Sample records for maximum applied loads

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranson, W.F.; Schaeffel, J.A.; Murphree, E.A.

    The response of prestressed and preheated plates subject to an exponentially decaying blast load was experimentally determined. A grid was reflected from the front surface of the plate and the response was recorded with a high speed camera. The camera used in this analysis was a rotating drum camera operating at 20,000 frames per second with a maximum of 224 frames at 39 microseconds separation. Inplane tension loads were applied to the plate by means of air cylinders. Maximum biaxial load applied to the plate was 500 pounds. Plate preheating was obtained with resistance heaters located in the specimen platemore » holder with a maximum capability of 500F. Data analysis was restricted to the maximum conditions at the center of the plate. Strains were determined from the photographic data and the stresses were calculated from the strain data. Results were obtained from zero preload conditions to a maximum of 480 pounds inplane tension loads and a plate temperature of 490F. The blast load ranged from 6 to 23 psi.« less

  2. 14 CFR 25.365 - Pressurized compartment loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Pressurized compartment loads. For airplanes with one or more pressurized compartments the following apply: (a... differential loads from zero up to the maximum relief valve setting. (b) The external pressure distribution in... zero up to the maximum allowed during landing. (d) The airplane structure must be designed to be able...

  3. Disintegration impact on sludge digestion process.

    PubMed

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  4. Selective Effects of Training Against Weight and Inertia on Muscle Mechanical Properties.

    PubMed

    Djuric, Sasa; Cuk, Ivan; Sreckovic, Sreten; Mirkov, Dragan; Nedeljkovic, Aleksandar; Jaric, Slobodan

    2016-10-01

    To explore the effects of training against mechanically different types of loads on muscle force (F), velocity (V), and power (P) outputs. Subjects practiced maximum bench throws over 8 wk against a bar predominantly loaded by approximately constant external force (weight), weight plates (weight plus inertia), or weight plates whose weight was compensated by a constant external force pulling upward (inertia). Instead of a typically applied single trial performed against a selected load, the pretest and posttest consisted of the same task performed against 8 different loads ranging from 30% to 79% of the subject's maximum strength applied by adding weight plates to the bar. That provided a range of F and V data for subsequent modeling by linear F-V regression revealing the maximum F (F-intercept), V (V-intercept), and P (P = FV/4). Although all 3 training conditions resulted in increased P, the inertia type of the training load could be somewhat more effective than weight. An even more important finding was that the P increase could be almost exclusively based on a gain in F, V, or both when weight, inertia, or weight-plus-inertia training load were applied, respectively. The inertia training load is more effective than weight in increasing P and weight and inertia may be applied for selective gains in F and V, respectively, whereas the linear F-V model obtained from loaded trials could be used for discerning among muscle F, V, and P.

  5. Creep crack growth by grain boundary cavitation under monotonic and cyclic loading

    NASA Astrophysics Data System (ADS)

    Wen, Jian-Feng; Srivastava, Ankit; Benzerga, Amine; Tu, Shan-Tung; Needleman, Alan

    2017-11-01

    Plane strain finite deformation finite element calculations of mode I crack growth under small scale creep conditions are carried out. Attention is confined to isothermal conditions and two time histories of the applied stress intensity factor: (i) a monononic increase to a plateau value subsequently held fixed; and (ii) a cyclic time variation. The crack growth calculations are based on a micromechanics constitutive relation that couples creep deformation and damage due to grain boundary cavitation. Grain boundary cavitation, with cavity growth due to both creep and diffusion, is taken as the sole failure mechanism contributing to crack growth. The influence on the crack growth rate of loading history parameters, such as the magnitude of the applied stress intensity factor, the ratio of the applied minimum to maximum stress intensity factors, the loading rate, the hold time and the cyclic loading frequency, are explored. The crack growth rate under cyclic loading conditions is found to be greater than under monotonic creep loading with the plateau applied stress intensity factor equal to its maximum value under cyclic loading conditions. Several features of the crack growth behavior observed in creep-fatigue tests naturally emerge, for example, a Paris law type relation is obtained for cyclic loading.

  6. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Miller, Eric J.; Hudson, Larry D.; Holguin, Andrew C.; Neufeld, David C.; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain-gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three airbags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead-weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 lb. Twenty-six load cases were applied with the aircraft resting on its landing gear, and 16 load cases were performed with the aircraft supported by the nose gear and three airbags around the center of gravity. Maximum wing tip deflection reached 17 inches. An assortment of 2, 3, 4, and 5 strain-gage load equations were derived and evaluated against independent check cases. The better load equations had root mean square errors less than 1 percent. Test techniques and lessons learned are discussed.

  7. Power and impulse applied during push press exercise.

    PubMed

    Lake, Jason P; Mundy, Peter D; Comfort, Paul

    2014-09-01

    The aim of this study was to quantify the load, which maximized peak and mean power, and impulse applied to these loads, during the push press and to compare them to equivalent jump squat data. Resistance-trained men performed 2 push press (n = 17; age: 25.4 ± 7.4 years; height: 183.4 ± 5 cm; body mass: 87 ± 15.6 kg) and jump squat (n = 8 of original 17; age: 28.7 ± 8.1 years; height: 184.3 ± 5.5 cm; mass: 98 ± 5.3 kg) singles with 10-90% of their push press and back squat 1 repetition maximum (1RM), respectively, in 10% 1RM increments while standing on a force platform. Push press peak and mean power was maximized with 75.3 ± 16.4 and 64.7 ± 20% 1RM, respectively, and impulses applied to these loads were 243 ± 29 N·s and 231 ± 36 N·s. Increasing and decreasing load, from the load that maximized peak and mean power, by 10 and 20% 1RM reduced peak and mean power by 6-15% (p ≤ 0.05). Push press and jump squat maximum peak power (7%, p = 0.08) and the impulse that was applied to the load that maximized peak (8%, p = 0.17) and mean (13%, p = 0.91) power were not significantly different, but push press maximum mean power was significantly greater than the jump squat equivalent (∼9.5%, p = 0.03). The mechanical demand of the push press is comparable with the jump squat and could provide a time-efficient combination of lower-body power and upper-body and trunk strength training.

  8. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis.

    PubMed

    Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin

    2009-01-01

    A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.

  9. Selective effects of weight and inertia on maximum lifting.

    PubMed

    Leontijevic, B; Pazin, N; Kukolj, M; Ugarkovic, D; Jaric, S

    2013-03-01

    A novel loading method (loading ranged from 20% to 80% of 1RM) was applied to explore the selective effects of externally added simulated weight (exerted by stretched rubber bands pulling downward), weight+inertia (external weights added), and inertia (covariation of the weights and the rubber bands pulling upward) on maximum bench press throws. 14 skilled participants revealed a load associated decrease in peak velocity that was the least associated with an increase in weight (42%) and the most associated with weight+inertia (66%). However, the peak lifting force increased markedly with an increase in both weight (151%) and weight+inertia (160%), but not with inertia (13%). As a consequence, the peak power output increased most with weight (59%), weight+inertia revealed a maximum at intermediate loads (23%), while inertia was associated with a gradual decrease in the peak power output (42%). The obtained findings could be of importance for our understanding of mechanical properties of human muscular system when acting against different types of external resistance. Regarding the possible application in standard athletic training and rehabilitation procedures, the results speak in favor of applying extended elastic bands which provide higher movement velocity and muscle power output than the usually applied weights. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Influence of wheel load shape on vertical stress reaching subgrade through an aggregate layer

    DOT National Transportation Integrated Search

    2001-03-01

    The U.S. Army design procedure to stabilize low-bearing capacity soil with geotextiles is based on the assumption that the applied surface load (the wheel load) is in the shape of a circle. The maximum vertical stress that reaches the subgrade throug...

  11. 78 FR 4060 - Manufactured Home Construction and Safety Standards, Test Procedures for Roof Trusses

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-18

    ... of the truss or trusses in the test position at no load. Apply to the top and bottom chords of the... increments until dead load plus the live load is reached. Measure and record the deflections no sooner than... conditions are met: (A) The maximum deflection between no load and dead load must be L/ 480 or less for...

  12. Determination of Strength Exercise Intensities Based on the Load-Power-Velocity Relationship

    PubMed Central

    Jandačka, Daniel; Beremlijski, Petr

    2011-01-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s−1) to maximal velocity (m•s−1). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function. PMID:23486484

  13. Determination of strength exercise intensities based on the load-power-velocity relationship.

    PubMed

    Jandačka, Daniel; Beremlijski, Petr

    2011-06-01

    The velocity of movement and applied load affect the production of mechanical power output and subsequently the extent of the adaptation stimulus in strength exercises. We do not know of any known function describing the relationship of power and velocity and load in the bench press exercise. The objective of the study is to find a function modeling of the relationship of relative velocity, relative load and mechanical power output for the bench press exercise and to determine the intensity zones of the exercise for specifically focused strength training of soccer players. Fifteen highly trained soccer players at the start of a competition period were studied. The subjects of study performed bench presses with the load of 0, 10, 30, 50, 70 and 90% of the predetermined one repetition maximum with maximum possible speed of movement. The mean measured power and velocity for each load (kg) were used to develop a multiple linear regression function which describes the quadratic relationship between the ratio of power (W) to maximum power (W) and the ratios of the load (kg) to one repetition maximum (kg) and the velocity (m•s(-1)) to maximal velocity (m•s(-1)). The quadratic function of two variables that modeled the searched relationship explained 74% of measured values in the acceleration phase and 75% of measured values from the entire extent of the positive power movement in the lift. The optimal load for reaching maximum power output suitable for the dynamics effort strength training was 40% of one repetition maximum, while the optimal mean velocity would be 75% of maximal velocity. Moreover, four zones: maximum power, maximum velocity, velocity-power and strength-power were determined on the basis of the regression function.

  14. Computation of maximum gust loads in nonlinear aircraft using a new method based on the matched filter approach and numerical optimization

    NASA Technical Reports Server (NTRS)

    Pototzky, Anthony S.; Heeg, Jennifer; Perry, Boyd, III

    1990-01-01

    Time-correlated gust loads are time histories of two or more load quantities due to the same disturbance time history. Time correlation provides knowledge of the value (magnitude and sign) of one load when another is maximum. At least two analysis methods have been identified that are capable of computing maximized time-correlated gust loads for linear aircraft. Both methods solve for the unit-energy gust profile (gust velocity as a function of time) that produces the maximum load at a given location on a linear airplane. Time-correlated gust loads are obtained by re-applying this gust profile to the airplane and computing multiple simultaneous load responses. Such time histories are physically realizable and may be applied to aircraft structures. Within the past several years there has been much interest in obtaining a practical analysis method which is capable of solving the analogous problem for nonlinear aircraft. Such an analysis method has been the focus of an international committee of gust loads specialists formed by the U.S. Federal Aviation Administration and was the topic of a panel discussion at the Gust and Buffet Loads session at the 1989 SDM Conference in Mobile, Alabama. The kinds of nonlinearities common on modern transport aircraft are indicated. The Statical Discrete Gust method is capable of being, but so far has not been, applied to nonlinear aircraft. To make the method practical for nonlinear applications, a search procedure is essential. Another method is based on Matched Filter Theory and, in its current form, is applicable to linear systems only. The purpose here is to present the status of an attempt to extend the matched filter approach to nonlinear systems. The extension uses Matched Filter Theory as a starting point and then employs a constrained optimization algorithm to attack the nonlinear problem.

  15. The prototype of high stiffness load cell for Rockwell hardness testing machine calibration according to ISO 6508-2:2015

    NASA Astrophysics Data System (ADS)

    Pakkratoke, M.; Sanponpute, T.

    2017-09-01

    The penetrated depth of the Rockwell hardness testing machine is normally not more than 0.260 mm. Using commercial load cell cannot achieve the proposed force calibration according to ISO 6508-2[1]. For these reason, the high stiffness load cell (HSL) was fabricated. Its obvious advantage is deformation less than 0.020 mm at 150 kgf maximum load applied. The HSL prototype was designed in concept of direct compression and then confirmed with finite element analysis, FEA. The results showed that the maximum deformation was lower than 0.012 mm at capacity.

  16. Strain Gage Loads Calibration Testing with Airbag Support for the Gulfstream III SubsoniC Research Aircraft Testbed (SCRAT)

    NASA Technical Reports Server (NTRS)

    Lokos, William; Miller, Eric; Hudson, Larry; Holguin, Andrew; Neufeld, David; Haraguchi, Ronnie

    2015-01-01

    This paper describes the design and conduct of the strain gage load calibration ground test of the SubsoniC Research Aircraft Testbed, Gulfstream III aircraft, and the subsequent data analysis and its results. The goal of this effort was to create and validate multi-gage load equations for shear force, bending moment, and torque for two wing measurement stations. For some of the testing the aircraft was supported by three air bags in order to isolate the wing structure from extraneous load inputs through the main landing gear. Thirty-two strain gage bridges were installed on the left wing. Hydraulic loads were applied to the wing lower surface through a total of 16 load zones. Some dead weight load cases were applied to the upper wing surface using shot bags. Maximum applied loads reached 54,000 pounds.

  17. 29 CFR 1926.451 - General requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... least 4 times the maximum intended load applied or transmitted to it. (2) Direct connections to roofs... resisting at least 4 times the tipping moment imposed by the scaffold operating at the rated load of the hoist, or 1.5 (minimum) times the tipping moment imposed by the scaffold operating at the stall load of...

  18. 29 CFR 1926.451 - General requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... least 4 times the maximum intended load applied or transmitted to it. (2) Direct connections to roofs... resisting at least 4 times the tipping moment imposed by the scaffold operating at the rated load of the hoist, or 1.5 (minimum) times the tipping moment imposed by the scaffold operating at the stall load of...

  19. 29 CFR 1926.451 - General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... least 4 times the maximum intended load applied or transmitted to it. (2) Direct connections to roofs... resisting at least 4 times the tipping moment imposed by the scaffold operating at the rated load of the hoist, or 1.5 (minimum) times the tipping moment imposed by the scaffold operating at the stall load of...

  20. 29 CFR 1926.451 - General requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... least 4 times the maximum intended load applied or transmitted to it. (2) Direct connections to roofs... resisting at least 4 times the tipping moment imposed by the scaffold operating at the rated load of the hoist, or 1.5 (minimum) times the tipping moment imposed by the scaffold operating at the stall load of...

  1. 29 CFR 1926.451 - General requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... least 4 times the maximum intended load applied or transmitted to it. (2) Direct connections to roofs... resisting at least 4 times the tipping moment imposed by the scaffold operating at the rated load of the hoist, or 1.5 (minimum) times the tipping moment imposed by the scaffold operating at the stall load of...

  2. A Generalized Hydrodynamic-Impact Theory for the Loads and Motions of Deeply Immersed Prismatic Bodies

    NASA Technical Reports Server (NTRS)

    Markey, Melvin F.

    1959-01-01

    A theory is derived for determining the loads and motions of a deeply immersed prismatic body. The method makes use of a two-dimensional water-mass variation and an aspect-ratio correction for three-dimensional flow. The equations of motion are generalized by using a mean value of the aspect-ratio correction and by assuming a variation of the two-dimensional water mass for the deeply immersed body. These equations lead to impact coefficients that depend on an approach parameter which, in turn, depends upon the initial trim and flight-path angles. Comparison of experiment with theory is shown at maximum load and maximum penetration for the flat-bottom (0 deg dead-rise angle) model with bean-loading coefficients from 36.5 to 133.7 over a wide range of initial conditions. A dead-rise angle correction is applied and maximum-load data are compared with theory for the case of a model with 300 dead-rise angle and beam-loading coefficients from 208 to 530.

  3. Behavior of a quasi-isotropic ply metal matrix composite under thermo-mechanical and isothermal fatigue loading. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hart, K.A.

    1992-12-01

    This study investigated the behavior of the SCS6/Ti-15-3 metal matrix composite with a quasi-isotropic layup when tested under static and fatigue conditions. Specimens were subjected to in-phase and out-of-phase thermo-mechanical and isothermal fatigue loading. In-phase and isothermal loading produced a fiber dominated failure while the out-of-phase loading produced a matrix dominated failure. Also, fiber domination in all three profiles was present at higher maximum applied loads and al three profiles demonstrated matrix domination at lower maximum applied loads. Thus, failure is both profile dependent and load equipment. Additional analyses, using laminated plate theory, Halpin-Tsai equations, METCAN, and the Linear Lifemore » Fraction Model (LLFM), showed: the as-received specimens contained plies where a portion of the fibers are debonded from the matrix; during fatigue cycling, the 90 deg. plies and a percentage of the 45 deg. plies failed immediately with greater damage becoming evident with additional cycles; and, the LLFM suggests that there may be a non-linear combination of fiber and matrix domination for in-phase and isothermal cycling.« less

  4. Effects of repeated bending load at room temperature for composite Nb3Sn wires

    NASA Astrophysics Data System (ADS)

    Awaji, Satoshi; Watanabe, Kazuo; Katagiri, Kazumune

    2003-09-01

    In order to realize a react and wind (R&W) method for Nb3Sn wires, the influences of a bending load at room temperature are investigated. Usually, the superconducting wires undergo bending loads at room temperature repeatedly during winding and insulation processes. We define these bending loads as 'pre-bending' treatments. We applied the pre-bending strain of 0 and 0.5% to the highly strengthened CuNb/(Nb, Ti)3Sn wires, and measured the stress/strain properties and critical currents. The improvements of stress dependence of normalized critical current and the increase of the maximum critical current by the pre-bending treatments were found. The model based on the distribution of the local tensile strain as a bending strain describes the experimental results well without the increase of the maximum critical current. When the pre-bending strain was applied, the calculated results indicate that the mechanical properties are improved due to the local work hardening, and hence the stress dependence of Ic increases.

  5. An implementation of particle swarm optimization to evaluate optimal under-voltage load shedding in competitive electricity markets

    NASA Astrophysics Data System (ADS)

    Hosseini-Bioki, M. M.; Rashidinejad, M.; Abdollahi, A.

    2013-11-01

    Load shedding is a crucial issue in power systems especially under restructured electricity environment. Market-driven load shedding in reregulated power systems associated with security as well as reliability is investigated in this paper. A technoeconomic multi-objective function is introduced to reveal an optimal load shedding scheme considering maximum social welfare. The proposed optimization problem includes maximum GENCOs and loads' profits as well as maximum loadability limit under normal and contingency conditions. Particle swarm optimization (PSO) as a heuristic optimization technique, is utilized to find an optimal load shedding scheme. In a market-driven structure, generators offer their bidding blocks while the dispatchable loads will bid their price-responsive demands. An independent system operator (ISO) derives a market clearing price (MCP) while rescheduling the amount of generating power in both pre-contingency and post-contingency conditions. The proposed methodology is developed on a 3-bus system and then is applied to a modified IEEE 30-bus test system. The obtained results show the effectiveness of the proposed methodology in implementing the optimal load shedding satisfying social welfare by maintaining voltage stability margin (VSM) through technoeconomic analyses.

  6. 78 FR 22175 - Airworthiness Directives; Airbus Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-15

    ... loading system (CLS) fail under maximum loads and reports that installation has been applied only on one... wiring, or other equipment located in the forward and aft cargo compartments. This damage could adversely... system, electrical wiring, etc.), and therefore could have an impact on the safety of the flight. EASA AD...

  7. Compliance and stress intensity coefficients for short bar specimens with chevron notches

    NASA Technical Reports Server (NTRS)

    Munz, D.; Bubsey, R. T.; Srawley, J. E.

    1980-01-01

    For the determination of fracture toughness especially with brittle materials, a short bar specimen with rectangular cross section and chevron notch can be used. As the crack propagates from the tip of the triangular notch, the load increases to a maximum then decreases. To obtain the relation between the fracture toughness and maximum load, calculations of Srawley and Gross for specimens with a straight-through crack were applied to the specimens with chevron notches. For the specimens with a straight-through crack, an analytical expression was obtained. This expression was used for the calculation of the fracture toughness versus maximum load relation under the assumption that the change of the compliance with crack length for the specimen with a chevron notch is the same as for a specimen with a straight-through crack.

  8. Detection of Unexpected High Correlations between Balance Calibration Loads and Load Residuals

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2014-01-01

    An algorithm was developed for the assessment of strain-gage balance calibration data that makes it possible to systematically investigate potential sources of unexpected high correlations between calibration load residuals and applied calibration loads. The algorithm investigates correlations on a load series by load series basis. The linear correlation coefficient is used to quantify the correlations. It is computed for all possible pairs of calibration load residuals and applied calibration loads that can be constructed for the given balance calibration data set. An unexpected high correlation between a load residual and a load is detected if three conditions are met: (i) the absolute value of the correlation coefficient of a residual/load pair exceeds 0.95; (ii) the maximum of the absolute values of the residuals of a load series exceeds 0.25 % of the load capacity; (iii) the load component of the load series is intentionally applied. Data from a baseline calibration of a six-component force balance is used to illustrate the application of the detection algorithm to a real-world data set. This analysis also showed that the detection algorithm can identify load alignment errors as long as repeat load series are contained in the balance calibration data set that do not suffer from load alignment problems.

  9. Evaluation of peak force of a manually operated chiropractic adjusting instrument with an adapter for use in animals.

    PubMed

    Duarte, Felipe Coutinho Kullmann; Kolberg, Carolina; Barros, Rodrigo R; Silva, Vivian G A; Gehlen, Günter; Vassoler, Jakson M; Partata, Wania A

    2014-05-01

    This study was designed to assess the peak force of a manually operated chiropractic adjusting instrument, the Activator Adjusting Instrument 4 (AAI 4), with an adapter for use in animals, which has a 3- to 4-fold smaller contact surface area than the original rubber tip. Peak force was determined by thrusting the AAI 4 with the adapter or the original rubber tip onto a load cell. First, the AAI 4 was applied perpendicularly by a doctor of chiropractic onto the load cell. Then, the AAI 4 was fixed in a rigid framework and applied to the load cell. This procedure was done to prevent any load on the load cell before the thrust impulse. In 2 situations, trials were performed with the AAI 4 at all force settings (settings I, II, III, and IV, minimum to maximum, respectively). A total of 50000 samples per second over a period of 3 seconds were collected. In 2 experimental protocols, the use of the adapter in the AAI 4 increased the peak force only with setting I. The new value was around 80% of the maximum value found for the AAI 4. Nevertheless, the peak force values of the AAI 4 with the adapter and with the original rubber tip in setting IV were similar. The adapter effectively determines the maximum peak force value at force setting I of AAI 4. Copyright © 2014 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  10. Estimation of dynamic rotor loads for the rotor systems research aircraft: Methodology development and validation

    NASA Technical Reports Server (NTRS)

    Duval, R. W.; Bahrami, M.

    1985-01-01

    The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.

  11. Assessment of New Load Schedules for the Machine Calibration of a Force Balance

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Gisler, R.; Kew, R.

    2015-01-01

    New load schedules for the machine calibration of a six-component force balance are currently being developed and evaluated at the NASA Ames Balance Calibration Laboratory. One of the proposed load schedules is discussed in the paper. It has a total of 2082 points that are distributed across 16 load series. Several criteria were applied to define the load schedule. It was decided, for example, to specify the calibration load set in force balance format as this approach greatly simplifies the definition of the lower and upper bounds of the load schedule. In addition, all loads are assumed to be applied in a calibration machine by using the one-factor-at-a-time approach. At first, all single-component loads are applied in six load series. Then, three two-component load series are applied. They consist of the load pairs (N1, N2), (S1, S2), and (RM, AF). Afterwards, four three-component load series are applied. They consist of the combinations (N1, N2, AF), (S1, S2, AF), (N1, N2, RM), and (S1, S2, RM). In the next step, one four-component load series is applied. It is the load combination (N1, N2, S1, S2). Finally, two five-component load series are applied. They are the load combination (N1, N2, S1, S2, AF) and (N1, N2, S1, S2, RM). The maximum difference between loads of two subsequent data points of the load schedule is limited to 33 % of capacity. This constraint helps avoid unwanted load "jumps" in the load schedule that can have a negative impact on the performance of a calibration machine. Only loadings of the single- and two-component load series are loaded to 100 % of capacity. This approach was selected because it keeps the total number of calibration points to a reasonable limit while still allowing for the application of some of the more complex load combinations. Data from two of NASA's force balances is used to illustrate important characteristics of the proposed 2082-point calibration load schedule.

  12. Improved Neural Networks with Random Weights for Short-Term Load Forecasting

    PubMed Central

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting. PMID:26629825

  13. Improved Neural Networks with Random Weights for Short-Term Load Forecasting.

    PubMed

    Lang, Kun; Zhang, Mingyuan; Yuan, Yongbo

    2015-01-01

    An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Eight factors are selected as the inputs. A mutual information weighting algorithm is then used to allocate different weights to the inputs. The neural networks with random weights and kernels (KNNRW) is applied to approximate the nonlinear function between the selected inputs and the daily maximum load due to the fast learning speed and good generalization performance. In the application of the daily load in Dalian, the result of the proposed INNRW is compared with several previously developed forecasting models. The simulation experiment shows that the proposed model performs the best overall in short-term load forecasting.

  14. Fretting Fatigue Analysis of Additively Manufactured Blade Root Made of Intermetallic Ti-48Al-2Cr-2Nb Alloy at High Temperature.

    PubMed

    Lavella, Mario; Botto, Daniele

    2018-06-21

    Slots in the disk of aircraft turbines restrain the centrifugal load of blades. Contact surfaces between the blade root and the disk slot undergo high contact pressure and relative displacement that is the typical condition in which fretting occurs. The load level ranges from zero to the maximum during take-off. This cycle is repeated for each mission. In this paper, a fretting fatigue analysis of additively manufactured blades is presented. Blades are made of an intermetallic alloy γTiAl. Fretting fatigue experiments were performed at a frequency of 0.5 Hz and at a temperature of 640 °C to match the operating condition of real blades. The minimum load was fixed at 0.5 KN and three maximum loads were applied, namely 16, 18 and 20 kN. Both an analytical and a two-dimensional finite element model were used to evaluate the state of stress at the contact interfaces. The results of the analytical model showed good agreement with the numerical model. Experiments showed that cracks nucleate where the analytical model predicts the maximum contact pressure and the numerical model predicts the maximum equivalent stress. A parametric analysis performed with the analytical model indicates that there exists an optimum geometry to minimize the contact pressure. Tests showed that the component life changed dramatically with the maximum load variation. Optical topography and scanning electron microscopy (SEM) analysis reveals information about the damage mechanism.

  15. Development of a biaxial compression device for biological samples: preliminary experimental results for a closed cell foam.

    PubMed

    Little, J P; Tevelen, G; Adam, C J; Evans, J H; Pearcy, M J

    2009-07-01

    Biological tissues are subjected to complex loading states in vivo and in order to define constitutive equations that effectively simulate their mechanical behaviour under these loads, it is necessary to obtain data on the tissue's response to multiaxial loading. Single axis and shear testing of biological tissues is often carried out, but biaxial testing is less common. We sought to design and commission a biaxial compression testing device, capable of obtaining repeatable data for biological samples. The apparatus comprised a sealed stainless steel pressure vessel specifically designed such that a state of hydrostatic compression could be created on the test specimen while simultaneously unloading the sample along one axis with an equilibrating tensile pressure. Thus a state of equibiaxial compression was created perpendicular to the long axis of a rectangular sample. For the purpose of calibration and commissioning of the vessel, rectangular samples of closed cell ethylene vinyl acetate (EVA) foam were tested. Each sample was subjected to repeated loading, and nine separate biaxial experiments were carried out to a maximum pressure of 204 kPa (30 psi), with a relaxation time of two hours between them. Calibration testing demonstrated the force applied to the samples had a maximum error of 0.026 N (0.423% of maximum applied force). Under repeated loading, the foam sample demonstrated lower stiffness during the first load cycle. Following this cycle, an increased stiffness, repeatable response was observed with successive loading. While the experimental protocol was developed for EVA foam, preliminary results on this material suggest that this device may be capable of providing test data for biological tissue samples. The load response of the foam was characteristic of closed cell foams, with consolidation during the early loading cycles, then a repeatable load-displacement response upon repeated loading. The repeatability of the test results demonstrated the ability of the test device to provide reproducible test data and the low experimental error in the force demonstrated the reliability of the test data.

  16. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Analysis of load distribution in tooth-implant supported fixed partial dentures by the use of resilient abutment.

    PubMed

    Glisić, Mirko; Stamenković, Dragoslav; Grbović, Aleksandar; Todorović, Aleksandar; Marković, Aleksa; Trifković, Branka

    2016-01-01

    Differences between the tooth and implant response to load can lead to many biological and technical implications in the conditions of occlusal forces. The objective of this study was to analyze load distribution in tooth/implant-supported fixed partial dentures with the use of resilient TSA (Titan Shock Absorber, BoneCare GmbH, Augsburg, Germany) abutment and conventional non-resilient abutment using finite element method. This study presents two basic 3D models. For one model a standard non-resilient abutment is used, and on the implant of the second model a resilient TSA abutment is applied. The virtual model contains drawn contours of tooth, mucous membranes, implant, cortical bones and spongiosa, abutment and suprastructure. The experiment used 500 N of vertical force, applied in three different cases of axial load. Calculations of von Mises equivalent stresses of the tooth root and periodontium, implants and peri-implant tissue were made. For the model to which a non-resilient abutment is applied, maximum stress values in all three cases are observed in the cortical part of the bone (maximum stress value of 49.7 MPa). Measurements of stress and deformation in the bone tissue in the model with application of the resilientTSA abutment demonstrated similar distribution; however, these values are many times lower than in the model with non-resilient TSA abutment (maximum stress value of 28.9 MPa). Application of the resilient TSA abutment results in more equal distribution of stress and deformations in the bone tissue under vertical forces. These values are many times lower than in the model with the non-resilient abutment.

  18. Strain Gage Loads Calibration Testing of the Active Aeroelastic Wing F/A-18 Aircraft

    NASA Technical Reports Server (NTRS)

    Lokos, William A.; Olney, Candida D.; Chen, Tony; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.; Bessette, Denis (Technical Monitor)

    2002-01-01

    This report describes strain-gage calibration loading through the application of known loads of the Active Aeroelastic Wing F/A-18 airplane. The primary goal of this test is to produce a database suitable for deriving load equations for left and right wing root and fold shear; bending moment; torque; and all eight wing control-surface hinge moments. A secondary goal is to produce a database of wing deflections measured by string potentiometers and the onboard flight deflection measurement system. Another goal is to produce strain-gage data through both the laboratory data acquisition system and the onboard aircraft data system as a check of the aircraft system. Thirty-two hydraulic jacks have applied loads through whiffletrees to 104 tension-compression load pads bonded to the lower wing surfaces. The load pads covered approximately 60 percent of the lower wing surface. A series of 72 load cases has been performed, including single-point, double-point, and distributed load cases. Applied loads have reached 70 percent of the flight limit load. Maximum wingtip deflection has reached nearly 16 in.

  19. Relationship of maximum strength to weightlifting performance.

    PubMed

    Stone, Michael H; Sands, William A; Pierce, Kyle C; Carlock, Jon; Cardinale, Marco; Newton, Robert U

    2005-06-01

    The primary objective was to assess the relationship of maximum strength to weightlifting ability using established scaling methods. The secondary objective was to compare men and women weightlifters on strength and weightlifting ability. Two correlational observations were carried out using Pearson's r. In the first observation (N = 65) the relationship of dynamic maximum strength (one-repetition maximum (1RM) squat) was compared with weightlifting ability; in the second observation (N = 16), isometric maximum strength (midthigh pull) was studied. Scaling methods for equating maximum strength and weightlifting results were used (load x (Ht), load x kg, load x lbm(-1), allometric, and Sinclair formula) to assess the association between measures of maximum strength and weightlifting performance. Using scaled values; correlations between maximum strength and weightlifting results were generally strong in both observations (e.g., using allometric scaling for the 1RM squat vs the 1RM snatch: r = 0.84, N = 65). Men were stronger than women (e.g., 1RM squat, N = 65: men = 188.1 +/- 48.6 kg; women = 126.7 +/- 28.3 kg); differences generally held when scaling was applied (e.g., 1RM squat scaled with the Sinclair formula: men = 224.7 +/- 36.5 kg; women = 144.2 +/- 25.4 kg). When collectively considering scaling methods, maximum strength is strongly related to weightlifting performance independent of body mass and height differences. Furthermore, men are stronger than women even when body mass and height are obviated by scaling methods.

  20. Strength determination of brittle materials as curved monolithic structures.

    PubMed

    Hooi, P; Addison, O; Fleming, G J P

    2014-04-01

    The dental literature is replete with "crunch the crown" monotonic load-to-failure studies of all-ceramic materials despite fracture behavior being dominated by the indenter contact surface. Load-to-failure data provide no information on stress patterns, and comparisons among studies are impossible owing to variable testing protocols. We investigated the influence of nonplanar geometries on the maximum principal stress of curved discs tested in biaxial flexure in the absence of analytical solutions. Radii of curvature analogous to elements of complex dental geometries and a finite element analysis method were integrated with experimental testing as a surrogate solution to calculate the maximum principal stress at failure. We employed soda-lime glass discs, a planar control (group P, n = 20), with curvature applied to the remaining discs by slump forming to different radii of curvature (30, 20, 15, and 10 mm; groups R30-R10). The mean deflection (group P) and radii of curvature obtained on slumping (groups R30-R10) were determined by profilometry before and after annealing and surface treatment protocols. Finite element analysis used the biaxial flexure load-to-failure data to determine the maximum principal stress at failure. Mean maximum principal stresses and load to failure were analyzed with one-way analyses of variance and post hoc Tukey tests (α = 0.05). The measured radii of curvature differed significantly among groups, and the radii of curvature were not influenced by annealing. Significant increases in the mean load to failure were observed as the radius of curvature was reduced. The maximum principal stress did not demonstrate sensitivity to radius of curvature. The findings highlight the sensitivity of failure load to specimen shape. The data also support the synergistic use of bespoke computational analysis with conventional mechanical testing and highlight a solution to complications with complex specimen geometries.

  1. Mechanical effect of static loading on endodontically treated teeth restored with fiber-reinforced posts.

    PubMed

    Chieruzzi, Manila; Rallini, Marco; Pagano, Stefano; Eramo, Stefano; D'Errico, Potito; Torre, Luigi; Kenny, José M

    2014-02-01

    The aim of this study was to investigate the mechanical behavior of a dental system built up with fiber-reinforced composite (FRC) endodontic posts with different types of fibers and two cements (the first one used with a primer, the second one without it). Six FRC posts were used. Each system was characterized in terms of structural efficiency under external applied loads similar to masticatory forces. An oblique force was applied and stiffness and maximum load data were obtained. The same test was used for the dentine. The systems were analyzed by scanning electron microscope (SEM) to investigate the surface of the post and inner surface of root canal after failure. The mechanical tests showed that load values in dental systems depend on the post material and used cement. The highest load (281 ± 59 N) was observed for the conical glass fiber posts in the cement without primer. There was a 50 and 85% increase in the maximum load for two of the conical posts with glass fibers and a 229% increase for the carbon fiber posts in the cement without primer as compared with the cement with primer. Moreover, almost all the studied systems showed fracture resistances higher than the typical masticatory loads. The microscopic analysis underlined the good adhesion of the second cement at the interfaces between dentine and post. The mechanical tests confirmed that the strength of the dental systems subjected to masticatory loads was strictly related to the bond at the interface post/cement and cement/dentine. Copyright © 2013 Wiley Periodicals, Inc.

  2. In vivo facet joint loading of the canine lumbar spine.

    PubMed

    Buttermann, G R; Schendel, M J; Kahmann, R D; Lewis, J L; Bradford, D S

    1992-01-01

    This study describes a technique to measure in vivo loads and the resultant load-contact locations in the facet joint of the canine lumbar spine. The technique is a modification of a previously described in vitro method that used calibrated surface strains of the lateral aspect of the right L3 cranial articular process. In the present study, strains were measured during various in vivo static and dynamic activities 3 days after strain gage implantation. The in vivo recording technique and its errors, which depend on the location of the applied facet loads, is described. The results of applying the technique to five dogs gave the following results. Relative resultant contact load locations on the facet tended to be in the central and caudal portion of the facet in extension activities, central and cranial in standing, and cranial and ventral in flexion or right-turning activities. Right-turning contact locations were ventral and cranial to left-turning locations. Resultant load locations at peak loading during walking were in the central region of the facet, whereas resultant load locations at minimum loading during walking were relatively craniad. This resultant load-contact location during a walk gait cycle typically migrated in an arc with a displacement of 4 mm from minimum to maximum loading. Static tests resulted in a range of facet loads of 0 N in flexion and lying to 185 N for two-legged standing erect, and stand resulted in facet loads of 26 +/- 15 N (mean +/- standard deviation [SD]). Dynamic tests resulted in peak facet loads ranging from 55 N while walking erect to 170 N for climbing up stairs. Maximum walk facet loads were 107 +/- 27 N. The technique is applicable to in vivo studies of a canine facet joint osteoarthritis model and may be useful for establishing an understanding of the biomechanics of low-back pain.

  3. A new crank arm-based load cell for the 3D analysis of the force applied by a cyclist.

    PubMed

    Balbinot, Alexandre; Milani, Cleiton; Nascimento, Jussan da Silva Bahia

    2014-12-03

    This report describes a new crank arm-based force platform designed to evaluate the three-dimensional force applied to the pedals by cyclists in real conditions. The force platform was designed to be fitted on a conventional competition bicycle crankset while data is transmitted wirelessly through a Bluetooth™ module and also stored on a SD card. A 3D solid model is created in the SolidWorks (Dassault Systèmes SOLIDWORKS Corp.) to analyze the static and dynamic characteristics of the crank arm by using the finite elements technique. Each crankset arm is used as a load cell based on strain gauges configured as three Wheatstone bridges. The signals are conditioned on a printed circuit board attached directly to the structure. The load cell showed a maximum nonlinearity error between 0.36% and 0.61% and a maximum uncertainty of 2.3% referred to the sensitivity of each channel. A roller trainer equipped with an optical encoder was also developed, allowing the measurement of the wheel's instantaneous velocity.

  4. A New Crank Arm-Based Load Cell for the 3D Analysis of the Force Applied by a Cyclist

    PubMed Central

    Balbinot, Alexandre; Milani, Cleiton; Nascimento, Jussan da Silva Bahia

    2014-01-01

    This report describes a new crank arm-based force platform designed to evaluate the three-dimensional force applied to the pedals by cyclists in real conditions. The force platform was designed to be fitted on a conventional competition bicycle crankset while data is transmitted wirelessly through a BluetoothTM module and also stored on a SD card. A 3D solid model is created in the SolidWorks (Dassault Systèmes SOLIDWORKS Corp.) to analyze the static and dynamic characteristics of the crank arm by using the finite elements technique. Each crankset arm is used as a load cell based on strain gauges configured as three Wheatstone bridges. The signals are conditioned on a printed circuit board attached directly to the structure. The load cell showed a maximum nonlinearity error between 0.36% and 0.61% and a maximum uncertainty of 2.3% referred to the sensitivity of each channel. A roller trainer equipped with an optical encoder was also developed, allowing the measurement of the wheel's instantaneous velocity. PMID:25479325

  5. Human Tolerance to Rapidly Applied Accelerations: A Summary of the Literature

    NASA Technical Reports Server (NTRS)

    Eiband, A. Martin

    1959-01-01

    The literature is surveyed to determine human tolerance to rapidly applied accelerations. Pertinent human and animal experiments applicable to space flight and to crash impact forces are analyzed and discussed. These data are compared and presented on the basis of a trapezoidal pulse. The effects of body restraint and of acceleration direction, onset rate, and plateau duration on the maximum tolerable and survivable rapidly applied accelerations are shown. Results of the survey indicate that adequate torso and extremity restraint is the primary variable in tolerance to rapidly applied accelerations. The harness, or restraint system, must be arranged to transmit the major portion of the accelerating force directly to the pelvic structure and not via the vertebral column. When the conditions of adequate restraint have been met, then the other variables, direction, magnitude, and onset rate of rapidly applied accelerations, govern maximum tolerance and injury limits. The results also indicate that adequately stressed aft-faced passenger seats offer maximum complete body support with minimum objectionable harnessing. Such a seat, whether designed for 20-, 30-, or 40-G dynamic loading, would include lap strap, chest (axillary) strap, and winged-back seat to increase headward and lateral G protection, full-height integral head rest, arm rests (load-bearing) with recessed hand-holds and provisions to prevent arms from slipping either laterally or beyond the seat back, and leg support to keep the legs from being wedged under the seat. For crew members and others whose duties require forward-facing seats, maximum complete body support requires lap, shoulder, and thigh straps, lap-belt tie-down strap, and full-height seat back with integral head support.

  6. Free-form reticulated shell structures searched for maximum buckling strength

    NASA Astrophysics Data System (ADS)

    Takiuchi, Yuji; Kato, Shiro; Nakazawa, Shoji

    2017-10-01

    In this paper, a scheme of shape optimization is proposed for maximum buckling strength of free-form steel reticulated shells. In order to discuss the effectiveness of objective functions with respect to maximizing buckling strength, several different optimizations are applied to shallow steel single layer reticulated shells targeting rigidly jointed tubular members. The objective functions to be compared are linear buckling load, strain energy, initial yield load, and elasto-plastic buckling strength evaluated based on Modified Dunkerley Formula. With respect to obtained free-forms based on the four optimization schemes, both of their elastic buckling and elasto-plastic buckling behaviour are investigated and compared considering geometrical imperfections. As a result, it is concluded that the first and fourth optimization methods are effective from a viewpoint of buckling strength. And the relation between generalized slenderness ratio and appropriate objective function applied in buckling strength maximization is made clear.

  7. [Three-dimensional stress analysis of periodontal ligament of mandible incisors fixed bridge abutments under dynamic loads by finite element method].

    PubMed

    Ma, Da; Tang, Liang; Pan, Yan-Huan

    2007-12-01

    Three-dimensional finite method was used to analyze stress and strain distributions of periodontal ligament of abutments under dynamic loads. Finite element analysis was performed on the model under dynamic loads with vertical and oblique directions. The stress and strain distributions and stress-time curves were analyzed to study the biomechanical behavior of periodontal ligament of abutments. The stress and strain distributions of periodontal ligament under dynamic load were same with the static load. But the maximum stress and strain decreased apparently. The rate of change was between 60%-75%. The periodontal ligament had time-dependent mechanical behaviors. Some level of residual stress in periodontal ligament was left after one mastication period. The stress-free time under oblique load was shorter than that of vertical load. The maximum stress and strain decrease apparently under dynamic loads. The periodontal ligament has time-dependent mechanical behaviors during one mastication. There is some level of residual stress left after one mastication period. The level of residual stress is related to the magnitude and the direction of loads. The direction of applied loads is one important factor that affected the stress distribution and accumulation and release of abutment periodontal ligament.

  8. Evaluation of stress distribution of implant-retained mandibular overdenture with different vertical restorative spaces: A finite element analysis

    PubMed Central

    Ebadian, Behnaz; Farzin, Mahmoud; Talebi, Saeid; Khodaeian, Niloufar

    2012-01-01

    Background: Available restorative space and bar height is an important factor in stress distribution of implant-supported overdentures. The purpose of this study was to evaluate the effect of different vertical restorative spaces and different bar heights on the stress distribution around implants by 3D finite element analysis. Materials and Methods: 3D finite element models were developed from mandibular overdentures with two implants in the interforaminal region. In these models, four different bar heights from gingival crest (0.5, 1, 1.5, 2 mm) with 15 mm occlusal plane height and three different occlusal plane heights from gingival crest (9, 12, 15 mm) with 2 mm bar height were analyzed. A vertical unilateral and a bilateral load of 150 N were applied to the central occlusal fossa of the first molar and the stress of bone around implant was analyzed by finite element analysis. Results: By increasing vertical restorative space, the maximum stress values around implants were found to be decreased in unilateral loading models but slightly increased in bilateral loading cases. By increasing bar height from gingival crest, the maximum stress values around implants were found to be increased in unilateral loading models but slightly decreased in bilateral loading cases. In unilateral loading models, maximum stress was found in a model with 9 mm occlusal plane height and 1.5 mm bar height (6.254 MPa), but in bilateral loading cases, maximum stress was found in a model with 15 mm occlusal plane height and 0.5 mm bar height (3.482 MPa). Conclusion: The reduction of bar height and increase in the thickness of acrylic resin base in implant-supported overdentures are biomechanically favorable and may result in less stress in periimplant bone. PMID:23559952

  9. Force Limit System

    NASA Technical Reports Server (NTRS)

    Pawlik, Ralph; Krause, David; Bremenour, Frank

    2011-01-01

    The Force Limit System (FLS) was developed to protect test specimens from inadvertent overload. The load limit value is fully adjustable by the operator and works independently of the test system control as a mechanical (non-electrical) device. When a test specimen is loaded via an electromechanical or hydraulic test system, a chance of an overload condition exists. An overload applied to a specimen could result in irreparable damage to the specimen and/or fixturing. The FLS restricts the maximum load that an actuator can apply to a test specimen. When testing limited-run test articles or using very expensive fixtures, the use of such a device is highly recommended. Test setups typically use electronic peak protection, which can be the source of overload due to malfunctioning components or the inability to react quickly enough to load spikes. The FLS works independently of the electronic overload protection.

  10. Tornado and extreme wind design criteria for nuclear power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1973-12-01

    Nuclear power plant design criteria for tornadoes and extreme winds are presented. Data, formulas, and procedures for determining maximum wind loading on structures and parts of structures are included. Extreme wind loading is applied to structures using methods and procedures consistent with ANSI Building Code A58.1- 1972. The design wind velocities specified generally exceed 100-year recurrent interval winds. Tornado wind loading is applied to structures using procedures paralleling those for extrene winds with additional criteria resulting from the atmospheric pressure change accompanying tornadoes and tornado missile inipact effects. Tornado loading for the 48 contiguous United States is specified for twomore » major zones separated by the Continental Divide. A cross reference listing items related to Atomic Energy Commission Safety Analysis Report format is provided. Development supporting tornado criteria is included. (auth)« less

  11. Strength of Rectangular Flat Plates Under Edge Compression

    NASA Technical Reports Server (NTRS)

    Schuman, Louis; Back, Goldie

    1931-01-01

    Flat rectangular plates of duralumin, stainless iron, monel metal, and nickel were tested under loads applied at two opposite edges and acting in the plane of the plate. The edges parallel to the direction of loading were supported in V grooves. The plates were all 24 inches long and varied in width from 4 to 24 inches by steps of 4 inches, and in thickness from 0.015 to 0.095 inch by steps of approximately 0.015 inch. There were also a few 1, 2, 3, and 6 inch wide specimens. The loads were applied in the testing machine at the center of a bar which rested along the top of the plate. Load was applied until the plate failed to take any more load. The tests show that the loads carried by the plates generally reached a maximum for the 8 or 12 inch width and that there was relatively small drop in load for the greater widths. Deflection and set measurement perpendicular to the plane of the plate were taken and the form of the buckle determined. The number of buckles were found to correspond in general to that predicted by the theory of buckling of a plate uniformly loaded at two opposite edges and simply supported at the edges.

  12. A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

    NASA Astrophysics Data System (ADS)

    Sameallah, S.; Legrand, V.; Saint-Sulpice, L.; Kadkhodaei, M.; Arbab Chirani, S.

    2015-02-01

    Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure.

  13. Effects of subcritical crack growth on fracture toughness of ceramics assessed in chevron-notched three-point bend tests

    NASA Technical Reports Server (NTRS)

    Chao, L. Y.; Singh, D.; Shetty, D. K.

    1988-01-01

    A numerical computational study was carried out to assess the effects of subcritical crack growth on crack stability in the chevron-notched three-point bend specimens. A power-law relationship between the subcritical crack velocity and the applied stress intensity were used along with compliance and stress-intensity relationships for the chevron-notched bend specimen to calculate the load response under fixed deflection rate and a machine compliance. The results indicate that the maximum load during the test occurs at the same crack length for all the deflection rates; the maximum load, however, is dependent on the deflection rate for rates below the critical rate. The resulting dependence of the apparent fracture toughness on the deflection rate is compared to experimental results on soda-lime glass and polycrystalline alumina.

  14. Effect of water temperature on cyclic fatigue properties of glass-fiber-reinforced hybrid composite resin and its fracture pattern after flexural testing.

    PubMed

    Kuroda, Soichi; Shinya, Akikazu; Vallittu, Pekka K; Nakasone, Yuji; Shinya, Akiyoshi

    2013-02-01

    To evaluate in vitro the influence of dynamic loading applied to a glass-fiber-reinforced hybrid composite resin on its flexural strength in a moist, simulated oral environment. Three-point flexural strength specimens were subjected to cyclic loading in water at 37°C and 55°C to investigate the influence of immersion temperature on impact fatigue properties. Specimens were subjected to cyclic impact loading at 1 Hz for up to 5 × 105 cycles to obtain the number of cycles to failure, the number of unbroken specimens after 5 × 105 cycles, and the residual flexural strength of unbroken specimens. Maximum loads of 100, 200, and 300 N were chosen for both the non-reinforced and the glass-fiber reinforced hybrid composite resins. The mean residual flexural strength for 100 N impact loading at temperatures of 37°C and 55°C was 634 and 636 MPa, respectively. All specimens fractured at fewer than 5 × 105 cycles for loads of 200 and 300 N. Reduced numbers of cycles to fracture and lower fatigue values were observed as both the maximum load and immersion temperature increased.

  15. [Analysis of the influence of lower premolar rotation on TMJ stress distribution by finite element method].

    PubMed

    Zhang, Yuan; Wang, Mei-qing; Ling, Wei

    2005-10-01

    To evaluate the resultant differences of stress distribution in bilateral condyle when occlusal loads were changed with teeth rotation. A three-dimensional FEA model containing human TMJ and left lower second premolar was developed using commercial FEA software ANSYS. Lower second premolar was applied with ICO occlusal loading in the load case 1. According to the same upper dentition in the load case 2, lower premolar was applied with occlusal loading when it was rotated 30 degree counter-clockwise in Frankfort horizontal plane level. In this two load cases,the different stress distributions of the condyle was investigated. The stress distribution of loading side condyle had changed abnormally when premolar rotation was performed. It had showed more disorderly than ICO loading in load case 1. In load case 1 the maximum main stress and Von Mises stress values increased from medial pole to lateral pole. In load case 2,the stress values mainly decreased from medial pole to lateral pole, but along the path there were some parts with values-increasing. The stress values of bilateral condyle in load case 2 were lower than that in load case 1, especially for the stress values of the opposite condyle. The stress distribution of loading side condyle got in disorder resulting from rotation of unilateral lower premolar.

  16. A method of calculating the ultimate strength of continuous beams

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, George W

    1931-01-01

    The purpose of this study was to investigate the strength of continuous beams after the elastic limit has been passed. As a result, a method of calculation, which is applicable to maximum load conditions, has been developed. The method is simpler than the methods now in use and it applies properly to conditions where the present methods fail to apply.

  17. Piezoelectric properties of synthetic hydroxyapatite-based organic-inorganic hydrated materials

    NASA Astrophysics Data System (ADS)

    Rodriguez, Rogelio; Rangel, Domingo; Fonseca, Gerardo; Gonzalez, Maykel; Vargas, Susana

    Disks of synthetic hydroxyapatite agglutinated with a synthetic polymer and hydrated in a moisture fog, were prepared. A well-defined piezoelectric signal of these samples was obtained when a relative small compression stress of 35 MPa (corresponding a force of 450 daN) was applied; piezoelectric signals of up to 12 mV were obtained with this stress. Two different compression methods were followed to obtain the piezoelectric signal: (a) hold method, where the load was maintained constant once it reaches the maximum stress and (b) release method, where the load was removed rapidly when the stress reaches its maximum value. The samples were characterized using the techniques: X-ray Diffraction, Dielectric Relaxation Spectroscopy and mechanical test.

  18. Effect of Internal Clearance on Load Distribution and Life of Radially Loaded Ball and Roller Bearings

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2012-01-01

    The effect of internal clearance on radially loaded deepgroove ball and cylindrical roller bearing load distribution and fatigue life was determined for four clearance groups defined in the bearing standards. The analysis was extended to negative clearance (interference) conditions to produce a curve of life factor versus internal clearance. Rolling-element loads can be optimized and bearing life maximized for a small negative operating clearance. Life declines gradually with positive clearance and rapidly with increasing negative clearance. Relationships were found between bearing life and internal clearance as a function of ball or roller diameter, adjusted for load. Results are presented as life factors for radially loaded bearings independent of bearing size or applied load. In addition, a modified Stribeck Equation is presented that relates the maximum rolling-element load to internal bearing clearance.

  19. Differential distribution of amino acids in plants.

    PubMed

    Kumar, Vinod; Sharma, Anket; Kaur, Ravdeep; Thukral, Ashwani Kumar; Bhardwaj, Renu; Ahmad, Parvaiz

    2017-05-01

    Plants are a rich source of amino acids and their individual abundance in plants is of great significance especially in terms of food. Therefore, it is of utmost necessity to create a database of the relative amino acid contents in plants as reported in literature. Since in most of the cases complete analysis of profiles of amino acids in plants was not reported, the units used and the methods applied and the plant parts used were different, amino acid contents were converted into relative units with respect to lysine for statistical analysis. The most abundant amino acids in plants are glutamic acid and aspartic acid. Pearson's correlation analysis among different amino acids showed that there were no negative correlations between the amino acids. Cluster analysis (CA) applied to relative amino acid contents of different families. Alismataceae, Cyperaceae, Capparaceae and Cactaceae families had close proximity with each other on the basis of their relative amino acid contents. First three components of principal component analysis (PCA) explained 79.5% of the total variance. Factor analysis (FA) explained four main underlying factors for amino acid analysis. Factor-1 accounted for 29.4% of the total variance and had maximum loadings on glycine, isoleucine, leucine, threonine and valine. Factor-2 explained 25.8% of the total variance and had maximum loadings on alanine, aspartic acid, serine and tyrosine. 14.2% of the total variance was explained by factor-3 and had maximum loadings on arginine and histidine. Factor-4 accounted 8.3% of the total variance and had maximum loading on the proline amino acid. The relative content of different amino acids presented in this paper is alanine (1.4), arginine (1.8), asparagine (0.7), aspartic acid (2.4), cysteine (0.5), glutamic acid (2.8), glutamine (0.6), glycine (1.0), histidine (0.5), isoleucine (0.9), leucine (1.7), lysine (1.0), methionine (0.4), phenylalanine (0.9), proline (1.1), serine (1.0), threonine (1.0), tryptophan (0.3), tyrosine (0.7) and valine (1.2).

  20. Interference-Fit Life Factors for Ball Bearings

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2010-01-01

    The effect of hoop stresses on the rolling-element fatigue life of angular-contact and deep-groove ball bearings was determined for common inner-ring interference fits at the ABEC-5 tolerance level. The analysis was applied to over 1150 bearing configurations and load cases. Hoop stresses were superimposed on the Hertzian principal stresses created by the applied bearing load to calculate the inner-race maximum shearing stress. The resulting fatigue life of the bearing was recalculated through a series of equations. The reduction in the fatigue life is presented as life factors that are applied to the unfactored bearing life. The life factors found in this study ranged from 1.00 (no life reduction)--where there was no net interface pressure--to a worst case of 0.38 (a 62-percent life reduction). For a given interference fit, the reduction in life is different for angular-contact and deep-groove ball bearings. Interference fits also affect the maximum Hertz stress-life relation. Experimental data of Czyzewski, showing the effect of interference fit on rolling-element fatigue life, were reanalyzed to determine the shear stress-life exponent. The Czyzewski data shear stress-life exponent c equals 8.77, compared with the assumed value of 9. Results are presented as tables and charts of life factors for angular-contact and deep-groove ball bearings with light, normal, and heavy loads and interference fits ranging from extremely light to extremely heavy.

  1. Assessing the suitability of the OECD 29 guidance document to investigate the transformation and dissolution of silver nanoparticles in aqueous media.

    PubMed

    Wasmuth, Claus; Rüdel, Heinz; Düring, Rolf-Alexander; Klawonn, Thorsten

    2016-02-01

    The OECD guidance document No. 29 was designed to determine the rate and extend to which metals can produce soluble available ionic metal species. This transformation/dissolution protocol was applied to silver nanomaterials. The results prove that concentrations of released Ag(+) at pH 8 were nearly similar at all three different loadings. At pH 6, the concentration of Ag(+) was almost the same at loadings of 10 and 100 mg L(-1) AgNPs. However, the study showed changes in concentrations of nanoparticles and aggregates (operationally defined as the fraction passing a 0.2 µm filter). At the higher pH both the concentrations in the test medium of Ag(+) and of AgNPs (fraction < 0.2 µm) decreased. After 7 days of test duration, 71 µg L(-1) of Ag(+) was found in pH 6 medium (initial loading of 100 mg L(-1)). In pH 8 medium a maximum concentration of 29 µg L(-1) Ag(+) was measured (initial loading of 10 mg L(-1)). The maximum transformation from AgNPs to Ag(+) was 2.7% (27 µg L(-1)) in pH 8 medium (loading of 1 mg L(-1)) after 7 days. At an initial loading of 100 mg L(-1) AgNPs in medium at pH 8, only 0.03% (30 µg L(-1)) were transformed to Ag(+) after 7 days. At the loading of 1 mg L(-1) AgNPs all silver concentrations remain relatively constant for the duration of the test after 7 until 28 days. The results reveal that only low concentrations of Ag(+) are released from AgNPs under the applied conditions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Effects of whole-body vibration applied to lower extremity muscles during decline bench press exercise.

    PubMed

    García-Gutiérrez, M T; Hazell, T J; Marín, P J

    2016-09-07

    To evaluate the effects of whole-body vibration (WBV) on skeletal muscle activity and power performance of the upper body during decline bench press exercise at different loads. Forty-seven healthy young and active male students volunteered. Each performed dynamic decline bench press repetitions with and without WBV (50 Hz, 2.2 mm) applied through a hamstring bridge exercise at three different loads of their 1-repetition maximum (1RM): 30%, 50%, and 70% 1RM. Muscle activity of the triceps brachii (TB), biceps brachii (BB), pectoralis major (PM), and biceps femoris (BF) was measured with surface electromyography electrodes and kinetic parameters of the repetitions were measured with a rotary encoder. WBV increased peak power (PP) output during the 70% 1RM condition (p<0.01). Muscle activity was increased with WBV in the TB and BF muscles at all loads (p<0.05). There were no effects of WBV on BB or PM muscles. WBV applied through a hamstring bridge exercise increases TB muscle activity during a decline bench press and this augmentation contributes to an increased peak power at higher loads and increased peak acceleration at lower loads.

  3. A Methodology for Protective Vibration Monitoring of Hydropower Units Based on the Mechanical Properties.

    PubMed

    Nässelqvist, Mattias; Gustavsson, Rolf; Aidanpää, Jan-Olov

    2013-07-01

    It is important to monitor the radial loads in hydropower units in order to protect the machine from harmful radial loads. Existing recommendations in the standards regarding the radial movements of the shaft and bearing housing in hydropower units, ISO-7919-5 (International Organization for Standardization, 2005, "ISO 7919-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Rotating Shafts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland) and ISO-10816-5 (International Organization for Standardization, 2000, "ISO 10816-5: Mechanical Vibration-Evaluation of Machine Vibration by Measurements on Non-Rotating Parts-Part 5: Machine Sets in Hydraulic Power Generating and Pumping Plants," Geneva, Switzerland), have alarm levels based on statistical data and do not consider the mechanical properties of the machine. The synchronous speed of the unit determines the maximum recommended shaft displacement and housing acceleration, according to these standards. This paper presents a methodology for the alarm and trip levels based on the design criteria of the hydropower unit and the measured radial loads in the machine during operation. When a hydropower unit is designed, one of its design criteria is to withstand certain loads spectra without the occurrence of fatigue in the mechanical components. These calculated limits for fatigue are used to set limits for the maximum radial loads allowed in the machine before it shuts down in order to protect itself from damage due to high radial loads. Radial loads in hydropower units are caused by unbalance, shape deviations, dynamic flow properties in the turbine, etc. Standards exist for balancing and manufacturers (and power plant owners) have recommendations for maximum allowed shape deviations in generators. These standards and recommendations determine which loads, at a maximum, should be allowed before an alarm is sent that the machine needs maintenance. The radial bearing load can be determined using load cells, bearing properties multiplied by shaft displacement, or bearing bracket stiffness multiplied by housing compression or movement. Different load measurement methods should be used depending on the design of the machine and accuracy demands in the load measurement. The methodology presented in the paper is applied to a 40 MW hydropower unit; suggestions are presented for the alarm and trip levels for the machine based on the mechanical properties and radial loads.

  4. Recrystallization and grain growth behavior of rolled tungsten under VDE-like short pulse high heat flux loads

    NASA Astrophysics Data System (ADS)

    Yuan, Y.; Greuner, H.; Böswirth, B.; Krieger, K.; Luo, G.-N.; Xu, H. Y.; Fu, B. Q.; Li, M.; Liu, W.

    2013-02-01

    Short pulse heat loads expected for vertical displacement events (VDEs) in ITER were applied in the high heat flux (HHF) test facility GLADIS at IPP-Garching onto samples of rolled W. Pulsed neutral beams with the central heat flux of 23 MW/m2 were applied for 0.5, 1.0 and 1.5 s, respectively. Rapid recrystallization of the adiabatically loaded 3 mm thick samples was observed when the pulse duration was up to 1.0 s. Grains grew markedly following recrystallization with increasing pulse length. The recrystallization temperature and temperature dependence of the recrystallized grain size were also investigated. The results showed that the recrystallization temperature of the W grade was around 2480 °C under the applied heat loading condition, which was nearly 1150 °C higher than the conventional recrystallization temperature, and the grains were much finer. A linear relationship between the logarithm of average grain size (ln d) and the inverse of maximum surface temperature (1/Tmax) was found and accordingly the activation energy for grain growth in temperature evolution up to Tmax in 1.5 s of the short pulse HHF load was deduced to be 4.1 eV. This provided an effective clue to predict the structure evolution under short pulse HHF loads.

  5. Fatigue behavior of a thermally-activated NiTiNb SMA-FRP patch

    NASA Astrophysics Data System (ADS)

    El-Tahan, M.; Dawood, M.

    2016-01-01

    This paper presents the details of an experimental study that was conducted to characterize the fatigue behavior of a thermally-activated shape memory alloy (SMA)/carbon fiber reinforced polymer (CFRP) patch that can be used to repair cracked steel members. A total of 14 thermally-activated patches were fabricated and tested to evaluate the stability of the prestress under fatigue loading. The parameters considered in this study are the prestress level in the nickel-titanium-niobium SMA wires and the applied force range. An empirical model to predict the degradation of the prestress is also presented. The results indicate that patches for which the maximum applied loads in a fatigue cycle did not cause debonding of the SMA wires from the CFRP sustained two million loading cycles with less than 20% degradation of the prestress.

  6. 3D finite element analysis of changes in stress levels and distributions for an osseointegrated implant after vertical bone loss.

    PubMed

    Yoon, Kyung-Ho; Kim, Su-Gwan; Lee, Jeong-Hoon; Suh, Seung-Woo

    2011-10-01

    The effect of stress levels and distributions around the internal nonsubmerged type implants after vertical bone resorption was investigated in this study. An HSII implant was placed in 4 cylindrical alveolar bone models with differing degrees of thread exposures. The load applied to each implant was von Mises stress and principal stress, 250 N in axial direction and 30 degrees lateral pressure. The difference in the load between the bone and the connective portion of the implant was obtained using ANSYS analysis. Bone loss in the cervical area of the implant was more obvious under lateral pressure. When more threads were exposed, bone level decreased and the maximum load applied on the fixture increased. It was concluded that higher bone level has a biomechanical advantage with respect to stress concentration.

  7. An apparatus for altering the mechanical load of the respiratory system.

    PubMed

    Younes, M; Bilan, D; Jung, D; Kroker, H

    1987-06-01

    We describe an apparatus for altering the mechanical load against which the respiratory muscles operate in humans. A closed system incorporates a rolling seal spirometer. The spirometer piston shaft is coupled to a fast-responding linear actuator that develops force in proportion to desired command signals. The command signal may be flow (resistive loading or unloading), volume (elastic loading or unloading), constant voltage (continuous positive or negative pressure), or any external function. Combinations of loads can be applied. Logic circuits permit application of the load at specific times during the respiratory cycle, and the magnitude of the loads is continuously adjustable. Maximum pressure output is +/- 20 cmH2O. The apparatus permits loading or unloading over a range of ventilation extending from resting levels to those observed during high levels of exercise (over 100 l/min). In response to a square-wave input, pressure rises exponentially with a time constant of 20 ms.

  8. Modeling bicortical screws under a cantilever bending load.

    PubMed

    James, Thomas P; Andrade, Brendan A

    2013-12-01

    Cyclic loading of surgical plating constructs can precipitate bone screw failure. As the frictional contact between the plate and the bone is lost, cantilever bending loads are transferred from the plate to the head of the screw, which over time causes fatigue fracture from cyclic bending. In this research, analytical models using beam mechanics theory were developed to describe the elastic deflection of a bicortical screw under a statically applied load. Four analytical models were developed to simulate the various restraint conditions applicable to bicortical support of the screw. In three of the models, the cortical bone near the tip of the screw was simulated by classical beam constraints (1) simply supported, (2) cantilever, and (3) split distributed load. In the final analytical model, the cortices were treated as an elastic foundation, whereby the response of the constraint was proportional to screw deflection. To test the predictive ability of the new analytical models, 3.5 mm cortical bone screws were tested in a synthetic bone substitute. A novel instrument was developed to measure the bending deflection of screws under radial loads (225 N, 445 N, and 670 N) applied by a surrogate surgical plate at the head of the screw. Of the four cases considered, the analytical model utilizing an elastic foundation most accurately predicted deflection at the screw head, with an average difference of 19% between the measured and predicted results. Determination of the bending moments from the elastic foundation model revealed that a maximum moment of 2.3 N m occurred near the middle of the cortical wall closest to the plate. The location of the maximum bending moment along the screw axis was consistent with the fracture location commonly observed in clinical practice.

  9. 40 CFR 63.12005 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... allowable working pressure of the process component. Conservation vents must be designed to open only when... constituents that approach the limits of solubility for scrubbing media, the highest or lowest HAP mass loading rate of constituents that approach limits of solubility for scrubbing media. Maximum true vapor...

  10. 40 CFR 63.12005 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... allowable working pressure of the process component. Conservation vents must be designed to open only when... constituents that approach the limits of solubility for scrubbing media, the highest or lowest HAP mass loading rate of constituents that approach limits of solubility for scrubbing media. Maximum true vapor...

  11. Active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports and integral LQR control

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2016-09-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, the potential of active buckling control of an imperfect beam-column with circular cross-section using piezo-elastic supports is investigated numerically. Imperfections are given by an initial deformation of the beam-column caused by a constant imperfection force. With the piezo-elastic supports, active bending moments in arbitrary directions orthogonal to the beam-column's longitudinal axis can be applied at both beam- column's ends. The imperfect beam-column is loaded by a gradually increasing axial compressive force resulting in a lateral deformation of the beam-column. First, a finite element model of the imperfect structure for numerical simulation of the active buckling control is presented. Second, an integral linear-quadratic regulator (LQR) that compensates the deformation via the piezo-elastic supports is derived for a reduced modal model of the ideal beam-column. With the proposed active buckling control it is possible to stabilize the imperfect beam-column in arbitrary lateral direction for axial loads above the theoretical critical buckling load and the maximum bearable load of the passive structure.

  12. A simple method for assessment of muscle force, velocity, and power producing capacities from functional movement tasks.

    PubMed

    Zivkovic, Milena Z; Djuric, Sasa; Cuk, Ivan; Suzovic, Dejan; Jaric, Slobodan

    2017-07-01

    A range of force (F) and velocity (V) data obtained from functional movement tasks (e.g., running, jumping, throwing, lifting, cycling) performed under variety of external loads have typically revealed strong and approximately linear F-V relationships. The regression model parameters reveal the maximum F (F-intercept), V (V-intercept), and power (P) producing capacities of the tested muscles. The aim of the present study was to evaluate the level of agreement between the routinely used "multiple-load model" and a simple "two-load model" based on direct assessment of the F-V relationship from only 2 external loads applied. Twelve participants were tested on the maximum performance vertical jumps, cycling, bench press throws, and bench pull performed against a variety of different loads. All 4 tested tasks revealed both exceptionally strong relationships between the parameters of the 2 models (median R = 0.98) and a lack of meaningful differences between their magnitudes (fixed bias below 3.4%). Therefore, addition of another load to the standard tests of various functional tasks typically conducted under a single set of mechanical conditions could allow for the assessment of the muscle mechanical properties such as the muscle F, V, and P producing capacities.

  13. Slow Crack Growth of Brittle Materials With Exponential Crack-Velocity Formulation. Part 3; Constant Stress and Cyclic Stress Experiments

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Gyekenyesi, John P.

    2002-01-01

    The previously determined life prediction analysis based on an exponential crack-velocity formulation was examined using a variety of experimental data on advanced structural ceramics tested under constant stress and cyclic stress loading at ambient and elevated temperatures. The data fit to the relation between the time to failure and applied stress (or maximum applied stress in cyclic loading) was very reasonable for most of the materials studied. It was also found that life prediction for cyclic stress loading from data of constant stress loading in the exponential formulation was in good agreement with the experimental data, resulting in a similar degree of accuracy as compared with the power-law formulation. The major limitation in the exponential crack-velocity formulation, however, was that the inert strength of a material must be known a priori to evaluate the important slow-crack-growth (SCG) parameter n, a significant drawback as compared with the conventional power-law crack-velocity formulation.

  14. Stress Analysis of B-52B and B-52H Air-Launching Systems Failure-Critical Structural Components

    NASA Technical Reports Server (NTRS)

    Ko, William L.

    2005-01-01

    The operational life analysis of any airborne failure-critical structural component requires the stress-load equation, which relates the applied load to the maximum tangential tensile stress at the critical stress point. The failure-critical structural components identified are the B-52B Pegasus pylon adapter shackles, B-52B Pegasus pylon hooks, B-52H airplane pylon hooks, B-52H airplane front fittings, B-52H airplane rear pylon fitting, and the B-52H airplane pylon lower sway brace. Finite-element stress analysis was performed on the said structural components, and the critical stress point was located and the stress-load equation was established for each failure-critical structural component. The ultimate load, yield load, and proof load needed for operational life analysis were established for each failure-critical structural component.

  15. The application of the statistical theory of extreme values to gust-load problems

    NASA Technical Reports Server (NTRS)

    Press, Harry

    1950-01-01

    An analysis is presented which indicates that the statistical theory of extreme values is applicable to the problems of predicting the frequency of encountering the larger gust loads and gust velocities for both specific test conditions as well as commercial transport operations. The extreme-value theory provides an analytic form for the distributions of maximum values of gust load and velocity. Methods of fitting the distribution are given along with a method of estimating the reliability of the predictions. The theory of extreme values is applied to available load data from commercial transport operations. The results indicate that the estimates of the frequency of encountering the larger loads are more consistent with the data and more reliable than those obtained in previous analyses. (author)

  16. The effect of long and short head biceps loading on glenohumeral joint rotational range of motion and humeral head position.

    PubMed

    McGarry, Michelle H; Nguyen, Michael L; Quigley, Ryan J; Hanypsiak, Bryan; Gupta, Ranjan; Lee, Thay Q

    2016-06-01

    To evaluate the effect of loading the long and short heads of the biceps on glenohumeral range of motion and humeral head position. Eight cadaveric shoulders were tested in 60° abduction in the scapula and coronal plane. Muscle loading was applied based on cross-sectional area ratios. The short and long head of the biceps were loaded individually followed by combined loading. Range of motion was measured with 2.2 Nm torque, and the humeral head apex position was measured using a MicroScribe. A paired t test with Bonferroni correction was used for statistics. Long head loading decreased internal rotation in both the scapular (17.9 %) and coronal planes (5.7 %) and external rotation in the scapular plane (2.6 %) (P < 0.04). With only short head loading, maximum internal rotation was significantly increased in the scapular and coronal plane. Long head and short head loading shifted the humeral head apex posteriorly in maximum internal rotation in both planes with the long head shift being significantly greater than the short head. Long head loading also shifted the humeral apex inferiorly in internal rotation and inferiorly posteriorly in neutral rotation in the scapular plane. With the long head unloaded, there was a significant superior shift with short head loading in both planes. Loading the long head of the biceps had a much greater effect on glenohumeral range of motion and humeral head shift than the short head of the biceps; however, in the absence of long head loading, with the short head loaded, maximum internal rotation increases and the humeral head shifts superiorly, which may contribute to impingement following tenodesis of the long head of the biceps. These small changes in rotational range of motion and humeral head position with biceps tenodesis may not lead to pathologic conditions in low-demand patients; however, in throwers, biceps tenodesis may lead to increased contact pressures in late-cocking and deceleration that will likely translate to decreased performance therefore every effort should be made to preserve the biceps-labral complex.

  17. Fatigue testing of energy storing prosthetic feet.

    PubMed

    Toh, S L; Goh, J C; Tan, P H; Tay, T E

    1993-12-01

    This paper describes a simple approach to the fatigue testing of prosthetic feet. A fatigue testing machine for prosthetic feet was designed as part of the programme to develop an energy storing prosthetic foot (ESPF). The fatigue tester does not simulate the loading pattern on the foot during normal walking. However, cyclic vertical loads are applied to the heel and forefoot during heel-strike and toe-off respectively, for 500,000 cycles. The maximum load applied was chosen to be 1.5 times that applied by the bodyweight of the amputee and the test frequency was chosen to be 2 Hz to shorten the test duration. Four prosthetic feet were tested: two Lambda feet (a newly developed ESPF), a Kingsley SACH foot and a Proteor SACH foot. It was found that the Lambda feet have very good fatigue properties. The Kingsley SACH foot performed better than the Proteor model, with no signs of wear at the heel. The results obtained using the simple approach was found to be comparable to the results from more complex fatigue machines which simulate the load pattern during normal walking. This suggests that simple load simulating machines, which are less costly and require less maintenance, are useful substitutes in studying the fatigue properties of prosthetic feet.

  18. Influence of Grid Reinforcement Placed In Masonry Bed Joints on Its Flexural Strength

    NASA Astrophysics Data System (ADS)

    Piekarczyk, Adam

    2017-10-01

    The paper presents the test results of the flexural strength of masonry when plane of failure is perpendicular to the bed joints. Comparison tests of unreinforced specimens and specimens reinforced with steel wire, glass and basalt fibre grids applied in masonry bed joints showed the higher flexural strength and crack resistance of masonry reinforced in this manner and so loaded. Reinforced masonry exposed plastic character after cracking allow for large horizontal displacements and transfer the considerable loads perpendicular to their surface. The strengthening of masonry was observed in most tests of reinforced specimens leading to occurrence of the maximum load in after cracking phase.

  19. T-Cap Pull-Off and Bending Behavior for Stitched Structure

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in largescale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  20. Tension and Bending Testing of an Integral T-Cap for Stitched Composite Airframe Joints

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Leone, Frank A., Jr.

    2016-01-01

    The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is a structural concept that was developed by The Boeing Company to address the complex structural design aspects associated with a pressurized hybrid wing body aircraft configuration. An important design feature required for assembly is the integrally stitched T-cap, which provides connectivity of the corner (orthogonal) joint between adjacent panels. A series of tests were conducted on T-cap test articles, with and without a rod stiffener penetrating the T-cap web, under tension (pull-off) and bending loads. Three designs were tested, including the baseline design used in large-scale test articles. The baseline had only the manufacturing stitch row adjacent to the fillet at the base of the T-cap web. Two new designs added stitching rows to the T-cap web at either 0.5- or 1.0-inch spacing along the height of the web. Testing was conducted at NASA Langley Research Center to determine the behavior of the T-cap region resulting from the applied loading. Results show that stitching arrests the initial delamination failures so that the maximum strength capability exceeds the load at which the initial delaminations develop. However, it was seen that the added web stitching had very little effect on the initial delamination failure load, but actually decreased the initial delamination failure load for tension loading of test articles without a stiffener passing through the web. Additionally, the added web stitching only increased the maximum load capability by between 1% and 12.5%. The presence of the stiffener, however, did increase the initial and maximum loads for both tension and bending loading as compared to the stringerless baseline design. Based on the results of the few samples tested, the additional stitching in the T-cap web showed little advantage over the baseline design in terms of structural failure at the T-cap web/skin junction for the current test articles.

  1. Sex-Based Differences in Knee Kinetics With Anterior Cruciate Ligament Strain on Cadaveric Impact Simulations

    PubMed Central

    Schilaty, Nathan D.; Bates, Nathaniel A.; Nagelli, Christopher; Krych, Aaron J.; Hewett, Timothy E.

    2018-01-01

    Background: Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. Purpose/Hypothesis: The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Study Design: Controlled laboratory study. Methods: Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Results: Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males (F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance (F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of “maximum ACL strain” demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Conclusion: Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. Clinical Relevance: KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes. PMID:29568787

  2. Sex-Based Differences in Knee Kinetics With Anterior Cruciate Ligament Strain on Cadaveric Impact Simulations.

    PubMed

    Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher; Krych, Aaron J; Hewett, Timothy E

    2018-03-01

    Females are at an increased risk of sustaining noncontact knee ligament injuries as compared with their male counterparts. The kinetics that load the anterior cruciate ligament (ACL) are still under dispute in the literature. The purpose of this study was to determine whether there are differences in knee kinetics between the sexes that lead to greater ACL strain in females when similar external loads are applied during a simulated drop vertical jump landing task. It was hypothesized that female limbs would demonstrate significant differences in knee abduction moment that predispose females to ACL injury when compared with males. Controlled laboratory study. Motion analysis data of 67 athletes who performed a drop vertical jump were collected. The kinematic and kinetic data were used to categorize tertiles of relative risk, and these values were input into a cadaveric impact simulator to assess ligamentous loads during the simulated landing task. Uni- and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect kinetic data and maximum ACL strain for analysis. Conditions of external loads applied to the cadaveric limbs were systematically varied and randomized. Data were analyzed with 2-way repeated-measures analysis of variance and the Fisher exact test. Five kinetic parameters were evaluated. Of the 5 kinetic variables, only knee abduction moment (KAM) demonstrated significant differences in females as compared with males ( F 1,136 = 4.398, P = .038). When normalized to height and weight, this difference between males and females increased in significance ( F 1,136 = 7.155, P = .008). Compared with males, females exhibited a 10.3-N·m increased knee abduction torque at 66 milliseconds postimpact and a 22.3-N·m increased abduction torque at 100 milliseconds postimpact. For loading condition, the condition of "maximum ACL strain" demonstrated a maximum difference of 54.3-N·m increased abduction torque and 74.5-N·m increased abduction torque at 66 milliseconds postimpact. Under the tested conditions, increased external loads led to increased medial knee translation force, knee abduction moment, and external knee moment. Females exhibited greater forces and moments at the knee, especially at KAM, when loaded in similar conditions. As these KAM loads are associated with increased load and strain on the ACL, the sex-based differences observed in the present study may account for a portion of the underlying mechanics that predispose females to ACL injury as compared with males in a controlled simulated athletic task. KAM increases strain to the ACL under clinically representative loading. Additionally, this work establishes the biomechanical characteristics of knee loading between sexes.

  3. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia; Brundage, Aaron; Dudley, Evan

    2009-06-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.5 GPa. Dynamic compaction measurements using low-density pressings (62-70% theoretical maximum density) were obtained in a single-stage gas gun at impact velocities between 0.17-0.70 km/s. Experiments were conducted in a reverse ballistic arrangement in which the CL-20 ladened projectile impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 0.9 GPa. The powder compaction behavior is found to be stiffer under dynamic loading than under quasi-static loading. Additional gas gun tests were conducted in which the low-density CL-20 pressings were confined within a target cup by the aluminized window. This arrangement enabled temporal measurement of the transmitted wave profiles in which elastic wave precursors were observed.

  4. Analysis and Testing of Plates with Piezoelectric Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Bevan, Jeffrey S.

    1998-01-01

    Piezoelectric material inherently possesses coupling between electrostatics and structural dynamics. Utilizing linear piezoelectric theory results in an intrinsically coupled pair of piezoelectric constitutive equations. One equation describes the direct piezoelectric effect where strains produce an electric field and the other describes the converse effect where an applied electrical field produces strain. The purpose of this study is to compare finite element analysis and experiments of a thin plate with bonded piezoelectric material. Since an isotropic plate in combination with a thin piezoelectric layer constitutes a special case of a laminated composite, the classical laminated plate theory is used in the formulation to accommodated generic laminated composite panels with multiple bonded and embedded piezoelectric layers. Additionally, the von Karman large deflection plate theory is incorporated. The formulation results in laminate constitutive equations that are amiable to the inclusion of the piezoelectric constitutive equations yielding in a fully electro-mechanically coupled composite laminate. Using the finite element formulation, the governing differential equations of motion of a composite laminate with embedded piezoelectric layers are derived. The finite element model not only considers structural degrees of freedom (d.o.f.) but an additional electrical d.o.f. for each piezoelectric layer. Comparison between experiment and numerical prediction is performed by first treating the piezoelectric as a sensor and then again treating it as an actuator. To assess the piezoelectric layer as a sensor, various uniformly distributed pressure loads were simulated in the analysis and the corresponding generated voltages were calculated using both linear and nonlinear finite element analyses. Experiments were carried out by applying the same uniformly distributed loads and measuring the resulting generated voltages and corresponding maximum plate deflections. It is found that a highly nonlinear relationship exists between maximum deflection and voltage versus pressure loading. In order to assess comparisons of predicted and measured piezoelectric actuation, sinusoidal excitation voltages are simulated/applied and maximum deflections are calculated/measured. The maximum deflection as a function of time was determined using the linear finite elements analysis. Good correlation between prediction and measurement was achieved in all cases.

  5. Maximum sustained fin-kick thrust in underwater swimming.

    PubMed

    Yamaguchi, H; Shidara, F; Naraki, N; Mohri, M

    1995-09-01

    We examined the upper limit of a diver's fin-kick thrust force using a stationary-swimming ergometer. Heart rate, respiratory minute volume, oxygen uptake, and performance rate were measured in four male subjects who swam constantly for 8 min to maintain a horizontal position against an applied force at a depth of 0.7 m. The water temperature was controlled at 26 degrees +/- 1 degree C. The performance rate, which was the parameter of how well the subjects compensated for the applied load, showed an upper limit around 64 N of sustainable thrust force. This meant that the diver could generate the swimming thrust force within 64 N continuously for 8 min in a steady state. Heart rate, respiratory minute volume, and O2 uptake showed almost proportional increases to the applied load within 64 N and tended to plateau about 69 N.

  6. Greater Strength Gains after Training with Accentuated Eccentric than Traditional Isoinertial Loads in Already Strength-Trained Men

    PubMed Central

    Walker, Simon; Blazevich, Anthony J.; Haff, G. Gregory; Tufano, James J.; Newton, Robert U.; Häkkinen, Keijo

    2016-01-01

    As training experience increases it becomes more challenging to induce further neuromuscular adaptation. Consequently, strength trainers seek alternative training methods in order to further increase strength and muscle mass. One method is to utilize accentuated eccentric loading, which applies a greater external load during the eccentric phase of the lift as compared to the concentric phase. Based upon this practice, the purpose of this study was to determine the effects of 10 weeks of accentuated eccentric loading vs. traditional isoinertial resistance training in strength-trained men. Young (22 ± 3 years, 177 ± 6 cm, 76 ± 10 kg, n = 28) strength-trained men (2.6 ± 2.2 years experience) were allocated to concentric-eccentric resistance training in the form of accentuated eccentric load (eccentric load = concentric load + 40%) or traditional resistance training, while the control group continued their normal unsupervised training program. Both intervention groups performed three sets of 6-RM (session 1) and three sets of 10-RM (session 2) bilateral leg press and unilateral knee extension exercises per week. Maximum force production was measured by unilateral isometric (110° knee angle) and isokinetic (concentric and eccentric 30°.s−1) knee extension tests, and work capacity was measured by a knee extension repetition-to-failure test. Muscle mass was assessed using panoramic ultrasonography and dual-energy x-ray absorptiometry. Surface electromyogram amplitude normalized to maximum M-wave and the twitch interpolation technique were used to examine maximal muscle activation. After training, maximum isometric torque increased significantly more in the accentuated eccentric load group than control (18 ± 10 vs. 1 ± 5%, p < 0.01), which was accompanied by an increase in voluntary activation (3.5 ± 5%, p < 0.05). Isokinetic eccentric torque increased significantly after accentuated eccentric load training only (10 ± 9%, p < 0.05), whereas concentric torque increased equally in both the accentuated eccentric load (10 ± 9%, p < 0.01) and traditional (9 ± 6%, p < 0.01) resistance training groups; however, the increase in the accentuated eccentric load group was significantly greater (p < 0.05) than control (1 ± 7%). Knee extension repetition-to-failure improved in the accentuated eccentric load group only (28%, p < 0.05). Similar increases in muscle mass occurred in both intervention groups. In summary, accentuated eccentric load training led to greater increases in maximum force production, work capacity and muscle activation, but not muscle hypertrophy, in strength-trained individuals. PMID:27199764

  7. Response of shallow geothermal energy pile from laboratory model tests

    NASA Astrophysics Data System (ADS)

    Marto, A.; Amaludin, A.

    2015-09-01

    In shallow geothermal energy pile systems, the thermal loads from the pile, transferred and stored in the soil will cause thermally induced settlement. This factor must be considered in the geotechnical design process to avoid unexpected hazards. Series of laboratory model tests were carried out to study the behaviour of energy piles installed in kaolin soil, subjected to thermal loads and a combination of axial and thermal loads (henceforth known as thermo-axial loads). Six tests which included two thermal load tests (35°C and 40°C) and four thermo-axial load tests (100 N and 200 N, combined with 35°C and 40°C thermal loads) were conducted. To simulate the behaviour of geothermal energy piles during its operation, the thermo-axial tests were carried out by applying an axial load to the model pile head, and a subsequent application of thermal load. The model soil was compacted at 90% maximum dry density and had an undrained shear strength of 37 kPa, thus classified as having a firm soil consistency. The behaviour of model pile, having the ultimate load capacity of 460 N, was monitored using a linear variable displacement transducer, load cell and wire thermocouple, to measure the pile head settlement, applied axial load and model pile temperature. The acquired data from this study was used to define the thermo-axial response characteristics of the energy pile model. In this study, the limiting settlement was defined as 10% of the model pile diameter. For thermal load tests, higher thermal loads induced higher values of thermal settlement. At 40°C thermal load an irreversible settlement was observed after the heating and cooling cycle was applied to the model pile. Meanwhile, the pile response to thermo-axial loads were attributed to soil consistency and the magnitude of both the axial and thermal loads applied to the pile. The higher the thermoaxial loads, the higher the settlements occurred. A slight hazard on the model pile was detected, since the settlement occurred was greater than the limiting value when the pile was loaded with thermo-axial loads of 40°C and 200 N. It is therefore recommended that the global factor of safety to be applied for energy pile installed in firm soil should be more than 2.3 to prevent any hazard to occur in the future, should the pile also be subjected to thermal load of 40°C or greater.

  8. Evaluation of pollutant loads from stormwater BMPs to receiving water using load frequency curves with uncertainty analysis.

    PubMed

    Park, Daeryong; Roesner, Larry A

    2012-12-15

    This study examined pollutant loads released to receiving water from a typical urban watershed in the Los Angeles (LA) Basin of California by applying a best management practice (BMP) performance model that includes uncertainty. This BMP performance model uses the k-C model and incorporates uncertainty analysis and the first-order second-moment (FOSM) method to assess the effectiveness of BMPs for removing stormwater pollutants. Uncertainties were considered for the influent event mean concentration (EMC) and the aerial removal rate constant of the k-C model. The storage treatment overflow and runoff model (STORM) was used to simulate the flow volume from watershed, the bypass flow volume and the flow volume that passes through the BMP. Detention basins and total suspended solids (TSS) were chosen as representatives of stormwater BMP and pollutant, respectively. This paper applies load frequency curves (LFCs), which replace the exceedance percentage with an exceedance frequency as an alternative to load duration curves (LDCs), to evaluate the effectiveness of BMPs. An evaluation method based on uncertainty analysis is suggested because it applies a water quality standard exceedance based on frequency and magnitude. As a result, the incorporation of uncertainty in the estimates of pollutant loads can assist stormwater managers in determining the degree of total daily maximum load (TMDL) compliance that could be expected from a given BMP in a watershed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Finite element simulation of Reference Point Indentation on bone.

    PubMed

    Idkaidek, Ashraf; Agarwal, Vineet; Jasiuk, Iwona

    2017-01-01

    Reference Point Indentation (RPI) is a novel technique aimed to assess bone quality. Measurements are recorded by the BioDent instrument that applies multiple indents to the same location of cortical bone. Ten RPI parameters are obtained from the resulting force-displacement curves. Using the commercial finite element analysis software Abaqus, we assess the significance of the RPI parameters. We create an axisymmetric model and employ an isotropic viscoelastic-plastic constitutive relation with damage to simulate indentations on a human cortical bone. Fracture of bone tissue is not simulated for simplicity. The RPI outputs are computed for different simulated test cases and then compared with experimental results, measured using the BioDent, found in literature. The number of cycles, maximum indentation load, indenter tip radius, and the mechanical properties of bone: Young׳s modulus, compressive yield stress, and viscosity and damage constants, are varied. The trends in the RPI parameters are then investigated. We find that the RPI parameters are sensitive to the mechanical properties of bone. An increase in Young׳s modulus of bone causes the force-displacement loading and unloading slopes to increase and the total indentation distance (TID) to decrease. The compressive yield stress is inversely proportional to a creep indentation distance (CID1) and the TID. The viscosity constant is proportional to the CID1 and an average of the energy dissipated (AvED). The maximum indentation load is proportional to the TID, CID1, loading and unloading slopes, and AvED. The damage parameter is proportional to the TID, but it is inversely proportional to both the loading and unloading slopes and the AvED. The value of an indenter tip radius is proportional to the CID1 and inversely proportional to the TID. The number of load cycles is inversely proportional to an average of a creep indentation depth (AvCID) and the AvED. The indentation distance increase (IDI) is strongly inversely proportional to the compressive yield stress, and strongly proportional to the viscosity constant and maximum applied load, but has weak relation with the damage parameter, indenter tip radius, and elastic modulus. This computational study advances our understanding of the RPI outputs and provides a starting point for more comprehensive computational studies of the RPI technique. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Effects of agricultural management, land use, and watershed scale on E. coli concentrations in runoff and streamflow

    USDA-ARS?s Scientific Manuscript database

    Fecal contamination of surface waters is a critical water quality concern with serious human health implications. Many states use Escherichia coli (E. coli) as an indicator organism for fecal contamination and apply watershed models to develop and support bacterial Total Maximum Daily Loads; howeve...

  11. A three-dimensional inverse finite element analysis of the heel pad.

    PubMed

    Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet

    2012-03-01

    Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.

  12. Static vs dynamic loads as an influence on bone remodelling.

    PubMed

    Lanyon, L E; Rubin, C T

    1984-01-01

    Remodelling activity in the avian ulna was assessed under conditions of disuse alone, disuse with a superimposed continuous compressive load, and disuse interrupted by a short daily period of intermittent loading. The ulnar preparation consisted of the 110mm section of the bone shaft between two submetaphyseal osteotomies. Each end of the preparation was transfixed by a stainless steel pin and the shaft either protected from normal functional loading with the pins joined by external fixators, loaded continuously in compression by joining the pins with springs, or loaded intermittently in compression for a single 100s period per day by engaging the pins in an Instron machine. Similar loads (525 N) were used in both static and dynamic cases. The strains engendered were determined by strain gauges, and at their maximum around the bone's midshaft were -0.002. The intermittent load was applied at a frequency of 1 Hz as a ramped square wave, with a rate of change of strain during the ramp of 0.01 s-1. Peak strain at the midshaft of the ulna during wing flapping in the intact bone was recorded from bone bonded strain gauges in vivo as -0.0033 with a maximum rate of change of strain of 0.056 s-1. Examination of bone sections from the midpoint of the preparation after an 8 week period indicated that in both non-loaded and statically loaded bones there was an increase in both endosteal diameter and intra cortical porosity. These changes produced a decrease in cross sectional area which was similar in the two groups (-13%).(ABSTRACT TRUNCATED AT 250 WORDS)

  13. A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters.

    PubMed

    Tatari, K; Smets, B F; Albrechtsen, H-J

    2013-10-15

    A bench-scale assay was developed to obtain site-specific nitrification biokinetic information from biological rapid sand filters employed in groundwater treatment. The experimental set-up uses granular material subsampled from a full-scale filter, packed in a column, and operated with controlled and continuous hydraulic and ammonium loading. Flowrates and flow recirculation around the column are chosen to mimic full-scale hydrodynamic conditions, and minimize axial gradients. A reference ammonium loading rate is calculated based on the average loading experienced in the active zone of the full-scale filter. Effluent concentrations of ammonium are analyzed when the bench-scale column is subject to reference loading, from which removal rates are calculated. Subsequently, removal rates above the reference loading are measured by imposing short-term loading variations. A critical loading rate corresponding to the maximum removal rate can be inferred. The assay was successfully applied to characterize biokinetic behavior from a test rapid sand filter; removal rates at reference loading matched those observed from full-scale observations, while a maximum removal capacity of 6.9 g NH4(+)-N/m(3) packed sand/h could easily be determined at 7.5 g NH4(+)-N/m(3) packed sand/h. This assay, with conditions reflecting full-scale observations, and where the biological activity is subject to minimal physical disturbance, provides a simple and fast, yet powerful tool to gain insight in nitrification kinetics in rapid sand filters. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Does combined strength training and local vibration improve isometric maximum force? A pilot study.

    PubMed

    Goebel, Ruben; Haddad, Monoem; Kleinöder, Heinz; Yue, Zengyuan; Heinen, Thomas; Mester, Joachim

    2017-01-01

    The aim of the study was to determine whether a combination of strength training (ST) and local vibration (LV) improved the isometric maximum force of arm flexor muscles. ST was applied to the left arm of the subjects; LV was applied to the right arm of the same subjects. The main aim was to examine the effect of LV during a dumbbell biceps curl (Scott Curl) on isometric maximum force of the opposite muscle among the same subjects. It is hypothesized, that the intervention with LV produces a greater gain in isometric force of the arm flexors than ST. Twenty-seven collegiate students participated in the study. The training load was 70% of the individual 1 RM. Four sets with 12 repetitions were performed three times per week during four weeks. The right arm of all subjects represented the vibration trained body side (VS) and the left arm served as the traditional trained body side (TTS). A significant increase of isometric maximum force in both body sides (Arms) occurred. VS, however, significantly increased isometric maximum force about 43% in contrast to 22% of the TTS. The combined intervention of ST and LC improves isometric maximum force of arm flexor muscles. III.

  15. Development and Validation of a Bioreactor System for Dynamic Loading and Mechanical Characterization of Whole Human Intervertebral Discs in Organ Culture

    PubMed Central

    Walter, BA; Illien-Junger, S; Nasser, P; Hecht, AC; Iatridis, JC

    2014-01-01

    Intervertebral disc (IVD) degeneration is a common cause of back pain, and attempts to develop therapies are frustrated by lack of model systems that mimic the human condition. Human IVD organ culture models can address this gap, yet current models are limited since vertebral endplates are removed to maintain cell viability, physiological loading is not applied, and mechanical behaviors are not measured. This study aimed to (i) establish a method for isolating human IVDs from autopsy with intact vertebral endplates, and (ii) develop and validate an organ culture loading system for human or bovine IVDs. Human IVDs with intact endplates were isolated from cadavers within 48 hours of death and cultured for up to 21 days. IVDs remained viable with ~80% cell viability in nucleus and annulus regions. A dynamic loading system was designed and built with the capacity to culture 9 bovine or 6 human IVDs simultaneously while applying simulated physiologic loads (maximum force: 4kN) and measuring IVD mechanical behaviors. The loading system accurately applied dynamic loading regimes (RMS error <2.5N and total harmonic distortion <2.45%), and precisely evaluated mechanical behavior of rubber and bovine IVDs. Bovine IVDs maintained their mechanical behavior and retained >85% viable cells throughout the 3 week culture period. This organ culture loading system can closely mimic physiological conditions and be used to investigate response of living human and bovine IVDs to mechanical and chemical challenges and to screen therapeutic repair techniques. PMID:24725441

  16. Finite Element Analysis of Single Wheat Mechanical Response to Wind and Rain Loads

    NASA Astrophysics Data System (ADS)

    Liang, Li; Guo, Yuming

    One variety of wheat in the breeding process was chosen to determine the wheat morphological traits and biomechanical properties. ANSYS was used to build the mechanical model of wheat to wind load and the dynamic response of wheat to wind load was simulated. The maximum Von Mises stress is obtained by the powerful calculation function of ANSYS. And the changing stress and displacement of each node and finite element in the process of simulation can be output through displacement nephogram and stress nephogram. The load support capability can be evaluated and to predict the wheat lodging. It is concluded that computer simulation technology has unique advantages such as convenient and efficient in simulating mechanical response of wheat stalk under wind and rain load. Especially it is possible to apply various load types on model and the deformation process can be observed simultaneously.

  17. Effect of surface preparation on the failure load of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite.

    PubMed

    Shimizu, Hiroshi; Tsue, Fumitake; Chen, Zhao-Xun; Takahashi, Yutaka

    2009-04-01

    The purpose of the present study was to evaluate the effect of surface preparation on the maximum fracture load value of a highly filled composite bonded to the polymer-monomer matrix of a fiber-reinforced composite. A polymer-monomer matrix was made by mixing urethane dimethacrylate and triethyleneglycol dimethacrylate at a ratio of 1:1 with camphorquinone and 2-dimethylaminoethyl methacrylate as a light initiator. The matrix was then polymerized in a disk-shaped silicone mold with a light-polymerizing unit. The flat surfaces of the polymer-monomer matrix disk were prepared in one of the following ways: (1) without preparation; (2) application of silane coupling agent; or (3) application of matrix liquid and prepolymerization. A highly filled composite material was applied and polymerized with a light-polymerizing unit. Additional test specimens made entirely of the polymer-monomer matrix were fabricated as references; the disk and cylinder were fabricated in one piece using a mold specially made for the present study (group 4). Half the specimens were thermocycled up to 10,000 times in water with a 1-minute dwell time at each temperature (5 degrees C and 55 degrees C). The maximum fracture load values were determined using a universal testing machine (n = 10). The maximum fracture loads for group 3 were significantly enhanced both before and after thermocycling, whereas the maximum fracture loads of group 2 were significantly enhanced before thermocycling (p < 0.05); however, the failure loads decreased for all groups after thermocycling (p < 0.05). All the specimens in groups 1 and 2 debonded during thermocycling. The failure load of group 3 was significantly lower than that of group 4 both before and after thermocycling (p < 0.05). Within the limitations of the current in vitro study, the application and prepolymerization of a mixed dimethacrylate resin liquid prior to the application of a highly filled composite was an effective surface preparation for the polymer-monomer matrix of a fiber-reinforced composite; however, the bond durability may be insufficient.

  18. Determination of the effects of wind-induced vibration on cylindrical beams

    NASA Technical Reports Server (NTRS)

    Artusa, E. A.

    1991-01-01

    The objective of the analysis was to determine the critical length to diameter ratio (L/Do) of a hollow, cylindrical beam subjected to wind-induced vibration. The sizes of beams ranged from 4 to 24 inches and were composed of ASTM grade A and grade B and American Petroleum Institute grade X42 steels. Calculations used maximum steady-state wind speeds of 130 mph associated with hurricane conditions possible at the Kennedy Space Center. The study examined the effect that different end support and load conditions have on the natural frequencies of the beams. Finally, methods of changing the frequency of the wind-induced vibration were examined. The conclusions drawn were that the greatest possible L/Do is achieved using welded supports and limiting the maximum applied axial and bending loads to less than 50 percent.

  19. The influence of nail blocking conditions in cattle femoral fractures.

    PubMed

    Paolucci, Leopoldo A; Las Casas, Estevam B; Faleiros, Rafael R; Paz, Cahuê F R; Rocha Junior, Sergio S

    2018-05-07

    To investigate the effect of different fixation strategies of the intramedullary interlocking nail (IIN) on the mechanical behavior of a polymeric implant applied for femoral fracture fixation in calves, and to evaluate the performance of a glass fiber-reinforced polymer applied in a bovine femoral fracture reduction system, five Holstein male animals with a mean weight (±SD) of 62.8 ± 20.4 kg and aged 74 ± 15 were used to generate biomechanical parameters for this study. Twelve models of the fractured bovine femur, simulating a simple oblique fracture, were developed for use during the simulations. The models were divided into three groups, with each group of four models being associated with a different fixation strategy. Models were used to simulate the loading conditions corresponding to a calf in the transition (decubitus position to static position) condition. The maximum stresses found in each set (bone/implant) were compared with the reference stresses of each nail material. Maximum implant stresses were found in the screws and at the interface between the screw and the nail. The performance of implants was influenced by the material and fixation strategy, which can be confirmed by the stress values found in the set. The analysis indicated that the composite nail is able to withstand the loading demands in all fixation strategies. The finite element analysis (FEA) demonstrated that all polymeric materials analyzed provided sufficient resistance to withstand the loading forces imposed to the femur when an adequate blocking strategy was applied. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. An Investigation of Interfacial Fatigue in Fiber Reinforced Composites

    NASA Astrophysics Data System (ADS)

    Yanhua, Chen; Zhifei, Shi

    2005-09-01

    Based on the shear-lag model and the modified degradation formula for coefficient of friction, the interfacial fatigue and debonding for fiber reinforced composites under cyclic loading are studied. The loading condition is chosen as the kind that is the most frequently used in fiber-pull-out experiments. The stress components in the debonded and bonded regions are obtained according to the maximum and minimum applied loading. By the aid of theory of fracture mechanics and Paris formula, the governing equation is solved numerically and the interfacial debonding is simulated. The relationships between the parameters (such as the debond rate, debond length, debond force) and the number of cycles are obtained.

  1. Design Spectrum Analysis in NASTRAN

    NASA Technical Reports Server (NTRS)

    Butler, T. G.

    1984-01-01

    The utility of Design Spectrum Analysis is to give a mode by mode characterization of the behavior of a design under a given loading. The theory of design spectrum is discussed after operations are explained. User instructions are taken up here in three parts: Transient Preface, Maximum Envelope Spectrum, and RMS Average Spectrum followed by a Summary Table. A single DMAP ALTER packet will provide for all parts of the design spectrum operations. The starting point for getting a modal break-down of the response to acceleration loading is the Modal Transient rigid format. After eigenvalue extraction, modal vectors need to be isolated in the full set of physical coordinates (P-sized as opposed to the D-sized vectors in RF 12). After integration for transient response the results are scanned over the solution time interval for the peak values and for the times that they occur. A module called SCAN was written to do this job, that organizes these maxima into a diagonal output matrix. The maximum amplifier in each mode is applied to the eigenvector of each mode which then reveals the maximum displacements, stresses, forces and boundary reactions that the structure will experience for a load history, mode by mode. The standard NASTRAN output processors have been modified for this task. It is required that modes be normalized to mass.

  2. Influence of Distributed Dead Loads on Vehicle Position for Maximum Moment in Simply Supported Bridges

    NASA Astrophysics Data System (ADS)

    Gupta, Tanmay; Kumar, Manoj

    2017-06-01

    Usually, the design moments in the simply supported bridges are obtained as the sum of moments due to dead loads and live load where the live load moments are calculated using the rolling load concept neglecting the effect of dead loads. For the simply supported bridges, uniformly distributed dead load produces maximum moment at mid-span while the absolute maximum bending moment due to multi-axel vehicles occur under a wheel which usually do not lie at mid-span. Since, the location of absolute maximum bending moment due to multi-axel vehicle do not coincide with the location of maximum moment due to dead loads occurring at mid-span, the design moment may not be obtained by simply superimposing the effect of dead load and live load. Moreover, in case of Class-A and Class-70R wheeled vehicular live loads, which consists of several axels, the number of axels to be considered over the bridge of given span and their location is tedious to find out and needs several trials. The aim of the present study is to find the number of wheels for Class-A and Class-70R wheeled vehicles and their precise location to produce absolute maximum moment in the bridge considering the effect of dead loads and impact factor. Finally, in order to enable the designers, the design moments due to Class-70R wheeled and Class-A loading have been presented in tabular form for the spans from 10 to 50 m.

  3. Test load verification through strain data analysis

    NASA Technical Reports Server (NTRS)

    Verderaime, V.; Harrington, F.

    1995-01-01

    A traditional binding acceptance criterion on polycrystalline structures is the experimental verification of the ultimate factor of safety. At fracture, the induced strain is inelastic and about an order-of-magnitude greater than designed for maximum expected operational limit. At this extreme strained condition, the structure may rotate and displace at the applied verification load such as to unknowingly distort the load transfer into the static test article. Test may result in erroneously accepting a submarginal design or rejecting a reliable one. A technique was developed to identify, monitor, and assess the load transmission error through two back-to-back surface-measured strain data. The technique is programmed for expediency and convenience. Though the method was developed to support affordable aerostructures, the method is also applicable for most high-performance air and surface transportation structural systems.

  4. Load application for the contact mechanics analysis and wear prediction of total knee replacement.

    PubMed

    Zhang, Jing; Chen, Zhenxian; Wang, Ling; Li, Dichen; Jin, Zhongmin

    2017-05-01

    Tibiofemoral contact forces in total knee replacement have been measured at the medial and lateral sites respectively using an instrumented prosthesis, and predicted from musculoskeletal multibody dynamics models with a reasonable accuracy. However, it is uncommon that the medial and lateral forces are applied separately to replace a total axial load according to the ISO standard in the majority of current finite element analyses. In this study, we quantified the different effects of applying the medial and lateral loads separately versus the traditional total axial load application on contact mechanics and wear prediction of a patient-specific knee prosthesis. The load application position played an important role under the medial-lateral load application. The loading set which produced the closest load distribution to the multibody dynamics model was used to predict the contact mechanics and wear for the prosthesis and compared with the total axial load application. The medial-lateral load distribution using the present method was found to be closer to the multibody dynamics prediction than the traditional total axial load application, and the maximum contact pressure and contact area were consistent with the corresponding load variation. The predicted total volumetric wear rate and area were similar between the two load applications. However, the split of the predicted wear volumes on the medial and the lateral sides was different. The lateral volumetric wear rate was 31.46% smaller than the medial from the traditional load application prediction, while from the medial-lateral load application, the lateral side was only 11.8% smaller than the medial. The medial-lateral load application could provide a new and more accurate method of load application for patient-specific preclinical contact mechanics and wear prediction of knee implants.

  5. Applying the SWAT hydrologic model on a watershed containing forested karst.

    Treesearch

    Devendra M. Amatya; Amy E. Edwards

    2009-01-01

    The US Forest Service Center for Forested Wetlands Research is working on a South Carolina Department of Health and Environmental Control (SC DHEC)'s Section 319 Grant Program funded Total Maximum Daily Load (TMDL) project for the watershed of Chapel Branch Creek (CBC) draining to Lake Marion in Santee, South Carolina (Fig. 1)....

  6. Agricultural herbicide transport in a first-order intermittent stream, Nebraska, USA

    USGS Publications Warehouse

    Vogel, J.R.; Linard, J.I.

    2011-01-01

    The behavior of herbicides in surface waters is a function of many variables, including scale of the watershed, physical and chemical properties of the herbicide, physical and chemical properties of the soil, rainfall intensity, and time of year. In this study, the transport of 6 herbicides and 12 herbicide degradates was examined during the 2004 growing season in an intermediate-scale agricultural watershed (146 ha) that is drained by a first-order intermittent stream, and the mass load for each herbicide in the stream was estimated. The herbicide load during the first week of storm events after application ranged from 17% of annual load for trifluralin to 84% of annual load for acetochlor. The maximum weekly herbicide load in the stream was generally within the first 3 weeks after application for those compounds that were applied within the watershed during 2004, and later for herbicides not applied within the watershed during 2004 but still detected in the stream. The apparent dominant mode of herbicide transport in the stream-determined by analysis amongst herbicide and conservative ion concentrations at different points in the hydrograph and in base flow samples-was either overland runoff or shallow subsurface flow, depending on the elapsed time after application and type of herbicide. The load as a percentage of use (LAPU) for the parent compounds in this study was similar to literature values for those compounds applied by the farmer within the watershed, but smaller for those herbicides that had rainfall as their only source within the watershed.

  7. Simulating Vibrations in a Complex Loaded Structure

    NASA Technical Reports Server (NTRS)

    Cao, Tim T.

    2005-01-01

    The Dynamic Response Computation (DIRECT) computer program simulates vibrations induced in a complex structure by applied dynamic loads. Developed to enable rapid analysis of launch- and landing- induced vibrations and stresses in a space shuttle, DIRECT also can be used to analyze dynamic responses of other structures - for example, the response of a building to an earthquake, or the response of an oil-drilling platform and attached tanks to large ocean waves. For a space-shuttle simulation, the required input to DIRECT includes mathematical models of the space shuttle and its payloads, and a set of forcing functions that simulates launch and landing loads. DIRECT can accommodate multiple levels of payload attachment and substructure as well as nonlinear dynamic responses of structural interfaces. DIRECT combines the shuttle and payload models into a single structural model, to which the forcing functions are then applied. The resulting equations of motion are reduced to an optimum set and decoupled into a unique format for simulating dynamics. During the simulation, maximum vibrations, loads, and stresses are monitored and recorded for subsequent analysis to identify structural deficiencies in the shuttle and/or payloads.

  8. Effect of load ratio on fatigue crack propagation behavior of solid-solution-strengthened Ni-based superalloys at elevated temperature

    NASA Astrophysics Data System (ADS)

    Ma, Longzhou; Roy, Shawoon K.

    2013-04-01

    The fatigue crack propagation (FCP) behavior of two solid-solution-strengthened Ni-based superalloys, INCONEL 617 and HAYNES 230, were studied simultaneously in laboratory air using a constant stress intensity factor (K)-controlled mode with different load ratios (R-ratio) at 700 °C. The FCP tests were performed in both cycle and time-dependent FCP domains to examine the effect of R-ratio on the FCP rate, da/dn. For cycle-dependent FCP test, a 1-s sinusoidal fatigue was applied for a compact tension (CT) specimen of INCONEL 617 and HAYNES 230 to measure their FCP rates. For time-dependent FCP test, a 3-s sinusoidal fatigue with a hold time of 300 s at maximum load was applied. Both cycle/time-dependent FCP behaviors were characterized and analyzed. The results showed that increasing R-ratio would introduce the fatigue incubation and decrease the FCP rates at cycle-dependent FCP tests. On the contrary, fatigue incubation was not observed at time-dependent FCP tests for both INCONEL 617 and HAYNES 230 at each tested R-ratio, suggesting that association of maximum load (Kmax) with crack tip open displacement (CTOD) and environmental factor governed the FCP process. Also, for time-dependent FCP, HAYNES 230 showed lower FCP rates than INCONEL 617 regardless of R-ratio. However, for cycle-dependent FCP, HAYNES 230 showed the lower FCP rates only at high R-ratios. Fracture surface of specimens were examined using SEM to investigate the cracking mechanism under cycle/time-dependent FCP condition with various R-ratios.

  9. Local Dynamic Stability Associated with Load Carrying

    PubMed Central

    Lockhart, Thurmon E

    2013-01-01

    Objectives Load carrying tasks are recognized as one of the primary occupational factors leading to slip and fall injuries. Nevertheless, the mechanisms associated with load carrying and walking stability remain illusive. The objective of the current study was to apply local dynamic stability measure in walking while carrying a load, and to investigate the possible adaptive gait stability changes. Methods Current study involved 25 young adults in a biomechanics research laboratory. One tri-axial accelerometer was used to measure three-dimensional low back acceleration during continuous treadmill walking. Local dynamic stability was quantified by the maximum Lyapunov exponent (maxLE) from a nonlinear dynamics approach. Results Long term maxLE was found to be significant higher under load condition than no-load condition in all three reference axes, indicating the declined local dynamic stability associated with load carrying. Conclusion Current study confirmed the sensitivity of local dynamic stability measure in load carrying situation. It was concluded that load carrying tasks were associated with declined local dynamic stability, which may result in increased risk of fall accident. This finding has implications in preventing fall accidents associated with occupational load carrying. PMID:23515183

  10. Maximum von Mises Stress in the Loading Environment of Mass Acceleration Curve

    NASA Technical Reports Server (NTRS)

    Glaser, Robert J.; Chen, Long Y.

    2006-01-01

    Method for calculating stress due to acceleration loading: 1) Part has been designed by FEA and hand calculation in one critical loading direction judged by the analyst; 2) Maximum stress can be due to loading in another direction; 3) Analysis procedure to be presented determines: a) The maximum Mises stress at any point; and b) The direction of maximum loading associated with the "stress". Concept of Mass Acceleration Curves (MAC): 1) Developed by JPL to perform preliminary structural sizing (i.e. Mariners, Voyager, Galileo, Pathfinder, MER,...MSL); 2) Acceleration of physical masses are bounded by a curve; 3) G-levels of vibro-acoustic and transient environments; 4) Convergent process before the couple loads cycle; and 5) Semi-empirical method to effectively bound the loads, not a simulation of the actual response.

  11. [New methods for determining the relative load due to physical effort of the human body].

    PubMed

    Szubert, Józef; Szubert, Sławomir; Koszada-Włodarczyk, Wiesława; Bortkiewicz, Alicja

    2014-01-01

    The relative physical load (% VO2max) is the quotient of oxygen uptake (Vo2) during physical effort and maximum oxygen uptake (VO2max) by the human body. For this purpose the stress test must be performed. The relative load shows a high correlation with minute ventilation, cardiac output, heart rate, stroke volume, increased concentrations of catecholamines in the blood, inner temperature, weight, height and human body surface area. The relative load is a criterion for the maximum workloads admissible for healthy and sick workers. Besides, the classification of effort can be more precise when based on the relative load than on the energy output. Based on our own and international empirical evidence and the laws of heat transfer and fluid mechanics, a model of temperature control system has been developed, involving the elements of human cardiovascular and respiratory systems. Using this model, we have been able to develop our own methods of determining the relative load, applying only the body core temperature (Tw) or heart rate within one minute (HR), body mass (m), height (H), and body surface area (AD) instead of VO,max. The values of the relative physical load (% VO2max) obtained by using our own methods do not differ significantly from those obtained by other methods and by other researchers. The developed methods for determining the relative physical load (% VO2max) do not require the exercise test to be performed, therefore, they may be considered (after verification in an experimental study) a feasible alternative to current methods.

  12. Indirect addressing and load balancing for faster solution to Mandelbrot Set on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1989-01-01

    SIMD computers with local indirect addressing allow programs to have queues and buffers, making certain kinds of problems much more efficient. Examined here are a class of problems characterized by computations on data points where the computation is identical, but the convergence rate is data dependent. Normally, in this situation, the algorithm time is governed by the maximum number of iterations required by each point. Using indirect addressing allows a processor to proceed to the next data point when it is done, reducing the overall number of iterations required to approach the mean convergence rate when a sufficiently large problem set is solved. Load balancing techniques can be applied for additional performance improvement. Simulations of this technique applied to solving Mandelbrot Sets indicate significant performance gains.

  13. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-ion cells

    NASA Astrophysics Data System (ADS)

    Xia, Yuzhi; Li, Tianlei; Ren, Fei; Gao, Yanfei; Wang, Hsin

    2014-11-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries. It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum first principal strain, which is believed to induce the internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum first principal strain is also examined.

  14. Interim Report on Fatigue Characteristics of a Typical Metal Wing

    NASA Technical Reports Server (NTRS)

    Kepert, J L; Payne, A O

    1956-01-01

    Constant amplitude fatigue tests of seventy-two P-51D "Mustang" wings are reported. The tests were performed by a vibrational loading system and by an hydraulic loading device for conditions with and without varying amounts of pre-load. The results indicate that: (a) the frequency of occurrence of fatigue at any one location is related to the range of the loads applied, (b) the rate of propagation of visible cracks is more or less constant for a large portion of the life of the specimen, (c) the fatigue strength of the structure is similar to that of notched material having a theoretical stress concentration factor of more than 3.0, (d) the frequency distribution of fatigue life is approximately logarithmic normal, (e) the relative increase in fatigue life for a given pre-load depends on the maximum load of the loading cycle only, while the optimum pre-load value is approximately 85 percent of the ultimate failing load, and (f) that normal design procedure will not permit the determination of local stress levels with sufficient accuracy to determine the fatigue strength of an element of a redundant structure.

  15. Relating Cohesive Zone Model to Linear Elastic Fracture Mechanics

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2010-01-01

    The conditions required for a cohesive zone model (CZM) to predict a failure load of a cracked structure similar to that obtained by a linear elastic fracture mechanics (LEFM) analysis are investigated in this paper. This study clarifies why many different phenomenological cohesive laws can produce similar fracture predictions. Analytical results for five cohesive zone models are obtained, using five different cohesive laws that have the same cohesive work rate (CWR-area under the traction-separation curve) but different maximum tractions. The effect of the maximum traction on the predicted cohesive zone length and the remote applied load at fracture is presented. Similar to the small scale yielding condition for an LEFM analysis to be valid. the cohesive zone length also needs to be much smaller than the crack length. This is a necessary condition for a CZM to obtain a fracture prediction equivalent to an LEFM result.

  16. A furnace with rotating load frame for in situ high temperature deformation and creep experiments in a neutron diffraction beam line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reiche, H. M.; New Mexico State University, Las Cruces, New Mexico 88003; Vogel, S. C.

    2012-05-15

    A resistive furnace combined with a load frame was built that allows for in situ neutron diffraction studies of high temperature deformation, in particular, creep. A maximum force of 2700 N can be applied at temperatures up to 1000 deg. C. A load control mode permits studies of, e.g., creep or phase transformations under applied uni-axial stress. In position control, a range of high temperature deformation experiments can be achieved. The examined specimen can be rotated up to 80 deg. around the vertical compression axis allowing texture measurements in the neutron time-of-flight diffractometer HIPPO (High Pressure - Preferred Orientation). Wemore » present results from the successful commissioning, deforming a Zr-2.5 wt.% Nb cylinder at 975 deg. C. The device is now available for the user program of the HIPPO diffractometer at the LANSCE (Los Alamos Neutron Science Center) user facility.« less

  17. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  18. Pelvic modelling and the comparison between plate position for double pelvic osteotomy using artificial cancellous bone and finite element analysis.

    PubMed

    McCartney, William; MacDonald, Bryan; Ober, Ciprian Andrei; Lostado-Lorza, Rubén; Gómez, Fátima Somovilla

    2018-03-20

    Finite element analysis was used to compare fixation methods for double pelvic osteotomy (DPO). Using 3D scanning a stereolithography (stl) image was produced of a canine pelvis and this was subsequently refined in computer aided design (CAD). Using the CAD files, the images were imported in MSC Marc software to produce a working finite element (FE) model with 3 dimensional tetrahedral elements with linear shaped functions. The dimensions of a precontoured pelvic osteotomy plate with eight screws and a twisted seven screw straight plate were used to build the 2 fixations implants for the FE models. An equivalent load of 300 N was applied progressively on all FE models in order to facilitate its convergence. The load was applied in a distributed manner on the femur-hip joint contact area in order to simulate the actual behavior of the joint. The aim of the present study was to analyze the difference in stiffness and behavior under loading between a lateral vs ventral plate fixation, with unlocked screws and different gap scenarios, for stabilization of a pelvic osteotomy using finite element analysis. From both configurations the maximum displacement of the ventral plate with 7 screws without gap had a value of 1.988 mm, while in the DPO plate had a maximum displacement of 2.191 mm. The load applied for each of the different configurations studied when a gap of 1° was considered and also when a condition of no gap was considered. The ventral plate was stiffer than the lateral plate when a gap was not present. When the gap was closed in the ventral plate, the stiffness increased until a point that remained constant. Ventral plate fixation can be as or more stiff as lateral plate fixation and provides flexible fixation. This behavior should reduce screw loosening. Using ventral plate fixation is recommended to reduce screw loosening or failure.

  19. Integrated optimization of nonlinear R/C frames with reliability constraints

    NASA Technical Reports Server (NTRS)

    Soeiro, Alfredo; Hoit, Marc

    1989-01-01

    A structural optimization algorithm was researched including global displacements as decision variables. The algorithm was applied to planar reinforced concrete frames with nonlinear material behavior submitted to static loading. The flexural performance of the elements was evaluated as a function of the actual stress-strain diagrams of the materials. Formation of rotational hinges with strain hardening were allowed and the equilibrium constraints were updated accordingly. The adequacy of the frames was guaranteed by imposing as constraints required reliability indices for the members, maximum global displacements for the structure and a maximum system probability of failure.

  20. A new physical performance classification system for elite handball players: cluster analysis

    PubMed Central

    Chirosa, Ignacio J.; Robinson, Joseph E.; van der Tillaar, Roland; Chirosa, Luis J.; Martín, Isidoro Martínez

    2016-01-01

    Abstract The aim of the present study was to identify different cluster groups of handball players according to their physical performance level assessed in a series of physical assessments, which could then be used to design a training program based on individual strengths and weaknesses, and to determine which of these variables best identified elite performance in a group of under-19 [U19] national level handball players. Players of the U19 National Handball team (n=16) performed a set of tests to determine: 10 m (ST10) and 20 m (ST20) sprint time, ball release velocity (BRv), countermovement jump (CMJ) height and squat jump (SJ) height. All players also performed an incremental-load bench press test to determine the 1 repetition maximum (1RMest), the load corresponding to maximum mean power (LoadMP), the mean propulsive phase power at LoadMP (PMPPMP) and the peak power at LoadMP (PPEAKMP). Cluster analyses of the test results generated four groupings of players. The variables best able to discriminate physical performance were BRv, ST20, 1RMest, PPEAKMP and PMPPMP. These variables could help coaches identify talent or monitor the physical performance of athletes in their team. Each cluster of players has a particular weakness related to physical performance and therefore, the cluster results can be applied to a specific training programmed based on individual needs. PMID:28149376

  1. A Gaussian Processes Technique for Short-term Load Forecasting with Considerations of Uncertainty

    NASA Astrophysics Data System (ADS)

    Ohmi, Masataro; Mori, Hiroyuki

    In this paper, an efficient method is proposed to deal with short-term load forecasting with the Gaussian Processes. Short-term load forecasting plays a key role to smooth power system operation such as economic load dispatching, unit commitment, etc. Recently, the deregulated and competitive power market increases the degree of uncertainty. As a result, it is more important to obtain better prediction results to save the cost. One of the most important aspects is that power system operator needs the upper and lower bounds of the predicted load to deal with the uncertainty while they require more accurate predicted values. The proposed method is based on the Bayes model in which output is expressed in a distribution rather than a point. To realize the model efficiently, this paper proposes the Gaussian Processes that consists of the Bayes linear model and kernel machine to obtain the distribution of the predicted value. The proposed method is successively applied to real data of daily maximum load forecasting.

  2. Methotrexate loading in chitosan nanoparticles at a novel pH: Response surface modeling, optimization and characterization.

    PubMed

    Hashad, Rania A; Ishak, Rania A H; Geneidi, Ahmed S; Mansour, Samar

    2016-10-01

    The aim of this study was to assess the feasibility of employing a novel but critical formulation pH (6.2) to encapsulate an anionic model drug (methotrexate, MTX) into chitosan(Cs)-tripolyphosphate nanoparticles(NPs). A response surface methodology using a three-level full factorial design was applied studying the effects of two independent variables namely; Cs concentration and MTX concentration. The responses investigated were the entrapment efficiency (EE%), mean hydrodynamic particle size (PS), polydispersity index (PDI) and zeta potential (ZP). In order to simultaneously optimize the series of models obtained, the desirability function approach was applied with a goal to produce high percent of MTX encapsulated into highly charged Cs-TPP NPs of homogenous optimum PS. MTX-loaded CsNPs were successfully prepared at the novel pH applied. The suggested significant models were found quadratic for EE, PS and ZP responses, while 2-factor interaction model for PDI. The optimization overlay graph showed that the maximum global desirability, D=0.856, was reached when the conditions were set at high Cs and MTX concentration. Thus, the use of such optimized conditions, at this novel pH, achieved a maximum drug EE% (73.38%) into NPs characterized by optimum PS (232.6nm), small PDI value (0.195) and highly surface charged (+18.4mV). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Thermoelectric energy converters under a trade-off figure of merit with broken time-reversal symmetry

    NASA Astrophysics Data System (ADS)

    Iyyappan, I.; Ponmurugan, M.

    2017-09-01

    We study the performance of a three-terminal thermoelectric device such as heat engine and refrigerator with broken time-reversal symmetry by applying the unified trade-off figure of merit (\\dotΩ criterion) which accounts for both useful energy and losses. For the heat engine, we find that a thermoelectric device working under the maximum \\dotΩ criterion gives a significantly better performance than a device working at maximum power output. Within the framework of linear irreversible thermodynamics such a direct comparison is not possible for refrigerators, however, our study indicates that, for refrigerator, the maximum cooling load gives a better performance than the maximum \\dotΩ criterion for a larger asymmetry. Our results can be useful to choose a suitable optimization criterion for operating a real thermoelectric device with broken time-reversal symmetry.

  4. 14 CFR 23.1583 - Operating limitations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) The maximum zero wing fuel weight, where relevant, as established in accordance with § 23.343. (d... passenger seating configuration. The maximum passenger seating configuration. (k) Allowable lateral fuel loading. The maximum allowable lateral fuel loading differential, if less than the maximum possible. (l...

  5. Influence of Different Screw Torque Levels on the Biomechanical Behavior of Tapered Prosthetic Abutments.

    PubMed

    Herbst, Paulo Eduardo; de Carvalho, Eduardo Bortolas; Salatti, Rafael C; Valgas, Laiz; Tiossi, Rodrigo

    To study the force used for tightening tapered one-piece prosthetic abutments and their influence on the removal torque value and stress level of the prosthetic abutment after cyclic loading. Fourteen implants and prosthetic abutments were divided into two groups (n = 7): G1, 20 Ncm; and G2, 32 Ncm (manufacturer recommended). A 20-mm T-shaped horizontal bar was adapted to the abutments. A 12-Hz cyclic loading was applied to the specimens in an electrodynamic testing system with the maximum number of cycles set to 10 6 . Specimens were inclined by 15 degrees from the vertical axis, and a 5-mm off-center vertical load was applied to generate a combination of bending and torquing moments on the tapered connections. Progressive loads (from 164.85 to 362.85 N) were applied when the previous sample survived 10 6 cycles. The paired t test compared the screw removal torque with the initial tightening torque for each group (α = .05). A finite element analysis (FEA) of the mechanical testing analyzed the regions of stress concentration. No specimens failed after 10 6 cyclic loadings. The mean screw removal torque for both groups was similar to the initial abutment torque value applied for each group (G1, 20.36 ± 8.73 Ncm; and G2, 35.61 ± 6.99 Ncm) (P > .05). FEA showed similar stress behavior for both groups in the study despite the different simulated screw preloads (G1: 200 N; G2: 320 N). The coronal region of the implant body presented the highest strain values in both groups. Tightening tapered one-piece prosthetic abutments at 20 and 32 Ncm maintains a stable connection after cyclic loading. The stresses generated by the different tightening forces during cyclic loading are highest at the coronal level of the connection.

  6. Hydrostatic Bearing Pad Maximum Load and Overturning Conditions for the 70-meter Antenna

    NASA Technical Reports Server (NTRS)

    Mcginness, H. D.

    1985-01-01

    The reflector diameters of the 64-m antennas were increased to 70-m. In order to evaluate the minimum film thickness of the hydrostatic bearing which supports the antenna weight, it is first necessary to have a good estimation of the maximum operational load on the most heavily loaded bearing pad. The maximum hydrostatic bearing load is shown to be sufficiently small and the ratios of stabilizing to over turning moments are ample.

  7. Effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing

    PubMed Central

    Cheing, Alex K. K.; Ng, Gabriel Y. F.; Cheing, Gladys L. Y.

    2018-01-01

    The present study investigated the effects of pulsed electromagnetic field (PEMF) on the tensile biomechanical properties of diabetic wounds at different phases of healing. Two intensities of PEMF were adopted for comparison. We randomly assigned 111 10-week-old male streptozotocin-induced diabetic Sprague-Dawley rats to two PEMF groups and a sham control group. Six-millimetre biopsy punched full thickness wounds were made on the lateral side of their hindlimbs. The PEMF groups received active PEMF delivered at 25 Hz with intensity of either 2 mT or 10 mT daily, while the sham group was handled in a similar way except they were not exposed to PEMF. Wound tissues were harvested for tensile testing on post-wounding days 3, 5, 7, 10, 14 and 21. Maximum load, maximum stress, energy absorption capacity, Young’s modulus and thickness of wound tissue were measured. On post-wounding day 5, the PEMF group that received 10-mT intensity had significantly increased energy absorption capacity and showed an apparent increase in the maximum load. However, the 10-mT PEMF group demonstrated a decrease in Young’s modulus on day 14. The 10-mT PEMF groups showed a significant increase in the overall thickness of wound tissue whereas the 2-mT group showed a significant decrease in the overall maximum stress of the wounds tissue. The present findings demonstrated that the PEMF delivered at 10 mT can improve energy absorption capacity of diabetic wounds in the early healing phase. However, PEMF (both 2-mT and 10-mT) seemed to impair the material properties (maximum stress and Young’s modulus) in the remodelling phase. PEMF may be a useful treatment for promoting the recovery of structural properties (maximum load and energy absorption capacity), but it might not be applied at the remodelling phase to avoid impairing the recovery of material properties. PMID:29324868

  8. Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning

    PubMed Central

    Roh, Jongryun; Park, Hyeong-jun; Lee, Kwang Jin; Hyeong, Joonho; Kim, Sayup

    2018-01-01

    Sitting posture monitoring systems (SPMSs) help assess the posture of a seated person in real-time and improve sitting posture. To date, SPMS studies reported have required many sensors mounted on the backrest plate and seat plate of a chair. The present study, therefore, developed a system that measures a total of six sitting postures including the posture that applied a load to the backrest plate, with four load cells mounted only on the seat plate. Various machine learning algorithms were applied to the body weight ratio measured by the developed SPMS to identify the method that most accurately classified the actual sitting posture of the seated person. After classifying the sitting postures using several classifiers, average and maximum classification rates of 97.20% and 97.94%, respectively, were obtained from nine subjects with a support vector machine using the radial basis function kernel; the results obtained by this classifier showed a statistically significant difference from the results of multiple classifications using other classifiers. The proposed SPMS was able to classify six sitting postures including the posture with loading on the backrest and showed the possibility of classifying the sitting posture even though the number of sensors is reduced. PMID:29329261

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Okumus, S. Cem, E-mail: cokumus@sakarya.edu.tr; Karslioglu, Ramazan, E-mail: cokumus@sakarya.edu.tr; Akbulut, Hatem, E-mail: cokumus@sakarya.edu.tr

    Aluminum-lithium based unreinforced (Al-8090) alloy and Al-8090/SiCp/17 vol.% metal matrix composite produced by extrusion after spray co-deposition. A dry ball-on disk wear test was carried out for both alloy and composite. The tests were performed against an Al{sub 2}O{sub 3} ball, 10 mm in diameter, at room temperature and in laboratory air conditions with a relative humidity of 40-60%. Sliding speed was chosen as 1.0 ms{sup −1} and normal loads of 1.0, 3.0 and 5.0 N were employed at a constant sliding distance of 1000 m. The wear damage on the specimens was evaluated via measurement of wear depth andmore » diameter. Microstructural and wear characterization was carried out via scanning electron microscopy (SEM). The results showed that wear loss of the Al-8090/SiC composite was less than that of the Al-8090 matrix alloy. Plastic deformation observed on the wear surface of the composite and the matrix alloy, and the higher the applied load the greater the plastic deformation. Scanning electron microscopy examinations of wear tracks also reveal that delamination fracture was the dominant wear mechanism during the wear progression. Friction coefficient was maximum at the low applied load in the case of the Al-8090/SiC composite while a gradual increase was observed with applied load for the matrix alloy.« less

  10. Design of responsive materials using topologically interlocked elements

    NASA Astrophysics Data System (ADS)

    Molotnikov, A.; Gerbrand, R.; Qi, Y.; Simon, G. P.; Estrin, Y.

    2015-02-01

    In this work we present a novel approach to designing responsive structures by segmentation of monolithic plates into an assembly of topologically interlocked building blocks. The particular example considered is an assembly of interlocking osteomorphic blocks. The results of this study demonstrate that the constraining force, which is required to hold the blocks together, can be viewed as a design parameter that governs the bending stiffness and the load bearing capacity of the segmented structure. In the case where the constraining forces are provided laterally using an external frame, the maximum load the assembly can sustain and its stiffness increase linearly with the magnitude of the lateral load applied. Furthermore, we show that the segmented plate with integrated shape memory wires employed as tensioning cables can act as a smart structure that changes its flexural stiffness and load bearing capacity in response to external stimuli, such as heat generated by the switching on and off an electric current.

  11. The effect of load on heat production, thermal effects and expenditure of time during implant site preparation - an experimental ex vivo comparison between piezosurgery and conventional drilling.

    PubMed

    Stelzle, Florian; Frenkel, Carsten; Riemann, Max; Knipfer, Christian; Stockmann, Philipp; Nkenke, Emeka

    2014-02-01

    Piezoelectric surgery (PS) is meant to be a gentle osteotomy method. The aim of this study was to compare piezosurgical vs. conventional drilling methods for implant site preparation (ISP) - focusing on load-dependent thermal effect on hard tissue and the expenditure of ISP time. Three hundred and sixty ISP were performed on ex vivo pig heads using piezosurgery, spiral burs (SB) and trephine burs (TB). The load applied was increased from 0 to 1000 g in 100-g intervals. Temperature within the bone was measured with a thermocouple, and duration was recorded with a stop watch. Thermal effects were histomorphometrically analysed. Twelve ISPs per technique were performed at the lateral wall of the maxillary sinus. PS yields the highest mean temperatures (48.6 ± 3.4°C) and thermal effects (200.7 ± 44.4 μm), both at 900-1000 g. Duration is reduced with a plus of load and significantly longer in either case for PS (P < 0.05). There is a correlation of the applied load with all other examined factors for PS and TB. Temperature and histological effects decrease for SB beyond 500 g. PS yields significantly higher temperatures and thermal tissue alterations on load levels higher than 500 g and is significantly slower for ISP compared to SB and TB. For ISP with PS, a maximum load of 400 g should be maintained. © 2012 John Wiley & Sons A/S.

  12. Creep Damage Analysis of a Lattice Truss Panel Structure

    NASA Astrophysics Data System (ADS)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  13. Sex-Based Differences of Medial Collateral Ligament and Anterior Cruciate Ligament Strains With Cadaveric Impact Simulations.

    PubMed

    Schilaty, Nathan D; Bates, Nathaniel A; Nagelli, Christopher V; Krych, Aaron J; Hewett, Timothy E

    2018-04-01

    Female patients sustain noncontact knee ligament injuries at a greater rate compared with their male counterparts. The cause of these differences in the injury rate and the movements that load the ligaments until failure are still under dispute in the literature. This study was designed to determine differences in anterior cruciate ligament (ACL) and medial collateral ligament (MCL) strains between male and female cadaveric specimens during a simulated athletic task. The primary hypothesis tested was that female limbs would demonstrate significantly greater ACL strain compared with male limbs under similar loading conditions. A secondary hypothesis was that MCL strain would not differ between sexes. Controlled laboratory study. Motion analysis of 67 athletes performing a drop vertical jump was conducted. Kinetic data were used to categorize injury risk according to tertiles, and these values were input into a cadaveric impact simulator to assess ligamentous strain during a simulated landing task. Uniaxial and multiaxial load cells and differential variable reluctance transducer strain sensors were utilized to collect mechanical data for analysis. Conditions of external loads applied to the cadaveric limbs (knee abduction moment, anterior tibial shear, and internal tibial rotation) were varied and randomized. Data were analyzed using 1-way analysis of variance (ANOVA), 2-way repeated-measures ANOVA, and the Fisher exact test. There were no significant differences ( P = .184) in maximum ACL strain between male (13.2% ± 8.1%) and female (16.7% ± 8.3%) specimens. Two-way ANOVA demonstrated that across all controlled external load conditions, female specimens consistently attained at least 3.5% increased maximum ACL strain compared with male specimens ( F 1,100 = 4.188, P = .043); however, when normalized to initial contact, no significant difference was found. There were no significant differences in MCL strain between sexes for similar parameters. When compared with baseline, female specimens exhibited greater values of ACL strain at maximum, initial contact, and after impact (33, 66, and 100 milliseconds, respectively) than male specimens during similar loading conditions, with a maximum strain difference of at least 3.5%. During these same loading conditions, there were no differences in MCL loading between sexes, and only a minimal increase of MCL loading occurred during the impact forces. Our results indicate that female patients are at an increased risk for ACL strain across all similar conditions compared with male patients. These data demonstrate that female specimens, when loaded similarly to male specimens, experience additional strain on the ACL. As the mechanical environment was similar for both sexes with these simulations, the greater ACL strain of female specimens must be attributed to ligament biology, anatomic differences, or muscular stiffness.

  14. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    NASA Astrophysics Data System (ADS)

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  15. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Xinzhe; Nakamoto, Tatsushi; Ogitsu, Toru

    2013-06-15

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an externalmore » driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.« less

  16. Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex.

    PubMed

    Jin, Xinzhe; Nakamoto, Tatsushi; Harjo, Stefanus; Hemmi, Tsutomu; Umeno, Takahiro; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki

    2013-06-01

    To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

  17. Effect of speed and press fit on fatigue life of roller-bearing inner-race contact

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Zaretsky, E. V.

    1985-01-01

    An analysis was performed to determine the effects of inner ring speed and press fit on the rolling element fatigue life of a roller bearing inner race contact. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner ring speed, load, and geometry and were applied to a conventional ring life analysis. The race contact fatigue life was reduced by more than 90 percent for some conditions when speed and press fit were considered. The depth of the maximum shear stress remained virtually unchanged.

  18. Assessment of the Uniqueness of Wind Tunnel Strain-Gage Balance Load Predictions

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.

    2016-01-01

    A new test was developed to assess the uniqueness of wind tunnel strain-gage balance load predictions that are obtained from regression models of calibration data. The test helps balance users to gain confidence in load predictions of non-traditional balance designs. It also makes it possible to better evaluate load predictions of traditional balances that are not used as originally intended. The test works for both the Iterative and Non-Iterative Methods that are used in the aerospace testing community for the prediction of balance loads. It is based on the hypothesis that the total number of independently applied balance load components must always match the total number of independently measured bridge outputs or bridge output combinations. This hypothesis is supported by a control volume analysis of the inputs and outputs of a strain-gage balance. It is concluded from the control volume analysis that the loads and bridge outputs of a balance calibration data set must separately be tested for linear independence because it cannot always be guaranteed that a linearly independent load component set will result in linearly independent bridge output measurements. Simple linear math models for the loads and bridge outputs in combination with the variance inflation factor are used to test for linear independence. A highly unique and reversible mapping between the applied load component set and the measured bridge output set is guaranteed to exist if the maximum variance inflation factor of both sets is less than the literature recommended threshold of five. Data from the calibration of a six{component force balance is used to illustrate the application of the new test to real-world data.

  19. Failure analysis of pinch-torsion tests as a thermal runaway risk evaluation method of Li-Ion Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Yuzhi; Li, Dr. Tianlei; Ren, Prof. Fei

    2014-01-01

    Recently a pinch-torsion test is developed for safety testing of Li-ion batteries (Ren et al., J. Power Source, 2013). It has been demonstrated that this test can generate small internal short-circuit spots in the separator in a controllable and repeatable manner. In the current research, the failure mechanism is examined by numerical simulations and comparisons to experimental observations. Finite element models are developed to evaluate the deformation of the separators under both pure pinch and pinch-torsion loading conditions. It is discovered that the addition of the torsion component significantly increased the maximum principal strain, which is believed to induce themore » internal short circuit. In addition, the applied load in the pinch-torsion test is significantly less than in the pure pinch test, thus dramatically improving the applicability of this method to ultra-thick batteries which otherwise require heavy load in excess of machine capability. It is further found that the separator failure is achieved in the early stage of torsion (within a few degree of rotation). Effect of coefficient of friction on the maximum principal strain is also examined.« less

  20. Fatigue History and in-situ Loading Studies of the overload Effect Using High Resolution X-ray Strain Profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft,M.; Jisrawi, N.; Zhong, Z.

    High-energy synchrotron X-ray diffraction experiments are used to perform local crack plane strain profiling of 4140 steel compact tension specimens fatigued at constant amplitude, subjected to a single overload cycle, then fatigued some more at constant amplitude. X-ray strain profiling results on a series of samples employing in-situ load cycling are correlated with the crack growth rate (da/dN) providing insight into the da/dN retardation known as the 'overload effect'. Immediately after the overload, the strain under maximum load is greatly reduced but the range of strain, between zero and maximum load, remains unchanged compared to the pre-overload values. At themore » point of maximum retardation, it is the strain range that is greatly reduced while the maximum-load strain has begun to recover to the pre-overload value. For a sample that has recovered to approximately half of the original da/dN value following the overload, the strain at maximum load is fully recovered while the strain range, though partially recovered, is still substantially reduced. The dominance of the strain range in the overload effect is clearly indicated. Subject to some assumptions, strong quantitative support for a crack growth rate driving force of the suggested form [(K{sub max}){sup -p}({Delta}K){sup p}]{sup {gamma}} is found. A dramatic nonlinear load dependence in the spatial distribution of the strain at maximum retardation is also demonstrated: at low load the response is dominantly at the overload position; whereas at high loads it is dominantly at the crack tip position. This transfer of load response away from the crack tip to the overload position appears fundamental to the overload effect for high R-ratio fatigue as studied here.« less

  1. Two-loads Method for Distinguishing among the Muscle Force, Velocity, and Power Producing Capacities

    PubMed Central

    Jaric, Slobodan

    2016-01-01

    It has been generally accepted that muscles could have different mechanical capacities, such as those for producing high force (F), velocity (V), and power (P) outputs. Nevertheless, the standard procedures of the evaluation of muscle function both in research and routine testing are typically conducted under a single mechanical condition, such as under a single external load. Therefore, the observed outcomes do not allow for distinguishing among the different muscle capacities. As a result, the outcomes of most of the routine testing procedures have been of limited informational value, while a number of debated issues in research have originated from arbitrarily interpreted experimental findings regarding specific muscle capacities. A solution for the discussed problem could be based on the approximately linear and exceptionally strong F-V relationship typically observed from various functional tasks performed under different external loads. These findings allow for the 'two-loads method' proposed in this Current Opinion: the functional movement tasks (e.g., maximum jumping, cycling, running, pushing, lifting, or throwing) should be tested against just 2 distinctive external loads. Namely, the F-V relationship determined by 2 pairs of the F and V data could provide the parameters depicting the maximum F (i.e., the F-intercept), V (V-intercept), and P (calculated from the product of F and V) output of the tested muscles. Therefore, the proposed two-loads method applied in both research and routine testing could provide a deeper insight into the mechanical properties and function of the tested muscles and resolve a number of debated issues in the literature. PMID:27075326

  2. The Impact Response of Carbon/Epoxy Laminates (Center Director's Discretionary Fund, Project No. 94-13)

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hodge, A. J.

    1997-01-01

    Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45,0,-45,90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, N(sub x), applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static identation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae. Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, N(sub x), was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.

  3. Influence of bicortical techniques in internal connection placed in premaxillary area by 3D finite element analysis.

    PubMed

    Verri, Fellippo Ramos; Cruz, Ronaldo Silva; Lemos, Cleidiel Aparecido Araújo; de Souza Batista, Victor Eduardo; Almeida, Daniel Augusto Faria; Verri, Ana Caroline Gonçales; Pellizzer, Eduardo Piza

    2017-02-01

    The aim of study was to evaluate the stress distribution in implant-supported prostheses and peri-implant bone using internal hexagon (IH) implants in the premaxillary area, varying surgical techniques (conventional, bicortical and bicortical in association with nasal floor elevation), and loading directions (0°, 30° and 60°) by three-dimensional (3D) finite element analysis. Three models were designed with Invesalius, Rhinoceros 3D and Solidworks software. Each model contained a bone block of the premaxillary area including an implant (IH, Ø4 × 10 mm) supporting a metal-ceramic crown. 178 N was applied in different inclinations (0°, 30°, 60°). The results were analyzed by von Mises, maximum principal stress, microstrain and displacement maps including ANOVA statistical test for some situations. Von Mises maps of implant, screws and abutment showed increase of stress concentration as increased loading inclination. Bicortical techniques showed reduction in implant apical area and in the head of fixation screws. Bicortical techniques showed slight increase stress in cortical bone in the maximum principal stress and microstrain maps under 60° loading. No differences in bone tissue regarding surgical techniques were observed. As conclusion, non-axial loads increased stress concentration in all maps. Bicortical techniques showed lower stress for implant and screw; however, there was slightly higher stress on cortical bone only under loads of higher inclinations (60°).

  4. The Aerodynamic and Dynamic Loading of a Slender Structure by an Impacting Tornado-Like Vortex: The Influence of Relative Vortex-to-Structure Size on Structural Loading

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Structural loading produced by an impacting vortex is a hazardous phenomenon that is encountered in numerous applications ranging from the destruction of residences by tornados to the chopping of tip vortices by rotors. Adequate design of structures to resist vortex-induced structural loading necessitates study of the phenomenon that control the structural loading produced by an impacting vortex. This body of work extends the current knowledge base of vortex-structure interaction by evaluating the influence of the relative vortex-to-structure size on the structural loading that the vortex produces. A computer model is utilized to directly simulate the two-dimensional impact of an impinging vortex with a slender, cylindrical structure. The vortex's tangential velocity profile (TVP) is defined by a normalization of the Vatistas analytical (TVP) which realistically replicates the documented spectrum of measured vortex TVPs. The impinging vortex's maximum tangential velocity is fixed, and the vortex's critical radius is incremented from one to one-hundred times the structure's diameter. When the impinging vortex is small, it interacts with vortices produced on the structure by the free stream, and maximum force coefficient amplitudes vary by more than 400% when the impinging vortex impacts the structure at different times. Maximum drag and lift force coefficient amplitudes reach asymptotic values as the impinging vortex's size increases that are respectively 94.77% and 10.66% less than maximum force coefficients produced by an equivalent maximum velocity free stream. The vortex produces maximum structural loading when its path is shifted above the structure's centerline, and maximum drag and lift force coefficients are respectively up to 4.80% and 34.07% greater than maximum force coefficients produced by an equivalent-velocity free stream. Finally, the dynamic load factor (DLF) concept is used to develop a generalized methodology to assess the dynamic amplification of a structure's response to vortex loading and to assess the dynamic loading threat that tornados pose. Typical civil and residential structures will not experience significant response amplification, but responses of very flexible structures may be amplified by up to 2.88 times.

  5. Numerical simulation of CO2 scroll compressor in transcritical compression cycle

    NASA Astrophysics Data System (ADS)

    Wang, Hongli; Tian, JingRui; Du, Yuanhang; Hou, Xiujuan

    2018-05-01

    Based on the theory of thermodynamics and kinetics, the mathematical model of an orbiting scroll was established and the stress deformations were employed by ANSYS software. Under the action of pressure load, the results show that the serious displacement part is located in the center of the gear head and the maximum deformation is about 7.33 μm. The maximum radial displacement is about 4.42 μm. The maximum radial stress point occurs in the center of the gear head and the maximum stress is about 40.9 MPa. The maximum axial displacement is about 2.31 μm. The maximum axial stress point occurs in the gear head and the maximum stress is about 44.7 MPa. Under the action of temperature load, the results show that the serious deformation part is located in the center of the gear head and the maximum deformation is about 6.3 μm. The maximum thermal stress occurs in the center of the gear head and the maximum thermal stress is about 86.36 MPa. Under the combined action of temperature load and pressure load, the results show that the serious deformation part and the maximum stress are located in the center of the gear head, and the value are about 7.79 μm and 74.19 MPa, respectively.

  6. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  7. Effect of component compression on the initial performance of an IPV nickel-hydrogen cell. [Individual Pressure Vessel

    NASA Technical Reports Server (NTRS)

    Gahn, Randall F.

    1987-01-01

    An experimental method was developed for evaluating the effect of component compression on the charge and discharge voltage characteristics of a 3 1/2 in. diameter boiler plate cell. A standard boiler plate pressure vessel was modified by the addition of a mechanical feedthrough on the bottom of the vessel which permitted different compressions to be applied to the components without disturbing the integrity of the stack. Compression loadings from 0.94 to 27.4 psi were applied by suspending weights from the feedthrough rod. Cell voltages were measured for 0.96-C, 55-min charge and for 1.37-C, 35-min and 2-C, 24-min discharges. An initial change in voltage performance on both charge and discharge as the loading increased was attributed to seating of the components. Subsequent variation of the compression from 2.97 to 27.4 psi caused only minor changes in either the charge or the discharge voltages. Several one month open-circuit voltage stands and 1100 cycles under LEO conditions at the maximum loading have produced no change in performance.

  8. Dynamic fracture of sintered Nd-Fe-B magnet under uniaxial compression

    NASA Astrophysics Data System (ADS)

    Wang, Huanran; Wan, Yin; Chen, Danian; Lei, Guohua; Ren, Chunying

    2018-06-01

    The dynamic fracture of the Nd-Fe-B magnets under uniaxial compression is investigated using a split Hopkinson pressure bar (SHPB). The surface deformation and fracture processes of the Nd-Fe-B specimens are recorded adopting a high-speed photography (HSP) with digital image correlation (DIC). The load and work applied to the specimens in the SHPB tests are determined with the strain signals of the transmitted and reflected waves. The surface strain distributions of the Nd-Fe-B specimen during the SHPB testing are revealed with DIC. It is shown by the HSP with DIC that when the load is near the maximum, the cracks at some positions on the surface of the expanding Nd-Fe-B specimen are formed and ran along certain directions. The work applied to the specimen per unit volume which corresponds to the maximal load is used to characterize the impact stability of the Nd-Fe-B specimen. The localized fracture strains at some positions on the surface of the expanding specimens at some characteristic times are determined with DIC, which are the projections of the strains onto the DIC plane.

  9. Mathematical Model and Artificial Intelligent Techniques Applied to a Milk Industry through DSM

    NASA Astrophysics Data System (ADS)

    Babu, P. Ravi; Divya, V. P. Sree

    2011-08-01

    The resources for electrical energy are depleting and hence the gap between the supply and the demand is continuously increasing. Under such circumstances, the option left is optimal utilization of available energy resources. The main objective of this chapter is to discuss about the Peak load management and overcome the problems associated with it in processing industries such as Milk industry with the help of DSM techniques. The chapter presents a generalized mathematical model for minimizing the total operating cost of the industry subject to the constraints. The work presented in this chapter also deals with the results of application of Neural Network, Fuzzy Logic and Demand Side Management (DSM) techniques applied to a medium scale milk industrial consumer in India to achieve the improvement in load factor, reduction in Maximum Demand (MD) and also the consumer gets saving in the energy bill.

  10. Investigation of the performances of PZT vs rare earth (BaLaTiO3) vibration based energy harvester

    NASA Astrophysics Data System (ADS)

    Pak, Nehemiah; Aris, Hasnizah; Nadia Taib, Bibi

    2017-11-01

    This study proposes the investigation of two piezoelectric material namely PZT and Lanthanum Doped Barium Titanate (BaLaTiO3) performance as a vibration based energy harvester. The piezoelectric material when applied mechanical stress or strain produces electricity through the piezoelectric effect. The vibration energy would exude mechanical energy and thus apply mechanical force on the energy harvester. The energy harvester would be designed and simulated using the piezoelectric material individually. The studied outputs are divided to frequency response, the load dependence, and the acceleration dependence whereby measurement are observed and taken at maximum power output. The simulation is done using the cantilevers design which employs d31 type of constants. Three different simulations to study the dependence of output power on the resonant frequency response, load and acceleration have found that material that exhibit highest power generation was the BaLaTiO3.

  11. Leaching of pesticides from biobeds: effect of biobed depth and water loading.

    PubMed

    Fogg, Paul; Boxall, Alistair B A; Walker, Allan; Jukes, Andrew

    2004-10-06

    Pesticides may be released to farmyard surfaces as a result of spillages, leakages, and the decontamination of tractors and sprayers. Biobeds can be used to intercept and treat contaminated runoff, thus minimizing losses to the environment. Previous studies using lined and unlined biobeds showed that water management was the limiting factor for both systems. While lined biobeds effectively retained pesticides, the system rapidly became water logged and degradation was slow. Studies using unlined biobeds showed that >99% of the applied pesticides were removed by the system, with a significant proportion degraded within 9 months. However, peak concentrations of certain pesticides (Koc < 125) were unacceptable to the regulatory authorities. These experiments were designed to optimize the design and management of unlined biobeds. Experiments performed to investigate the relationship between biobed depth and water loading showed that biobeds need to have a minimum depth of 1-1.5 m. The surface area dimension of the biobed depends on the water loading, which is controlled by the nature and frequency of pesticide handling activities on the farm. Leaching losses of all but the most mobile (Koc < 15) pesticides were <0.32% of the applied dose from 1.5 m deep biobeds subject to a water loading of 1175 L m(-2). These were reduced to <0.06% when a water loading of 688 L m(-2) was applied and down to <0.0001% for a water loading of 202 L m(-2). On the basis of these data, a 1.5 m deep biobed, subject to a maximum water loading of 1121 L m(-2) and with a surface area of 40 m(2) should be able to treat < or =44000 L of pesticide waste and washings such that the average concentration of all pesticides, other than those classified as very mobile, does not exceed 5 microg L(-1). This level of treatment can be improved by further reduction in the hydraulic loading.

  12. A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting.

    PubMed

    Li, Xiaotian; Guo, Mingsen; Dong, Shuxiang

    2011-04-01

    A piezoelectric transducer for harvesting energy from ambient mechanical vibrations/strains under pressure condition was developed. The proposed transducer was made of two ring-type piezoelectric stacks, one pair of bow-shaped elastic plates, and one shaft that pre-compresses them. This transducer works in flex-compressive (F-C) mode, which is different from a conventional flex-tensional (F-T) one, to transfer a transversely applied force F into an amplified longitudinal force N pressing against the two piezo-stacks via the two bowshaped elastic plates, generating a large electric voltage output via piezoelectric effect. Our experimental results show that without an electric load, an F-C mode piezo-transducer could generate a maximum electric voltage output of up to 110 Vpp, and with an electric load of 40 κΩ, it a maximum power output of 14.6 mW under an acceleration excitation of 1 g peak-peak at the resonance frequency of 87 Hz. © 2011 IEEE

  13. Oral hesperidin-Amorphization and improved dissolution properties by controlled loading onto porous silica.

    PubMed

    Wei, Qionghua; Keck, Cornelia M; Müller, Rainer H

    2017-02-25

    The oral bioavailability of poorly soluble drugs can be improved by amorphization generated by loading into the pores of mesoporous particles (pore size 2-50nm). The main mechanisms are increased kinetic saturation solubility and dissolution velocity due to the amorphous drug state and the nano-size of the drug (=increased dissolution pressure). In this study, the maximum achievable drug loading compared to the theoretical drug loading, and the effect of drug loading degree on the dissolution properties (solubility, dissolution velocity) were investigated. Hesperidin was used as the model active (having also practical relevance for e.g. nutraceutical products), loading was performed onto AEROPERL ® 300 Pharma. Degree of successful drug loading could be easily followed by simple light microscopy (=useful tool for formulation optimization), and was in agreement with scanning electron microscopy. Amorphous versus crystalline state was followed by X-ray diffraction and differential scanning calorimetry. Loadings prepared were 28.6wt.%, 54.5wt.% and 60.0wt.%, the maximum theoretical loading was 72.5wt.%. Obviously the maximum drug loading is not achievable, the 54.5wt.% drug loading was the practical maximum with already some minor crystalline hesperidin on the surface. Interestingly, the maximum kinetic saturation solubility was obtained for the 54.5wt.% drug loading (941.74μg/ml in pH 6.8 PBS), versus 408.80μg/ml for the 60.0wt.% drug loading (=overloaded system). The raw drug powder had a thermodynamic solubility of only 18.40μg/ml. The fastest in vitro release was obtained with the 28.6wt.% loaded system, followed by the 54.5wt.% and 60.0wt.% loadings. The dissolution properties (solubility, dissolution velocity) can obviously be influenced by a "controlled loading". This is a simple, cost-effective technological alternative to modulating this property by chemical modification of silica, requiring a new costly regulatory approval of these chemically modified materials. Copyright © 2016. Published by Elsevier B.V.

  14. Transient Pressure Test Article Test Program

    NASA Technical Reports Server (NTRS)

    Vibbart, Charles M.

    1989-01-01

    The Transient Pressure Test Article (TPTA) test program is being conducted at a new test facility located in the East Test Area at the National Aeronautics and Space Administration's (NASA's) Marshall Space Flight Center (MSFC) in Huntsville, Alabama. This facility, along with the special test equipment (STE) required for facility support, was constructed specifically to test and verify the sealing capability of the Redesigned Solid Rocket Motor (RSRM) field, igniter, and nozzle joints. The test article consists of full scale RSRM hardware loaded with inert propellant and assembled in a short stack configuration. The TPTA is pressurized by igniting a propellant cartridge capable of inducing a pressure rise rate which stimulates the ignition transient that occurs during launch. Dynamic loads are applied during the pressure cycle to simulate external tank attach (ETA) strut loads present on the ETA ring. Sealing ability of the redesigned joints is evaluated under joint movement conditions produced by these combined loads since joint sealing ability depends on seal resilience velocity being greater than gap opening velocity. Also, maximum flight dynamic loads are applied to the test article which is either pressurized to 600 psia using gaseous nitrogen (GN2) or applied to the test article as the pressure decays inside the test article on the down cycle after the ignition transient cycle. This new test facility is examined with respect to its capabilities. In addition, both the topic of test effectiveness versus space vehicle flight performance and new aerospace test techniques, as well as a comparison between the old SRM design and the RSRM are presented.

  15. Investigating Some Technical Issues on Cohesive Zone Modeling of Fracture

    NASA Technical Reports Server (NTRS)

    Wang, John T.

    2011-01-01

    This study investigates some technical issues related to the use of cohesive zone models (CZMs) in modeling fracture processes. These issues include: why cohesive laws of different shapes can produce similar fracture predictions; under what conditions CZM predictions have a high degree of agreement with linear elastic fracture mechanics (LEFM) analysis results; when the shape of cohesive laws becomes important in the fracture predictions; and why the opening profile along the cohesive zone length needs to be accurately predicted. Two cohesive models were used in this study to address these technical issues. They are the linear softening cohesive model and the Dugdale perfectly plastic cohesive model. Each cohesive model constitutes five cohesive laws of different maximum tractions. All cohesive laws have the same cohesive work rate (CWR) which is defined by the area under the traction-separation curve. The effects of the maximum traction on the cohesive zone length and the critical remote applied stress are investigated for both models. For a CZM to predict a fracture load similar to that obtained by an LEFM analysis, the cohesive zone length needs to be much smaller than the crack length, which reflects the small scale yielding condition requirement for LEFM analysis to be valid. For large-scale cohesive zone cases, the predicted critical remote applied stresses depend on the shape of cohesive models used and can significantly deviate from LEFM results. Furthermore, this study also reveals the importance of accurately predicting the cohesive zone profile in determining the critical remote applied load.

  16. An experimental system for high temperature X-ray diffraction studies with in situ mechanical loading

    PubMed Central

    Oswald, Benjamin B.; Schuren, Jay C.; Pagan, Darren C.; Miller, Matthew P.

    2013-01-01

    An experimental system with in situ thermomechanical loading has been developed to enable high energy synchrotron x-ray diffraction studies of crystalline materials. The system applies and maintains loads of up to 2250 N in uniaxial tension or compression at a frequency of up to 100 Hz. The furnace heats the specimen uniformly up to a maximum temperature of 1200 °C in a variety of atmospheres (oxidizing, inert, reducing) that, combined with in situ mechanical loading, can be used to mimic processing and operating conditions of engineering components. The loaded specimen is reoriented with respect to the incident beam of x-rays using two rotational axes to increase the number of crystal orientations interrogated. The system was used at the Cornell High Energy Synchrotron Source to conduct experiments on single crystal silicon and polycrystalline Low Solvus High Refractory nickel-based superalloy. The data from these experiments provide new insights into how stresses evolve at the crystal scale during thermomechanical loading and complement the development of high-fidelity material models. PMID:23556825

  17. Discrete and continuous joint coupling relationships in uninjured recreational runners.

    PubMed

    Dierks, Tracy A; Davis, Irene

    2007-06-01

    Abnormal joint coupling is thought to be related to overuse injuries in runners. However, researchers do not yet know what constitutes normal joint coupling during running, which makes abnormal coupling difficult to define. Lower extremity kinematics were collected from 40 recreational runners during stance. Joint coupling methods were applied and, for each method, means and both within- and between-subject variability were calculated. The 95% confidence interval was used to compare differences across coupling relationships and periods of stance. Timing between rearfoot eversion, tibial internal rotation, and knee flexion were relatively synchronous while relationships involving knee internal rotation were more asynchronous. The excursion ratios showed that every 2 degrees of rearfoot eversion was coupled with 1 degrees of both tibial internal rotation and knee internal rotation. Vector coding results showed that just beyond maximum loading, all joint coupling relationships resulted in relatively equal amounts of motion, while the within-subject variability was similar throughout stance. The continuous relative phase results showed that the most out-of-phase coupling occurred in the periods around heel-strike and toe-off while the most in-phase coupling occurred in the period just beyond maximum loading of the leg. The continuous relative phase within-subject variability was greatest at the periods around heel-strike and toe-off and smallest just beyond maximum loading. With a better understanding of joint coupling in uninjured runners, these data will help to serve as a reference for future studies investigating the relationship between running injuries and abnormal joint coupling.

  18. Ionic electroactive hybrid transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.

    2005-05-01

    Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized by varying the vol% of metal in the electrode. For RuO2, the optimal loading was approximately 45%. This study shows that carbon nanotubes electrodes have an optimal performance at loadings around 30 vol%, while PANI electrodes are optimized at 95 vol%. Due to low percolation threshold, carbon nanotubes actuators perform better at lower loading than other conducting powders. The addition of nanotubes to the electrode tends to increase both the strain rate and the maximum strain of the hybrid actuator. SWNT/RuO2 hybrid transducer has a strain rate of 2.5%/sec, and a maximum attainable peak-to-peak strain of 9.38% (+/- 2V). SWNT/PANI hybrid also increased both strain and strain rate but not as significant as with RuO2. PANI/RuO2 actuator had an overwhelming back relaxation.

  19. A comparison of the structural strength between fiberglass and jute fiber in the Acehnese Traditional Boat Jalo Kayoh using finite element method

    NASA Astrophysics Data System (ADS)

    Akram; Hasanuddin, Iskandar; Nazaruddin; Syahril Anwar, M.; Zulfan; Ahmad, Norhafizan

    2018-05-01

    The Acehnese traditional boat, known as Jalo Kayoh, is a mean of transportation used by Acehnese fishermen. The main constituent of the boat is wood. However, due to the decline of high-quality wood supply and as a preventative measure of illegal logging, fiberglass and jute fiber are used instead of wood. This study compares the strength of the two materials using finite element method. The Jalo Kayoh model plan stands at 4m in length, 0.6 m in width, and 0.4 m in height. A 2500 N static load is applied to the surface, using a C3D10 quadratic tetrahedron 0.02 mesh. The result of the simulation to the fiberglass is a maximum displacement of 7.123 x 10-5m, while the jute fiber has a maximum displacement of 2.255 x 10-4 m. The maximum stress stands at 1.612 x 106 Pa for the fiberglass and 1.523 x 106 Pa for the jute fiber. The maximum strain occurs at 1.654 x 10-5 for the fiberglass and 4.581 x 10-5 for the jute fiber. To conclude, fiber glass has more stress 1.05 % and less strain 2.76 % than jute fiber and both the materials can sustain the load given.

  20. Does distal tibiofibular joint mobilization decrease limitation of ankle dorsiflexion?

    PubMed

    Fujii, Misaki; Suzuki, Daisuke; Uchiyama, Eiichi; Muraki, Takayuki; Teramoto, Atsushi; Aoki, Mitsuhiro; Miyamoto, Shigenori

    2010-02-01

    Limitation of ankle motion is in many cases treated by joint mobilization (JM), a kind of manual physical therapy technique. Until now, the JM approach has mainly focused on the talocrural joint, with less attention to the distal tibiofibular joint. We applied cyclic loading to the lateral malleolus as in JM in order to clarify the relationship between the dorsiflexion angle and the excursion of the lateral malleolus. Seven normal, fresh-frozen cadaver legs were used. To each specimen, cyclic loading with a 30N force was applied 1000 times to the lateral malleolus at a speed of 15N/s. The displacement of the lateral malleolus was measured with a magnetic tracking system. The maximum dorsiflexion angle was measured before and after cyclic loading. After the first 100 and 1000 times of cyclic loading, the tibia was displaced 0.44+/-0.30mm and 0.75+/-0.36mm, respectively, and the fibula was displaced 0.44+/-0.28mm and 0.92+/-0.39mm, respectively. The average dorsiflexion angle increased from 14.36+/-7.51 degrees to 16.74+/-7.21 degrees after cyclic loading (P<0.05). Movement of the distal tibiofibular joint led to a significant increase in the range of ankle dorsiflexion. These results suggest that tibiofibular JM would be effective for limitation of ankle dorsiflexion.

  1. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  2. Ae Behavior of Smart Stress Memory Patch after Variable Amplitude Loading

    NASA Astrophysics Data System (ADS)

    Fujino, Y.; Nambu, S.; Enoki, M.

    Recently, the structural health monitoring becomes increasingly great important to assure the ease and safety of our life, and it is required significantly to develop non-destructive evaluation for structures such as bridges and tunnels. Some sacrificed specimens have been developed to evaluate the fatigue damage of structures such as fatigue cycles and residual lifetime, but it can be applied only when the stress history is known beforehand. These fatigue sensors need no cable and can be used at low cost in contrast to strain gage. In previous study, a smart stress memory patch was developed as a new fatigue sensor. The patch can measure simultaneously the maximum stress, stress amplitude and the number of fatigue cycles by crack length measurement and Kaiser effect of Acoustic Emission (AE). The crack growth behavior under constant amplitude (CA) loading has been investigated, and AE behavior also has been evaluated only after CA loading. However, AE characteristics after variable amplitude (VA) loading in service are extremely important. Moreover, it is very important to control AE behavior of the smart patch in order to evaluate the applied stress using Kaiser effect. In this study, fatigue test with single overload was investigated to evaluate its influence. Moreover, effect of crack length and heat treatment on AE behavior was also investigated. Finally, AE behavior of the patch was evaluated after fatigue CA loading with overload or VA loading with log-normal distribution and overload.

  3. Stress and strain analysis from dynamic loads of mechanical hand using finite element method

    NASA Astrophysics Data System (ADS)

    Hasanuddin, Iskandar; Husaini; Syahril Anwar, M.; Yudha, B. Z. Sandy; Akhyar, Hasan

    2018-05-01

    This research discusses the distribution of stress and strain due to the dynamic loads of mechanical hand. The stress and strain that occur on mechanical hand are the main concern for comparing the value of finite element analysis (FEA) and calculating for its material properties. The stress and strain analysis are done with a loading condition. The given loading condition is dynamic. The loading input condition in the simulation of using hydraulic hand dynamometer is from the grip strength measurement of ten samples. The form of the given loading to the mechanical hand is the increment value with a maximum of 708 N/m2 within 1 minute. The amount of maximum stress (von Mises) simulation is 1.731 x 105 Pa, and the amount of maximum strain is 7.441 x 10-7. The amount of maximum reaction force is 5.864 x 10-2 N, while the amount of maximum displacement that occurs on the distal part is 1.223 x 10 m. Based on the analysis, the maximum stress and strain were found both to occur at the extension part. The result of this study has shown that the stress and strain still occur far below from the yield strength and the shear strength from the material AISI 1010. It can be concluded that the mechanical hand is durable for the given loading and can hold an object with a minimum diameter of 45 mm.

  4. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities.

    PubMed

    Schwiesau, Jens; Schilling, Carolin; Kaddick, Christian; Utzschneider, Sandra; Jansson, Volkmar; Fritz, Bernhard; Blömer, Wilhelm; Grupp, Thomas M

    2013-05-01

    The objective of our study was the definition of testing scenarios for knee wear simulation under various highly demanding daily activities of patients after total knee arthroplasty. This was mainly based on a review of published data on knee kinematics and kinetics followed by the evaluation of the accuracy and precision of a new experimental setup. We combined tibio-femoral load and kinematic data reported in the literature to develop deep squatting loading profiles for simulator input. A servo-hydraulic knee wear simulator was customised with a capability of a maximum flexion of 120°, a tibio-femoral load of 5000N, an anterior-posterior (AP) shear force of ±1000N and an internal-external (IE) rotational torque of ±50Nm to simulate highly demanding patient activities. During the evaluation of the newly configurated simulator the ability of the test machine to apply the required load and torque profiles and the flexion kinematics in a precise manner was examined by nominal-actual profile comparisons monitored periodically during subsequent knee wear simulation. For the flexion kinematics under displacement control a delayed actuator response of approximately 0.05s was inevitable due to the inertia of masses in movement of the coupled knee wear stations 1-3 during all applied activities. The axial load and IE torque is applied in an effective manner without substantial deviations between nominal and actual load and torque profiles. During the first third of the motion cycle a marked deviation between nominal and actual AP shear load profiles has to be noticed but without any expected measurable effect on the latter wear simulation due to the fact that the load values are well within the peak magnitude of the nominal load amplitude. In conclusion the described testing method will be an important tool to have more realistic knee wear simulations based on load conditions of the knee joint during activities of daily living. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  5. Advanced Power Conditioning System

    NASA Technical Reports Server (NTRS)

    Johnson, N. L.

    1971-01-01

    The second portion of the advanced power conditioning system development program is reported. Five 100-watt parallel power stages with majority-vote-logic feedback-regulator were breadboarded and tested to the design goals. The input voltage range was 22.1 to 57.4 volts at loads from zero to 500 watts. The maximum input ripple current was 200 mA pk-pk (not including spikes) at 511 watts load; the output voltage was 56V dc with a maximum change of 0.89 volts for all variations of line, load, and temperature; the maximum output ripple was 320 mV pk-pk at 512 watts load (dependent on filter capacitance value); the maximum efficiency was 93.9% at 212 watts and 50V dc input; the minimum efficiency was 87.2% at 80-watt load and 50V dc input; the efficiency was above 90% from 102 watts to 372 watts; the maximum excursion for an 80-watt load change was 2.1 volts with a recovery time of 7 milliseconds; and the unit performed within regulation limits from -20 C to +85 C. During the test sequence, margin tests and failure mode tests were run with no resulting degradation in performance.

  6. Time histories of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber airplane during abrupt pitching maneuvers at approximately 20,000 feet

    NASA Technical Reports Server (NTRS)

    Wiener, Bernard; Harris, Agnes E

    1950-01-01

    Time histories are presented of horizontal-tail loads, elevator loads, and deformations on a jet-powered bomber during abrupt pitching maneuvers at a pressure altitude of approximately 20,000 feet. The normal and pitching accelerations measured varied from -0.90b to 3.41g and from -0.73 to 0.80 radian per second per second (sic), respectively, with a Mach number variation of from 0.40 to o.75. The maximum horizontal-tail load measured was 17,250 pounds down. The maximum elevator load was 1900 pounds up. The stabilizer twisted a maximum of 0.76 degrees leading edge down at the tip. The greatest fuselage deflection at the tail was about 1.7 inches down.

  7. Neuroprosthetics and Solutions for Restoring Sensorimotor Functions

    DTIC Science & Technology

    2009-01-01

    in the stab wound control (A, C) and the 1-week implantation of the electrode (B, D). Striking neurofilament loss occurred surrounding both the stab...force. (Like in heel strike and toe of in normal gait cycle). (B) The Proof Test is a static test for foot ankle unit in which maximum load is...applied on heel and forefoot in one single time successively. Project 1. Develop a somatosensory neural interface (SSNI) -Completed pilot testing of

  8. Tool For Driving Many Fasteners Simultaneously

    NASA Technical Reports Server (NTRS)

    Cook, Joseph S., Jr.

    1995-01-01

    Proposed tool tightens or loosens several bolts, screws, nuts, or other threaded fasteners arranged in circle on compressor head, automotive wheel, pipe-end flange, or similar object. Enables assembly or disassembly in fraction of time needed to tighten fasteners one at a time. Simultaneously applies same torque to all fasteners, preventing distortion and enhancing reliability. Concept not limited to circular fastener patterns. Adapted to rectangular configurations like on engine intake manifolds, by adding gears to drive train to provide proper spacing. Designed to deliver fixed or adjustable maximum torque. To ensure even seal loading, piston pressure simultaneously ramped from initial to final values to maintain relatively constant torque loading on all fasteners until final specifications limit achieved.

  9. Meso-Scale Finite Element Analysis of Mechanical Behavior of 3D Braided Composites Subjected to Biaxial Tension Loadings

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Curiel-Sosa, Jose L.; Bui, Tinh Quoc

    2018-04-01

    In many engineering applications, 3D braided composites are designed for primary loading-bearing structures, and they are frequently subjected to multi-axial loading conditions during service. In this paper, a unit-cell based finite element model is developed for assessment of mechanical behavior of 3D braided composites under different biaxial tension loadings. To predict the damage initiation and evolution of braiding yarns and matrix in the unit-cell, we thus propose an anisotropic damage model based on Murakami damage theory in conjunction with Hashin failure criteria and maximum stress criteria. To attain exact stress ratio, force loading mode of periodic boundary conditions which never been attempted before is first executed to the unit-cell model to apply the biaxial tension loadings. The biaxial mechanical behaviors, such as the stress distribution, tensile modulus and tensile strength are analyzed and discussed. The damage development of 3D braided composites under typical biaxial tension loadings is simulated and the damage mechanisms are revealed in the simulation process. The present study generally provides a new reference to the meso-scale finite element analysis (FEA) of multi-axial mechanical behavior of other textile composites.

  10. Microgrids for Service Restoration to Critical Load in a Resilient Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Yin; Liu, Chen-Ching; Schneider, Kevin P.

    icrogrids can act as emergency sources to serve critical loads when utility power is unavailable. This paper proposes a resiliency-based methodology that uses microgrids to restore critical loads on distribution feeders after a major disaster. Due to limited capacity of distributed generators (DGs) within microgrids, dynamic performance of the DGs during the restoration process becomes essential. In this paper, the stability of microgrids, limits on frequency deviation, and limits on transient voltage and current of DGs are incorporated as constraints of the critical load restoration problem. The limits on the amount of generation resources within microgrids are also considered. Bymore » introducing the concepts of restoration tree and load group, restoration of critical loads is transformed into a maximum coverage problem, which is a linear integer program (LIP). The restoration paths and actions are determined for critical loads by solving the LIP. A 4-feeder, 1069-bus unbalanced test system with four microgrids is utilized to demonstrate the effectiveness of the proposed method. The method is applied to the distribution system in Pullman, WA, resulting in a strategy that uses generators on the Washington State University campus to restore service to the Hospital and City Hall in Pullman.« less

  11. Buckling Analysis of a Honeycomb-Core Composite Cylinder with Initial Geometric Imperfections

    NASA Technical Reports Server (NTRS)

    Cha, Gene; Schultz, Marc R.

    2013-01-01

    Thin-walled cylindrical shell structures often have buckling as the critical failure mode, and the buckling of such structures can be very sensitive to small geometric imperfections. The buckling analyses of an 8-ft-diameter, 10-ft-long honeycomb-core composite cylinder loaded in pure axial compression is discussed in this document. Two loading configurations are considered configuration 1 uses simple end conditions, and configuration 2 includes additional structure that may more closely approximate experimental loading conditions. Linear eigenvalue buckling analyses and nonlinear analyses with and without initial geometric imperfections were performed on both configurations. The initial imperfections were introduced in the shell by applying a radial load at the midlength of the cylinder to form a single inward dimple. The critical bifurcation buckling loads are predicted to be 924,190 lb and 924,020 lb for configurations 1 and 2, respectively. Nonlinear critical buckling loads of 918,750 lb and 954,900 lb were predicted for geometrically perfect configurations 1 and 2, respectively. Lower-bound critical buckling loads for configurations 1 and 2 with radial perturbations were found to be 33% and 36% lower, respectively, than the unperturbed critical loads. The inclusion of the load introduction cylinders in configuration 2 increased the maximum bending-boundary-layer rotation up to 11%.

  12. 46 CFR 154.408 - Cargo tank external pressure load.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... minimum internal pressure (maximum vacuum), and the maximum external pressure to which any portion of the... 46 Shipping 5 2010-10-01 2010-10-01 false Cargo tank external pressure load. 154.408 Section 154... Equipment Cargo Containment Systems § 154.408 Cargo tank external pressure load. For the calculation...

  13. Effect on interference fits on roller bearing fatigue life

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Zaretsky, E. V.

    1986-01-01

    An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reductions of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.

  14. Effect of interference fits on roller bearing fatigue life

    NASA Technical Reports Server (NTRS)

    Coe, Harold H.; Zaretsky, Erwin V.

    1987-01-01

    An analysis was performed to determine the effects of inner-ring speed and press fits on roller bearing fatigue life. The effects of the resultant hoop and radial stresses on the principal stresses were considered. The maximum shear stresses below the Hertzian contact were determined for different conditions of inner-ring speed and load, and were applied to a conventional roller bearing life analysis. The effect of mean stress was determined using Goodman diagram approach. Hoop stresses caused by press fits and centrifugal force can reduce bearing life by as much as 90 percent. Use of a Goodman diagram predicts life reduction of 20 to 30 percent. The depth of the maximum shear stress remains virtually unchanged.

  15. A mathematical model of the maximum power density attainable in an alkaline hydrogen/oxygen fuel cell

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; White, Ralph E.

    1991-01-01

    A mathematical model of a hydrogen/oxygen alkaline fuel cell is presented that can be used to predict the polarization behavior under various power loads. The major limitations to achieving high power densities are indicated and methods to increase the maximum attainable power density are suggested. The alkaline fuel cell model describes the phenomena occurring in the solid, liquid, and gaseous phases of the anode, separator, and cathode regions based on porous electrode theory applied to three phases. Fundamental equations of chemical engineering that describe conservation of mass and charge, species transport, and kinetic phenomena are used to develop the model by treating all phases as a homogeneous continuum.

  16. [Ex Vivo Testing of Mechanical Properties of Canine Metacarpal/Metatarsal Bones after Simulated Implant Removal].

    PubMed

    Srnec, R; Fedorová, P; Pěnčík, J; Vojtová, L; Sedlinská, M; Nečas, A

    2016-01-01

    PURPOSE OF THE STUDY In a long-term perspective, it is better to remove implants after fracture healing. However, subsequent full or excessive loading of an extremity may result in refracture, and the bone with holes after screw removal may present a site with predilection for this. The aim of the study was to find ways of how to decrease risk factors for refracture in such a case. This involved support to the mechanical properties of a bone during its remodelling until defects following implant removal are repaired, using a material tolerated by bone tissue and easy to apply. It also included an assessment of the mechanical properties of a bone after filling the holes in it with a newly developed biodegradable polymer-composite gel ("bone paste"). The composite also has a prospect of being used to repair bony defects produced by pathological processes. MATERIAL AND METHODS Experiments were carried out on intact weight-bearing small bones in dogs. A total of 27 specimens of metacarpal/metatarsal bones were used for ex vivo testing. They were divided into three groups: K1 (n = 9) control undamaged bones; K2 (n = 9) control bones with iatrogenic damage simulating holes left after cortical screw removal; EXP (n = 9) experimental specimens in which simulated holes in bone were filled with the biodegradable self-hardening composite. The bone specimens were subjected to three-point bending in the caudocranial direction by a force acting parallel to the direction of drilling in their middiaphyses. The value of maximum load achieved (N) and the corresponding value of a vertical displacement (mm) were recorded in each specimen, then compared and statistically evaluated. RESULTS On application of a maximum load (N), all bone specimens broke in the mid-part of their diaphyses. In group K1 the average maximum force of 595.6 ± 79.5 N was needed to break the bone; in group K2 it was 347.6 ± 58.6 N; and in group EXP it was 458.3 ± 102.7 N. The groups with damaged bones, K2 and EXP, were compared and the difference was found to be statistically significant (p ≤ 0.05). CONCLUSIONS The recently developed biodegradable polymer-composite gel is easy and quick to apply to any defect, regardless of its shape, in bone tissue. The ex vivo mechanical tests on canine short bones showed that the composite applied to defects, which simulated holes left after screw removal, provided sufficient mechanical support to the bone architecture. The results of measuring maximum loading forces were statistically significant. However, before the composite could be recommended for use in veterinary or human medical practice, thorough pre-clinical studies will be required. fracture fixation, mechanical testing, bone plate, cortical screw, refracture.

  17. Increased resistance during jump exercise does not enhance cortical bone formation.

    PubMed

    Boudreaux, Ramon D; Swift, Joshua M; Gasier, Heath G; Wiggs, Michael P; Hogan, Harry A; Fluckey, James D; Bloomfield, Susan A

    2014-01-01

    This study sought to elucidate the effects of a low- and high-load jump resistance exercise (RE) training protocol on cortical bone of the tibia and femur mid-diaphyses. Sprague-Dawley rats (male, 6 months old) were randomly assigned to high-load RE (HRE; n = 16), low-load RE (LRE; n = 15), or cage control (CC; n = 11) groups. Animals in the HRE and LRE groups performed 15 sessions of jump RE for 5 wk. Load in the HRE group was progressively increased from 80 g added to a weighted vest (50 repetitions) to 410 g (16 repetitions). The LRE rats completed the same protocol as the HRE group (same number of repetitions), with only a 30-g vest applied. Low- and high-load jump RE resulted in 6%-11% higher cortical bone mineral content and cortical bone area compared with controls, as determined by in vivo peripheral quantitative computed tomography measurements. In the femur, however, only LRE demonstrated improvements in cortical volumetric bone mineral density (+11%) and cross-sectional moment of inertia (+20%) versus the CC group. The three-point bending to failure revealed a marked increase in tibial maximum force (25%-29%), stiffness (19%-22%), and energy to maximum force (35%-55%) and a reduction in elastic modulus (-11% to 14%) in both LRE and HRE compared with controls. Dynamic histomorphometry assessed at the tibia mid-diaphysis determined that both LRE and HRE resulted in 20%-30% higher periosteal mineralizing surface versus the CC group. Mineral apposition rate and bone formation rate were significantly greater in animals in the LRE group (27%, 39%) than those in the HRE group. These data demonstrate that jump training with minimal loading is equally, and sometimes more, effective at augmenting cortical bone integrity compared with overload training in skeletally mature rats.

  18. Fatigue resistance and crack propensity of large MOD composite resin restorations: direct versus CAD/CAM inlays.

    PubMed

    Batalha-Silva, Silvana; de Andrada, Mauro Amaral Caldeira; Maia, Hamilton Pires; Magne, Pascal

    2013-03-01

    To assess the influence of material/technique selection (direct vs. CAD/CAM inlays) for large MOD composite adhesive restorations and its effect on the crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slot-type tooth preparation was applied to 32 extracted maxillary molars (5mm depth and 5mm bucco-palatal width) including immediately sealed dentin for the inlay group. Fifteen teeth were restored with direct composite resin restoration (Miris2) and 17 teeth received milled inlays using Paradigm MZ100 block in the CEREC machine. All inlays were adhesively luted with a light curing composite resin (Filtek Z100). Enamel shrinkage-induced cracks were tracked with photography and transillumination. Cyclic isometric chewing (5 Hz) was simulated, starting with a load of 200 N (5000 cycles), followed by stages of 400, 600, 800, 1000, 1200 and 1400 N at a maximum of 30,000 cycles each. Samples were loaded until fracture or to a maximum of 185,000 cycles. Teeth restored with the direct technique fractured at an average load of 1213 N and two of them withstood all loading cycles (survival=13%); with inlays, the survival rate was 100%. Most failures with Miris2 occurred above the CEJ and were re-restorable (67%), but generated more shrinkage-induced cracks (47% of the specimen vs. 7% for inlays). CAD/CAM MZ100 inlays increased the accelerated fatigue resistance and decreased the crack propensity of large MOD restorations when compared to direct restorations. While both restorative techniques yielded excellent fatigue results at physiological masticatory loads, CAD/CAM inlays seem more indicated for high-load patients. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. A technique for measuring dynamic friction coefficient under impact loading

    NASA Astrophysics Data System (ADS)

    Lin, Y. L.; Qin, J. G.; Chen, R.; Zhao, P. D.; Lu, F. Y.

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m2/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  20. A technique for measuring dynamic friction coefficient under impact loading.

    PubMed

    Lin, Y L; Qin, J G; Chen, R; Zhao, P D; Lu, F Y

    2014-09-01

    We develop a novel setup based on the split Hopkinson pressure bar technique to test the dynamic friction coefficient under impact loading. In the setup, the major improvement is that the end of the incident bar near the specimen is wedge-shaped, which results in a combined compressive and shear loading applied to the specimen. In fact, the shear loading is caused by the interfacial friction between specimen and bars. Therefore, when the two loading force histories are measured, the friction coefficient histories can be calculated without any assumptions and theoretical derivations. The geometry of the friction pairs is simple, and can be either cuboid or cylindrical. Regarding the measurements, two quartz transducers are used to directly record the force histories, and an optical apparatus is designed to test the interfacial slip movement. By using the setup, the dynamic friction coefficient of PTFE/aluminum 7075 friction pairs was tested. The time resolved dynamic friction coefficient and slip movement histories were achieved. The results show that the friction coefficient changes during the loading process, the average data of the relatively stable flat plateau section of the friction coefficient curves is 0.137, the maximum normal pressure is 52 MPa, the maximum relative slip velocity is 1.5 m/s, and the acceleration is 8400 m(2)/s. Furthermore, the friction test was simulated using an explicit FEM code LS-DYNA. The simulation results showed that the constant pressure and slip velocity can both be obtained with a wide flat plateau incident pulse. For some special friction pairs, normal pressure up to a few hundred MPa, interfacial slip velocities up to 10 m/s, and slip movement up to centimeter-level can be expected.

  1. An approach for the regularization of a power flow solution around the maximum loading point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kataoka, Y.

    1992-08-01

    In the conventional power flow solution, the boundary conditions are directly specified by active power and reactive power at each node, so that the singular point coincided with the maximum loading point. For this reason, the computations are often disturbed by ill-condition. This paper proposes a new method for getting the wide-range regularity by giving some modifications to the conventional power flow solution method, thereby eliminating the singular point or shifting it to the region with the voltage lower than that of the maximum loading point. Then, the continuous execution of V-P curves including maximum loading point is realized. Themore » efficiency and effectiveness of the method are tested in practical 598-nodes system in comparison with the conventional method.« less

  2. Flight Investigation on a Fighter-type Airplane of Factors which Affect the Loads and Load Distributions on the Vertical Tail Surfaces During Rudder Kicks and Fishtails

    NASA Technical Reports Server (NTRS)

    Boshar, John

    1947-01-01

    Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.

  3. Chronic and acute inspiratory muscle loading augment the effect of a 6-week interval program on tolerance of high-intensity intermittent bouts of running.

    PubMed

    Tong, Tom K; Fu, Frank H; Eston, Roger; Chung, Pak-Kwong; Quach, Binh; Lu, Kui

    2010-11-01

    This study examined the hypothesis that chronic (training) and acute (warm-up) loaded ventilatory activities applied to the inspiratory muscles (IM) in an integrated manner would augment the training volume of an interval running program. This in turn would result in additional improvement in the maximum performance of the Yo-Yo intermittent recovery test in comparison with interval training alone. Eighteen male nonprofessional athletes were allocated to either an inspiratory muscle loading (IML) group or control group. Both groups participated in a 6-week interval running program consisting of 3-4 workouts (1-3 sets of various repetitions of selected distance [100-2,400 m] per workout) per week. For the IML group, 4-week IM training (30 inspiratory efforts at 50% maximal static inspiratory pressure [P0] per set, 2 sets·d-1, 6 d·wk-1) was applied before the interval program. Specific IM warm-up (2 sets of 30 inspiratory efforts at 40% P0) was performed before each workout of the program. For the control group, neither IML was applied. In comparison with the control group, the interval training volume as indicated by the repeatability of running bouts at high intensity was approximately 27% greater in the IML group. Greater increase in the maximum performance of the Yo-Yo test (control: 16.9 ± 5.5%; IML: 30.7 ± 4.7% baseline value) was also observed after training. The enhanced exercise performance was partly attributable to the greater reductions in the sensation of breathlessness and whole-body metabolic stress during the Yo-Yo test. These findings show that the combination of chronic and acute IML into a high-intensity interval running program is a beneficial training strategy for enhancing the tolerance to high-intensity intermittent bouts of running.

  4. Effects of vest loading on sprint kinetics and kinematics.

    PubMed

    Cross, Matt R; Brughelli, Matt E; Cronin, John B

    2014-07-01

    The effects of vest loading on sprint kinetics and kinematics during the acceleration and maximum velocity phases of sprinting are relatively unknown. A repeated measures analysis of variance with post hoc contrasts was used to determine whether performing 6-second maximal exertion sprints on a nonmotorized force treadmill, under 2 weighted vest loading conditions (9 and 18 kg) and an unloaded baseline condition, affected the sprint mechanics of 13 males from varying sporting backgrounds. Neither vest load promoted significant change in peak vertical ground reaction force (GRF-z) outputs compared with baseline during acceleration, and only 18-kg loading increased GRF-z at the maximum velocity (8.8%; effect size [ES] = 0.70). The mean GRF-z significantly increased with 18-kg loading during acceleration and maximum velocity (11.8-12.4%; ES = 1.17-1.33). Horizontal force output was unaffected, although horizontal power was decreased with the 18-kg vest during maximum velocity (-14.3%; ES = -0.48). Kinematic analysis revealed decreasing velocity (-3.6 to -5.6%; ES = -0.38 to -0.61), decreasing step length (-4.2%; ES = -0.33 to -0.34), increasing contact time (5.9-10.0%; ES = 1.01-1.71), and decreasing flight time (-17.4 to -26.7%; ES = -0.89 to -1.50) with increased loading. As a vertical vector-training stimulus, it seems that vest loading decreases flight time, which in turn reduces GRF-z. Furthermore, it seems that heavier loads than that are traditionally recommended are needed to promote increases in the GRF-z output during maximum velocity sprinting. Finally, vest loading offers little as a horizontal vector-training stimulus and actually compromises horizontal power output.

  5. A Methodology for Multihazards Load Combinations of Earthquake and Heavy Trucks for Bridges

    PubMed Central

    Wang, Xu; Sun, Baitao

    2014-01-01

    Issues of load combinations of earthquakes and heavy trucks are important contents in multihazards bridge design. Current load resistance factor design (LRFD) specifications usually treat extreme hazards alone and have no probabilistic basis in extreme load combinations. Earthquake load and heavy truck load are considered as random processes with respective characteristics, and the maximum combined load is not the simple superimposition of their maximum loads. Traditional Ferry Borges-Castaneda model that considers load lasting duration and occurrence probability well describes random process converting to random variables and load combinations, but this model has strict constraint in time interval selection to obtain precise results. Turkstra's rule considers one load reaching its maximum value in bridge's service life combined with another load with its instantaneous value (or mean value), which looks more rational, but the results are generally unconservative. Therefore, a modified model is presented here considering both advantages of Ferry Borges-Castaneda's model and Turkstra's rule. The modified model is based on conditional probability, which can convert random process to random variables relatively easily and consider the nonmaximum factor in load combinations. Earthquake load and heavy truck load combinations are employed to illustrate the model. Finally, the results of a numerical simulation are used to verify the feasibility and rationality of the model. PMID:24883347

  6. Assessment of Head Displacement and Disassembly Force With Increasing Assembly Load at the Head/Trunnion Junction of a Total Hip Arthroplasty Prosthesis.

    PubMed

    Ramoutar, Darryl N; Crosnier, Emilie A; Shivji, Faiz; Miles, Anthony W; Gill, Harinderjit S

    2017-05-01

    Most femoral components used now for total hip arthroplasty are modular, requiring a strong connection at assembly. The aim of this study was to assess the effect of assembly force on the strength of head-trunnion interface and to measure the initial displacement of the head on the trunnion with different assembly forces. Three assembly load levels were assessed (A: 2 kN, B: 4 kN, C: 6 kN) with 4 implants in each group. The stems were mounted in a custom rig and the respective assembly loads were applied to the head at a constant rate of 0.05 kN/s (ISO7260-10:2003). Load levels were recorded during assembly. Head displacement was measured with a laser sensor. The disassembly force was determined by a standard pull-off test. The maximum head displacement on the trunnion was significantly different between the 2 kN group and the other 2 groups (4 kN, 6 kN, P = .029), but not between the 4 kN and 6 kN groups (P = .89). The disassembly forces between the 3 groups were significantly different (mean ± standard deviation, A: 1316 ± 223 kN; B: 2224 ± 151 kN; C: 3965 ± 344 kN; P = .007), with increasing assembly load leading to a higher pull-off force. For the 4 kN and 6 kN groups, a first peak of approximately 2.5 kN was observed on the load recordings during assembly before the required assembly load was eventually reached corresponding to sudden increase in head displacement to approximately 150 μm. An assembly force of 2 kN may be too low to overcome the frictional forces needed to engage the head and achieve maximum displacement on the trunnion and thus an assembly load of greater than 2.5 kN is recommended. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Advanced Pier Concepts Users Guide.

    DTIC Science & Technology

    1985-10-01

    about 4-5 inches. 0 Resistance to Lateral Loads Using the environmental conditions at NAVSTA Charleston and assuming the highest ship lateral loading ...near the channel and non-uniform loading is exper- ienccd; i.e. the lateral forces on an AD-41 and DD-9o3 are ab- sorbed by only 16 bents, the worst...maximum wind and C(lrrell [ - w 3-8 %. S..’.* ,. load acting on 4 berthed ships, then a maximum lateral force would be experienced. For a load of 1365

  8. 29 CFR 1917.111 - Maintenance and load limits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintained. (b) Maximum safe load limits, in pounds per square foot (kilograms per square meter), of floors elevated above ground level, and pier structures over the water shall be conspicuously posted in all cargo areas. (c) Maximum safe load limits shall not be exceeded. (d) All walking and working surfaces in the...

  9. The Effect of Suspension-Line Length on Viking Parachute Inflation Loads

    NASA Technical Reports Server (NTRS)

    Talay, Theodore A.; Poole, Lamont R.; Whitlock, Charles H.

    1971-01-01

    Analytical calculations have considered the effect on maximum load of increasing the suspension-line length on the Viking parachute. Results indicate that unfurling time is increased to 1.85 seconds from 1.45 seconds, and that maximum loads are increased approximately 5 percent with an uncertainty of -4 percent to +3 percent.

  10. Comparison of Water-Load Distributions Obtained during Seaplane Landings with Bureau of Aeronautics Specifications. TED No. NACA 2413

    NASA Technical Reports Server (NTRS)

    Smiley, Robert F.; Haines, Gilbert A.

    1949-01-01

    Bureau of Aeronautics Design Specifications SS-IC-2 for water loads in sheltered water are compared with experimental water loads obtained during a full--scale landing investigation. This investigation was conducted with a JRS-1 flying boat which has a 20 degrees dead-rise V-bottom with a partial chine flare. The range of landing conditions included airspeeds between 88 and 126 feet per second, sinking speeds between 1.6 and 9.1 feet per second, flight angles less than 6 degrees, and trims between 2 degrees and 12 degrees. Landings were moderate and were made in calm water. Measurements were obtained of maximum over-all loads, maximum pitching moments, and pressure distributions. Maximum experimental loads include over-all load factors of 2g, moments of 128,000 pound-feet, and maximum local pressures greater than 40 pounds per square inch. Experimental over-all loads are approximately one-half the design values, while local pressures are of the same order as or larger than pressures calculated from specifications for plating, stringer, floor, and frame design. The value of this comparison is limited, to some extent, by the moderate conditions of the test and by the necessary simplifying assumptions used in comparing the specifications with the experimental loads.

  11. A network flow model for load balancing in circuit-switched multicomputers

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.

    1990-01-01

    In multicomputers that utilize circuit switching or wormhole routing, communication overhead depends largely on link contention - the variation due to distance between nodes is negligible. This has a major impact on the load balancing problem. In this case, there are some nodes with excess load (sources) and others with deficit load (sinks) and it is required to find a matching of sources to sinks that avoids contention. The problem is made complex by the hardwired routing on currently available machines: the user can control only which nodes communicate but not how the messages are routed. Network flow models of message flow in the mesh and the hypercube were developed to solve this problem. The crucial property of these models is the correspondence between minimum cost flows and correctly routed messages. To solve a given load balancing problem, a minimum cost flow algorithm is applied to the network. This permits one to determine efficiently a maximum contention free matching of sources to sinks which, in turn, tells one how much of the given imbalance can be eliminated without contention.

  12. Finite element analysis of provisional structures of implant-supported complete prostheses.

    PubMed

    Carneiro, Bruno Albuquerque; de Brito, Rui Barbosa; França, Fabiana Mantovani Gomes

    2014-04-01

    The use of provisional resin implant-supported complete dentures is a fast and safe procedure to restore mastication and esthetics of patients soon after surgery and during the adaptation phase to the new denture. This study assessed stress distribution of provisional implant-supported fixed dentures and the all-on-4 concept using self-curing acrylic resin (Tempron) and bis-acrylic resin (Luxatemp) to simulate functional loads through the three-dimensional finite element method. Solidworks software was used to build three-dimensional models using acrylic resin (Tempron, model A) and bis-acrylic resin (Luxatemp, model B) for denture captions. Two loading patterns were applied on each model: (1) right unilateral axial loading of 150 N on the occlusal surfaces of posterior teeth and (2) oblique loading vector of 150 N at 45°. The results showed that higher stress was found on the bone crest below oblique load application with a maximum value of 187.57 MPa on model A and 167.45 MPa on model B. It was concluded that model B improved stress distribution on the denture compared with model A.

  13. The Strength of Transosseous Medial Meniscal Root Repair Using a Simple Suture Technique Is Dependent on Suture Material and Position.

    PubMed

    Robinson, James R; Frank, Evelyn G; Hunter, Alan J; Jermin, Paul J; Gill, Harinderjit S

    2018-03-01

    A simple suture technique in transosseous meniscal root repair can provide equivalent resistance to cyclic load and is less technically demanding to perform compared with more complex suture configurations, yet maximum yield loads are lower. Various suture materials have been investigated for repair, but it is currently not clear which material is optimal in terms of repair strength. Meniscal root anatomy is also complex; consisting of the ligamentous mid-substance (root ligament), the transition zone between the meniscal body and root ligament; the relationship between suture location and maximum failure load has not been investigated in a simulated surgical repair. (A) Using a knottable, 2-mm-wide, ultra-high-molecular-weight polyethylene (UHMWPE) braided tape for transosseous meniscal root repair with a simple suture technique will give rise to a higher maximum failure load than a repair made using No. 2 UHMWPE standard suture material for simple suture repair. (B) Suture position is an important factor in determining the maximum failure load. Controlled laboratory study. In part A, the posterior root attachment of the medial meniscus was divided in 19 porcine knees. The tibias were potted, and repair of the medial meniscus posterior root was performed. A suture-passing device was used to place 2 simple sutures into the posterior root of the medial meniscus during a repair procedure that closely replicated single-tunnel, transosseous surgical repair commonly used in clinical practice. Ten tibias were randomized to repair with No. 2 suture (Suture group) and 9 tibias to repair with 2-mm-wide knottable braided tape (Tape group). The repair strength was assessed by maximum failure load measured by use of a materials testing machine. Micro-computed tomography (CT) scans were obtained to assess suture positions within the meniscus. The wide range of maximum failure load appeared related to suture position. In part B, 10 additional porcine knees were prepared. Five knees were randomized to the Suture group and 5 to the Tape group. All repairs were standardized for location, and the repair was placed in the body of the meniscus. A custom image registration routine was created to coregister all 29 menisci, which allowed the distribution of maximum failure load versus repair location to be visualized with a heat map. In part A, higher maximum failure load was found for the Tape group (mean, 86.7 N; 95% CI, 63.9-109.6 N) compared with the Suture group (mean, 57.2 N; 95% CI, 30.5-83.9 N). The 3D micro-CT analysis of suture position showed that the mean maximum failure load for repairs placed in the meniscus body (mean, 104 N; 95% CI, 81.2-128.0 N) was higher than for those placed in the root ligament (mean, 35.1 N; 95% CI, 15.7-54.5 N). In part B, the mean maximum failure load was significantly greater for the Tape group, 298.5 N ( P = .016, Mann-Whitney U; 95% CI, 183.9-413.1 N), compared with that for the Suture group, 146.8 N (95% CI, 82.4-211.6 N). Visualization with the heat map revealed that small variations in repair location on the meniscus were associated with large differences in maximum failure load; moving the repair entry point by 3 mm could reduce the failure load by 50%. The use of 2-mm braided tape provided higher maximum failure load than the use of a No. 2 suture. The position of the repair in the meniscus was also a highly significant factor in the properties of the constructs. The results provide insight into material and location for optimal repair strength.

  14. Effect of Augmentation Material Stiffness on Adjacent Vertebrae after Osteoporotic Vertebroplasty Using Finite Element Analysis with Different Loading Methods.

    PubMed

    Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon

    2015-11-01

    Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method.

  15. Environmental impact of irrigation in La Violada District (Spain): II. Nitrogen fertilization and nitrate export patterns in drainage water.

    PubMed

    Isidoro, D; Quílez, D; Aragüés, R

    2006-01-01

    Fertilizer leaching affects farm profitability and contributes to nonpoint-source pollution of receiving waters. This work aimed to establish nitrate nitrogen export from La Violada Gully in relation to nitrogen fertilization practices in its basin (La Violada Gully watershed, VGW, 19,637 ha) and especially in La Violada Irrigation District (VID, 5282 ha). Nitrogen (N) fertilization in VID (and VGW) was determined through interviews with local farmers for the hydrologic years 1995 and 1996 and NO3-N load in the gully was monitored from 1995 to 1998. The N fertilizer applied in VGW was 2175 Mg in 1995 and 2795 Mg in 1996. About 43% was applied in VID (945 Mg in 1995 and 1161 Mg in 1996). The most fertilized crop was corn: 398 kg N ha-1 (665 Mg) in 1995 and 453 kg N ha-1 (911 Mg) in 1996. Nitrogen fertilization was higher than N uptake for irrigated crops, especially for corn and rice. Nitrate N load in La Violada Gully averaged 427.4 Mg yr-1. Seventy-five percent of the exports took place during the irrigation season (321.8 Mg). During the non-irrigation season maximum NO3-N loads (3.1 Mg NO3-N d-1) were found after heavy rains following the N side-dressing of wheat in the rain-fed area of VGW (February). During the irrigation season NO3-N load was determined by outflow from the district (caused by irrigation) and to a lesser extent by changes in NO3 concentration (caused by fertilization), showing peaks in April (pre-sowing corn N fertilization and first irrigations) and June to August (highest irrigation months and corn side-dress N applications, maximum 6.3 Mg NO3-N d-1 in July). Adjusting N fertilization to crops' needs, improving irrigation efficiencies, and better scheduling N fertilization and irrigation in corn could reduce N export from VID.

  16. Lateral-Torsional Buckling Instability Caused by Individuals Walking on Wood Composite I-Joists

    NASA Astrophysics Data System (ADS)

    Villasenor Aguilar, Jose Maria

    Recent research has shown that a significant number of the falls from elevation occur when laborers are working on unfinished structures. Workers walking on wood I-joists on roofs and floors are prone to fall hazards. Wood I-joists have been replacing dimension lumber for many floor systems and a substantial number of roof systems in light-frame construction. Wood I-joists are designed to resist axial stresses on the flanges and shear stresses on the web while minimizing material used. However, wood I-joists have poor resistance to applied lateral and torsional loads and are susceptible to lateral-torsional buckling instability. Workers walking on unbraced or partially braced wood I-joists can induce axial and lateral forces as well as twist. Experimental testing demonstrated that workers cause lateral-torsional buckling instability in wood I-joists. However, no research was found related to the lateral-torsional buckling instability induced by individuals walking on the wood I-joists. Furthermore, no research was found considering the effects of the supported end conditions and partial bracing in the lateral-torsional buckling instability of wood I-joists. The goal of this research was to derive mathematical models to predict the dynamic lateral-torsional buckling instability of wood composite I-joists loaded by individuals walking considering different supported end conditions and bracing system configurations. The dynamic lateral-torsional buckling instability was analyzed by linearly combining the static lateral-torsional buckling instability with the lateral bending motion of the wood Ijoists. Mathematical models were derived to calculate the static critical loads for the simply supported end condition and four wood I-joist hanger supported end conditions. Additionally, mathematical models were derived to calculate the dynamic maximum lateral displacements and positions of the individual walking on the wood Ijoists for the same five different supported end conditions. Three different lean-on bracing systems were investigated, non-bracing, one-bracing, and two-bracing systems. Mathematical models were derived to calculate the amount of constraint due to the lean-on bracing system. The derived mathematical models were validated by comparison to data from testing for all supported end conditions and bracing systems. The predicted critical loads using the static buckling theoretical models for the non-bracing system and the static buckling theoretical models combined with the bracing theoretical models for the simply and hanger supported end conditions agreed well with the critical loads obtained from testing for the two wood I-joist sizes investigated. The predicted maximum lateral displacements and individual positions using the bending motion theoretical models for the simply and hanger supported end conditions agreed well with the corresponding maximum lateral displacements and individual positions obtained from testing for both wood I-joist sizes. Results showed that; a) the supported end condition influenced the critical loads, maximum lateral displacements and individual positions, b) the bracing system increased the critical loads and reduced the maximum lateral displacements, c) the critical load increased as the load position displaced away from the wood I-joist mid-span, d) the critical load reduced as the initial lateral displacement of the wood I-joist increased and e) the wood I-joist mid-span was the critical point in the dynamic lateral-torsional buckling instability.

  17. Effects of axial compression and rotation angle on torsional mechanical properties of bovine caudal discs.

    PubMed

    Bezci, Semih E; Klineberg, Eric O; O'Connell, Grace D

    2018-01-01

    The intervertebral disc is a complex joint that acts to support and transfer large multidirectional loads, including combinations of compression, tension, bending, and torsion. Direct comparison of disc torsion mechanics across studies has been difficult, due to differences in loading protocols. In particular, the lack of information on the combined effect of multiple parameters, including axial compressive preload and rotation angle, makes it difficult to discern whether disc torsion mechanics are sensitive to the variables used in the test protocol. Thus, the objective of this study was to evaluate compression-torsion mechanical behavior of healthy discs under a wide range of rotation angles. Bovine caudal discs were tested under a range of compressive preloads (150, 300, 600, and 900N) and rotation angles (± 1, 2, 3, 4, or 5°) applied at a rate of 0.5°/s. Torque-rotation data were used to characterize shape changes in the hysteresis loop and to calculate disc torsion mechanics. Torsional mechanical properties were described using multivariate regression models. The rate of change in torsional mechanical properties with compression depended on the maximum rotation angle applied, indicating a strong interaction between compressive stress and maximum rotation angle. The regression models reported here can be used to predict disc torsion mechanics under axial compression for a given disc geometry, compressive preload, and rotation angle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. The effects of age and type of carrying task on lower extremity kinematics

    PubMed Central

    Gillette, Jason C.; Stevermer, Catherine A.; Miller, Ross H.; Meardon, Stacey A.; Schwab, Charles V.

    2009-01-01

    The purpose of this study was to determine the effects of age, load amount, and load symmetry on lower extremity kinematics during carrying tasks. Forty-two participants in four age groups (8-10 years, 12-14 years, 15-17 years, and adults) carried loads of 0%, 10%, and 20% body weight (BW) in large or small buckets unilaterally and bilaterally. Reflective markers were tracked to determine total joint ROM and maximum joint angles during the stance phase of walking. Maximum hip extension, hip adduction, and hip internal rotation angles were significantly greater for each of the child/adolescent age groups as compared to adults. In addition, maximum hip internal rotation angles significantly increased when carrying a 20% BW load. The observation that the 8-10 year old age group carried the lightest absolute loads and still displayed the highest maximum hip internal rotation angles suggests a particular necessity in setting carrying guidelines for the youngest children. PMID:20191410

  19. Development of a total maximum daily load (TMDL) for acid-impaired lakes in the Adirondack region of New York

    NASA Astrophysics Data System (ADS)

    Fakhraei, Habibollah; Driscoll, Charles T.; Selvendiran, Pranesh; DePinto, Joseph V.; Bloomfield, Jay; Quinn, Scott; Rowell, H. Chandler

    2014-10-01

    Acidic deposition has impaired acid-sensitive surface waters in the Adirondack region of New York by decreasing pH and acid neutralizing capacity (ANC). In spite of air quality programs over past decades, 128 lakes in the Adirondacks were classified as “impaired” under Section 303(d) of the Clean Water Act in 2010 due to elevated acidity. The biogeochemical model, PnET-BGC, was used to relate decreases in atmospheric sulfur (S) and nitrogen (N) deposition to changes in lake water chemistry. The model was calibrated and confirmed using observed soil and lake water chemistry data and then was applied to calculate the maximum atmospheric deposition that the impaired lakes can receive while still achieving ANC targets. Two targets of ANC were used to characterize the recovery of acid-impaired lakes: 11 and 20 μeq L-1. Of the 128 acid-impaired lakes, 97 currently have ANC values below the target value of 20 μeq L-1 and 83 are below 11 μeq L-1. This study indicates that a moderate control scenario (i.e., 60% decrease from the current atmospheric S load) is projected to recover the ANC of lakes at a mean rate of 0.18 and 0.05 μeq L-1 yr-1 during the periods 2022-2050 and 2050-2200, respectively. The total maximum daily load (TMDL) of acidity corresponding to this moderate control scenario was estimated to be 7.9 meq S m-2 yr-1 which includes a 10% margin of safety.

  20. Interference-Fit Life Factors for Roller Bearings

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2009-01-01

    The effect of hoop stresses in reducing cylindrical roller bearing fatigue life was determined for various classes of inner-ring interference fit. Calculations were performed for up to 7 fit classes for each of 10 bearing sizes. The hoop stresses were superimposed on the Hertzian principal stresses created by the applied radial load to calculate roller bearing fatigue life. A method was developed through a series of equations to calculate the life reduction for cylindrical roller bearings. All calculated lives are for zero initial internal clearance. Any reduction in bearing clearance due to interference fit would be compensated by increasing the initial (unmounted) clearance. Results are presented as tables and charts of life factors for bearings with light, moderate, and heavy loads and interference fits ranging from extremely light to extremely heavy for bearing accuracy class RBEC-5 (ISO class 5). Interference fits on the inner ring of a cylindrical roller bearing can significantly reduce bearing fatigue life. In general, life factors are smaller (lower life) for bearings running under light load where the unfactored life is highest. The various bearing series within a particular bore size had almost identical interference-fit life factors for a particular fit. The tightest fit at the high end of the tolerance band produces a life factor of approximately 0.40 for an inner-race maximum Hertz stress of 1200 MPa (175 ksi) and a life factor of 0.60 for an inner-race maximum Hertz stress of 2200 MPa (320 ksi). Interference fits also impact the maximum Hertz stress-life relation.

  1. Interfacial characteristics of hybrid nanocomposite under thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Choyal, Vijay; Kundalwal, Shailesh I.

    2017-12-01

    In this work, an improved shear lag model was developed to investigate the interfacial characteristics of three-phase hybrid nanocomposite which is reinforced with microscale fibers augmented with carbon nanotubes on their circumferential surfaces. The shear lag model accounts for (i) radial and axial deformations of different transversely isotropic constituents, (ii) thermomechanical loads on the representative volume element (RVE), and (iii) staggering effect of adjacent RVEs. The results from the current newly developed shear lag model are validated with the finite element simulations and found to be in good agreement. This study reveals that the reduction in the maximum value of the axial stress in the fiber and the interfacial shear stress along its length become more pronounced in the presence of applied thermomechanical loads on the staggered RVEs. The existence of shear tractions along the RVE length plays a significant role in the interfacial characteristics and cannot be ignored.

  2. On the variation in crack-opening stresses at different locations in a three-dimensional body

    NASA Technical Reports Server (NTRS)

    Chermahini, R. G.; Blom, Anders F.

    1990-01-01

    Crack propagation and closure behavior of thin, and thick middle crack tension specimens under constant amplitude loading were investigated using a three dimensional elastic plastic finite element analysis of fatigue crack propagation and closure. In the thin specimens the crack front closed first on the exterior (free) surface and closed last in the interior during the unloading portion of cyclic loading; a load reduced displacement technique was used to determine crack opening stresses at specified locations in the plate from the displacements calculated after the seven cycle. All the locations were on the plate external surface and were located near the crack tip, behind the crack tip, at the centerline of the crack. With this technique, the opening stresses at the specified points were found to be 0.52, 0.42, and 0.39 times the maximum applied stress.

  3. Design and Optimization of Slot Aluminum Alloy Connectors of Photovoltaics Applied to High-rise Building Facades

    NASA Astrophysics Data System (ADS)

    Liang, Ya-Wei; Zhang, Hong-Mei; Dong, Jin-Zhi; Shi, Zhen-Hua

    2016-05-01

    Building Integrated Photovoltaic (BIPV) is a resort to save energy and reduce heat gain of buildings, utilize new and renewable energy, solve environment problems and alleviate electricity shortage in large cities. The area needed to generate power makes facade integrated photovoltaic panel a superb choice, especially in high-rise buildings. Numerous scholars have hitherto explored Building Facade Integrated Photovoltaic, however, focusing mainly on thermal performance, which fails to ensure seismic safety of high-rise buildings integrated photovoltaic. Based on connecting forms of the glass curtain wall, a connector jointing photovoltaic panel and facade was designed, which underwent loading position and size optimization. Static loading scenarios were conducted to test and verify the connector's mechanical properties under gravity and wind loading by means of HyperWorks. Compared to the unoptimized design, the optimized one saved material and managed to reduce maximum deflection by 74.64%.

  4. Response of Velocity Anisotropy of Shale Under Isotropic and Anisotropic Stress Fields

    NASA Astrophysics Data System (ADS)

    Li, Xiaying; Lei, Xinglin; Li, Qi

    2018-03-01

    We investigated the responses of P-wave velocity and associated anisotropy in terms of Thomsen's parameters to isotropic and anisotropic stress fields on Longmaxi shales cored along different directions. An array of piezoelectric ceramic transducers allows us to measure P-wave velocities along numerous different propagation directions. Anisotropic parameters, including the P-wave velocity α along a symmetry axis, Thomsen's parameters ɛ and δ, and the orientation of the symmetry axis, could then be extracted by fitting Thomsen's weak anisotropy model to the experimental data. The results indicate that Longmaxi shale displays weakly intrinsic velocity anisotropy with Thomsen's parameters ɛ and δ being approximately 0.05 and 0.15, respectively. The isotropic stress field has only a slight effect on velocity and associated anisotropy in terms of Thomsen's parameters. In contrast, both the magnitude and orientation of the anisotropic stress field with respect to the shale fabric are important in controlling the evolution of velocity and associated anisotropy in a changing stress field. For shale with bedding-parallel loading, velocity anisotropy is enhanced because velocities with smaller angles relative to the maximum stress increase significantly during the entire loading process, whereas those with larger angles increase slightly before the yield stress and afterwards decrease with the increasing differential stress. For shale with bedding-normal loading, anisotropy reversal is observed, and the anisotropy is progressively modified by the applied differential stress. Before reaching the yield stress, velocities with smaller angles relative to the maximum stress increase more significantly and even exceed the level of those with larger angles. After reaching the yield stress, velocities with larger angles decrease more significantly. Microstructural features such as the closure and generation of microcracks can explain the modification of the velocity anisotropy due to the applied stress anisotropy.

  5. Dental cutting behaviour of mica-based and apatite-based machinable glass-ceramics.

    PubMed

    Taira, M; Wakasa, K; Yamaki, M; Matsui, A

    1990-09-01

    Some recently developed industrial ceramics have excellent machinability properties. The objective of this study was to evaluate the dental cutting behaviour of two machinable glass-ceramics, mica-containing Macor-M and apatite- and diopside-containing Bioram-M, and to compare them with the cutting behaviour of a composite resin typodont tooth enamel and bovine enamel. Weight-load cutting tests were conducted, using a diamond point driven by an air-turbine handpiece, While the transverse load applied on the point was varied, the handpiece speed during cutting and the volume of removal upon cutting were measured. In general, an increase in the applied load caused a decrease in cutting speed and an increase in cutting volume. However, the intensity of this trend was found to differ between four workpieces. Cutting Macor-M resulted in the second-most reduced cutting speed and the maximum cutting volume. Cutting Bioram-M gave the least reduced cutting speed and the minimum cutting volume. It was suggested that two machinable glass-ceramics could be employed as typodont teeth. This study may also contribute to the development of new restorative dental ceramic materials, prepared by machining.

  6. Analysis and prediction of operating vehicle load effects on Highway bridges under the weight charge policy

    NASA Astrophysics Data System (ADS)

    Huang, Haiyun; Zhang, Junping; Li, Yonghe

    2018-05-01

    Under the weight charge policy, the weigh in motion data at a toll station on the Jing-Zhu Expressway were collected. The statistic analysis of vehicle load data was carried out. For calculating the operating vehicle load effects on bridges, by Monte Carlo method used to generate random traffic flow and influence line loading method, the maximum bending moment effect of simple supported beams were obtained. The extreme value I distribution and normal distribution were used to simulate the distribution of the maximum bending moment effect. By the extrapolation of Rice formula and the extreme value I distribution, the predicted values of the maximum load effects were obtained. By comparing with vehicle load effect according to current specification, some references were provided for the management of the operating vehicles and the revision of the bridge specifications.

  7. Determining the optimal load for jump squats: a review of methods and calculations.

    PubMed

    Dugan, Eric L; Doyle, Tim L A; Humphries, Brendan; Hasson, Christopher J; Newton, Robert U

    2004-08-01

    There has been an increasing volume of research focused on the load that elicits maximum power output during jump squats. Because of a lack of standardization for data collection and analysis protocols, results of much of this research are contradictory. The purpose of this paper is to examine why differing methods of data collection and analysis can lead to conflicting results for maximum power and associated optimal load. Six topics relevant to measurement and reporting of maximum power and optimal load are addressed: (a) data collection equipment, (b) inclusion or exclusion of body weight force in calculations of power, (c) free weight versus Smith machine jump squats, (d) reporting of average versus peak power, (e) reporting of load intensity, and (f) instructions given to athletes/ participants. Based on this information, a standardized protocol for data collection and reporting of jump squat power and optimal load is presented.

  8. Load evaluation of the da Vinci surgical system for transoral robotic surgery.

    PubMed

    Fujiwara, Kazunori; Fukuhara, Takahiro; Niimi, Koji; Sato, Takahiro; Kitano, Hiroya

    2015-12-01

    Transoral robotic surgery, performed with the da Vinci surgical system (da Vinci), is a surgical approach for benign and malignant lesions of the oral cavity and laryngopharynx. It provides several unique advantages, which include a 3-dimensional magnified view and ability to see and work around curves or angles. However, the current da Vinci surgical system does not provide haptic feedback. This is problematic because the potential risks specific to the transoral use of the da Vinci include tooth injury, mucosal laceration, ocular injury and mandibular fracture. To assess the potential for intraoperative injuries, we measured the load of the endoscope and the instrument of the da Vinci Si surgical system. We pressed the endoscope and instrument of the da Vinci Si against Load cell six times each and measured the dynamic load and the time-to-maximum load. We also struck the da Vinci Si endoscope and instrument against the Load cell six times each and measured the impact load. The maximum dynamic load was 7.27 ± 1.31 kg for the endoscope and 1.90 ± 0.72 for the instrument. The corresponding time-to-maximum loads were 1.72 ± 0.22 and 1.29 ± 0.34 s, but the impact loads were significantly lower than the dynamic load. It remains possible that a major load is exerted on adjacent structures by continuous contact with the endoscope and instrument of da Vinci Si. However, there is a minor delay in reaching the maximum load. Careful monitoring by an on-site assistant may, therefore, help prevent contiguous injury.

  9. Flexural impact force absorption of mouthguard materials using film sensor system.

    PubMed

    Reza, Fazal; Churei, Hiroshi; Takahashi, Hidekazu; Iwasaki, Naohiko; Ueno, Toshiaki

    2014-06-01

    Several methods have been used to measure the impact force absorption capacities of mouthguard materials; however, the relationships among these measurement systems have not been clearly determined. The purpose of the present study was to evaluate the impact force-absorbing capability of materials using a drop-ball system with film sensors and load cells to clarify the relationship between these two sensor systems. Disk-shaped specimens (1, 2, and 3 mm thick) were prepared using three commercial thermoplastic mouthguard materials (Bioplast, Impact Guard, MG 21) and one experimental mouthguard material [mixture of Poly (ethyl methacrylate)]. Impact force was applied by letting a stainless steel ball drop free-fall onto the specimens and then measuring the impact load under each specimen using a film sensor system and a load cell sensor system. The total load measured with the film sensor system decreased with an increase in mouthguard thickness, while almost none of the transmitted impact forces measured with the load cell system were statistically different. The film sensor system was considered to be superior to the load cell system because the maximum stress and stress area could be determined. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill

    PubMed Central

    Yin, Zixin; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing

    2017-01-01

    The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70–80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw. PMID:28773243

  11. Impact Load Behavior between Different Charge and Lifter in a Laboratory-Scale Mill.

    PubMed

    Yin, Zixin; Peng, Yuxing; Zhu, Zhencai; Yu, Zhangfa; Li, Tongqing

    2017-07-31

    The impact behavior between the charge and lifter has significant effect to address the mill processing, and is affected by various factors including mill speed, mill filling, lifter height and media shape. To investigate the multi-body impact load behavior, a series of experiments and Discrete Element Method (DEM) simulations were performed on a laboratory-scale mill, in order to improve the grinding efficiency and prolong the life of the lifter. DEM simulation hitherto has been extensively applied as a leading tool to describe diverse issues in granular processes. The research results shown as follows: The semi-empirical power draw of Bond model in this paper does not apply very satisfactorily for the ball mills, while the power draw determined by DEM simulation show a good approximation for the measured power draw. Besides, the impact force on the lifter was affected by mill speed, grinding media filling, lifter height and iron ore particle. The maximum percent of the impact force between 600 and 1400 N is at 70-80% of critical speed. The impact force can be only above 1400 N at the grinding media filling of 20%, and the maximum percent of impact force between 200 and 1400 N is obtained at the grinding media filling of 20%. The percent of impact force ranging from 0 to 200 N decreases with the increase of lifter height. However, this perfect will increase above 200 N. The impact force will decrease when the iron ore particles are added. Additionally, for the 80% of critical speed, the measured power draw has a maximum value. Increasing the grinding media filling increases the power draw and increasing the lifter height does not lead to any variation in power draw.

  12. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... no loss of contents. [Amdt. 178-103, 59 FR 38074, July 26, 1994, as amended at 66 FR 33452, June 21... types must be loaded to twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly...

  13. Biodegradation of a surrogate naphthenic acid under denitrifying conditions.

    PubMed

    Gunawan, Yetty; Nemati, Mehdi; Dalai, Ajay

    2014-03-15

    Extraction of bitumen from the shallow oil sands generates extremely large volumes of waters contaminated by naphthenic acid which pose severe environmental and ecological risks. Aerobic biodegradation of NA in properly designed bioreactors has been investigated in our earlier works. In the present work, anoxic biodegradation of trans-4-methyl-1-cyclohexane carboxylic acid (trans-4MCHCA) coupled to denitrification was investigated as a potential ex situ approach for the treatment of oil sand process waters in bioreactors whereby excessive aeration cost could be eliminated, or as an in situ alternative for the treatment of these waters in anoxic stabilization ponds amended with nitrate. Using batch and continuous reactors (CSTR and biofilm), effects of NA concentration (100-750mgL(-1)), NA loading rate (up to 2607.9mgL(-1)h(-1)) and temperature (10-35°C) on biodegradation and denitrification processes were evaluated. In the batch system biodegradation of trans-4MCHCA coupled to denitrification occurred even at the highest concentration of 750mgL(-1). Consistent with the patterns reported for aerobic biodegradation, increase in initial concentration of NA led to higher biodegradation and denitrification rates and the optimum temperature was determined as 23-24°C. In the CSTR, NA removal and nitrate reduction rates passed through a maximum due to increases in NA loading rate. NA loading rate of 157.8mgL(-1)h(-1) at which maximum anoxic NA and nitrate removal rates (105.3mgL(-1)h(-1) and 144.5mgL(-1)h(-1), respectively) occurred was much higher than those reported for the aerobic alternative (NA loading and removal rates: 14.2 and 9.6mgL(-1)h(-1), respectively). In the anoxic biofilm reactor removal rates of NA and nitrate were dependent on NA loading rate in a linear fashion for the entire range of applied loading rates. The highest loading and removal rates for NA were 2607.9 and 2028.1mgL(-1)h(-1), respectively which were at least twofold higher than the values reported for the aerobic biofilm reactor. The highest nitrate removal rate coincided with maximum removal rate of NA and was 3164.7mgL(-1)h(-1). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  15. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  16. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  17. 14 CFR 23.343 - Design fuel loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... zero fuel to the selected maximum fuel load. (b) If fuel is carried in the wings, the maximum allowable weight of the airplane without any fuel in the wing tank(s) must be established as “maximum zero wing... part and— (1) The structure must be designed to withstand a condition of zero fuel in the wing at limit...

  18. Examination of ceramic/enamel interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Chang, Yen-Hsiang; Yu, Jin-Jie; Lin, Yun-Chu

    2014-08-01

    This study investigates monitored micro-crack growth and damage in the ceramic/enamel adhesive interface using the acoustic emission (AE) technique with optical coherence tomography (OCT) under fatigue shear testing. Shear bond strength (SBS) was measured first with eight prepared ceramic/enamel adhesive specimens under static loads. The fatigue shear testing was performed with three specimens at each cyclic load according to a modified ISO14801 method, applying at 80%, 75%, 70%, and 65% of the SBS to monitor interface debonding. The number of cycles at each load was recorded until ceramic/enamel adhesive interface debonding occurred. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 18.07 ± 1.72 MPa (mean ± standard deviation), expressed in Newton's at 56.77 ± 5.40N. The average number of fatigue cycles in which ceramic/enamel interface damage was detected in 80%, 75%, 70% and 65% of the SBS were 41, 410, 8141 and 76,541, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 65% and 70% fatigue tests. A good correlation was observed between the crack location in OCT images and the number of AE signal hits. The AE technique combined with OCT images as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/enamel bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 10.98 MPa (about 34.48 N) passing 10(6) fatigue cyclic. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  19. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  20. Method of operating a thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  1. Photocatalytic water splitting over titania supported copper and nickel oxide in photoelectrochemical cell; optimization of photoconversion efficiency

    NASA Astrophysics Data System (ADS)

    Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati

    2018-04-01

    we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.

  2. Organic loading rate effect on the acidogenesis of cheese whey: a comparison between UASB and SBR reactors.

    PubMed

    Calero, R; Iglesias-Iglesias, R; Kennes, C; Veiga, M C

    2017-09-16

    Volatile fatty acids (VFA) production and degree of acidification (DA) were investigated in the anaerobic treatment of cheese whey by comparison of two processes: a continuous process using a laboratory upflow anaerobic sludge blanket (UASB) reactor and a discontinuous process using a sequencing batch reactor (SBR). The main purpose of this work was to study the organic loading rate (OLR) effect on the yield of VFA in two kinds of reactors. The predominant products in the acidogenic process in both reactors were: acetate, propionate, butyrate and valerate. The maximum DA obtained was 98% in an SBR at OLR of 2.7 g COD L -1 d -1 , and 97% in the UASB at OLR at 15.1 g COD L -1 d -1 . The results revealed that the UASB reactor was more efficient at a medium OLR with a higher VFA yield, while with the SBR reactor, the maximum acidification was obtained at a lower OLR with changes in the VFA profile at different OLRs applied.

  3. Quantifying the Strength of General Factors in Psychopathology: A Comparison of CFA with Maximum Likelihood Estimation, BSEM, and ESEM/EFA Bifactor Approaches.

    PubMed

    Murray, Aja Louise; Booth, Tom; Eisner, Manuel; Obsuth, Ingrid; Ribeaud, Denis

    2018-05-22

    Whether or not importance should be placed on an all-encompassing general factor of psychopathology (or p factor) in classifying, researching, diagnosing, and treating psychiatric disorders depends (among other issues) on the extent to which comorbidity is symptom-general rather than staying largely within the confines of narrower transdiagnostic factors such as internalizing and externalizing. In this study, we compared three methods of estimating p factor strength. We compared omega hierarchical and explained common variance calculated from confirmatory factor analysis (CFA) bifactor models with maximum likelihood (ML) estimation, from exploratory structural equation modeling/exploratory factor analysis models with a bifactor rotation, and from Bayesian structural equation modeling (BSEM) bifactor models. Our simulation results suggested that BSEM with small variance priors on secondary loadings might be the preferred option. However, CFA with ML also performed well provided secondary loadings were modeled. We provide two empirical examples of applying the three methodologies using a normative sample of youth (z-proso, n = 1,286) and a university counseling sample (n = 359).

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plucknett, K.P.; Becher, P.F.; Waters, S.B.

    TiC/Ni{sub 3}Al composites were prepared using a simple melt-infiltration process, performed at either 1300 or 1400 C, with the Ni{sub 3}Al content varied over the range of 8--25 vol%. Densities >96% of theoretical were obtained for all composites. Four-point flexure strengths at 22 C increased as the Ni{sub 3}Al content increased (i.e., {approximately}1,100 MPa at 20 vol% Ni{sub 3}Al), with the highest strengths being observed for composites processed at 1300 C, because of reduced TiC grain size. Strengths at elevated temperatures increased with test temperature, up to {approximately}1,000 C. As with the yielding behavior of the Ni{sub 3}Al alloy used,more » a maximum in composite strength ({approximately}1,350 MPa) versus temperature was observed; this occurred at 950 C, which is {approximately}300 C above the yield maximum for the alloy. Extensive plastic strain was achieved in the composites even at high loading rates at 1,135 C, and the yield stress was dependent on the applied loading rate.« less

  5. Influence of Diamondlike Carbon Coating of Screws on Axial Tightening Force and Stress Distribution on Overdenture Bar Frameworks with Different Fit Levels and Materials.

    PubMed

    dos Santos, Mateus Bertolini Fernandes; Bacchi, Atais; Consani, Rafael Leonardo Xediek; Correr-Sobrinho, Lourenço

    2015-01-01

    The aim of this study was to evaluate the axial tightening force applied by conventional and diamondlike carbon (DLC)-coated screws and to verify, through three-dimensional finite element analysis (FEA), the stress distribution caused by different framework materials and prosthetic screws in overdenture frameworks with different misfit levels. The axial tightening force applied by the screw was evaluated by means of a titanium matrix connected to a load cell. Conventional titanium or DLC-coated screws were tightened with a digital torque wrench, and the load values were recorded. The values were applied in an FEA to a bar-clip attachment system connected to two 4.0 × 11-mm external-hexagon titanium implants placed in an anterior edentulous arch. DLC-coated and conventional screws were modeled with their respective axial forces obtained on the experimental evaluation for three bar framework materials (titanium, nickel-chromium, and cobalt-chromium) and three levels of misfit (100, 150, and 200 μm). Von Mises stresses for prosthetic components and maximum principal stress and microstrains (maximum principal strains) for bone tissue were measured. The mean force applied by the conventional screw was 25.55 N (± 1.78); the prosthetic screw coated with a DLC layer applied a mean force of 31.44 N (± 2.11), a statistically significant difference. In the FEA, the DLC screw led to higher stresses on the framework; however, the prosthetic screw suffered lower stress. No influence of screw type was seen in the bone tissue. Titanium frameworks reduced the stress transmitted to the bone tissue and the bar framework but had no influence on the screws. Higher misfit values resulted in an increased stress/strain in bone tissue and bar framework, which was not the case for retention screws.

  6. A New Experimental Design for Bacterial Microleakage Investigation at the Implant-Abutment Interface: An In Vitro Study.

    PubMed

    Zipprich, Holger; Miatke, Sven; Hmaidouch, Rim; Lauer, Hans-Christoph

    2016-01-01

    This study aimed to test bacterial microleakage at the implant-abutment interface (IAI) before and after dynamic loading using a new chewing simulation. Fourteen implant systems (n = 5 samples of each) were divided into two groups: (1) systems with conical implant-abutment connections (IACs), and (2) systems with flat IACs. For collecting samples without abutment disconnection, channels (Ø = 0.3 mm) were drilled into implants perpendicularly to their axes, and stainless-steel cannulas were adhesively glued inside these channels to allow a sterilized rinsing solution to enter the implant interior and to exit with potential contaminants for testing. Implants were embedded in epoxy resin matrices, which were supported by titanium cylinders with lateral openings for inward and outward cannulas. Abutments were tightened and then provided with vertically adjustable, threaded titanium balls, which were cemented using composite cement. Specimens were immersed in a bacterial liquid and after a contact time of 15 minutes, the implant interior was rinsed prior to chewing simulation (0 N ≘ static seal testing). Specimens were exposed to a Frankfurt chewing simulator. Two hundred twenty force cycles per power level (110 in ± X-axis) were applied to simulate a daily masticatory load of 660 chewing cycles (equivalent to 1,200,000 cycles/5 years). The applied load was gradually increased from 0 N to a maximum load of 200 N in 25-N increments. The implant interior was rinsed to obtain samples before each new power level. All samples were tested using fluorescence microscopy; invading microorganisms could be counted and evaluated. No bacterial contamination was detected under static loading conditions in both groups. After loading, bacterial contamination was detected in one sample from one specimen in group 1 and in two samples from two specimens in group 2. Controlled dynamic loading applied in this study simulated a clinical situation and enabled time-dependent analysis regarding the bacterial seal of different implant systems. Conical IACs offer a better bacterial seal compared with flat IACs, which showed increased microleakage after dynamic loading. IAC design plays a crucial role in terms of bacterial colonization. Taking samples of the implant interior without abutment disconnection eliminates an error source.

  7. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  8. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  9. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  10. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  11. 46 CFR 172.087 - Cargo loading assumptions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... this subpart must be done for cargo weights and densities up to and including the maximum that is to be... condition of loading and operation, each cargo tank must be assumed to have its maximum free surface. ...

  12. The Fatigue Behavior of Built-Up Welded Beams of Commercially Pure Titanium

    NASA Astrophysics Data System (ADS)

    Patnaik, Anil; Poondla, Narendra; Bathini, Udaykar; Srivatsan, T. S.

    2011-10-01

    In this article, the results of a recent study aimed at evaluating, understanding, and rationalizing the extrinsic influence of fatigue loading on the response characteristics of built-up welded beams made from commercially pure titanium (Grade 2) are presented and discussed. The beams were made from welding plates and sheets of titanium using the pulsed gas metal arc welding technique to form a structural beam having an I-shaped cross section. The welds made for the test beams of the chosen metal were fillet welds using a matching titanium filler metal wire. The maximum and minimum load values at which the built-up beams were cyclically deformed were chosen to be within the range of 22-45% of the maximum predicted flexural static load. The beams were deformed in fatigue at a stress ratio of 0.1 and constant frequency of 5 Hz. The influence of the ratio of maximum load with respect to the ultimate failure load on fatigue performance, quantified in terms of fatigue life, was examined. The percentage of maximum load to ultimate load that resulted in run-out of one million cycles was established. The overall fracture behavior of the failed beam sample was characterized by scanning electron microscopy observations to establish the conjoint influence of load severity, intrinsic microstructural effects, and intrinsic fracture surface features in governing failure by fracture.

  13. Static and Dynamic Compaction of CL-20 Powders

    NASA Astrophysics Data System (ADS)

    Cooper, Marcia A.; Brundage, Aaron L.; Dudley, Evan C.

    2009-12-01

    Hexanitrohexaazaisowurtzitane (CL-20) powders were compacted under quasi-static and dynamic loading conditions. A uniaxial compression apparatus quasi-statically compressed the powders to 90% theoretical maximum density with applied stresses up to 0.4 GPa. Dynamic compaction measurements using low-density pressings approximately 64% theoretical maximum density (TMD) were obtained in a single-stage gas gun at impact velocities between 0.17-0.95 km/s. Experiments were conducted in a reverse ballistic arrangement in which the projectile contained the CL-20 powder bed and impacted a target consisting of an aluminized window. VISAR-measured particle velocities at the explosive-window interface determined the shock Hugoniot states for pressures up to 1.3 GPa. Approved for public release, SAND2009-4810C.

  14. [Tibial press-fit fixation of flexor tendons for reconstruction of the anterior cruciate ligament].

    PubMed

    Ettinger, M; Liodakis, E; Haasper, C; Hurschler, C; Breitmeier, D; Krettek, C; Jagodzinski, M

    2012-09-01

    Press-fit fixation of hamstring tendon autografts for anterior cruciate ligament reconstruction is an interesting technique because no hardware is necessary. This study compares the biomechanical properties of press-fit fixations to an interference screw fixation. Twenty-eight human cadaveric knees were used for hamstring tendon explantation. An additional bone block was harvested from the tibia. We used 28 porcine femora for graft fixation. Constructs were cyclically stretched and then loaded until failure. Maximum load to failure, stiffness and elongation during failure testing and cyclic loading were investigated. The maximum load to failure was 970±83 N for the press-fit tape fixation (T), 572±151 N for the bone bridge fixation (TS), 544±109 N for the interference screw fixation (I), 402±77 N for the press-fit suture fixation (S) and 290±74 N for the bone block fixation technique (F). The T fixation had a significantly better maximum load to failure compared to all other techniques (p<0.001). This study demonstrates that a tibial press-fit technique which uses an additional bone block has better maximum load to failure results compared to a simple interference screw fixation.

  15. Report: Total Maximum Daily Load Program Needs Better Data and Measures to Demonstrate Environmental Results

    EPA Pesticide Factsheets

    Report #2007-P-00036, September 19, 2007. EPA does not have comprehensive information on the outcomes of the Total Maximum Daily Load (TMDL) program nationwide, nor national data on TMDL implementation activities.

  16. Ultimate force and stiffness of 2-piece zirconium dioxide implants with screw-retained monolithic lithium-disilicate reconstructions.

    PubMed

    Joda, Tim; Voumard, Benjamin; Zysset, Philippe K; Brägger, Urs; Ferrari, Marco

    2018-04-01

    The aims were to analyze stiffness, ultimate force, and failure modes of a 2-piece zirconium dioxide (ZrO 2 ) implant system. Eleven 2-piece ZrO 2 implants, each mounted with ZrO 2 abutments plus bonded monolithic lithium disilicate (LS 2 ) restorations, were grouped for 3.3mm (A) and 4.1mm (B) diameter samples. Quasi-static load was monotonically applied under a standardized test set-up (loading configuration according to DIN ISO 14801). The ultimate force was defined as the maximum force that implants are able to carry out until fracture; stiffness was measured as the maximum slope during loading. An unpaired t-test was performed between group A and B for ultimate force and stiffness (p<0.05). Force-displacement curves revealed statistically homogenous inner-group results for all samples. Failure modes showed characteristic fractures at the neck configuration of the implants independent of the diameter. Mean stiffness was 1099N/mm (±192) for group A, and significantly lower compared to group B with 1630N/mm (±274) (p<0.01); whereas mean ultimate force was 348N (±53) for group A, and significantly increased for group B with 684N (±29) (p<0.0001). The examined 2-piece ZrO 2 implant system mounted to LS 2 -restorations seems to be a stable unit under in-vitro conditions with mechanical properties compared to loading capacity of physiological force. The metal-free implant reconstructions demonstrated high stiffness and ultimate force under quasi-static load for single tooth replacement under consideration of the dental indication of narrow and standard diameter implants. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  17. Biomechanical effect of latissimus dorsi tendon transfer for irreparable massive cuff tear.

    PubMed

    Oh, Joo Han; Tilan, Justin; Chen, Yu-Jen; Chung, Kyung Chil; McGarry, Michelle H; Lee, Thay Q

    2013-02-01

    The purpose of this study was to determine the biomechanical effects of latissimus dorsi transfer in a cadaveric model of massive posterosuperior rotator cuff tear. Eight cadaveric shoulders were tested at 0°, 30°, and 60° of abduction in the scapular plane with anatomically based muscle loading. Humeral rotational range of motion and the amount of humeral rotation due to muscle loading were measured. Glenohumeral kinematics and contact characteristics were measured throughout the range of motion. After testing in the intact condition, the supraspinatus and infraspinatus were resected. The cuff tear was then repaired by latissimus dorsi transfer. Two muscle loading conditions were applied after latissimus transfer to simulate increased tension that may occur due to limited muscle excursion. A repeated-measures analysis of variance was used for statistical analysis. The amount of internal rotation due to muscle loading and maximum internal rotation increased with massive cuff tear and was restored with latissimus transfer (P < .05). At maximum internal rotation, the humeral head apex shifted anteriorly, superiorly, and laterally at 0° of abduction after massive cuff tear (P < .05); this abnormal shift was corrected with latissimus transfer (P < .05). However, at 30° and 60° of abduction, latissimus transfer significantly altered kinematics (P < .05) and latissimus transfer with increased muscle loading increased contact pressure, especially at 60° of abduction. Latissimus dorsi transfer is beneficial in restoring humeral internal/external rotational range of motion, the internal/external rotational balance of the humerus, and glenohumeral kinematics at 0° of abduction. However, latissimus dorsi transfer with simulated limited excursion may lead to an overcompensation that can further deteriorate normal biomechanics, especially at higher abduction angles. Published by Mosby, Inc.

  18. Maximum and minimum return losses from a passive two-port network terminated with a mismatched load

    NASA Technical Reports Server (NTRS)

    Otoshi, T. Y.

    1993-01-01

    This article presents an analytical method for determining the exact distance a load is required to be offset from a passive two-port network to obtain maximum or minimum return losses from the terminated two-port network. Equations are derived in terms of two-port network S-parameters and load reflection coefficient. The equations are useful for predicting worst-case performances of some types of networks that are terminated with offset short-circuit loads.

  19. Investigation of the Maximum Spin-Up Coefficients of Friction Obtained During Tests of a Landing Gear Having a Static-Load Rating of 20,000 Pounds

    NASA Technical Reports Server (NTRS)

    Batterson, Sidney A.

    1959-01-01

    An experimental investigation was made at the Langley landing loads track to obtain data on the maximum spin-up coefficients of friction developed by a landing gear having a static-load rating of 20,000 pounds. The forward speeds ranged from 0 to approximately 180 feet per second and the sinking speeds, from 2.7 feet per second to 9.4 feet per second. The results indicated the variation of the maximum spin-up coefficient of friction with forward speed and vertical load. Data obtained during this investigation are also compared with some results previously obtained for nonrolling tires to show the effect of forward speed.

  20. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  1. Ratcheting induced cyclic softening behaviour of 42CrMo4 steel

    NASA Astrophysics Data System (ADS)

    Kreethi, R.; Mondal, A. K.; Dutta, K.

    2015-02-01

    Ratcheting is an important field of fatigue deformation which happens under stress controlled cyclic loading of materials. The aim of this investigation is to study the uniaxial ratcheting behavior of 42CrMo4 steel in annealed condition, under various applied stresses. In view of this, stress controlled fatigue tests were carried out at room temperature up to 200 cycles using a servo-hydraulic universal testing machine. The results indicate that accumulation of ratcheting strain increases monotonically with increasing maximum applied stress however; the rate of strain accumulation attains a saturation plateau after few cycles. The investigated steel shows cyclic softening behaviour under the applied stress conditions. The nature of strain accumulation and cyclic softening has been discussed in terms of dislocation distribution and plastic damage incurred in the material.

  2. Titanium versus zirconia implants supporting maxillary overdentures: three-dimensional finite element analysis.

    PubMed

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    The purpose of this study was to compare the stress and strain occurring in peri-implant bone and implants used to support maxillary overdentures. Three-dimensional finite element analysis (3D FEA) was used to compare one-piece zirconia and titanium implants. Two types of implants were simulated using a 3D FEA model: one-piece zirconia and titanium implants (diameter, 3.8 × 11.5 mm) with 2.25-mm diameter ball abutments. In each simulation four implants were placed bilaterally in the canine/premolar region of an edentulous maxillary model. Static loads were applied axially and 20 degrees buccolingually on the buccal slope of the lingual cusps of posterior teeth of the first quadrant. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated. Comparable stress and strain values were shown in the peri-implant bone for both types of implants. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. Under oblique loading, maximum von Mises stresses and equivalent strain were more evident at the neck of the most distal implant on the loaded side. Under axial load, the stress and strain were transferred to the peri-implant bone around the apex of the implant. Maximum tensile stresses that developed for either material were well below their fracture strength. The highest stresses were mainly located at the distobuccal region of the neck for the two implant materials under both loading conditions. From a biomechanical point of view, ceramic implants made from yttrium-stabilized tetragonal polycrystalline zirconia may be a potential alternative to conventional titanium implants for the support of overdentures. This is particularly relevant for a select group of patients with a proven allergy to titanium. Prospective clinical studies are still required to confirm these in vitro results. Different simulations presenting various cortical bone thicknesses and implant designs are required to provide a better understanding of the biomechanics of zirconia implants.

  3. Effects of load proportioning on the capacity of multiple-hole composite joints

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Chastain, P. A.

    1985-01-01

    This study addresses the issue of adjusting the proportion of load transmitted by each hole in a multiple-hole joint so that the joint capacity is a maximum. Specifically two-hole-in-series joints are examined. The results indicate that when each hole reacts 50% of the total load, the joint capacity is not a maximum. One hole generally is understressed at joint failure. The algorithm developed to determine the load proportion at each hole which results in maximum capacity is discussed. The algorithm includes two-dimensional finite-element stress analysis and failure criteria. The algorithm is used to study the effects of joint width, hole spacing, and hole to joint-end distance on load proportioning and capacity. To study hole size effects, two hole diameters are considered. Three laminates are considered: a quasi-isotropic laminate; a cross-ply laminate; and a 45 degree angle-ply laminate. By proportioning the load, capacity can be increased generally from 5 to 10%. In some cases a greater increase is possible.

  4. Experimental and Numerical Investigation on the Bearing and Failure Mechanism of Multiple Pillars Under Overburden

    NASA Astrophysics Data System (ADS)

    Zhou, Zilong; Chen, Lu; Zhao, Yuan; Zhao, Tongbin; Cai, Xin; Du, Xueming

    2017-04-01

    To reveal the mechanical response of a multi-pillar supporting system under external loads, compressive tests were carried out on single-pillar and double-pillar specimens. The digital speckle correlation method and acoustic emission technique were applied to record and analyse information of the deformation and failure processes. Numerical simulations with the software programme PFC2D were also conducted. In the compressive process of the double-pillar system, if both individual pillars have the same mechanical properties, each pillar deforms similarly and reaches the critical stable state almost simultaneously by sharing equal loads. If the two individual pillars have different mechanical properties, the pillar with higher elastic modulus or lower strength would be damaged and lose its bearing capacity firstly. The load would then be transferred to the other pillar under a load redistribution process. When the pillar with higher strength is strong enough, the load carried by the pillar system would increase again. However, the maximum bearing load of the double-pillar system is smaller than the sum of peak load of individual pillars. The study also indicates that the strength, elastic modulus, and load state of pillars all influence the supporting capacity of the pillar system. In underground space engineering, the appropriate choice of pillar dimensions and layout may play a great role in preventing the occurrence of cascading pillar failure.

  5. Stress-strain state of reinforced bimodulus beam on an elastic foundation

    NASA Astrophysics Data System (ADS)

    Beskopylny, A. N.; Kadomtseva, E. E.; Strelnikov, G. P.; Berdnik, Y. A.

    2017-10-01

    The paper provides the calculation theory of an arbitrary supported and arbitrary loaded reinforced beam filled with bimodulus material. The formulas determining normal stresses, bending moments, shear forces, rotation angles and a deflection of a rectangular crosssection beam reinforced with any number of bars aligned parallel to the beam axis have been obtained. The numerical study has been carried out to investigate an influence of a modulus of subgrade reaction on values of maximum normal stresses, maximum bending moments and a maximum deflection of a hinged supported beam loaded with a point force or uniform distributed load. The estimation is based on the method of initial parameters for a beam on elastic foundation and the Bubnov-Galerkin method. Values of maximum deflections, maximum bending moments and maximum stresses obtained by these methods coincide. The numerical studies show that taking into consideration the bimodulus of material leads to the necessity to calculate the strength analysis of both tensile stresses and compressive stresses.

  6. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  7. A comparison of hand grasp breakaway strengths and bare-handed grip strengths of the astronauts, SML 3 test subjects, and the subjects from the general population

    NASA Technical Reports Server (NTRS)

    Rajulu, Sudhakar L.; Klute, Glenn K.

    1993-01-01

    Astronauts have the task of retrieving and deploying satellites and handling massive objects in a around the payload bay. Concerns were raised that manual handling of such massive objects might induce loads to the shuttle suits exceeding the design-certified loads. The Crew and Thermal Division of NASA JSC simulated the satellite handling tasks (Satellite Manload Tests 1 and 3) and determined the maximum possible load that a suited member could impart onto the suit. In addition, the tests revealed that the load to the suit by an astronaut could be calculated from the astronaut's maximum hand grasp breakaway strength. Thus, this study was conducted to document that hand grasp breakaway strengths of the astronauts who were scheduled to perform EVA during the upcoming missions. In addition, this study verified whether the SML 3 test results were sufficient for documenting the maximum possible load. An attempt was made to predict grasp strength from grip strength and hand anthropometry. Based on the results from this study, the SML 3 test results were deemed sufficient to document the maximum possible load on the suit. Finally, prediction of grasp strength from grip strength was not as accurate as expected. Hence, it was recommended that grasp strength be collected from the astronauts in order to obtain accurate load estimation.

  8. Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Minnetyan, Levon

    2006-01-01

    Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.

  9. Influence of parafunctional loading and prosthetic connection on stress distribution: a 3D finite element analysis.

    PubMed

    Torcato, Leonardo Bueno; Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; Falcón-Antenucci, Rosse Mary; Santiago Júnior, Joel Ferreira; de Faria Almeida, Daniel Augusto

    2015-11-01

    Clinicians should consider parafunctional occlusal load when planning treatment. Prosthetic connections can reduce the stress distribution on an implant-supported prosthesis. The purpose of this 3-dimensional finite element study was to assess the influence of parafunctional loading and prosthetic connections on stress distribution. Computer-aided design software was used to construct 3 models. Each model was composed of a bone and an implant (external hexagon, internal hexagon, or Morse taper) with a crown. Finite element analysis software was used to generate the finite element mesh and establish the loading and boundary conditions. A normal force (200-N axial load and 100-N oblique load) and parafunctional force (1000-N axial and 500-N oblique load) were applied. Results were visualized as the maximum principal stress. Three-way analysis of variance and Tukey test were performed, and the percentage of contribution of each variable to the stress concentration was calculated from sum-of squares-analysis. Stress was concentrated around the implant at the cortical bone, and models with the external hexagonal implant showed the highest stresses (P<.001). Oblique loads produced high tensile stress concentrations on the site opposite the load direction. Internal connection implants presented the most favorable biomechanical situation, whereas the least favorable situation was the biomechanical behavior of external connection implants. Parafunctional loading increased the magnitude of stress by 3 to 4 times. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Interference Fit Life Factors for Roller Bearings

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B.; Zaretsky, Erwin V.; Poplawski, Joseph V.

    2008-01-01

    The effect of hoop stresses in reducing cylindrical roller bearing fatigue life was determined for various classes of inner ring interference fit. Calculations were performed for up to seven interference fit classes for each of ten bearing sizes. Each fit was taken at tightest, average and loosest values within the fit class for RBEC-5 tolerance, thus requiring 486 separate analyses. The hoop stresses were superimposed on the Hertzian principal stresses created by the applied radial load to calculate roller bearing fatigue life. The method was developed through a series of equations to calculate the life reduction for cylindrical roller bearings based on interference fit. All calculated lives are for zero initial bearing internal clearance. Any reduction in bearing clearance due to interference fit was compensated by increasing the initial (unmounted) clearance. Results are presented as tables and charts of life factors for bearings with light, moderate and heavy loads and interference fits ranging from extremely light to extremely heavy and for bearing accuracy class RBEC 5 (ISO class 5). Interference fits on the inner bearing ring of a cylindrical roller bearing can significantly reduce bearing fatigue life. In general, life factors are smaller (lower life) for bearings running under light load where the unfactored life is highest. The various bearing series within a particular bore size had almost identical interference fit life factors for a particular fit. The tightest fit at the high end of the RBEC-5 tolerance band defined in ANSI/ABMA shaft fit tables produces a life factor of approximately 0.40 for an inner-race maximum Hertz stress of 1200 MPa (175 ksi) and a life factor of 0.60 for an inner-race maximum Hertz stress of 2200 MPa (320 ksi). Interference fits also impact the maximum Hertz stress-life relation.

  11. Finite element analysis of a novel implant distribution to support maxillary overdentures.

    PubMed

    Osman, Reham B; Elkhadem, Amr H; Ma, Sunyoung; Swain, Michael V

    2013-01-01

    To evaluate the biomechanics of a novel implant placement distribution and compare it with that of conventional maxillary overdenture support using three-dimensional finite element analysis (FEA). The application of zirconia implants in the context of this novel design was also evaluated. Detailed FEA models were created to analyze the loading responses of two different distributions of implants to support maxillary overdentures. The two implant distributions were as follows: the conventional design (D1) included four unsplinted implants in the premolar regions, whereas the novel design (D2) included one midpalatal implant, bilateral canine/premolar implants, and one anterior off-center crestal implant. Anatomical models were created with computed tomographic data and static loads were applied axially and obliquely. Von Mises stresses and equivalent strains generated in peri-implant bone and first principal stresses in the implants were calculated, including any denture displacement. Comparable stress and strain values were seen in the peri-implant bone for both designs. A significant decrease in the first principal stresses of D2 implants was observed with oblique loads. The maximum equivalent strain produced in the peri-implant region was mostly within the range for bone augmentation. D2 displayed lower maximum displacement values than D1. Maximum tensile stresses in the zirconia implants for either design were well below their fracture strength. A novel four-implant distribution involving midpalatal and crestal implants may be an alternative to the conventional design used for maxillary overdentures. This is particularly relevant when anatomical considerations prevent the placement of four anterior crestal implants. Zirconia implants may also be a valid option for a selected group of patients or for those requesting metal-free restorations. Prospective clinical studies are required to confirm these in vitro results.

  12. Examination of ceramic restorative material interfacial debonding using acoustic emission and optical coherence tomography.

    PubMed

    Lin, Chun-Li; Kuo, Wen-Chuan; Yu, Jin-Jie; Huang, Shao-Fu

    2013-04-01

    CAD/CAM ceramic restorative material is routinely bonded to tooth substrates using adhesive cement. This study investigates micro-crack growth and damage in the ceramic/dentin adhesive interface under fatigue shear testing monitored using the acoustic emission (AE) technique with optical coherence tomography (OCT). Ceramic/dentin adhesive samples were prepared to measure the shear bond strength (SBS) under static load. Fatigue shear testing was performed using a modified ISO14801 method. Loads in the fatigue tests were applied at 80%, 70%, and 60% of the SBS to monitor interface debonding. The AE technique was used to detect micro-crack signals in static and fatigue shear bond tests. The results showed that the average SBS value in the static tests was 10.61±2.23MPa (mean±standard deviation). The average number of fatigue cycles in which ceramic/dentin interface damage was detected in 80%, 70% and 60% of the SBS were 152, 1962 and 9646, respectively. The acoustic behavior varied according to the applied load level. Events were emitted during 60% and 70% fatigue tests. A good correlation was observed between crack location in OCT images and the number of AE signal hits. The AE technique and OCT images employed in this study could potentially be used as a pre-clinical assessment tool to determine the integrity of cemented load bearing restored ceramic material. Sustainable cyclic load stresses in ceramic/dentin-bonded specimens were substantially lower than the measured SBS. Predicted S-N curve showed that the maximum endured load was 4.18MPa passing 10(6) fatigue cyclic. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  13. Pure moment testing for spinal biomechanics applications: fixed versus 3D floating ring cable-driven test designs.

    PubMed

    Tang, Jessica A; Scheer, Justin K; Ames, Christopher P; Buckley, Jenni M

    2012-02-23

    Pure moment testing has become a standard protocol for in vitro assessment of the effect of surgical techniques or devices on the bending rigidity of the spine. Of the methods used for pure moment testing, cable-driven set-ups are popular due to their low requirements and simple design. Fixed loading rings are traditionally used in conjunction with these cable-driven systems. However, the accuracy and validity of the loading conditions applied with fixed ring designs have raised some concern, and discrepancies have been found between intended and prescribed loading conditions for flexion-extension. This study extends this prior work to include lateral bending and axial torsion, and compares this fixed ring design with a novel "3D floating ring" design. A complete battery of multi-axial bending tests was conducted with both rings in multiple different configurations using an artificial lumbar spine. Applied moments were monitored and recorded by a multi-axial load cell at the base of the specimen. Results indicate that the fixed ring design deviates as much as 77% from intended moments and induces non-trivial shear forces (up to 18 N) when loaded to a non-destructive maximum of 4.5 Nm. The novel 3D floating ring design largely corrects the inherent errors in the fixed ring design by allowing additional directions of unconstrained motion and producing uniform loading conditions along the length of the specimen. In light of the results, it is suggested that the 3D floating ring set-up be used for future pure moment spine biomechanics applications using a cable-driven apparatus. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Structural analysis of a rehabilitative training system based on a ceiling rail for safety of hemiplegia patients.

    PubMed

    Kim, Kyong; Song, Won Kyung; Chong, Woo Suk; Yu, Chang Ho

    2018-04-17

    The body-weight support (BWS) function, which helps to decrease load stresses on a user, is an effective tool for gait and balance rehabilitation training for elderly people with weakened lower-extremity muscular strength, hemiplegic patients, etc. This study conducts structural analysis to secure user safety in order to develop a rail-type gait and balance rehabilitation training system (RRTS). The RRTS comprises a rail, trolley, and brain-machine interface. The rail (platform) is connected to the ceiling structure, bearing the loads of the RRTS and of the user and allowing locomobility. The trolley consists of a smart drive unit (SDU) that assists the user with forward and backward mobility and a body-weight support (BWS) unit that helps the user to control his/her body-weight load, depending on the severity of his/her hemiplegia. The brain-machine interface estimates and measures on a real-time basis the body-weight (load) of the user and the intended direction of his/her movement. Considering the weight of the system and the user, the mechanical safety performance of the system frame under an applied 250-kg static load is verified through structural analysis using ABAQUS (6.14-3) software. The maximum stresses applied on the rail and trolley under the given gravity load of 250 kg, respectively, are 18.52 MPa and 48.44 MPa. The respective safety factors are computed to be 7.83 and 5.26, confirming the RRTS's mechanical safety. An RRTS with verified structural safety could be utilized for gait movement and balance rehabilitation and training for patients with hemiplegia.

  15. Load reduction test method of similarity theory and BP neural networks of large cranes

    NASA Astrophysics Data System (ADS)

    Yang, Ruigang; Duan, Zhibin; Lu, Yi; Wang, Lei; Xu, Gening

    2016-01-01

    Static load tests are an important means of supervising and detecting a crane's lift capacity. Due to space restrictions, however, there are difficulties and potential danger when testing large bridge cranes. To solve the loading problems of large-tonnage cranes during testing, an equivalency test is proposed based on the similarity theory and BP neural networks. The maximum stress and displacement of a large bridge crane is tested in small loads, combined with the training neural network of a similar structure crane through stress and displacement data which is collected by a physics simulation progressively loaded to a static load test load within the material scope of work. The maximum stress and displacement of a crane under a static load test load can be predicted through the relationship of stress, displacement, and load. By measuring the stress and displacement of small tonnage weights, the stress and displacement of large loads can be predicted, such as the maximum load capacity, which is 1.25 times the rated capacity. Experimental study shows that the load reduction test method can reflect the lift capacity of large bridge cranes. The load shedding predictive analysis for Sanxia 1200 t bridge crane test data indicates that when the load is 1.25 times the rated lifting capacity, the predicted displacement and actual displacement error is zero. The method solves the problem that lifting capacities are difficult to obtain and testing accidents are easily possible when 1.25 times related weight loads are tested for large tonnage cranes.

  16. Advection and dispersion of bed load tracers

    NASA Astrophysics Data System (ADS)

    Lajeunesse, Eric; Devauchelle, Olivier; James, François

    2018-05-01

    We use the erosion-deposition model introduced by Charru et al. (2004) to numerically simulate the evolution of a plume of bed load tracers entrained by a steady flow. In this model, the propagation of the plume results from the stochastic exchange of particles between the bed and the bed load layer. We find a transition between two asymptotic regimes. The tracers, initially at rest, are gradually set into motion by the flow. During this entrainment regime, the plume is strongly skewed in the direction of propagation and continuously accelerates while spreading nonlinearly. With time, the skewness of the plume eventually reaches a maximum value before decreasing. This marks the transition to an advection-diffusion regime in which the plume becomes increasingly symmetrical, spreads linearly, and advances at constant velocity. We analytically derive the expressions of the position, the variance, and the skewness of the plume and investigate their asymptotic regimes. Our model assumes steady state. In the field, however, bed load transport is intermittent. We show that the asymptotic regimes become insensitive to this intermittency when expressed in terms of the distance traveled by the plume. If this finding applies to the field, it might provide an estimate for the average bed load transport rate.

  17. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    NASA Astrophysics Data System (ADS)

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M.; Deng, Wei

    2018-02-01

    We developed light-triggered liposomes incorporating gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized by adjusting the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of HSPC: PE-NH2: gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of these liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox loaded liposomes were applied to human colorectal cancer cells, HCT116, and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity, compared to the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may have improved therapeutic efficacy in photodynamic therapy and chemotherapy.

  18. Viscoelasticity of human oral mucosa: implications for masticatory biomechanics.

    PubMed

    Sawada, A; Wakabayashi, N; Ona, M; Suzuki, T

    2011-05-01

    The dynamic behavior of oral soft tissues supporting removable prostheses is not well understood. We hypothesized that the stress and strain of the mucosa exhibited time-dependent behavior under masticatory loadings. Displacement of the mucosa on the maxillary residual ridge was measured in vivo by means of a magnetic actuator/sensor under vertical loading in partially edentulous individuals. Subject-specific finite element models of homogeneous bone and mucosa were constructed based on computed tomography images. A mean initial elastic modulus of 8.0 × 10(-5) GPa and relaxation time of 494 sec were obtained from the curve adaptation of the finite element output to the in vivo time-displacement relationship. Delayed increase of the maximum compressive strain on the surface of the mucosa was observed under sustained load, while the maximum strain inside the mucosa was relatively low and uninfluenced by the duration of the load. The compressive stress showed a slight decrease with sustained load, due to stress relaxation of the mucosa. On simulation of cyclic load, the increment of the maximum strain and the evidence of residual strain were revealed after each loading. The results support our hypothesis, and suggest that sustained and repetitive loads accumulate as surface strain on the mucosa.

  19. Combination microwave ovens: an innovative design strategy.

    PubMed

    Tinga, Wayne R; Eke, Ken

    2012-01-01

    Reducing the sensitivity of microwave oven heating and cooking performance to load volume, load placement and load properties has been a long-standing challenge for microwave and microwave-convection oven designers. Conventional design problem and solution methods are reviewed to provide greater insight into the challenge and optimum operation of a microwave oven after which a new strategy is introduced. In this methodology, a special load isolating and energy modulating device called a transducer-exciter is used containing an iris, a launch box, a phase, amplitude and frequency modulator and a coupling plate designed to provide spatially distributed coupling to the oven. This system, when applied to a combined microwave-convection oven, gives astounding performance improvements to all kinds of baked and roasted foods including sensitive items such as cakes and pastries, with the only compromise being a reasonable reduction in the maximum available microwave power. Large and small metal utensils can be used in the oven with minimal or no performance penalty on energy uniformity and cooking results. Cooking times are greatly reduced from those in conventional ovens while maintaining excellent cooking performance.

  20. Scaling effects in spiral capsule robots.

    PubMed

    Liang, Liang; Hu, Rong; Chen, Bai; Tang, Yong; Xu, Yan

    2017-04-01

    Spiral capsule robots can be applied to human gastrointestinal tracts and blood vessels. Because of significant variations in the sizes of the inner diameters of the intestines as well as blood vessels, this research has been unable to meet the requirements for medical applications. By applying the fluid dynamic equations, using the computational fluid dynamics method, to a robot axial length ranging from 10 -5 to 10 -2  m, the operational performance indicators (axial driving force, load torque, and maximum fluid pressure on the pipe wall) of the spiral capsule robot and the fluid turbulent intensity around the robot spiral surfaces was numerically calculated in a straight rigid pipe filled with fluid. The reasonableness and validity of the calculation method adopted in this study were verified by the consistency of the calculated values by the computational fluid dynamics method and the experimental values from a relevant literature. The results show that the greater the fluid turbulent intensity, the greater the impact of the fluid turbulence on the driving performance of the spiral capsule robot and the higher the energy consumption of the robot. For the same level of size of the robot, the axial driving force, the load torque, and the maximum fluid pressure on the pipe wall of the outer spiral robot were larger than those of the inner spiral robot. For different requirements of the operating environment, we can choose a certain kind of spiral capsule robot. This study provides a theoretical foundation for spiral capsule robots.

  1. Establishing Total Maximum Daily Load (TMDL) Wasteload Allocations (WLAs) for Storm Water Sources and NPDES Permit Requirements Based on Those WLAs

    EPA Pesticide Factsheets

    The memoranda clarify existing EPA regulatory requirements for, and provide guidance on, establishing wasteload allocations (WLAs) for storm water discharges in total maximum daily loads (TMDLs) approved or established by EPA.

  2. SELECTION OF CANDIDATE EUTROPHICATION MODELS FOR TOTAL MAXIMUM DAILY LOADS ANALYSES

    EPA Science Inventory

    A tiered approach was developed to evaluate candidate eutrophication models to select a common suite of models that could be used for Total Maximum Daily Loads (TMDL) analyses in estuaries, rivers, and lakes/reservoirs. Consideration for linkage to watershed models and ecologica...

  3. Effect of crack curvature on stress intensity factors for ASTM standard compact tension specimens

    NASA Technical Reports Server (NTRS)

    Alam, J.; Mendelson, A.

    1983-01-01

    The stress intensity factors (SIF) are calculated using the method of lines for the compact tension specimen in tensile and shear loading for curved crack fronts. For the purely elastic case, it was found that as the crack front curvature increases, the SIF value at the center of the specimen decreases while increasing at the surface. For the higher values of crack front curvatures, the maximum value of the SIF occurs at an interior point located adjacent to the surface. A thickness average SIF was computed for parabolically applied shear loading. These results were used to assess the requirements of ASTM standards E399-71 and E399-81 on the shape of crack fronts. The SIF is assumed to reflect the average stress environment near the crack edge.

  4. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity.

    PubMed

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M; Deng, Wei

    2017-01-01

    We developed light-triggered liposomes incorporating 3-5 nm hydrophobic gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized for varying the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of hydrogenated soy l-α-phosphatidylcholine:1,2-dioleoyl- sn -glycero-3-phosphoethanolamine- N -(hexanoylamine):gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of gold-loaded liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox-loaded liposomes were applied to human colorectal cancer cells (HCT116) and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity compared with the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may serve as improved agents in photodynamic therapy and chemotherapy.

  5. Light-triggered liposomal cargo delivery platform incorporating photosensitizers and gold nanoparticles for enhanced singlet oxygen generation and increased cytotoxicity

    PubMed Central

    Kautzka, Zofia; Clement, Sandhya; Goldys, Ewa M; Deng, Wei

    2017-01-01

    We developed light-triggered liposomes incorporating 3–5 nm hydrophobic gold nanoparticles and Rose Bengal (RB), a well-known photosensitizer used for photodynamic therapy. Singlet oxygen generated by these liposomes with 532 nm light illumination was characterized for varying the molar ratio of lipids and gold nanoparticles while keeping the amount of RB constant. Gold nanoparticles were found to enhance the singlet oxygen generation rate, with a maximum enhancement factor of 1.75 obtained for the molar ratio of hydrogenated soy l-α-phosphatidylcholine:1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(hexanoylamine):gold of 57:5:17 compared with liposomes loaded with RB alone. The experimental results could be explained by the local electric field enhancement caused by gold nanoparticles. We further assessed cellular cytotoxicity of gold-loaded liposomes by encapsulating an antitumor drug, doxorubicin (Dox); such Dox-loaded liposomes were applied to human colorectal cancer cells (HCT116) and exposed to light. Gold-loaded liposomes containing RB and Dox where Dox release was triggered by light were found to exhibit higher cytotoxicity compared with the liposomes loaded with RB and Dox alone. Our results indicate that gold-loaded liposomes incorporating photosensitizers may serve as improved agents in photodynamic therapy and chemotherapy. PMID:28203076

  6. The influence of different loads on the remodeling process of a bone and bioresorbable material mixture with voids

    NASA Astrophysics Data System (ADS)

    Giorgio, Ivan; Andreaus, Ugo; Madeo, Angela

    2016-03-01

    A model of a mixture of bone tissue and bioresorbable material with voids was used to numerically analyze the physiological balance between the processes of bone growth and resorption and artificial material resorption in a plate-like sample. The adopted model was derived from a theory for the behavior of porous solids in which the matrix material is linearly elastic and the interstices are void of material. The specimen—constituted by a region of bone living tissue and one of bioresorbable material—was acted by different in-plane loading conditions, namely pure bending and shear. Ranges of load magnitudes were identified within which physiological states become possible. Furthermore, the consequences of applying different loading conditions are examined at the end of the remodeling process. In particular, maximum value of bone and material mass densities, and extensions of the zones where bone is reconstructed were identified and compared in the two different load conditions. From the practical view point, during surgery planning and later rehabilitation, some choice of the following parameters is given: porosity of the graft, material characteristics of the graft, and adjustment of initial mixture tissue/bioresorbable material and later, during healing and remodeling, optimal loading conditions.

  7. Predicting the safe load on backpacker's arm using Lagrange multipliers method

    NASA Astrophysics Data System (ADS)

    Abdalla, Faisal Saleh; Rambely, Azmin Sham

    2014-09-01

    In this study, a technique has been suggested to reduce a backpack load by transmitting determined loads to the children arm. The purpose of this paper is to estimate school children arm muscles while load carriage as well as to determine the safe load can be carried at wrist while walking with backpack. A mathematical model, as three DOFs model, was investigated in the sagittal plane and Lagrange multipliers method (LMM) was utilized to minimize a quadratic objective function of muscle forces. The muscle forces were minimized with three different load conditions which are termed as 0-L=0 N, 1-L=21.95 N, and 2-L=43.9 N. The investigated muscles were estimated and compared to their maximum forces throughout the load conditions. Flexor and extensor muscles were estimated and the results showed that flexor muscles were active while extensor muscles showed inactivity. The estimated muscle forces were didn't exceed their maximum forces with 0-L and 1-L conditions whereas biceps and FCR muscles exceeded their maximum forces with 2-L condition. Consequently, 1-L condition is quiet safe to be carried by hand whereas 2-L condition is not. Thus to reduce the load in the backpack the transmitted load shouldn't exceed 1-L condition.

  8. Performance prediction for a magnetostrictive actuator using a simplified model

    NASA Astrophysics Data System (ADS)

    Yoo, Jin-Hyeong; Jones, Nicholas J.

    2018-03-01

    Iron-Gallium alloys (Galfenol) are promising transducer materials that combine high magnetostriction, desirable mechanical properties, high permeability, and a wide operational temperature range. Most of all, the material is capable of operating under tensile stress, and is relatively resistant to shock. These materials are generally characterized using a solid, cylindrically-shaped specimen under controlled compressive stress and magnetization conditions. Because the magnetostriction strongly depends on both the applied stress and magnetization, the characterization of the material is usually conducted under controlled conditions so each parameter is varied independently of the other. However, in a real application the applied stress and magnetization will not be maintained constant during operation. Even though the controlled characterization measurement gives insight into standard material properties, usage of this data in an application, while possible, is not straight forward. This study presents an engineering modeling methodology for magnetostrictive materials based on a piezo-electric governing equation. This model suggests phenomenological, nonlinear, three-dimensional functions for strain and magnetic flux density responses as functions of applied stress and magnetic field. Load line performances as a function of maximum magnetic field input were simulated based on the model. To verify the modeling performance, a polycrystalline magnetostrictive rod (Fe-Ga alloy, Galfenol) was characterized under compressive loads using a dead-weight test setup, with strain gages on the rod and a magnetic field driving coil around the sample. The magnetic flux density through the Galfenol rod was measured with a sensing coil; the compressive loads were measured using a load cell on the bottom of the Galfenol rod. The experimental results are compared with the simulation results using the suggested model, showing good agreement.

  9. Effects of squat lift training and free weight muscle training on maximum lifting load and isolinetic peak torque of young adults without impairments.

    PubMed

    Yeung, S S; Ng, G Y

    2000-06-01

    Manual lifting is a frequent cause of back injury, and there is no evidence as to which training mode can provide the best training effect for lifting performance and muscle force. The purpose of this study was to examine the effects of a squat lift training and a free weight muscle training program on the maximum lifting load and isokinetic peak torque in subjects without known neuromuscular or musculoskeletal impairments. Thirty-six adults (20 male, 16 female) without known neuromuscular or musculoskeletal impairments participated. The subjects' mean age was 21.25 years (SD=1.16, range=20-24). Subjects were divided into 3 groups. Subjects in group 1 (n=12) performed squat lift training. Subjects in group 2 (n=12) participated in free weight resistance training of their shoulder abductors, elbow flexors, knee extensors and trunk extensors. Subjects in group 3 (n=12) served as controls. The maximum lifting load and isokinetic peak torques of the trunk extensors, knee extensors, elbow flexors, and shoulder abductors of each subject were measured before and after the study. Training was conducted on alternate days for 4 weeks, with an initial load of 80% of each subject's maximum capacity and with the load increased by 5% weekly. All groups were comparable for all measured variables before the study. After 4 weeks, subjects in groups 1 and 2 demonstrated more improvement in maximum lifting load and isokinetic peak torque of the back extensors compared with the subjects in group 3, but the 2 training groups were not different. The findings demonstrate that both squat lift and free weight resistance training are equally effective in improving the lifting load and isokinetic back extension performance of individuals without impairments.

  10. Approximate method for predicting the permanent set in a beam in vacuo and in water subject to a shock wave

    NASA Technical Reports Server (NTRS)

    Stiehl, A. L.; Haberman, R. C.; Cowles, J. H.

    1988-01-01

    An approximate method to compute the maximum deformation and permanent set of a beam subjected to shock wave laoding in vacuo and in water was investigated. The method equates the maximum kinetic energy of the beam (and water) to the elastic plastic work done by a static uniform load applied to a beam. Results for the water case indicate that the plastic deformation is controlled by the kinetic energy of the water. The simplified approach can result in significant savings in computer time or it can expediently be used as a check of results from a more rigorous approach. The accuracy of the method is demonstrated by various examples of beams with simple support and clamped support boundary conditions.

  11. Early Osteoarthritis of the Trapeziometacarpal Joint Is Not Associated With Joint Instability during Typical Isometric Loading

    PubMed Central

    Halilaj, Eni; Moore, Douglas C.; Patel, Tarpit K.; Ladd, Amy L.; Weiss, Arnold-Peter C.; Crisco, Joseph J.

    2015-01-01

    The saddle-shaped trapeziometacarpal (TMC) joint contributes importantly to the function of the human thumb. A balance between mobility and stability is essential in this joint, which experiences high loads and is prone to osteoarthritis (OA). Since instability is considered a risk factor for TMC OA, we assessed TMC joint instability during the execution of three isometric functional tasks (key pinch, jar grasp, and jar twist) in 76 patients with early TMC OA and 44 asymptomatic controls. Computed tomography images were acquired while subjects held their hands relaxed and while they applied 80% of their maximum effort for each task. Six degree-of-freedom rigid body kinematics of the metacarpal with respect to the trapezium from the unloaded to the loaded task positions were computed in terms of a TMC joint coordinate system. Joint instability was expressed as a function of the metacarpal translation and the applied force. We found that the TMC joint was more unstable during a key pinch task than during a jar grasp or a jar twist task. Sex, age, and early OA did not have an effect on TMC joint instability, suggesting that instability during these three tasks is not a predisposing factor in TMC OA. PMID:25941135

  12. Estimation of pollutant loads considering dam operation in Han River Basin by BASINS/Hydrological Simulation Program-FORTRAN.

    PubMed

    Jung, Kwang-Wook; Yoon, Choon-G; Jang, Jae-Ho; Kong, Dong-Soo

    2008-01-01

    Effective watershed management often demands qualitative and quantitative predictions of the effect of future management activities as arguments for policy makers and administration. The BASINS geographic information system was developed to compute total maximum daily loads, which are helpful to establish hydrological process and water quality modeling system. In this paper the BASINS toolkit HSPF model is applied in 20,271 km(2) large watershed of the Han River Basin is used for applicability of HSPF and BMPs scenarios. For proper evaluation of watershed and stream water quality, comprehensive estimation methods are necessary to assess large amounts of point source and nonpoint-source (NPS) pollution based on the total watershed area. In this study, The Hydrological Simulation Program-FORTRAN (HSPF) was estimated to simulate watershed pollutant loads containing dam operation and applied BMPs scenarios for control NPS pollution. The 8-day monitoring data (about three years) were used in the calibration and verification processes. Model performance was in the range of "very good" and "good" based on percent difference. The water-quality simulation results were encouraging for this large sizable watershed with dam operation practice and mixed land uses; HSPF proved adequate, and its application is recommended to simulate watershed processes and BMPs evaluation. IWA Publishing 2008.

  13. Dynamics of Individual cilia to external loading- A simple one dimensional picture

    NASA Astrophysics Data System (ADS)

    Swaminathan, Vinay; Hill, David; Superfine, R.

    2008-10-01

    From being called the cellular janitors to swinging debauchers, cilia have captured the fascinations of researchers for over 200 years. In cystic fibrosis and chronic obstructive pulmonary disease where the cilia loses it's function, the protective mucus layer in the lung thickens and mucociliary clearance breaks down, leading to inflammation along the airways and an increased rate of infection. The mechanistic understanding of mucus clearance depends on a quantitative assessment of the axoneme dynamics and the maximum force the cilia are capable of generating and imparting to the mucus layer. Similar to the situation in molecular motors, detailed quantitative measurements of dynamics under applied load conditions are expected to be essential in developing predictive models. Based on our measurements of the dynamics of individual ciliary motion in the human bronchial epithelial cell under the application of an applied load, we present a simple one dimensional model for the axoneme dynamics and quantify the axoneme stiffness, the internal force generated by the axoneme, the stall force and show how the dynamics sheds insight on the time dependence of the internal force generation. The internal force generated by the axoneme is related to the ability of cilia to propel fluids and to their potential role in force sensing.

  14. Stress analysis on passenger deck due to modification from passenger ship to vehicle-carrying ship

    NASA Astrophysics Data System (ADS)

    Zubaydi, A.; Sujiatanti, S. H.; Hariyanto, T. R.

    2018-03-01

    Stress is a basic concept in learning about material mechanism. The main focus that needs to be brought to attention in analyzing stress is strength, which is the structural capacity to carry or distribute loads. The structural capacity not only measured by comparing the maximum stress with the material’s yield strength but also with the permissible stress required by the Indonesian Classification Bureau (BKI), which certainly makes it much safer. This final project analyzes stress in passenger deck that experiences modification due to load changes, from passenger load to vehicle one, carrying: 6-wheels truck with maximum weight of 14 tons, a passenger car with maximum weight of 3.5 tons, and a motorcycle with maximum weight of 0.4 tons. The deck structure is modelled using finite element software. The boundary conditions given to the structural model are fix and simple constraint. The load that works on this deck is the deck load which comes from the vehicles on deck with three vehicles’ arrangement plans. After that, software modelling is conducted for analysis purpose. Analysis result shows a variation of maximum stress that occurs i.e. 135 N/mm2, 133 N/mm2, and 152 N/mm2. Those maximum stresses will not affect the structure of passenger deck’s because the maximum stress that occurs indicates smaller value compared to the Indonesian Classification Bureau’s permissible stress (175 N/mm2) as well as the material’s yield strength (235 N/mm2). Thus, the structural strength of passenger deck is shown to be capable of carrying the weight of vehicles in accordance with the three vehicles’ arrangement plans.

  15. Precast concrete sandwich panels subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Runge, Matthew W.

    Precast concrete sandwich panels are a relatively new product in the construction industry. The design of these panels incorporates properties that allow for great resilience against temperature fluctuation as well as the very rapid and precise construction of facilities. The concrete sandwich panels investigated in this study represent the second generation of an ongoing research and development project. This second generation of panels have been engineered to construct midsized commercial buildings up to three stories in height as well as residential dwellings. The panels consist of a double-tee structural wythe, a foam core and a fascia wythe, joined by shear connectors. Structures constructed from these panels may be subjected to extreme loading including the effects of seismic and blast loading in addition to wind. The aim of this work was to investigate the behaviour of this particular sandwich panel when subjected to structural impact events. The experimental program consisted of fourteen concrete sandwich panels, five of which were considered full-sized specimens (2700 mm X 1200mm X 270 mm) and nine half-sized specimens (2700mm X 600mm X 270 mm) The panels were subjected to impact loads from a pendulum impact hammer where the total energy applied to the panels was varied by changing the mass of the hammer. The applied loads, displacements, accelerations, and strains at the mid-span of the panel as well as the reaction point forces were monitored during the impact. The behaviour of the panels was determined primarily from the experimental results. The applied loads at low energy levels that caused little to no residual deflection as well as the applied loads at high energy levels that represent catastrophic events and thus caused immediate failure were determined from an impact on the structural and the fascia wythes. Applied loads at intermediate energy levels representing extreme events were also used to determine whether or not the panels could withstand multiple impacts. It was shown that panels impacted on the fascia wythe are capable of withstanding multiple impacts of energy levels in excess of 16 000 J while panels that were impacted on the structural wythe are capable of resisting a single impact delivering an energy level of 10 000 J or multiple impacts from an energy level of 5 000 J. A Single Degree of Freedom (SDOF) model was developed to predict the maximum deflection of the panels and it provided a good approximation of the deflection observed during the experimental program. A high degree of composite action between the two wythes was determined to exist from the results of high speed video imaging and through SDOF modelling.

  16. Comparison of Cytomegalovirus Loads in Plasma and Leukocytes of Patients with Cytomegalovirus Retinitis

    PubMed Central

    Jabs, Douglas A.; Forman, Michael; Enger, Cheryl; Jackson, J. Brooks

    1999-01-01

    Cytomegalovirus (CMV) DNA loads in paired leukocyte and plasma samples from 199 patient visits by 66 patients with CMV retinitis were determined. Leukocyte CMV load determinations had a greater range of values (mean, 24,587 copies/106 leukocytes; maximum, 539,000) than did plasma CMV load determinations (mean, 10,302 copies/ml; maximum, 386,000), and leukocyte viral loads were detectable in a greater proportion of patients at the time of diagnosis of CMV retinitis prior to initiation of anti-CMV therapy (82%) than were plasma viral loads (64%) (P = 0.0078). Agreement with CMV blood cultures was slightly better for plasma (κ = 0.68) than for leukocytes (κ = 0.53), due to a greater proportion of patients with detectable viral loads in leukocytes having negative blood cultures. PMID:10203500

  17. Power variables and bilateral force differences during unloaded and loaded squat jumps in high performance alpine ski racers.

    PubMed

    Patterson, Carson; Raschner, Christian; Platzer, Hans-Peter

    2009-05-01

    The purpose of this paper was to investigate the power-load relationship and to compare power variables and bilateral force imbalances between sexes with squat jumps. Twenty men and 17 women, all members of the Austrian alpine ski team (junior and European Cup), performed unloaded and loaded (barbell loads equal to 25, 50, 75, and 100% body weight [BW]) squat jumps with free weights using a specially designed spotting system. Ground reaction force records from 2 force platforms were used to calculate relative average power (P), relative average power in the first 100 ms of the jump (P01), relative average power in the first 200 ms of the jump (P02), jump height, percentage of best jump height (%Jump), and maximal force difference between dominant and nondominant leg (Fmaxdiff). The men displayed significantly higher values at all loads for P and jump height (p < 0.05). No significant differences were found in P01. The men had significantly higher P02 at all loads except 75% BW). Maximum P was reached at light loads (men at 25% BW and women at 0% BW), and P decreased uniformly thereafter. Individual power-load curves show a deflection point. It is proposed that the load where the power-load deflection point occurs be used as the power training load and not the load at which maximum P is reached. It is also proposed that loads not be described in %1-repetition maximum (RM), but as %BW. This system can be used to safely assess and train power with loaded jumps and free weights.

  18. Predicting fracture of mortar beams under three-point bending using non-extensive statistical modeling of electric emissions

    NASA Astrophysics Data System (ADS)

    Stergiopoulos, Ch.; Stavrakas, I.; Triantis, D.; Vallianatos, F.; Stonham, J.

    2015-02-01

    Weak electric signals termed as 'Pressure Stimulated Currents, PSC' are generated and detected while cement based materials are found under mechanical load, related to the creation of cracks and the consequent evolution of cracks' network in the bulk of the specimen. During the experiment a set of cement mortar beams of rectangular cross-section were subjected to Three-Point Bending (3PB). For each one of the specimens an abrupt mechanical load step was applied, increased from the low load level (Lo) to a high final value (Lh) , where Lh was different for each specimen and it was maintained constant for long time. The temporal behavior of the recorded PSC show that during the load increase a spike-like PSC emission was recorded and consequently a relaxation of the PSC, after reaching its final value, follows. The relaxation process of the PSC was studied using non-extensive statistical physics (NESP) based on Tsallis entropy equation. The behavior of the Tsallis q parameter was studied in relaxation PSCs in order to investigate its potential use as an index for monitoring the crack evolution process with a potential use in non-destructive laboratory testing of cement-based specimens of unknown internal damage level. The dependence of the q-parameter on the Lh (when Lh <0.8Lf), where Lf represents the 3PB strength of the specimen, shows an increase on the q value when the specimens are subjected to gradually higher bending loadings and reaches a maximum value close to 1.4 when the applied Lh becomes higher than 0.8Lf. While the applied Lh becomes higher than 0.9Lf the value of the q-parameter gradually decreases. This analysis of the experimental data manifests that the value of the entropic index q obtains a characteristic decrease while reaching the ultimate strength of the specimen, and thus could be used as a forerunner of the expected failure.

  19. A preliminary study of patient-specific mechanical properties of diabetic and healthy plantar soft tissue from gated magnetic resonance imaging.

    PubMed

    Williams, Evan D; Stebbins, Michael J; Cavanagh, Peter R; Haynor, David R; Chu, Baocheng; Fassbind, Michael J; Isvilanonda, Vara; Ledoux, William R

    2017-07-01

    Foot loading rate, load magnitude, and the presence of diseases such as diabetes can all affect the mechanical properties of the plantar soft tissues of the human foot. The hydraulic plantar soft tissue reducer instrument was designed to gain insight into which variables are the most significant in determining these properties. It was used with gated magnetic resonance imaging to capture three-dimensional images of feet under dynamic loading conditions. Custom electronics controlled by LabVIEW software simultaneously recorded system pressure, which was then translated to applied force values based on calibration curves. Data were collected for two subjects, one without diabetes (Subject A) and one with diabetes (Subject B). For a 0.2-Hz loading rate, and strains 0.16, 0.18, 0.20, and 0.22, Subject A's average tangential heel pad stiffness was 10 N/mm and Subject B's was 24 N/mm. Maximum test loads were approximately 200 N. Loading rate and load magnitude limitations (both were lower than physiologic values) will continue to be addressed in the next version of the instrument. However, the current hydraulic plantar soft tissue reducer did produce a data set for healthy versus diabetic tissue stiffness that agrees with previous trends. These data are also being used to improve finite element analysis models of the foot as part of a related project.

  20. Acoustic and Electrical Signal Emission recordings when marble specimens are subjected to compressional mechanical stress

    NASA Astrophysics Data System (ADS)

    Triantis, Dimos; Stavrakas, Ilias; Hloupis, George; Ninos, Konstantinos; Vallianatos, Filippos

    2013-04-01

    The detection of Acoustic Emissions (AE) and Electrical Signals (ES) has been proved as a valuable experimental method to characterize the mechanical status of marble specimens when subjected to mechanical stress. In this work, marble specimens with dimensions 10cm x 4cm x 4cm where subjected to sequential loading cycles. The maximum stress of each loading was near the vicinity of fracture and was maintained for a relatively long time (th=200s). Concurrently to the mechanical tests, AE and ES were recorded. Specifically, two AE sensors and five ES sensors were installed on the surface of the specimens and the detected emissions were stored on a PC. The recordings show that AE and ES provide information regarding the damage spreading and location in the bulk of the specimen. Specifically, when the mechanical stress was maintained constant at the high stress value during each loading cycle the cumulative number of the AE hits become gradually less reaching a minimum after the first three loading cycles, indicating the existence of the Kaiser effect. During the eighth loading cycle the AE hits show a significant increase that became maximum at the ninth cycle before where failure occured. A similar behavior was observed for the cumulative energy. A b-value analysis was conducted following both Aki's and Gutenberg-Richter relations on the amplitudes of the AE hits. The b-values were found to increase during the three first loading cycles while consequently they were practically constant until reaching the two final loading cycles where they became gradually lower. The ES significantly increases during the stress increase of each cycle and gradually restores at a background level when the applied stress is maintained constant near the vicinity of fracture. It was observed that the background restoration level becomes gradually higher during the first four loading cycles. Consequently, during the next three loading cycles the background level is maintained practically constant. During the two final loading cycles the background restoration level significantly increases indicating the upcoming fracture. Acknowledgments. This work was supported by the THALES Program of the Ministry of Education of Greece and the European Union in the framework of the project entitled "Integrated understanding of Seismicity, using innovative Methodologies of Fracture mechanics along with Earthquake and non extensive statistical physics - Application to the geodynamic system of the Hellenic Arc. SEISMO FEAR HELLARC".

  1. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...

  2. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...

  3. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...

  4. 49 CFR 178.812 - Top lift test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... renders the IBC, including the base pallets when applicable, unsafe for transportation, and no loss of... twice the maximum permissible gross mass with the load being evenly distributed. (2) Flexible IBC design types must be filled to six times the maximum net mass, the load being evenly distributed. (c) Test...

  5. Eye safety analysis for non-uniform retinal scanning laser trajectories

    NASA Astrophysics Data System (ADS)

    Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska

    2016-03-01

    Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.

  6. Inertia coupling analysis of a self-decoupled wheel force transducer under multi-axis acceleration fields.

    PubMed

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range.

  7. Inertia Coupling Analysis of a Self-Decoupled Wheel Force Transducer under Multi-Axis Acceleration Fields

    PubMed Central

    Feng, Lihang; Lin, Guoyu; Zhang, Weigong; Dai, Dong

    2015-01-01

    Wheel force transducer (WFT), which measures the three-axis forces and three-axis torques applied to the wheel, is an important instrument in the vehicle testing field and has been extremely promoted by researchers with great interests. The transducer, however, is typically mounted on the wheel of a moving vehicle, especially on a high speed car, when abruptly accelerating or braking, the mass/inertia of the transducer/wheel itself will have an extra effect on the sensor response so that the inertia/mass loads will also be detected and coupled into the signal outputs. The effect which is considered to be inertia coupling problem will decrease the sensor accuracy. In this paper, the inertia coupling of a universal WFT under multi-axis accelerations is investigated. According to the self-decoupling approach of the WFT, inertia load distribution is solved based on the principle of equivalent mass and rotary inertia, thus then inertia impact can be identified with the theoretical derivation. The verification is achieved by FEM simulation and experimental tests. Results show that strains in simulation agree well with the theoretical derivation. The relationship between the applied acceleration and inertia load for both wheel force and moment is the approximate linear, respectively. All the relative errors are less than 5% which are within acceptable and the inertia loads have the maximum impact on the signal output about 1.5% in the measurement range. PMID:25723492

  8. Implications of the center of rotation concept for the reconstruction of anterior column lordosis and axial preloads in spinal deformity surgery.

    PubMed

    Koller, Heiko; Mayer, Michael; Zenner, Juliane; Resch, Herbert; Niederberger, Alfred; Fierlbeck, Johann; Hitzl, Wolfgang; Acosta, Frank L

    2012-07-01

    In thoracolumbar deformity surgery, anterior-only approaches are used for reconstruction of anterior column failures. It is generally advised that vertebral body replacements (VBRs) should be preloaded by compression. However, little is known regarding the impact of different techniques for generation of preloads and which surgical principle is best for restoration of lordosis. Therefore, the authors analyzed the effect of different surgical techniques to restore spinal alignment and lordosis as well as the ability to generate axial preloads on VBRs in anterior column reconstructions. The authors performed a laboratory study using 7 fresh-frozen specimens (from T-3 to S-1) to assess the ability for lordosis reconstruction of 5 techniques and their potential for increasing preloads on a modified distractable VBR in a 1-level thoracolumbar corpectomy. The testing protocol was as follows: 1) Radiographs of specimens were obtained. 2) A 1-level corpectomy was performed. 3) In alternating order, lordosis was applied using 1 of the 5 techniques. Then, preloads during insertion and after relaxation using the modified distractable VBR were assessed using a miniature load-cell incorporated in the modified distractable VBR. The modified distractable VBR was inserted into the corpectomy defect after lordosis was applied using 1) a lamina spreader; 2) the modified distractable VBR only; 3) the ArcoFix System (an angular stable plate system enabling in situ reduction); 4) a lordosizer (a customized instrument enabling reduction while replicating the intervertebral center of rotation [COR] according to the COR method); and 5) a lordosizer and top-loading screws ([LZ+TLS], distraction with the lordosizer applied on a 5.5-mm rod linked to 2 top-loading pedicle screws inserted laterally into the vertebra). Changes in the regional kyphosis angle were assessed radiographically using the Cobb method. The bone mineral density of specimens was 0.72 ± 22.6 g/cm(2). The maximum regional kyphosis angle reconstructed among the 5 techniques averaged 9.7°-16.1°, and maximum axial preloads averaged 123.7-179.7 N. Concerning correction, in decreasing order the LZ+TLS, lordosizer, and ArcoFix System outperformed the lamina spreader and modified distractable VBR. The order of median values for insertion peak load, from highest to lowest, were lordosizer, LZ+TLS, and ArcoFix, which outperformed the lamina spreader and modified distractable VBR. In decreasing order, the axial preload was highest with the lordosizer and LZ+TLS, which both outperformed the lamina spreader and the modified distractable VBR. The technique enabling the greatest lordosis achieved the highest preloads. With the ArcoFix System and LZ+TLS, compression loads could be applied and were 247.8 and 190.6 N, respectively, which is significantly higher than the insertion peak load and axial preload (p < 0.05). Including the ability for replication of the COR in instruments designed for anterior column reconstructions, the ability for lordosis restoration of the anterior column and axial preloads can increase, which in turn might foster fusion.

  9. Lumbar vertebrae fracture injury risk in finite element reconstruction of CIREN and NASS frontal motor vehicle crashes.

    PubMed

    Jones, Derek A; Gaewsky, James P; Kelley, Mireille E; Weaver, Ashley A; Miller, Anna N; Stitzel, Joel D

    2016-09-01

    The objective of this study was to reconstruct 4 real-world motor vehicle crashes (MVCs), 2 with lumbar vertebral fractures and 2 without vertebral fractures in order to elucidate the MVC and/or restraint variables that increase this injury risk. A finite element (FE) simplified vehicle model (SVM) was used in conjunction with a previously developed semi-automated tuning method to arrive at 4 SVMs that were tuned to mimic frontal crash responses of a 2006 Chevrolet Cobalt, 2012 Ford Escape, 2007 Hummer H3, and 2002 Chevrolet Cavalier. Real-world crashes in the first 2 vehicles resulted in lumbar vertebrae fractures, whereas the latter 2 did not. Once each SVM was tuned to its corresponding vehicle, the Total HUman Model for Safety (THUMS) v4.01 was positioned in 120 precrash configurations in each SVM by varying 5 parameters using a Latin hypercube design (LHD) of experiments: seat track position, seatback angle, steering column angle, steering column telescoping position, and d-ring height. For each case, the event data recorder (EDR) crash pulse was used to apply kinematic boundary conditions to the model. By analyzing cross-sectional vertebral loads, vertebral bending moments, and maximum principal strain and stress in both cortical and trabecular bone, injury metric response as a function of posture and restraint parameters was computed. Tuning the SVM to specific vehicle models produced close matches between the simulated and experimental crash test responses for head, T6, and pelvis resultant acceleration; left and right femur loads; and shoulder and lap belt loads. Though vertebral load in the THUMS simulations was highly similar between injury cases and noninjury cases, the amount of bending moment was much higher for the injury cases. Seatback angle had a large effect on the maximum compressive load and bending moment in the lumbar spine, indicating the upward tilt of the seat pan in conjunction with precrash positioning may increase the likelihood of suffering lumbar injury even in frontal, planar MVCs. In conclusion, precrash positioning has a large effect on lumbar injury metrics. The lack of lumbar injury criteria in regulatory crash tests may have led to inadvertent design of seat pans that work to apply axial force to the spinal column during frontal crashes.

  10. Investigation of damage mechanisms in a cross-ply metal-matrix composite under thermomechanical loading. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubbe, J.J.

    1990-12-01

    Metal matrix composites (MMCs) are rapidly becoming strong candidates for high temperature and high stiffness structural applications such as the Advanced Tactical Fighter (ATF). This study systematically investigated the failure modes and associated damage in a cross-ply, (0/90)2s SCS6/Ti-15-3 metal matrix composite under in-phase and out-of-phase thermomechanic fatigue. Initiation and progression of fatigue damage were recorded and correlated to changes in Young's Modulus of the composite material. Experimental results show an internal stabilization of reaction zone size but degradation and separation from constituent materials under extended cyclic thermal loading. Critical to damage were transverse cracks initiating in the 90 degreesmore » plies, growing and coalescing from fiber/matrix interfaces internal to the specimen, progressing outward through the 0 degree plies before failure. Maximum mechanical strain at failure was determined to be approximately 0.0075 mm/mm. A correlation was made relating maximum matrix stress to failure life, resulting in a fatigue threshold limit of 280 MPa. An attempt was made to correlate the degradation in Young's Modulus (Damage=1-E/Eo) with the applied life cycles from different TMF tests.« less

  11. [Design on tester of pull-out force for orthodontic micro implant].

    PubMed

    Su, He; Wu, Pei; Wang, Huiyuan; Chen, Yan; Bao, Xuemei

    2013-09-01

    A special device for measuring the pull-out force of orthodontic micro implant was designed, which has the characteristics of simple construction and easy operation, and can be used to detect the pull-out-force of orthodontic micro implant. The tested data was stored and analyzed by a computer, and as the results, the pull-out-force curve, maximum pull-out force as well as average pull-out force were outputted, which was applied in analyzing or investigating the initial stability and immediate loading property of orthodontic micro implant.

  12. Behavior of plywood and fiberglass steel composite tube structures subjected to impact loading

    NASA Astrophysics Data System (ADS)

    Armaghani, Seyamend Bilind

    Paratransit buses are custom built as the major vehicle manufacturer produces the custom built passenger cage installed on the chassis for the Paratransit bus. In order for these Paratransit bus members to be sufficient, they have to be evaluated for crashworthiness and energy absorption. This has prompted Florida Department of Transportation (FDOT) to fund research for the safety evaluation of Paratransit busses consisting of crash and safety analysis. There has been a large body of research done on steel subjected to static loads, but more research is needed for steel applied under dynamic loading and high speeds in order to improve crashworthiness in events such as rollovers and side impacts. Bare steel Hollow Structural Section (HSS) tubing are used a lot as structural members of Paratransit buses because of their lightness and progressive buckling under loading. The research will be conducted on quantifying the tubing's behavior under bending by conducting static three point bending and impact loading tests. In addition to the bare tubing, plywood and fiberglass composites are investigated because they are both strong and lightweight and their behavior under dynamic loading hasn't been quantified. As a result, the main purpose of this research is to quantify the differences between the dynamic and static behavior of plywood steel composite and fiberglass steel composite tubing and compare these findings with those of bare steel tubing. The differences will be quantified using detailed and thorough experiments that will examine the composites behavior under both static and dynamic loading. These tests will determine if there are any advantages of using the composite materials and thus allow for recommendations to be made to the FDOT with the goal of improving the safety of Paratransit busses. Tensile tests were conducted to determine the material properties of the tested specimens. Before the static and dynamic experiments are run to investigate the differences between static and dynamic behavior, Preliminary three point bending testing was conducted to determine the parameters for the final experiments. Static bending testing was conducted on the bare, plywood composite, and fiberglass composite steel tubing. The point of these experiments was to produce a Moment vs. Rotation plot to determine the specimens' maximum moments and their associated rotation, as that is when the steel buckles and fails. The dynamic three point bending experiments were conducted using the impact loading apparatus and had the same purpose as the static experiments. For both static and dynamic experiments, the performances of the different types of specimens were compared based upon their Moment vs. Rotation plots. This will determine the effect that the composite has on the rotation and maximum moment at which the tubing fails. After conducting these experiments, amplification factors were established for each specimen by comparing the maximum moment and their associated rotation between static and dynamic testing. lambda was calculated to quantify the ratio between the static and dynamic maximum moments. beta was used to quantify the ratio between the rotation needed to produce the maximum moment between static and dynamic events. A small amplification factor denotes that material performs well under impact loading and the material doesn't experience dramatic change in behavior during dynamic events. Amplification factors were compared between the bare, plywood, and fiberglass composite steel tubing in order to evaluate the performance of the composites. After comparing the amplification factors of the different types of tubing, recommendations can be made. Fiberglass and plywood composite were shown to be valuable because it decreased the effect of dynamic forces as beta was reduced by a factor of 2 in comparison to bare tubing. Based upon the amplification factors, it was recommended to use 14 gauge fiberglass composite tubing as Paratransit bus structural members because it was affected the least by dynamic loading.

  13. Effect of 1 Repetition Maximum, 80% Repetition Maximum, and 50% Repetition Maximum Strength Exercise in Trained Individuals on Variations in Plasma Redox Biomarkers.

    PubMed

    Polotow, Tatiana G; Souza-Junior, Tácito P; Sampaio, Ricardo C; Okuyama, Alexandre R; Ganini, Douglas; Vardaris, Cristina V; Alves, Ragami C; McAnulty, Steven R; Barros, Marcelo P

    2017-09-01

    Polotow, TG, Souza-Junior, TP, Sampaio, RC, Okuyama, AR, Ganini, D, Vardaris, CV, Alves, RC, McAnulty, SR, and Barros, MP. Effect of 1RM, 80%RM, and 50%RM strength exercise in trained individuals on variations in plasma redox biomarkers. J Strength Cond Res 31(9): 2489-2497, 2017-For decades, scientists have examined the participation of oxygen/nitrogen species in anaerobic-like exercises, especially weightlifting and resistance exercises. The balance between the production of oxyradicals and antioxidant responses during anaerobic-like exercises is essential to assure adaptation to the physiological benefits of strength training and to prevent chronic harmful effects. The aim of this study is to examine the hypothesis that different weight loads (1 repetition maximum (RM), 80%RM, and 50%RM) lifted until exhaustion could impose distinct oxidative insults and elicit diverse antioxidant responses in plasma of young trained subjects. Glucose (+10%), lactate (+65%), urea (+30%), free iron (+65%), reduced/oxidized glutathione (+14 and +23%, respectively), and xanthine oxidase activity (2.2-fold) significantly increased after the 1RM test, whereas plasma antioxidant capacity dropped by 37%. When lower weight loads were applied (80%RM and 50%RM tests), heme-iron (+15 and +20%, respectively) became the prevalent pro-oxidant, although glutathione responses were only detected after 80%RM (+14%). Lactate concentration in plasma continuously increased, by 2.9-fold (80%RM) and 3.6-fold higher (50%RM test). We demonstrated that 1RM tests significantly diminish the antioxidant capacity of plasma because of iron overload, whereas 80%RM tests require higher involvement of glutathione molecules to counteract heme-iron oxidative insult. Mild redox imbalances promoted by heme-iron were found in plasma after 50%RM. Although we did not observe overall changes in muscle damage in young trained subjects, we cannot exclude the need for specific antioxidant supplementation depending on the strength protocols applied, especially for less responsive groups, such as sedentary and elderly populations.

  14. Investigation on the performance of a viscoelastic dielectric elastomer membrane generator.

    PubMed

    Zhou, Jianyou; Jiang, Liying; Khayat, Roger E

    2015-04-21

    Dielectric elastomer generators (DEGs), as a recent transduction technology, harvest electrical energy by scavenging mechanical energy from diverse sources. Their performance is affected by various material properties and failure modes of the dielectric elastomers. This work presents a theoretical analysis on the performance of a dielectric elastomer membrane generator under equi-biaxial loading conditions. By comparing our simulation results with the experimental observations existing in the literature, this work considers the fatigue life of DE-based devices under cyclic loading for the first time. From the simulation results, it is concluded that the efficiency of the DEG can be improved by raising the deforming rate and the prescribed maximum stretch ratio, and applying an appropriate bias voltage. However, the fatigue life expectancy compromises the efficiency improvement of the DEG. With the consideration of the fatigue life, applying an appropriate bias voltage appears to be a more desirable way to improve the DEG performance. The general framework developed in this work is expected to provide an increased understanding on the energy harvesting mechanisms of the DEGs and benefit their optimal design.

  15. Incorporation of Half-Cycle Theory Into Ko Aging Theory for Aerostructural Flight-Life Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Tran, Van T.; Chen, Tony

    2007-01-01

    The half-cycle crack growth theory was incorporated into the Ko closed-form aging theory to improve accuracy in the predictions of operational flight life of failure-critical aerostructural components. A new crack growth computer program was written for reading the maximum and minimum loads of each half-cycle from the random loading spectra for crack growth calculations and generation of in-flight crack growth curves. The unified theories were then applied to calculate the number of flights (operational life) permitted for B-52B pylon hooks and Pegasus adapter pylon hooks to carry the Hyper-X launching vehicle that air launches the X-43 Hyper-X research vehicle. A crack growth curve for each hook was generated for visual observation of the crack growth behavior during the entire air-launching or captive flight. It was found that taxiing and the takeoff run induced a major portion of the total crack growth per flight. The operational life theory presented can be applied to estimate the service life of any failure-critical structural components.

  16. Note: Motor-piezoelectricity coupling driven high temperature fatigue device

    NASA Astrophysics Data System (ADS)

    Ma, Z. C.; Du, X. J.; Zhao, H. W.; Ma, X. X.; Jiang, D. Y.; Liu, Y.; Ren, L. Q.

    2018-01-01

    The design and performance evaluation of a novel high temperature fatigue device simultaneously driven by servo motor and piezoelectric actuator is our focus. The device integrates monotonic and cyclic loading functions with a maximum tensile load of 1800 N, driving frequency of 50 Hz, alternating load of 95 N, and maximum service temperature of 1200 °C. Multimodal fatigue tests with arbitrary combinations of static and dynamic loads are achieved. At temperatures that range from RT to 1100 °C, the tensile and tensile-fatigue coupling mechanical behaviors of UM Co50 alloys are investigated to verify the feasibility of the device.

  17. Temperature-dependent mechanical properties of single-layer molybdenum disulphide: Molecular dynamics nanoindentation simulations

    NASA Astrophysics Data System (ADS)

    Zhao, Junhua; Jiang, Jin-Wu; Rabczuk, Timon

    2013-12-01

    The temperature-dependent mechanical properties of single-layer molybdenum disulphide (MoS2) are obtained using molecular dynamics (MD) nanoindentation simulations. The Young's moduli, maximum load stress, and maximum loading strain decrease with increasing temperature from 4.2 K to 500 K. The obtained Young's moduli are in good agreement with those using our MD uniaxial tension simulations and the available experimental results. The tendency of maximum loading strain with different temperature is opposite with that of metal materials due to the short range Stillinger-Weber potentials in MoS2. Furthermore, the indenter tip radius and fitting strain effect on the mechanical properties are also discussed.

  18. Muscle force depends on the amount of transversal muscle loading.

    PubMed

    Siebert, Tobias; Till, Olaf; Stutzig, Norman; Günther, Michael; Blickhan, Reinhard

    2014-06-03

    Skeletal muscles are embedded in an environment of other muscles, connective tissue, and bones, which may transfer transversal forces to the muscle tissue, thereby compressing it. In a recent study we demonstrated that transversal loading of a muscle with 1.3Ncm(-2) reduces maximum isometric force (Fim) and rate of force development by approximately 5% and 25%, respectively. The aim of the present study was to examine the influence of increasing transversal muscle loading on contraction dynamics. Therefore, we performed isometric experiments on rat M. gastrocnemius medialis (n=9) without and with five different transversal loads corresponding to increasing pressures of 1.3Ncm(-2) to 5.3Ncm(-2) at the contact area between muscle and load. Muscle loading was induced by a custom-made plunger which was able to move in transversal direction. Increasing transversal muscle loading resulted in an almost linear decrease in muscle force from 4.8±1.8% to 12.8±2% Fim. Compared to an unloaded isometric contraction, rate of force development decreased from 20.2±4.0% at 1.3Ncm(-2) muscle loading to 34.6±5.7% at 5.3Ncm(-2). Experimental observation of the impact of transversal muscle loading on contraction dynamics may help to better understand muscle tissue properties. Moreover, applying transversal loads to muscles opens a window to analyze three-dimensional muscle force generation. Data presented in this study may be important to develop and validate muscle models which enable simulation of muscle contractions under compression and enlighten the mechanisms behind. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Design test request No. 1263 K Reactor graphite key and VSR channel sleeve test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kempf, F.J.

    1964-12-10

    The objectives of this test were: (1) Determine the coefficient of friction between two adjacent layers of K Reactor graphite at room temperature. (2) Determine the average load required to cause failure of an unirradiated K Reactor side reflector bar, when subjected to tensile loading applied through the reflector keys. (3) Determine the average load at failure and the average deflection at failure of a single VSR channel key when loaded in keyways with clearances equal to those used in original stack construction. (4) Determine the average load and deflection required to break the four K Reactor VSR keys whenmore » loaded simultaneously in both `3-layer` and `7-layer` mockups. Also determine the mode of key failure; i.e., shear, flexure or combined compression and bending. Following these key rupture tests, determine the strength and deflection characteristics of the proposed K Reactor VSR channel sleeve when loaded in a manner identical to that used to fracture the keys. (5) Determine the average load and deflection at failure of both the proposed K Reactor VSR channel sleeves and the proposed C Reactor sleeves when subjected to crushing loads. (6) Determine the extent of damage to the proposed K Reactor VSR channel sleeve when subjected to the following vertical rod loading conditions. (a) Full rod drop in a channel mockup which has been misaligned 2 1/2 inches. (b) Full rod drop in a channel which has been misaligned an amount equal to the maximum flexibility of a `universal` VSR.« less

  20. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about 200 MPa. The decay in flexural modulus of the beam as it goes under cyclic loading was calculated and it was seen that flexural modulus shows an exponential decay which can be expressed as: E = E0e AN. Four-point bending fatigue tests were carried out on three (±45°)15 samples with stress ratio, R = -1 and frequency of 5 Hz. Maximum applied stress was 85% of the measured yield stress of (±45°)15 samples. None of the samples failed, nor any sign of crack was seen. Tests were stopped once the number of cycles passed 1.7×106. In general, current study provided additional insight into the fatigue and static behavior of polymer composites and effect of fiber orientation in their mechanical behavior.

  1. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  2. 14 CFR 23.441 - Maneuvering loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... conditions. In computing the loads, the yawing velocity may be assumed to be zero: (1) With the airplane in unaccelerated flight at zero yaw, it is assumed that the rudder control is suddenly displaced to the maximum... attainable steady state sideslip angle, with the rudder at maximum deflection caused by any one of the...

  3. 40 CFR 130.7 - Total maximum daily loads (TMDL) and individual water quality-based effluent limitations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Total maximum daily loads (TMDL) and individual water quality-based effluent limitations. 130.7 Section 130.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.7 Total...

  4. Software Tool for Computing Maximum Von Mises Stress

    NASA Technical Reports Server (NTRS)

    Chen, Long Y.; Knutson, Kurt; Martin, Eric

    2007-01-01

    The maximum Van Mises stress and stress direction are of interest far analyzing launch accelerations such as with the Mass Acceleration Curves developed by JPL. Maximum launch stresses can be combined with appropriate load cases at consistent locations with resulting stress tensors. Maximum Van Mises stress is also of interest for understanding maximum operational loading such as traverse events. - For example, planetary traversing simulations may prescribe bounding acceleration values during traverse for a rover such as Mars Science Lab (MSL) in (X,Y,Z) of the rover. - Such accelerations can be really in any directions for many parts such as a mast or head mounted components which can be in numerous configurations and orientations when traversing a planet surface.

  5. Effect of Expiratory Resistive Loading in Expiratory Muscle Strength Training on Orbicularis Oris Muscle Activity

    PubMed Central

    Yanagisawa, Yukio; Matsuo, Yoshimi; Shuntoh, Hisato; Horiuchi, Noriaki

    2014-01-01

    [Purpose] The purpose of this study was to elucidate the effect of expiratory resistive loading on orbicularis oris muscle activity. [Subjects] Subjects were 23 healthy individuals (11 males, mean age 25.5±4.3 years; 12 females, mean age 25.0±3.0 years). [Methods] Surface electromyography was performed to measure the activity of the orbicularis oris muscle during maximum lip closure and resistive loading at different expiratory pressures. Measurement was performed at 10%, 30%, 50%, and 100% of maximum expiratory pressure (MEP) for all subjects. The t-test was used to compare muscle activity between maximum lip closure and 100% MEP, and analysis of variance followed by multiple comparisons was used to compare the muscle activities observed at different expiratory pressures. [Results] No significant difference in muscle activity was observed between maximum lip closure and 100% MEP. Analysis of variance with multiple comparisons revealed significant differences among the different expiratory pressures. [Conclusion] Orbicularis oris muscle activity increased with increasing expiratory resistive loading. PMID:24648644

  6. Dynamics modeling and vibration analysis of a piezoelectric diaphragm applied in valveless micropump

    NASA Astrophysics Data System (ADS)

    He, Xiuhua; Xu, Wei; Lin, Nan; Uzoejinwa, B. B.; Deng, Zhidan

    2017-09-01

    This paper presents the dynamical model involved with load of fluid pressure, electric-solid coupling simulation and experimental performance of the piezoelectric diaphragm fabricated and applied in valveless micropump. The model is based on the theory of plate-shell with small deflection, considering the two-layer structure of piezoelectric ceramic and elastic substrate. The high-order non-homogeneous vibration equation of the piezoelectric diaphragm, derived in the course of the study, was solved by being divided into a homogeneous Bessel equation and a non-homogeneous static equation according to the superposition principle. The amplitude of the piezoelectric diaphragm driven by sinusoidal voltage against the load of fluid pressure was obtained from the solution of the vibration equation. Also, finite element simulation of electric-solid coupling between displacement of piezoelectric diaphragm due to an applied voltage and resulting deformation of membrane was considered. The simulation result showed that the maximum deflection of diaphragm is 9.51 μm at a quarter cycle time when applied a peak-to-peak voltage of 150VP-P with a frequency of 90 Hz, and the displacement distribution according to the direction of the radius was demonstrated. Experiments were performed to verify the prediction of the dynamic modeling and the coupling simulation, the experimental data showed a good agreement with the dynamical model and simulation.

  7. Suspended-sediment and nutrient loads for Waiakea and Alenaio Streams, Hilo, Hawaii, 2003-2006

    USGS Publications Warehouse

    Presley, Todd K.; Jamison, Marcael T.J.; Nishimoto, Dale C.

    2008-01-01

    Suspended sediment and nutrient samples were collected during wet-weather conditions at three sites on two ephemeral streams in the vicinity of Hilo, Hawaii during March 2004 to March 2006. Two sites were sampled on Waiakea Stream at 80- and 860-foot altitudes during March 2004 to August 2005. One site was sampled on Alenaio Stream at 10-foot altitude during November 2005 to March 2006. The sites were selected to represent different land uses and land covers in the area. Most of the drainage area above the upper Waiakea Stream site is conservation land. The drainage areas above the lower site on Waiakea Stream, and the site on Alenaio Stream, are a combination of conservation land, agriculture, rural, and urban land uses. In addition to the sampling, continuous-record streamflow sites were established at the three sampling sites, as well as an additional site on Alenaio Stream at altitude of 75 feet and 0.47 miles upstream from the sampling site. Stage was measured continuously at 15-minute intervals at these sites. Discharge, for any particular instant, or for selected periods of time, were computed based on a stage-discharge relation determined from individual discharge measurements. Continuous records of discharge were computed at the two sites on Waiakea Stream and the upper site on Aleniao Stream. Due to non-ideal hydraulic conditions within the channel of Alenaio Stream, a continuous record of discharge was not computed at the lower site on Alenaio Stream where samples were taken. Samples were analyzed for suspended sediment, and the nutrients total nitrogen, dissolved nitrite plus nitrate, and total phosphorus. Concentration data were converted to instantaneous load values: loads are the product of discharge and concentration, and are presented as tons per day for suspended sediment or pounds per day for nutrients. Daily-mean loads were computed by estimating concentrations relative to discharge using graphical constituent loading analysis techniques. Daily-mean loads were computed at the two Waiakea Stream sampling sites for the analyzed constituents, during the period October 1, 2003 to September 30, 2005. No record of daily-mean load was computed for the Alenaio Stream sampling site due to the problems with computing a discharge record. The maximum daily-mean loads for the upper site on Waiakea Stream for suspended sediment was 79 tons per day, and the maximum daily-mean loads for total nitrogen, dissolved nitrite plus nitrate, and total phosphorus were 1,350, 13, and 300 pounds per day, respectively. The maximum daily-mean loads for the lower site on Waiakea Stream for suspended sediment was 468 tons per day, and the maximum daily-mean loads for total nitrogen, nitrite plus nitrate, and total phosphorus were 913, 8.5, and 176 pounds per day, respectively. From the estimated continuous daily-mean load record, all of the maximum daily-mean loads occurred during October 2003 and September 2004, except for suspended sediment load for the lower site, which occurred on September 15, 2005. Maximum values were not all caused by a single storm event. Overall, the record of daily-mean loads showed lower loads during storm events for suspended sediments and nutrients at the downstream site of Waiakea Stream during 2004 than at the upstream site. During 2005, however, the suspended sediment loads were higher at the downstream site than the upstream site. Construction of a flood control channel between the two sites in 2005 may have contributed to the change in relative suspended-sediment loads.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakubowska, Paulina; Klozinski, Arkadiusz

    The aim of this work was to determine the possibility of thermovision technique usage for estimating thermal properties of ternary highly filled composites (PE-MD/iPP/CaCO{sub 3}) and polymer blends (PE-MD/iPP) during mechanical measurements. The ternary, polyolefin based composites that contained the following amounts of calcium carbonate: 48, 56, and 64 wt % were studied. All materials were applying under tensile cyclic loads (x1, x5, x10, x20, x50, x100, x500, x1000). Simultaneously, a fully radiometric recording, using a TESTO infrared camera, was created. After the fatigue process, all samples were subjected to static tensile test and the maximum temperature at break wasmore » also recorded. The temperature values were analyzed in a function of cyclic loads and the filler content. The changes in the Young’s modulus values were also investigated.« less

  9. Determination of the wind power systems load to achieve operation in the maximum energy area

    NASA Astrophysics Data System (ADS)

    Chioncel, C. P.; Tirian, G. O.; Spunei, E.; Gillich, N.

    2018-01-01

    This paper analyses the operation of the wind turbine, WT, in the maximum power point, MPP, by linking the load of the Permanent Magnet Synchronous Generator, PMSG, with the wind speed value. The load control methods at wind power systems aiming an optimum performance in terms of energy are based on the fact that the energy captured by the wind turbine significantly depends on the mechanical angular speed of the wind turbine. The presented control method consists in determining the optimal mechanical angular speed, ωOPTIM, using an auxiliary low power wind turbine, WTAUX, operating without load, at maximum angular velocity, ωMAX. The method relies on the fact that the ratio ωOPTIM/ωMAX has a constant value for a given wind turbine and does not depend on the time variation of the wind speed values.

  10. Comparison of volume, security, and biomechanical strength of square and Aberdeen termination knots tied with 4-0 polyglyconate and used for termination of intradermal closures in canine cadavers.

    PubMed

    Regier, Penny J; Smeak, Daniel D; Coleman, Kristin; McGilvray, Kirk C

    2015-08-01

    To compare volumes of square knots and Aberdeen knots in vitro and evaluate security of these knot types when used as buried terminal knots for continuous intradermal wound closures in canine cadavers. Experimental study. 24 surgically closed, full-thickness, 4-cm, epidermal wounds in 4 canine cadavers and 80 knots tied in vitro. Continuous intradermal closures were performed with 4-0 polyglyconate and completed with a buried knot technique. Surgeon (intern or experienced surgeon) and termination knot type (4-throw square knot or 2 + 1 Aberdeen knot; 12 each) were randomly assigned. Closed wounds were excised, and a servohydraulic machine applied tensile load perpendicular to the long axis of the suture line. A load-displacement curve was generated for each sample; maximum load, displacement, stiffness, and mode of construct failure were recorded. Volumes of 2 + 1 Aberdeen (n = 40) and 4-throw square knots (40) tied on a suture board were measured on the basis of a cylindrical model. Aberdeen knots had a mean smaller volume (0.00045 mm(3)) than did square knots (0.003838 mm(3)). Maximum load and displacement did not differ between construct types. Mean stiffness of Aberdeen knot constructs was greater than that of square knots. The 2 + 1 Aberdeen knot had a smaller volume than the 4-throw square knot and was as secure. Although both knots may be reliably used in a clinical setting as the termination knot at the end of a continuous intradermal line, the authors advocate use of the Aberdeen terminal knot on the basis of ease of burying the smaller knot.

  11. Biomechanical analysis of a novel hemipelvic endoprosthesis during ascending and descending stairs.

    PubMed

    Liu, Dongxu; Hua, Zikai; Yan, Xinyi; Jin, Zhongmin

    2016-10-01

    In this study, the biomechanical characteristic of a newly developed adjustable hemipelvic prosthesis under dynamic loading conditions was investigated using explicit finite element method. Both intact and reconstructed pelvis models, including pelvis, femur and soft tissues, were established referring to human anatomic data using a solid geometry of a human pelvic bone. Hip contact forces during ascending stairs and descending stairs were imposed on pelvic models. Results showed that maximum von Mises stresses in reconstructed pelvis were 421.85 MPa for prostheses and 109.12 MPa for cortical bone, which were still within a low and elastic range below the yielding strength of Ti-6Al-4V and cortical bone, respectively. Besides, no significant difference of load transferring paths along pelvic rings was observed between the reconstructed pelvis and natural pelvis models. And good agreement was found between the overall distribution of maximum principal stresses in trabecular bones of reconstructed pelvis and natural pelvis, while at limited stances, principal stresses in trabecular bone of reconstructed pelvis were slightly lower than natural pelvis. The results indicated that the load transferring function of pelvis could be restored by this adjustable hemipelvic prosthesis. Moreover, the prosthesis was predicted to have a reliable short- and long-term performance. However, due to the occurrence of slightly lower principal stresses at a few stances, a porous structure applied on the interface between the prosthesis and bone would be studied in future work to obtain better long-term stability. © IMechE 2016.

  12. Effect of non-feeding period length on the intermittent operation of UASB reactors treating dairy effluents.

    PubMed

    Coelho, N M; Rodrigues, A A; Arroja, L M; Capela, I F

    2007-02-01

    Recent environmental concerns have prompted a re-evaluation of conventional management strategies and refueled the search of innovative waste management practices. In this sense, the anaerobic digestion of both fat and the remaining complex organic matter present in dairy wastewaters is attractive, although the continuous operation of high rate anaerobic processes treating this type of wastewaters causes the failure of the process. This work accesses the influence of non-feeding period length on the intermittent operation of mesophilic UASB reactors treating dairy wastewater, in order to allow the biological degradation to catch up with adsorption phenomenon. During the experiments, two UASB reactors were subject to three organic loading rates, ranging from 6 to 12 g(COD) x L(-1) x d(-1), with the same daily load applied to both reactors, each one with a different non-feeding period. Both reactors showed good COD removal efficiencies (87-92%). A material balance for COD in the reactors during the feeding and non-feeding periods showed the importance of the feedless period, which allowed the biomass to degrade substrate that was accumulated during the feeding period. The reactor with the longest non-feeding period had a better performance, which resulted in a higher methane production and adsorption capacity for the same organic load applied with a consequent less accumulation of substrate into the biomass. In addition, both reactors had a stable operation for the organic load of 12 g(COD) x L(-1) x d(-1), which is higher than the maximum applicable load reported in literature for continuous systems (3-6 g(COD) x L(-1) x d(-1)). (c) 2006 Wiley Periodicals, Inc.

  13. Using squat repetition maximum testing to determine hamstring resistance training exercise loads.

    PubMed

    Ebben, William P; Long, Nicholas J; Pawlowski, Zach D; Chmielewski, Lauren M; Clewien, Rustin W; Jensen, Randall L

    2010-02-01

    The purpose of this study was to determine whether there is a linear relationship between the squat and a variety of hamstring resistance training exercises, and whether this relationship differs on the basis of sex. This study also sought to create prediction equations for the determination of hamstring exercise load based on the squat load. Repetition maximums of the squat, as well as 4 common hamstring resistance training exercises including the seated leg curl, stiff leg dead lift, single leg dead lift, and good morning exercise, were determined for each subject. Subjects included 21 men and 13 women collegiate athletes. Data were evaluated using linear regression analysis to predict hamstring exercise loads from 6 repetition maximum squat data. Results of the analysis of all subjects indicated that squat load was a significant predictor of loads for each of the hamstring exercises. However, separate analysis of women revealed that squat load was not a significant predictor of loads for any of the hamstring exercises. Analysis of the men revealed that squat was a significant predictor of load for the seated leg curl (R = 0.58, p < 0.001), stiff leg dead lift (R = 0.82, p < 0.001), single leg stiff leg dead lift (R = 0.80, p < 0.001), and good morning (R = 0.79, p < 0.001) exercises. On the basis of the analysis of the men, the following prediction equations were devised for each exercise: (1) seated leg curl load = squat load (0.186) + 10.935 kg, (2) stiff leg deadlift load = squat load (1.133) - 86.331 kg, (3) single leg stiff leg deadlift load = squat load (0.443) - 3.425 kg, and (4) good morning load = squat load (0.961) - 105.505 kg. Thus, results from testing core exercises such as the squat can provide useful data for the assignment of loads for assistance exercises.

  14. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton.

    PubMed

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = -2.88 to -0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = -3.62 to -0.02%BW; PP, p = 0.048, 95% CI = -37.63 to -0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = -4.39 to -0.38%BW; PP, p = 0.008, 95% CI = -47.76 to -5.91 KPa). These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players.

  15. Characteristics of Plantar Loads in Maximum Forward Lunge Tasks in Badminton

    PubMed Central

    Hu, Xiaoyue; Li, Jing Xian; Hong, Youlian; Wang, Lin

    2015-01-01

    Background Badminton players often perform powerful and long-distance lunges during such competitive matches. The objective of this study is to compare the plantar loads of three one-step maximum forward lunges in badminton. Methods Fifteen right-handed male badminton players participated in the study. Each participant performed five successful maximum lunges at three directions. For each direction, the participant wore three different shoe brands. Plantar loading, including peak pressure, maximum force, and contact area, was measured by using an insole pressure measurement system. Two-way ANOVA with repeated measures was employed to determine the effects of the different lunge directions and different shoes, as well as the interaction of these two variables, on the measurements. Results The maximum force (MF) on the lateral midfoot was lower when performing left-forward lunges than when performing front-forward lunges (p = 0.006, 95% CI = −2.88 to −0.04%BW). The MF and peak pressures (PP) on the great toe region were lower for the front-forward lunge than for the right-forward lunge (MF, p = 0.047, 95% CI = −3.62 to −0.02%BW; PP, p = 0.048, 95% CI = −37.63 to −0.16 KPa) and left-forward lunge (MF, p = 0.015, 95% CI = −4.39 to −0.38%BW; PP, p = 0.008, 95% CI = −47.76 to −5.91 KPa). Conclusions These findings indicate that compared with the front-forward lunge, left and right maximum forward lunges induce greater plantar loads on the great toe region of the dominant leg of badminton players. The differences in the plantar loads of the different lunge directions may be potential risks for injuries to the lower extremities of badminton players. PMID:26367741

  16. Gain-scheduled {{\\mathscr{H}}}_{\\infty } buckling control of a circular beam-column subject to time-varying axial loads

    NASA Astrophysics Data System (ADS)

    Schaeffner, Maximilian; Platz, Roland

    2018-06-01

    For slender beam-columns loaded by axial compressive forces, active buckling control provides a possibility to increase the maximum bearable axial load above that of a purely passive structure. In this paper, an approach for gain-scheduled {{\\mathscr{H}}}∞ buckling control of a slender beam-column with circular cross-section subject to time-varying axial loads is investigated experimentally. Piezo-elastic supports with integrated piezoelectric stack actuators at the beam-column ends allow an active stabilization in arbitrary lateral directions. The axial loads on the beam-column influence its lateral dynamic behavior and, eventually, cause the beam-column to buckle. A reduced modal model of the beam-column subject to axial loads including the dynamics of the electrical components is set up and calibrated with experimental data. Particularly, the linear parameter-varying open-loop plant is used to design a model-based gain-scheduled {{\\mathscr{H}}}∞ buckling control that is implemented in an experimental test setup. The beam-column is loaded by ramp- and step-shaped time-varying axial compressive loads that result in a lateral deformation of the beam-column due to imperfections, such as predeformation, eccentric loading or clamping moments. The lateral deformations and the maximum bearable loads of the beam-column are analyzed and compared for the beam-column with and without gain-scheduled {{\\mathscr{H}}}∞ buckling control or, respectively, active and passive configuration. With the proposed gain-scheduled {{\\mathscr{H}}}∞ buckling control it is possible to increase the maximum bearable load of the active beam-column by 19% for ramp-shaped axial loads and to significantly reduce the beam-column deformations for step-shaped axial loads compared to the passive structure.

  17. A Study of the Use of Contact Loading to Simulate Low Velocity Impact

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.

    1997-01-01

    Although numerous studies on the impact response of laminated composites have been conducted, there is as yet no agreement within the composites community on what parameter or parameters are adequate for quantifying the severity of an impact event. One of the more interesting approaches that has been proposed uses the maximum contact force during impact to "quantify" the severity of the impact event, provided that the impact velocity is sufficiently low. A significant advantage of this approach, should it prove to be reliable, is that quasi-static contact loading could be used to simulate low velocity impact. In principle, a single specimen, loaded quasi-statically to successively increasing contact loads could be used to map the entire spectrum of damage as a function of maximum contact force. The present study had as its objective assessing whether or not the maximum contact force during impact is a suitable parameter for characterizing an impact. The response of [+/-60/0(sub 4)/+/-60/0(sub 2)](sub s) laminates fabricated from Fiberite T300/934 graphite epoxy and subjected to quasi-static contact loading and to low velocity impact was studied. Three quasi-static contact load levels - 525 lb., 600 lb., and 675 lb. - were selected. Three impact energy levels - 1.14 ft.-lb., 2.0 ft.-lb., and 2.60 ft.-lb. - were chosen in an effort to produce impact events in which the maximum contact forces during the impact events were 525 lb., 600 lb., and 625 lb., respectively. Damage development was documented using dye-penetrant enhanced x-ray radiography. A digital image processing technique was used to obtain quantitative information about the damage zone. Although it was intended that the impact load levels produce maximum contact forces equal to those used in the quasi-static contact experiments, larger contact forces were developed during impact loading. In spite of this, the damage zones developed in impacted specimens were smaller than the damage zones developed in specimens subjected to the corresponding quasi-static contact loading. The impacted specimens may have a greater tendency to develop fiber fracture, but, at present, a quantitative assessment of fiber fracture is not available. In addressing whether or not contact force is an adequate metric for describing the severity of an impact event, the results of this study suggest that it is not. In cases where the quasi-static load level and the maximum contact force during impact were comparable, the quasi-statically loaded specimens consistently developed larger damage zones. It should be noted, however, that using quasi-static damage data to forecast the behavior of impacted material may give conservative estimates of the residual strength of impacted composites.

  18. Three-dimensional fracture instability of a displacement-weakening planar interface under locally peaked nonuniform loading

    NASA Astrophysics Data System (ADS)

    Uenishi, Koji

    2018-06-01

    We consider stability of fracture on a three-dimensional planar interface subjected to a loading stress that is locally peaked spatially, the level of which increases quasi-statically in time. Similar to the earlier study on the two-dimensional case (Uenishi and Rice, 2003; Rice and Uenishi, 2010), as the loading stress increases, a crack, or a region of displacement discontinuity (opening gap in tension or slip for shear fracture), develops on the interface where the stress is presumed to decrease according to a displacement-weakening constitutive relation. Upon reaching the instability point at which no further quasi-static solution for the extension of the crack on the interface exists, dynamic fracture follows. For the investigation of this instability point, we employ a dimensional analysis as well as an energy approach that gives a Rayleigh-Ritz approximation for the dependence of crack size and maximum displacement discontinuity on the level and quadratic shape of the loading stress distribution. We show that, if the linear displacement-weakening law is applied and the crack may be assumed of an elliptical form, the critical crack size at instability is independent of the curvature of the loading stress distribution and it is of the same order for all two- and three-dimensional cases.

  19. Airplane Stress Analysis

    NASA Technical Reports Server (NTRS)

    Zahm, A F; Crook, L H

    1918-01-01

    Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered.

  20. Transient ice mass variations over Greenland detected by the combination of GPS and GRACE data

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Liu, L.; Khan, S. A.; van Dam, T. M.; Zhang, E.

    2017-12-01

    Over the past decade, the Greenland Ice Sheet (GrIS) has been undergoing significant warming and ice mass loss. Such mass loss was not always a steady process but had substantial temporal and spatial variabilities. Here we apply multi-channel singular spectral analysis to crustal deformation time series measured at about 50 Global Positioning System (GPS) stations mounted on bedrock around the Greenland coast and mass changes inferred from Gravity Recovery and Climate Experiment (GRACE) to detect transient changes in ice mass balance over the GrIS. We detect two transient anomalies: one is a negative melting anomaly (Anomaly 1) that peaked around 2010; the other is a positive melting anomaly (Anomaly 2) that peaked between 2012 and 2013. The GRACE data show that both anomalies caused significant mass changes south of 74°N but negligible changes north of 74°N. Both anomalies caused the maximum mass change in southeast GrIS, followed by in west GrIS near Jakobshavn. Our results also show that the mass change caused by Anomaly 1 first reached the maximum in late 2009 in the southeast GrIS and then migrated to west GrIS. However, in Anomaly 2, the southeast GrIS was the last place that reached the maximum mass change in early 2013 and the west GrIS near Jakobshavn was the second latest place that reached the maximum mass change. Most of the GPS data show similar spatiotemporal patterns as those obtained from the GRACE data. However, some GPS time series show discrepancies in either space or time, because of data gaps and different sensitivities of mass loading change. Namely, loading deformation measured by GPS can be significantly affected by local dynamical mass changes, which, yet, has little impact on GRACE observations.

  1. Finite element modelling of the articular disc behaviour of the temporo-mandibular joint under dynamic loads.

    PubMed

    Jaisson, Maxime; Lestriez, Philippe; Taiar, Redha; Debray, Karl

    2011-01-01

    The proposed biodynamic model of the articular disc joint has the ability to affect directly the complete chewing mechanism process and its related muscles defining its kinematics. When subjected to stresses from the mastication muscles, the disc absorbs one part and redistributes the other to become completely distorted. To develop a realistic model of this intricate joint a CT scan and MRI images from a patient were obtained to create sections (layers) and MRI images to create an anatomical joint CAD model, and its corresponding mesh element using a finite element method. The boundary conditions are described by the external forces applied to the joint model through a decomposition of the maximum muscular force developed by the same individual. In this study, the maximum force was operating at frequencies close to the actual chewing frequency measured through a cyclic loading condition. The reaction force at the glenoid fossa was found to be around 1035 N and is directly related to the frequency of indentation. It is also shown that over the years the areas of maximum stresses are located at the lateral portion of the disc and on its posterior rim. These forces can reach 13.2 MPa after a period of 32 seconds (s) at a frequency of 0.5 Hz. An important part of this study is to highlight resilience and the areas where stresses are at their maximum. This study provides a novel approach to improve the understanding of this complex joint, as well as to assess the different pathologies associated with the disc disease that would be difficult to study otherwise.

  2. The mean A beta load in the hippocampus correlates with duration and severity of dementia in subgroups of Alzheimer disease.

    PubMed

    Bartoo, G T; Nochlin, D; Chang, D; Kim, Y; Sumi, S M

    1997-05-01

    Using image analysis techniques to quantify the percentage area covered by the immunopositive marker for amyloid beta-peptide (A beta), we examined subjects with combinations of either early-onset or late-onset Alzheimer disease (AD) and either familial Alzheimer disease (FAD) or sporadic Alzheimer disease (SAD). We measured the mean and maximum A beta loads, in the hippocampus of each subject. There were no statistically significant differences in the mean A beta load between familial and sporadic AD subjects. Although sample sizes were too small for statistical testing, subjects with the epsilon 4/epsilon 4 allele of the apolipoprotein E (ApoE) gene had higher mean A beta loads than those with the epsilon 3/epsilon 3 or epsilon 3/epsilon 4 alleles. Members of the Volga German families (recently linked to chromosome 1) all had high mean A beta loads, and one of the chromosome 14-linked subjects had the highest mean A beta load while the other had a relatively small load, but the sample was too small for statistical comparisons. The duration of dementia and neuropsychological test scores showed a statistically significant correlation with the mean A beta load in the hippocampus, but not with the maximum A beta load. This difference indicates that the mean A beta load may be a more useful feature than the maximum A beta load as an objective neuropathological measure for cognitive status. This finding may help to improve the established methods for quantitative assessment of the neuropathological changes in AD.

  3. Structural, Chemical, and Mechanical Properties of Pressure Garments as a Function of Simulated Use and Repeated Laundering.

    PubMed

    Malara, Megan M; Kim, Jayne Y; Clark, J Alexander; Blackstone, Britani N; Ruegsegger, Mark A; Bailey, J Kevin; Supp, Dorothy M; Powell, Heather M

    2018-06-13

    Pressure garments are widely employed for management of postburn scarring. Although pressure magnitude has been linked to efficacy, maintenance of uniform pressure delivery is challenging. An understanding of garment fabric properties is needed to optimize pressure delivery for the duration of garment use. To address this issue, compression vests were manufactured using two commonly used fabrics, Powernet or Dri-Tek Tricot, to achieve 10% reduction in circumference for a child-sized mannequin. Applied pressure was tracked on five anatomical sites over 23 hours, before laundering or after one and five laundering cycles. Load relaxation and fatigue of fabrics were tested before laundering or after one and five laundering cycles, and structural analysis via scanning electron microscopy was performed. Prior to laundering, pressure vests fabricated using Powernet or Dri-Tek Tricot generated a maximum pressure on the mannequin of 20 and 23 mm Hg, respectively. With both fabrics, pressure decreased during daily wear. Following five laundering cycles, Dri-Tek Tricot vests delivered a maximum of 7 vs 15 mm Hg pressure for Powernet at the same site. In cyclic tensile and load relaxation tests, exerted force correlated with fabric weave orientation with greatest force measured parallel to a fabric's long axis. The results demonstrate that Powernet exhibited the greatest applied force with the least garment fatigue. Fabric orientation with respect to the primary direction of tension was a critical factor in pressure generation and maintenance. This study suggests that fabrication of garments using Powernet with its long axis parallel to patient's body part circumference may enhance the magnitude and maintenance of pressure delivery.

  4. The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

    PubMed Central

    Cho, Sun-Mi; Choi, Sung-Hwan; Sung, Sang-Jin; Yu, Hyung-Seog

    2016-01-01

    Objective The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss. PMID:27668194

  5. Eddy Current Method for Fatigue Testing

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.

  6. Structural Benchmark Tests of Composite Combustion Chamber Support Completed

    NASA Technical Reports Server (NTRS)

    Krause, David L.; Thesken, John C.; Shin, E. Eugene; Sutter, James K.

    2005-01-01

    A series of mechanical load tests was completed on several novel design concepts for extremely lightweight combustion chamber support structures at the NASA Glenn Research Center (http://www.nasa.gov/glenn/). The tests included compliance evaluation, preliminary proof loadings, high-strain cyclic testing, and finally residual strength testing of each design (see the photograph on the left). Loads were applied with single rollers (see the photograph on the right) or pressure plates (not shown) located midspan on each side to minimize the influence of contact stresses on corner deformation measurements. Where rollers alone were used, a more severe structural loading was produced than the corresponding equal-force pressure loading: the maximum transverse shear force existed over the entire length of each side, and the corner bending moments were greater than for a distributed (pressure) loading. Failure modes initiating at the corner only provided a qualitative indication of the performance limitations since the stress state was not identical to internal pressure. Configurations were tested at both room and elevated temperatures. Experimental results were used to evaluate analytical prediction tools and finite-element methodologies for future work, and they were essential to provide insight into the deformation at the corners. The tests also were used to assess fabrication and bonding details for the complicated structures. They will be used to further optimize the design of the support structures for weight performance and the efficacy of corner reinforcement.

  7. Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers.

    PubMed

    Lenton, Gavin K; Doyle, Tim L A; Saxby, David J; Billing, Dan; Higgs, Jeremy; Lloyd, David G

    2018-04-01

    Soldiers carry heavy loads that may cause general discomfort, shoulder pain and injury. This study assessed if new body armour designs that incorporated a hip belt reduced shoulder pressures and improved comfort. Twenty-one Australian soldiers completed treadmill walking trials wearing six different body armours with two different loads (15 and 30 kg). Contact pressures applied to the shoulders were measured using pressure pads, and qualitative assessment of comfort and usability were acquired from questionnaires administered after walking trials. Walking with hip belt compared to no hip belt armour resulted in decreased mean and maximum shoulder pressures (p < 0.005), and 30% fewer participants experiencing shoulder discomfort (p < 0.005) in best designs, although hip discomfort did increase. Laterally concentrated shoulder pressures were associated with 1.34-times greater likelihood of discomfort (p = 0.026). Results indicate body armour and backpack designs should integrate a hip belt and distribute load closer to shoulder midline to reduce load carriage discomfort and, potentially, injury risk. Practitioner Summary: Soldiers carry heavy loads that increase their risk of discomfort and injury. New body armour designs are thought to ease this burden by transferring the load to the hips. This study demonstrated that designs incorporating a hip belt reduced shoulder pressure and shoulder discomfort compared to the current armour design.

  8. Biofiltration of high loads of ethyl acetate in the presence of toluene.

    PubMed

    Deshusses, M; Johnson, C T; Leson, G

    1999-08-01

    To date, biofilters have been used primarily to control dilute, usually odorous, off-gases with relatively low volatile organic compound (VOC) concentrations (< 1 g m-3) and VOC loads (< 50 g m-3 hr-1). Recently, however, U.S. industry has shown an interest in applying biofilters to higher concentrations of VOCs and hazardous air pollutants (HAPs). In this study, the behavior of biofilters under high loads of binary VOC mixtures was studied. Two bench-scale biofilters were operated using a commercially available medium and a mixture of wood chips and compost. Both were exposed to varying mixtures of ethyl acetate and toluene. Concentration profiles and the corresponding removal efficiencies as a function of VOC loading were determined through frequent grab-sampling and GC analysis. Biofilter response to two frequently encountered operating problems--media dry-out and operating temperatures exceeding 40 degrees C--was also evaluated under controlled conditions. Microbial populations were also monitored to confirm the presence of organisms capable of degrading both major off-gas constituents. The results demonstrated several characteristics of biofilters operating under high VOC load conditions. Maximum elimination capacities for ethyl acetate were typically in the range of 200 g m-3 hr-1. Despite the presence of toluene degraders, the removal of toluene was inhibited by high loads of ethyl acetate. Several byproducts, particularly ethanol, were formed. Short-term dry-out and temperature excursions resulted in reduced performance.

  9. I/O load balancing for big data HPC applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, Arnab K.; Goyal, Arpit; Wang, Feiyi

    High Performance Computing (HPC) big data problems require efficient distributed storage systems. However, at scale, such storage systems often experience load imbalance and resource contention due to two factors: the bursty nature of scientific application I/O; and the complex I/O path that is without centralized arbitration and control. For example, the extant Lustre parallel file system-that supports many HPC centers-comprises numerous components connected via custom network topologies, and serves varying demands of a large number of users and applications. Consequently, some storage servers can be more loaded than others, which creates bottlenecks and reduces overall application I/O performance. Existing solutionsmore » typically focus on per application load balancing, and thus are not as effective given their lack of a global view of the system. In this paper, we propose a data-driven approach to load balance the I/O servers at scale, targeted at Lustre deployments. To this end, we design a global mapper on Lustre Metadata Server, which gathers runtime statistics from key storage components on the I/O path, and applies Markov chain modeling and a minimum-cost maximum-flow algorithm to decide where data should be placed. Evaluation using a realistic system simulator and a real setup shows that our approach yields better load balancing, which in turn can improve end-to-end performance.« less

  10. Functionalized silica nanoparticles as a carrier for Betamethasone Sodium Phosphate: Drug release study and statistical optimization of drug loading by response surface method.

    PubMed

    Ghasemnejad, M; Ahmadi, E; Mohamadnia, Z; Doustgani, A; Hashemikia, S

    2015-11-01

    Mesoporous silica nanoparticles with a hexagonal structure (SBA-15) were synthesized and modified with (3-aminopropyl) triethoxysilane (APTES), and their performance as a carrier for drug delivery system was studied. Chemical structure and morphology of the synthesized and modified SBA-15 were characterized by SEM, BET, TEM, FT-IR and CHN technique. Betamethasone Sodium Phosphate (BSP) as a water soluble drug was loaded on the mesoporous silica particle for the first time. The response surface method was employed to obtain the optimum conditions for the drug/silica nanoparticle preparation, by using Design-Expert software. The effect of time, pH of preparative media, and drug/silica ratio on the drug loading efficiency was investigated by the software. The maximum loading (33.69%) was achieved under optimized condition (pH: 1.8, time: 3.54 (h) and drug/silica ratio: 1.7). The in vitro release behavior of drug loaded particles under various pH values was evaluated. Finally, the release kinetic of the drug was investigated using the Higuchi and Korsmeyer-Peppas models. Cell culture and cytotoxicity assays revealed the synthesized product doesn't have any cytotoxicity against human bladder cell line 5637. Accordingly, the produced drug-loaded nanostructures can be applied via different routes, such as implantation and topical or oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    PubMed

    Lam, Wing-Kai; Ryue, Jaejin; Lee, Ki-Kwang; Park, Sang-Kyoon; Cheung, Jason Tak-Man; Ryu, Jiseon

    2017-01-01

    Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton.

  12. Does shoe heel design influence ground reaction forces and knee moments during maximum lunges in elite and intermediate badminton players?

    PubMed Central

    Cheung, Jason Tak-Man; Ryu, Jiseon

    2017-01-01

    Background Lunge is one frequently executed movement in badminton and involves a unique sagittal footstrike angle of more than 40 degrees at initial ground contact compared with other manoeuvres. This study examined if the shoe heel curvature design of a badminton shoe would influence shoe-ground kinematics, ground reaction forces, and knee moments during lunge. Methods Eleven elite and fifteen intermediate players performed five left-forward maximum lunge trials with Rounded Heel Shoe (RHS), Flattened Heel Shoe (FHS), and Standard Heel Shoes (SHS). Shoe-ground kinematics, ground reaction forces, and knee moments were measured by using synchronized force platform and motion analysis system. A 2 (Group) x 3 (Shoe) ANOVA with repeated measures was performed to determine the effects of different shoes and different playing levels, as well as the interaction of two factors on all variables. Results Shoe effect indicated that players demonstrated lower maximum vertical loading rate in RHS than the other two shoes (P < 0.05). Group effect revealed that elite players exhibited larger footstrike angle, faster approaching speed, lower peak horizontal force and horizontal loading rates but higher vertical loading rates and larger peak knee flexion and extension moments (P < 0.05). Analysis of Interactions of Group x Shoe for maximum and mean vertical loading rates (P < 0.05) indicated that elite players exhibited lower left maximum and mean vertical loading rates in RHS compared to FHS (P < 0.01), while the intermediate group did not show any Shoe effect on vertical loading rates. Conclusions These findings indicate that shoe heel curvature would play some role in altering ground reaction force impact during badminton lunge. The differences in impact loads and knee moments between elite and intermediate players may be useful in optimizing footwear design and training strategy to minimize the potential risks for impact related injuries in badminton. PMID:28334016

  13. 77 FR 18809 - Clean Water Act Section 303(d): Proposed Withdrawal of Nine Total Maximum Daily Loads (TMDLs)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... withdrawal of nine final Total Maximum Daily Loads (TMDLs) for Chloride, Sulfate, and Total Dissolved Solids... 08040202-006 Bayou de L'Outre.... Chloride, Sulfate, TDS. 08040202-007 Bayou de L'Outre.... Chloride, Sulfate, TDS. 08040202-008 Bayou de L'Outre.... Chloride, Sulfate, TDS. The 2008 Arkansas Clean Water Act...

  14. 75 FR 43160 - Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... ENVIRONMENTAL PROTECTION AGENCY [FRL-9179-3 ] Clean Water Act Section 303(d): Final Agency Action on One Arkansas Total Maximum Daily Load (TMDL) AGENCY: Environmental Protection Agency (EPA). ACTION: Notice of availability. SUMMARY: This notice announces the final agency action on one TMDL established by...

  15. Predictive modelling of JT-60SA high-beta steady-state plasma with impurity accumulation

    NASA Astrophysics Data System (ADS)

    Hayashi, N.; Hoshino, K.; Honda, M.; Ide, S.

    2018-06-01

    The integrated modelling code TOPICS has been extended to include core impurity transport, and applied to predictive modelling of JT-60SA high-beta steady-state plasma with the accumulation of impurity seeded to reduce the divertor heat load. In the modelling, models and conditions are selected for a conservative prediction, which considers a lower bound of plasma performance with the maximum accumulation of impurity. The conservative prediction shows the compatibility of impurity seeding with core plasma with high-beta (β N  >  3.5) and full current drive conditions, i.e. when Ar seeding reduces the divertor heat load below 10 MW m‑2, its accumulation in the core is so moderate that the core plasma performance can be recovered by additional heating within the machine capability to compensate for Ar radiation. Due to the strong dependence of accumulation on the pedestal density gradient, high separatrix density is important for the low accumulation as well as the low divertor heat load. The conservative prediction also shows that JT-60SA has enough capability to explore the divertor heat load control by impurity seeding in high-beta steady-state plasmas.

  16. Effects of load on ground reaction force and lower limb kinematics during concentric squats.

    PubMed

    Kellis, Eleftherios; Arambatzi, Fotini; Papadopoulos, Christos

    2005-10-01

    The purpose of this study was to examine the effects of external load on vertical ground reaction force, and linear and angular kinematics, during squats. Eight males aged 22.1 +/- 0.8 years performed maximal concentric squats using loads ranging from 7 to 70% of one-repetition maximum on a force plate while linear barbell velocity and the angular kinematics of the hip, knee and ankle were recorded. Maximum, average and angle-specific values were recorded. The ground reaction force ranged from 1.67 +/- 0.20 to 3.21 +/- 0.29 times body weight and increased significantly as external load increased (P < 0.05). Bar linear velocity ranged from 0.54 +/- 0.11 to 2.50 +/- 0.50 m x s(-1) and decreased significantly with increasing external load (P < 0.05). Hip, knee and ankle angles at maximum ground reaction force were affected by external load (P < 0.05). The force-barbell velocity curves were fitted using linear models with coefficients (r2) ranging from 0.59 to 0.96. The results suggest that maximal force exertion during squat exercises is not achieved at the same position of the lower body as external load is increased. In contrast, joint velocity coordination does not change as load is increased. The force-velocity relationship was linear and independent from the set of data used for its determination.

  17. Load estimator (LOADEST): a FORTRAN program for estimating constituent loads in streams and rivers

    USGS Publications Warehouse

    Runkel, Robert L.; Crawford, Charles G.; Cohn, Timothy A.

    2004-01-01

    LOAD ESTimator (LOADEST) is a FORTRAN program for estimating constituent loads in streams and rivers. Given a time series of streamflow, additional data variables, and constituent concentration, LOADEST assists the user in developing a regression model for the estimation of constituent load (calibration). Explanatory variables within the regression model include various functions of streamflow, decimal time, and additional user-specified data variables. The formulated regression model then is used to estimate loads over a user-specified time interval (estimation). Mean load estimates, standard errors, and 95 percent confidence intervals are developed on a monthly and(or) seasonal basis. The calibration and estimation procedures within LOADEST are based on three statistical estimation methods. The first two methods, Adjusted Maximum Likelihood Estimation (AMLE) and Maximum Likelihood Estimation (MLE), are appropriate when the calibration model errors (residuals) are normally distributed. Of the two, AMLE is the method of choice when the calibration data set (time series of streamflow, additional data variables, and concentration) contains censored data. The third method, Least Absolute Deviation (LAD), is an alternative to maximum likelihood estimation when the residuals are not normally distributed. LOADEST output includes diagnostic tests and warnings to assist the user in determining the appropriate estimation method and in interpreting the estimated loads. This report describes the development and application of LOADEST. Sections of the report describe estimation theory, input/output specifications, sample applications, and installation instructions.

  18. Response in the water quality of the Salton Sea, California, to changes in phosphorus loading: An empirical modeling approach

    USGS Publications Warehouse

    Robertson, Dale M.; Schladow, S.G.

    2008-01-01

    Salton Sea, California, like many other lakes, has become eutrophic because of excessive nutrient loading, primarily phosphorus (P). A Total Maximum Daily Load (TMDL) is being prepared for P to reduce the input of P to the Sea. In order to better understand how P-load reductions should affect the average annual water quality of this terminal saline lake, three different eutrophication programs (BATHTUB, WiLMS, and the Seepage Lake Model) were applied. After verifying that specific empirical models within these programs were applicable to this saline lake, each model was calibrated using water-quality and nutrient-loading data for 1999 and then used to simulate the effects of specific P-load reductions. Model simulations indicate that a 50% decrease in external P loading would decrease near-surface total phosphorus concentrations (TP) by 25-50%. Application of other empirical models demonstrated that this decrease in loading should decrease near-surface chlorophyll a concentrations (Chl a) by 17-63% and increase Secchi depths (SD) by 38-97%. The wide range in estimated responses in Chl a and SD were primarily caused by uncertainty in how non-algal turbidity would respond to P-load reductions. If only the models most applicable to the Salton Sea are considered, a 70-90% P-load reduction is required for the Sea to be classified as moderately eutrophic (trophic state index of 55). These models simulate steady-state conditions in the Sea; therefore, it is difficult to ascertain how long it would take for the simulated changes to occur after load reductions. ?? 2008 Springer Science+Business Media B.V.

  19. Maximum stress estimation model for multi-span waler beams with deflections at the supports using average strains.

    PubMed

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-03-30

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads.

  20. [Influence of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown].

    PubMed

    Guo, Jing; Wang, Xiao-Yu; Li, Xue-Sheng; Sun, Hai-Yang; Liu, Lin; Li, Hong-Bo

    2016-02-01

    To evaluate the effect of different designs of marginal preparation on stress distribution in the mandibular premolar restored with endocrown using three-dimensional finite element method. Four models with different designs of marginal preparation, including the flat margin, 90° shoulder, 135° shoulder and chamfer shoulder, were established to imitate mandibular first premolar restored with endocrown. A load of 100 N was applied to the intersection of the long axis and the occlusal surface, either parallel or with an angle of 45° to the long axis of the tooth. The maximum values of Von Mises stress and the stress distribution around the cervical region of the abutment and the endocrown with different designs of marginal preparation were analyzed. The load parallel to the long axis of the tooth caused obvious stress concentration in the lingual portions of both the cervical region of the tooth tissue and the restoration. The stress distribution characteristics on the cervical region of the models with a flat margin and a 90° shoulder were more uniform than those in the models with a 135° shoulder and chamfer shoulder. Loading at 45° to the long axis caused stress concentration mainly on the buccal portion of the cervical region, and the model with a flat margin showed the most favorable stress distribution patterns with a greater maximum Von Mises stress under this circumstance than that with a parallel loading. Irrespective of the loading direction, the stress value was the lowest in the flat margin model, where the stress value in the cervical region of the endocrown was greater than that in the counterpart of the tooth tissue. The stress level on the enamel was higher than that on the dentin nearby in the flat margin model. From the stress distribution point of view, endocrowns with flat margin followed by a 90° shoulder are recommended.

  1. Altitude-Wind-Tunnel Investigation of Performance of Several Propellers on YP-47M Airplane at High Blade Loadings. 6; Hamilton Standard 6507A-2 Four- and Three-Blade Propellers

    NASA Technical Reports Server (NTRS)

    Saari, Martin J.; Sorin, Solomon M.

    1946-01-01

    An altitude-wind-tunnel investigation has been made to determine the performance of Hamilton Standard 6507A-2 four-blade and three-blade propellers on a YP-47M airplane at high blade loadings and high engine powers. Characteristics of the four-blase propeller were obtained for a range of power coefficients from 0.10 to 1.00 at free-stream Mach numbers of 0.20, 0.30, 0.40. Characteristics of the three-blade propeller were obtained for a range of power coefficients from 0.30 to 1.00 at a free-stream Mach number of 0.40. Results of the force measurements indicate primarily the trend of propeller efficiency for changes in power coefficient or advance-diameter ratio because no corrections for the effects of tunnel-wall constriction on the installation were applied. Slipstream surveys are presented to illustrate blade thrust load distribution for certain operating conditions. Within the range of advance-diameter ratios investigated at each free-stream Mach number, the efficiency of the four-blade propeller decreased as the power coefficient was increased from 0.10 to 1.00. For the three-blade propeller, nearly constant maximum efficiencies were obtained for power coefficients from 0.32 to 0.63 at advance-diameter ratios between 1.90 and 3.00. In general, for conditions below the stall and critical tip Mach number, the maximum thrust load shifted from the inboard sections toward the tip sections as the power coefficient was increased or as the advance-diameter ratio was decreased. For conditions beyond the stall or critical tip Mach number, losses in thrust occurred on the outboard blade sections owing to flow break-down; the thrust load increased slightly on the inboard sections.

  2. The transfer function method for gear system dynamics applied to conventional and minimum excitation gearing designs

    NASA Technical Reports Server (NTRS)

    Mark, W. D.

    1982-01-01

    A transfer function method for predicting the dynamic responses of gear systems with more than one gear mesh is developed and applied to the NASA Lewis four-square gear fatigue test apparatus. Methods for computing bearing-support force spectra and temporal histories of the total force transmitted by a gear mesh, the force transmitted by a single pair of teeth, and the maximum root stress in a single tooth are developed. Dynamic effects arising from other gear meshes in the system are included. A profile modification design method to minimize the vibration excitation arising from a pair of meshing gears is reviewed and extended. Families of tooth loading functions required for such designs are developed and examined for potential excitation of individual tooth vibrations. The profile modification design method is applied to a pair of test gears.

  3. Dynamic Modeling, Model-Based Control, and Optimization of Solid Oxide Fuel Cells

    NASA Astrophysics Data System (ADS)

    Spivey, Benjamin James

    2011-07-01

    Solid oxide fuel cells are a promising option for distributed stationary power generation that offers efficiencies ranging from 50% in stand-alone applications to greater than 80% in cogeneration. To advance SOFC technology for widespread market penetration, the SOFC should demonstrate improved cell lifetime and load-following capability. This work seeks to improve lifetime through dynamic analysis of critical lifetime variables and advanced control algorithms that permit load-following while remaining in a safe operating zone based on stress analysis. Control algorithms typically have addressed SOFC lifetime operability objectives using unconstrained, single-input-single-output control algorithms that minimize thermal transients. Existing SOFC controls research has not considered maximum radial thermal gradients or limits on absolute temperatures in the SOFC. In particular, as stress analysis demonstrates, the minimum cell temperature is the primary thermal stress driver in tubular SOFCs. This dissertation presents a dynamic, quasi-two-dimensional model for a high-temperature tubular SOFC combined with ejector and prereformer models. The model captures dynamics of critical thermal stress drivers and is used as the physical plant for closed-loop control simulations. A constrained, MIMO model predictive control algorithm is developed and applied to control the SOFC. Closed-loop control simulation results demonstrate effective load-following, constraint satisfaction for critical lifetime variables, and disturbance rejection. Nonlinear programming is applied to find the optimal SOFC size and steady-state operating conditions to minimize total system costs.

  4. Back muscle strength, lifting, and stooped working postures.

    PubMed

    Poulsen, E; Jørgensen, K

    1971-09-01

    When lifting loads and working in a forward stooped position, the muscles of the back rather than the ligaments and bony structures of the spine should overcome the gravitational forces. Formulae, based on measurements of back muscle strength, for prediction of maximal loads to be lifted, and for the ability to sustain work in a stooped position, have been worked out and tested in practical situations. From tests with 50 male and female subjects the simplest prediction formulae for maximum loads were: max. load = 1.10 x isometric back muscle strength for men; and max. load = 0.95 x isometric back muscle strength - 8 kg for women. Some standard values for maximum lifts and permissible single and repeated lifts have been calculated for men and women separately and are given in Table 1. From tests with 65 rehabilitees it was found that the maximum isometric strength of the back muscles measured at shoulder height should exceed 2/3 of the body weight, if fatigue and/or pain in the back muscles is to be avoided during work in a standing stooped position.

  5. Prediction of wax buildup in 24 inch cold, deep sea oil loading line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asperger, R.G.; Sattler, R.E.; Tolonen, W.J.

    1981-10-01

    When designing pipelines for cold environments, it is important to know how to predict potential problems due to wax deposition on the pipeline's inner surface. The goal of this work was to determine the rate of wax buildup and the maximum, equlibrium wax thickness for a North Sea field loading line. The experimental techniques and results used to evaluate the waxing potential of the crude oil (B) are described. Also, the theoretic model which was used for predicting the maximum wax deposit thickness in the crude oil (B) loading pipeline at controlled temperatures of 40 F (4.4 C) and 100more » F (38 C), is illustrated. Included is a recommendation of a procedure for using hot oil at the end of a tanker loading period in order to dewax the crude oil (B) line. This technique would give maximum heating of the pipeline and should be followed by shutting the hot oil into the pipeline at the end of the loading cycle which will provide a hot oil soaking to help soften existing wax. 14 references.« less

  6. Investigation of maximum local specific absorption rate in 7 T magnetic resonance with respect to load size by use of electromagnetic simulations.

    PubMed

    Tiberi, Gianluigi; Fontana, Nunzia; Costagli, Mauro; Stara, Riccardo; Biagi, Laura; Symms, Mark Roger; Monorchio, Agostino; Retico, Alessandra; Cosottini, Mirco; Tosetti, Michela

    2015-07-01

    Local specific absorption rate (SAR) evaluation in ultra high field (UHF) magnetic resonance (MR) systems is a major concern. In fact, at UHF, radiofrequency (RF) field inhomogeneity generates hot-spots that could cause localized tissue heating. Unfortunately, local SAR measurements are not available in present MR systems; thus, electromagnetic simulations must be performed for RF fields and SAR analysis. In this study, we used three-dimensional full-wave numerical electromagnetic simulations to investigate the dependence of local SAR at 7.0 T with respect to subject size in two different scenarios: surface coil loaded by adult and child calves and quadrature volume coil loaded by adult and child heads. In the surface coil scenario, maximum local SAR decreased with decreasing load size, provided that the RF magnetic fields for the different load sizes were scaled to achieve the same slice average value. On the contrary, in the volume coil scenario, maximum local SAR was up to 15% higher in children than in adults. © 2015 Wiley Periodicals, Inc.

  7. Patellar Tendon Repair Augmentation With a Knotless Suture Anchor Internal Brace: A Biomechanical Cadaveric Study.

    PubMed

    Rothfeld, Alex; Pawlak, Amanda; Liebler, Stephenie A H; Morris, Michael; Paci, James M

    2018-04-01

    Patellar tendon repair with braided polyethylene suture alone is subject to knot slippage and failure. Several techniques to augment the primary repair have been described. Purpose/Hypothesis: The purpose was to evaluate a novel patellar tendon repair technique augmented with a knotless suture anchor internal brace with suture tape (SAIB). The hypothesis was that this technique would be biomechanically superior to a nonaugmented repair and equivalent to a standard augmentation with an 18-gauge steel wire. Controlled laboratory study. Midsubstance patellar tendon tears were created in 32 human cadaveric knees. Two comparison groups were created. Group 1 compared #2 supersuture repair without augmentation to #2 supersuture repair with SAIB augmentation. Group 2 compared #2 supersuture repair with an 18-gauge stainless steel cerclage wire augmentation to #2 supersuture repair with SAIB augmentation. The specimens were potted and biomechanically loaded on a materials testing machine. Yield load, maximum load, mode of failure, plastic displacement, elastic displacement, and total displacement were calculated for each sample. Standard statistical analysis was performed. There was a statistically significant increase in the mean ± SD yield load and maximum load in the SAIB augmentation group compared with supersuture alone (mean yield load: 646 ± 202 N vs 229 ± 60 N; mean maximum load: 868 ± 162 N vs 365 ± 54 N; P < .001). Group 2 showed no statistically significant differences between the augmented repairs (mean yield load: 495 ± 213 N vs 566 ± 172 N; P = .476; mean maximum load: 737 ± 210 N vs 697 ± 130 N; P = .721). Patellar tendon repair augmented with SAIB is biomechanically superior to repair without augmentation and is equivalent to repair with augmentation with an 18-gauge stainless steel cerclage wire. This novel patellar tendon repair augmentation is equivalent to standard 18-gauge wire augmentation at time zero. It does not require a second surgery for removal, and it is biomechanically superior to primary repair alone.

  8. An assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue, Ireland

    NASA Astrophysics Data System (ADS)

    Harrington, Seán T.; Harrington, Joseph R.

    2013-03-01

    This paper presents an assessment of the suspended sediment rating curve approach for load estimation on the Rivers Bandon and Owenabue in Ireland. The rivers, located in the South of Ireland, are underlain by sandstone, limestones and mudstones, and the catchments are primarily agricultural. A comprehensive database of suspended sediment data is not available for rivers in Ireland. For such situations, it is common to estimate suspended sediment concentrations from the flow rate using the suspended sediment rating curve approach. These rating curves are most commonly constructed by applying linear regression to the logarithms of flow and suspended sediment concentration or by applying a power curve to normal data. Both methods are assessed in this paper for the Rivers Bandon and Owenabue. Turbidity-based suspended sediment loads are presented for each river based on continuous (15 min) flow data and the use of turbidity as a surrogate for suspended sediment concentration is investigated. A database of paired flow rate and suspended sediment concentration values, collected between the years 2004 and 2011, is used to generate rating curves for each river. From these, suspended sediment load estimates using the rating curve approach are estimated and compared to the turbidity based loads for each river. Loads are also estimated using stage and seasonally separated rating curves and daily flow data, for comparison purposes. The most accurate load estimate on the River Bandon is found using a stage separated power curve, while the most accurate load estimate on the River Owenabue is found using a general power curve. Maximum full monthly errors of - 76% to + 63% are found on the River Bandon with errors of - 65% to + 359% found on the River Owenabue. The average monthly error on the River Bandon is - 12% with an average error of + 87% on the River Owenabue. The use of daily flow data in the load estimation process does not result in a significant loss of accuracy on either river. Historic load estimates (with a 95% confidence interval) were hindcast from the flow record and average annual loads of 7253 ± 673 tonnes on the River Bandon and 1935 ± 325 tonnes on the River Owenabue were estimated to be passing the gauging stations.

  9. Harmonize input selection for sediment transport prediction

    NASA Astrophysics Data System (ADS)

    Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed

    2017-09-01

    In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.

  10. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  11. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  12. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  13. 46 CFR 151.45-6 - Maximum amount of cargo.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... insulated, or 115 °F if uninsulated. If specific filling densities are designated in Subpart 151.50 of this...=Maximum volume to which tank may be loaded. V =Volume of tank. d r=Density of cargo at the temperature required for a cargo vapor pressure equal to the relief valve setting. d L=Density of cargo at the loading...

  14. 20 kA PFN capacitor bank with solid-state switching. [pulse forming network for plasma studies

    NASA Technical Reports Server (NTRS)

    Posta, S. J.; Michels, C. J.

    1973-01-01

    A compact high-current pulse-forming network capacitor bank using paralleled silicon controlled rectifiers as switches is described. The maximum charging voltage of the bank is 1kV and maximum load current is 20 kA. The necessary switch equalization criteria and performance with dummy load and an arc plasma generator are described.

  15. A Procedure for Setting Environmentally Safe Total Maximum Daily Loads (TMDLs) for Selenium

    Treesearch

    A. Dennis Lemly

    2002-01-01

    This article presents a seven-step procedure for developing environmentally safe total maximum daily loads (TMDLs) for selenium. The need for this information stems from recent actions taken by the U.S. Environmental Protection Agency (EPA) that may require TMDLs for selenium and other contaminants that are impairing water bodies. However, there is no technical...

  16. Enhancement of power output by a new stress-applied mode on circular piezoelectric energy harvester

    NASA Astrophysics Data System (ADS)

    Shu, Fangming; Yang, Tongqing; Liu, Yaoze

    2018-04-01

    A new stress-applied mode is proposed on piezoelectric circular diaphragm energy harvester. Differing from the usual mode used in previous researches, the mass stick at the center of the diaphragm (PZT-51) is designed into an annular hollow shape. In this case, stress of the mass is applied along the edge of the copper sheet. A screw bonded with the undersurface of the diaphragm transfers force from the vibrator to the diaphragm. This device has a cylindrical shape and its volume is ˜7.9 cm3. With this new stress-applied mode, the piezoelectric energy harvester (with an optimal load of 18 kΩ, a mass of 30 g) could generate a maximum power output of ˜20.8 mW under 9.8 m.s-2 at its resonant frequency of ˜237 Hz. Meanwhile, the greater the hardness ratio between the ceramic and the copper sheet, the greater the advantages of the new structure.

  17. Fracture load of complete-arch implant-supported prostheses reinforced with nylon-silica mesh: An in vitro study.

    PubMed

    Gonçalves, Fernanda de Cássia Papaiz; Amaral, Marina; Borges, Alexandre Luiz Souto; Gonçalves, Luiz Fernando Martins; Paes-Junior, Tarcisio José de Arruda

    2018-04-01

    Complete-arch implant-supported prostheses without a framework have a high risk of failure: a straightforward and inexpensive reinforcement material, such as nylon mesh, could improve their longevity. The purpose of this in vitro study was to evaluate a nylon-silica mesh compound on the fracture strength of acrylic resin and the fracture load of complete-arch implant-supported prostheses. Twenty-four complete mandibular arch implant-supported prostheses were divided into 2 groups according to cantilever length (molar and premolar) and subdivided into another 2 subgroups according to the presence or absence of reinforcing mesh. The specimens were submitted to a maximum load-to-fracture test in a universal testing machine, with a 100-N load cell, a 2 mm/min crosshead speed, and a spherical metal tip diameter of 4 mm at different points (molar and premolar). These were submitted to 1-way analysis of variance for repeated measurement and the post hoc Tukey multiple comparison test (α=.05). The mean maximum load ±standard deviation for the molar group was 393.4 ±95.0 N with reinforcement and 305.4 ±76.3 N without reinforcement (P=.02); and for the premolar group was 1083.3 ±283.7 N with reinforcement and 605.3 ±90.5 N without reinforcement (P=.001). Reinforcement with nylon mesh increased the mean maximum load of implant-supported complete-arch prostheses at both cantilever lengths. The cantilever to the premolar (5 mm) presented the highest maximum load values to fracture. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  18. Biomechanical evaluation of various suture configurations in side-to-side tenorrhaphy.

    PubMed

    Wagner, Emilio; Ortiz, Cristian; Wagner, Pablo; Guzman, Rodrigo; Ahumada, Ximena; Maffulli, Nicola

    2014-02-05

    Side-to-side tenorrhaphy is increasingly used, but its mechanical performance has not been studied. Two porcine flexor digitorum tendon segments of equal length (8 cm) and thickness (1 cm) were placed side by side. Eight tenorrhaphies (involving sixteen tendons) were performed with each of four suture techniques (running locked, simple eight, vertical mattress, and pulley suture). The resulting constructs underwent cyclic loading on a tensile testing machine, followed by monotonically increasing tensile load if failure during cyclic loading did not occur. Clamps secured the tendons on each side of the repair, and specimens were mounted vertically. Cyclic loading varied between 15 N and 35 N, with a distension rate of 1 mm/sec. Cyclic loading strength was determined by applying a force of 70 N. The cause of failure and tendon distension during loading were recorded. All failures occurred in the monotonic loading phase and resulted from tendon stripping. No suture or knot failure was observed. The mean loads resisted by the configurations ranged from 138 to 398 N. The mean load to failure, maximum load resisted prior to 1 cm of distension, and load resisted at 1 cm of distension were significantly lower for the vertical mattress suture group than for any of the other three groups (p < 0.031). All four groups sustained loads well above the physiologic loads expected to occur in tendons in the foot and ankle (e.g., in tendon transfer for tibialis posterior tendon insufficiency). None of the four side-to-side configurations distended appreciably during the cyclic loading phase. The vertical mattress suture configuration appeared to be weaker than the other configurations. For surgeons who advocate immediate loading or motion of a side-to-side tendon repair, a pulley, running locked, or simple eight suture technique appears to provide a larger safety margin compared with a vertical mattress suture technique.

  19. A root-mean-square approach for predicting fatigue crack growth under random loading

    NASA Technical Reports Server (NTRS)

    Hudson, C. M.

    1981-01-01

    A method for predicting fatigue crack growth under random loading which employs the concept of Barsom (1976) is presented. In accordance with this method, the loading history for each specimen is analyzed to determine the root-mean-square maximum and minimum stresses, and the predictions are made by assuming the tests have been conducted under constant-amplitude loading at the root-mean-square maximum and minimum levels. The procedure requires a simple computer program and a desk-top computer. For the eleven predictions made, the ratios of the predicted lives to the test lives ranged from 2.13 to 0.82, which is a good result, considering that the normal scatter in the fatigue-crack-growth rates may range from a factor of two to four under identical loading conditions.

  20. Investigation of Maximum Blade Loading Capability of Lift-Offset Rotors

    NASA Technical Reports Server (NTRS)

    Yeo, Hyeonsoo; Johnson, Wayne

    2013-01-01

    Maximum blade loading capability of a coaxial, lift-offset rotor is investigated using a rotorcraft configuration designed in the context of short-haul, medium-size civil and military missions. The aircraft was sized for a 6600-lb payload and a range of 300 nm. The rotor planform and twist were optimized for hover and cruise performance. For the present rotor performance calculations, the collective pitch angle is progressively increased up to and through stall with the shaft angle set to zero. The effects of lift offset on rotor lift, power, controls, and blade airloads and structural loads are examined. The maximum lift capability of the coaxial rotor increases as lift offset increases and extends well beyond the McHugh lift boundary as the lift potential of the advancing blades are fully realized. A parametric study is conducted to examine the differences between the present coaxial rotor and the McHugh rotor in terms of maximum lift capabilities and to identify important design parameters that define the maximum lift capability of the rotor. The effects of lift offset on rotor blade airloads and structural loads are also investigated. Flap bending moment increases substantially as lift offset increases to carry the hub roll moment even at low collective values. The magnitude of flap bending moment is dictated by the lift-offset value (hub roll moment) but is less sensitive to collective and speed.

  1. The influence of freezing on the tensile strength of tendon grafts : a biomechanical study.

    PubMed

    Arnout, Nele; Myncke, Jan; Vanlauwe, Johan; Labey, Luc; Lismont, Daniel; Bellemans, Johan

    2013-08-01

    We investigated the influence of freezing on the tensile strength of fresh frozen tendon grafts. The biomechanical characteristics of tendons that are less commonly used in knee surgery (tibialis anterior, tibialis posterior, peroneus longus and medial and lateral half of Achilles tendons) were compared to those of a semitendinosus and gracilis graft harvested from the same 10 multi-organ donors. All right side tendons constituted the study group and were frozen at -80 degrees C and thawed at room temperature 5 times. All left side tendons were frozen at -80 degrees C and thawed at room temperature once. There were 59 tendons in the control group and 56 in the study group. The looped grafts were clamped at one side using a custom-made freeze clamp and loaded until failure on an Instron 4505 testing machine. The average ultimate failure load was not significantly different between the control and the study group (p > 0.05). The failure load of the medial tendon Achilles was the lowest in both study and control group (p < 0.001). There was no significant difference in maximum stress, maximum displacement, maximum strain and stiffness between the control and study group (p > 0.05). From our study, we conclude that freezing tendons at -80 degrees C and thawing several times does not influence the maximum load, maximum stress, maximum displacement, maximum strain and stiffness. The medial half of the Achilles tendon is clearly the weakest tendon (p < 0.001). These findings show that tendon grafts can be frozen at -80 degrees C and thawed at room temperature several times without altering their biomechanical properties.

  2. Performance simulation of a plasma magnetohydrodynamic power generator

    NASA Astrophysics Data System (ADS)

    Huang, Hulin; Li, Linyong; Zhu, Guiping

    2018-05-01

    The performance of magnetohydrodynamic (MHD) power generator is affected by many issues, among which the load coefficient k is of great importance. This paper reveals the relationship between the k and the performance of MHD generator by numerical simulation on Faraday-type MHD power generator using He/Xe as working plasma. The results demonstrate that the power generation efficiency increases with an increment of the load factor. However, the enthalpy extraction firstly increases then decreases with the load factor increasing. The enthalpy extraction rate reaches the maximum when the load coefficient k equals to 0.625, which infers the best performance of the power generator channel with the maximum electricity production.

  3. Multi-objective optimization of an arch dam shape under static loads using an evolutionary game method

    NASA Astrophysics Data System (ADS)

    Meng, Rui; Cheong, Kang Hao; Bao, Wei; Wong, Kelvin Kian Loong; Wang, Lu; Xie, Neng-gang

    2018-06-01

    This article attempts to evaluate the safety and economic performance of an arch dam under the action of static loads. The geometric description of a crown cantilever section and the horizontal arch ring is presented. A three-objective optimization model of arch dam shape is established based on the arch dam volume, maximum principal tensile stress and total strain energy. The evolutionary game method is then applied to obtain the optimal solution. In the evolutionary game technique, a novel and more efficient exploration method of the game players' strategy space, named the 'sorting partition method under the threshold limit', is presented, with the game profit functions constructed according to both competitive and cooperative behaviour. By way of example, three optimization goals have all shown improvements over the initial solutions. In particular, the evolutionary game method has potentially faster convergence. This demonstrates the preliminary proof of principle of the evolutionary game method.

  4. Reliability Testing of NASA Piezocomposite Actuators

    NASA Technical Reports Server (NTRS)

    Wilkie, W.; High, J.; Bockman, J.

    2002-01-01

    NASA Langley Research Center has developed a low-cost piezocomposite actuator which has application for controlling vibrations in large inflatable smart space structures, space telescopes, and high performance aircraft. Tests show the NASA piezocomposite device is capable of producing large, directional, in-plane strains on the order of 2000 parts-per-million peak-to-peak, with no reduction in free-strain performance to 100 million electrical cycles. This paper describes methods, measurements, and preliminary results from our reliability evaluation of the device under externally applied mechanical loads and at various operational temperatures. Tests performed to date show no net reductions in actuation amplitude while the device was moderately loaded through 10 million electrical cycles. Tests were performed at both room temperature and at the maximum operational temperature of the epoxy resin system used in manufacture of the device. Initial indications are that actuator reliability is excellent, with no actuator failures or large net reduction in actuator performance.

  5. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals.

    PubMed

    Ren, Bo; Or, Siu Wing; Wang, Feifei; Zhao, Xiangyong; Luo, Haosu; Li, Xiaobing; Zhang, Qinhui; Di, Wenning; Zhang, Yaoyao

    2010-06-01

    In this paper we theoretically and experimentally present a nonresonant vibration energy harvesting device based on the shear mode of 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals. The electrical properties of the energy harvesting device were evaluated using an analytical method. Good consistency was obtained between the analytical and experimental results. Under a mass load of 200 g, a peak voltage of 11.3 V and maximum power of 0.70 mW were obtained at 500 Hz when connecting a matching load resistance of 91 komega. A high output could always be obtained within a very wide frequency range. The results demonstrate the potential of the device in energy harvesting applied to low-power portable electronics and wireless sensors.

  6. Hexapole-compensated magneto-optical trap on a mesoscopic atom chip

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joellenbeck, S.; Mahnke, J.; Randoll, R.

    2011-04-15

    Magneto-optical traps on atom chips are usually restricted to small atomic samples due to a limited capture volume caused primarily by distorted field configurations. Here we present a magneto-optical trap based on a millimeter-sized wire structure which generates a magnetic field with minimized distortions. Together with the loading from a high-flux two-dimensional magneto-optical trap, we achieve a loading rate of 8.4x10{sup 10} atoms/s and maximum number of 8.7x10{sup 9} captured atoms. The wire structure is placed outside of the vacuum to enable a further adaptation to new scientific objectives. Since all magnetic fields are applied locally without the need formore » external bias fields, the presented setup will facilitate parallel generation of Bose-Einstein condensates on a conveyor belt with a cycle rate above 1 Hz.« less

  7. Biomechanical Analysis of the Efficacy of Locking Plates during Cyclic Loading in Metacarpal Fractures

    PubMed Central

    Meffert, Rainer H.; Raschke, Michael J.; Blunk, Torsten; Ochman, Sabine

    2014-01-01

    Purpose. To analyse the biomechanical characteristics of locking plates under cyclic loading compared to a nonlocking plate in a diaphyseal metacarpal fracture. Methods. Oblique diaphyseal shaft fractures in porcine metacarpal bones were created in a biomechanical fracture model. An anatomical reduction and stabilization with a nonlocking and a comparable locking plate in mono- or bicortical screw fixation followed. Under cyclic loading, the displacement, and in subsequent load-to-failure tests, the maximum load and stiffness were measured. Results. For the monocortical screw fixation of the locking plate, a similar displacement, maximum load, and stiffness could be demonstrated compared to the bicortical screw fixation of the nonlocking plate. Conclusions. Locking plates in monocortical configuration may function as a useful alternative to the currently common treatment with bicortical fixations. Thereby, irritation of the flexor tendons would be avoided without compromising the stability, thus enabling the necessary early functional rehabilitation. PMID:24757429

  8. Comfort air temperature influence on heating and cooling loads of a residential building

    NASA Astrophysics Data System (ADS)

    Stanciu, C.; Șoriga, I.; Gheorghian, A. T.; Stanciu, D.

    2016-08-01

    The paper presents the thermal behavior and energy loads of a two-level residential building designed for a family of four, two adults and two students, for different inside comfort levels reflected by the interior air temperature. Results are intended to emphasize the different thermal behavior of building elements and their contribution to the building's external load. The most important contributors to the building thermal loss are determined. Daily heating and cooling loads are computed for 12 months simulation in Bucharest (44.25°N latitude) in clear sky conditions. The most important aspects regarding sizing of thermal energy systems are emphasized, such as the reference months for maximum cooling and heating loads and these loads’ values. Annual maximum loads are encountered in February and August, respectively, so these months should be taken as reference for sizing thermal building systems, in Bucharest, under clear sky conditions.

  9. A kinetic comparison of back-loading and head-loading in Xhosa women.

    PubMed

    Lloyd, R; Parr, B; Davies, S; Cooke, C

    2011-04-01

    The purpose of this study was to compare the kinetic responses associated with ground reaction force measurements to both head-loading and back-loading in a group of Xhosa women. Altogether, 16 women were divided into two groups based on their experience of head-loading. They walked over a force plate in three conditions: unloaded or carrying 20 kg in either a backpack or on their head. The most striking finding was that there was no difference in kinetic response to head-loading as a consequence of previous experience. Considering the differences between the load carriage methods, most changes were consistent with increasing load. Head-loading was, however, associated with a shorter contact time, smaller thrust maximum and greater vertical force minimum than back-loading. Both loading conditions differed from unloaded walking for a number of temporal variables associated with the ground contact phase, e.g. vertical impact peak was delayed whilst vertical thrust maximum occurred earlier. STATEMENT OF RELEVANCE: Consideration of the kinetics of head and back load carriage in African women is important from a health and safety perspective, providing an understanding of the mechanical adaptations associated with both forms of load carriage for a group of people for whom such load carriage is a daily necessity.

  10. Evaluating rain gardens as a method to reduce the impact of sewer overflows in sources of drinking water.

    PubMed

    Autixier, Laurène; Mailhot, Alain; Bolduc, Samuel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Prévost, Michèle; Dorner, Sarah

    2014-11-15

    The implications of climate change and changing precipitation patterns need to be investigated to evaluate mitigation measures for source water protection. Potential solutions need first to be evaluated under present climate conditions to determine their utility as climate change adaptation strategies. An urban drainage network receiving both stormwater and wastewater was studied to evaluate potential solutions to reduce the impact of combined sewer overflows (CSOs) in a drinking water source. A detailed hydraulic model was applied to the drainage basin to model the implementation of best management practices at a drainage basin scale. The model was calibrated and validated with field data of CSO flows for seven events from a survey conducted in 2009 and 2010. Rain gardens were evaluated for their reduction of volumes of water entering the drainage network and of CSOs. Scenarios with different levels of implementation were considered and evaluated. Of the total impervious area within the basin directly connected to the sewer system, a maximum of 21% could be alternately directed towards rain gardens. The runoff reductions for the entire catchment ranged from 12.7% to 19.4% depending on the event considered. The maximum discharged volume reduction ranged from 13% to 62% and the maximum peak flow rate reduction ranged from 7% to 56%. Of concern is that in-sewer sediment resuspension is an important process to consider with regard to the efficacy of best management practices aimed at reducing extreme loads and concentrations. Rain gardens were less effective for large events, which are of greater importance for drinking water sources. These practices could increase peak instantaneous loads as a result of greater in-sewer resuspension during large events. Multiple interventions would be required to achieve the objectives of reducing the number, total volumes and peak contaminant loads of overflows upstream of drinking water intakes. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Two-dimensional Cascade Investigation of the Maximum Exit Tangential Velocity Component and Other Flow Conditions at the Exit of Several Turbine Blade Designs at Supercritical Pressure Ratios

    NASA Technical Reports Server (NTRS)

    Hauser, Cavour H; Plohr, Henry W

    1951-01-01

    The nature of the flow at the exit of a row of turbine blades for the range of conditions represented by four different blade configurations was evaluated by the conservation-of-momentum principle using static-pressure surveys and by analysis of Schlieren photographs of the flow. It was found that for blades of the type investigated, the maximum exit tangential-velocity component is a function of the blade geometry only and can be accurately predicted by the method of characteristics. A maximum value of exit velocity coefficient is obtained at a pressure ratio immediately below that required for maximum blade loading followed by a sharp drop after maximum blade loading occurs.

  12. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression

    PubMed Central

    Baeza, F. Javier; Garcés, Pedro

    2017-01-01

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material’s strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure. PMID:29186797

  13. Preliminary studies on the planetary entry to Jupiter by aerocapture technique

    NASA Astrophysics Data System (ADS)

    Aso, Shigeru; Yasaka, Tetsuo; Hirayama, Hiroshi; Poetro, Ridanto Eko; Hatta, Shinji

    2006-10-01

    Preliminary studies on the planetary entry to Jupiter by aerocapture technique are studied in order to complete technological challenges to deliver scientific probe with low cost and smaller mass of the spacecraft to Jupiter. Jupiter aerocapture corridor determination based on maximum deceleration limit of 5g (lower corridor) and aerocapture capability (upper corridor) at Jupiter are carefully considered and calculated. The results show about 1700 m/s of saving velocity due to aerocapture could be possible in some cases for the spacecraft to be captured by Jovian gravitational field. However, the results also show that Jovian aerocapture is not available in some cases. Hence, careful selection is needed to realize Jovian aerocapture. Also the numerical simulation of aerodynamic heating to the spacecraft has been conducted. DSMC method is used for the simulation of flow fields around the spacecraft. The transient changes of drag due to Jovian atmosphere and total heat loads to the spacecraft are obtained. The results show that the estimated heat loads could be within allowable amount heat load when some ablation heat shield technique is applied.

  14. Preliminary studies on the planetary entry to Jupiter by aerocapture technique

    NASA Astrophysics Data System (ADS)

    Aso, Shigeru; Yasaka, Tetsuo; Hirayama, Hiroshi; Eko Poetro, Ridanto; Hatta, Shinji

    2003-11-01

    Preliminary studies on the planetary entry to Jupiter by aerocapture technique are studied in order to complete technological challenges to deliver scientific probe with low cost and smaller mass of the spacecraft to Jupiter. Jupiter aerocapture corridor determination based on maximum deceleration limit of 5g (lower corridor) and aerocapture capability (upper corridor) at Jupiter are carefully considered and calculated. The results show about 1700 m/s of saving velocity due to aerocapture could be possible in some cases for the spacecraft to be captured by Jovian gravitational field. However, the results also show that Jovian aerocapture is not available in some cases. Hence, careful selection is needed to realise Jovian aerocapture. Also the numerical simulation of aerodynamic heating to the spacecraft has been conducted. DSMC method is used for the simulation of flow fields around the spacecraft. The transient changes of drag due to Jovian atmosphere and total heat loads to the spacecraft are obtained. The results show the estimated heat loads could be within allowable amount heat load when some ablation heat shield technique is applied.

  15. Carbon Nanofiber Cement Sensors to Detect Strain and Damage of Concrete Specimens Under Compression.

    PubMed

    Galao, Oscar; Baeza, F Javier; Zornoza, Emilio; Garcés, Pedro

    2017-11-24

    Cement composites with nano-additions have been vastly studied for their functional applications, such as strain and damage sensing. The capacity of a carbon nanofiber (CNF) cement paste has already been tested. However, this study is focused on the use of CNF cement composites as sensors in regular concrete samples. Different measuring techniques and humidity conditions of CNF samples were tested to optimize the strain and damage sensing of this material. In the strain sensing tests (for compressive stresses up to 10 MPa), the response depends on the maximum stress applied. The material was more sensitive at higher loads. Furthermore, the actual load time history did not influence the electrical response, and similar curves were obtained for different test configurations. On the other hand, damage sensing tests proved the capability of CNF cement composites to measure the strain level of concrete samples, even for loads close to the material's strength. Some problems were detected in the strain transmission between sensor and concrete specimens, which will require specific calibration of each sensor one attached to the structure.

  16. Limiting Speed of the Bacterial Flagellar Motor

    NASA Astrophysics Data System (ADS)

    Nirody, Jasmine; Berry, Richard; Oster, George

    The bacterial flagellar motor (BFM) drives swimming in a wide variety of bacterial species, making it crucial for several fundamental biological processes including chemotaxis and community formation. Recent experiments have shown that the structure of this nanomachine is more dynamic than previously believed. Specifically, the number of active torque-generating units (stators) was shown to vary across applied loads. This finding invalidates the experimental evidence reporting that limiting (zero-torque) speed is independent of the number of active stators. Here, we put forward a model for the torque generation mechanism of this motor and propose that the maximum speed of the motor increases as additional torque-generators are recruited. This is contrary to the current widely-held belief that there is a universal upper limit to the speed of the BFM. Our result arises from the assumption that stators disengage from the motor for a significant portion of their mechanochemical cycles at low loads. We show that this assumption is consistent with current experimental evidence and consolidate our predictions with arguments that a processive motor must have a high duty ratio at high loads.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ronold, K.O.; Nielsen, N.J.R.; Tura, F.

    This paper demonstrates how a structural reliability method can be applied as a rational means to analyze free spans of submarine pipelines with respect to failure in ultimate loading, and to establish partial safety factors for design of such free spans against this failure mode. It is important to note that the described procedure shall be considered as an illustration of a structural reliability methodology, and that the results do not represent a set of final design recommendations. A scope of design cases, consisting of a number of available site-specific pipeline spans, is established and is assumed representative for themore » future occurrence of submarine pipeline spans. Probabilistic models for the wave and current loading and its transfer to stresses in the pipe wall of a pipeline span is established together with a stochastic representation of the material resistance. The event of failure in ultimate loading is considered as based on a limit state which is reached when the maximum stress over the design life of the pipeline exceeds the yield strength of the pipe material. The yielding limit state is considered an ultimate limit state (ULS).« less

  18. Effect of property gradients on enamel fracture in human molar teeth.

    PubMed

    Barani, Amir; Bush, Mark B; Lawn, Brian R

    2012-11-01

    A model for the fracture of tooth enamel with graded elastic modulus and toughness is constructed using an extended finite element modeling (XFEM) package. The property gradients are taken from literature data on human molars, with maximum in modulus at the outer enamel surface and in toughness at the inner surface. The tooth is modeled as a brittle shell (enamel) and a compliant interior (dentin), with occlusal loading from a hard, flat contact at the cusp. Longitudinal radial (R) and margin (M) cracks are allowed to extend piecewise along the enamel walls under the action of an incrementally increasing applied load. A simple stratagem is deployed in which fictitious temperature profiles generate the requisite property gradients. The resulting XFEM simulations demonstrate that the crack fronts become more segmented as the property gradients become more pronounced, with enhanced propagation at the outer surface and inhibited propagation at the inner. Whereas the growth history of the cracks is profoundly influenced by the gradients, the ultimate critical loads required to attain full fractures are relatively unaffected. Some implications concerning dentistry are considered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Distributed and cooperative task processing: Cournot oligopolies on a graph.

    PubMed

    Pavlic, Theodore P; Passino, Kevin M

    2014-06-01

    This paper introduces a novel framework for the design of distributed agents that must complete externally generated tasks but also can volunteer to process tasks encountered by other agents. To reduce the computational and communication burden of coordination between agents to perfectly balance load around the network, the agents adjust their volunteering propensity asynchronously within a fictitious trading economy. This economy provides incentives for nontrivial levels of volunteering for remote tasks, and thus load is shared. Moreover, the combined effects of diminishing marginal returns and network topology lead to competitive equilibria that have task reallocations that are qualitatively similar to what is expected in a load-balancing system with explicit coordination between nodes. In the paper, topological and algorithmic conditions are given that ensure the existence and uniqueness of a competitive equilibrium. Additionally, a decentralized distributed gradient-ascent algorithm is given that is guaranteed to converge to this equilibrium while not causing any node to over-volunteer beyond its maximum task-processing rate. The framework is applied to an autonomous-air-vehicle example, and connections are drawn to classic studies of the evolution of cooperation in nature.

  20. Formulation and Optimization of Multiparticulate Drug Delivery System Approach for High Drug Loading.

    PubMed

    Shah, Neha; Mehta, Tejal; Gohel, Mukesh

    2017-08-01

    The aim of the present work was to develop and optimize multiparticulate formulation viz. pellets of naproxen by employing QbD and risk assessment approach. Mixture design with extreme vertices was applied to the formulation with high loading of drug (about 90%) and extrusion-spheronization as a process for manufacturing pellets. Independent variables chosen were level of microcrystalline cellulose (MCC)-X 1 , polyvinylpyrrolidone K-90 (PVP K-90)-X 2 , croscarmellose sodium (CCS)-X 3 , and polacrilin potassium (PP)-X 4 . Dependent variables considered were disintegration time (DT)-Y 1 , sphericity-Y 2 , and percent drug release-Y 3 . The formulation was optimized based on the batches generated by MiniTab 17 software. The batch with maximum composite desirability (0.98) proved to be optimum. From the evaluation of design batches, it was observed that, even in low variation, the excipients affect the pelletization property of the blend and also the final drug release. In conclusion, pellets with high drug loading can be effectively manufactured and optimized systematically using QbD approach.

  1. Effect of Various Interface Thicknesses on the Behaviour of Infilled frame Subjected to Lateral Load

    NASA Astrophysics Data System (ADS)

    Senthil, K.; Muthukumar, S.; Rupali, S.; Satyanarayanan, K. S.

    2018-03-01

    Two dimensional numerical investigations were carried out to study the influence of interface thickness on the behaviour of reinforced concrete frames subjected to in-plane lateral loads using commercial finite element tool SAP 2000. The cement mortar, cork and foam was used as interface material and their effect was studied by varying thicknesses as 6, 8, 10, 14 and 20 mm. The effect of lateral loads on infill masonry wall was also studied by varying arbitrary loads as 10, 20, 40 and 60 kN. The resistance of the frame with cement mortar was found maximum with the interface thickness 10 mm therefore, it is concluded that the maximum influence of interface thickness of 10 mm was found effective. The resistance of integral infill frame with cork and foam interface was found maximum with the interface thickness 6 mm and it is concluded that 6 mm thick interface among the chosen thickness was found effective.

  2. Comparison of the angles and corresponding moments in the knee and hip during restricted and unrestricted squats.

    PubMed

    Lorenzetti, Silvio; Gülay, Turgut; Stoop, Mirjam; List, Renate; Gerber, Hans; Schellenberg, Florian; Stüssi, Edgar

    2012-10-01

    The aim of this study was to compare the angles and corresponding moments in the knee and hip during squats. Twenty subjects performed restricted and unrestricted squats with barbell loads that were 0, ¼, and ½ their body weight. The experimental setup consisted of a motion capture system and 2 force plates. The moments were calculated using inverse dynamics. During the unrestricted squats, the maximum moments in the knee were significantly higher, and those in the hip were significantly lower than during restricted squats. At the lowest position, the maximum knee flexion angles were approximately 86° for the restricted and approximately 106° for the unrestricted techniques, whereas the maximum hip flexion angle was between 95° and 100°. The higher moments in the hip during restricted squats suggest a higher load of the lower back. Athletes who aim to strengthen their quadriceps should consider unrestricted squats because of the larger knee load and smaller back load.

  3. Influence of Fiber Bragg Grating Spectrum Degradation on the Performance of Sensor Interrogation Algorithms

    PubMed Central

    Lamberti, Alfredo; Vanlanduit, Steve; De Pauw, Ben; Berghmans, Francis

    2014-01-01

    The working principle of fiber Bragg grating (FBG) sensors is mostly based on the tracking of the Bragg wavelength shift. To accomplish this task, different algorithms have been proposed, from conventional maximum and centroid detection algorithms to more recently-developed correlation-based techniques. Several studies regarding the performance of these algorithms have been conducted, but they did not take into account spectral distortions, which appear in many practical applications. This paper addresses this issue and analyzes the performance of four different wavelength tracking algorithms (maximum detection, centroid detection, cross-correlation and fast phase-correlation) when applied to distorted FBG spectra used for measuring dynamic loads. Both simulations and experiments are used for the analyses. The dynamic behavior of distorted FBG spectra is simulated using the transfer-matrix approach, and the amount of distortion of the spectra is quantified using dedicated distortion indices. The algorithms are compared in terms of achievable precision and accuracy. To corroborate the simulation results, experiments were conducted using three FBG sensors glued on a steel plate and subjected to a combination of transverse force and vibration loads. The analysis of the results showed that the fast phase-correlation algorithm guarantees the best combination of versatility, precision and accuracy. PMID:25521386

  4. 14 CFR 25.337 - Limit maneuvering load factors.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Limit maneuvering load factors. 25.337... Conditions § 25.337 Limit maneuvering load factors. (a) Except where limited by maximum (static) lift... maneuvering load factors prescribed in this section. Pitching velocities appropriate to the corresponding pull...

  5. Tensile and compressive behavior of Borsic/aluminum

    NASA Technical Reports Server (NTRS)

    Herakovich, C. T.; Davis, J. G., Jr.; Viswanathan, C. N.

    1977-01-01

    The results of an experimental investigation of the mechanical behavior of Borsic/aluminum are presented. Composite laminates were tested in tension and compression for monotonically increasing load and also for variable loading cycles in which the maximum load was increased in each successive cycle. It is shown that significant strain-hardening, and corresponding increase in yield stress, is exhibited by the metal matrix laminates. For matrix dominated laminates, the current yield stress is essentially identical to the previous maximum stress, and unloading is essentially linear with large permanent strains after unloading. For laminates with fiber dominated behavior, the yield stress increases with increase in the previous maximum stress, but the increase in yield stress does not keep pace with the previous maximum stress. These fiber dominated laminates exhibit smaller nonlinear strains, reversed nonlinear behavior during unloading, and smaller permanent strains after unloading. Compression results from sandwich beams and flat coupons are shown to differ considerably. Results from beam specimens tend to exhibit higher values for modulus, yield stress, and strength.

  6. Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma

    NASA Astrophysics Data System (ADS)

    Xiaoyu, DONG

    2018-03-01

    In this study, a novel approach to measure the absolute cytoplasmic Ca2+ concentration ([Ca2+]cyt) using the Ca2+ indicator fluo-3 AM was established. The parameters associated with the probe fluo-3 AM were optimized to accurately determine fluorescence intensity from the Ca2+-bound probe. Using three optimized parameters (final concentration of 6 mM probe, incubation time of 135 min, loading probe before plasma treatment), the maximum fluorescence intensity (F max = 527.8 a.u.) and the minimum fluorescence intensity (F min = 63.8 a.u.) were obtained in a saturated Ca2+ solution or a solution of lacking Ca2+. Correspondingly, the maximum [Ca2+]cyt induced by cold plasma was 1232.5 nM. Therefore, the Ca2+ indicator fluo-3 AM was successfully applied to measure the absolute [Ca2+]cyt in Saccharomyces cerevisiae stimulated by cold plasma at atmospheric air pressure.

  7. Effect of reduced graphene oxide on the energy harvesting performance of P(VDF-TrFE)-BaTiO3 nanocomposite devices

    NASA Astrophysics Data System (ADS)

    Yaqoob, Usman; Chung, Gwiy-Sang

    2017-09-01

    This study investigates the effect of reduced graphene oxide (rGO) on the energy harvesting performance of poly(vinylidenefluoride-trifluoroethylene)-barium titanate (P(VDF-TrFE)-BTO) nanocomposite devices. Several piezoelectric nanogenerators with different rGO contents were prepared, among them PBR5-NG (rGO = 0.5%) exhibited maximum output performance. PBR5-NG showed a maximum open circuit voltage of 8.5 Vpk-pk and short circuit current of 2 μApk-pk at an applied force of 2 N. Moreover, PBR5-NG displayed an output power of 4.5 μW at 2 MΩ load resistance. To confirm device stability, the fabricated device was subjected to several pressing-releasing cycles. The device had excellent stability, even after 1000 pressing-releasing cycles. Together, our results indicate that our fabricated PBR5-NG is a promising energy source for future flexible electronics.

  8. Numerical estimation of deformation energy of selected bulk oilseeds in compression loading

    NASA Astrophysics Data System (ADS)

    Demirel, C.; Kabutey, A.; Herak, D.; Gurdil, G. A. K.

    2017-09-01

    This paper aimed at the determination of the deformation energy of some bulk oilseeds or kernels namely oil palm, sunflower, rape and flax in linear pressing applying the trapezoidal rule which is characterized by the area under the force and deformation curve.The bulk samples were measured at the initial pressing height of 60 mm with the vessel diameter of 60 mm where they were compressed under the universal compression machine at a maximum force of 200 kN and speed of 5 mm/min.Based on the compression test, the optimal deformation energy for recovering the oil was observed at a force of 163 kN where there was no seed/kernel cake ejection in comparison to the initial maximum force used particularly for rape and flax bulk oilseeds.This information is needed for analyzing the energy efficiency of the non-linear compression process involving a mechanical screw press or expeller.

  9. Engineering of budesonide-loaded lipid-polymer hybrid nanoparticles using a quality-by-design approach.

    PubMed

    Leng, Donglei; Thanki, Kaushik; Fattal, Elias; Foged, Camilla; Yang, Mingshi

    2017-08-25

    Chronic obstructive pulmonary disease (COPD) is a complex disease, characterized by persistent airflow limitation and chronic inflammation. The purpose of this study was to design lipid-polymer hybrid nanoparticles (LPNs) loaded with the corticosteroid, budesonide, which could potentially be combined with small interfering RNA (siRNA) for COPD management. Here, we prepared LPNs based on the biodegradable polymer poly(dl-lactic-co-glycolic acid) (PLGA) and the cationic lipid dioleyltrimethylammonium propane (DOTAP) using a double emulsion solvent evaporation method. A quality-by-design (QbD) approach was adopted to define the optimal formulation parameters. The quality target product profile (QTPP) of the LPNs was identified based on risk assessment. Two critical formulation parameters (CFPs) were identified, including the theoretical budesonide loading and the theoretical DOTAP loading. The CFPs were linked to critical quality attributes (CQAs), which included the intensity-based hydrodynamic particle diameter (z-average), the polydispersity index (PDI), the zeta-potential, the budesonide encapsulation efficiency, the actual budesonide loading and the DOTAP encapsulation efficiency. A response surface methodology (RSM) was applied for the experimental design to evaluate the influence of the CFPs on the CQAs, and to identify the optimal operation space (OOS). All nanoparticle dispersions displayed monodisperse size distributions (PDI<0.2) with z-averages of approximately 150nm, suggesting that the size is not dependent on the investigated CFPs. In contrast, the zeta-potential was highly dependent on the theoretical DOTAP loading. Upon increased DOTAP loading, the zeta-potential reached a maximal point, after which it remained stable at the maximum value. This suggests that the LPN surface is covered by DOTAP, and that the DOTAP loading is saturable. The actual budesonide loading of the LPNs was mainly dependent on the initial amount of budesonide, and a clear positive effect was observed, which shows that the interaction between drug and PLGA increases when increasing the initial amount of budesonide. The OOS was modeled by applying the QTPP. The OOS had a budesonide encapsulation efficiency higher than 30%, a budesonide loading above 15μg budesonide/mg PLGA, a zeta-potential higher than 35mV and a DOTAP encapsulation efficiency above 50%. This study shows the importance of systematic formulation design for understanding the effect of formulation parameters on the characteristics of LPNs, eventually resulting in the identification of an OOS. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Analysis on the geometrical shape of T-honeycomb structure by finite element method (FEM)

    NASA Astrophysics Data System (ADS)

    Zain, Fitri; Rosli, Muhamad Farizuan; Effendi, M. S. M.; Abdullah, Mohamad Hariri

    2017-09-01

    Geometric in design is much related with our life. Each of the geometrical structure interacts with each other. The overall shape of an object contains other shape inside, and there shapes create a relationship between each other in space. Besides that, how geometry relates to the function of the object have to be considerate. In this project, the main purpose was to design the geometrical shape of modular furniture with the shrinking of Polyethylene Terephthalate (PET) jointing system that has good strength when applied load on it. But, the goal of this paper is focusing on the analysis of Static Cases by FEM of the hexagonal structure to obtain the strength when load apply on it. The review from the existing product has many information and very helpful to finish this paper. This project focuses on hexagonal shape that distributed to become a shelf inspired by honeycomb structure. It is very natural look and simple in shape and its modular structure more easily to separate and combine. The method discusses on chapter methodology are the method used to analysis the strength when the load applied to the structure. The software used to analysis the structure is Finite Element Method from CATIA V5R21 software. Bending test is done on the jointing part between the edges of the hexagonal shape by using Universal Tensile Machine (UTM). The data obtained have been calculate by bending test formulae and sketch the graph between flexural strains versus flexural stress. The material selection of the furniture is focused on wood. There are three different types of wood such as balsa, pine and oak, while the properties of jointing also be mentioned in this thesis. Hence, the design structural for honeycomb shape already have in the market but this design has main objective which has a good strength that can withstand maximum load and offers more potentials in the form of furniture.

  11. Vulnerability to dysfunction and muscle injury after unloading

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, L. L.; Tesch, P. A.; Hather, B. M.; Dudley, G. A.

    1996-01-01

    OBJECTIVE: To test whether unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury. DESIGN: Before-after trial. SETTING: General community. PATIENTS OR OTHER PARTICIPANTS: Two women and 5 men (73 +/- 3kg [mean +/- SE]) who were active college students but were not trained in lower body resistance exercise volunteered. INTERVENTION: Five weeks of unilateral lower limb suspension (ULLS), which has been shown to decrease strength and size of the unloaded, left, but not load-bearing, right quadriceps femoris muscle group (QF) by 20% and 14%, respectively; performance of 10 sets of ten eccentric actions with each QF immediately after the ULLS strength tests with a load equivalent to 65% of the post-ULLS eccentric 1-repetition maximum. MAIN OUTCOME MEASURE(S): Concentric and eccentric 1-repetition maximum for the left, unloaded and the right, load-bearing QF measured immediately after ULLS and 1,4,7,9, and 11 days later; cross-sectional area and spin-spin relaxation time (T2) of each QF as determined by magnetic resonance imaging and measured the last day of ULLS and 3 days later. RESULTS: The mean load used for eccentric exercise was 23 +/- 2 and 30 +/- 3kg for the left, unloaded and right, load-bearing QF, respectively. The concentric and eccentric 1-repetition maximum for the unloaded and already weakened left QF was further decreased by 18% (p = .000) and 27% (p = .000), respectively, 1 day after eccentric exercise. Strength did not return to post-ULLS levels until 7 days of recovery. The right, load-bearing QF showed a 4% decrease (p = .002) in the eccentric 1-repetition maximum 1 day after eccentric exercise. The left, unloaded QF showed an increase in T2 (p = .002) in 18% of its cross-sectional area 3 days after the eccentric exercise, thus indicating muscle injury. The right, load-bearing QF showed no elevation in T2 (p = .280). CONCLUSION: Unloading increases vulnerability to eccentric exercise-induced dysfunction and muscle injury, even at relatively light loads.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wei; Zhang, Xingyi, E-mail: zhangxingyi@lzu.edu.cn; Liu, Cong

    We construct a visible instrument to study the mechanical-electro behaviors of high temperature superconducting tape as a function of magnetic field, strain, and temperature. This apparatus is directly cooled by a commercial Gifford-McMahon cryocooler. The minimum temperature of sample can be 8.75 K. A proportion integration differentiation temperature control is used, which is capable of producing continuous variation of specimen temperature from 8.75 K to 300 K with an optional temperature sweep rate. We use an external loading device to stretch the superconducting tape quasi-statically with the maximum tension strain of 20%. A superconducting magnet manufactured by the NbTi strandmore » is applied to provide magnetic field up to 5 T with a homogeneous range of 110 mm. The maximum fluctuation of the magnetic field is less than 1%. We design a kind of superconducting lead composed of YBa2Cu3O7-x coated conductor and beryllium copper alloy (BeCu) to transfer DC to the superconducting sample with the maximum value of 600 A. Most notably, this apparatus allows in situ observation of the electromagnetic property of superconducting tape using the classical magnetic-optical imaging.« less

  13. Maximum Stress Estimation Model for Multi-Span Waler Beams with Deflections at the Supports Using Average Strains

    PubMed Central

    Park, Sung Woo; Oh, Byung Kwan; Park, Hyo Seon

    2015-01-01

    The safety of a multi-span waler beam subjected simultaneously to a distributed load and deflections at its supports can be secured by limiting the maximum stress of the beam to a specific value to prevent the beam from reaching a limit state for failure or collapse. Despite the fact that the vast majority of accidents on construction sites occur at waler beams in retaining wall systems, no safety monitoring model that can consider deflections at the supports of the beam is available. In this paper, a maximum stress estimation model for a waler beam based on average strains measured from vibrating wire strain gauges (VWSGs), the most frequently used sensors in construction field, is presented. The model is derived by defining the relationship between the maximum stress and the average strains measured from VWSGs. In addition to the maximum stress, support reactions, deflections at supports, and the magnitudes of distributed loads for the beam structure can be identified by the estimation model using the average strains. Using simulation tests on two multi-span beams, the performance of the model is evaluated by estimating maximum stress, deflections at supports, support reactions, and the magnitudes of distributed loads. PMID:25831087

  14. Convergence of an iterative procedure for large-scale static analysis of structural components

    NASA Technical Reports Server (NTRS)

    Austin, F.; Ojalvo, I. U.

    1976-01-01

    The paper proves convergence of an iterative procedure for calculating the deflections of built-up component structures which can be represented as consisting of a dominant, relatively stiff primary structure and a less stiff secondary structure, which may be composed of one or more substructures that are not connected to one another but are all connected to the primary structure. The iteration consists in estimating the deformation of the primary structure in the absence of the secondary structure on the assumption that all mechanical loads are applied directly to the primary structure. The j-th iterate primary structure deflections at the interface are imposed on the secondary structure, and the boundary loads required to produce these deflections are computed. The cycle is completed by applying the interface reaction to the primary structure and computing its updated deflections. It is shown that the mathematical condition for convergence of this procedure is that the maximum eigenvalue of the equation relating primary-structure deflection to imposed secondary-structure deflection be less than unity, which is shown to correspond with the physical requirement that the secondary structure be more flexible at the interface boundary.

  15. Comparison of point-source pollutant loadings to soil and groundwater for 72 chemical substances.

    PubMed

    Yu, Soonyoung; Hwang, Sang-Il; Yun, Seong-Taek; Chae, Gitak; Lee, Dongsu; Kim, Ki-Eun

    2017-11-01

    Fate and transport of 72 chemicals in soil and groundwater were assessed by using a multiphase compositional model (CompFlow Bio) because some of the chemicals are non-aqueous phase liquids or solids in the original form. One metric ton of chemicals were assumed to leak in a stylized facility. Scenarios of both surface spills and subsurface leaks were considered. Simulation results showed that the fate and transport of chemicals above the water table affected the fate and transport of chemicals below the water table, and vice versa. Surface spill scenarios caused much less concentrations than subsurface leak scenarios because leaching amounts into the subsurface environment were small (at most 6% of the 1 t spill for methylamine). Then, simulation results were applied to assess point-source pollutant loadings to soil and groundwater above and below the water table, respectively, by multiplying concentrations, impact areas, and durations. These three components correspond to the intensity of contamination, mobility, and persistency in the assessment of pollutant loading, respectively. Assessment results showed that the pollutant loadings in soil and groundwater were linearly related (r 2  = 0.64). The pollutant loadings were negatively related with zero-order and first-order decay rates in both soil (r = - 0.5 and - 0.6, respectively) and groundwater (- 1.0 and - 0.8, respectively). In addition, this study scientifically defended that the soil partitioning coefficient (K d ) significantly affected the pollutant loadings in soil (r = 0.6) and the maximum masses in groundwater (r = - 0.9). However, K d was not a representative factor for chemical transportability unlike the expectation in chemical ranking systems of soil and groundwater pollutants. The pollutant loadings estimated using a physics-based hydrogeological model provided a more rational ranking for exposure assessment, compared to the summation of persistency and transportability scores in the chemical ranking systems. In the surface spill scenario, the pollutant loadings were zeros for all chemicals, except methylamine to soil whose pollutant loading was smaller than that in the subsurface leak scenario by 4 orders of magnitude. The maximum mass and the average mass multiplied by duration in soil greatly depended on leaching fluxes (r = 1.0 and 0.9, respectively), while the effect of leaching fluxes diminished below the water table. The contribution of this work is that a physics-based numerical model was used to quantitatively compare the subsurface pollutant loading in a chemical accident for 72 chemical substances, which can scientifically defend a simpler and more qualitative assessment of pollutant loadings. Besides, this study assessed pollutant loadings to soil (unsaturated zone) and groundwater (saturated zone) all together and discussed their interactions.

  16. Biomechanical comparison of fixation methods in transverse patella fractures.

    PubMed

    Scilaris, T A; Grantham, J L; Prayson, M J; Marshall, M P; Hamilton, J J; Williams, J L

    1998-01-01

    To compare monofilament wire versus braided cable for stabilizing transverse patella fractures using the modified AO tension band technique. A randomized blocked (paired) study comparing two fixation methods. Statistical analysis was performed using a nested repeated measures analysis, followed by Bonferroni post hoc testing. Seven paired embalmed knees (mean age 71.8 years, SD 14.6 years) were dissected, and transverse fractures were simulated. The knees were reduced and randomly fixed by either two parallel 0.062-inch Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel monofilament wire tension loop or two Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel braided cable tension loop. Knees were tested by applying a cyclic load through the suprapatellar tendon between twenty and 300 newtons for thirty cycles. The maximum fracture displacement increased with each cycle of loading for both the braided cable and monofilament wire tension loop configurations (p = 0.0001). The average peak displacement at the thirtieth cycle was 2.25 millimeters for monofilament wire and 0.73 millimeters for the cable. When comparing both methods for all cycles, the braided cable allowed less fracture displacement than did the monofilament wire (p = 0.002), and the rate of increase per cycle of maximum fracture displacement was less for the cable than for the wire (p = 0.0001). In transverse, noncomminuted patella fractures, fixation with two Kirschner wires and a 1.0-millimeter braided cable tension loop was superior to the monofilament wire tension loop. Most importantly, the braided cable afforded more predictable results during cyclic loading.

  17. Finite element analysis of stress-breaking attachments on maxillary implant-retained overdentures.

    PubMed

    Tanino, Fuminori; Hayakawa, Iwao; Hirano, Shigezo; Minakuchi, Shunsuke

    2007-01-01

    The purpose of this study was to examine the effect of stress-breaking attachments at the connections between maxillary palateless overdentures and implants. Three-dimensional finite element models were used to reproduce an edentulous human maxilla with an implant-retained overdenture. Two-implant models (in the canine tooth positions on both sides) and four-implant models (in the canine and second premolar tooth positions on both sides) were examined. Stress-breaking material connecting the implants and denture was included around each abutment. Axial loads of 100 N were applied to the occlusal surface at the left first molar tooth positions. In each model, the influence of the stress-breaking attachments was compared by changing the elastic modulus from 1 to 3,000 MPa and the thickness of the stress-breaking material from 1 to 3 mm. Maximum stress at the implant-bone interface and stress at the cortical bone surface just under the loading point were calculated. In all models, maximum stress at the implant-bone interface with implants located in the canine tooth position was generated at the peri-implant bone on the loading side. As the elastic modulus of the stress-breaking materials increased, the stress increased at the implant-bone interface and decreased at the cortical bone surface. Moreover, stress at the implant-bone interface with 3-mm-thick stress-breaking material was smaller than that with 1-mm-thick material. Within the limitations of this experiment, stress generated at the implant-bone interface could be controlled by altering the elastic modulus and thickness of the stress-breaking materials.

  18. On the use of an Arduino-based controller to control the charging process of a wind turbine

    NASA Astrophysics Data System (ADS)

    Mahmuddin, Faisal; Yusran, Ahmad Muhtam; Klara, Syerly

    2017-02-01

    In order to avoid an excessive charging voltage which can damage power storage when converting wind energy using a turbine, it is necessary to control the charging voltage of the turbine generator. In the present study, a charging controller which uses an Arduino microcontroller, is designed. 3 (three) indicator lights are installed to indicate the battery charging process, power diversion to dummy load and battery power level. The performance of the designed controller is evaluated by simulating 3 cases. In this simulation, a battery with maximum voltage of 12.4 V is used. Case 1 is performed with input voltage equals the one set in Arduino which is 10 V. In this case, the battery is charged up to 10.8 V. In case 2, the input voltage is 13 V while the maximum voltage set in Arduino is also 13 V. In this case, the battery is charged up to maximum voltage of the battery. Moreover, the dummy load indicator is ON and charging indicator is OFF after the maximum charging voltage is reached because the electricity is flowed to the dummy load. In the final case, the input voltage is set to be 16 V while the maximum voltage set in Arduino is 13 V. In this case, the charging indicator is OFF and dummy load indicator is ON which means that the Arduino has successfully switched the power to be flowed to dummy load. From the 3 (three) cases, it can be concluded that the designed controller works perfectly to control the charging process of the wind turbine. Moreover, the charging time needed in each case can also be determined.

  19. Developement of watershed and reference loads for a TMDL in Charleston Harbor System, SC.

    Treesearch

    Silong Lu; Devenra Amatya; Jamie Miller

    2005-01-01

    It is essential to determine point and non-point source loads and their distribution for development of a dissolved oxygen (DO) Total Maximum Daily Load (TMDL). A series of models were developed to assess sources of oxygen-demand loadings in Charleston Harbor, South Carolina. These oxygen-demand loadings included nutrients and BOD. Stream flow and nutrient...

  20. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Side load on engine and auxiliary power...

  1. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Side load on engine and auxiliary power...

  2. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Side load on engine and auxiliary power...

  3. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Side load on engine and auxiliary power...

  4. 14 CFR 25.363 - Side load on engine and auxiliary power unit mounts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... § 25.363 Side load on engine and auxiliary power unit mounts. (a) Each engine and auxiliary power unit... the side load on the engine and auxiliary power unit mount, at least equal to the maximum load factor... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Side load on engine and auxiliary power...

  5. Back-Face Strain for Monitoring Stable Crack Extension in Precracked Flexure Specimens

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Calibrations relating back-face strain to crack length in precracked flexure specimens were developed for different strain gage sizes. The functions were verified via experimental compliance measurements of notched and precracked ceramic beams. Good agreement between the functions and experiments occurred, and fracture toughness was calculated via several operational methods: maximum test load and optically measured precrack length; load at 2 percent crack extension and optical precrack length; maximum load and back-face strain crack length. All the methods gave vary comparable results. The initiation toughness, K(sub Ii) , was also estimated from the initial compliance and load.The results demonstrate that stability of precracked ceramics specimens tested in four-point flexure is a common occurrence, and that methods such as remotely-monitored load-point displacement are only adequate for detecting stable extension of relatively deep cracks.

  6. On the road performance tests of electric test vehicle for correlation with road load simulator

    NASA Technical Reports Server (NTRS)

    Dustin, M. O.; Slavik, R. J.

    1982-01-01

    A dynamometer (road load simulator) is used to test and evaluate electric vehicle propulsion systems. To improve correlation between system tests on the road load simulator and on the road, similar performance tests are conducted using the same vehicle. The results of track tests on the electric propulsion system test vehicle are described. The tests include range at constant speeds and over SAE J227a driving cycles, maximum accelerations, maximum gradability, and tire rolling resistance determination. Road power requirements and energy consumption were also determined from coast down tests.

  7. Inaccuracy of a physical strain trainer for the monitoring of partial weight bearing.

    PubMed

    Pauser, Johannes; Jendrissek, Andreas; Swoboda, Bernd; Gelse, Kolja; Carl, Hans-Dieter

    2011-11-01

    To investigate the use of a physical strain trainer for the monitoring of partial weight bearing. Case series with healthy volunteers. Orthopedic clinic. Healthy volunteers (N=10) with no history of foot complaints. Volunteers were taught to limit weight bearing to 10% body weight (BW) and 50% BW, monitored by a physical strain trainer. The parameters peak pressure, maximum force, force-time integral, and pressure-time integral were assessed by dynamic pedobarography when volunteers walked with full BW (condition 1), 50% BW (condition 2), and 10% BW (condition 3). With 10% BW (condition 3), forces with normative gait (condition 1) were statistically significantly reduced under the hindfoot where the physical strain trainer is placed. All pedobarographic parameters were, however, exceeded when the total foot was measured. A limitation to 10% BW with the physical strain trainer (condition 3) was equal to a bisection of peak pressure and maximum force for the total foot with normative gait (condition 1). Halved BW (condition 2) left a remaining mean 82% of peak pressure and mean 59% of maximum force from full BW (condition 1). The concept of controlling partial weight bearing with the hindfoot-addressing device does not represent complete foot loading. Such devices may be preferably applied in cases when the hindfoot in particular must be off-loaded. Other training devices (eg, biofeedback soles) that monitor forces of the total foot have to be used to control partial weight bearing of the lower limb accurately. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. Geophysical Signatures of Shear-Induced Damage and Frictional Processes on Rock Joints

    NASA Astrophysics Data System (ADS)

    Hedayat, Ahmadreza; Haeri, Hadi; Hinton, John; Masoumi, Hossein; Spagnoli, Giovanni

    2018-02-01

    In this study, ultrasonic waves recorded during direct shear experiments on rock joints were employed to investigate the shear failure processes. Three types of wave attributes were systematically observed prior to the shear failure of the rock joints: (a) maximum in the amplitude of the transmitted wave, (b) maximum in the dominant frequency of the transmitted wave, and (c) maximum in the velocity of the wave. Different processes occurring during both frictional sliding and stick-slip oscillations were identified in this study: (a) interseismic phase and (b) preseismic phase. The interseismic phase is associated with elastic loading, very small local slip rate, and increasing ultrasonic transmission along the contact surfaces. The rock joint is considered locked, and the increase in ultrasonic transmission represents an increase in the real (true) area of contact because of interlocking and contact aging. The start of the preseismic phase is marked by the onset of precursors for different regions of the rock joint. Following the interseismic and preseismic phases, coseismic phase occurs. The coseismic phase begins with the reduction in the applied shear stress and is associated with an abrupt increase in the local slip rate. The reductions in transmitted amplitude, wave velocity, and dominant frequency all indicate the preseismic phase when the asperity contacts begin to fail before macroscopic frictional sliding. The observation of the preseismic phase in both the loading phase leading to stable sliding and stick-slip failure modes suggests that microphysical processes of fault weakening may share key features for these two failure modes.

  9. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study.

    PubMed

    Choi, Jae-Won; Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-04-06

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups ( p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention ( p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention ( p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice.

  10. Load-Bearing Capacity and Retention of Newly Developed Micro-Locking Implant Prosthetic System: An In Vitro Pilot Study

    PubMed Central

    Choi, Kyung-Hee; Chae, Hee-Jin; Chae, Sung-Ki; Bae, Eun-Bin; Lee, Jin-Ju; Lee, So-Hyoun; Jeong, Chang-Mo; Huh, Jung-Bo

    2018-01-01

    The aim of this study was to introduce the newly developed micro-locking implant prosthetic system and to evaluate the resulting its characteristics. To evaluate load-bearing capacity, 25 implants were divided into five groups: external-hexagon connection (EH), internal-octagon connection (IO), internal-hexagon connection (IH), one-body implant (OB), micro-locking implant system (ML). The maximum compressive load was measured using a universal testing machine (UTM) according to the ISO 14801. Retention was evaluated in two experiments: (1) a tensile test of the structure modifications of the components (attachment and implant) and (2) a tensile test after cyclic loading (total 5,000,000 cycles, 100 N, 2 Hz). The load-bearing capacity of the ML group was not significantly different from the other groups (p > 0.05). The number of balls in the attachment and the presence of a hexagonal receptacle did not show a significant correlation with retention (p > 0.05), but the shape of the retentive groove in the implant post had a statistically significant effect on retention (p < 0.05). On the other hand, the retention loss was observed during the initial 1,000,000 cycles, but an overall constant retention was maintained afterward. Various preclinical studies on this novel micro-locking implant prosthetic system should continue so that it can be applied in clinical practice. PMID:29642407

  11. Innovative design of composite structures: The use of curvilinear fiber format in structural design of composites

    NASA Technical Reports Server (NTRS)

    Charette, R. F.; Hyer, M. W.

    1990-01-01

    The influence is investigated of a curvilinear fiber format on load carrying capacity of a layered fiber reinforced plate with a centrally located hole. A curvilinear fiber format is descriptive of layers in a laminate having fibers which are aligned with the principal stress directions in those layers. Laminates of five curvilinear fiber format designs and four straightline fiber format designs are considered. A quasi-isotropic laminate having a straightline fiber format is used to define a baseline design for comparison with the other laminate designs. Four different plate geometries are considered and differentiated by two values of hole diameter/plate width equal to 1/6 and 1/3, and two values of plate length/plate width equal to 2 and 1. With the plates under uniaxial tensile loading on two opposing edges, alignment of fibers in the curvilinear layers with the principal stress directions is determined analytically by an iteration procedure. In-plane tensile load capacity is computed for all of the laminate designs using a finite element analysis method. A maximum strain failure criterion and the Tsai-Wu failure criterion are applied to determine failure loads and failure modes. Resistance to buckling of the laminate designs to uniaxial compressive loading is analyzed using the commercial code Engineering Analysis Language. Results indicate that the curvilinear fiber format laminates have higher in-plane tensile load capacity and comparable buckling resistance relative to the straightline fiber format laminates.

  12. Operation regimes of a dielectric laser accelerator

    NASA Astrophysics Data System (ADS)

    Hanuka, Adi; Schächter, Levi

    2018-04-01

    We investigate three operation regimes in dielectric laser driven accelerators: maximum efficiency, maximum charge, and maximum loaded gradient. We demonstrate, using a self-consistent approach, that loaded gradients of the order of 1 to 6 [GV/m], efficiencies of 20% to 80%, and electrons flux of 1014 [el/s] are feasible, without significant concerns regarding damage threshold fluence. The latter imposes that the total charge per squared wavelength is constant (a total of 106 per μm2). We conceive this configuration as a zero-order design that should be considered for the road map of future accelerators.

  13. Pre-slaughter sound levels and pre-slaughter handling from loading at the farm till slaughter influence pork quality.

    PubMed

    Vermeulen, L; Van de Perre, V; Permentier, L; De Bie, S; Verbeke, G; Geers, R

    2016-06-01

    This study investigates the relationship between sound levels, pre-slaughter handling during loading and pork quality. Pre-slaughter variables were investigated from loading till slaughter. A total of 3213 pigs were measured 30 min post-mortem for pH(30LT) (M. Longissimus thoracis). First, a sound level model for the risk to develop PSE meat was established. The difference in maximum and mean sound level during loading, mean sound level during lairage and mean sound level prior to stunning remained significant within the model. This indicated that sound levels during loading had a significant added value to former sound models. Moreover, this study completed the global classification checklist (Vermeulen et al., 2015a) by developing a linear mixed model for pH(30LT) and PSE prevalence, with the difference in maximum and mean sound level measured during loading, the feed withdrawal period and the difference in temperature during loading and lairage. Hence, this study provided new insights over previous research where loading procedures were not included. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Effects of Food Texture on Three-Dimensional Loads on Implants During Mastication Based on In Vivo Measurements.

    PubMed

    Yoda, Nobuhiro; Ogawa, Toru; Gunji, Yoshinori; Vanegas, Juan R; Kawata, Tetsuo; Sasaki, Keiichi

    2016-08-01

    The mechanisms by which the loads exerted on implants that support prostheses are modulated during mastication remain unclear. The purpose of this study was to evaluate the effects of food texture on 3-dimensional loads measured at a single implant using a piezoelectric transducer. Two subjects participated in this study. The transducer and the experimental superstructure, which had been adjusted to the subject's occlusal scheme, were attached to the implant with a titanium screw. The foods tested were chewing gum and peanuts. The mean maximum load on the implant in each chewing cycle was significantly higher during peanut chewing than during gum chewing. The direction of maximum load was significantly more widely dispersed during peanut chewing than during gum chewing. The range of changes in load direction during the force-increasing phase of each chewing cycle was significantly wider during peanut chewing than during gum chewing. The load on the implant was affected by food texture in both subjects. This measurement method can be useful to investigate the mechanisms of load modulation on implants during mastication.

  15. Short Term Load Forecasting with Fuzzy Logic Systems for power system planning and reliability-A Review

    NASA Astrophysics Data System (ADS)

    Holmukhe, R. M.; Dhumale, Mrs. Sunita; Chaudhari, Mr. P. S.; Kulkarni, Mr. P. P.

    2010-10-01

    Load forecasting is very essential to the operation of Electricity companies. It enhances the energy efficient and reliable operation of power system. Forecasting of load demand data forms an important component in planning generation schedules in a power system. The purpose of this paper is to identify issues and better method for load foecasting. In this paper we focus on fuzzy logic system based short term load forecasting. It serves as overview of the state of the art in the intelligent techniques employed for load forecasting in power system planning and reliability. Literature review has been conducted and fuzzy logic method has been summarized to highlight advantages and disadvantages of this technique. The proposed technique for implementing fuzzy logic based forecasting is by Identification of the specific day and by using maximum and minimum temperature for that day and finally listing the maximum temperature and peak load for that day. The results show that Load forecasting where there are considerable changes in temperature parameter is better dealt with Fuzzy Logic system method as compared to other short term forecasting techniques.

  16. Fatigue resistance and crack propensity of novel "super-closed" sandwich composite resin restorations in large MOD defects.

    PubMed

    Magne, Pascal; Silva, Silvana; Andrada, Mauro de; Maia, Hamilton

    2016-01-01

    To assess the influence of conventional glass ionomer cement (GIC) vs resin-modified GIC (RMGIC) as a base material for novel, super-closed sandwich restorations (SCSR) and its effect on shrinkage-induced crack propensity and in vitro accelerated fatigue resistance. A standardized MOD slottype tooth preparation was applied to 30 extracted maxillary molars (5 mm depth/5 mm buccolingual width). A modified sandwich restoration was used, in which the enamel/dentin bonding agent was applied first (Optibond FL, Kerr), followed by a Ketac Molar (3M ESPE)(group KM, n = 15) or Fuji II LC (GC) (group FJ, n = 15) base, leaving 2 mm for composite resin material (Miris 2, Coltène-Whaledent). Shrinkageinduced enamel cracks were tracked with photography and transillumination. Samples were loaded until fracture or to a maximum of 185,000 cycles under isometric chewing (5 H z), starting with a load of 200 N (5,000 X), followed by stages of 400, 600, 800, 1,000, 1,200, and 1,400 N at a maximum of 30,000 X each. Groups were compared using the life table survival analysis (α = .008, Bonferroni method). Group FJ showed the highest survival rate (40% intact specimens) but did not differ from group KM (20%) or traditional direct restorations (13%, previous data). SCSR generated less shrinkage-induced cracks. Most failures were re-restorable (above the cementoenamel junction [CEJ]). Inclusion of GIC/RMGIC bases under large direct SCSRs does not affect their fatigue strength but tends to decrease the shrinkage-induced crack propensity. The use of GIC/ RMGIC bases and the SCSR is an easy way to minimize polymerization shrinkage stress in large MOD defects without weakening the restoration.

  17. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater.

    PubMed

    Zekker, Ivar; Rikmann, Ergo; Tenno, Toomas; Seiman, Andrus; Loorits, Liis; Kroon, Kristel; Tomingas, Martin; Vabamäe, Priit; Tenno, Taavo

    2014-01-01

    Maintaining stability of low concentration (< 1 g L(-1)) floccular biomass in the nitritation-anaerobic ammonium oxidation (anammox) process in the sequencing batch reactor (SBR) system for the treatment of high COD (> 15,000 mg O2 L(-1)) to N (1680 mg N L(-1)) ratio real wastewater streams coming from the food industry is challenging. The anammox process was suitable for the treatment of yeast factory wastewater containing relatively high and abruptly increased organic C/N ratio and dissolved oxygen (DO) concentrations. Maximum specific total inorganic nitrogen (TIN) loading and removal rates applied were 600 and 280 mg N g(-1) VSS d(-1), respectively. Average TIN removal efficiency over the operation period of 270 days was 70%. Prior to simultaneous reduction of high organics (total organic carbon > 600mg L(-1)) and N concentrations > 400 mg L(-1), hydraulic retention time of 15 h and DO concentrations of 3.18 (+/- 1.73) mg O2 L(-1) were applied. Surprisingly, higher DO concentrations did not inhibit the anammox process efficiency demonstrating a wider application of cultivated anammox biomass. The SBR was fed rapidly over 5% of the cycle time at 50% volumetric exchange ratio. It maintained high free ammonia concentration, suppressing growth of nitrite-oxidizing bacteria. Partial least squares and response surface modelling revealed two periods of SBR operation and the SBR performances change at different periods with different total nitrogen (TN) loadings. Anammox activity tests showed yeast factory-specific organic N compound-betaine and inorganic N simultaneous biodegradation. Among other microorganisms determined by pyrosequencing, anammox microorganism (uncultured Planctomycetales bacterium clone P4) was determined by polymerase chain reaction also after applying high TN loading rates.

  18. Does buckling instability of the pseudopodium limit how well an amoeba can climb?

    PubMed

    Ghosal, Sandip; Fukui, Yoshio

    2011-02-21

    The maximum force that a crawling cell can exert on a substrate is a quantity of interest in cell biomechanics. One way of quantifying this force is to allow the cell to crawl against a measurable and adjustable restraining force until the cell is no longer able to move in a direction opposite to the applied force. Fukui et al. (2000) reported on an experiment where amoeboid cells were imaged while they crawled against an artificial gravity field created by a centrifuge. An unexpected observation was that the net applied force on the amoeba did not seem to be the primary factor that limited its ability to climb. Instead, it appeared that the amoeba stalled when it was no longer able to support a pseudopodium against the applied gravity field. The high g-load bend the pseudopodium thereby preventing its attachment to the target point directly ahead of the cell. In this paper we further refine this idea by identifying the bending of the pseudopodium with the onset of elastic instability of a beam under its own weight. It is shown that the principal features of the experiment may be understood through this model and an estimate for the limiting g-load in reasonable accord with the experimental measurements is recovered. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. National Launch System cycle 1 loads and models data book

    NASA Technical Reports Server (NTRS)

    Bugg, F.; Brunty, J.; Ernsberger, G.; Mcghee, D.; Gagliano, L.; Harrington, F.; Meyer, D.; Blades, E.

    1992-01-01

    This document contains preliminary cycle 1 loads for the National Launch System (NLS) 1 and 2 vehicles. The loads provided and recommended as design loads represent the maximum load expected during prelaunch and flight regimes, i.e., limit loads, except that propellant tank ullage pressure has not been included. Ullage pressure should be added to the loads book values for cases where the addition results in higher loads. The loads must be multiplied by the appropriate factors of safety to determine the ultimate loads for which the structure must be capable.

  20. [Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis].

    PubMed

    Liu, D W; Li, J; Guo, L; Rong, Q G; Zhou, Y H

    2018-02-18

    To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatal-buccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of lateral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distal-buccal and palatal PDL of cervix of lateral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distal-interproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distal-palatal PDL of cervix of canine. (3) palatal-buccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics, stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.

  1. Dependence of Some Mechanical Properties of Elastic Bands on the Length and Load Time

    ERIC Educational Resources Information Center

    Triana, C. A.; Fajardo, F.

    2012-01-01

    We present a study of the maximum stress supported by elastics bands of nitrile as a function of the natural length and the load time. The maximum tension of rupture and the corresponding variation in length were found by measuring the elongation of an elastic band when a mass is suspended from its free end until it reaches the breaking point. The…

  2. Total maximum daily loads, sediment budgets, and tracking restoration progress of the north coast watersheds

    Treesearch

    Matthew S. Buffleben

    2012-01-01

    One of the predominate water quality problems for northern coastal California watersheds is the impairment of salmonid habitat. Most of the North Coast watersheds are listed as “impaired” under section 303(d) of Clean Water Act. The Clean Water Act requires states to address impaired waters by developing Total Maximum Daily Loads (TMDLs) or implementing...

  3. 46 CFR 38.15-1 - Filling of tanks-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... that there is an outage of at least 2 percent of the volume of the tank at the temperature..., the maximum volume to which a tank may be loaded is: V L=0.98d r V/d L where: V L=maximum volume to which tank may be loaded. V=volume of tank. d r=density of cargo at the temperature required for a cargo...

  4. EPA Office of Water (OW): Impaired Waters with TMDLs NHDPlus Indexed Dataset

    EPA Pesticide Factsheets

    The Total Maximum Daily Load (TMDL) Tracking System contains information on waters that are Not Supporting their designated uses. These waters are listed by the state as impaired under Section 303(d) of the Clean Water Act. The status of TMDLs are also tracked. TMDLs are pollution control measures that reduce the discharge of pollutants into impaired waters. A TMDL or Total Maximum Daily Load is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. What is a total maximum daily load (TMDL)? Water quality standards are set by States, Territories, and Tribes. They identify the uses for each waterbody, for example, drinking water supply, contact recreation (swimming), and aquatic life support (fishing), and the scientific criteria to support that use. A TMDL is the sum of the allowable loads of a single pollutant from all contributing point and nonpoint sources. The calculation must include a margin of safety to ensure that the waterbody can be used for the purposes the state has designated. The calculation must also account for seasonal variation in water quality. The Clean Water Act, section 303, establishes the water quality standards and TMDL programs.

  5. Using spatially detailed water-quality data and solute-transport modeling to improve support total maximum daily load development

    USGS Publications Warehouse

    Walton-Day, Katherine; Runkel, Robert L.; Kimball, Briant A.

    2012-01-01

    Spatially detailed mass-loading studies and solute-transport modeling using OTIS (One-dimensional Transport with Inflow and Storage) demonstrate how natural attenuation and loading from distinct and diffuse sources control stream water quality and affect load reductions predicted in total maximum daily loads (TMDLs). Mass-loading data collected during low-flow from Cement Creek (a low-pH, metal-rich stream because of natural and mining sources, and subject to TMDL requirements) were used to calibrate OTIS and showed spatially variable effects of natural attenuation (instream reactions) and loading from diffuse (groundwater) and distinct sources. OTIS simulations of the possible effects of TMDL-recommended remediation of mine sites showed less improvement to dissolved zinc load and concentration (14% decrease) than did the TMDL (53-63% decrease). The TMDL (1) assumed conservative transport, (2) accounted for loads removed by remediation by subtracting them from total load at the stream mouth, and (3) did not include diffuse-source loads. In OTIS, loads were reduced near their source; the resulting concentration was decreased by natural attenuation and increased by diffuse-source loads during downstream transport. Thus, by not including natural attenuation and loading from diffuse sources, the TMDL overestimated remediation effects at low flow. Use of the techniques presented herein could improve TMDLs by incorporating these processes during TMDL development.

  6. Evaluation of performance and maximum length of continuous decks in bridges : part 2.

    DOT National Transportation Integrated Search

    2012-08-01

    Field experimental measurements and analytical studies showed that the link-slab reinforcement : experiences almost no axial load due to thermal and gravity loading. One of the fundamental : reasons for the low loads in the link-slab reinforcement is...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dec, John E.; Yang, Yi; Ji, Chunsheng

    Low-temperature gasoline combustion (LTGC), based on the compression ignition of a premixed or partially premixed dilute charge, can provide thermal efficiencies (TE) and maximum loads comparable to those of turbo-charged diesel engines, and ultra-low NOx and particulate emissions. Intake boosting is key to achieving high loads with dilute combustion, and it also enhances the fuel's autoignition reactivity, reducing the required intake heating or hot residuals. These effects have the advantages of increasing TE and charge density, allowing greater timing retard with good stability, and making the fuel Φ- sensitive so that partial fuel stratification (PFS) can be applied for highermore » loads and further TE improvements. However, at high boost the autoignition reactivity enhancement can become excessive, and substantial amounts of EGR are required to prevent overly advanced combustion. Accordingly, an experimental investigation has been conducted to determine how the tradeoff between the effects of intake boost varies with fuel-type and its impact on load range and TE. Five fuels are investigated: a conventional AKI=87 petroleum-based gasoline (E0), and blends of 10 and 20% ethanol with this gasoline to reduce its reactivity enhancement with boost (E10 and E20). Furthermore, a second zero-ethanol gasoline with AKI=93 (matching that of E20) was also investigated (CF-E0), and some neat ethanol data are also reported.« less

  8. A pollutant load hierarchical allocation method integrated in an environmental capacity management system for Zhushan Bay, Taihu Lake.

    PubMed

    Liang, Shidong; Jia, Haifeng; Yang, Cong; Melching, Charles; Yuan, Yongping

    2015-11-15

    An environmental capacity management (ECM) system was developed to help practically implement a Total Maximum Daily Load (TMDL) for a key bay in a highly eutrophic lake in China. The ECM system consists of a simulation platform for pollutant load calculation and a pollutant load hierarchical allocation (PLHA) system. The simulation platform was developed by linking the Environmental Fluid Dynamics Code (EFDC) and Water Quality Analysis Simulation Program (WASP). In the PLHA, pollutant loads were allocated top-down in several levels based on characteristics of the pollutant sources. Different allocation methods could be used for the different levels with the advantages of each method combined over the entire allocation. Zhushan Bay of Taihu Lake, one of the most eutrophic lakes in China, was selected as a case study. The allowable loads of total nitrogen, total phosphorus, ammonia, and chemical oxygen demand were found to be 2122.2, 94.9, 1230.4, and 5260.0 t·yr(-1), respectively. The PLHA for the case study consists of 5 levels. At level 0, loads are allocated to those from the lakeshore direct drainage, atmospheric deposition, internal release, and tributary inflows. At level 1 the loads allocated to tributary inflows are allocated to the 3 tributaries. At level 2, the loads allocated to one inflow tributary are allocated to upstream areas and local sources along the tributary. At level 3, the loads allocated to local sources are allocated to the point and non-point sources from different towns. At level 4, the loads allocated to non-point sources in each town are allocated to different villages. Compared with traditional forms of pollutant load allocation methods, PLHA can combine the advantages of different methods which put different priority weights on equity and efficiency, and the PLHA is easy to understand for stakeholders and more flexible to adjust when applied in practical cases. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Reconstruction of a quadriceps tendon tear using Polyvinylidene fluoride sutures and patellar screw fixation: A biomechanical study.

    PubMed

    Sellei, R M; Bauer, E; Hofman, M; Kobbe, P; Lichte, P; Garrison, R L; Pape, H C; Horst, K

    2015-12-01

    Acute quadriceps tendon tears are infrequent injuries requiring surgical treatment. Improved stability after surgical repair may allow for earlier weight-bearing and range of motion. Therefore, a new implant was tested and compared with the "gold standard", using transosseous sutures. Quadriceps tendon tears were constructed using a cadaveric model of 12 fresh matched-pair specimens (aged 61-97; mean age: 82 years). The biomechanical testing compared non-absorbable suture anchors (Polyvinylidene fluoride) versus transosseous absorbable sutures (Polydioxanon). Following anatomic reconstruction, the repaired specimens were loaded until they failed (testing machine: Hounsfield H10KM, Redhill, United Kingdom; maximum force: 1000 N; load speed: 25 mm/min; maximum test length: 150 mm; pre-load: 5 N). Values for load until tear displacement, maximum load until complete failure of the construct (pullout or breakage of the sutures or anchors) and stiffness of the reconstruction were recorded. The stiffness found in the Polyvinylidene fluoride reconstruction (mean 9.83 N/mm) (standard deviation (SD) 7.75) showed a significant increase compared to the Polydioxanon reconstruction (mean 6.66 N/mm (SD 3.32); P=0.045). Transosseous fixation showed comparable results to the suture anchor system. There was no significant difference found in the maximum load to tear displacement (PVDF: 290.88 N (SD 106.01) vs. PDS: 266.75 N (SD 82.61); P=0.358). Using the Polyvinylidene fluoride thread showed comparable results to the established method in reconstruction of ruptured quadriceps tendon. Stiffness of the Polyvinylidene fluoride thread reconstruction was even greater than Polydioxanon thread. Improved stiffness may facilitate healing and is suggested as clinical relevance in reconstruction. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Experimental Investigation on the Fatigue Mechanical Properties of Intermittently Jointed Rock Models Under Cyclic Uniaxial Compression with Different Loading Parameters

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Dai, Feng; Dong, Lu; Xu, Nuwen; Feng, Peng

    2018-01-01

    Intermittently jointed rocks, widely existing in many mining and civil engineering structures, are quite susceptible to cyclic loading. Understanding the fatigue mechanism of jointed rocks is vital to the rational design and the long-term stability analysis of rock structures. In this study, the fatigue mechanical properties of synthetic jointed rock models under different cyclic conditions are systematically investigated in the laboratory, including four loading frequencies, four maximum stresses, and four amplitudes. Our experimental results reveal the influence of the three cyclic loading parameters on the mechanical properties of jointed rock models, regarding the fatigue deformation characteristics, the fatigue energy and damage evolution, and the fatigue failure and progressive failure behavior. Under lower loading frequency or higher maximum stress and amplitude, the jointed specimen is characterized by higher fatigue deformation moduli and higher dissipated hysteresis energy, resulting in higher cumulative damage and lower fatigue life. However, the fatigue failure modes of jointed specimens are independent of cyclic loading parameters; all tested jointed specimens exhibit a prominent tensile splitting failure mode. Three different crack coalescence patterns are classified between two adjacent joints. Furthermore, different from the progressive failure under static monotonic loading, the jointed rock specimens under cyclic compression fail more abruptly without evident preceding signs. The tensile cracks on the front surface of jointed specimens always initiate from the joint tips and then propagate at a certain angle with the joints toward the direction of maximum compression.

  11. Total maximum allocated load calculation of nitrogen pollutants by linking a 3D biogeochemical-hydrodynamic model with a programming model in Bohai Sea

    NASA Astrophysics Data System (ADS)

    Dai, Aiquan; Li, Keqiang; Ding, Dongsheng; Li, Yan; Liang, Shengkang; Li, Yanbin; Su, Ying; Wang, Xiulin

    2015-12-01

    The equal percent removal (EPR) method, in which pollutant reduction ratio was set as the same in all administrative regions, failed to satisfy the requirement for water quality improvement in the Bohai Sea. Such requirement was imposed by the developed Coastal Pollution Total Load Control Management. The total maximum allocated load (TMAL) of nitrogen pollutants in the sea-sink source regions (SSRs) around the Bohai Rim, which is the maximum pollutant load of every outlet under the limitation of water quality criteria, was estimated by optimization-simulation method (OSM) combined with loop approximation calculation. In OSM, water quality is simulated using a water quality model and pollutant load is calculated with a programming model. The effect of changes in pollutant loads on TMAL was discussed. Results showed that the TMAL of nitrogen pollutants in 34 SSRs was 1.49×105 ton/year. The highest TMAL was observed in summer, whereas the lowest in winter. TMAL was also higher in the Bohai Strait and central Bohai Sea and lower in the inner area of the Liaodong Bay, Bohai Bay and Laizhou Bay. In loop approximation calculation, the TMAL obtained was considered satisfactory for water quality criteria as fluctuation of concentration response matrix with pollutant loads was eliminated. Results of numerical experiment further showed that water quality improved faster and were more evident under TMAL input than that when using the EPR method

  12. Experimental Study on Mechanical and Acoustic Emission Characteristics of Rock-Like Material Under Non-uniformly Distributed Loads

    NASA Astrophysics Data System (ADS)

    Wang, Xiao; Wen, Zhijie; Jiang, Yujing; Huang, Hao

    2018-03-01

    The mechanical and acoustic emission characteristics of rock-like materials under non-uniform loads were investigated by means of a self-developed mining-induced stress testing system and acoustic emission monitoring system. In the experiments, the specimens were divided into three regions and different initial vertical stresses and stress loading rates were used to simulate different mining conditions. The mechanical and acoustic emission characteristics between regions were compared, and the effects of different initial vertical stresses and different stress loading rates were analysed. The results showed that the mechanical properties and acoustic emission characteristics of rock-like materials can be notably localized. When the initial vertical stress and stress loading rate are fixed, the peak strength of region B is approximately two times that of region A, and the maximum acoustic emission hit value of region A is approximately 1-2 times that of region B. The effects of the initial vertical stress and stress loading rate on the peck strain, maximum hit value, and occurrence time of the maximum hit are similar in that when either of the former increase, the latter all decrease. However, peck strength will increase with the increase in loading rate and decrease with the increase in initial vertical stress. The acoustic emission hits can be used to analyse the damage in rock material, but the number of acoustic emission hits cannot be used alone to determine the degree of rock damage directly.

  13. Dynamic Patterns of Forces and Loading Rate in Runners with Unilateral Plantar Fasciitis: A Cross-Sectional Study

    PubMed Central

    Ribeiro, Ana Paula; João, Silvia Maria Amado; Dinato, Roberto Casanova; Tessutti, Vitor Daniel; Sacco, Isabel Camargo Neves

    2015-01-01

    Aim/Hypothesis The etiology of plantar fasciitis (PF) has been related to several risk factors, but the magnitude of the plantar load is the most commonly described factor. Although PF is the third most-common injury in runners, only two studies have investigated this factor in runners, and their results are still inconclusive regarding the injury stage. Objective Analyze and compare the plantar loads and vertical loading rate during running of runners in the acute stage of PF to those in the chronic stage of the injury in relation to healthy runners. Methods Forty-five runners with unilateral PF (30 acute and 15 chronic) and 30 healthy control runners were evaluated while running at 12 km/h for 40 meters wearing standardized running shoes and Pedar-X insoles. The contact area and time, maximum force, and force-time integral over the rearfoot, midfoot, and forefoot were recorded and the loading rate (20–80% of the first vertical peak) was calculated. Groups were compared by ANOVAs (p<0.05). Results Maximum force and force-time integral over the rearfoot and the loading rate was higher in runners with PF (acute and chronic) compared with controls (p<0.01). Runners with PF in the acute stage showed lower loading rate and maximum force over the rearfoot compared to runners in the chronic stage (p<0.01). Conclusion Runners with PF showed different dynamic patterns of plantar loads during running over the rearfoot area depending on the injury stage (acute or chronic). In the acute stage of PF, runners presented lower loading rate and forces over the rearfoot, possibly due to dynamic mechanisms related to pain protection of the calcaneal area. PMID:26375815

  14. Maximum Power Point Tracking with Dichotomy and Gradient Method for Automobile Exhaust Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Fang, W.; Quan, S. H.; Xie, C. J.; Tang, X. F.; Wang, L. L.; Huang, L.

    2016-03-01

    In this study, a direct-current/direct-current (DC/DC) converter with maximum power point tracking (MPPT) is developed to down-convert the high voltage DC output from a thermoelectric generator to the lower voltage required to charge batteries. To improve the tracking accuracy and speed of the converter, a novel MPPT control scheme characterized by an aggregated dichotomy and gradient (ADG) method is proposed. In the first stage, the dichotomy algorithm is used as a fast search method to find the approximate region of the maximum power point. The gradient method is then applied for rapid and accurate tracking of the maximum power point. To validate the proposed MPPT method, a test bench composed of an automobile exhaust thermoelectric generator was constructed for harvesting the automotive exhaust heat energy. Steady-state and transient tracking experiments under five different load conditions were carried out using a DC/DC converter with the proposed ADG and with three traditional methods. The experimental results show that the ADG method can track the maximum power within 140 ms with a 1.1% error rate when the engine operates at 3300 rpm@71 NM, which is superior to the performance of the single dichotomy method, the single gradient method and the perturbation and observation method from the viewpoint of improved tracking accuracy and speed.

  15. Tribological performance of an H-DLC coating prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  16. Effect of superficial harrowing on surface properties of sand with rubber and waxed-sand with fibre riding arena surfaces: a preliminary study.

    PubMed

    Tranquille, C A; Walker, V A; Hernlund, E; Egenvall, A; Roepstorff, L; Peterson, M L; Murray, R C

    2015-01-01

    A recent epidemiological study identified various aspects of arena surfaces and arena surface maintenance that were related to risk of injury in horses and that arena maintenance is important in reducing injury risk. However, there has been little research into how properties of arena surfaces change with harrowing. This study aimed to compare the properties of different arena surface types pre- and post-harrowing. The Orono Biomechanical Surface Tester fitted with accelerometers and a single- and a three-axis load cell was used to test 11 arenas with two different surfaces types, sand with rubber (SR) and waxed-sand with fibre (WSF). Three drop tests were carried out at 10 standardised locations on each arena. Mixed models were created to assess the effect of surface type, pre- or post-harrowing, and drop number on the properties of the surface, including maximum horizontal deceleration, maximum vertical deceleration, maximum vertical load and maximum horizontal load. Post-harrowing, none of the parameters were altered significantly on SR. On WSF, maximum vertical deceleration and maximum vertical load significantly decreased post-harrowing. The differences in the effects of superficial harrowing on SR and WSF could be attributed to the different compositions and sizes of the surface material. The results suggest that different maintenance techniques may be more suitable for different surface types and that the effects of superficial harrowing are short-lived due to the rapid re-compaction of the surface with repeated drops on WSF. Further work is required to determine the effects of other maintenance techniques, and on other surface types. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Three-dimensional ceramic molding process based on microstereolithography for the production of piezoelectric energy harvesters

    NASA Astrophysics Data System (ADS)

    Maruo, Shoji; Sugiyama, Kenji; Daicho, Yuya; Monri, Kensaku

    2014-03-01

    A three-dimensional (3-D) molding process using a master polymer mold produced by microstereolithography has been developed for the production of piezoelectric ceramic elements. In this method, ceramic slurry is injected into a 3-D polymer mold via a centrifugal casting process. The polymer master mold is thermally decomposed so that complex 3-D piezoelectric ceramic elements can be produced. As an example of 3-D piezoelectric ceramic elements, we produced a spiral piezoelectric element that can convert multidirectional loads into a voltage. It was confirmed that a prototype of the spiral piezoelectric element could generate a voltage by applying a load in both parallel and lateral directions in relation to the helical axis. The power output of 123 pW was obtained by applying the maximum load of 2.8N at 2 Hz along the helical axis. In addition, to improve the performance of power generation, we utilized a two-step sintering process to obtain dense piezoelectric elements. As a result, we obtained a sintering body with relative density of 92.8%. Piezoelectric constant d31 of the sintered body attained to -40.0 pC/N. Furthermore we analyzed the open-circuit voltage of the spiral piezoelectric element using COMSOL multiphysics. As a result, it was found that use of patterned electrodes according to the surface potential distribution of the spiral piezoelectric element had a potential to provide high output voltage that was 20 times larger than that of uniform electrodes.

  18. Post retention and post/core shear bond strength of four post systems.

    PubMed

    Stockton, L W; Williams, P T; Clarke, C T

    2000-01-01

    As clinicians we continue to search for a post system which will give us maximum retention while maximizing resistance to root fracture. The introduction of several new post systems, with claims of high retentive and resistance to root fracture values, require that independent studies be performed to evaluate these claims. This study tested the tensile and shear dislodgment forces of four post designs that were luted into roots 10 mm apical of the CEJ. The Para Post Plus (P1) is a parallel-sided, passive design; the Para Post XT (P2) is a combination active/passive design; the Flexi-Post (F1) and the Flexi-Flange (F2) are active post designs. All systems tested were stainless steel. This study compared the test results of the four post designs for tensile and shear dislodgment. All mounted samples were loaded in tension until failure occurred. The tensile load was applied parallel to the long axis of the root, while the shear load was applied at 450 to the long axis of the root. The Flexi-Post (F1) was significantly different from the other three in the tensile test, however, the Para Post XT (P2) was significantly different to the other three in the shear test and had a better probability for survival in the Kaplan-Meier survival function test. Based on the results of this study, our recommendation is for the Para Post XT (P2).

  19. Measurement of the configuration of a concave surface by the interference of reflected light

    NASA Technical Reports Server (NTRS)

    Kumazawa, T.; Sakamoto, T.; Shida, S.

    1985-01-01

    A method whereby a concave surface is irradiated with coherent light and the resulting interference fringes yield information on the concave surface is described. This method can be applied to a surface which satisfies the following conditions: (1) the concave face has a mirror surface; (2) the profile of the face is expressed by a mathematical function with a point of inflection. In this interferometry, multilight waves reflected from the concave surface interfere and make fringes wherever the reflected light propagates. Interference fringe orders. Photographs of the fringe patterns for a uniformly loaded thin silicon plate clamped at the edge are shown experimentally. The experimental and the theoretical values of the maximum optical path difference show good agreement. This simple method can be applied to obtain accurate information on concave surfaces.

  20. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  1. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  2. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  3. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  4. 14 CFR 27.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side, and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  5. 14 CFR 29.485 - Lateral drift landing conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., side loads of 0.8 times the vertical reaction acting inward on one side and 0.6 times the vertical... load of 0.8 times the vertical reaction combined with the vertical load specified in paragraph (a) of...— (1) Side loads combined with one-half of the maximum ground reactions obtained in the level landing...

  6. Wake-Induced Aerodynamics on a Trailing Aircraft

    NASA Technical Reports Server (NTRS)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Kelly, Michael J.

    2016-01-01

    NASA conducted flight tests to measure the exhaust products from alternative fuels using a DC-8 transport aircraft and a Falcon business jet. An independent analysis of the maximum vortex-induced loads on the Falcon in the DC-8 wake was conducted for pre-flight safety analysis and to define safe trail distances for the flight tests. Static and dynamic vortex-induced aerodynamic loads on the Falcon were predicted at a matrix of locations aft of the DC-8 under flight-test conditions, and the maximum loads were compared with design limit loads to assess aircraft safety. Trajectory simulations for the Falcon during close encounters with the DC-8 wake were made to study the vortex-induced loads during traverses of the DC-8 primary trailing vortex. A parametric study of flight traverses through the trailing vortex was conducted to assess Falcon flight behavior and motion characteristics.

  7. Plate-shaped non-contact ultrasonic transporter using flexural vibration.

    PubMed

    Ishii, Takahiko; Mizuno, Yosuke; Koyama, Daisuke; Nakamura, Kentaro; Harada, Kana; Uchida, Yukiyoshi

    2014-02-01

    We developed a plate-shaped non-contact transporter based on ultrasonic vibration, exploiting a phenomenon that a plate can be statically levitated at the place where its gravity and the acoustic radiation force are balanced. In the experiment, four piezoelectric zirconate titanate elements were attached to aluminum plates, on which lattice flexural vibration was excited at 22.3 kHz. The vibrating plates were connected to a loading plate via flexible posts that can minimize the influence of the flexure induced by heavy loads. The distribution of the vibration displacement on the plate was predicted through finite-element analysis to find the appropriate positions of the posts. The maximum levitation height of this transporter was 256 μm with no load. When two vibrating plates were connected to a loading plate, the maximum transportable load was 4.0 kgf. Copyright © 2013. Published by Elsevier B.V.

  8. Methods of computing steady-state voltage stability margins of power systems

    DOEpatents

    Chow, Joe Hong; Ghiocel, Scott Gordon

    2018-03-20

    In steady-state voltage stability analysis, as load increases toward a maximum, conventional Newton-Raphson power flow Jacobian matrix becomes increasingly ill-conditioned so power flow fails to converge before reaching maximum loading. A method to directly eliminate this singularity reformulates the power flow problem by introducing an AQ bus with specified bus angle and reactive power consumption of a load bus. For steady-state voltage stability analysis, the angle separation between the swing bus and AQ bus can be varied to control power transfer to the load, rather than specifying the load power itself. For an AQ bus, the power flow formulation is only made up of a reactive power equation, thus reducing the size of the Jacobian matrix by one. This reduced Jacobian matrix is nonsingular at the critical voltage point, eliminating a major difficulty in voltage stability analysis for power system operations.

  9. Effect of dry heat and steam sterilization on load-deflection characteristics of β-titanium wires: An in vitro study

    PubMed Central

    Alavi, Shiva; Sinaee, Neda

    2012-01-01

    Background: Sterilization techniques could affect the characteristics of orthodontic wires. The aim of the present study was to evaluate the effect of steam and dry heat sterilization techniques on load-deflection behavior of five types of β-titanium alloy wires. Materials and Methods: The samples consisted of 30 straight lengths of five types of β-titanium alloy wires: Titanium Molybdenum Alloy (TMA) Low Friction (TMAL), TMA Low Friction Colored (HONE), Resolve (RES), BetaForce (BETA), and BETA CNA (CNA). Thirty wire segments were divided into three groups of 10. Group 1 was the control group and the group 2 samples were sterilized by dry heat in an oven (60 minutes at 160°C) and group 3 by steam in an autoclave (15 minutes at 121°C). Then all the wire samples underwent a three-point bending test in a testing machine to evaluate load-deflection properties. Data was analyzed by repeated measures ANOVA and Scheffé's test (α = 0.05). Results: The results showed that dry heat sterilization significantly increased force levels during both loading and unloading of CNA, BETA and RES and during loading of HONE (P < 0.05). Steam sterilization significantly increased force levels during both loading and unloading of BETA and during unloading of HONE (P < 0.05), with no effects on the load-deflection characteristics of TMAL, CNA and RES (P > 0.05). Conclusion: It appears dry heat sterilization increases stiffness of RES, BETA, CNA and HONE but autoclave sterilization did not have any effect on load-deflection characteristics of most of the β-titanium wires tested, indicating that clinicians who want to provide maximum safety for their patients can autoclave TMAL, RES and CNA before applying them. PMID:23559917

  10. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  11. Predicting physiological capacity of human load carriage - a review.

    PubMed

    Drain, Jace; Billing, Daniel; Neesham-Smith, Daniel; Aisbett, Brad

    2016-01-01

    This review article aims to evaluate a proposed maximum acceptable work duration model for load carriage tasks. It is contended that this concept has particular relevance to physically demanding occupations such as military and firefighting. Personnel in these occupations are often required to perform very physically demanding tasks, over varying time periods, often involving load carriage. Previous research has investigated concepts related to physiological workload limits in occupational settings (e.g. industrial). Evidence suggests however, that existing (unloaded) workload guidelines are not appropriate for load carriage tasks. The utility of this model warrants further work to enable prediction of load carriage durations across a range of functional workloads for physically demanding occupations. If the maximum duration for which personnel can physiologically sustain a load carriage task could be accurately predicted, commanders and supervisors could better plan for and manage tasks to ensure operational imperatives were met whilst minimising health risks for their workers. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  12. 14 CFR 23.787 - Baggage and cargo compartments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Design and... critical load distributions at the appropriate maximum load factors corresponding to the flight and ground...

  13. Final Report - Management of High Sulfur HLW, VSL-13R2920-1, Rev. 0, dated 10/31/2013

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, Albert A.; Gan, H.; Pegg, I. L.

    2013-11-13

    The present report describes results from a series of small-scale crucible tests to determine the extent of corrosion associated with sulfur containing HLW glasses and to develop a glass composition for a sulfur-rich HLW waste stream, which was then subjected to small-scale melter testing to determine the maximum acceptable sulfate loadings. In the present work, a new glass formulation was developed and tested for a projected Hanford HLW composition with sulfate concentrations high enough to limit waste loading. Testing was then performed on the DM10 melter system at successively higher waste loadings to determine the maximum waste loading without themore » formation of a separate sulfate salt phase. Small scale corrosion testing was also conducted using the glass developed in the present work, the glass developed in the initial phase of this work [26], and a high iron composition, all at maximum sulfur concentrations determined from melter testing, in order to assess the extent of Inconel 690 and MA758 corrosion at elevated sulfate contents.« less

  14. Optimization Research on Ampacity of Underground High Voltage Cable Based on Interior Point Method

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Li, Jing

    2017-12-01

    The conservative operation method which takes unified current-carrying capacity as maximum load current can’t make full use of the overall power transmission capacity of the cable. It’s not the optimal operation state for the cable cluster. In order to improve the transmission capacity of underground cables in cluster, this paper regards the maximum overall load current as the objective function and the temperature of any cables lower than maximum permissible temperature as constraint condition. The interior point method which is very effective for nonlinear problem is put forward to solve the extreme value of the problem and determine the optimal operating current of each loop. The results show that the optimal solutions obtained with the purposed method is able to increase the total load current about 5%. It greatly improves the economic performance of the cable cluster.

  15. Deformation behavior and spall fracture of the Hadfield steel under shock-wave loading

    NASA Astrophysics Data System (ADS)

    Gnyusov, S. F.; Rotshtein, V. P.; Polevin, S. D.; Kitsanov, S. A.

    2011-03-01

    Comparative studies of regularities in plastic deformation and fracture of the Hadfield polycrystalline steel upon quasi-static tension, impact failure, and shock-wave loading with rear spall are performed. The SINUS-7 accelerator was used as a shock-wave generator. The electron beam parameters of the accelerator were the following: maximum electron energy was 1.35 MeV, pulse duration at half-maximum was 45 ns, maximum energy density on a target was 3.4·1010 W/cm2, shock-wave amplitude was ~20 GPa, and strain rate was ~106 s-1. It is established that the failure mechanism changes from ductile transgranular to mixed ductile-brittle intergranular one when going from quasi-static tensile and Charpy impact tests to shock-wave loading. It is demonstrated that a reason for the intergranular spallation is the strain localization near the grain boundaries containing a carbide interlayer.

  16. Finite element analysis of a bone healing model: 1-year follow-up after internal fixation surgery for femoral fracture.

    PubMed

    Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du

    2014-03-01

    Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.

  17. Expected benefits of federally-funded thermal energy storage research

    NASA Astrophysics Data System (ADS)

    Spanner, G. E.; Daellenbach, K. K.; Hughes, K. R.; Brown, D. R.; Drost, M. K.

    1992-09-01

    Pacific Northwest Laboratory (PNL) conducted this study for the Office of Advanced Utility Concepts of the US Department of Energy (DOE). The objective of this study was to develop a series of graphs that depict the long-term benefits of continuing DOE's thermal energy storage (TES) research program in four sectors: building heating, building cooling, utility power production, and transportation. The study was conducted in three steps. The first step was to assess the maximum possible benefits technically achievable in each sector. In some sectors, the maximum benefit was determined by a 'supply side' limitation, and in other sectors, the maximum benefit is determined by a 'demand side' limitation. The second step was to apply economic cost and diffusion models to estimate the benefits that are likely to be achieved by TES under two scenarios: (1) with continuing DOE funding of TES research; and (2) without continued funding. The models all cover the 20-year period from 1990 to 2010. The third step was to prepare graphs that show the maximum technical benefits achievable, the estimated benefits with TES research funding, and the estimated benefits in the absence of TES research funding. The benefits of federally-funded TES research are largely in four areas: displacement of primary energy, displacement of oil and natural gas, reduction in peak electric loads, and emissions reductions.

  18. Modeling of a resonant heat engine

    NASA Astrophysics Data System (ADS)

    Preetham, B. S.; Anderson, M.; Richards, C.

    2012-12-01

    A resonant heat engine in which the piston assembly is replaced by a sealed elastic cavity is modeled and analyzed. A nondimensional lumped-parameter model is derived and used to investigate the factors that control the performance of the engine. The thermal efficiency predicted by the model agrees with that predicted from the relation for the Otto cycle based on compression ratio. The predictions show that for a fixed mechanical load, increasing the heat input results in increased efficiency. The output power and power density are shown to depend on the loading for a given heat input. The loading condition for maximum output power is different from that required for maximum power density.

  19. Static Tensile and Transient Dynamic Response of Cracked Aluminum Plate Repaired with Composite Patch - Numerical Study

    NASA Astrophysics Data System (ADS)

    Khalili, S. M. R.; Shariyat, M.; Mokhtari, M.

    2014-06-01

    In this study, the central cracked aluminum plates repaired with two sided composite patches are investigated numerically for their response to static tensile and transient dynamic loadings. Contour integral method is used to define and evaluate the stress intensity factors at the crack tips. The reinforcement for the composite patches is carbon fibers. The effect of adhesive thickness and patch thickness and configuration in tensile loading case and pre-tension, pre-compression and crack length effect on the evolution of the mode I stress intensity factor (SIF) (KI) of the repaired structure under transient dynamic loading case are examined. The results indicated that KI of the central cracked plate is reduced by 1/10 to 1/2 as a result of the bonded composite patch repair in tensile loading case. The crack length and the pre-loads are more effective in repaired structure in transient dynamic loading case in which, the 100 N pre-compression reduces the maximum KI for about 40 %, and the 100 N pre-tension reduces the maximum KI after loading period, by about 196 %.

  20. Some limitations in applying classical EHD film-thickness formulae to a high-speed bearing

    NASA Technical Reports Server (NTRS)

    Coy, J. J.; Zaretsky, E. V.

    1980-01-01

    Elastohydrodynamic film thickness was measured for a 20 mm ball bearing using the capacitance technique. The bearing was thrust loaded to 90, 448, and 778 N. The corresponding maximum stresses on the inner race were 1.28, 2.09, and 2.45 GPa. Test speeds ranged from 400 to 14,000 rpm. Film thickness measurements were taken with four different lubricants: (1) synthetic paraffinic; (2) synthetic paraffinic with additives; (3) neopentylpolyol (tetra) ester; and (4) synthetic cycloaliphatic hydrocarbon traction fluid. The test bearing was mist lubricated. Test temperatures were 300, 338, and 393 K. The measured results were compared to theoretical predictions and are presented.

  1. Nuclear Rocket Ceramic Metal Fuel Fabrication Using Tungsten Powder Coating and Spark Plasma Sintering

    NASA Technical Reports Server (NTRS)

    Barnes, M. W.; Tucker, D. S.; Hone, L.; Cook, S.

    2017-01-01

    Nuclear thermal propulsion is an enabling technology for crewed Mars missions. An investigation was conducted to evaluate spark plasma sintering (SPS) as a method to produce tungsten-depleted uranium dioxide (W-dUO2) fuel material when employing fuel particles that were tungsten powder coated. Ceramic metal fuel wafers were produced from a blend of W-60vol% dUO2 powder that was sintered via SPS. The maximum sintering temperatures were varied from 1,600 to 1,850 C while applying a 50-MPa axial load. Wafers exhibited high density (>95% of theoretical) and a uniform microstructure (fuel particles uniformly dispersed throughout tungsten matrix).

  2. Fabrication and characterization of a piezoelectric energy harvester with clamped-clamped beams

    NASA Astrophysics Data System (ADS)

    Cui, Yan; Yu, Menglin; Gao, Shiqiao; Kong, Xiangxin; Gu, Wang; Zhang, Ran; Liu, Bowen

    2018-05-01

    This work presents a piezoelectric energy harvester with clamped-clamped beams, and it is fabricated with MEMS process. When excited by sinusoidal vibration, the energy harvester has a sharp jumping down phenomenon and the measured frequency responses of the clamped-clamped beams structure show a larger bandwidth which is about 56Hz, more efficient than that with cantilever beams. When the exciting acceleration ac is 12m/s2, the energy harvester achieves to a maximum open-circuit voltage of 94mV on one beam. The load voltage is proportional to the load resistance, and it increased with the increase of load resistance. Connected four beams in series, the output power reaches the maximum value of 730 nW and the optimal load is 15KΩ to one beam.

  3. Platform switching: biomechanical evaluation using three-dimensional finite element analysis.

    PubMed

    Tabata, Lucas Fernando; Rocha, Eduardo Passos; Barão, Valentim Adelino Ricardo; Assunção, Wirley Goncalves

    2011-01-01

    The objective of this study was to evaluate, using three-dimensional finite element analysis (3D FEA), the stress distribution in peri-implant bone tissue, implants, and prosthetic components of implant-supported single crowns with the use of the platform-switching concept. Three 3D finite element models were created to replicate an external-hexagonal implant system with peri-implant bone tissue in which three different implant-abutment configurations were represented. In the regular platform (RP) group, a regular 4.1-mm-diameter abutment (UCLA) was connected to regular 4.1-mm-diameter implant. The platform-switching (PS) group was simulated by the connection of a wide implant (5.0 mm diameter) to a regular 4.1-mm-diameter UCLA abutment. In the wide-platform (WP) group, a 5.0-mm-diameter UCLA abutment was connected to a 5.0-mm-diameter implant. An occlusal load of 100 N was applied either axially or obliquely on the models using ANSYS software. Both the increase in implant diameter and the use of platform switching played roles in stress reduction. The PS group presented lower stress values than the RP and WP groups for bone and implant. In the peri-implant area, cortical bone exhibited a higher stress concentration than the trabecular bone in all models and both loading situations. Under oblique loading, higher intensity and greater distribution of stress were observed than under axial loading. Platform switching reduced von Mises (17.5% and 9.3% for axial and oblique loads, respectively), minimum (compressive) (19.4% for axial load and 21.9% for oblique load), and maximum (tensile) principal stress values (46.6% for axial load and 26.7% for oblique load) in the peri-implant bone tissue. Platform switching led to improved biomechanical stress distribution in peri-implant bone tissue. Oblique loads resulted in higher stress concentrations than axial loads for all models. Wide-diameter implants had a large influence in reducing stress values in the implant system.

  4. Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections

    NASA Technical Reports Server (NTRS)

    West, F E

    1945-01-01

    Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

  5. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Control system loads. 25.397 Section 25.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loads. (a) General. The maximum and minimum pilot forces, specified in paragraph (c) of this section...

  6. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Control system loads. 25.397 Section 25.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loads. (a) General. The maximum and minimum pilot forces, specified in paragraph (c) of this section...

  7. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Control system loads. 25.397 Section 25.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loads. (a) General. The maximum and minimum pilot forces, specified in paragraph (c) of this section...

  8. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Control system loads. 25.397 Section 25.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loads. (a) General. The maximum and minimum pilot forces, specified in paragraph (c) of this section...

  9. 14 CFR 25.397 - Control system loads.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Control system loads. 25.397 Section 25.397 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS... loads. (a) General. The maximum and minimum pilot forces, specified in paragraph (c) of this section...

  10. Impact of forecasted changes in Polish economy (2015 and 2020) on nutrient emission into the river basins.

    PubMed

    Pastuszak, Marianna; Kowalkowski, Tomasz; Kopiński, Jerzy; Stalenga, Jarosław; Panasiuk, Damian

    2014-09-15

    Poland, with its large drainage area, with 50% contribution of agricultural land and 45% contribution of population to overall agricultural land area and population number in the Baltic catchment, is the largest exporter of riverine nitrogen (N) and phosphorus (P) to the sea. The economic transition has resulted in substantial, statistically significant decline in N, P export from Polish territory to the Baltic Sea. Following the obligations arising from the Helsinki Commission (HELCOM) declarations, in the coming years, Poland is expected to reduce riverine N loads by ca. 25% and P loads by ca. 60% as referred to the average flow normalized loads recorded in 1997-2003. The aim of this paper is to estimate annual source apportioned N and P emissions into these river basins in 2015 and 2020 with application of modeling studies (MONERIS). Twelve scenarios, encompassing changes in anthropogenic (diffuse, point source) and natural pressure (precipitation, water outflow due to climate change), have been applied. Modeling outcome for the period 2003-2008 served as our reference material. In applied scenarios, N emission into the Oder basin in 2015 and 2020 shows an increase from 4.2% up to 9.1% as compared with the reference period. N emission into the Vistula basin is more variable and shows an increase by max. 17.8% or a decrease by max. 4.7%, depending on the scenario. The difference between N emission into the Oder and Vistula basins is related to the catchment peculiarities and handling of point sources emission. P emission into both basins shows identical scenario patters and a maximum decrease reaches 17.8% in the Oder and 16.7% in the Vistula basin. Despite a declining tendency in P loads in both rivers in all the scenarios, HELCOM targeted P load reduction is not feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The Effect of Framework Design on Stress Distribution in Implant-Supported FPDs: A 3-D FEM Study

    PubMed Central

    Eraslan, Oguz; Inan, Ozgur; Secilmis, Asli

    2010-01-01

    Objectives: The biomechanical behavior of the superstructure plays an important role in the functional longevity of dental implants. However, information about the influence of framework design on stresses transmitted to the implants and supporting tissues is limited. The purpose of this study was to evaluate the effects of framework designs on stress distribution at the supporting bone and supporting implants. Methods: In this study, the three-dimensional (3D) finite element stress analysis method was used. Three types of 3D mathematical models simulating three different framework designs for implant-supported 3-unit posterior fixed partial dentures were prepared with supporting structures. Convex (1), concave (2), and conventional (3) pontic framework designs were simulated. A 300-N static vertical occlusal load was applied on the node at the center of occlusal surface of the pontic to calculate the stress distributions. As a second condition, frameworks were directly loaded to evaluate the effect of the framework design clearly. The Solidworks/Cosmosworks structural analysis programs were used for finite element modeling/analysis. Results: The analysis of the von Mises stress values revealed that maximum stress concentrations were located at the loading areas for all models. The pontic side marginal edges of restorations and the necks of implants were other stress concentration regions. There was no clear difference among models when the restorations were loaded at occlusal surfaces. When the veneering porcelain was removed, and load was applied directly to the framework, there was a clear increase in stress concentration with a concave design on supporting implants and bone structure. Conclusions: The present study showed that the use of a concave design in the pontic frameworks of fixed partial dentures increases the von Mises stress levels on implant abutments and supporting bone structure. However, the veneering porcelain element reduces the effect of the framework and compensates for design weaknesses. PMID:20922156

  12. 14 CFR 23.509 - Towing loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... reaction must be applied at the axle of the wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The...

  13. 14 CFR 23.509 - Towing loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... reaction must be applied at the axle of the wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The...

  14. 14 CFR 23.509 - Towing loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... reaction must be applied at the axle of the wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The...

  15. 14 CFR 23.509 - Towing loads.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... reaction must be applied at the axle of the wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The...

  16. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhong Qi; Graduate School of Chinese Academy of Sciences, Beijing 100049; Li Daping

    2009-04-15

    Ex situ nitrification and sequential in situ denitrification represents a novel approach to nitrogen management at landfills. Simultaneous ammonia and organics removal was achieved in a continuous stirred tank reactor (CSTR). The results showed that the maximum nitrogen loading rate (NLR) and the maximum organic loading rate (OLR) was 0.65 g N l{sup -1} d{sup -1} and 3.84 g COD l{sup -1} d{sup -1}, respectively. The ammonia and chemical oxygen demand (COD) removal was over 99% and 57%, respectively. In the run of the CSTR, free ammonia (FA) inhibition and low dissolved oxygen (DO) were found to be key factorsmore » affecting nitrite accumulation. In situ denitrification was studied in a municipal solid waste (MSW) column by recalculating nitrified leachate from CSTR. The decomposition of MSW was accelerated by the recirculation of nitrified leachate. Complete reduction of total oxidized nitrogen (TON) was obtained with maximum TON loading of 28.6 g N t{sup -1} TS d{sup -1} and denitrification was the main reaction responsible. Additionally, methanogenesis inhibition was observed while TON loading was over 11.4 g N t{sup -1} TS d{sup -1} and the inhibition was enhanced with the increase of TON loading.« less

  17. Improved design of support for large aperture space lightweight mirror

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Ruan, Ping; Liu, Qimin

    2013-08-01

    In order to design a kind of rational large aperture space mirror which can adapt to the space gravity and thermal environment, by taking the choice of material, the lightweight of the mirror and the design of support into account in detail, a double-deck structure with traditional flexible hinge was designed, then the analytical mathematical model of the mirror system was established. The design adopts six supports on back. in order to avoid the constraints, mirror is connected to three middle transition pieces through six flexible hinges, and then the three transition pieces are connected to support plate through another three flexible hinges. However, the initial structure is unable to reach the expected design target and needs to be made further adjustments. By improving and optimizing the original structure, a new type of flexible hinge in the shape of the letter A is designed finally. Compared with the traditional flexible hinge structure, the new structure is simpler and has less influence on the surface figure accuracy of mirror. By using the finite element analysis method, the static and dynamic characteristics as well as the thermal characteristics of the mirror system are analyzed. Analysis results show that the maximum PV value is 37 nm and the maximum RMS value is 10.4 nm when gravity load is applied. Furthermore, the maximum PV value is 46 nm and the maximum RMS value is 10.5 nm under the load case of gravity coupled with 4℃ uniform temperature rise. The results satisfy the index of optical design. The first order natural frequency of the mirror component is 130 Hz according to the conclusion obtained by modal analytical solution, so the mirror structure has high enough fundamental frequency. And, the structural strength can meet the demand under the overload and the random vibration environment respectively. It indicates that the mirror component structure has enough dynamic, static stiffness and thermal stability, meeting the design requirements.

  18. A New Sensor for Measurement of Dynamic Contact Stress in the Hip

    PubMed Central

    Rudert, M. J.; Ellis, B. J.; Henak, C. R.; Stroud, N. J.; Pederson, D. R.; Weiss, J. A.; Brown, T. D.

    2014-01-01

    Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential “ring-and-spoke” sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film. PMID:24763632

  19. A new sensor for measurement of dynamic contact stress in the hip.

    PubMed

    Rudert, M J; Ellis, B J; Henak, C R; Stroud, N J; Pederson, D R; Weiss, J A; Brown, T D

    2014-03-01

    Various techniques exist for quantifying articular contact stress distributions, an important class of measurements in the field of orthopaedic biomechanics. In situations where the need for dynamic recording has been paramount, the approach of preference has involved thin-sheet multiplexed grid-array transducers. To date, these sensors have been used to study contact stresses in the knee, shoulder, ankle, wrist, and spinal facet joints. Until now, however, no such sensor had been available for the human hip joint due to difficulties posed by the deep, bi-curvilinear geometry of the acetabulum. We report here the design and development of a novel sensor capable of measuring dynamic contact stress in human cadaveric hip joints (maximum contact stress of 20 MPa and maximum sampling rate 100 readings/s). Particular emphasis is placed on issues concerning calibration, and on the effect of joint curvature on the sensor's performance. The active pressure-sensing regions of the sensors have the shape of a segment of an annulus with a 150-deg circumferential span, and employ a polar/circumferential "ring-and-spoke" sensel grid layout. There are two sensor sizes, having outside radii of 44 and 48 mm, respectively. The new design was evaluated in human cadaver hip joints using two methods. The stress magnitudes and spatial distribution measured by the sensor were compared to contact stresses measured by pressure sensitive film during static loading conditions that simulated heel strike during walking and stair climbing. Additionally, the forces obtained by spatial integration of the sensor contact stresses were compared to the forces measured by load cells during the static simulations and for loading applied by a dynamic hip simulator. Stress magnitudes and spatial distribution patterns obtained from the sensor versus from pressure sensitive film exhibited good agreement. The joint forces obtained during both static and dynamic loading were within ±10% and ±26%, respectively, of the forces measured by the load cells. These results provide confidence in the measurements obtained by the sensor. The new sensor's real-time output and dynamic measurement capabilities hold significant advantages over static measurements from pressure sensitive film.

  20. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The prescribed towing loads are as follows: Tow...

  1. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The prescribed towing loads are as follows: Tow...

  2. 14 CFR 25.509 - Towing loads.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... wheel to which the load is applied. Enough airplane inertia to achieve equilibrium must be applied. (ii) The loads must be reacted by airplane inertia. (d) The prescribed towing loads are as follows: Tow...

  3. The Influence of the Form of a Wooden Beam on Its Stiffness and Strength III : Stresses in Wood Members Subjected to Combined Column and Beam Action

    NASA Technical Reports Server (NTRS)

    Newlin, J A; Trayer, G W

    1925-01-01

    The general purpose in this study was to determine the stresses in a wooden member subjected to combined beam and column action. What may be considered the specific purpose, as it relates more directly to the problem of design, was to determine the particular stress that obtains at maximum load which, for combined loading, does not occur simultaneously with maximum stress.

  4. Effect of elasticity on stress distribution in CAD/CAM dental crowns: Glass ceramic vs. polymer-matrix composite.

    PubMed

    Duan, Yuanyuan; Griggs, Jason A

    2015-06-01

    Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  6. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  7. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  8. 46 CFR 64.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., excluding the allowance for corrosion and the thickness for loadings other than pressure, as provided for in the ASME Code. (e) Test pressure means a hydrostatic pressure of at least one and one-half times the maximum allowable working pressure. (f) Dynamic loading conditions means the following: (1) A loading in...

  9. 49 CFR 178.1055 - Stacking test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and no loss of contents during the test or after removal of the test load. ... to a uniformly distributed superimposed test load that is four times the design type maximum gross weight for a period of at least twenty-four hours. (2) For all Flexible Bulk Containers, the load must be...

  10. 49 CFR 178.1055 - Stacking test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and no loss of contents during the test or after removal of the test load. ... to a uniformly distributed superimposed test load that is four times the design type maximum gross weight for a period of at least twenty-four hours. (2) For all Flexible Bulk Containers, the load must be...

  11. 78 FR 6200 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ... by installing a placard with the new (reduced) maximum load. We disagree because the customer COS box.... ACTION: Final rule. SUMMARY: We are adopting a new airworthiness directive (AD) for certain The Boeing... under forward load levels less than the 9 g forward load requirements as defined by certain regulations...

  12. 14 CFR 25.683 - Operation tests.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...

  13. 14 CFR 25.683 - Operation tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...

  14. 14 CFR 25.683 - Operation tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...

  15. 14 CFR 25.683 - Operation tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.683 Operation tests. It must be shown by operation tests that when portions of the control system subject to pilot effort loads... control system are loaded to the maximum load expected in normal operation, the system is free from— (a...

  16. EVALUATION OF SAMPLING FREQUENCIES REQUIRED TO ESTIMATE NUTRIENT AND SUSPENDED SEDIMENT LOADS IN LARGE RIVERS

    EPA Science Inventory

    Nutrients and suspended sediments in streams and large rivers are two major issues facing state and federal agencies. Accurate estimates of nutrient and sediment loads are needed to assess a variety of important water-quality issues including total maximum daily loads, aquatic ec...

  17. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  18. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  19. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

  20. 14 CFR 125.383 - Load manifest.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... airplane; (3) The maximum allowable takeoff and landing weights for that flight; (4) The center of gravity limits; (5) The center of gravity of the loaded airplane, except that the actual center of gravity need... that ensures that the center of gravity of the loaded airplane is within approved limits. In those...

Top