethane diaphragms, and the results are applicable to TAH use. The reliability of the diaphragm for a lifetime of 5 years was found to be 80% with a confidence of 62%. Copyright © 2015 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  1. Alternative Fuels Data Center

    Science.gov Websites

    Low-Speed Vehicle Definition A low-speed vehicle is defined as a four wheeled vehicle that has a maximum speed greater than 20 miles per hour (mph) but not more than 25 mph and has a gross vehicle weight

  2. A Broad Continuum of Aeolian Impact Ripple Sizes on Mars is Allowed by Low Dynamic Wind Pressures

    NASA Astrophysics Data System (ADS)

    Sullivan, R. J., Jr.; Kok, J. F.; Yizhaq, H.

    2017-12-01

    Aeolian impact ripples are generated by impacts of wind-blown sand grains, and are common in environments with loose sand on Earth and Mars. Previous work has shown that, within a fully developed saltation cloud, impact ripple height grows upward into the boundary layer until limited by the effects of increasing wind dynamic pressure at the crest (e.g., lengthening of splash trajectories, or direct entrainment of grains by the wind). On Earth, this process limits ripples of well-sorted 250 µm dune sands to heights of millimeters, and strong winds can impose sufficient lateral dynamic pressure to flatten and erase these ripples. Rover observations show much larger ripple-like bedforms on Mars, raising questions about their formative mechanism. Here, we hypothesize that two factors allow impact ripples to grow much higher on Mars than on Earth: (1) previous work predicts a much larger difference between impact threshold and fluid threshold wind speeds on Mars than on Earth; and (2) recent analysis has revealed how low saltation flux can be initiated and sustained well below fluid threshold on Mars, allowing impact ripples to migrate entirely under prevailing conditions of relatively low wind speeds in the thin martian atmosphere. Under these circumstances, martian ripples would need to grow much larger than on Earth before reaching their maximum height limited by wind dynamic pressure effects. Because the initial size of impact ripples is similar on Mars and Earth, this should generate a much broader continuum of impact ripple sizes on Mars. Compared with Earth, far more time should be needed on Mars for impact ripples to achieve their maximum possible size. Consequently, in cases where wind azimuths are mixed but one azimuth is more dominant than others, martian impact ripples of all sizes can exist together in the same setting, with the largest examples reflecting the most common/formative wind azimuths. In cases where wind azimuth is not dominated by a single azimuth over others, ripple height should vary with orientation and the maximum possible height might never have the chance to be achieved. Our hypothesis could explain the wide range of observed ripple sizes on Mars having wavelengths from cm to several m, and suggests that the largest martian ripples are in fact large impact ripples.

  3. Separation-Compliant, Optimal Routing and Control of Scheduled Arrivals in a Terminal Airspace

    NASA Technical Reports Server (NTRS)

    Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.

    2013-01-01

    We address the problem of navigating a set (fleet) of aircraft in an aerial route network so as to bring each aircraft to its destination at a specified time and with minimal distance separation assured between all aircraft at all times. The speed range, initial position, required destination, and required time of arrival at destination for each aircraft are assumed provided. Each aircraft's movement is governed by a controlled differential equation (state equation). The problem consists in choosing for each aircraft a path in the route network and a control strategy so as to meet the constraints and reach the destination at the required time. The main contribution of the paper is a model that allows to recast this problem as a decoupled collection of problems in classical optimal control and is easily generalized to the case when inertia cannot be neglected. Some qualitative insight into solution behavior is obtained using the Pontryagin Maximum Principle. Sample numerical solutions are computed using a numerical optimal control solver. The proposed model is first step toward increasing the fidelity of continuous time control models of air traffic in a terminal airspace. The Pontryagin Maximum Principle implies the polygonal shape of those portions of the state trajectories away from those states in which one or more aircraft pair are at minimal separation. The model also confirms the intuition that, the narrower the allowed speed ranges of the aircraft, the smaller the space of optimal solutions, and that an instance of the optimal control problem may not have a solution at all (i.e., no control strategy that meets the separation requirement and other constraints).

  4. Evaluation of swimming performance for fish passage of longnose dace Rhinichthys cataractae using an experimental flume.

    PubMed

    Dockery, D R; McMahon, T E; Kappenman, K M; Blank, M

    2017-03-01

    The swimming performance of longnose dace Rhinichthys cataractae, the most widely distributed minnow (Cyprinidae) in North America, was assessed in relation to potential passage barriers. The study estimated passage success, maximum ascent distances and maximum sprint speed in an open-channel flume over a range of water velocities and temperatures (10·7, 15·3 and 19·3° C). Rhinichthys cataractae had high passage success (95%) in a 9·2 m flume section at mean test velocities of 39 and 64 cm s -1 , but success rate dropped to 66% at 78 cm s -1 . Only 20% of fish were able to ascend a 2·7 m section with a mean velocity of 122 cm s -1 . Rhinichthys cataractae actively selected low-velocity pathways located along the bottom and corners of the flume at all test velocities and adopted position-holding behaviour at higher water velocities. Mean volitional sprint speed was 174 cm s -1 when fish volitionally sprinted in areas of high water velocities. Swimming performance generally increased with water temperature and fish length. Based on these results, fishways with mean velocities <64 cm s -1 should allow passage of most R. cataractae. Water velocities >100 cm s -1 within structures should be limited to short distance (<1 m) and structures with velocities ≥158 cm s -1 would probably represent movement barriers. Study results highlighted the advantages of evaluating a multitude of swimming performance metrics in an open-channel flume, which can simulate the hydraulic features of fishways and allow for behavioural observations that can facilitate the design of effective passage structures. © 2016 The Fisheries Society of the British Isles.

  5. Effect of Running Speed and Leg Prostheses on Mediolateral Foot Placement and Its Variability

    PubMed Central

    Arellano, Christopher J.; McDermott, William J.; Kram, Rodger; Grabowski, Alena M.

    2015-01-01

    This study examined the effects of speed and leg prostheses on mediolateral (ML) foot placement and its variability in sprinters with and without transtibial amputations. We hypothesized that ML foot placement variability would: 1. increase with running speed up to maximum speed and 2. be symmetrical between the legs of non-amputee sprinters but asymmetrically greater for the affected leg of sprinters with a unilateral transtibial amputation. We measured the midline of the body (kinematic data) and center of pressure (kinetic data) in the ML direction while 12 non-amputee sprinters and 7 Paralympic sprinters with transtibial amputations (6 unilateral, 1 bilateral) ran across a range of speeds up to maximum speed on a high-speed force measuring treadmill. We quantified ML foot placement relative to the body’s midline and its variability. We interpret our results with respect to a hypothesized relation between ML foot placement variability and lateral balance. We infer that greater ML foot placement variability indicates greater challenges with maintaining lateral balance. In non-amputee sprinters, ML foot placement variability for each leg increased substantially and symmetrically across speed. In sprinters with a unilateral amputation, ML foot placement variability for the affected and unaffected leg also increased substantially, but was asymmetric across speeds. In general, ML foot placement variability for sprinters with a unilateral amputation was within the range observed in non-amputee sprinters. For the sprinter with bilateral amputations, both affected legs exhibited the greatest increase in ML foot placement variability with speed. Overall, we find that maintaining lateral balance becomes increasingly challenging at faster speeds up to maximum speed but was equally challenging for sprinters with and without a unilateral transtibial amputation. Finally, when compared to all other sprinters in our subject pool, maintaining lateral balance appears to be the most challenging for the Paralympic sprinter with bilateral transtibial amputations. PMID:25590634

  6. Motor vehicle driver death and high state maximum speed limits: 1991-1993.

    PubMed

    Yamane, Grover K; Bradshaw, Benjamin S

    2008-09-01

    To measure the association between motor vehicle crash (MVC) driver death and high state maximum speed limits. This study used a case-control design and assessed driver deaths from three major types of MVCs: non-collision; collision with motor vehicles in transit; and collision with stationary objects. The study period was 1991-1993. For each type of crash, case subject populations of fatally injured drivers were obtained from the U.S. Department of Transportation Fatality Analysis Reporting System. Four control subject populations, each associated with a different cause of death, were obtained from a U.S. national death certificate database (the causes of death were unintentional poisoning, non-Hodgkin lymphoma, drowning, and diabetes mellitus). Subjects were considered exposed if the state in which they crashed (for cases) or died (for controls) had a maximum speed limit greater than 55 mph. Each of the three case subject populations was compared against each of the four control subject populations. Odds ratios (ORs) were adjusted for age and gender. For non-collision driver death, ORs ranged from 3.06 to 6.56, depending on the year and control group; all the ORs were significant. For collision with motor vehicles in transit driver death, ORs ranged from 1.12 to 2.22; all the ORs were significant. For collision with stationary objects driver death, ORs ranged from 0.87 to 1.83. There was a moderately strong and significant association between non-collision driver death and high state maximum speed limits. For collision with motor vehicles in transit driver death, the association was somewhat milder but still consistent. For collision with stationary objects driver death, the presence of an association was unclear. During 1991-1993, the effects of high state maximum speed limits may have been different for different types of MVCs.

  7. Impacts of low speed vehicles on transportation infrastructure and safety

    DOT National Transportation Integrated Search

    2010-12-01

    There are increasing numbers of low-speed electric vehicles (LSVs) on public roadways. These vehicles are designed to be used within protected environments and on roadways with a maximum posted speed of 25 mph. Currently these vehicles are not subjec...

  8. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; A Recursive Maximum Likelihood Decoding

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    The Viterbi algorithm is indeed a very simple and efficient method of implementing the maximum likelihood decoding. However, if we take advantage of the structural properties in a trellis section, other efficient trellis-based decoding algorithms can be devised. Recently, an efficient trellis-based recursive maximum likelihood decoding (RMLD) algorithm for linear block codes has been proposed. This algorithm is more efficient than the conventional Viterbi algorithm in both computation and hardware requirements. Most importantly, the implementation of this algorithm does not require the construction of the entire code trellis, only some special one-section trellises of relatively small state and branch complexities are needed for constructing path (or branch) metric tables recursively. At the end, there is only one table which contains only the most likely code-word and its metric for a given received sequence r = (r(sub 1), r(sub 2),...,r(sub n)). This algorithm basically uses the divide and conquer strategy. Furthermore, it allows parallel/pipeline processing of received sequences to speed up decoding.

  9. Drag Reduction Through Distributed Electric Propulsion

    NASA Technical Reports Server (NTRS)

    Stoll, Alex M.; Bevirt, JoeBen; Moore, Mark D.; Fredericks, William J.; Borer, Nicholas K.

    2014-01-01

    One promising application of recent advances in electric aircraft propulsion technologies is a blown wing realized through the placement of a number of electric motors driving individual tractor propellers spaced along each wing. This configuration increases the maximum lift coefficient by providing substantially increased dynamic pressure across the wing at low speeds. This allows for a wing sized near the ideal area for maximum range at cruise conditions, imparting the cruise drag and ride quality benefits of this smaller wing size without decreasing takeoff and landing performance. A reference four-seat general aviation aircraft was chosen as an exemplary application case. Idealized momentum theory relations were derived to investigate tradeoffs in various design variables. Navier-Stokes aeropropulsive simulations were performed with various wing and propeller configurations at takeoff and landing conditions to provide insight into the effect of different wing and propeller designs on the realizable effective maximum lift coefficient. Similar analyses were performed at the cruise condition to ensure that drag targets are attainable. Results indicate that this configuration shows great promise to drastically improve the efficiency of small aircraft.

  10. Low-level nocturnal wind maximum over the Central Amazon Basin

    NASA Technical Reports Server (NTRS)

    Greco, Steven; Ulanski, Stanley; Garstang, Michael; Houston, Samuel

    1992-01-01

    A low-level nocturnal wind maximum is shown to exist over extensive and nearly undisturbed rainforest near the central Amazon city of Manaus. Meteorological data indicate the presence of this nocturnal wind maximum during both the wet and dry seasons of the Central Amazon Basin. Daytime wind speeds which are characteristically 3-7 m/s between 300 and 1000 m increase to 10-15 m/s shortly after sunset. The wind-speed maximum is reached in the early evening, with wind speeds remaining high until several hours after sunrise. The nocturnal wind maximum is closely linked to a strong low-level inversion formed by radiational cooling of the rainforest canopy. Surface and low-level pressure gradients between the undisturbed forest and the large Amazon river system and the city of Manaus are shown to be responsible for much of the nocturnal wind increase. The pressure gradients are interpreted as a function of the thermal differences between undisturbed forest and the river/city. The importance of both the frictional decoupling and the horizontal pressure gradient suggest that the nocturnal wind maximum does not occur uniformly over all Amazonia. Low-level winds are thought to be pervasive under clear skies and strong surface cooling and that, in many places (i.e., near rivers), local pressure gradients enhance the low-level nocturnal winds.

  11. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander, Desmognathus ochrophaeus.

    PubMed

    Feder, M E

    1986-03-01

    To determine the effects of thermal acclimation upon locomotor performance and the rate of oxygen consumption (MO2) during activity, small (less than 3 g), lungless salamanders, Desmognathus ochrophaeus Cope, were acclimated to three temperatures (5, 13 and 21 degrees C) and exercised at various controlled speeds within an exercise wheel while their MO2 was measured. MO2 increased with speed at low speeds (less than 14 cm min-1). Although animals could sustain greater speeds, MO2 did not increase further. These small, exclusively skin-breathing salamanders could increase their MO2 9-11 times during exercise and could sustain nearly half of the oxygen flux expected across a similar surface area of the mammalian lung. However, their maximum aerobic speed was remarkably slow (14 cm min-1) and their net cost of transport remarkably large (15-17 ml O2 g-1 km-1). Thermal acclimation affected MO2 during activity, the maximum sustainable speed and locomotor stamina in different ways. During exercise at 13 degrees C, cold-acclimated animals had a significantly greater MO2 than warm-acclimated animals, but did not differ in stamina or the maximum sustainable speed. During exercise at 21 degrees C, cold acclimation did not affect the MO2 significantly, but it decreased the stamina and increased the rate of lactate accumulation. Thus, these results suggest that thermal acclimation of the MO2 is not tightly coupled to thermal acclimation of locomotor performance in salamanders.

  12. Intelligent Hybrid Vehicle Power Control - Part 1: Machine Learning of Optimal Vehicle Power

    DTIC Science & Technology

    2012-06-30

    time window ),[ tWt DT : vave, vmax, vmin, ac, vst and vend, where the first four parameters are, respectively, the average speed, maximum speed...minimum speed and average acceleration, during the time period ),[ tWt DT , vst is the vehicle speed at )( DTWt  , and vend is the vehicle

  13. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maximum power at which 50% of maximum power occurs. Denote this value as n lo. Take n lo to be warm idle... representative engine speed, whichever is lower. Use n hi and n lo to calculate reference values for A, B, or C speeds as follows: ER15SE11.030 Example: n lo = 1005 r/min n hi = 2385 r/min f nrefA = 0.25 · (2385...

  14. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... maximum power at which 50% of maximum power occurs. Denote this value as n lo. Take n lo to be warm idle... representative engine speed, whichever is lower. Use n hi and n lo to calculate reference values for A, B, or C speeds as follows: ER15SE11.030 Example: n lo = 1005 r/min n hi = 2385 r/min f nrefA = 0.25 · (2385...

  15. Evaluating the impacts of speed limit policy alternatives.

    DOT National Transportation Integrated Search

    2014-07-01

    As of June 2014, Michigan is one of eight states with a differential speed limit in place on its rural : freeways, which sets a maximum speed of 70 mph for passenger vehicles and 60 mph for trucks and : buses. In select urban environments, these spee...

  16. Impact of the 65 mph speed limit on Virginia's rural interstate highways, 1989-1992.

    DOT National Transportation Integrated Search

    1994-01-01

    In April of 1987, Congress passed the Surface Transportation and Uniform Relocation Assistance Act (STURAA), which permitted states to raise their maximum speed limit on rural interstate highways to 65 mph. Virginia's 65 mph speed limit went into eff...

  17. The impact of the 65 MPH speed limit on Virginia's rural interstate highways through 1990.

    DOT National Transportation Integrated Search

    1992-01-01

    In April of 1987, Congress passed the Surface Transportation and Uniform Relocation Assistance Act (STURAA), which permitted states to raise their maximum speed limit on rural interstate highways (rural interstates) to 65 mph. Virginia's 65 mph speed...

  18. Examining Impulse-Variability Theory and the Speed-Accuracy Trade-Off in Children's Overarm Throwing Performance.

    PubMed

    Molina, Sergio L; Stodden, David F

    2018-04-01

    This study examined variability in throwing speed and spatial error to test the prediction of an inverted-U function (i.e., impulse-variability [IV] theory) and the speed-accuracy trade-off. Forty-five 9- to 11-year-old children were instructed to throw at a specified percentage of maximum speed (45%, 65%, 85%, and 100%) and hit the wall target. Results indicated no statistically significant differences in variable error across the target conditions (p = .72), failing to support the inverted-U hypothesis. Spatial accuracy results indicated no statistically significant differences with mean radial error (p = .18), centroid radial error (p = .13), and bivariate variable error (p = .08) also failing to support the speed-accuracy trade-off in overarm throwing. As neither throwing performance variability nor accuracy changed across percentages of maximum speed in this sample of children as well as in a previous adult sample, current policy and practices of practitioners may need to be reevaluated.

  19. Effect of Initial Mixture Temperature on Flame Speed of Methane-Air, Propane-Air, and Ethylene-Air Mixtures

    NASA Technical Reports Server (NTRS)

    Dugger, Gordon L

    1952-01-01

    Flame speeds based on the outer edge of the shadow cast by the laminar Bunsen cone were determined as functions of composition for methane-air mixtures at initial mixture temperatures ranging from -132 degrees to 342 degrees c and for propane-air and ethylene-air mixtures at initial mixture temperatures ranging from -73 degrees to 344 degrees c. The data showed that maximum flame speed increased with temperature at an increasing rate. The percentage change in flame speed with change in initial temperature for the three fuels followed the decreasing order, methane, propane, and ethylene. Empirical equations were determined for maximum flame speed as a function of initial temperature over the temperature range covered for each fuel. The observed effect of temperature on flame speed for each of the fuels was reasonably well predicted by either the thermal theory as presented by Semenov or the square-root law of Tanford and Pease.

  20. Analytical correlation of centrifugal compressor design geometry for maximum efficiency with specific speed

    NASA Technical Reports Server (NTRS)

    Galvas, M. R.

    1972-01-01

    Centrifugal compressor performance was examined analytically to determine optimum geometry for various applications as characterized by specific speed. Seven specific losses were calculated for various combinations of inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, blade exit backsweep, and inlet-tip absolute tangential velocity for solid body prewhirl. The losses considered were inlet guide vane loss, blade loading loss, skin friction loss, recirculation loss, disk friction loss, vaneless diffuser loss, and vaned diffuser loss. Maximum total efficiencies ranged from 0.497 to 0.868 for a specific speed range of 0.257 to 1.346. Curves of rotor exit absolute flow angle, inlet tip-exit diameter ratio, inlet hub-tip diameter ratio, head coefficient and blade exit backsweep are presented over a range of specific speeds for various inducer tip speeds to permit rapid selection of optimum compressor size and shape for a variety of applications.

  1. Variable-speed Generators with Flux Weakening

    NASA Technical Reports Server (NTRS)

    Fardoun, A. A.; Fuchs, E. F.; Carlin, P. W.

    1993-01-01

    A cost-competitive, permanent-magnet 20 kW generator is designed such that the following criteria are satisfied: an (over) load capability of at least 30 kW over the entire speed range of 60-120 rpm, generator weight of about 550 lbs with a maximum radial stator flux density of 0.82 T at low speed, unity power factor operation, acceptably small synchronous reactances and operation without a gear box. To justify this final design four different generator designs are investigated: the first two designs are studied to obtain a speed range from 20 to 200 rpm employing rotor field weakening, and the latter two are investigated to obtain a maximum speed range of 40 to 160 rpm based on field weakening via the stator excitation. The generator reactances and induced voltages are computed using finite element/difference solutions. Generator losses and efficiencies are presented for all four designs at rated temperature of Tr=120C.

  2. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-06-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  3. Simulated wind-generated inertial oscillations compared to current measurements in the northern North Sea

    NASA Astrophysics Data System (ADS)

    Bruserud, Kjersti; Haver, Sverre; Myrhaug, Dag

    2018-04-01

    Measured current speed data show that episodes of wind-generated inertial oscillations dominate the current conditions in parts of the northern North Sea. In order to acquire current data of sufficient duration for robust estimation of joint metocean design conditions, such as wind, waves, and currents, a simple model for episodes of wind-generated inertial oscillations is adapted for the northern North Sea. The model is validated with and compared against measured current data at one location in the northern North Sea and found to reproduce the measured maximum current speed in each episode with considerable accuracy. The comparison is further improved when a small general background current is added to the simulated maximum current speeds. Extreme values of measured and simulated current speed are estimated and found to compare well. To assess the robustness of the model and the sensitivity of current conditions from location to location, the validated model is applied at three other locations in the northern North Sea. In general, the simulated maximum current speeds are smaller than the measured, suggesting that wind-generated inertial oscillations are not as prominent at these locations and that other current conditions may be governing. Further analysis of the simulated current speed and joint distribution of wind, waves, and currents for design of offshore structures will be presented in a separate paper.

  4. Identification of mouse gaits using a novel force-sensing exercise wheel.

    PubMed

    Smith, Benjamin J H; Cullingford, Lottie; Usherwood, James R

    2015-09-15

    The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and if) mouse gaits vary with speed. One of the challenges in studying mouse gaits is that mice tend to run intermittently on treadmills or overground; this paper attempts to overcome this issue with a novel exercise wheel that measures vertical ground reaction forces. Unlike previous instrumented wheels, this wheel is able to measure forces continuously and can therefore record data from consecutive strides. By concatenating the maximum limb force at each time point, a force trace can be constructed to quantify and identify gaits. The wheel was three dimensionally printed, allowing the design to be shared with other researchers. The kinematic parameters measured by the wheel were evaluated using high-speed video. Gaits were classified using a metric called "3S" (stride signal symmetry), which quantifies the half wave symmetry of the force trace peaks. Although mice are capable of using both symmetric and asymmetric gaits throughout their speed range, the continuum of gaits can be divided into regions based on the frequency of symmetric and asymmetric gaits; these divisions are further supported by the fact that mice run less frequently at speeds near the boundaries between regions. The boundary speeds correspond to gait transition speeds predicted by the hypothesis that mice move in a dynamically similar fashion to other legged animals. Copyright © 2015 the American Physiological Society.

  5. Identification of mouse gaits using a novel force-sensing exercise wheel

    PubMed Central

    Cullingford, Lottie; Usherwood, James R.

    2015-01-01

    The gaits that animals use can provide information on neurological and musculoskeletal disorders, as well as the biomechanics of locomotion. Mice are a common research model in many fields; however, there is no consensus in the literature on how (and if) mouse gaits vary with speed. One of the challenges in studying mouse gaits is that mice tend to run intermittently on treadmills or overground; this paper attempts to overcome this issue with a novel exercise wheel that measures vertical ground reaction forces. Unlike previous instrumented wheels, this wheel is able to measure forces continuously and can therefore record data from consecutive strides. By concatenating the maximum limb force at each time point, a force trace can be constructed to quantify and identify gaits. The wheel was three dimensionally printed, allowing the design to be shared with other researchers. The kinematic parameters measured by the wheel were evaluated using high-speed video. Gaits were classified using a metric called “3S” (stride signal symmetry), which quantifies the half wave symmetry of the force trace peaks. Although mice are capable of using both symmetric and asymmetric gaits throughout their speed range, the continuum of gaits can be divided into regions based on the frequency of symmetric and asymmetric gaits; these divisions are further supported by the fact that mice run less frequently at speeds near the boundaries between regions. The boundary speeds correspond to gait transition speeds predicted by the hypothesis that mice move in a dynamically similar fashion to other legged animals. PMID:26139220

  6. Fail-Safe Magnetic Bearing Controller Demonstrated Successfully

    NASA Technical Reports Server (NTRS)

    Choi, Benjamin B.; Provenza, Andrew J.

    2001-01-01

    The Structural Mechanics and Dynamics Branch has successfully demonstrated a fail-safe controller for the Fault-Tolerant Magnetic Bearing rig at the NASA Glenn Research Center. The rotor is supported by two 8-pole redundant radial bearings, and coil failing situations are simulated by manually shutting down their control current commands from the controller cockpit. The effectiveness of the controller was demonstrated when only two active coils from each radial bearing could be used (that is, 14 coils failed). These remaining two coils still levitated the rotor and spun it without losing stability or desired position up to the maximum allowable speed of 20,000 rpm.

  7. Two High-Temperature Foil Journal Bearings

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2006-01-01

    An enlarged, high-temperature-compliant foil bearing has been built and tested to demonstrate the feasibility of such bearings for use in aircraft gas turbine engines. Foil bearings are attractive for use in some machines in which (1) speeds of rotation, temperatures, or both exceed maximum allowable values for rolling-element bearings; (2) conventional lubricants decompose at high operating temperatures; and/or (3) it is necessary or desirable not to rely on conventional lubrication systems. In a foil bearing, the lubricant is the working fluid (e.g., air or a mixture of combustion gases) in the space between the journal and the shaft in the machine in which the bearing is installed.

  8. Optimal shapes of surface-slip driven self-propelled swimmers

    NASA Astrophysics Data System (ADS)

    Vilfan, Andrej; Osterman, Natan

    2012-11-01

    If one defines the swimming efficiency of a microorganism as the power needed to move it against viscous drag, divided by the total dissipated power, one usually finds values no better than 1%. In order to find out how close this is to the theoretically achievable optimum, we first introduced a new efficiency measure at the level of a single cilium or an infinite ciliated surface and numerically determined the optimal beating patterns according to this criterion. In the following we also determined the optimal shape of a swimmer such that the total power is minimal while maintaining the volume and the swimming speed. The resulting shape depends strongly on the allowed maximum curvature. When sufficient curvature is allowed the optimal swimmer exhibits two protrusions along the symmetry axis. The results show that prolate swimmers such as Paramecium have an efficiency that is ~ 20% higher than that of a spherical body, whereas some microorganisms have shapes that allow even higher efficiency.

  9. Intraspecific variation in aerobic and anaerobic locomotion: gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata) do not exhibit a trade-off between maximum sustained swimming speed and minimum cost of transport

    PubMed Central

    Svendsen, Jon C.; Tirsgaard, Bjørn; Cordero, Gerardo A.; Steffensen, John F.

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; Ucrit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3) there is a trade-off between maximum sustained swimming speed (Usus) and minimum cost of transport (COTmin); and (4) variation in Usus correlates positively with optimum swimming speed (Uopt; i.e., the speed that minimizes energy expenditure per unit of distance traveled). Data collection involved swimming respirometry and video analysis. Results showed that anaerobic swimming costs (i.e., EPOC) increase linearly with the number of bursts in S. aurata, with each burst corresponding to 0.53 mg O2 kg−1. Data are consistent with a previous study on striped surfperch (Embiotoca lateralis), a labriform swimmer, suggesting that the metabolic cost of burst swimming is similar across various types of locomotion. There was no correlation between Ucrit and MS or anaerobic capacity in S. aurata indicating that other factors, including morphological or biomechanical traits, influenced Ucrit. We found no evidence of a trade-off between Usus and COTmin. In fact, data revealed significant negative correlations between Usus and COTmin, suggesting that individuals with high Usus also exhibit low COTmin. Finally, there were positive correlations between Usus and Uopt. Our study demonstrates the energetic importance of anaerobic metabolism during unsteady swimming, and provides intraspecific evidence that superior maximum sustained swimming speed is associated with superior swimming economy and optimum speed. PMID:25741285

  10. The Effect of Connecting-passage Diameter on the Performance of a Compression-ignition Engine with a Precombustion Chamber

    NASA Technical Reports Server (NTRS)

    Moore, C S; Collins, J H

    1932-01-01

    Results of motoring tests are presented showing the effect of passage diameter on chamber and cylinder compression pressures, maximum pressure differences, and f.m.e.p. over a speed range from 300 to 1,750 r.p.m. Results of engine performance tests are presented which show the effect of passage diameter on m.e.p., explosion pressures, specific fuel consumption, and rates of pressure rise for a range of engine speeds from 500 to 1,500 r.p.m. The cylinder compression pressure, the maximum pressure difference, and the f.m.e.p. decreased rapidly as the passage diameter increased to 29/64 inch, whereas further increase in passage diameter effected only a slight change. The most suitable passage diameter for good engine performance and operating characteristics was 29/64 inch. Passage diameter became less critical with a decrease in engine speed. Therefore, the design should be based on maximum operating speed. Optimum performance and satisfactory combustion control could not be obtained by means of any single diameter of the connecting passage.

  11. The Effect of Wind-Turbine Wakes on Summertime US Midwest Atmospheric Wind Profiles as Observed with Ground-Based Doppler Lidar

    NASA Astrophysics Data System (ADS)

    Rhodes, Michael E.; Lundquist, Julie K.

    2013-07-01

    We examine the influence of a modern multi-megawatt wind turbine on wind and turbulence profiles three rotor diameters (D) downwind of the turbine. Light detection and ranging (lidar) wind-profile observations were collected during summer 2011 in an operating wind farm in central Iowa at 20-m vertical intervals from 40 to 220 m above the surface. After a calibration period during which two lidars were operated next to each other, one lidar was located approximately 2D directly south of a wind turbine; the other lidar was moved approximately 3D north of the same wind turbine. Data from the two lidars during southerly flow conditions enabled the simultaneous capture of inflow and wake conditions. The inflow wind and turbulence profiles exhibit strong variability with atmospheric stability: daytime profiles are well-mixed with little shear and strong turbulence, while nighttime profiles exhibit minimal turbulence and considerable shear across the rotor disk region and above. Consistent with the observations available from other studies and with wind-tunnel and large-eddy simulation studies, measurable reductions in wake wind-speeds occur at heights spanning the wind turbine rotor (43-117 m), and turbulent quantities increase in the wake. In generalizing these results as a function of inflow wind speed, we find the wind-speed deficit in the wake is largest at hub height or just above, and the maximum deficit occurs when wind speeds are below the rated speed for the turbine. Similarly, the maximum enhancement of turbulence kinetic energy and turbulence intensity occurs at hub height, although observations at the top of the rotor disk do not allow assessment of turbulence in that region. The wind shear below turbine hub height (quantified here with the power-law coefficient) is found to be a useful parameter to identify whether a downwind lidar observes turbine wake or free-flow conditions. These field observations provide data for validating turbine-wake models and wind-tunnel observations, and for guiding assessments of the impacts of wakes on surface turbulent fluxes or surface temperatures downwind of turbines.

  12. Thermal dependence of sprint performance in the lizard Psammodromus algirus along a 2200-meter elevational gradient: Cold-habitat lizards do not perform better at low temperatures.

    PubMed

    Zamora-Camacho, Francisco Javier; Rubiño-Hispán, María Virtudes; Reguera, Senda; Moreno-Rueda, Gregorio

    2015-08-01

    Sprint speed has a capital relevance in most animals' fitness, mainly for fleeing from predators. Sprint performance is maximal within a certain range of body temperatures in ectotherms, whose thermal upkeep relies on exogenous thermal sources. Ectotherms can respond to diverse thermal environments either by shifting their thermal preferences or maintaining them through different adaptive mechanisms. Here, we tested whether maximum sprint speed of a lizard that shows conservative thermal ecology along a 2200-meter elevational gradient differs with body temperature in lizards from different elevations. Lizards ran faster at optimum than at suboptimum body temperature. Notably, high-elevation lizards were not faster than mid- and low-elevation lizards at suboptimum body temperature, despite their low-quality thermal environment. This result suggests that both preferred body temperature and thermal dependence of speed performance are co-adapted along the elevational gradient. High-elevation lizards display a number of thermoregulatory strategies that allow them to achieve high optimum body temperatures in a low thermal-quality habitat and thus maximize speed performance. As for reproductive condition, we did not find any effect of it on sprint speed, or any significant interaction with elevation or body temperature. However, strikingly, gravid females were significantly slower than males and non-gravid females at suboptimum temperature, but performed similarly well at optimal temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Optimal Paths in Gliding Flight

    NASA Astrophysics Data System (ADS)

    Wolek, Artur

    Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.

  14. A High-Speed Vision-Based Sensor for Dynamic Vibration Analysis Using Fast Motion Extraction Algorithms.

    PubMed

    Zhang, Dashan; Guo, Jie; Lei, Xiujun; Zhu, Changan

    2016-04-22

    The development of image sensor and optics enables the application of vision-based techniques to the non-contact dynamic vibration analysis of large-scale structures. As an emerging technology, a vision-based approach allows for remote measuring and does not bring any additional mass to the measuring object compared with traditional contact measurements. In this study, a high-speed vision-based sensor system is developed to extract structure vibration signals in real time. A fast motion extraction algorithm is required for this system because the maximum sampling frequency of the charge-coupled device (CCD) sensor can reach up to 1000 Hz. Two efficient subpixel level motion extraction algorithms, namely the modified Taylor approximation refinement algorithm and the localization refinement algorithm, are integrated into the proposed vision sensor. Quantitative analysis shows that both of the two modified algorithms are at least five times faster than conventional upsampled cross-correlation approaches and achieve satisfactory error performance. The practicability of the developed sensor is evaluated by an experiment in a laboratory environment and a field test. Experimental results indicate that the developed high-speed vision-based sensor system can extract accurate dynamic structure vibration signals by tracking either artificial targets or natural features.

  15. Predicted Performance of a Thrust-Enhanced SR-71 Aircraft with an External Payload

    NASA Technical Reports Server (NTRS)

    Conners, Timothy R.

    1997-01-01

    NASA Dryden Flight Research Center has completed a preliminary performance analysis of the SR-71 aircraft for use as a launch platform for high-speed research vehicles and for carrying captive experimental packages to high altitude and Mach number conditions. Externally mounted research platforms can significantly increase drag, limiting test time and, in extreme cases, prohibiting penetration through the high-drag, transonic flight regime. To provide supplemental SR-71 acceleration, methods have been developed that could increase the thrust of the J58 turbojet engines. These methods include temperature and speed increases and augmentor nitrous oxide injection. The thrust-enhanced engines would allow the SR-71 aircraft to carry higher drag research platforms than it could without enhancement. This paper presents predicted SR-71 performance with and without enhanced engines. A modified climb-dive technique is shown to reduce fuel consumption when flying through the transonic flight regime with a large external payload. Estimates are included of the maximum platform drag profiles with which the aircraft could still complete a high-speed research mission. In this case, enhancement was found to increase the SR-71 payload drag capability by 25 percent. The thrust enhancement techniques and performance prediction methodology are described.

  16. Predicting Average Vehicle Speed in Two Lane Highways Considering Weather Condition and Traffic Characteristics

    NASA Astrophysics Data System (ADS)

    Mirbaha, Babak; Saffarzadeh, Mahmoud; AmirHossein Beheshty, Seyed; Aniran, MirMoosa; Yazdani, Mirbahador; Shirini, Bahram

    2017-10-01

    Analysis of vehicle speed with different weather condition and traffic characteristics is very effective in traffic planning. Since the weather condition and traffic characteristics vary every day, the prediction of average speed can be useful in traffic management plans. In this study, traffic and weather data for a two-lane highway located in Northwest of Iran were selected for analysis. After merging traffic and weather data, the linear regression model was calibrated for speed prediction using STATA12.1 Statistical and Data Analysis software. Variables like vehicle flow, percentage of heavy vehicles, vehicle flow in opposing lane, percentage of heavy vehicles in opposing lane, rainfall (mm), snowfall and maximum daily wind speed more than 13m/s were found to be significant variables in the model. Results showed that variables of vehicle flow and heavy vehicle percent acquired the positive coefficient that shows, by increasing these variables the average vehicle speed in every weather condition will also increase. Vehicle flow in opposing lane, percentage of heavy vehicle in opposing lane, rainfall amount (mm), snowfall and maximum daily wind speed more than 13m/s acquired the negative coefficient that shows by increasing these variables, the average vehicle speed will decrease.

  17. 40 CFR 1065.610 - Duty cycle generation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maximum power at which 50% of maximum power occurs. Denote this value as n lo. Take n lo to be warm idle... representative engine speed, whichever is lower. Use n hi and n lo to calculate reference values for A, B, or C speeds as follows: f nrefA = 0.25 · (n hi − n lo) + n lo Eq. 1065.610-4 f nrefB = 0.50 · (n hi − nnlo...

  18. An Observational and Analytical Study of Marginal Ice Zone Atmospheric Jets

    DTIC Science & Technology

    2016-12-01

    layer or in the capping temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m...geostrophic wind due to horizontal temperature changes in the atmospheric boundary layer and capping inversion . The jets were detected using...temperature inversion just above. The three strongest jets had maximum wind speeds at elevations near 350 m to 400 m elevation; one of these jets had a

  19. 40 CFR Appendix B to Subpart E of... - Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Variable-Speed Engines Test segment Mode number Engine speed 1 Observed torque 2 (percent of max. observed...'s specifications. Idle speed is specified by the manufacturer. 2 Torque (non-idle): Throttle fully open for 100 percent points. Other non-idle points: ± 2 percent of engine maximum value. Torque (idle...

  20. Effect of Tip-Speed Constraints on the Optimized Design of a Wind Turbine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, K.; Resor, B.; Platt, A.

    This study investigates the effect of tip-velocity constraints on system levelized cost of energy (LCOE). The results indicate that a change in maximum tip speed from 80 to 100~m/s could produce a 32% decrease in gearbox weight (a 33% reduction in cost) which would result in an overall reduction of 1%-9% in system LCOE depending on the design approach. Three 100~m/s design cases were considered including a low tip-speed ratio/high-solidity rotor design, a high tip-speed ratio/ low-solidity rotor design, and finally a flexible blade design in which a high tip-speed ratio was used along with removing the tip deflection constraintmore » on the rotor design. In all three cases, the significant reduction in gearbox weight caused by the higher tip-speed and lower overall gear ratio was counterbalanced by increased weights for the rotor and/or other drivetrain components and the tower. As a result, the increased costs of either the rotor or drivetrain components offset the overall reduction in turbine costs from down-sizing the gearbox. Other system costs were not significantly affected, whereas energy production was slightly reduced in the 100~m/s case low tip-speed ratio case and increased in the high tip-speed ratio case. This resulted in system cost of energy reductions moving from the 80~m/s design to the 100~m/s designs of 1.2% for the low tip-speed ratio, 4.6% for the high tip-speed ratio, and 9.5% for the final flexible case (the latter result is optimistic because the impact of deflection of the flexible blade on power production was not modeled). Overall, the results demonstrate that there is a trade-off in system design between the maximum tip velocity and the overall wind plant cost of energy, and there are many trade-offs within the overall system in designing a turbine for a high maximum tip velocity.« less

  1. A continuously weighing, high frequency sand trap: Wind tunnel and field evaluations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Yang, XingHua; Huo, Wen; Ali, Mamtimin; Zheng, XinQian; Zhou, ChengLong; He, Qing

    2017-09-01

    A new continuously weighing, high frequency sand trap (CWHF) has been designed. Its sampling efficiency is evaluated in a wind tunnel and the potential of the new trap has been demonstrated in field trials. The newly designed sand trap allows fully automated and high frequency measurement of sediment fluxes over extensive periods. We show that it can capture the variations and structures of wind-driven sand transport processes and horizontal sediment flux, and reveal the relationships between sand transport and meteorological parameters. Its maximum sampling frequency can reach 10 Hz. Wind tunnel tests indicated that the sampling efficiency of the CWHF sand trap varies between 39.2 to 64.3%, with an average of 52.5%. It achieved a maximum sampling efficiency of 64.3% at a wind speed of 10 m s- 1. This is largely achieved by the inclusion of a vent hole which leads to a higher sampling efficiency than that of a step-like sand trap at high wind speeds. In field experiments, we show a good agreement between the mass of sediment from the CWHF sand trap, the wind speed at 2 m and the number of saltating particles at 5 cm above the ground surface. According to analysis of the horizontal sediment flux at four heights from the CWHF sand trap (25, 35, 50, and 100 cm), the vertical distribution of the horizontal sediment flux up to a height of 100 cm above the sand surface follows an exponential function. Our field experiments show that the new instrument can capture more detailed information on sediment transport with much reduced labor requirement. Therefore, it has great potential for application in wind-blown sand monitoring and process studies.

  2. Impact assessment of a high-speed railway line on species distribution: application to the European tree frog (Hyla arborea) in Franche-Comté.

    PubMed

    Clauzel, Céline; Girardet, Xavier; Foltête, Jean-Christophe

    2013-09-30

    The aim of the present work is to assess the potential long-distance effect of a high-speed railway line on the distribution of the European tree frog (Hyla arborea) in eastern France by combining graph-based analysis and species distribution models. This combination is a way to integrate patch-level connectivity metrics on different scales into a predictive model. The approach used is put in place before the construction of the infrastructure and allows areas potentially affected by isolation to be mapped. Through a diachronic analysis, comparing species distribution before and after the construction of the infrastructure, we identify changes in the probability of species presence and we determine the maximum distance of impact. The results show that the potential impact decreases with distance from the high-speed railway line and the largest disturbances occur within the first 500 m. Between 500 m and 3500 m, the infrastructure generates a moderate decrease in the probability of presence with maximum values close to -40%. Beyond 3500 m the average disturbance is less than -10%. The spatial extent of the impact is greater than the dispersal distance of the tree frog, confirming the assumption of the long-distance effect of the infrastructure. This predictive modelling approach appears to be a useful tool for environmental impact assessment and strategic environmental assessment. The results of the species distribution assessment may provide guidance for field surveys and support for conservation decisions by identifying the areas most affected. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Effect of different pushing speeds on bench press.

    PubMed

    Padulo, J; Mignogna, P; Mignardi, S; Tonni, F; D'Ottavio, S

    2012-05-01

    The purpose of this study was to investigate the effect on muscular strength after a 3-week training with the bench-press at a fixed pushing of 80-100% maximal speed (FPS) and self-selected pushing speed (SPS). 20 resistance-trained subjects were divided at random in 2 groups differing only regarding the pushing speed: in the FPS group (n=10) it was equal to 80-100% of the maximal speed while in the SPS group (n=10) the pushing speed was self-selected. Both groups were trained twice a week for 3 weeks with a load equal to 85% of 1RM and monitored with the encoder. Before and after the training we measured pushing speed and maximum load. Significant differences between and within the 2 groups were pointed out using a 2-way ANOVA for repeated measures. After 3 weeks a significant improvement was shown especially in the FPS group: the maximum load improved by 10.20% and the maximal speed by 2.22%, while in the SPS group the effect was <1%. This study shows that a high velocity training is required to increase the muscle strength further in subjects with a long training experience and this is possible by measuring the individual performance speed for each load. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Improvement to Airport Throughput Using Intelligent Arrival Scheduling and an Expanded Planning Horizon

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia C.

    2012-01-01

    The first phase of this study investigated the amount of time a flight can be delayed or expedited within the Terminal Airspace using only speed changes. The Arrival Capacity Calculator analysis tool was used to predict the time adjustment envelope for standard descent arrivals and then for CDA arrivals. Results ranged from 0.77 to 5.38 minutes. STAR routes were configured for the ACES simulation, and a validation of the ACC results was conducted comparing the maximum predicted time adjustments to those seen in ACES. The final phase investigated full runway-to-runway trajectories using ACES. The radial distance used by the arrival scheduler was incrementally increased from 50 to 150 nautical miles (nmi). The increased Planning Horizon radii allowed the arrival scheduler to arrange, path stretch, and speed-adjust flights to more fully load the arrival stream. The average throughput for the high volume portion of the day increased from 30 aircraft per runway for the 50 nmi radius to 40 aircraft per runway for the 150 nmi radius for a traffic set representative of high volume 2018. The recommended radius for the arrival scheduler s Planning Horizon was found to be 130 nmi, which allowed more than 95% loading of the arrival stream.

  5. Modeling and analysis of the effect of training on V O2 kinetics and anaerobic capacity.

    PubMed

    Stirling, J R; Zakynthinaki, M S; Billat, V

    2008-07-01

    In this paper, we present an application of a number of tools and concepts for modeling and analyzing raw, unaveraged, and unedited breath-by-breath oxygen uptake data. A method for calculating anaerobic capacity is used together with a model, in the form of a set of coupled nonlinear ordinary differential equations to make predictions of the VO(2) kinetics, the time to achieve a percentage of a certain constant oxygen demand, and the time limit to exhaustion at intensities other than those in which we have data. Speeded oxygen kinetics and increased time limit to exhaustion are also investigated using the eigenvalues of the fixed points of our model. We also use a way of analyzing the oxygen uptake kinetics using a plot of V O(2)(t) vs V O(2)(t) which allows one to observe both the fixed point solutions and also the presence of speeded oxygen kinetics following training. A method of plotting the eigenvalue versus oxygen demand is also used which allows one to observe where the maximum amplitude of the so-called slow component will be and also how training has changed the oxygen uptake kinetics by changing the strength of the attracting fixed point for a particular demand.

  6. Development and evaluation of a SUAS perching system

    NASA Astrophysics Data System (ADS)

    Reynolds, Ryan

    Perching has been proposed as a possible landing technique for Small Unmanned Aircraft Systems (SUAS). The current research study develops an onboard open loop perching system for a fixed-wing SUAS and examines the impact of initial flight speed and sensor placement on the perching dynamics. A catapult launcher and modified COTS aircraft were used for the experiments, while an ultrasonic sensor on the aircraft was used to detect the perching target. Thirty tests were conducted varying the initial launch speed and ultrasonic sensor placement to see if they affected the time the aircraft reaches its maximum pitch angle, since the maximum pitch angle is the optimum perching point for the aircraft. High-speed video was analyzed to obtain flight data, along with data from an onboard inertial measuring unit. The data were analyzed using a model 1, two-way ANOVA to determine if launch speed and sensor placement affect the optimum perching point where the aircraft reaches its maximum pitch angle during the maneuver. The results show the launch speed does affect the time at which the maximum pitch angle occurs, but sensor placement does not. This means a closed loop system will need to adjust its perching distance based on its initial velocity. The sensor placement not having any noticeable effect means the ultrasonic sensor can be placed on the nose or the wing of the aircraft as needed for the design. There was also no noticeable interaction between the two variables. Aerodynamic parameters such as lift, drag, and moment coefficients were derived from the dynamic equations of motion for use in numerical simulations and dynamic perching models.

  7. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Maximum allowable stress on stays and braces. 230... Boilers and Appurtenances Allowable Stress § 230.25 Maximum allowable stress on stays and braces. The maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber...

  8. 40 CFR 35.2205 - Maximum allowable project cost.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Maximum allowable project cost. 35.2205... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2205 Maximum allowable... regulation, the maximum allowable project cost will be the sum of: (1) The allowable cost of the following...

  9. Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    West, F E

    1945-01-01

    Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

  10. On the Motion of Agents across Terrain with Obstacles

    NASA Astrophysics Data System (ADS)

    Kuznetsov, A. V.

    2018-01-01

    The paper is devoted to finding the time optimal route of an agent travelling across a region from a given source point to a given target point. At each point of this region, a maximum allowed speed is specified. This speed limit may vary in time. The continuous statement of this problem and the case when the agent travels on a grid with square cells are considered. In the latter case, the time is also discrete, and the number of admissible directions of motion at each point in time is eight. The existence of an optimal solution of this problem is proved, and estimates of the approximate solution obtained on the grid are obtained. It is found that decreasing the size of cells below a certain limit does not further improve the approximation. These results can be used to estimate the quasi-optimal trajectory of the agent motion across the rugged terrain produced by an algorithm based on a cellular automaton that was earlier developed by the author.

  11. High-Reynolds Number Circulation Control Testing in the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Milholen, William E., II; Jones, Gregory S.; Chan, David T.; Goodliff, Scott L.

    2012-01-01

    A new capability to test active flow control concepts and propulsion simulations at high Reynolds numbers in the National Transonic Facility at the NASA Langley Research Center is being developed. The first active flow control experiment was completed using the new FAST-MAC semi-span model to study Reynolds number scaling effects for several circulation control concepts. Testing was conducted over a wide range of Mach numbers, up to chord Reynolds numbers of 30 million. The model was equipped with four onboard flow control valves allowing independent control of the circulation control plenums, which were directed over a 15% chord simple-hinged flap. Preliminary analysis of the uncorrected lift data showed that the circulation control increased the low-speed maximum lift coefficient by 33%. At transonic speeds, the circulation control was capable of positively altering the shockwave pattern on the upper wing surface and reducing flow separation. Furthermore, application of the technique to only the outboard portion of the wing demonstrated the feasibility of a pneumatic based roll control capability.

  12. Sprint swimming performance of wild bull trout (Salvelinus confluentus)

    USGS Publications Warehouse

    Mesa, M.G.; Phelps, J.; Weiland, L.K.

    2008-01-01

    We conducted laboratory experiments to determine the sprint swimming performance of wild juvenile and adult bull trout Salvelinus confluentus. Sprint swimming speeds were estimated using high-speed digital video analysis. Thirty two bull trout were tested in sizes ranging from about 10 to 31 cm. Of these, 14 fish showed at least one motivated, vigorous sprint. When plotted as a function of time, velocity of fish increased rapidly with the relation linear or slightly curvilinear. Their maximum velocity, or Vmax, ranged from 1.3 to 2.3 m/s, was usually achieved within 0.8 to 1.0 s, and was independent of fish size. Distances covered during these sprints ranged from 1.4 to 2.4 m. Our estimates of the sprint swimming performance are the first reported for this species and may be useful for producing or modifying fish passage structures that allow safe and effective passage of fish without overly exhausting them. ?? 2008 by the Northwest Scientific Association. All rights reserved.

  13. ANATOMY OF HELICAL EXTRAGALACTIC JETS: THE CASE OF S5 0836+710

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perucho, M.; Kovalev, Y. Y.; Lobanov, A. P.

    Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use very long baseline interferometry data of the radio jet in the quasar S5 0836+710 and hypothesize that the ridgeline of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed aremore » physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridgeline can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridgeline observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.« less

  14. Flight Investigation of Effects of Selected Operating Conditions on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1961-01-01

    Flight tests have been conducted with a single-rotor helicopter to determine the effects of partial-power descents with forward speed, high-speed level turns, pull-outs from autorotation, and high-forward-speed high-rotor-speed autorotation on the flapwise bending and torsional moments of the rotor blade. One blade of the helicopter was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses. The results indicate that the maximum moments encountered in partial-power descents with forward speed tend to be generally reduced from the maximum moments encountered during partid-power descents at zero forward speed. High-speed level turns and pull-outs from auto-rotation caused retreating-blade stall which produced torsional moments (values up to 2,400 inch-pounds). at the 14-percent-radius station that were as large as those encountered during the previous investigations of retreating-blade stall (values up t o 2,500 inch-pounds). High-forward- speed high-rotor-speed autorotation produced flapwise bending moments (values up to 7,200 inch-pounds) at the 40-percent-radius station which were as large as the flapwise bending moments (values up to 7,800 inch-pounds) a t the 14-percent-radius station encountered during partial - power vertical descents. The results of the present investigation (tip-speed ratios up to 0.325 and an unaccelerated level-flight mean lift coefficient of about 0.6), in combination with the related results of at zero forward speed produce the largest rotor-blade vibratory moments. However, inasmuch as these large moments occur only during 1 percent of the cycles and 88 percent of the cycles are at moment values less than 70 percent of these maximum values in partial-power descents, other conditions, such as high-speed flight where the large moments are combined with large percentages of time spent,must not be neglected in any rotor-blade service-life assessment.

  15. Impact of left ventricular assist device speed adjustment on exercise tolerance and markers of wall stress.

    PubMed

    Hayward, Christopher S; Salamonsen, Robert; Keogh, Anne M; Woodard, John; Ayre, Peter; Prichard, Roslyn; Kotlyar, Eugene; Macdonald, Peter S; Jansz, Paul; Spratt, Phillip

    2015-09-01

    Left ventricular assist devices are crucial in rehabilitation of patients with end-stage heart failure. Whether cardiopulmonary function is enhanced with higher pump output is unknown. 10 patients (aged 39±16 years, mean±SD) underwent monitored adjustment of pump speed to determine minimum safe low speed and maximum safe high speed at rest. Patients were then randomized to these speed settings and underwent three 6-minute walk tests (6MWT) and symptom-limited cardiopulmonary stress tests (CPX) on separate days. Pump speed settings (low, normal and high) resulted in significantly different resting pump flows of 4.43±0.6, 5.03±0.94, and 5.72±1.2 l/min (P<.001). There was a significant enhancement of pump flows (greater at higher speed settings) with exercise (P<0.05). Increased pump speed was associated with a trend to increased 6MWT distance (P=.10); and CPX exercise time (p=.27). Maximum workload achieved and peak oxygen consumption were significantly different comparing low to high pump speed settings only (P<.05). N-terminal-pro-B-type natriuretic peptide release was significantly reduced at higher pump speed with exercise (P<.01). We have found that alteration of pump speed setting resulted in significant variation in estimated pump flow. The high-speed setting was associated with lower natriuretic hormone release consistent with lower myocardial wall stress. This did not, however, improve exercise tolerance.

  16. OCCURRENCE OF HIGH-SPEED SOLAR WIND STREAMS OVER THE GRAND MODERN MAXIMUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mursula, K.; Holappa, L.; Lukianova, R., E-mail: kalevi.mursula@oulu.fi

    2015-03-01

    In the declining phase of the solar cycle (SC), when the new-polarity fields of the solar poles are strengthened by the transport of same-signed magnetic flux from lower latitudes, the polar coronal holes expand and form non-axisymmetric extensions toward the solar equator. These extensions enhance the occurrence of high-speed solar wind (SW) streams (HSS) and related co-rotating interaction regions in the low-latitude heliosphere, and cause moderate, recurrent geomagnetic activity (GA) in the near-Earth space. Here, using a novel definition of GA at high (polar cap) latitudes and the longest record of magnetic observations at a polar cap station, we calculatemore » the annually averaged SW speeds as proxies for the effective annual occurrence of HSS over the whole Grand Modern Maximum (GMM) from 1920s onward. We find that a period of high annual speeds (frequent occurrence of HSS) occurs in the declining phase of each of SCs 16-23. For most cycles the HSS activity clearly reaches a maximum in one year, suggesting that typically only one strong activation leading to a coronal hole extension is responsible for the HSS maximum. We find that the most persistent HSS activity occurred in the declining phase of SC 18. This suggests that cycle 19, which marks the sunspot maximum period of the GMM, was preceded by exceptionally strong polar fields during the previous sunspot minimum. This gives interesting support for the validity of solar dynamo theory during this dramatic period of solar magnetism.« less

  17. Parametric study of the Orbiter rollout using an approximate solution

    NASA Technical Reports Server (NTRS)

    Garland, B. J.

    1979-01-01

    An approximate solution to the motion of the Orbiter during rollout is used to perform a parametric study of the rollout distance required by the Orbiter. The study considers the maximum expected dispersions in the landing speed and the touchdown point. These dispersions are assumed to be correlated so that a fast landing occurs before the nominal touchdown point. The maximum rollout distance is required by the maximum landing speed with a 10 knot tailwind and the center of mass at the forward limit of its longitudinal travel. The maximum weight that can be stopped within 15,000 feet on a hot day at Kennedy Space Center is 248,800 pounds. The energy absorbed by the brakes would exceed the limit for reuse of the brakes.

  18. A New Supercapacitor and Li-ion Battery Hybrid System for Electric Vehicle in ADVISOR

    NASA Astrophysics Data System (ADS)

    Peng, Xiao; Shuhai, Quan; Changjun, Xie

    2017-02-01

    The supercapacitor (SC) and Li-ion battery(BT) hybrid energy storage system(HESS) electric vehicle(EV) is gaining universal attention. The topology is of importance for the SC/BT HESS. A new SC/BT topology HESS with a rule-based energy management strategy for EV was proposed. The BT pack is connected directly to the DC link via a controlled switch. The SC pack is connected to the DC link via a controlled switch. A uni-directional DC/DC converter is connected between the SC pack and the BT pack. The braking regeneration energy is all harvested by the SC pack. The output power of BT pack is limited. The different SC/BT configurations with varied BT maximum Ah capacity factor and SC maximum capacity factor are simulated in ADVISOR. Simulation results show that BT maximum Ah capacity factor has little impact on vehicle acceleration performance and maximum speed. SC maximum capacity factor has significant impact on vehicle acceleration performance and maximum speed. The fuel economy isn’t affected.

  19. A scenario planning approach for disasters on Swiss road network

    NASA Astrophysics Data System (ADS)

    Mendes, G. A.; Axhausen, K. W.; Andrade, J. S.; Herrmann, H. J.

    2014-05-01

    We study a vehicular traffic scenario on Swiss roads in an emergency situation, calculating how sequentially roads block due to excessive traffic load until global collapse (gridlock) occurs and in this way displays the fragilities of the system. We used a database from Bundesamt für Raumentwicklung which contains length and maximum allowed speed of all roads in Switzerland. The present work could be interesting for government agencies in planning and managing for emergency logistics for a country or a big city. The model used to generate the flux on the Swiss road network was proposed by Mendes et al. [Physica A 391, 362 (2012)]. It is based on the conservation of the number of vehicles and allows for an easy and fast way to follow the formation of traffic jams in large systems. We also analyze the difference between a nonlinear and a linear model and the distribution of fluxes on the Swiss road.

  20. Scanning wind-vector scatterometers with two pencil beams

    NASA Technical Reports Server (NTRS)

    Kirimoto, T.; Moore, R. K.

    1984-01-01

    A scanning pencil-beam scatterometer for ocean windvector determination has potential advantages over the fan-beam systems used and proposed heretofore. The pencil beam permits use of lower transmitter power, and at the same time allows concurrent use of the reflector by a radiometer to correct for atmospheric attenuation and other radiometers for other purposes. The use of dual beams based on the same scanning reflector permits four looks at each cell on the surface, thereby improving accuracy and allowing alias removal. Simulation results for a spaceborne dual-beam scanning scatterometer with a 1-watt radiated power at an orbital altitude of 900 km is described. Two novel algorithms for removing the aliases in the windvector are described, in addition to an adaptation of the conventional maximum likelihood algorithm. The new algorithms are more effective at alias removal than the conventional one. Measurement errors for the wind speed, assuming perfect alias removal, were found to be less than 10%.

  1. 14 CFR 23.175 - Demonstration of static longitudinal stability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... must be shown as follows: (a) Climb. The stick force curve must have a stable slope at speeds between 85 and 115 percent of the trim speed, with— (1) Flaps retracted; (2) Landing gear retracted; (3) Maximum continuous power; and (4) The airplane trimmed at the speed used in determining the climb...

  2. 14 CFR 23.175 - Demonstration of static longitudinal stability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... must be shown as follows: (a) Climb. The stick force curve must have a stable slope at speeds between 85 and 115 percent of the trim speed, with— (1) Flaps retracted; (2) Landing gear retracted; (3) Maximum continuous power; and (4) The airplane trimmed at the speed used in determining the climb...

  3. Compact stars

    NASA Astrophysics Data System (ADS)

    Estevez-Delgado, Gabino; Estevez-Delgado, Joaquin

    2018-05-01

    An analysis and construction is presented for a stellar model characterized by two parameters (w, n) associated with the compactness ratio and anisotropy, respectively. The reliability range for the parameter w ≤ 1.97981225149 corresponds with a compactness ratio u ≤ 0.2644959374, the density and pressures are positive, regular and monotonic decrescent functions, the radial and tangential speed of sound are lower than the light speed, moreover, than the plausible stability. The behavior of the speeds of sound are determinate for the anisotropy parameter n, admitting a subinterval where the speeds are monotonic crescent functions and other where we have monotonic decrescent functions for the same speeds, both cases describing a compact object that is also potentially stable. In the bigger value for the observational mass M = 2.05 M⊙ and radii R = 12.957 Km for the star PSR J0348+0432, the model indicates that the maximum central density ρc = 1.283820319 × 1018 Kg/m3 corresponds to the maximum value of the anisotropy parameter and the radial and tangential speed of the sound are monotonic decrescent functions.

  4. Velocity Requirements for Abort From the Boost Trajectory of a Manned Lunar Mission

    NASA Technical Reports Server (NTRS)

    Slye, Robert E.

    1961-01-01

    An investigation is made of the abort velocity requirements associated with failure of a propulsion system for a manned lunar mission. Two cases are considered: abort at less than satellite speed, which results in maximum decelerations in the following entry, and abort at greater than satellite speed with immediate return to earth. The velocity requirements associated with the latter problem are found to be substantial (several thousand feet per second) and are found to be even more severe if boost trajectories which lead to burnout at high altitudes or large flight-path angles are used. The velocity requirements associated with abort at less than satellite speed are found to be less severe than those for abort at greater than satellite speed except for nonlifting vehicles. It is found that abort rockets sufficient for abort at greater than satellite speed can be used to reduce maximum decelerations in entries following an abort at lower speeds. This reduction is accomplished by use of the abort rockets to decrease entry angle immediately prior to entry into the atmosphere.

  5. Assessment of power step performances of variable speed pump-turbine unit by means of hydro-electrical system simulation

    NASA Astrophysics Data System (ADS)

    Béguin, A.; Nicolet, C.; Hell, J.; Moreira, C.

    2017-04-01

    The paper explores the improvement in ancillary services that variable speed technologies can provide for the case of an existing pumped storage power plant of 2x210 MVA which conversion from fixed speed to variable speed is investigated with a focus on the power step performances of the units. First two motor-generator variable speed technologies are introduced, namely the Doubly Fed Induction Machine (DFIM) and the Full Scale Frequency Converter (FSFC). Then a detailed numerical simulation model of the investigated power plant used to simulate power steps response and comprising the waterways, the pump-turbine unit, the motor-generator, the grid connection and the control systems is presented. Hydroelectric system time domain simulations are performed in order to determine the shortest response time achievable, taking into account the constraints from the maximum penstock pressure and from the rotational speed limits. It is shown that the maximum instantaneous power step response up and down depends on the hydro-mechanical characteristics of the pump-turbine unit and of the motor-generator speed limits. As a results, for the investigated test case, the FSFC solution offer the best power step response performances.

  6. Stability control for high speed tracked unmanned vehicles

    NASA Astrophysics Data System (ADS)

    Pape, Olivier; Morillon, Joel G.; Houbloup, Philippe; Leveque, Stephane; Fialaire, Cecile; Gauthier, Thierry; Ropars, Patrice

    2005-05-01

    The French Military Robotic Study Program (introduced in Aerosense 2003), sponsored by the French Defense Procurement Agency and managed by Thales as the prime contractor, focuses on about 15 robotic themes which can provide an immediate "operational add-on value". The paper details the "automatic speed adjustment" behavior (named SYR4), developed by Giat Industries Company, which main goal is to secure the teleoperated mobility of high speed tracked vehicles on rough grounds; more precisely, the validated low level behavior continuously adjusts the vehicle speed taking into account the teleperator wish AND the maximum speed that the vehicle can manage safely according to the commanded radius of curvature. The algorithm is based on a realistic physical model of the ground-tracks relation, taking into account many vehicle and ground parameters (such as ground adherence and dynamic specificities of tracked vehicles). It also deals with the teleoperator-machine interface, providing a balanced strategy between both extreme behaviors: a) maximum speed reduction before initiating the commanded curve; b) executing the minimum possible radius without decreasing the commanded speed. The paper presents the results got from the military acceptance tests performed on tracked SYRANO vehicle (French Operational Demonstrator).

  7. Performance analysis of air-water quantum key distribution with an irregular sea surface

    NASA Astrophysics Data System (ADS)

    Xu, Hua-bin; Zhou, Yuan-yuan; Zhou, Xue-jun; Wang, Lian

    2018-05-01

    In the air-water quantum key distribution (QKD), the irregular sea surface has some influence on the photon polarization state. The wind is considered as the main factor causing the irregularity, so the model of irregular sea surface based on the wind speed is adopted. The relationships of the quantum bit error rate with the wind speed and the initial incident angle are simulated. Therefore, the maximum secure transmission depth of QKD is confirmed, and the limitation of the wind speed and the initial incident angle is determined. The simulation results show that when the wind speed and the initial incident angle increase, the performance of QKD will fall down. Under the intercept-resend attack condition, the maximum safe transmission depth of QKD is up to 105 m. To realize safe communications in the safe diving depth of submarines (100 m), the initial incident angle is requested to be not exceeding 26°, and with the initial incident angle increased, the limitation of wind speed is decreased.

  8. Effectiveness of voluntary conservation agreements: case study of endangered whales and commercial whale watching.

    PubMed

    Wiley, David N; Moller, Just C; Pace, Richard M; Carlson, Carole

    2008-04-01

    The use of voluntary approaches to achieve conservation goals is becoming increasingly popular. Nevertheless, few researchers have quantitatively evaluated their efficacy. In 1998 industry, government agencies, and nongovernmental organizations established a voluntary conservation program for whale watching in the northeast region of the United States, with the intent to avoid collisions with and harassment of endangered whales by commercial and recreational whale-watching vessels. One important aspect of the program was the establishment of 3 speed zones within specific distances of whales. We wanted to determine the level of compliance with this aspect of the program to gauge its efficacy and gain insights into the effectiveness of voluntary measures as a conservation tool. Inconspicuous observers accompanied 46 commercial whale-watching trips from 12 companies in 2003 (n= 35) and 2004 (n= 11). During each trip, vessel position and speed were collected at 5-second intervals with a GPS receiver. Binoculars with internal laser rangefinders and digital compasses were used to record range and bearing to sighted whales. We mapped whale locations with ArcGIS. We created speed-zone buffers around sighted whales and overlaid them with vessel-track and speed data to evaluate compliance. Speeds in excess of those recommended by the program were considered noncompliant. We judged the magnitude of noncompliance by comparing a vessel's maximum speed within a zone to its maximum recorded trip speed. The level of noncompliance was high (mean 0.78; company range 0.74-0.88), some companies were more compliant than others (p= 0.02), noncompliance was significantly higher in zones farther from whales (p < 0.001), and operators approached the maximum speed capabilities of their vessel in all zones. The voluntary conservation program did not achieve the goal of substantially limiting vessel speed near whales. Our results support the need for conservation programs to have quantifiable metrics and frequent evaluation to ensure efficacy.

  9. A method for rapid measurement of laser ablation rate of hard dental tissue

    NASA Astrophysics Data System (ADS)

    Perhavec, T.; Gorkič, A.; Bračun, D.; Diaci, J.

    2009-06-01

    The aim of the study reported here is the development of a new method which allows rapid and accurate in-vitro measurements of three-dimensional (3D) shape of laser ablated craters in hard dental tissues and the determination of crater volume, ablation rate and speed. The method is based on the optical triangulation principle. A laser sheet projector illuminates the surface of a tooth, mounted on a linear translation stage. As the tooth is moved by the translation stage a fast digital video camera captures series of images of the illuminated surface. The images are analyzed to determine a 3D model of the surface. Custom software is employed to analyze the 3D model and to determine the volume of the ablated craters. Key characteristics of the method are discussed as well as some practical aspects pertinent to its use. The method has been employed in an in-vitro study to examine the ablation rates and speeds of the two main laser types currently employed in dentistry, Er:YAG and Er,Cr:YSGG. Ten samples of extracted human molar teeth were irradiated with laser pulse energies from 80 mJ to the maximum available energy (970 mJ with the Er:YAG, and 260 mJ with the Er,Cr:YSGG). About 2000 images of each ablated tooth surface have been acquired along a translation range of 10 mm, taking about 10 s and providing close to 1 million surface measurement points. Volumes of 170 ablated craters (half of them in dentine and the other half in enamel) were determined from this data and used to examine the ablated volume per pulse energy and ablation speed. The results show that, under the same conditions, the ablated volume per pulse energy achieved by the Er:YAG laser exceeds that of the Er,Cr:YSGG laser in almost all regimes for dentine and enamel. The maximum Er:YAG laser ablation speeds (1.2 mm 3/s in dentine and 0.7 mm 3/s in enamel) exceed those obtained by the Er,Cr:YSGG laser (0.39 mm 3/s in dentine and 0.12 mm 3/s in enamel). Since the presented method proves to be easy to use and allows quite rapid measurements it may become a valuable tool to study the influence of various laser parameters on the outcome of laser ablation of dental tissues.

  10. Baseline tests of the battronic Minivan electric delivery van

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Soltis, R. F.; Bozek, J. M.; Maslowski, E. A.

    1977-01-01

    An electric passenger vehicle was tested to develop data characterizing the state of the art of electric and hybrid vehicles. The test measured vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability and limit, road energy consumption, road power, indicated energy consumption, braking capability and battery charge efficiency. The data obtained are to serve as a baseline to compare improvements in electric and hybrid vehicle technologies and to assist in establishing performance standards.

  11. Baseline tests of the EPC Hummingbird electric passenger vehicle

    NASA Technical Reports Server (NTRS)

    Slavik, R. J.; Maslowski, E. A.; Sargent, N. B.; Birchenough, A. G.

    1977-01-01

    The rear-mounted internal combustion engine in a four-passenger Volkswagen Thing was replaced with an electric motor made by modifying an aircraft generator and powered by 12 heavy-duty, lead-acid battery modules. Vehicle performance tests were conducted to measure vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics. Test results are presented in tables and charts.

  12. Ad-Hoc Sensor Networks for Maritime Interdiction Operations and Regional Security

    DTIC Science & Technology

    2012-09-01

    as resistant to rough sea conditions as the SHARC, since its maximum operation limit is sea state 3. Its maximum speed approaches three knots and...which renders it corrosion resistant and lightweight. Its length is 3.2 meters with a rotor diameter at 3.3 meters. It flies at speeds of 50 knots...NMIOTC main building and to a moored training ship (see Figure 50), (2) GSM/GPRS was networked with swimmers , (3) security patrol and target vessels

  13. Study on processing parameters of glass cutting by nanosecond 532 nm fiber laser

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Gao, Fan; Xiong, Baoxing; Zhang, Xiang; Yuan, Xiao

    2018-03-01

    The processing parameters of soda-lime glass cutting with several nanosecond 532 nm pulsed fiber laser are studied in order to obtain sufficiently large ablation rate and better processing quality. The influences of laser processing parameters on effective cutting speed and cutting quality of 1 2 mm thick soda-lime glass are studied. The experimental results show that larger laser pulse energy will lead to higher effective cutting speed and larger maximum edge collapse of the front side of the glass samples. Compared with that of 1.1 mm thick glass samples, the 2.0 mm thick glass samples is more difficult to cut. With the pulse energy of 51.2 μJ, the maximum edge collapse is more than 200 μm for the 2.0 mm thick glass samples. In order to achieve the high effective cutting speed and good cutting quality at the same time, the dual energy overlapping method is used to obtain the better cutting performance for the 2.0 mm thick glass samples, and the cutting speed of 194 mm/s and the maximum edge collapse of less than 132 μm are realized.

  14. Maximum relative speeds of living organisms: Why do bacteria perform as fast as ostriches?

    NASA Astrophysics Data System (ADS)

    Meyer-Vernet, Nicole; Rospars, Jean-Pierre

    2016-12-01

    Self-locomotion is central to animal behaviour and survival. It is generally analysed by focusing on preferred speeds and gaits under particular biological and physical constraints. In the present paper we focus instead on the maximum speed and we study its order-of-magnitude scaling with body size, from bacteria to the largest terrestrial and aquatic organisms. Using data for about 460 species of various taxonomic groups, we find a maximum relative speed of the order of magnitude of ten body lengths per second over a 1020-fold mass range of running and swimming animals. This result implies a locomotor time scale of the order of one tenth of second, virtually independent on body size, anatomy and locomotion style, whose ubiquity requires an explanation building on basic properties of motile organisms. From first-principle estimates, we relate this generic time scale to other basic biological properties, using in particular the recent generalisation of the muscle specific tension to molecular motors. Finally, we go a step further by relating this time scale to still more basic quantities, as environmental conditions at Earth in addition to fundamental physical and chemical constants.

  15. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149...

  16. 14 CFR 23.1563 - Airspeed placards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... multiengine-powered airplanes of more than 6,000 pounds maximum weight, and turbine engine-powered airplanes, the maximum value of the minimum control speed, VMC (one-engine-inoperative) determined under § 23.149...

  17. 46 CFR 151.03-37 - Maximum allowable working pressure.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...

  18. 46 CFR 151.03-37 - Maximum allowable working pressure.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...

  19. 46 CFR 151.03-37 - Maximum allowable working pressure.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...

  20. 46 CFR 151.03-37 - Maximum allowable working pressure.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...

  1. 46 CFR 151.03-37 - Maximum allowable working pressure.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Maximum allowable working pressure. 151.03-37 Section 151.03-37 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES BARGES CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Definitions § 151.03-37 Maximum allowable working pressure. The maximum allowable working...

  2. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  3. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  4. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  5. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Maximum allowable operating pressure: Steel or... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  6. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the loading of cargo, draft and speed of a vessel in transit shall be...

  7. 33 CFR 401.29 - Maximum draft.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Maximum draft. 401.29 Section 401... TRANSPORTATION SEAWAY REGULATIONS AND RULES Regulations Seaway Navigation § 401.29 Maximum draft. (a) Notwithstanding any provision herein, the loading of cargo, draft and speed of a vessel in transit shall be...

  8. Impact of Monsoon to Aquatic Productivity and Fish Landing at Pesawaran Regency Waters

    NASA Astrophysics Data System (ADS)

    Kunarso; Zainuri, Muhammad; Ario, Raden; Munandar, Bayu; Prayogi, Harmon

    2018-02-01

    Monsoon variability influences the productivity processes in the ocean and has different responses in each waters. Furthermore, variability of marine productivity affects to the fisheries resources fluctuation. This research has conducted using descriptive method to investigate the consequences of monsoon variability to aquatic productivity, sea surface temperature (SST), fish catches, and fish season periods at Pesawaran Regency waters, Lampung. Variability of aquatic productivity was determined based on chlorophyll-a indicator from MODIS satellite images. Monsoon variability was governed based on wind parameters and fish catches from fish landing data of Pesawaran fish market. The result showed that monsoon variability had affected to aquatic productivity, SST, and fish catches at Pesawaran Regency waters. Maximum wind speed and lowest SST occurred twice in a year, December to March and August to October, which the peaks were on January (2.55 m/s of wind speed and 29.66°C of SST) and September (2.44 m/s of wind speed and 29.06°C of SST). Also, Maximum aquatic productivity happened on January to March and July to September, which it was arisen simultaneously with maximum wind speed and the peaks was 0.74 mg/m3 and 0.78 mg/m3, on February and August respectively. The data showed that fish catches decreased along with strong wind speed and low SST. However, when weak wind speed and high SST occurred, fish catches increased. The correlation between Catch per Unit Effort (CPUE) with SST, wind speed, and chlorophyll-a was at value 0.76, -0.67, and -0.70, respectively. The high rate fish catches in Pesawaran emerged on March-May and September-December.

  9. Solar wind structure suggested by bimodal correlations of solar wind speed and density between the spacecraft SOHO and Wind

    NASA Astrophysics Data System (ADS)

    Ogilvie, K. W.; Coplan, M. A.; Roberts, D. A.; Ipavich, F.

    2007-08-01

    We calculate the cross-spacecraft maximum lagged-cross-correlation coefficients for 2-hour intervals of solar wind speed and density measurements made by the plasma instruments on the Solar and Heliospheric Observatory (SOHO) and Wind spacecraft over the period from 1996, the minimum of solar cycle 23, through the end of 2005. During this period, SOHO was located at L1, about 200 R E upstream from the Earth, while Wind spent most of the time in the interplanetary medium at distances of more than 100 R E from the Earth. Yearly histograms of the maximum, time-lagged correlation coefficients for both the speed and density are bimodal in shape, suggesting the existence of two distinct solar wind regimes. The larger correlation coefficients we suggest are due to structured solar wind, including discontinuities and shocks, while the smaller are likely due to Alfvénic turbulence. While further work will be required to firmly establish the physical nature of the two populations, the results of the analysis are consistent with a solar wind that consists of turbulence from quiet regions of the Sun interspersed with highly filamentary structures largely convected from regions in the inner solar corona. The bimodal appearance of the distributions is less evident in the solar wind speed than in the density correlations, consistent with the observation that the filamentary structures are convected with nearly constant speed by the time they reach 1 AU. We also find that at solar minimum the fits for the density correlations have smaller high-correlation components than at solar maximum. We interpret this as due to the presence of more relatively uniform Alfvénic regions at solar minimum than at solar maximum.

  10. Programmable controller system for wind tunnel diversion vanes

    NASA Technical Reports Server (NTRS)

    King, R. F.

    1982-01-01

    A programmable controller (PC) system automatic sequence control, which acts as a supervisory controller for the servos, selects the proper drives, and automatically sequences the vanes, was developed for use in a subsonic wind tunnel. Tunnel modifications include a new second test section (80 ft x 100 ft with a maximum air speed capability of 110 knots) and an increase in maximum velocity flow from 200 knots to 300 knots. A completely automatic sequence control is necessary in order to allow intricate motion of the 14 triangularly arranged vanes which can be as large as 70 ft high x 35 ft wide and which require precise acceleration and deceleration control. Rate servos on each drive aid in this control, and servo cost was minimized by using four silicon controlled rectifier controllers to control the 20 dc drives. The PC has a programming capacity which facilitated the implementation of extensive logic design. A series of diagrams sequencing the vanes and a block diagram of the system are included.

  11. Extended maximum likelihood halo-independent analysis of dark matter direct detection data

    DOE PAGES

    Gelmini, Graciela B.; Georgescu, Andreea; Gondolo, Paolo; ...

    2015-11-24

    We extend and correct a recently proposed maximum-likelihood halo-independent method to analyze unbinned direct dark matter detection data. Instead of the recoil energy as independent variable we use the minimum speed a dark matter particle must have to impart a given recoil energy to a nucleus. This has the advantage of allowing us to apply the method to any type of target composition and interaction, e.g. with general momentum and velocity dependence, and with elastic or inelastic scattering. We prove the method and provide a rigorous statistical interpretation of the results. As first applications, we find that for dark mattermore » particles with elastic spin-independent interactions and neutron to proton coupling ratio f n/f p=-0.7, the WIMP interpretation of the signal observed by CDMS-II-Si is compatible with the constraints imposed by all other experiments with null results. We also find a similar compatibility for exothermic inelastic spin-independent interactions with f n/f p=-0.8.« less

  12. Geochemical and sedimentological records of intermediate-depth circulation in the Labrador Sea since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Hoffmann, S. S.; Dalsing, R.; McManus, J. F.

    2016-12-01

    Dynamical sedimentary proxies for deep ocean circulation, such as mean sortable silt size and 231Pa/230Th, allow the reconstruction of past changes in deep water circulation speed and ocean basin ventilation. This provides an important addition to traditional methods of deep water circulation reconstruction such as mapping water mass geometry through foraminiferal carbon isotopic records. We have produced records of mean sortable silt size from three intermediate-depth sediment core sites in the Labrador Sea, taken from the continental slope and Orphan Knoll east of Newfoundland, to reconstruct changes in intermediate depth water circulation including Glacial North Atlantic Intermediate Water and Labrador Sea Water. Radiocarbon dating indicates that the cores span the Holocene, deglaciation and LGM. Increases in mean sortable silt size appear to coincide with Heinrich Event 1, the Older Dryas, Younger Dryas, and mid-late Holocene, which could suggest increased bottom current speeds at these times. However, ice-rafted debris contributes to marine sediments in this region, and mean sortable silt size at times of major IRD input such as Heinrich Event 1 may therefore reflect multiple influences. We will use inverse modeling techniques to determine likely end members contributing to the sortable silt fraction and to correct for the effect of IRD on sortable silt size, allowing a better understanding of the influence of current speed on these samples. We combine these sortable silt measurements with the sedimentary geochemical proxy 231Pa/230Th, which has been used to reconstruct changes in North Atlantic meridional overturning circulation. New 231Pa/230Th data from cores KN158-4-27/28, which provided our best-resolved sortable silt record, will allow us to compare results from the two dynamical proxies to better understand both the behavior of these proxies in the Labrador Sea, and the history of intermediate-depth circulation and ventilation in the Labrador Sea during major abrupt climate events and transitions.

  13. The Physics of Colonel Kittinger's Longest Lonely Leap

    ERIC Educational Resources Information Center

    Robinson, A. W.; Patrick, C. G.

    2008-01-01

    We present a case study of the physical principles necessary to model the high altitude parachute jump made by Colonel Joseph Kittinger, USAF, in 1960, in order to determine the maximum speed attained and to calculate whether this speed was sufficient to exceed the speed of sound at that altitude. There is considerable discrepancy in the value of…

  14. Flight speed of tethered Reticulitermes flavipes (Kollar) (Isoptera: Rhinotermitidae) alates

    Treesearch

    Thomas G. Shelton; X. Ping Hu; Arthur G. Appel; Terence L. Wagner

    2006-01-01

    Alates of the Eastern subterranean termite, Reticulitermes flavipes (Kollar) were collected over two flight seasons (2002 and 2004) and flown on flight mulls. Data were collected to test if alate mass, colony origin, or gender influenced flight speed. Flight speed ranged from 3.14 to 69.12 cm s-1 and the maximum distance flown...

  15. Concepts of flywheels for energy storage using autostable high-T(sub c) superconducting magnetic bearings

    NASA Technical Reports Server (NTRS)

    Bornemann, Hans J.; Zabka, R.; Boegler, P.; Urban, C.; Rietschel, H.

    1994-01-01

    A flywheel for energy storage using autostable high-T(sub c) superconducting magnetic bearings has been built. The rotating disk has a total weight of 2.8 kg. The maximum speed is 9240 rpm. A process that allows accelerated, reliable and reproducible production of melt-textured superconducting material used for the bearings has been developed. In order to define optimum configurations for radial and axial bearings, interaction forces in three dimensions and vertical and horizontal stiffness have been measured between superconductors and permanent magnets in different geometries and various shapes. Static as well as dynamic measurements have been performed. Results are being reported and compared to theoretical models.

  16. A Boom in Boomerangs

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ted Bailey, a highly-ranked international boomerang designer and thrower, used information from a variety of NASA technical reports on aerodynamics and low-speed airfoils to design more competitive boomerangs. Because the boomerang is essentially an airfoil like an airplane wing, the technology transferred effectively and even contributed to the 1981 American victory over Australian throwers. In 1985, using four NASA reports, Bailey designed a new MTA (maximum time aloft) boomerang that broke the one-minute barrier, enabled throwers to throw and catch in less than three minutes and allowed competitors to complete the difficult "Super Catch" - five throw/catch sequences after launching the original boom while it is still aloft. Bailey is now considering other boomerang applications.

  17. A high efficiency motor/generator for magnetically suspended flywheel energy storage system

    NASA Technical Reports Server (NTRS)

    Niemeyer, W. L.; Studer, P.; Kirk, J. A.; Anand, D. K.; Zmood, R. B.

    1989-01-01

    The authors discuss the theory and design of a brushless direct current motor for use in a flywheel energy storage system. The motor design is optimized for a nominal 4.5-in outside diameter operating within a speed range of 33,000-66,000 revolutions per minute with a 140-V maximum supply voltage. The equations which govern the motor's operation are used to compute a series of acceptable design parameter combinations for ideal operation. Engineering tradeoffs are then performed to minimize the irrecoverable energy loss while remaining within the design constraint boundaries. A final integrated structural design whose features allow it to be incorporated with the 500-Wh magnetically suspended flywheel is presented.

  18. Cargo and Container X-Ray Inspection with Intra-Pulse Multi-Energy Method for Material Discrimination

    NASA Astrophysics Data System (ADS)

    Saverskiy, Aleksandr Y.; Dinca, Dan-Cristian; Rommel, J. Martin

    The Intra-Pulse Multi-Energy (IPME) method of material discrimination mitigates main disadvantages of the traditional "interlaced" approach: ambiguity caused by sampling different regions of cargo and reduction of effective scanning speed. A novel concept of creating multi-energy probing pulses using a standing-wave structure allows maintaining a constant energy spectrum while changing the time duration of each sub-pulse and thus enables adaptive cargo inspection. Depending on the cargo density, the dose delivered to the inspected object is optimized for best material discrimination, maximum material penetration, or lowest dose to cargo. A model based on Monte-Carlo simulation and experimental reference points were developed for the optimization of inspection conditions.

  19. A comparison of the temperature and density structure in high and low speed thermal proton flows

    NASA Technical Reports Server (NTRS)

    Raitt, W. J.; Schunk, R. W.; Banks, P. M.

    1975-01-01

    Steady-state altitude profiles of H(+) density, drift velocity, and temperature and O(+) density and temperature were deduced for a wide range of H(+) outflow velocities from subsonic to supersonic flow for plasma densities typical of both undisturbed and trough regions of the ionsophere. Allowance was made for the effects of inertia, parallel stress, and the velocity dependence of the H(+) collision frequencies. It was found that at supersonic outflow velocities there is a decrease in H(+) temperature with increasing outflow velocity. The H(+) temperatures are substantially increased above the O(+) temperatures when H(+) is flowing, with T(H+)/T(O+) reaching a maximum ratio of about 3:1.

  20. Jumping of water striders on water

    NASA Astrophysics Data System (ADS)

    Yang, Eunjin; Son, Jaehak; Jablonski, Piotr; Kim, Ho-Young

    2012-11-01

    Small insects such as water striders, springtails, fishing spiders freely move on water by adopting various modes of locomotion, such as rowing, galloping, jumping and meniscus-climbing. As the physics of jumping have not yet been fully understood among those ways of semi-aquatic propulsion, here we present the results of a combined experimental and theoretical investigation of the dynamics of water striders leaping off water. We first image and analyze the trajectories of the legs and body of jumping water striders of three different species with a high-speed camera. We then theoretically compute the forces acting on the body by considering the capillary interaction between the flexible legs and deforming water meniscus. Our theory enables us to predict the maximum take-off speed for given leg lengths. The experimental measurements suggest that the water striders drive their legs near the optimal speed to gain the maximum take-off speed.

  1. Power Maximization Control of Variable Speed Wind Generation System Using Permanent Magnet Synchronous Generator

    NASA Astrophysics Data System (ADS)

    Morimoto, Shigeo; Nakamura, Tomohiko; Takeda, Yoji

    This paper proposes the sensorless output power maximization control of the wind generation system. A permanent magnet synchronous generator (PMSG) is used as a variable speed generator in the proposed system. The generator torque is suitably controlled according to the generator speed and thus the power from a wind turbine settles down on the maximum power point by the proposed MPPT control method, where the information of wind velocity is not required. Moreover, the maximum available generated power is obtained by the optimum current vector control. The current vector of PMSG is optimally controlled according to the generator speed and the required torque in order to minimize the losses of PMSG considering the voltage and current constraints. The proposed wind power generation system can be achieved without mechanical sensors such as a wind velocity detector and a position sensor. Several experimental results show the effectiveness of the proposed control method.

  2. Spatial distribution of threshold wind speeds for dust outbreaks in northeast Asia

    NASA Astrophysics Data System (ADS)

    Kimura, Reiji; Shinoda, Masato

    2010-01-01

    Asian windblown dust events cause human and animal health effects and agricultural damage in dust source areas such as China and Mongolia and cause "yellow sand" events in Japan and Korea. It is desirable to develop an early warning system to help prevent such damage. We used our observations at a Mongolian station together with data from previous studies to model the spatial distribution of threshold wind speeds for dust events in northeast Asia (35°-45°N and 100°-115°E). Using a map of Normalized Difference Vegetation Index (NDVI), we estimated spatial distributions of vegetation cover, roughness length, threshold friction velocity, and threshold wind speed. We also recognized a relationship between NDVI in the dust season and maximum NDVI in the previous year. Thus, it may be possible to predict the threshold wind speed in the next dust season using the maximum NDVI in the previous year.

  3. Theoretical considerations on maximum running speeds for large and small animals.

    PubMed

    Fuentes, Mauricio A

    2016-02-07

    Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Exhaust emission calibration of two J-58 afterburning turbojet engines at simulated high-altitude, supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  5. Prediction of effects of wing contour modifications on low-speed maximum lift and transonic performance for the EA-6B aircraft

    NASA Technical Reports Server (NTRS)

    Allison, Dennis O.; Waggoner, E. G.

    1990-01-01

    Computational predictions of the effects of wing contour modifications on maximum lift and transonic performance were made and verified against low speed and transonic wind tunnel data. This effort was part of a program to improve the maneuvering capability of the EA-6B electronics countermeasures aircraft, which evolved from the A-6 attack aircraft. The predictions were based on results from three computer codes which all include viscous effects: MCARF, a 2-D subsonic panel code; TAWFIVE, a transonic full potential code; and WBPPW, a transonic small disturbance potential flow code. The modifications were previously designed with the aid of these and other codes. The wing modifications consists of contour changes to the leading edge slats and trailing edge flaps and were designed for increased maximum lift with minimum effect on transonic performance. The prediction of the effects of the modifications are presented, with emphasis on verification through comparisons with wind tunnel data from the National Transonic Facility. Attention is focused on increments in low speed maximum lift and increments in transonic lift, pitching moment, and drag resulting from the contour modifications.

  6. Thermal Stability of Al2O3/Silicone Composites as High-Temperature Encapsulants

    NASA Astrophysics Data System (ADS)

    Yao, Yiying

    Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.

  7. Airflow energy harvesting with high wind velocities for industrial applications

    NASA Astrophysics Data System (ADS)

    Chew, Z. J.; Tuddenham, S. B.; Zhu, M.

    2016-11-01

    An airflow energy harvester capable of harvesting energy from vortices at high speed is presented in this paper. The airflow energy harvester is implemented using a modified helical Savonius turbine and an electromagnetic generator. A power management module with maximum power point finding capability is used to manage the harvested energy and convert the low voltage magnitude from the generator to a usable level for wireless sensors. The airflow energy harvester is characterized using vortex generated by air hitting a plate in a wind tunnel. By using an aircraft environment with wind speed of 17 m/s as case study, the output power of the airflow energy harvester is measured to be 126 mW. The overall efficiency of the power management module is 45.76 to 61.2%, with maximum power point tracking efficiency of 94.21 to 99.72% for wind speed of 10 to 18 m/s, and has a quiescent current of 790 nA for the maximum power point tracking circuit.

  8. 46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...

  9. 46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...

  10. 46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...

  11. 46 CFR 54.10-5 - Maximum allowable working pressure (reproduces UG-98).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Maximum allowable working pressure (reproduces UG-98). 54.10-5 Section 54.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PRESSURE VESSELS Inspection, Reports, and Stamping § 54.10-5 Maximum allowable working pressure (reproduces UG-98). (a) The maximum allowable...

  12. Friction riveting as an alternative mechanical fastening to join engineering plastics

    NASA Astrophysics Data System (ADS)

    Gagliardi, Francesco; Conte, Romina; Bentrovato, Renato; Simeoli, Giorgio; Russo, Pietro; Ambrogio, Giuseppina

    2018-05-01

    Friction Rivecting is a quite new joining process to connect multi-material structures. In brief, a metallic rivet is dipped rotating inside matrixes, usually made of plastics, increasing its original diameter. The use of high-performance plastics is more suitable being their higher mechanical and thermal properties important to avoid material degradation and to allow strong part connections. High-speed friction welding system has been usually used to perform the process. In the work here proposed, the joints have been achieved by means of a traditional milling machine and the attention has been focused on a widely used engineering plastic, i.e. polyamide 6 (PA6) with and without glass fiber reinforcement. A specific speed multiplier has been attached into the mandrel of the used machine to increase the reachable rotational speed. Moreover, rivets made of Titanium Grade 2 and of an Aluminum Alloy, the AA-6060, are utilized. The influence that the heating and the forging length can have on the quality of the obtained junctions, considering a fixed joining depth, has been tested and investigated. The performed connections have been judged by tensile tests, which were set to quantify the maximum strength of the joints for a transverse speed of 1,0 mm/min. Barreling effect can be observed close to the tip, which loses the initial shape of a cylinder characterized by straight vertical walls. Finally, the possible degradation of the polymer, due to temperature increment, has been also evaluated close to the working zone. According to that, it has to be highlighted that the process needs a heating balance, which is necessary to get sound joints. The compromise has, on one side, to allow the rivet penetration and deformation, and on the other side, to avoid the degradation of the polymer, which would affect its properties and a proper rivet deformation.

  13. The Effects of Engine Speed and Mixture Temperature on the Knocking Characteristics of Several Fuels

    NASA Technical Reports Server (NTRS)

    Lee, Dana W

    1940-01-01

    Six 100-octane and two 87-octane aviation engine fuels were tested in a modified C.F.R. variable-compression engine at 1,500, 2,000 and 2,500 rpm. The mixture temperature was raised from 50 to 300 F in approximately 50 degree steps and, at each temperature, the compression ratio was adjusted to give incipient knock as shown by a cathode ray indicator. The results are presented in tabular form. The results are analyzed on the assumption that the conditions which determine whether a given fuel will knock are the maximum values of density and temperature reached by the burning gases. A maximum permissible density factor, proportional to the maximum density of the burning gases just prior to incipient knock, and the temperature of the burning gases at that time were computed for each of the test conditions. Values of the density factors were plotted against the corresponding end-gas temperatures for the three engine speeds and also against engine speed for several and end-gas temperatures. The maximum permissible density factor varied only slightly with engine speed but decreased rapidly with an increase in the end-gas temperature. The effect of changing the mixture temperature was different for fuels of different types. The results emphasize the desirability of determining the anti knock values of fuels over a wide range of engine and intake-air conditions rather that at a single set of conditions.

  14. VMAT testing for an Elekta accelerator

    PubMed Central

    Sweeney, Larry E.; Marshall, Edward I.; Mahendra, Saikanth

    2012-01-01

    Volumetric‐modulated arc therapy (VMAT) has been shown to be able to deliver plans equivalent to intensity‐modulated radiation therapy (IMRT) in a fraction of the treatment time. This improvement is important for patient immobilization/ localization compliance due to comfort and treatment duration, as well as patient throughput. Previous authors have suggested commissioning methods for this modality. Here, we extend the methods reported for the Varian RapidArc system (which tested individual system components) to the Elekta linear accelerator, using custom files built using the Elekta iComCAT software. We also extend the method reported for VMAT commissioning of the Elekta accelerator by verifying maximum values of parameters (gantry speed, multileaf collimator (MLC) speed, and backup jaw speed), investigating: 1) beam profiles as a function of dose rate during an arc, 2) over/under dosing due to MLC reversals, and 3) over/under dosing at changing dose rate junctions. Equations for construction of the iComCAT files are given. Results indicate that the beam profile for lower dose rates varies less than 3% from that of the maximum dose rate, with no difference during an arc. The gantry, MLC, and backup jaw maximum speed are internally consistent. The monitor unit chamber is stable over the MUs and gantry movement conditions expected. MLC movement and position during VMAT delivery are within IMRT tolerances. Dose rate, gantry speed, and MLC speed are accurately controlled. Over/under dosing at junctions of MLC reversals or dose rate changes are within clinical acceptability. PACS numbers: 87.55.de, 87.55.Qr, 87.56.bd PMID:22402389

  15. Measuring the speed of light with baryon acoustic oscillations.

    PubMed

    Salzano, Vincenzo; Dąbrowski, Mariusz P; Lazkoz, Ruth

    2015-03-13

    In this Letter, we describe a new method to use baryon acoustic oscillations (BAO) to derive a constraint on the possible variation of the speed of light. The method relies on the fact that there is a simple relation between the angular diameter distance (D(A)) maximum and the Hubble function (H) evaluated at the same maximum-condition redshift, which includes speed of light c. We note the close analogy of the BAO probe with a laboratory experiment: here we have D(A) which plays the role of a standard (cosmological) ruler, and H^{-1}, with the dimension of time, as a (cosmological) clock. We evaluate if current or future missions such as Euclid can be sensitive enough to detect any variation of c.

  16. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  17. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  18. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  19. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  20. 14 CFR 29.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pressure (for reciprocating engines); (3) The maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (4) The maximum allowable power or torque for each engine, considering the... maximum allowable turbine inlet or turbine outlet gas temperature (for turbine engines); (5) The maximum...

  1. Alternative Fuels Data Center

    Science.gov Websites

    a maximum speed of 35 miles per hour (mph) and that must comply with the safety standards in Title have a posted speed limit of 45 mph or less except to cross at an intersection. A county, municipality

  2. 40 CFR Appendix A to Subpart E of... - Tables

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... torque output N · m Power output kW Air inlet temperature °C Air humidity mg/kg Coolant temperature... rated speed Engine torque as a percentage of maximum torque at rated speed Mode weighting factor 1 100...

  3. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.

  4. Examination of sustained gait speed during extended walking in individuals with chronic stroke.

    PubMed

    Altenburger, Peter A; Dierks, Tracy A; Miller, Kristine K; Combs, Stephanie A; Van Puymbroeck, Marieke; Schmid, Arlene A

    2013-12-01

    To determine if individuals with chronic stroke were able to sustain their peak gait speed during the 6-minute walk test (6MWT), and to explore this sustainability across community ambulation potential subgroups. Prospective cross-sectional study. University-based research laboratory, hospitals, and stroke support groups. A sample of individuals with chronic stroke (N=48) completed a series of questionnaires and physical outcome measures, including gait mat assessment, during a single visit. Not applicable; 1-time cross-sectional data collection. During the 6MWT, we measured peak gait speed and end gait speed to assess sustainability, along with beginning gait speed, total distance walked, and rating of perceived exertion. We also assessed maximum gait speed during the 10-meter walk test (10MWT). Finally, we examined these gait outcomes across the subgroups. During the 6MWT, peak gait speed declined from .89m/s (SD=.38) to an end speed of .82m/s (SD=.36), whereas perceived exertion increased from 7.7 (SD=2.6) to 11.8 (SD=3.6). This peak gait speed was slower than the 10MWT maximum speed of 1.06m/s (SD=.51), but faster than the 6MWT beginning speed of .81m/s (SD=.34). The unlimited community ambulator subgroup was the primary contributor to sustainability differences. Predicting community ambulation potential based on the discrete gait speed from the 10MWT and endurance based on the average from the 6MWT might be incomplete if gait speed sustainability is not also assessed. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  5. 3D finite element modeling of sliding wear

    NASA Astrophysics Data System (ADS)

    Buentello Hernandez, Rodolfo G.

    Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.

  6. Performance evaluation of bimodal thermite composites : nano- vs miron-scale particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, K. M.; Pantoya, M.; Son, S. F.

    2004-01-01

    In recent years many studies of metastable interstitial composites (MIC) have shown vast combustion improvements over traditional thermite materials. The main difference between these two materials is the size of the fuel particles in the mixture. Decreasing the fuel size from the micron to nanometer range significantly increases the combustion wave speed and ignition sensitivity. Little is known, however, about the critical level of nano-sized fuel particles needed to enhance the performance of the traditional thermite. Ignition sensitivity experiments were performed using Al/MoO{sub 3} pellets at a theoretical maximum density of 50% (2 g/cm{sup 3}). The Al fuel particles weremore » prepared as bi-modal size distributions with micron (i.e., 4 and 20 {micro}m diameter) and nano-scale Al particles. The micron-scale Al was replaced in 10% increments by 80 nm Al particles until the fuel was 100% 80 nm Al. These bi-modal distributions allow the unique characteristics of nano-scale materials to be better understood. The pellets were ignited using a 50-W CO{sub 2} laser. High speed imaging diagnostics were used to measure ignition delay times, and micro-thermocouples were used to measure ignition temperatures. Combustion wave speeds were also examined.« less

  7. Ceramics for the advanced automotive gas turbine engine: A look at a single shaft design

    NASA Technical Reports Server (NTRS)

    Nosek, S. M.

    1977-01-01

    The results of a preliminary analysis of a single shaft regenerative design with a single stage radial turbine are presented to show the fuel economy that can be achieved at high turbine inlet temperatures, with this particular advanced design, if the turbine tip speed and regenerator inlet temperature are not limited. The engine size was 100 hp for application to a 3500 lb auto. The fuel economy was analyzed by coupling the engine to the auto through a continuously variable speed-ratio transmission and operating the system at constant turbine inlet temperature over the Composite Driving Cycle. The fuel was gasoline and the analysis was for a 85 F day. With a turbine inlet temperature of 2500 F the fuel economy was 26.2 mpg, an improvement of 18 percent over that of 22.3 mpg with a turbine inlet temperature of 1900 F. The turbine tip speed needed for best economy with the 2500 F engine was 2530 ft/sec. The regenerator temperature was approximately 2200 F at idle. Disk stresses were estimated for one single stage radial turbine and two two-stage radial-axial turbines and compared with maximum allowable stress curves estimated for a current ceramic material. Results show a need for higher Weibull Modulus, higher strength ceramics.

  8. Estimating Burst Swim Speeds and Jumping Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics

    DTIC Science & Technology

    2016-09-01

    Characteristics of Silver Carp (Hypophthalmichthys molitrix) Using Video Analyses and Principles of Projectile Physics by Glenn R. Parsons, Ehlana Stell...2002) estimated maximum swim speeds of videotaped, captive, and free-ranging dolphins, Delphinidae, by timed sequential analyses of video frames... videos to estimate the swim speeds and leap characteristics of carp as they exit the waters’ surface. We used both direct estimates of swim speeds as

  9. System Identification and Steering Control Characteristic of Rice Combine Harvester Model

    NASA Astrophysics Data System (ADS)

    Sutisna, S. P.; Setiawan, R. P. A.; Subrata, I. D. M.; Mandang, T.

    2018-05-01

    This study is a preliminary research of rice combine harvester trajectory. A vehicle model of rice combine used crawler with differential steering. Turning process of differential steering used speed difference of right and left tracks This study aims to learn of rice combine harvester steering control. In real condition, the hydraulic break on each track produced the speed difference. The model used two DC motors with maximum speed 100 rpm for each tracks. A rotary encoder with resolution 600 pulse/rotation was connected to each DC motors shaft to monitor the speed of tracks and connected to the input shaft of a gearbox with ratio 1:46. The motor speed control for each track used pulse width modulation to produce the speed difference. A gyroscope sensor with resolution 0.01° was used to determine the model orientation angle. Like the real rice combine, the tracks can not rotate to the opposite direction at the same time so it makes the model can not perform the pivot turn. The turn radius of the model was 28 cm and the forward maximum speed was 17.8 cm/s. The model trajectory control used PID odometry controller. Parameters input were the speed of each track and the orientation of the vehicle. The straight line test showed the controller can control the rice combine model trajectory with the average error 0.67 cm.

  10. Evidence for a maximum mass cut-off in the neutron star mass distribution and constraints on the equation of state

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Silva, Hector O.; Berti, Emanuele

    2018-04-01

    We infer the mass distribution of neutron stars in binary systems using a flexible Gaussian mixture model and use Bayesian model selection to explore evidence for multi-modality and a sharp cut-off in the mass distribution. We find overwhelming evidence for a bimodal distribution, in agreement with previous literature, and report for the first time positive evidence for a sharp cut-off at a maximum neutron star mass. We measure the maximum mass to be 2.0M⊙ < mmax < 2.2M⊙ (68%), 2.0M⊙ < mmax < 2.6M⊙ (90%), and evidence for a cut-off is robust against the choice of model for the mass distribution and to removing the most extreme (highest mass) neutron stars from the dataset. If this sharp cut-off is interpreted as the maximum stable neutron star mass allowed by the equation of state of dense matter, our measurement puts constraints on the equation of state. For a set of realistic equations of state that support >2M⊙ neutron stars, our inference of mmax is able to distinguish between models at odds ratios of up to 12: 1, whilst under a flexible piecewise polytropic equation of state model our maximum mass measurement improves constraints on the pressure at 3 - 7 × the nuclear saturation density by ˜30 - 50% compared to simply requiring mmax > 2M⊙. We obtain a lower bound on the maximum sound speed attained inside the neutron star of c_s^max > 0.63c (99.8%), ruling out c_s^max < c/√{3} at high significance. Our constraints on the maximum neutron star mass strengthen the case for neutron star-neutron star mergers as the primary source of short gamma-ray bursts.

  11. Survey of Quantitative Research Metrics to Assess Pilot Performance in Upset Recovery

    NASA Technical Reports Server (NTRS)

    Le Vie, Lisa R.

    2016-01-01

    Accidents attributable to in-flight loss of control are the primary cause for fatal commercial jet accidents worldwide. The National Aeronautics and Space Administration (NASA) conducted a literature review to determine and identify the quantitative standards for assessing upset recovery performance. This review contains current recovery procedures for both military and commercial aviation and includes the metrics researchers use to assess aircraft recovery performance. Metrics include time to first input, recognition time and recovery time and whether that input was correct or incorrect. Other metrics included are: the state of the autopilot and autothrottle, control wheel/sidestick movement resulting in pitch and roll, and inputs to the throttle and rudder. In addition, airplane state measures, such as roll reversals, altitude loss/gain, maximum vertical speed, maximum/minimum air speed, maximum bank angle and maximum g loading are reviewed as well.

  12. Quantification of dsDNA using the Hitachi F-7000 Fluorescence Spectrophotometer and PicoGreen dye.

    PubMed

    Moreno, Luis A; Cox, Kendra L

    2010-11-05

    Quantification of DNA, especially in small concentrations, is an important task with a wide range of biological applications including standard molecular biology assays such as synthesis and purification of DNA, diagnostic applications such as quantification of DNA amplification products, and detection of DNA molecules in drug preparations. During this video we will demonstrate the capability of the Hitachi F-7000 Fluorescence Spectrophotometer equipped with a Micro Plate Reader accessory to perform dsDNA quantification using Molecular Probes Quant-it PicoGreen dye reagent kit. The F-7000 Fluorescence Spectrophotometer offers high sensitivity and high speed measurements. It is a highly flexible system capable of measuring fluorescence, luminescence, and phosphorescence. Several measuring modes are available, including wavelength scan, time scan, photometry and 3-D scan measurement. The spectrophotometer has sensitivity in the range of 50 picomoles of fluorescein when using a 300 μL sample volume in the microplate, and is capable of measuring scan speeds of 60,000 nm/minute. It also has a wide dynamic range of up to 5 orders of magnitude which allows for the use of calibration curves over a wide range of concentrations. The optical system uses all reflective optics for maximum energy and sensitivity. The standard wavelength range is 200 to 750 nm, and can be extended to 900 nm when using one of the optional near infrared photomultipliers. The system allows optional temperature control for the plate reader from 5 to 60 degrees Celsius using an optional external temperature controlled liquid circulator. The microplate reader allows for the use of 96 well microplates, and the measuring speed for 96 wells is less than 60 seconds when using the kinetics mode. Software controls for the F-7000 and Microplate Reader are also highly flexible. Samples may be set in either column or row formats, and any combination of wells may be chosen for sample measurements. This allows for optimal utilization of the microplate. Additionally, the software allows importing micro plate sample configurations created in Excel and saved in comma separated values, or "csv" format. Microplate measuring configurations can be saved and recalled by the software for convenience and increased productivity. Data results can be output to a standard report, to Excel, or to an optional Report Generator Program.

  13. Quantification of dsDNA using the Hitachi F-7000 Fluorescence Spectrophotometer and PicoGreen Dye

    PubMed Central

    Moreno, Luis A.; Cox, Kendra L.

    2010-01-01

    Quantification of DNA, especially in small concentrations, is an important task with a wide range of biological applications including standard molecular biology assays such as synthesis and purification of DNA, diagnostic applications such as quantification of DNA amplification products, and detection of DNA molecules in drug preparations. During this video we will demonstrate the capability of the Hitachi F-7000 Fluorescence Spectrophotometer equipped with a Micro Plate Reader accessory to perform dsDNA quantification using Molecular Probes Quant-it PicoGreen dye reagent kit. The F-7000 Fluorescence Spectrophotometer offers high sensitivity and high speed measurements. It is a highly flexible system capable of measuring fluorescence, luminescence, and phosphorescence. Several measuring modes are available, including wavelength scan, time scan, photometry and 3-D scan measurement. The spectrophotometer has sensitivity in the range of 50 picomoles of fluorescein when using a 300 μL sample volume in the microplate, and is capable of measuring scan speeds of 60,000 nm/minute. It also has a wide dynamic range of up to 5 orders of magnitude which allows for the use of calibration curves over a wide range of concentrations. The optical system uses all reflective optics for maximum energy and sensitivity. The standard wavelength range is 200 to 750 nm, and can be extended to 900 nm when using one of the optional near infrared photomultipliers. The system allows optional temperature control for the plate reader from 5 to 60 degrees Celsius using an optional external temperature controlled liquid circulator. The microplate reader allows for the use of 96 well microplates, and the measuring speed for 96 wells is less than 60 seconds when using the kinetics mode. Software controls for the F-7000 and Microplate Reader are also highly flexible. Samples may be set in either column or row formats, and any combination of wells may be chosen for sample measurements. This allows for optimal utilization of the microplate. Additionally, the software allows importing micro plate sample configurations created in Excel and saved in comma separated values, or "csv" format. Microplate measuring configurations can be saved and recalled by the software for convenience and increased productivity. Data results can be output to a standard report, to Excel, or to an optional Report Generator Program. PMID:21189464

  14. Limitations of oxygen uptake and leg muscle activity during ascending evacuation in stairways.

    PubMed

    Halder, Amitava; Kuklane, Kalev; Gao, Chuansi; Miller, Michael; Delin, Mattias; Norén, Johan; Fridolf, Karl

    2018-01-01

    Stair ascending performance is critical during evacuation from buildings and underground infrastructures. Healthy subjects performed self-paced ascent in three settings: 13 floor building, 31 floor building, 33 m stationary subway escalator. To investigate leg muscle and cardiorespiratory capacities and how they constrain performance, oxygen uptake (VO 2 ), heart rate (HR) and ascending speed were measured in all three; electromyography (EMG) in the first two. The VO 2 and HR ranged from 89 to 96% of the maximum capacity reported in the literature. The average highest VO 2 and HR ranged from 39 to 41 mL·kg -1 ·min -1 and 162 to 174 b·min -1 , respectively. The subjects were able to sustain their initial preferred maximum pace for a short duration, while the average step rate was 92-95 steps·min -1 . In average, VO 2 reached relatively stable values at ≈37 mL·kg -1 ·min -1 . EMG amplitudes decreased significantly and frequencies were unchanged. Speed reductions indicate that climbing capacity declined in the process of fatigue development. In the two buildings, the reduction of muscle power allowed the subjects to extend their tolerance and complete ascents in the 48 m and 109 m high stairways in 2.9 and 7.8 min, respectively. Muscle activity interpretation squares were developed and proved advantageous to observe fatigue and recovery over time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Tsunami evacuation mathematical model for the city of Padang

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusdiantara, R.; Hadianti, R.; Badri Kusuma, M. S.

    2012-05-22

    Tsunami is a series of wave trains which travels with high speed on the sea surface. This traveling wave is caused by the displacement of a large volume of water after the occurrence of an underwater earthquake or volcano eruptions. The speed of tsunami decreases when it reaches the sea shore along with the increase of its amplitudes. Two large tsunamis had occurred in the last decades in Indonesia with huge casualties and large damages. Indonesian Tsunami Early Warning System has been installed along the west coast of Sumatra. This early warning system will give about 10-15 minutes to evacuatemore » people from high risk regions to the safe areas. Here in this paper, a mathematical model for Tsunami evacuation is presented with the city of Padang as a study case. In the model, the safe areas are chosen from the existing and selected high rise buildings, low risk region with relatively high altitude and (proposed to be built) a flyover ring road. Each gathering points are located in the radius of approximately 1 km from the ring road. The model is formulated as an optimization problem with the total normalized evacuation time as the objective function. The constraints consist of maximum allowable evacuation time in each route, maximum capacity of each safe area, and the number of people to be evacuated. The optimization problem is solved numerically using linear programming method with Matlab. Numerical results are shown for various evacuation scenarios for the city of Padang.« less

  16. Data Obtained in the Flight Measurements to Determine the Stability and Control Characteristics of a C-54D Airplane (AAF No. 42-72713) and a Summary of the Test Program

    NASA Technical Reports Server (NTRS)

    Talmage, Donald B.; Reeder, John P.

    1947-01-01

    The flight investigation of the C-54D airplane was initiated to determine the necessity of changes or additions to existing handling-qualities requirements to cove the case of instrument approaches with large airplanes. This paper gives a brief synopsis of the results and presents the measured data of tests to determine the stability and control characteristics. It was found that no new requirements were necessary to cover the problems of instrument approaches. The C-54D airplane tested met the Amy and Navy stability and control requirements except for the following items. The control-system friction with autopilot installed vas double that allowed by the requirements. The amount of friction was found to impair the controllability of the airplane in precision flying. The lateral and directional characteristics were good except that the maximum pb/2V was slightly below the minimum required, and the elevator-control forces to obtain the maximum pb/2V at low speeds were above the Army and Navy requirements. The longitudinal stability and control characteristics were good except that the elevator-control forces exceeded the limits of the Army and Navy requirements in turns and in landings. The stalling characteristics were considered good in all conditions with the stall warning in the form of tail buffeting occurring at speeds approximately 5 miles per hour above the stall.

  17. 850-nm Zn-diffusion vertical-cavity surface-emitting lasers with with oxide-relief structure for high-speed and energy-efficient optical interconnects from very-short to medium (2km) reaches

    NASA Astrophysics Data System (ADS)

    Shi, Jin-Wei; Wei, Chia-Chien; Chen, Jason (Jyehong); Yang, Ying-Jay

    2015-03-01

    High-speed and "green" ~850 nm vertical-cavity surface-emitting lasers (VCSELs) have lately attracted lots of attention due to their suitability for applications in optical interconnects (OIs). To further enhance the speed and its maximum allowable linking distance of VCSELs are two major trends to meet the requirement of OI in next generation data centers. Recently, by use of the advanced 850 nm VCSEL technique, data rate as high as 64 Gbit/sec over 57m and 20 Gbit/sec over 2km MMF transmission have been demonstrated, respectively. Here, we will review our recent work about 850 nm Zn-diffusion VCSELs with oxide-relief apertures to further enhance the above-mentioned performances. By using Zn-diffusion, we can not only reduce the device resistance but also manipulate the number of optical modes to benefit transmission. Combing such device, which has excellent single-mode (SMSR >30 dB) and high-power (~7mW) performance, with advanced modulation format (OFDM), record-high bit-rate-distance-product through MMF (2.3 km×28 Gbit/sec) has been demonstrated. Furthermore, by selective etching away the oxide aperture inside Zn-diffusion VCSEL, significant enhancement of device speed, D-factor, and reliability can be observed. With such unique VCSEL structure, >40 Gbit/sec energy-efficient transmission over 100m MMF under extremely low-driving current density (<10kA/cm2) has been successfully demonstrated.

  18. Wind loading analysis and strategy for deflection reduction on HET wide field upgrade

    NASA Astrophysics Data System (ADS)

    South, Brian J.; Soukup, Ian M.; Worthington, Michael S.; Zierer, Joseph J.; Booth, John A.; Good, John M.

    2010-07-01

    Wind loading can be a detrimental source of vibration and deflection for any large terrestrial optical telescope. The Hobby-Eberly Telescope* (HET) in the Davis Mountains of West Texas is undergoing a Wide Field Upgrade (WFU) in support of the Dark Energy Experiment (HETDEX) that will greatly increase the size of the instrumentation subjected to operating wind speeds of up to 20.1 m/s (45 mph). A non-trivial consideration for this telescope (or others) is to quantify the wind loads and resulting deflections of telescope structures induced under normal operating conditions so that appropriate design changes can be made. A quasi-static computational fluid dynamics (CFD) model was generated using wind speeds collected on-site as inputs to characterize dynamic wind forces on telescope structures under various conditions. The CFD model was refined until predicted wind speed and direction inside the dome agreed with experimental data. The dynamic wind forces were then used in static loading analysis to determine maximum deflections under typical operating conditions. This approach also allows for exploration of operating parameters without impact to the observation schedule of the telescope. With optimum combinations of parameters (i.e. dome orientation, tracker position, and louver deployment), deflections due to current wind conditions can be significantly reduced. Furthermore, the upper limit for operating wind speed could be increased, provided these parameters are monitored closely. This translates into increased image quality and observing time.

  19. Caractérisation aérodynamique d'un rotor éolien en site naturel

    NASA Astrophysics Data System (ADS)

    Fabre, B.; Coudeville, H.

    1991-03-01

    The C_p/V_s curve (aerodynamic power coefficient versus tip-speed ratio) may be obtained in the field, therefore with different windspeeds, and to varying rotor speed, whithout selection of measures by steady state criterion. Experimentation is made on a small windmill with a straight blades Darrieus turbine and an eddy current converter. It allows us to display the conditions for a satisfying characterisation. So, the histogram of tip-speed ratio's instantaneous values must be as flat as it is possible, this on both sides of the tip-speed ratio's value for which the power coefficient is maximum. La courbe du coefficient de puissance aérodynamique (C_p) en fonction de la vitesse spécifique (V_s) peut être obtenue en champ libre, à vitesse de rotation variable et sans sélection des mesures par des critères de stabilité. L'expérimentation sur un système éolien composé d'un rotor Darrieus à pales droites associé à un convertisseur mécano-thermique nous a permis de mettre en évidence les conditions d'une caractérisation correcte. Notamment, l'histogramme des valeurs instantanées, acquises et traitées, de la vitesse spécifique doit être le plus plat possibie sur une large zone de part et d'autre de la valeur donnant le coefficient de puissance maximal.

  20. EXTENSION OF THE MURAM RADIATIVE MHD CODE FOR CORONAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rempel, M., E-mail: rempel@ucar.edu

    2017-01-01

    We present a new version of the MURaM radiative magnetohydrodynamics (MHD) code that allows for simulations spanning from the upper convection zone into the solar corona. We implement the relevant coronal physics in terms of optically thin radiative loss, field aligned heat conduction, and an equilibrium ionization equation of state. We artificially limit the coronal Alfvén and heat conduction speeds to computationally manageable values using an approximation to semi-relativistic MHD with an artificially reduced speed of light (Boris correction). We present example solutions ranging from quiet to active Sun in order to verify the validity of our approach. We quantifymore » the role of numerical diffusivity for the effective coronal heating. We find that the (numerical) magnetic Prandtl number determines the ratio of resistive to viscous heating and that owing to the very large magnetic Prandtl number of the solar corona, heating is expected to happen predominantly through viscous dissipation. We find that reasonable solutions can be obtained with values of the reduced speed of light just marginally larger than the maximum sound speed. Overall this leads to a fully explicit code that can compute the time evolution of the solar corona in response to photospheric driving using numerical time steps not much smaller than 0.1 s. Numerical simulations of the coronal response to flux emergence covering a time span of a few days are well within reach using this approach.« less

  1. Interfacial Microstructure and Mechanical Properties of Friction Stir Welded Joints of Commercially Pure Aluminum and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Murugan, Balamagendiravarman; Thirunavukarasu, Gopinath; Kundu, Sukumar; Kailas, Satish V.; Chatterjee, Subrata

    2018-05-01

    In the present investigation, friction stir welding of commercially pure aluminum and 304 stainless steel was carried out at varying tool rotational speeds from 200 to 1000 rpm in steps of 200 rpm using 60 mm/min traverse speed at 2 (degree) tool tilt angle. Microstructural characterization of the interfacial zone was carried out using optical microscope and scanning electron microscope. Energy-dispersive spectroscopy indicated the presence of FeAl3 intermetallic phase. Thickness of the intermetallic layer increased with the increase in tool rotational speed. X-ray diffraction studies indicated the formation of intermetallic phases like FeAl2, Fe4Al13, Fe2Al5, and FeAl3. A maximum tensile strength of 90% that of aluminum along with 4.5% elongation was achieved with the welded sample at tool rotational speed of 400 rpm. The stir zone showed higher hardness as compared to base metals, heat affected zone, and thermo-mechanically affected zone due to the presence of intermetallics. The maximum hardness value at the stir zone was achieved at 1000 rpm tool rotational speed.

  2. Accelerations and Passenger Harness Loads Measured in Full-Scale Light-Airplane Crashes

    NASA Technical Reports Server (NTRS)

    Eiband, A. Martin; Simpkinson, Scott H.; Black, Dugald O.

    1953-01-01

    Full-scale light-airplane crashes simulating stall-spin accidents were conducted to determine the decelerations to which occupants are exposed and the resulting harness forces encountered in this type of accident. Crashes at impact speeds from 42 to 60 miles per hour were studied. The airplanes used were of the familiar steel-tube, fabric-covered, tandem, two-seat type. In crashes up to an impact speed of 60 miles per hour, crumpling of the forward fuselage structure prevented the maximum deceleration at the rear-seat location from exceeding 26 to 33g. This maximum g value appeared independent of the impact speed. Restraining forces in the seatbelt - shoulder-harness combination reached 5800 pounds. The rear-seat occupant can survive crashes of the type studied at impact speeds up to 60 miles per hour, if body movement is restrained by an adequate seatbelt-shoulder-harness combination so as to prevent injurious contact with obstacles normally present in the cabin. Inwardly collapsing cabin structure, however, is a potential hazard in the higher-speed crashes.

  3. Straight and chopped dc performance data for a General Electric 5BT 2366C10 motor and an EV-1 controller

    NASA Technical Reports Server (NTRS)

    Edie, P. C.

    1981-01-01

    Performance data on the General Electric 5BT 2366C10 series wound dc motor and EV-1 Chopper Controller is supplied for the electric vehicle manufacturer. Data is provided for both straight and chopped dc input to the motor, at 2 motor temperature levels. Testing was done at 6 voltage increments to the motor, and 2 voltage increments to the controller. Data results are presented in both tabular and graphical forms. Tabular information includes motor voltage and current input data, motor speed and torque output data, power data and temperature data. Graphical information includes torque-speed, motor power output-speed, torque-current, and efficiency-speed plots under the various operating conditions. The data resulting from this testing shows the speed-torque plots to have the most variance with operating temperature. The maximum motor efficiency is between 86% and 87%, regardless of temperature or mode of operation. When the chopper is utilized, maximum motor efficiency occurs when the chopper duty cycle approaches 100%.

  4. The maximum rate of mammal evolution

    NASA Astrophysics Data System (ADS)

    Evans, Alistair R.; Jones, David; Boyer, Alison G.; Brown, James H.; Costa, Daniel P.; Ernest, S. K. Morgan; Fitzgerald, Erich M. G.; Fortelius, Mikael; Gittleman, John L.; Hamilton, Marcus J.; Harding, Larisa E.; Lintulaakso, Kari; Lyons, S. Kathleen; Okie, Jordan G.; Saarinen, Juha J.; Sibly, Richard M.; Smith, Felisa A.; Stephens, Patrick R.; Theodor, Jessica M.; Uhen, Mark D.

    2012-03-01

    How fast can a mammal evolve from the size of a mouse to the size of an elephant? Achieving such a large transformation calls for major biological reorganization. Thus, the speed at which this occurs has important implications for extensive faunal changes, including adaptive radiations and recovery from mass extinctions. To quantify the pace of large-scale evolution we developed a metric, clade maximum rate, which represents the maximum evolutionary rate of a trait within a clade. We applied this metric to body mass evolution in mammals over the last 70 million years, during which multiple large evolutionary transitions occurred in oceans and on continents and islands. Our computations suggest that it took a minimum of 1.6, 5.1, and 10 million generations for terrestrial mammal mass to increase 100-, and 1,000-, and 5,000-fold, respectively. Values for whales were down to half the length (i.e., 1.1, 3, and 5 million generations), perhaps due to the reduced mechanical constraints of living in an aquatic environment. When differences in generation time are considered, we find an exponential increase in maximum mammal body mass during the 35 million years following the Cretaceous-Paleogene (K-Pg) extinction event. Our results also indicate a basic asymmetry in macroevolution: very large decreases (such as extreme insular dwarfism) can happen at more than 10 times the rate of increases. Our findings allow more rigorous comparisons of microevolutionary and macroevolutionary patterns and processes.

  5. Analog simulation of a hybrid gasoline-electric vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, D.B.

    1982-03-01

    Hybrid vehicles using both internal combustion engines and electric motors represent one way to reduce fuel consumption. Our demonstration project envisioned more than halving the fuel consumption of a passenger vehicle by reducing greatly the capacity of its engine and adding regenerative braking and an all-electric range. We also envisaged maintaining the same performance as current passenger vehicles. A 0-6 000 rpm gasoline-driven internal combustion engine, two 0-7 800 rpm electric motors, a 0-7 800 rpm flywheel, and lead-acid batteries are the major components assembled using a mechnical epicyclic gear box. An EAI 681 analog computer allowed us to examinemore » quickly the effects of engine capacity, flywheel size, battery voltage, gear ratios, and mode of operation. An external potentiometer control on the computer allowed the operator to drive the vehicle through any acceleration cycle on level ground. We have shown that a 1.3 litre gasoline engine, two 13 kW separately excited direct current electric motors, a 38 kg flywheel, and a 48-volt battery pack will provide the same maximum performance as a conventional 4.1 litre internal combustion engine with automatic transmission at vehicle speeds below 60 km/h, and lower but satisfactory highway performance up to a top speed of 130 km/h. The transmission has undergone laboratory tests; it is to be road-tested in the first half of 1982.« less

  6. Comparative analysis of the operation efficiency of the continuous and relay control systems of a multi-axle wheeled vehicle suspension

    NASA Astrophysics Data System (ADS)

    Zhileykin, M. M.; Kotiev, G. O.; Nagatsev, M. V.

    2018-02-01

    In order to improve the efficiency of the multi-axle wheeled vehicles (MWV) automotive engineers are increasing their cruising speed. One of the promising ways to improve ride comfort of the MWV is the development of the dynamic active suspension systems and control laws for such systems. Here, by the dynamic control systems we mean the systems operating in real time mode and using current (instantaneous) values of the state variables. The aim of the work is to develop the MWV suspension optimal control laws that would reduce vibrations on the driver’s seat at kinematic excitation. The authors have developed the optimal control laws for damping the oscillations of the MWV body. The developed laws allow reduction of the vibrations on the driver’s seat and increase in the maximum speed of the vehicle. The laws are characterized in that they allow generating the control inputs in real time mode. The authors have demonstrated the efficiency of the proposed control laws by means of mathematical simulation of the MWV driving over unpaved road with kinematic excitation. The proposed optimal control laws can be used in the MWV suspension control systems with magnetorheological shock absorbers or controlled hydropneumatic springs. Further evolution of the research line can be the development of the energy-efficient MWV suspension control systems with continuous control input on the vehicle body.

  7. Digitizing an Analog Radiography Teaching File Under Time Constraint: Trade-Offs in Efficiency and Image Quality.

    PubMed

    Loehfelm, Thomas W; Prater, Adam B; Debebe, Tequam; Sekhar, Aarti K

    2017-02-01

    We digitized the radiography teaching file at Black Lion Hospital (Addis Ababa, Ethiopia) during a recent trip, using a standard digital camera and a fluorescent light box. Our goal was to photograph every radiograph in the existing library while optimizing the final image size to the maximum resolution of a high quality tablet computer, preserving the contrast resolution of the radiographs, and minimizing total library file size. A secondary important goal was to minimize the cost and time required to take and process the images. Three workers were able to efficiently remove the radiographs from their storage folders, hang them on the light box, operate the camera, catalog the image, and repack the radiographs back to the storage folder. Zoom, focal length, and film speed were fixed, while aperture and shutter speed were manually adjusted for each image, allowing for efficiency and flexibility in image acquisition. Keeping zoom and focal length fixed, which kept the view box at the same relative position in all of the images acquired during a single photography session, allowed unused space to be batch-cropped, saving considerable time in post-processing, at the expense of final image resolution. We present an analysis of the trade-offs in workflow efficiency and final image quality, and demonstrate that a few people with minimal equipment can efficiently digitize a teaching file library.

  8. Variability in Heat Strain in Fully Encapsulated Impermeable Suits in Different Climates and at Different Work Loads.

    PubMed

    DenHartog, Emiel A; Rubenstein, Candace D; Deaton, A Shawn; Bogerd, Cornelis Peter

    2017-03-01

    A major concern for responders to hazardous materials (HazMat) incidents is the heat strain that is caused by fully encapsulated impermeable (NFPA 1991) suits. In a research project, funded by the US Department of Defense, the thermal strain experienced when wearing these suits was studied. Forty human subjects between the ages of 25 and 50 participated in a protocol approved by the local ethical committee. Six different fully encapsulated impermeable HazMat suits were evaluated in three climates: moderate (24°C, 50% RH, 20°C WBGT), warm-wet (32°C, 60% RH, 30°C WBGT), and hot-dry (45°C, 20% RH, 37°C WBGT, 200 W m-2 radiant load) and at three walking speeds: 2.5, 4, and 5.5 km h-1. The medium speed, 4 km h-1, was tested in all three climates and the other two walking speeds were only tested in the moderate climate. Prior to the test a submaximal exercise test in normal clothing was performed to determine a relationship between heart rate and oxygen consumption (pretest). In total, 163 exposures were measured. Tolerance time ranged from as low as 20 min in the hot-dry condition to 60 min (the maximum) in the moderate climate, especially common at the lowest walking speed. Between the six difference suits limited differences were found, a two-layered aluminized suit exhibited significant shorter tolerance times in the moderate climate, but no other major significant differences were found for the other climates or workloads. An important characteristic of the overall dataset is the large variability between the subjects. Although the average responses seem suitable to be predicted, the variability in the warmer strain conditions ranged from 20 min up to 60 min. The work load in these encapsulated impermeable suits was also significantly higher than working in normal clothing and higher than predicted by the Pandolf equation. Heart rate showed a very strong correlation to body core temperature and was in many cases the limiting factor. Setting the heart rate maximum at 80% of predicted individual maximum (age based) would have prevented 95% of the cases with excessive heat strain. Monitoring of heart rate under operational conditions would further allow individually optimize working times and help in preventing exertional heat stroke. © The Author 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  9. Reattachment Zone Characterisation Under Offshore Winds With Flow Separation On The Lee Side Of Coastal Dunes

    NASA Astrophysics Data System (ADS)

    Delgado-Fernandez, I.; Jackson, D.; Cooper, J. A.; Baas, A. C.; Lynch, K.; Beyers, M.

    2010-12-01

    Airflow separation, lee-side eddies and secondary flows play an essential role on the formation and maintenance of sand dunes. Downstream from dune crests the flow surface layer detaches from the ground and generates an area characterised by turbulent eddies in the dune lee slope (the wake). At some distance downstream from the dune crest, flow separates into a reversed component directed toward the dune toe and an offshore “re-attached” component. This reattachment zone (RZ) has been documented in fluvial and desert environments, wind tunnel experiments and numerical simulations, but not yet characterised in coastal dunes. This study examines the extent and temporal evolution of the RZ and its implications for beach-dune interaction at Magilligan, Northern Ireland. Wind parameters were measured over a profile extending from an 11 m height dune crest towards the beach, covering a total distance of 65 m cross-shore. Data was collected using an array of nine ultrasonic anemometers (UAs) deployed in April-May 2010, as part of a larger experiment to capture airflow data under a range of incident wind velocities and offshore directions. UAs were located along the profile (5 m tower spacing) over the beach, which allowed a detailed examination of the RZ with empirical data. Numerical modelling using Computational Fluid Dynamics (CFD) software was also conducted with input data from anemometer field measurements, running over a surface mesh generated from LiDAR and DGPS surveys. Results demonstrate that there is a wind threshold of approximately 5-6 ms-1 under which no flow separation exists with offshore winds. As wind speed increases over the threshold, a flow reversal area is quickly formed, with the maximum extent of the RZ at approximately 3.5 dune heights (h). The maximum extent of the RZ increases up to 4.5h with stronger wind speeds of 8-10 ms-1 and remains relatively constant as wind speed further increases. This suggests that the spatial extent of the RZ is independent of incident wind speed and is located between 4-5h. The magnitude of the maximum extent of the RZ is similar to that simulated using CFD and is consistent with previous studies conducted in desert dunes and wind tunnel simulations for offshore winds blowing over tall and sharp-crested dunes. Ongoing analyses are being conducted to evaluate the effect of changing wind direction, dune height and shape.

  10. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE PAGES

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min; ...

    2017-11-01

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  11. Adaptive Gain-based Stable Power Smoothing of a DFIG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Lee, Hyewon; Hwang, Min

    In a power system that has a high wind penetration, the output power fluctuation of a large-scale wind turbine generator (WTG) caused by the varying wind speed increases the maximum frequency deviation, which is an important metric to assess the quality of electricity, because of the reduced system inertia. This paper proposes a stable power-smoothing scheme of a doubly-fed induction generator (DFIG) that can suppress the maximum frequency deviation, particularly for a power system with a high wind penetration. To do this, the proposed scheme employs an additional control loop relying on the system frequency deviation that operates in combinationmore » with the maximum power point tracking control loop. To improve the power-smoothing capability while guaranteeing the stable operation of a DFIG, the gain of the additional loop is modified with the rotor speed and frequency deviation. The gain is set to be high if the rotor speed and/or frequency deviation is large. Here, the simulation results based on the IEEE 14-bus system demonstrate that the proposed scheme significantly lessens the output power fluctuation of a WTG under various scenarios by modifying the gain with the rotor speed and frequency deviation, and thereby it can regulate the frequency deviation within a narrow range.« less

  12. Demonstration of variable speed permanent magnet generator at small, low-head hydro site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown Kinloch, David

    Small hydro developers face a limited set of bad choices when choosing a generator for a small low-head hydro site. Direct drive synchronous generators are expensive and technically complex to install. Simpler induction generators are higher speed, requiring a speed increaser, which results in inefficiencies and maintenance problems. In addition, both induction and synchronous generators turn at a fixed speed, causing the turbine to run off its peak efficiency curve whenever the available head is different than the designed optimum head.The solution to these problems is the variable speed Permanent Magnet Generators (PMG). At the Weisenberger Mill in Midway, KY,more » a variable speed Permanent Magnet Generator has been installed and demonstrated. This new PMG system replaced an existing induction generator that had a HTD belt drive speed increaser system. Data was taken from the old generator before it was removed and compared to data collected after the PMG system was installed. The new variable speed PMG system is calculated to produce over 96% more energy than the old induction generator system during an average year. This significant increase was primarily due to the PMG generator operating at the correct speed at the maximum head, and the ability for the PMG generator to reduce its speed to lower optimum speeds as the stream flow increased and the net head decreased.This demonstration showed the importance of being able to adjust the speed of fixed blade turbines. All fixed blade turbines with varying net heads could achieve higher efficiencies if the speed can be matched to the optimum speed as the head changes. In addition, this demonstration showed that there are many potential efficiencies that could be realized with variable speed technology at hydro sites where mismatched turbine and generator speeds result in lower power output, even at maximum head. Funding for this project came from the US Dept. of Energy, through Award Number DE-EE0005429.« less

  13. Predicting Minimum Control Speed on the Ground (VMCG) and Minimum Control Airspeed (VMCA) of Engine Inoperative Flight Using Aerodynamic Database and Propulsion Database Generators

    NASA Astrophysics Data System (ADS)

    Hadder, Eric Michael

    There are many computer aided engineering tools and software used by aerospace engineers to design and predict specific parameters of an airplane. These tools help a design engineer predict and calculate such parameters such as lift, drag, pitching moment, takeoff range, maximum takeoff weight, maximum flight range and much more. However, there are very limited ways to predict and calculate the minimum control speeds of an airplane in engine inoperative flight. There are simple solutions, as well as complicated solutions, yet there is neither standard technique nor consistency throughout the aerospace industry. To further complicate this subject, airplane designers have the option of using an Automatic Thrust Control System (ATCS), which directly alters the minimum control speeds of an airplane. This work addresses this issue with a tool used to predict and calculate the Minimum Control Speed on the Ground (VMCG) as well as the Minimum Control Airspeed (VMCA) of any existing or design-stage airplane. With simple line art of an airplane, a program called VORLAX is used to generate an aerodynamic database used to calculate the stability derivatives of an airplane. Using another program called Numerical Propulsion System Simulation (NPSS), a propulsion database is generated to use with the aerodynamic database to calculate both VMCG and VMCA. This tool was tested using two airplanes, the Airbus A320 and the Lockheed Martin C130J-30 Super Hercules. The A320 does not use an Automatic Thrust Control System (ATCS), whereas the C130J-30 does use an ATCS. The tool was able to properly calculate and match known values of VMCG and VMCA for both of the airplanes. The fact that this tool was able to calculate the known values of VMCG and VMCA for both airplanes means that this tool would be able to predict the VMCG and VMCA of an airplane in the preliminary stages of design. This would allow design engineers the ability to use an Automatic Thrust Control System (ATCS) as part of the design of an airplane and still have the ability to predict the VMCG and VMCA of the airplane.

  14. Time optimal paths for high speed maneuvering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less

  15. A Rotary Microactuator Supported on Encapsulated Microball Bearings using an Electro-Pneumatic Thrust Balance

    DTIC Science & Technology

    2009-01-01

    Additionally, high-speed air bearings have been demonstrated in micromotors (55 000 rpm) and micro-turbomachinery (2 million rpm) [7, 8]. While...without thrust balances [11]. For applications requiring continuous rotation ( micromotors and micropumps) this hydrostatic balancing force can be...conditions for stable actuation of the micromotor leading to maximum speeds. In addition to increased speed, this device demonstrates a substantial

  16. Idle speed and fuel vapor recovery control system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orzel, D.V.

    1993-06-01

    A method for controlling idling speed of an engine via bypass throttle connected in parallel to a primary engine throttle and for controlling purge flow through a vapor recovery system into an air/fuel intake of the engine is described, comprising the steps of: positioning the bypass throttle to decrease any difference between a desired engine idle speed and actual engine idle speed; and decreasing the purge flow when said bypass throttle position is less than a preselected fraction of a maximum bypass throttle position.

  17. Maximum sustainable speeds and cost of swimming in juvenile kawakawa tuna (Euthynnus affinis) and chub mackerel (Scomber japonicus).

    PubMed

    Sepulveda, C; Dickson, K A

    2000-10-01

    Tunas (Scombridae) have been assumed to be among the fastest and most efficient swimmers because they elevate the temperature of the slow-twitch, aerobic locomotor muscle above the ambient water temperature (endothermy) and because of their streamlined body shape and use of the thunniform locomotor mode. The purpose of this study was to test the hypothesis that juvenile tunas swim both faster and more efficiently than their ectothermic relatives. The maximum sustainable swimming speed (U(max), the maximum speed attained while using a steady, continuous gait powered by the aerobic myotomal muscle) and the net cost of transport (COT(net)) were compared at 24 degrees C in similar-sized (116-255 mm fork length) juvenile scombrids, an endothermic tuna, the kawakawa (Euthynnus affinis) and the ectothermic chub mackerel (Scomber japonicus). U(max) and COT(net) were measured by forcing individual fish to swim in a temperature-controlled, variable-speed swimming tunnel respirometer. There were no significant interspecific differences in the relationship between U(max) and body mass or fork length or in the relationship between COT(net) and body mass or fork length. Muscle temperatures were elevated by 1.0-2.3 degrees C and 0.1-0.6 degrees C above water temperature in the kawakawa and chub mackerel, respectively. The juvenile kawakawa had significantly higher standard metabolic rates than the chub mackerel, because the total rate of oxygen consumption at a given swimming speed was higher in the kawakawa when the effects of fish size were accounted for. Thus, juvenile kawakawa are not capable of higher sustainable swimming speeds and are not more efficient swimmers than juvenile chub mackerel.

  18. 32 CFR 842.35 - Depreciation and maximum allowances.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Depreciation and maximum allowances. 842.35... LITIGATION ADMINISTRATIVE CLAIMS Personnel Claims (31 U.S.C. 3701, 3721) § 842.35 Depreciation and maximum allowances. The military services have jointly established the “Allowance List-Depreciation Guide” to...

  19. Comparing performance on the MNREAD iPad application with the MNREAD acuity chart.

    PubMed

    Calabrèse, Aurélie; To, Long; He, Yingchen; Berkholtz, Elizabeth; Rafian, Paymon; Legge, Gordon E

    2018-01-01

    Our purpose was to compare reading performance measured with the MNREAD Acuity Chart and an iPad application (app) version of the same test for both normally sighted and low-vision participants. Our methods included 165 participants with normal vision and 43 participants with low vision tested on the standard printed MNREAD and on the iPad app version of the test. Maximum Reading Speed, Critical Print Size, Reading Acuity, and Reading Accessibility Index were compared using linear mixed-effects models to identify any potential differences in test performance between the printed chart and the iPad app. Our results showed the following: For normal vision, chart and iPad yield similar estimates of Critical Print Size and Reading Acuity. The iPad provides significantly slower estimates of Maximum Reading Speed than the chart, with a greater difference for faster readers. The difference was on average 3% at 100 words per minute (wpm), 6% at 150 wpm, 9% at 200 wpm, and 12% at 250 wpm. For low vision, Maximum Reading Speed, Reading Accessibility Index, and Critical Print Size are equivalent on the iPad and chart. Only the Reading Acuity is significantly smaller (I. E., better) when measured on the digital version of the test, but by only 0.03 logMAR (p = 0.013). Our conclusions were that, overall, MNREAD parameters measured with the printed chart and the iPad app are very similar. The difference found in Maximum Reading Speed for the normally sighted participants can be explained by differences in the method for timing the reading trials.

  20. Comparing performance on the MNREAD iPad application with the MNREAD acuity chart

    PubMed Central

    Calabrèse, Aurélie; To, Long; He, Yingchen; Berkholtz, Elizabeth; Rafian, Paymon; Legge, Gordon E.

    2018-01-01

    Our purpose was to compare reading performance measured with the MNREAD Acuity Chart and an iPad application (app) version of the same test for both normally sighted and low-vision participants. Our methods included 165 participants with normal vision and 43 participants with low vision tested on the standard printed MNREAD and on the iPad app version of the test. Maximum Reading Speed, Critical Print Size, Reading Acuity, and Reading Accessibility Index were compared using linear mixed-effects models to identify any potential differences in test performance between the printed chart and the iPad app. Our results showed the following: For normal vision, chart and iPad yield similar estimates of Critical Print Size and Reading Acuity. The iPad provides significantly slower estimates of Maximum Reading Speed than the chart, with a greater difference for faster readers. The difference was on average 3% at 100 words per minute (wpm), 6% at 150 wpm, 9% at 200 wpm, and 12% at 250 wpm. For low vision, Maximum Reading Speed, Reading Accessibility Index, and Critical Print Size are equivalent on the iPad and chart. Only the Reading Acuity is significantly smaller (I. E., better) when measured on the digital version of the test, but by only 0.03 logMAR (p = 0.013). Our conclusions were that, overall, MNREAD parameters measured with the printed chart and the iPad app are very similar. The difference found in Maximum Reading Speed for the normally sighted participants can be explained by differences in the method for timing the reading trials. PMID:29351351

  1. Temperature field measurement research in high-speed diesel engine using laser induced fluorescence technology

    NASA Astrophysics Data System (ADS)

    Liu, Yongfeng; Zhang, You-tong; Gou, Chenhua; Tian, Hongsen

    2008-12-01

    Temperature laser- induced- fluorescence (LIF) 2-D imaging measurements using a new multi-spectral detection strategy are reported for high pressure flames in high-speed diesel engine. Schematic of the experimental set-up is outlined and the experimental data on the diesel engine is summarized. Experiment injection system is a third generation Bosch high-pressure common rail featuring a maximum pressure of 160 MPa. The injector is equipped with a six-hole nozzle, where each hole has a diameter of 0.124 mm. and slightly offset (by 1.0 mm) to the center of the cylinder axis to allow a better cooling of the narrow bridge between the exhaust valves. The measurement system includes a blower, which supplied the intake flow rate, and a prototype single-valve direct injection diesel engine head modified to lay down the swirled-type injector. 14-bit digital CCD cameras are employed to achieve a greater level of accuracy in comparison to the results of previous measurements. The temperature field spatial distributions in the cylinder for different crank angle degrees are carried out in a single direct-injection diesel engine.

  2. New descriptor for skeletons of planar shapes: the calypter

    NASA Astrophysics Data System (ADS)

    Pirard, Eric; Nivart, Jean-Francois

    1994-05-01

    The mathematical definition of the skeleton as the locus of centers of maximal inscribed discs is a nondigitizable one. The idea presented in this paper is to incorporate the skeleton information and the chain-code of the contour into a single descriptor by associating to each point of a contour the center and radius of the maximum inscribed disc tangent at that point. This new descriptor is called calypter. The encoding of a calypter is a three stage algorithm: (1) chain coding of the contour; (2) euclidean distance transformation, (3) climbing on the distance relief from each point of the contour towards the corresponding maximal inscribed disc center. Here we introduce an integer euclidean distance transform called the holodisc distance transform. The major interest of this holodisc transform is to confer 8-connexity to the isolevels of the generated distance relief thereby allowing a climbing algorithm to proceed step by step towards the centers of the maximal inscribed discs. The calypter has a cyclic structure delivering high speed access to the skeleton data. Its potential uses are in high speed euclidean mathematical morphology, shape processing, and analysis.

  3. The History and Promise of Combined Cycle Engines for Access to Space Applications

    NASA Technical Reports Server (NTRS)

    Clark, Casie

    2010-01-01

    For the summer of 2010, I have been working in the Aerodynamics and Propulsion Branch at NASA Dryden Flight Research Center studying combined-cycle engines, a high speed propulsion concept. Combined cycle engines integrate multiple propulsion systems into a single engine capable of running in multiple modes. These different modes allow the engine to be extremely versatile and efficient in varied flight conditions. The two most common types of combined cycle engines are Rocket-Based Combined Cycle (RBCC) and Turbine Based Combined Cycle (TBCC). The RBCC essentially combines a rocket and ramjet engine, while the TBCC integrates a turbojet and ramjet1. These two engines are able to switch between different propulsion modes to achieve maximum performance. Extensive conceptual and ground test studies of RBCC engines have been undertaken; however, an RBCC engine has never, to my knowledge, been demonstrated in flight. RBCC engines are of particular interest because they could potentially power a reusable launch vehicle (RLV) into space. The TBCC has been flight tested and shown to be effective at reaching supersonic speeds, most notably in the SR-71 Blackbird2.

  4. Viterbi equalization for long-distance, high-speed underwater laser communication

    NASA Astrophysics Data System (ADS)

    Hu, Siqi; Mi, Le; Zhou, Tianhua; Chen, Weibiao

    2017-07-01

    In long-distance, high-speed underwater laser communication, because of the strong absorption and scattering processes, the laser pulse is stretched with the increase in communication distance and the decrease in water clarity. The maximum communication bandwidth is limited by laser-pulse stretching. Improving the communication rate increases the intersymbol interference (ISI). To reduce the effect of ISI, the Viterbi equalization (VE) algorithm is used to estimate the maximum-likelihood receiving sequence. The Monte Carlo method is used to simulate the stretching of the received laser pulse and the maximum communication rate at a wavelength of 532 nm in Jerlov IB and Jerlov II water channels with communication distances of 80, 100, and 130 m, respectively. The high-data rate communication performance for the VE and hard-decision algorithms is compared. The simulation results show that the VE algorithm can be used to reduce the ISI by selecting the minimum error path. The trade-off between the high-data rate communication performance and minor bit-error rate performance loss makes VE a promising option for applications in long-distance, high-speed underwater laser communication systems.

  5. The impact of the 65 mph speed limit on Virginia's rural interstate highways through 1989.

    DOT National Transportation Integrated Search

    1990-01-01

    In April 1987, Congress passed the Surface Transportation and Uniform Relocation Assistance Act (STURAA) which permitted states to raise their maximum speed limit on rural interstate highways (rural interstates) to 65 mph. Since then, 40 states, incl...

  6. A Robust Strategy for Total Ionizing Dose Testing of Field Programmable Gate Arrays

    NASA Technical Reports Server (NTRS)

    Wilcox, Edward; Berg, Melanie; Friendlich, Mark; Lakeman, Joseph; KIm, Hak; Pellish, Jonathan; LaBel, Kenneth

    2012-01-01

    We present a novel method of FPGA TID testing that measures propagation delay between flip-flops operating at maximum speed. Measurement is performed on-chip at-speed and provides a key design metric when building system-critical synchronous designs.

  7. Maximum-Likelihood Estimation With a Contracting-Grid Search Algorithm

    PubMed Central

    Hesterman, Jacob Y.; Caucci, Luca; Kupinski, Matthew A.; Barrett, Harrison H.; Furenlid, Lars R.

    2010-01-01

    A fast search algorithm capable of operating in multi-dimensional spaces is introduced. As a sample application, we demonstrate its utility in the 2D and 3D maximum-likelihood position-estimation problem that arises in the processing of PMT signals to derive interaction locations in compact gamma cameras. We demonstrate that the algorithm can be parallelized in pipelines, and thereby efficiently implemented in specialized hardware, such as field-programmable gate arrays (FPGAs). A 2D implementation of the algorithm is achieved in Cell/BE processors, resulting in processing speeds above one million events per second, which is a 20× increase in speed over a conventional desktop machine. Graphics processing units (GPUs) are used for a 3D application of the algorithm, resulting in processing speeds of nearly 250,000 events per second which is a 250× increase in speed over a conventional desktop machine. These implementations indicate the viability of the algorithm for use in real-time imaging applications. PMID:20824155

  8. Examining impulse-variability in overarm throwing.

    PubMed

    Urbin, M A; Stodden, David; Boros, Rhonda; Shannon, David

    2012-01-01

    The purpose of this study was to examine variability in overarm throwing velocity and spatial output error at various percentages of maximum to test the prediction of an inverted-U function as predicted by impulse-variability theory and a speed-accuracy trade-off as predicted by Fitts' Law Thirty subjects (16 skilled, 14 unskilled) were instructed to throw a tennis ball at seven percentages of their maximum velocity (40-100%) in random order (9 trials per condition) at a target 30 feet away. Throwing velocity was measured with a radar gun and interpreted as an index of overall systemic power output. Within-subject throwing velocity variability was examined using within-subjects repeated-measures ANOVAs (7 repeated conditions) with built-in polynomial contrasts. Spatial error was analyzed using mixed model regression. Results indicated a quadratic fit with variability in throwing velocity increasing from 40% up to 60%, where it peaked, and then decreasing at each subsequent interval to maximum (p < .001, η2 = .555). There was no linear relationship between speed and accuracy. Overall, these data support the notion of an inverted-U function in overarm throwing velocity variability as both skilled and unskilled subjects approach maximum effort. However, these data do not support the notion of a speed-accuracy trade-off. The consistent demonstration of an inverted-U function associated with systemic power output variability indicates an enhanced capability to regulate aspects of force production and relative timing between segments as individuals approach maximum effort, even in a complex ballistic skill.

  9. Novel method for fabrication of monolithic multi-cavity molds and wafer optics

    NASA Astrophysics Data System (ADS)

    Wielandts, Marc; Wielandts, Remi

    2015-10-01

    One lens at a time on axis diamond turning or grinding of lens arrays with a large number of lenses is conventionally impractical because of the difficulties to shift and balance the substrate for each lens position. A novel method for automatic indexing was developed. This method uses an innovative mechatronics tooling (patent pending) that allows dynamic indexing at constant work spindle speed for maximum productivity and thermal stability of the work spindle while the balancing condition is maintained. In this paper we shall compare the machining capabilities of this method to free-form machining techniques, discuss about the main issues, present the concept and design of the working prototype and specific test bed, and present the results of the first cutting tests.

  10. New Polyazine-Bridged RuII,RhIII and RuII,RhI Supramolecular Photocatalysts for Water Reduction to Hydrogen Applicable for Solar Energy Conversion and Mechanistic Investigation of the Photocatalytic Cycle

    NASA Astrophysics Data System (ADS)

    Zhou, Rongwei

    Underwater gliders are robust and long endurance ocean sampling platforms that are increasingly being deployed in coastal regions. This new environment is characterized by shallow waters and significant currents that can challenge the mobility of these efficient (but traditionally slow moving) vehicles. This dissertation aims to improve the performance of shallow water underwater gliders through path planning. The path planning problem is formulated for a dynamic particle (or "kinematic car") model. The objective is to identify the path which satisfies specified boundary conditions and minimizes a particular cost. Several cost functions are considered. The problem is addressed using optimal control theory. The length scales of interest for path planning are within a few turn radii. First, an approach is developed for planning minimum-time paths, for a fixed speed glider, that are sub-optimal but are guaranteed to be feasible in the presence of unknown time-varying currents. Next the minimum-time problem for a glider with speed controls, that may vary between the stall speed and the maximum speed, is solved. Last, optimal paths that minimize change in depth (equivalently, maximize range) are investigated. Recognizing that path planning alone cannot overcome all of the challenges associated with significant currents and shallow waters, the design of a novel underwater glider with improved capabilities is explored. A glider with a pneumatic buoyancy engine (allowing large, rapid buoyancy changes) and a cylindrical moving mass mechanism (generating large pitch and roll moments) is designed, manufactured, and tested to demonstrate potential improvements in speed and maneuverability.

  11. Event generators for address event representation transmitters

    NASA Astrophysics Data System (ADS)

    Serrano-Gotarredona, Rafael; Serrano-Gotarredona, Teresa; Linares Barranco, Bernabe

    2005-06-01

    Address Event Representation (AER) is an emergent neuromorphic interchip communication protocol that allows for real-time virtual massive connectivity between huge number neurons located on different chips. By exploiting high speed digital communication circuits (with nano-seconds timings), synaptic neural connections can be time multiplexed, while neural activity signals (with mili-seconds timings) are sampled at low frequencies. Also, neurons generate 'events' according to their activity levels. More active neurons generate more events per unit time, and access the interchip communication channel more frequently, while neurons with low activity consume less communication bandwidth. In a typical AER transmitter chip, there is an array of neurons that generate events. They send events to a peripheral circuitry (let's call it "AER Generator") that transforms those events to neurons coordinates (addresses) which are put sequentially on an interchip high speed digital bus. This bus includes a parallel multi-bit address word plus a Rqst (request) and Ack (acknowledge) handshaking signals for asynchronous data exchange. There have been two main approaches published in the literature for implementing such "AER Generator" circuits. They differ on the way of handling event collisions coming from the array of neurons. One approach is based on detecting and discarding collisions, while the other incorporates arbitration for sequencing colliding events . The first approach is supposed to be simpler and faster, while the second is able to handle much higher event traffic. In this article we will concentrate on the second arbiter-based approach. Boahen has been publishing several techniques for implementing and improving the arbiter based approach. Originally, he proposed an arbitration squeme by rows, followed by a column arbitration. In this scheme, while one neuron was selected by the arbiters to transmit his event out of the chip, the rest of neurons in the array were freezed to transmit any further events during this time window. This limited the maximum transmission speed. In order to improve this speed, Boahen proposed an improved 'burst mode' scheme. In this scheme after the row arbitration, a complete row of events is pipelined out of the array and arbitered out of the chip at higher speed. During this single row event arbitration, the array is free to generate new events and communicate to the row arbiter, in a pipelined mode. This scheme significantly improves maximum event transmission speed, specially for high traffic situations were speed is more critical. We have analyzed and studied this approach and have detected some shortcomings in the circuits reported by Boahen, which may render some false situations under some statistical conditions. The present paper proposes some improvements to overcome such situations. The improved "AER Generator" has been implemented in an AER transmitter system

  12. The Effect of Dioptric Blur on Reading Performance

    PubMed Central

    Chung, Susana T.L.; Jarvis, Samuel H.; Cheung, Sing-Hang

    2013-01-01

    Little is known about the systematic impact of blur on reading performance. The purpose of this study was to quantify the effect of dioptric blur on reading performance in a group of normally sighted young adults. We measured monocular reading performance and visual acuity for 19 observers with normal vision, for five levels of optical blur (no blur, 0.5, 1, 2 and 3D). Dioptric blur was induced using convex trial lenses placed in front of the testing eye, with the pupil dilated and in the presence of a 3 mm artificial pupil. Reading performance was assessed using eight versions of the MNREAD Acuity Chart. For each level of dioptric blur, observers read aloud sentences on one of these charts, from large to small print. Reading time for each sentence and the number of errors made were recorded and converted to reading speed in words per minute. Visual acuity was measured using 4-orientation Landolt C stimuli. For all levels of dioptric blur, reading speed increased with print size up to a certain print size and then remained constant at the maximum reading speed. By fitting nonlinear mixed-effects models, we found that the maximum reading speed was minimally affected by blur up to 2D, but was ~23% slower for 3D of blur. When the amount of blur increased from 0 (no-blur) to 3D, the threshold print size (print size corresponded to 80% of the maximum reading speed) increased from 0.01 to 0.88 logMAR, reading acuity worsened from −0.16 to 0.58 logMAR, and visual acuity worsened from −0.19 to 0.64 logMAR. The similar rates of change with blur for threshold print size, reading acuity and visual acuity implicates that visual acuity is a good predictor of threshold print size and reading acuity. Like visual acuity, reading performance is susceptible to the degrading effect of optical blur. For increasing amount of blur, larger print sizes are required to attain the maximum reading speed. PMID:17442363

  13. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  14. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  15. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  16. 49 CFR 230.25 - Maximum allowable stress on stays and braces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... maximum allowable stress per square inch of net cross sectional area on fire box and combustion chamber stays shall be 7,500 psi. The maximum allowable stress per square inch of net cross sectional area on...

  17. 40 CFR 35.2205 - Maximum allowable project cost.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Maximum allowable project cost. 35.2205... project cost. (a) Grants awarded on or after the effective date of this regulation. Except as provided in... regulation, the maximum allowable project cost will be the sum of: (1) The allowable cost of the following...

  18. 40 CFR 35.2205 - Maximum allowable project cost.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Maximum allowable project cost. 35.2205... project cost. (a) Grants awarded on or after the effective date of this regulation. Except as provided in... regulation, the maximum allowable project cost will be the sum of: (1) The allowable cost of the following...

  19. 40 CFR 35.2205 - Maximum allowable project cost.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Maximum allowable project cost. 35.2205... project cost. (a) Grants awarded on or after the effective date of this regulation. Except as provided in... regulation, the maximum allowable project cost will be the sum of: (1) The allowable cost of the following...

  20. 40 CFR 35.2205 - Maximum allowable project cost.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Maximum allowable project cost. 35.2205... project cost. (a) Grants awarded on or after the effective date of this regulation. Except as provided in... regulation, the maximum allowable project cost will be the sum of: (1) The allowable cost of the following...

  1. Proton velocity ring-driven instabilities and their dependence on the ring speed: Linear theory

    NASA Astrophysics Data System (ADS)

    Min, Kyungguk; Liu, Kaijun; Gary, S. Peter

    2017-08-01

    Linear dispersion theory is used to study the Alfvén-cyclotron, mirror and ion Bernstein instabilities driven by a tenuous (1%) warm proton ring velocity distribution with a ring speed, vr, varying between 2vA and 10vA, where vA is the Alfvén speed. Relatively cool background protons and electrons are assumed. The modeled ring velocity distributions are unstable to both the Alfvén-cyclotron and ion Bernstein instabilities whose maximum growth rates are roughly a linear function of the ring speed. The mirror mode, which has real frequency ωr=0, becomes the fastest growing mode for sufficiently large vr/vA. The mirror and Bernstein instabilities have maximum growth at propagation oblique to the background magnetic field and become more field-aligned with an increasing ring speed. Considering its largest growth rate, the mirror mode, in addition to the Alfvén-cyclotron mode, can cause pitch angle diffusion of the ring protons when the ring speed becomes sufficiently large. Moreover, because the parallel phase speed, v∥ph, becomes sufficiently small relative to vr, the low-frequency Bernstein waves can also aid the pitch angle scattering of the ring protons for large vr. Potential implications of including these two instabilities at oblique propagation on heliospheric pickup ion dynamics are discussed.

  2. High-speed resistance training is more effective than low-speed resistance training to increase functional capacity and muscle performance in older women.

    PubMed

    Ramírez-Campillo, Rodrigo; Castillo, Angélica; de la Fuente, Carlos I; Campos-Jara, Christian; Andrade, David C; Álvarez, Cristian; Martínez, Cristian; Castro-Sepúlveda, Mauricio; Pereira, Ana; Marques, Mário C; Izquierdo, Mikel

    2014-10-01

    To examine the effects of 12 weeks of high-speed resistance training (RT) versus low-speed RT on muscle strength [one repetition of maximum leg-press (1RMLP) and bench-press (1RMBP), plus dominant (HGd) and non-dominant maximum isometric handgrip], power [counter-movement jump (CMJ), ball throwing (BT) and 10-m walking sprint (S10)], functional performance [8-foot up-and-go test (UG) and sit-to-stand test (STS)], and perceived quality of life in older women. 45 older women were divided into a high-speed RT group [EG, n=15, age=66.3±3.7y], a low-speed RT group [SG, n=15, age=68.7±6.4y] and a control group [CG, n=15, age=66.7±4.9y]. The SG and EG were submitted to a similar 12-week RT program [3 sets of 8 reps at 40-75% of the one-repetition maximum (1

  3. Differential Pressures on a Pitot-venturi and a Pitot-static Nozzle over 360 Degrees Pitch and Yaw

    NASA Technical Reports Server (NTRS)

    Bear, R M

    1928-01-01

    Measurements of the differential pressures on two navy air-speed nozzles, consisting of a Zahm type Pitot-Venturi tube and a SQ-16 two-pronged Pitot-static tube, in a tunnel air stream of fixed speed at various angles of pitch and yaw between 0 degrees and plus or minus 180 degrees. This shows for a range over -20 degrees to +20 degrees pitch and yaw, indicated air speeds varying very slightly over 2 per cent for the Zahm type and a maximum of about 5 per cent for the SQ-16 type from the calibrated speed at 0 degree. For both types of air-speed nozzle the indicated air speed increases slightly as the tubes are pitched or yawed several degrees from their normal 0 degrees altitude, attains a maximum around plus or minus 15 degrees to 25 degrees, declines rapidly therefrom as plus or minus 40 degrees is passed, to zero in the vicinity of plus or minus 70 degrees to 100 degrees, and thence fluctuates irregular from thereabouts to plus or minus 180 degrees. The complete variation in indicated air speed for the two tubes over 360 degree pitch and yaw is graphically portrayed in figures 9 and 10. For the same air speed and 0 degree pitch and yaw the differential pressure of the Zahm type Pitot-Venturi nozzle is about seven times that of the SQ-16 type two-prolonged Pitot-static nozzle.

  4. Aerodynamics of gliding flight in common swifts.

    PubMed

    Henningsson, P; Hedenström, A

    2011-02-01

    Gliding flight performance and wake topology of a common swift (Apus apus L.) were examined in a wind tunnel at speeds between 7 and 11 m s(-1). The tunnel was tilted to simulate descending flight at different sink speeds. The swift varied its wingspan, wing area and tail span over the speed range. Wingspan decreased linearly with speed, whereas tail span decreased in a nonlinear manner. For each airspeed, the minimum glide angle was found. The corresponding sink speeds showed a curvilinear relationship with airspeed, with a minimum sink speed at 8.1 m s(-1) and a speed of best glide at 9.4 m s(-1). Lift-to-drag ratio was calculated for each airspeed and tilt angle combinations and the maximum for each speed showed a curvilinear relationship with airspeed, with a maximum of 12.5 at an airspeed of 9.5 m s(-1). Wake was sampled in the transverse plane using stereo digital particle image velocimetry (DPIV). The main structures of the wake were a pair of trailing wingtip vortices and a pair of trailing tail vortices. Circulation of these was measured and a model was constructed that showed good weight support. Parasite drag was estimated from the wake defect measured in the wake behind the body. Parasite drag coefficient ranged from 0.30 to 0.22 over the range of airspeeds. Induced drag was calculated and used to estimate profile drag coefficient, which was found to be in the same range as that previously measured on a Harris' hawk.

  5. Can reading-specific training stimuli improve the effect of perceptual learning on peripheral reading speed?

    PubMed

    Bernard, Jean-Baptiste; Arunkumar, Amit; Chung, Susana T L

    2012-08-01

    In a previous study, Chung, Legge, and Cheung (2004) showed that training using repeated presentation of trigrams (sequences of three random letters) resulted in an increase in the size of the visual span (number of letters recognized in a glance) and reading speed in the normal periphery. In this study, we asked whether we could optimize the benefit of trigram training on reading speed by using trigrams more specific to the reading task (i.e., trigrams frequently used in the English language) and presenting them according to their frequencies of occurrence in normal English usage and observers' performance. Averaged across seven observers, our training paradigm (4 days of training) increased the size of the visual span by 6.44 bits, with an accompanied 63.6% increase in the maximum reading speed, compared with the values before training. However, these benefits were not statistically different from those of Chung, Legge, and Cheung (2004) using a random-trigram training paradigm. Our findings confirm the possibility of increasing the size of the visual span and reading speed in the normal periphery with perceptual learning, and suggest that the benefits of training on letter recognition and maximum reading speed may not be linked to the types of letter strings presented during training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Current Testing Capabilities at the NASA Ames Ballistic Ranges

    NASA Technical Reports Server (NTRS)

    Ramsey, Alvin; Tam, Tim; Bogdanoff, David; Gage, Peter

    1999-01-01

    Capabilities for designing and performing ballistic range tests at the NASA Ames Research Center are presented. Computational tools to assist in designing and developing ballistic range models and to predict the flight characteristics of these models are described. A CFD code modeling two-stage gun performance is available, allowing muzzle velocity, maximum projectile base pressure, and gun erosion to be predicted. Aerodynamic characteristics such as drag and stability can be obtained at speeds ranging from 0.2 km/s to 8 km/s. The composition and density of the test gas can be controlled, which allows for an assessment of Reynolds number and specific heat ratio effects under conditions that closely match those encountered during planetary entry. Pressure transducers have been installed in the gun breech to record the time history of the pressure during launch, and pressure transducers have also been installed in the walls of the range to measure sonic boom effects. To illustrate the testing capabilities of the Ames ballistic ranges, an overview of some of the recent tests is given.

  7. Baseline tests of the power-train electric delivery van

    NASA Technical Reports Server (NTRS)

    Lumannick, S.; Dustin, M. O.; Bozek, J. M.

    1977-01-01

    Vehicle maximum speed, range at constant speed, range over stop-and-go driving schedules, maximum acceleration, gradeability, gradeability limit, road energy consumption, road power, indicated energy consumption, braking capability, battery charger efficiency, and battery characteristics were determined for a modified utility van powered by sixteen 6-volt batteries connected in series. A chopper controller actuated by a foot accelerator pedal changes the voltage applied to the 22-kilowatt (30-hp) series-wound drive motor. In addition to the conventional hydraulic braking system, the vehicle has hydraulic regenerative braking. Cycle tests and acceleration tests were conducted with and without hydraulic regeneration.

  8. Printability Optimization For Fine Pitch Solder Bonding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Sang-Hyun; Lee, Chang-Woo; Yoo, Sehoon

    2011-01-17

    Effect of metal mask and pad design on solder printability was evaluated by DOE in this study. The process parameters were stencil thickness, squeegee angle, squeegee speed, mask separating speed, and pad angle of PCB. The main process parameters for printability were stencil thickness and squeegee angle. The response surface showed that maximum printability of 1005 chip was achieved at the stencil thickness of 0.12 mm while the maximum printability of 0603 and 0402 chip was obtained at the stencil thickness of 0.05 mm. The bonding strength of the MLCC chips was also directly related with the printability.

  9. ARC-1969-A-16712

    NASA Image and Video Library

    1951-12-06

    Date: Dec 6, 1951 NACA Photographer North American YF-93 with submerged divergent-wall engine-air inlet. Maximum high-speed capability of Mach 1.03 was obtained with afterbrner on. Tests were conducted to compare high-speed performance of the YF-93 NACA-139 airplane with different inlet configurations. (Mar 1953)

  10. Wave propagation model of heat conduction and group speed

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Zhang, Xiaomin; Peng, Song

    2018-03-01

    In view of the finite relaxation model of non-Fourier's law, the Cattaneo and Vernotte (CV) model and Fourier's law are presented in this work for comparing wave propagation modes. Independent variable translation is applied to solve the partial differential equation. Results show that the general form of the time spatial distribution of temperature for the three media comprises two solutions: those corresponding to the positive and negative logarithmic heating rates. The former shows that a group of heat waves whose spatial distribution follows the exponential function law propagates at a group speed; the speed of propagation is related to the logarithmic heating rate. The total speed of all the possible heat waves can be combined to form the group speed of the wave propagation. The latter indicates that the spatial distribution of temperature, which follows the exponential function law, decays with time. These features show that propagation accelerates when heated and decelerates when cooled. For the model media that follow Fourier's law and correspond to the positive heat rate of heat conduction, the propagation mode is also considered the propagation of a group of heat waves because the group speed has no upper bound. For the finite relaxation model with non-Fourier media, the interval of group speed is bounded and the maximum speed can be obtained when the logarithmic heating rate is exactly the reciprocal of relaxation time. And for the CV model with a non-Fourier medium, the interval of group speed is also bounded and the maximum value can be obtained when the logarithmic heating rate is infinite.

  11. Thin tailored composite wing for civil tiltrotor

    NASA Technical Reports Server (NTRS)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing-box structure. The design variables include upper and lower skin ply thicknesses and orientation angles, spar and rib web thicknesses and cap areas, and stringer cross-sectional areas. These design variables will allow the maximum tailoring of the structure to meet the design requirements most efficiently. Initial dynamic analysis has been conducted using MSC/NASTRAN to determine the baseline wing's frequencies and mode shapes. For the design study we intend to use the finite-element based code called WIDOWAC (Wing Design Optimization With Aeroeastic Constraints) that was developed at NASA Langley in early 1970's for airplane wing structural analysis and preliminary design. Currently, the focus is on modification and validation of this code which will be used for the civil tiltrotor design efforts.

  12. Dust emission and transport over Iraq associated with the summer Shamal winds

    NASA Astrophysics Data System (ADS)

    Bou Karam Francis, D.; Flamant, C.; Chaboureau, J.-P.; Banks, J.; Cuesta, J.; Brindley, H.; Oolman, L.

    2017-02-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source.

  13. Dust emission and transport over Iraq associated with the summer Shamal winds

    NASA Astrophysics Data System (ADS)

    Karam Francis, Diana Bou; Flamant, Cyrille; Chaboureau, Jean-Pierre; Banks, Jamie

    2016-04-01

    In this study, we investigate the diurnal evolution of the summer Shamal wind (a quasi-permanent low-level northwesterly wind feature) and its role in dust emission and transport over Iraq, using ground-based and space-borne observations together with a numerical simulation performed with the mesoscale model Meso-NH. A 6-year dataset from the synoptic stations over Iraq allows establishing the prominence of the link between strong near surface winds and reduced visibility in the summer. The detailed processes at play during Shamal events are explored on the basis of a Meso-NH simulation for a given, representative case study (25 June-3 July 2010). The Shamal exhibits an out-of-phase relationship between the surface wind and winds in the lower troposphere (typically 500 m above ground level), the maximum surface wind speeds being observed during the day while in altitude the maximum wind speeds are observed at night. The daytime near surface winds, at the origin of dust emission, are associated with the downward transfer of momentum from the nocturnal low-level jet to the surface due to turbulent mixing after solar heating commences each day. For the first time, an estimate of the dust load associated with summer Shamal events over Iraq has been made using aerosol optical depths derived from the Spinning Enhanced Visible and Infrared Imager, the Moderate Resolution Imaging Spectroradiometer, and the simulation. The dust load exhibits a large diurnal variability, with a daily minimum value of 1 Tg around 0600 UTC and a daily peak of 2.5 Tg or more around 1500 UTC, and is driven by the diurnal cycle of the near surface wind speed. The daily dust load peak associated with the summer Shamal over Iraq is in the same order of magnitude as those derived from simulations downstream of the Bodélé depression in Chad, known to be the world's largest dust source. Keywords: Dust, Low Level Jet, Shamal winds, Middle East, dust sources.

  14. 42 CFR 457.555 - Maximum allowable cost-sharing charges on targeted low-income children in families with income...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... maximum amount of $11.35 for services furnished in a hospital emergency room if those services are not... 42 Public Health 4 2012-10-01 2012-10-01 false Maximum allowable cost-sharing charges on targeted... Requirements: Enrollee Financial Responsibilities § 457.555 Maximum allowable cost-sharing charges on targeted...

  15. A general scaling law reveals why the largest animals are not the fastest.

    PubMed

    Hirt, Myriam R; Jetz, Walter; Rall, Björn C; Brose, Ulrich

    2017-08-01

    Speed is the fundamental constraint on animal movement, yet there is no general consensus on the determinants of maximum speed itself. Here, we provide a general scaling model of maximum speed with body mass, which holds across locomotion modes, ecosystem types and taxonomic groups. In contrast to traditional power-law scaling, we predict a hump-shaped relationship resulting from a finite acceleration time for animals, which explains why the largest animals are not the fastest. This model is strongly supported by extensive empirical data (474 species, with body masses ranging from 30 μg to 100 tonnes) from terrestrial as well as aquatic ecosystems. Our approach unravels a fundamental constraint on the upper limit of animal movement, thus enabling a better understanding of realized movement patterns in nature and their multifold ecological consequences.

  16. Characterization of granular flow dynamics from the generated high-frequency seismic signal: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Mangeney, A.; Farin, M.; de Rosny, J.; Toussaint, R.; Trinh, P. T.

    2017-12-01

    Landslides, rock avalanche and rockfalls represent a major natural hazard in steep environments. However, owing to the lack of visual observations, the dynamics of these gravitational events is still not well understood. A burning challenge is to deduce the landslide dynamics (flow potential energy, involved volume, particle size…) from the characteristics of the generated seismic signal (radiated seismic energy, maximum amplitude, frequencies,...). Laboratory experiments of granular columns collapse are conducted on an inclined plane. The seismic signal generated by the collapse is recorded by piezoelectric accelerometers sensitive in a wide frequency range (1 Hz - 56 kHz). The granular flow are constituted with steel beads of same diameter. We compare the dynamic parameters of the granular flows, deduced from the movie of the experiments, to the seismic parameters deduced from the measured seismic signals. The ratio of radiated seismic energy to potential energy lost is shown to slightly decrease with slope angle and is between 0.2% and 9%. It decreases as time, slope angle and flow volume increase and when the particle diameter decreases. These results explain the dispersion over several orders of magnitude of the seismic efficiency of natural landslides. We distinguish two successive phases of rise and decay in the time profiles if the amplitude of the seismic signal and of the mean frequency of the signal generated by the granular flows. The rise phase and the maximum are shown to be independent of the slope angle. The maximum seismic amplitude coincides with the maximum flow speed in the direction normal to the slope but not with the maximum downslope speed. We observe that the shape of the seismic envelope and frequencies as a function of time changes after a critical slope angle, between 10° and 15° with respect to the horizontal, with a decay phase lasting much longer as slope angle increases, due to a change in the flow regime, from a dense to a more agitated flow. In addition, we propose a semi-empirical scaling law to describe how the seismic energy radiated by a granular flow increases when the slope angle increases. The fit of this law with the seismic data allows us to retrieve the friction angle of the granular material, which is a crucial rheological parameter.

  17. Thermal adaptation and phosphorus shape thermal performance in an assemblage of rainforest ants.

    PubMed

    Kaspari, Michael; Clay, Natalie A; Lucas, Jane; Revzen, Shai; Kay, Adam; Yanoviak, Stephen P

    2016-04-01

    We studied the Thermal Performance Curves (TPCs) of 87 species of rainforest ants and found support for both the Thermal Adaptation and Phosphorus-Tolerance hypotheses. TPCs relate a fitness proxy (here, worker speed) to environmental temperature. Thermal Adaptation posits that thermal generalists (ants with flatter, broader TPCs) are favored in the hotter, more variable tropical canopy compared to the cooler, less variable litter below. As predicted, species nesting in the forest canopy 1) had running speeds less sensitive to temperature; 2) ran over a greater range of temperatures; and 3) ran at lower maximum speeds. Tradeoffs between tolerance and maximum performance are often invoked for constraining the evolution of thermal generalists. There was no evidence that ant species traded off thermal tolerance for maximum speed, however. Phosphorus-Tolerance is a second mechanism for generating ectotherms able to tolerate thermal extremes. It posits that ants active at high temperatures invest in P-rich machinery to buffer their metabolism against thermal extremes. Phosphorus content in ant tissue varied three-fold, and as predicted, temperature sensitivity was lower and thermal range was higher in P-rich species. Combined, we show how the vertical distribution of hot and variable vs. cooler and stable microclimates in a single forest contribute to a diversity of TPCs and suggest that a widely varying P stoichiometry among these ants may drive some of these differences.

  18. Evolving force balance at Columbia Glacier, Alaska, during its rapid retreat

    USGS Publications Warehouse

    O'Neel, S.; Pfeffer, W.T.; Krimmel, R.; Meier, M.

    2005-01-01

    Changes in driving and resistive stresses play an essential role in governing the buoyancy forces that are important controls on the speed and irreversibility of tidewater glacier retreats. We describe changes in geometry, velocity, and strain rate and present a top-down force balance analysis performed over the lower reach of Columbia Glacier. Our analysis uses new measurements and estimates of basal topography and photogrammetric surface velocity measurements made between 1977 and 2001, while assuming depth-independent strain. Sensitivity tests show that the method is robust and insensitive to small changes in the calculation parameters. Spatial distributions of ice speed show little correspondence with driving stress. Instead, spatial patterns of ice speed exhibit a nonlinear correspondence with basal drag. Primary resistance to flow comes from basal drag, but lateral drag becomes increasingly more important throughout the retreat, which may account for observed increases in speed. Maximum basal drag is always located in a prominent constriction located ~12 km upstream from the preretreat terminus. Once the terminus retreated into deep water off the terminal moraine marking the modern maximum extent, the upstream location of this maximum basal drag helped to promote thinning and decrease effective pressure in the lower region by limiting replenishing ice flow from upstream. An increase in both ice velocity and calving resulted, initiating what appears to be an irreversible retreat. Copyright 2005 by the American Geophysical Union.

  19. Constraints on a plume in the mid-mantle beneath the Iceland region from seismic array data

    USGS Publications Warehouse

    Pritchard, M.J.; Foulger, G.R.; Julian, B.R.; Fyen, J.

    2000-01-01

    Teleseismic P waves passing through low-wave-speed bodies in the mantle are refracted, causing anomalies in their propagation directions that can be measured by seismometer arrays. Waves from earthquakes in the eastern Pacific and western North America arriving at the NORSAR array in Norway and at seismic stations in Scotland pass beneath the Iceland region at depths of ~ 1000-2000 km. Waves arriving at NORSAR have anomalous arrival azimuths consistent with a low-wave-speed body at a depth of ~ 1500 km beneath the Iceland-Faeroe ridge with a maximum diameter of ~ 250 km and a maximum wave-speed contrast of ~ 1.5 per cent. This agrees well with whole-mantle tomography results, which image a low-wave-speed body at this location with a diameter of ~ 500 km and a wave-speed anomaly of ~ 0.5 per cent, bearing in mind that whole-mantle tomography, because of its limited resolution, broadens and weakens small anomalies. The observations cannot resolve the location of the body, and the anomaly could be caused in whole or in part by larger bodies farther away, for example by a body imaged beneath Greenland by whole-mantle tomography.

  20. Dilemma zone protection and signal coordination at closely-spaced high-speed intersections : final report, November 2001.

    DOT National Transportation Integrated Search

    2001-11-01

    A feasibility study of dilemma zone problems, performed by collecting and analyzing traffic flow data at a high-speed signalized intersection, showed that the maximum green extension or cutback needed to get a vehicle out of the dilemma zone is gener...

  1. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...

  2. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...

  3. 14 CFR 33.84 - Engine overtorque test.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: AIRCRAFT ENGINES Block Tests; Turbine Aircraft Engines § 33.84 Engine overtorque test. (a) If approval of a maximum engine overtorque is sought for an engine incorporating a free power turbine... at least 21/2 minutes duration. (2) A power turbine rotational speed equal to the highest speed at...

  4. Dilemma zone protection and signal coordination at closely-spaced high-speed intersections : executive summary, November 2001.

    DOT National Transportation Integrated Search

    2001-11-01

    A feasibility study of dilemma zone problems, performed by collecting and analyzing traffic flow data at a high-speed signalized intersection, showed that the maximum green extension or cutback needed to get a vehicle out of the dilemma zone is gener...

  5. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  6. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  7. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  8. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  9. 40 CFR Appendix III to Part 1042 - Not-to-Exceed Zones

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... marine engines used with controllable-pitch propellers or with electrically coupled propellers, as... CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION ENGINES AND VESSELS Pt. 1042... (or at Maximum Test Torque for constant-speed engines). (2) Percent speed means the percentage of...

  10. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  11. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  12. 14 CFR 27.659 - Mass balance.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Mass balance. 27.659 Section 27.659... STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Rotors § 27.659 Mass balance. (a) The rotors... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  13. 14 CFR 29.659 - Mass balance.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Mass balance. 29.659 Section 29.659... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Rotors § 29.659 Mass balance. (a) The rotor... flutter at any speed up to the maximum forward speed. (b) The structural integrity of the mass balance...

  14. Temperature in a J47-25 Turbojet-engine Combustor and Turbine Sections During Steady-state and Transient Operation in a Sea-level Test Stand

    NASA Technical Reports Server (NTRS)

    Morse, C R; Johnston, J R

    1955-01-01

    In order to determine the conditions of engine operation causing the most severe thermal stresses in the hot parts of a turbojet engine, a J47-25 engine was instrumented with thermocouples and operated to obtain engine material temperatures under steady-state and transient conditions. Temperatures measured during rated take-off conditions of nozzle guide vanes downstream of a single combustor differed on the order of 400 degrees F depending on the relation of the blades position to the highest temperature zone of the burner. Under the same operation conditions, measured midspan temperatures in a nozzle guide vane in the highest temperature zone of a combustor wake ranged from approximately 1670 degrees F at leading and trailing edges to 1340 degrees F at midchord on the convex side of the blade. The maximum measured nozzle-guide-vane temperature of 1920degrees at the trailing edge occurred during a rapid acceleration from idle to rated take-off speed following which the tail-pipe gas temperature exceeded maximum allowable temperature by 125 degrees F.

  15. Approaches to Deal with Irradiated Graphite in Russia - Proposal for New IAEA CRP on Graphite Waste Management - 12364

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kascheev, Vladimir; Poluektov, Pavel; Ustinov, Oleg

    The problems of spent reactor graphite are being shown, the options of its disposal is considered. Burning method is selected as the most efficient and waste-free. It is made a comparison of amounts of {sup 14}C that entering the environment in a natural way during the operation of nuclear power plants (NPPs) and as a result of the proposed burning of spent reactor graphite. It is shown the possibility of burning graphite with the arrival of {sup 14}C into the atmosphere within the maximum allowable emissions. This paper analyzes the different ways of spent reactor graphite treatment. It is shownmore » the possibility of its reprocessing by burning method in the air flow. It is estimated the effect of this technology to the overall radiation environment and compared its contribution to the general background radiation due to cosmic radiation and NPPs emission. It is estimated the maximum permissible speeds of burning reactor graphite (for example, RBMK graphite) for areas with different conditions of agricultural activities. (authors)« less

  16. Low Speed Control for Automatic Welding

    NASA Technical Reports Server (NTRS)

    Iceland, W. E.

    1982-01-01

    Amplifier module allows rotating positioner of automatic welding machine to operate at speeds below normal range. Low speeds are precisely regulated by a servomechanism as are normal-range speeds. Addition of module to standard welding machine makes it unnecessary to purchase new equipment for low-speed welding.

  17. Maximum wind energy extraction strategies using power electronic converters

    NASA Astrophysics Data System (ADS)

    Wang, Quincy Qing

    2003-10-01

    This thesis focuses on maximum wind energy extraction strategies for achieving the highest energy output of variable speed wind turbine power generation systems. Power electronic converters and controls provide the basic platform to accomplish the research of this thesis in both hardware and software aspects. In order to send wind energy to a utility grid, a variable speed wind turbine requires a power electronic converter to convert a variable voltage variable frequency source into a fixed voltage fixed frequency supply. Generic single-phase and three-phase converter topologies, converter control methods for wind power generation, as well as the developed direct drive generator, are introduced in the thesis for establishing variable-speed wind energy conversion systems. Variable speed wind power generation system modeling and simulation are essential methods both for understanding the system behavior and for developing advanced system control strategies. Wind generation system components, including wind turbine, 1-phase IGBT inverter, 3-phase IGBT inverter, synchronous generator, and rectifier, are modeled in this thesis using MATLAB/SIMULINK. The simulation results have been verified by a commercial simulation software package, PSIM, and confirmed by field test results. Since the dynamic time constants for these individual models are much different, a creative approach has also been developed in this thesis to combine these models for entire wind power generation system simulation. An advanced maximum wind energy extraction strategy relies not only on proper system hardware design, but also on sophisticated software control algorithms. Based on literature review and computer simulation on wind turbine control algorithms, an intelligent maximum wind energy extraction control algorithm is proposed in this thesis. This algorithm has a unique on-line adaptation and optimization capability, which is able to achieve maximum wind energy conversion efficiency through continuously improving the performance of wind power generation systems. This algorithm is independent of wind power generation system characteristics, and does not need wind speed and turbine speed measurements. Therefore, it can be easily implemented into various wind energy generation systems with different turbine inertia and diverse system hardware environments. In addition to the detailed description of the proposed algorithm, computer simulation results are presented in the thesis to demonstrate the advantage of this algorithm. As a final confirmation of the algorithm feasibility, the algorithm has been implemented inside a single-phase IGBT inverter, and tested with a wind simulator system in research laboratory. Test results were found consistent with the simulation results. (Abstract shortened by UMI.)

  18. Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Thurman, Douglas R.

    2010-01-01

    This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.

  19. Systems Engineering Methodology for Fuel Efficiency and its Application to the TARDEC Fuel Efficient Demonstrator (FED) Program

    DTIC Science & Technology

    2010-08-19

    highlight the benefits of regenerative braking . Parameters within the drive cycle may include vehicle speed, elevation/grade changes, road surface...assist to downsize the engine due to infinite maximum speed requirements • Drive cycle less suited to regenerative braking improvement compared to...will be cycle dependent. A high speed drive cycle may for example drive a focus on aerodynamic improvements, while high frequency of braking will

  20. Postural stability, clicker reaction time and bow draw force predict performance in elite recurve archery.

    PubMed

    Spratford, Wayne; Campbell, Rhiannon

    2017-06-01

    Recurve archery is an Olympic sport that requires extreme precision, upper body strength and endurance. The purpose of this research was to quantify how postural stability variables both pre- and post-arrow release, draw force, flight time, arrow length and clicker reaction time, collectively, impacted on the performance or scoring outcomes in elite recurve archery athletes. Thirty-nine elite-level recurve archers (23 male and 16 female; mean age = 24.7 ± 7.3 years) from four different countries volunteered to participate in this study prior to competing at a World Cup event. An AMTI force platform (1000Hz) was used to obtain centre of pressure (COP) measurements 1s prior to arrow release and 0.5s post-arrow release. High-speed footage (200Hz) allowed for calculation of arrow flight time and score. Results identified clicker reaction time, draw force and maximum sway speed as the variables that best predicted shot performance. Specifically, reduced clicker reaction time, greater bow draw force and reduced postural sway speed post-arrow release were predictors of higher scoring shots. It is suggested that future research should focus on investigating shoulder muscle tremors at full draw in relation to clicker reaction time, and the effect of upper body strength interventions (specifically targeting the musculature around the shoulder girdle) on performance in recurve archers.

  1. Performance Comparison of High-Speed Dual-Pneumatic Vitrectomy Cutters during Simulated Vitrectomy with Balanced Salt Solution.

    PubMed

    Abulon, Dina Joy K; Buboltz, David C

    2015-02-01

    To measure flow rate of balanced salt solution and IOP during simulated vitrectomy using two sets of high-speed dual-pneumatic probes. A closed-model eye system measured IOP and flow rate of a balanced salt solution through infusion cannula. The Constellation Vision System was tested with two sets of high-speed dual-pneumatic probes (UltraVit 23-gauge and enhanced 25+-gauge 5000-cpm probes; UltraVit 23-gauge and enhanced 25+-gauge 7500-cpm probes; n = 6 each) under different vacuum levels and cut rates in three duty cycle modes. In both probe sets, flow rates were dependent on cut rate with the biased open and biased closed duty cycles. Flow rates were highest with the biased open duty cycle, lower with the 50/50 duty cycle, and lowest with the biased closed duty cycle. IOP, as expected, was inversely associated with flow rate using both probe sets. The 7500-cpm probes offer greater control and customization compared with 5000-cpm probes under certain experimental conditions. At maximum cut rates, performance of 7500-cpm probes was similar to that of 5000-cpm probes, suggesting that 7500-cpm probes may be used without sacrifice of flow rate and IOP stability. Customization of vitrectomy parameters allows greater surgeon control during vitrectomy and may expand the usefulness of vitrectomy probes.

  2. Experimental investigation of a quad-rotor biplane micro air vehicle

    NASA Astrophysics Data System (ADS)

    Bogdanowicz, Christopher Michael

    Micro air vehicles are expected to perform demanding missions requiring efficient operation in both hover and forward flight. This thesis discusses the development of a hybrid air vehicle which seamlessly combines both flight capabilities: hover and high-speed forward flight. It is the quad-rotor biplane, which weighs 240 grams and consists of four propellers with wings arranged in a biplane configuration. The performance of the vehicle system was investigated in conditions representative of flight through a series of wind tunnel experiments. These studies provided an understanding of propeller-wing interaction effects and system trim analysis. This showed that the maximum speed of 11 m/s and a cruise speed of 4 m/s were achievable and that the cruise power is approximately one-third of the hover power. Free flight testing of the vehicle successfully highlighted its ability to achieve equilibrium transition flight. Key design parameters were experimentally investigated to understand their effect on overall performance. It was found that a trade-off between efficiency and compactness affects the final choice of the design. Design improvements have allowed for decreases in vehicle weight and ground footprint, while increasing structural soundness. Numerous vehicle designs, models, and flight tests have proven system scalability as well as versatility, including an upscaled model to be utilized in an extensive commercial package delivery system. Overall, the quad-rotor biplane is proven to be an efficient and effective multi-role vehicle.

  3. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  4. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  5. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  6. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  7. 14 CFR 23.1521 - Powerplant limitations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reciprocating engines); (3) The maximum allowable gas temperature (for turbine engines); (4) The time limit for... maximum allowable gas temperature (for turbine engines); and (4) The maximum allowable cylinder head, oil... reciprocating engines), or fuel designation (for turbine engines), must be established so that it is not less...

  8. Numerical algorithms for scatter-to-attenuation reconstruction in PET: empirical comparison of convergence, acceleration, and the effect of subsets.

    PubMed

    Berker, Yannick; Karp, Joel S; Schulz, Volkmar

    2017-09-01

    The use of scattered coincidences for attenuation correction of positron emission tomography (PET) data has recently been proposed. For practical applications, convergence speeds require further improvement, yet there exists a trade-off between convergence speed and the risk of non-convergence. In this respect, a maximum-likelihood gradient-ascent (MLGA) algorithm and a two-branch back-projection (2BP), which was previously proposed, were evaluated. MLGA was combined with the Armijo step size rule; and accelerated using conjugate gradients, Nesterov's momentum method, and data subsets of different sizes. In 2BP, we varied the subset size, an important determinant of convergence speed and computational burden. We used three sets of simulation data to evaluate the impact of a spatial scale factor. The Armijo step size allowed 10-fold increased step sizes compared to native MLGA. Conjugate gradients and Nesterov momentum lead to slightly faster, yet non-uniform convergence; improvements were mostly confined to later iterations, possibly due to the non-linearity of the problem. MLGA with data subsets achieved faster, uniform, and predictable convergence, with a speed-up factor equivalent to the number of subsets and no increase in computational burden. By contrast, 2BP computational burden increased linearly with the number of subsets due to repeated evaluation of the objective function, and convergence was limited to the case of many (and therefore small) subsets, which resulted in high computational burden. Possibilities of improving 2BP appear limited. While general-purpose acceleration methods appear insufficient for MLGA, results suggest that data subsets are a promising way of improving MLGA performance.

  9. Exquisite Nova Light Curves from the Solar Mass Ejection Imager (SMEI)

    NASA Astrophysics Data System (ADS)

    Hounsell, R.; Bode, M. F.; Hick, P. P.; Buffington, A.; Jackson, B. V.; Clover, J. M.; Shafter, A. W.; Darnley, M. J.; Mawson, N. R.; Steele, I. A.; Evans, A.; Eyres, S. P. S.; O'Brien, T. J.

    2010-11-01

    We present light curves of three classical novae (CNe; KT Eridani, V598 Puppis, V1280 Scorpii) and one recurrent nova (RS Ophiuchi) derived from data obtained by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. SMEI provides near complete skymap coverage with precision visible-light photometry at 102 minute cadence. The light curves derived from these skymaps offer unprecedented temporal resolution around, and especially before, maximum light, a phase of the eruption normally not covered by ground-based observations. They allow us to explore fundamental parameters of individual objects including the epoch of the initial explosion, the reality and duration of any pre-maximum halt (found in all three fast novae in our sample), the presence of secondary maxima, speed of decline of the initial light curve, plus precise timing of the onset of dust formation (in V1280 Sco) leading to estimation of the bolometric luminosity, white dwarf mass, and object distance. For KT Eri, Liverpool Telescope SkyCamT data confirm important features of the SMEI light curve and overall our results add weight to the proposed similarities of this object to recurrent rather than to CNe. In RS Oph, comparison with hard X-ray data from the 2006 outburst implies that the onset of the outburst coincides with extensive high-velocity mass loss. It is also noted that two of the four novae we have detected (V598 Pup and KT Eri) were only discovered by ground-based observers weeks or months after maximum light, yet these novae reached peak magnitudes of 3.46 and 5.42, respectively. This emphasizes the fact that many bright novae per year are still overlooked, particularly those of the very fast speed class. Coupled with its ability to observe novae in detail even when relatively close to the Sun in the sky, we estimate that as many as five novae per year may be detectable by SMEI.

  10. A wing-assisted running robot and implications for avian flight evolution.

    PubMed

    Peterson, K; Birkmeyer, P; Dudley, R; Fearing, R S

    2011-12-01

    DASH+Wings is a small hexapedal winged robot that uses flapping wings to increase its locomotion capabilities. To examine the effects of flapping wings, multiple experimental controls for the same locomotor platform are provided by wing removal, by the use of inertially similar lateral spars, and by passive rather than actively flapping wings. We used accelerometers and high-speed cameras to measure the performance of this hybrid robot in both horizontal running and while ascending inclines. To examine consequences of wing flapping for aerial performance, we measured lift and drag forces on the robot at constant airspeeds and body orientations in a wind tunnel; we also determined equilibrium glide performance in free flight. The addition of flapping wings increased the maximum horizontal running speed from 0.68 to 1.29 m s⁻¹, and also increased the maximum incline angle of ascent from 5.6° to 16.9°. Free flight measurements show a decrease of 10.3° in equilibrium glide slope between the flapping and gliding robot. In air, flapping improved the mean lift:drag ratio of the robot compared to gliding at all measured body orientations and airspeeds. Low-amplitude wing flapping thus provides advantages in both cursorial and aerial locomotion. We note that current support for the diverse theories of avian flight origins derive from limited fossil evidence, the adult behavior of extant flying birds, and developmental stages of already volant taxa. By contrast, addition of wings to a cursorial robot allows direct evaluation of the consequences of wing flapping for locomotor performance in both running and flying.

  11. Upper limit set by causality on the tidal deformability of a neutron star

    NASA Astrophysics Data System (ADS)

    Van Oeveren, Eric D.; Friedman, John L.

    2017-04-01

    A principal goal of gravitational-wave astronomy is to constrain the neutron star equation of state (EOS) by measuring the tidal deformability of neutron stars. The tidally induced departure of the waveform from that of a point particle [or a spinless binary black hole (BBH)] increases with the stiffness of the EOS. We show that causality (the requirement that the speed of sound be less than the speed of light for a perfect fluid satisfying a one-parameter equation of state) places an upper bound on tidal deformability as a function of mass. Like the upper mass limit, the limit on deformability is obtained by using an EOS with vsound=c for high densities and matching to a low density (candidate) EOS at a matching density of order nuclear saturation density. We use these results and those of Lackey et al. [Phys. Rev. D 89, 043009 (2014), 10.1103/PhysRevD.89.043009] to estimate the resulting upper limit on the gravitational-wave phase shift of a black hole-neutron star (BHNS) binary relative to a BBH. Even for assumptions weak enough to allow a maximum mass of 4 M⊙ (a match at nuclear saturation density to an unusually stiff low-density candidate EOS), the upper limit on dimensionless tidal deformability is stringent. It leads to a still more stringent estimated upper limit on the maximum tidally induced phase shift prior to merger. We comment in an appendix on the relation among causality, the condition vsound

  12. Carbon-to-nitrogen ratio affects the biomass composition and the fatty acid profile of heterotrophically grown Chlorella sp. TISTR 8990 for biodiesel production.

    PubMed

    Singhasuwan, Somruethai; Choorit, Wanna; Sirisansaneeyakul, Sarote; Kokkaew, Nakhon; Chisti, Yusuf

    2015-12-20

    Chlorella sp. TISTR 8990 was cultivated heterotrophically in media with various initial carbon-to-nitrogen ratios (C/N ratio) and at different agitation speeds. The production of the biomass, its total fatty acid content and the composition of the fatty acids were affected by the C/N ratio, but not by agitation speed in the range examined. The biomass production was maximized at a C/N mass ratio of 29:1. At this C/N ratio, the biomass productivity was 0.68gL(-1)d(-1), or nearly 1.6-fold the best attainable productivity in photoautotrophic growth. The biomass yield coefficient on glucose was 0.62gg(-1) during exponential growth. The total fatty acids (TFAs) in the freeze-dried biomass were maximum (459mgg(-1)) at a C/N ratio of 95:1. Lower values of the C/N ratio reduced the fatty acid content of the biomass. The maximum productivity of TFAs (186mgL(-1)d(-1)) occurred at C/N ratios of 63:1 and higher. At these conditions, the fatty acids were mostly of the polyunsaturated type. Allowing the alga to remain in the stationary phase for a prolonged period after N-depletion, reduced the level of monounsaturated fatty acids and the level of polyunsaturated fatty acids increased. Biotin supplementation of the culture medium reduced the biomass productivity relative to biotin-free control, but had no effect on the total fatty acid content of the biomass. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Predicting punching acceleration from selected strength and power variables in elite karate athletes: a multiple regression analysis.

    PubMed

    Loturco, Irineu; Artioli, Guilherme Giannini; Kobal, Ronaldo; Gil, Saulo; Franchini, Emerson

    2014-07-01

    This study investigated the relationship between punching acceleration and selected strength and power variables in 19 professional karate athletes from the Brazilian National Team (9 men and 10 women; age, 23 ± 3 years; height, 1.71 ± 0.09 m; and body mass [BM], 67.34 ± 13.44 kg). Punching acceleration was assessed under 4 different conditions in a randomized order: (a) fixed distance aiming to attain maximum speed (FS), (b) fixed distance aiming to attain maximum impact (FI), (c) self-selected distance aiming to attain maximum speed, and (d) self-selected distance aiming to attain maximum impact. The selected strength and power variables were as follows: maximal dynamic strength in bench press and squat-machine, squat and countermovement jump height, mean propulsive power in bench throw and jump squat, and mean propulsive velocity in jump squat with 40% of BM. Upper- and lower-body power and maximal dynamic strength variables were positively correlated to punch acceleration in all conditions. Multiple regression analysis also revealed predictive variables: relative mean propulsive power in squat jump (W·kg-1), and maximal dynamic strength 1 repetition maximum in both bench press and squat-machine exercises. An impact-oriented instruction and a self-selected distance to start the movement seem to be crucial to reach the highest acceleration during punching execution. This investigation, while demonstrating strong correlations between punching acceleration and strength-power variables, also provides important information for coaches, especially for designing better training strategies to improve punching speed.

  14. Tethered swimming can be used to evaluate force contribution for short-distance swimming performance.

    PubMed

    Morouço, Pedro G; Marinho, Daniel A; Keskinen, Kari L; Badillo, Juan J; Marques, Mário C

    2014-11-01

    The purpose of this study was two-fold: (a) to compare stroke and the physiological responses between maximal tethered and free front crawl swimming and (b) to evaluate the contribution of force exertion for swimming performance over short distances. A total of 34 male swimmers, representing various levels of competitive performance, participated in this study. Each participant was tested in both a 30-second maximal tethered swimming test and a 50-m free swimming test. The tethered force parameters, the swimming speed, stroke (stroke rate [SR]), and the physiological responses (increase in blood lactate concentration [ΔBLa], heart rate, and rate of perceived exertion) were recorded and calculated. The results showed no differences in stroke and the physiological responses between tethered and free swimming, with a high level of agreement for the SR and ΔBLa. A strong correlation was obtained between the maximum impulse of force per stroke and the speed (r = 0.91; p < 0.001). Multiple regression analysis revealed that the maximum impulse and SR in the tethered condition explained 84% of the free swimming performance. The relationship between the swimming speed and maximum force tended to be nonlinear, whereas linear relationships were observed with the maximum impulse. This study demonstrates that tethered swimming does not significantly alter stroke and the physiological responses compared with free swimming, and that the maximum impulse per stroke should be used to evaluate the balance between force and the ability to effectively apply force during sprint swimming. Consequently, coaches can rely on tethered forces to identify strength deficits and improve swimming performance over short distances.

  15. 49 CFR 192.619 - Maximum allowable operating pressure: Steel or plastic pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... plastic pipelines. 192.619 Section 192.619 Transportation Other Regulations Relating to Transportation... Operations § 192.619 Maximum allowable operating pressure: Steel or plastic pipelines. (a) No person may operate a segment of steel or plastic pipeline at a pressure that exceeds a maximum allowable operating...

  16. 14 CFR 23.1583 - Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...

  17. Development of Hydroxyl Tagging Velocimetry for Low Velocity Flows

    NASA Technical Reports Server (NTRS)

    Andre, Matthieu A.; Bardet, Philippe M.; Burns, Ross A.; Danehy, Paul M.

    2016-01-01

    Hydroxyl tagging velocimetry (HTV) is a molecular tagging technique that relies on the photo-dissociation of water vapor into OH radicals and their subsequent tracking using laser induced fluorescence. Velocities are then obtained from time-of-flight calculations. At ambient temperature in air, the OH species lifetime is relatively short (<50 µs), making it suited for high speed flows. Lifetime and radicals formation increases with temperature, which allows HTV to also probe low-velocity, high-temperature flows or reacting flows such as flames. The present work aims at extending the domain of applicability of HTV, particularly towards low-speed (<10 m/s) and moderate (<500 K) temperature flows. Results are compared to particle image velocimetry (PIV) measurements recorded in identical conditions. Single shot and averaged velocity profiles are obtained in an air jet at room temperature. By modestly raising the temperature (100-200 degC) the OH production increases, resulting in an improvement of the signal-to-noise ratio (SNR). Use of nitrogen - a non-reactive gas with minimal collisional quenching - extends the OH species lifetime (to over 500 µs), which allows probing of slower flows or, alternately, increases the measurement precision at the expense of spatial resolution. Instantaneous velocity profiles are resolved in a 100degC nitrogen jet (maximum jet-center velocity of 6.5 m/s) with an uncertainty down to 0.10 m/s (1.5%) at 68% confidence level. MTV measurements are compared with particle image velocimetry and show agreement within 2%.

  18. Rotordynamic Feasibility of a Conceptual Variable-Speed Power Turbine Propulsion System for Large Civil Tilt-Rotor Applications

    NASA Technical Reports Server (NTRS)

    Howard, Samuel

    2012-01-01

    A variable-speed power turbine concept is analyzed for rotordynamic feasibility in a Large Civil Tilt-Rotor (LCTR) class engine. Implementation of a variable-speed power turbine in a rotorcraft engine would enable high efficiency propulsion at the high forward velocities anticipated of large tilt-rotor vehicles. Therefore, rotordynamics is a critical issue for this engine concept. A preliminary feasibility study is presented herein to address this concern and identify if variable-speed is possible in a conceptual engine sized for the LCTR. The analysis considers critical speed placement in the operating speed envelope, stability analysis up to the maximum anticipated operating speed, and potential unbalance response amplitudes to determine that a variable-speed power turbine is likely to be challenging, but not impossible to achieve in a tilt-rotor propulsion engine.

  19. Centrifugal casting of ZA8 zinc alloy and composite A356/silicon carbide: Study and modeling of phases' and particles' segregation

    NASA Astrophysics Data System (ADS)

    Balout, Bahaa

    Centrifugation is a casting technology that allows the production of cylindrical and graduated parts with different mechanical properties through the section. The need for materials with good quality and specific mechanical properties has been driven this technology in order to produce different types of materials such as zinc alloys and graduated metal matrix composites reinforced by hard and wear resistant particles. The goal of this research project is to study and model the eutectic macrosegregation, the solidification speed, and the speeds of solidification fronts during centrifugal casting of ZA8 zinc-aluminum alloy in order to improve the part quality and increase its strength and field reliability. Moreover, the segregation of the particles during centrifugal casting of an aluminum matrix composite reinforced by silicon carbide particles (A356/SiC) is also studied to improve and control the graduation of the parts. The cooling rate, the speed, acceleration/deceleration, displacement, and segregation of the particles across the section will be modeled by discretization of Stokes' law in time in order to take into consideration the change in the centrifugal radius and melt viscosity during cooling process. This study will allow the control of the graduation degree of particles across the section in order to improve the properties and wear resistance of the composite. This composite can be used in systems where friction is critical and load is high (reinforcements of parts for the cylinders of pneumatic systems). The results show that the maximum macrosegregation zone of the eutectic across the casting section corresponds to the last point of solidification. The eutectic macrosegregation produced during centrifugal casting of thin walled part is a normal segregation which varies depending on the solidification speed and the ratio between the speeds of solidification fronts. On the other hand, it was found that the position and volume fraction of the particles on the outer/inner casting surface and across the section varies whether the viscosity of the liquid metal used and the centrifugal radius are considered constant or variable during the modeling. Modeling the particles' segregation while discretizing, in time, the particles' velocities gives more consistent results compared to those obtained experimentally. Key-words: centrifugal casting, composite, macrosegregation, solidification.

  20. Tropical cyclone induced asymmetry of sea level surge and fall and its presentation in a storm surge model with parametric wind fields

    NASA Astrophysics Data System (ADS)

    Peng, Machuan; Xie, Lian; Pietrafesa, Leonard J.

    The asymmetry of tropical cyclone induced maximum coastal sea level rise (positive surge) and fall (negative surge) is studied using a three-dimensional storm surge model. It is found that the negative surge induced by offshore winds is more sensitive to wind speed and direction changes than the positive surge by onshore winds. As a result, negative surge is inherently more difficult to forecast than positive surge since there is uncertainty in tropical storm wind forecasts. The asymmetry of negative and positive surge under parametric wind forcing is more apparent in shallow water regions. For tropical cyclones with fixed central pressure, the surge asymmetry increases with decreasing storm translation speed. For those with the same translation speed, a weaker tropical cyclone is expected to gain a higher AI (asymmetry index) value though its induced maximum surge and fall are smaller. With fixed RMW (radius of maximum wind), the relationship between central pressure and AI is heterogeneous and depends on the value of RMW. Tropical cyclone's wind inflow angle can also affect surge asymmetry. A set of idealized cases as well as two historic tropical cyclones are used to illustrate the surge asymmetry.

Top